| projpred-package | Projection predictive feature selection | 
| as.matrix.projection | Extract projected parameter draws and coerce to matrix | 
| as_draws.projection | Extract projected parameter draws and coerce to 'draws_matrix' (see package 'posterior') | 
| as_draws_matrix.projection | Extract projected parameter draws and coerce to 'draws_matrix' (see package 'posterior') | 
| augdat_ilink_binom | Inverse-link function for augmented-data projection with binomial family | 
| augdat_link_binom | Link function for augmented-data projection with binomial family | 
| break_up_matrix_term | Break up matrix terms | 
| cl_agg | Weighted averaging within clusters of parameter draws | 
| cv-indices | Create cross-validation folds | 
| cvfolds | Create cross-validation folds | 
| cv_folds | Create cross-validation folds | 
| cv_ids | Create cross-validation folds | 
| cv_proportions | Ranking proportions from fold-wise predictor rankings | 
| cv_proportions.ranking | Ranking proportions from fold-wise predictor rankings | 
| cv_proportions.vsel | Ranking proportions from fold-wise predictor rankings | 
| cv_varsel | Run search and performance evaluation with cross-validation | 
| cv_varsel.default | Run search and performance evaluation with cross-validation | 
| cv_varsel.refmodel | Run search and performance evaluation with cross-validation | 
| cv_varsel.vsel | Run search and performance evaluation with cross-validation | 
| df_binom | Binomial toy example | 
| df_gaussian | Gaussian toy example | 
| extend_family | Extend a family | 
| extra-families | Extra family objects | 
| force_search_terms | Force search terms | 
| get_refmodel | Reference model and more general information | 
| get_refmodel.default | Reference model and more general information | 
| get_refmodel.projection | Reference model and more general information | 
| get_refmodel.refmodel | Reference model and more general information | 
| get_refmodel.stanreg | Reference model and more general information | 
| get_refmodel.vsel | Reference model and more general information | 
| init_refmodel | Reference model and more general information | 
| mesquite | Mesquite data set | 
| performances | Predictive performance results | 
| performances.vsel | Predictive performance results | 
| performances.vselsummary | Predictive performance results | 
| plot.cv_proportions | Plot ranking proportions from fold-wise predictor rankings | 
| plot.ranking | Plot ranking proportions from fold-wise predictor rankings | 
| plot.vsel | Plot predictive performance | 
| pred-projection | Predictions from a submodel (after projection) | 
| predict.refmodel | Predictions or log posterior predictive densities from a reference model | 
| predictor_terms | Predictor terms used in a 'project()' run | 
| predictor_terms.projection | Predictor terms used in a 'project()' run | 
| print.projection | Print information about 'project()' output | 
| print.refmodel | Print information about a reference model object | 
| print.vsel | Print results (summary) of a 'varsel()' or 'cv_varsel()' run | 
| print.vselsummary | Print summary of a 'varsel()' or 'cv_varsel()' run | 
| project | Projection onto submodel(s) | 
| projpred | Projection predictive feature selection | 
| proj_linpred | Predictions from a submodel (after projection) | 
| proj_predict | Predictions from a submodel (after projection) | 
| ranking | Predictor ranking(s) | 
| ranking.vsel | Predictor ranking(s) | 
| refmodel-init-get | Reference model and more general information | 
| run_cvfun | Create 'cvfits' from 'cvfun' | 
| run_cvfun.default | Create 'cvfits' from 'cvfun' | 
| run_cvfun.refmodel | Create 'cvfits' from 'cvfun' | 
| solution_terms | Retrieve the full-data solution path from a 'varsel()' or 'cv_varsel()' run or the predictor combination from a 'project()' run | 
| solution_terms.projection | Retrieve the full-data solution path from a 'varsel()' or 'cv_varsel()' run or the predictor combination from a 'project()' run | 
| solution_terms.vsel | Retrieve the full-data solution path from a 'varsel()' or 'cv_varsel()' run or the predictor combination from a 'project()' run | 
| Student_t | Extra family objects | 
| suggest_size | Suggest submodel size | 
| suggest_size.vsel | Suggest submodel size | 
| summary.vsel | Summary of a 'varsel()' or 'cv_varsel()' run | 
| varsel | Run search and performance evaluation without cross-validation | 
| varsel.default | Run search and performance evaluation without cross-validation | 
| varsel.refmodel | Run search and performance evaluation without cross-validation | 
| varsel.vsel | Run search and performance evaluation without cross-validation | 
| y_wobs_offs | Extract response values, observation weights, and offsets |