In this vignette we will introduce different ways to create a drug utilisation cohort using DrugUtilisation.
To create a cdm_reference object you will need to use the package CDMConnector. For this vignette we will use mock data contained in the DrugUtilisation package.
library(DrugUtilisation)
library(CodelistGenerator)
library(dplyr)
library(CDMConnector)
cdm <- mockDrugUtilisation(numberIndividual = 200)The first thing that we need is a concept list. The concept list can be obtained through different ways:
To create a cohort with a concept list from a .json file, use
codesFromConceptSet() from CodelistGenerator package. Let’s
see an example:
conceptSet_json <- codesFromConceptSet(here::here("inst/Concept"), cdm)
conceptSet_json
#> $asthma
#> [1] 317009The concept list can also be created manually:
#get concept using code directly
conceptSet_code <- list(asthma = 317009)
conceptSet_code
#> $asthma
#> [1] 317009In case there is a certain ingredient of interest, the code can also
be obtained by getDrugIngredientCodes() from the package
CodelistGenerator.
#get concept by ingredient
conceptSet_ingredient <- getDrugIngredientCodes(cdm, name = "simvastatin")
conceptSet_ingredient
#> $simvastatin
#> [1] 1539403 1539462 1539463We can also obtain the ATC code by using getATCCodes()
from CodelistGenerator package.
#get concept from ATC codes
conceptSet_ATC <- getATCCodes(cdm,
level = "ATC 1st",
name = "ALIMENTARY TRACT AND METABOLISM")
conceptSet_ATC
#> $alimentary_tract_and_metabolism
#> [1] 35897399Once we have the conceptSet, we can proceed to generate
a cohort. There are two functions in this package to do that:
generateConceptCohortSet(): to generate a cohort for
a certain list of concepts (they do not have to be a drug). This
function is exported from CDMConnector package.
generateDrugUtilisationCohortSet(): to generate a
cohort of the drug use.
Let’s try to use generateConceptCohortSet() to get the
asthma cohort using the conceptSet_code created before. We
could also use conceptSet_json_1 or
conceptSet_json_2 to obtain the same result.
cdm <- generateConceptCohortSet(cdm,
conceptSet = conceptSet_code,
name = "asthma_1",
overwrite = TRUE
)
cdm$asthma_1
#> # Source: table<asthma_1> [?? x 4]
#> # Database: DuckDB 0.7.1 [martics@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <int> <date> <date>
#> 1 1 81 2022-03-05 2022-10-20
#> 2 1 84 2016-04-16 2016-06-14
#> 3 1 140 2019-08-25 2020-12-22
#> 4 1 147 2010-01-11 2010-08-11
#> 5 1 150 1980-07-07 1995-03-30
#> 6 1 158 2020-09-03 2020-10-10
#> 7 1 83 2017-07-07 2019-11-14
#> 8 1 191 2018-02-06 2018-05-19
#> 9 1 22 2013-02-10 2016-07-18
#> 10 1 31 1993-08-13 2005-06-01
#> # ℹ more rowsThe count of the cohort can be assessed using
cohortCount() from CDMConnector.
cohortCount(cdm$asthma_1)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 100 100Cohort attrition can be assessed using attrition() from
CDMConnector.
attrition(cdm$asthma_1)
#> # A tibble: 1 × 7
#> cohort_definition_id number_records number_subjects reason_id reason
#> <int> <int> <int> <int> <chr>
#> 1 1 100 100 1 Initial qualify…
#> # ℹ 2 more variables: excluded_records <int>, excluded_subjects <int>You can use the end parameter to set how the cohort end
date will be defined. By default,
end = observation_period_end_date, but it can also be
defined as event_end_date or by defining a numeric scalar.
See an example below:
cdm <- generateConceptCohortSet(cdm,
conceptSet = conceptSet_code,
name = "asthma_2",
end = "event_end_date",
overwrite = TRUE
)
cdm$asthma_2
#> # Source: table<asthma_2> [?? x 4]
#> # Database: DuckDB 0.7.1 [martics@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <int> <date> <date>
#> 1 1 81 2022-03-05 2022-09-19
#> 2 1 84 2016-04-16 2016-05-17
#> 3 1 140 2019-08-25 2019-09-26
#> 4 1 147 2010-01-11 2010-02-13
#> 5 1 150 1980-07-07 1986-07-24
#> 6 1 158 2020-09-03 2020-09-06
#> 7 1 83 2017-07-07 2018-08-30
#> 8 1 191 2018-02-06 2018-03-21
#> 9 1 22 2013-02-10 2013-05-19
#> 10 1 31 1993-08-13 2002-04-05
#> # ℹ more rowsThe requiredObservation parameter is a numeric vector of
length 2, that defines the number of days of required observation time
prior to index and post index for an event to be included in the cohort.
The default value is c(0,0). Let’s check how the difference
between asthma_3 and asthma_2 when
changing this parameter.
cdm <- generateConceptCohortSet(cdm,
conceptSet = conceptSet_code,
name = "asthma_3",
end = "observation_period_end_date",
requiredObservation = c(10, 10),
overwrite = TRUE
)
cdm$asthma_3
#> # Source: table<asthma_3> [?? x 4]
#> # Database: DuckDB 0.7.1 [martics@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <int> <date> <date>
#> 1 1 81 2022-03-05 2022-10-20
#> 2 1 84 2016-04-16 2016-06-14
#> 3 1 140 2019-08-25 2020-12-22
#> 4 1 147 2010-01-11 2010-08-11
#> 5 1 150 1980-07-07 1995-03-30
#> 6 1 158 2020-09-03 2020-10-10
#> 7 1 83 2017-07-07 2019-11-14
#> 8 1 191 2018-02-06 2018-05-19
#> 9 1 22 2013-02-10 2016-07-18
#> 10 1 31 1993-08-13 2005-06-01
#> # ℹ more rows
cohortCount(cdm$asthma_3)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 94 94
attrition(cdm$asthma_3)
#> # A tibble: 1 × 7
#> cohort_definition_id number_records number_subjects reason_id reason
#> <int> <int> <int> <int> <chr>
#> 1 1 94 94 1 Initial qualify…
#> # ℹ 2 more variables: excluded_records <int>, excluded_subjects <int>Now let’s try the function
generateDrugUtilisationCohortSet() to get the drug cohort
for the ingredient simvastatin. See an example below:
cdm <- generateDrugUtilisationCohortSet(cdm,
name = "simvastin_1",
conceptSet = conceptSet_ingredient
)
cdm$simvastin_1
#> # Source: table<simvastin_1> [?? x 4]
#> # Database: DuckDB 0.7.1 [martics@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <int> <date> <date>
#> 1 1 61 2013-01-11 2013-01-11
#> 2 1 61 2013-01-21 2013-03-04
#> 3 1 113 1999-02-19 1999-04-25
#> 4 1 191 2015-11-14 2016-09-13
#> 5 1 22 2013-09-09 2016-05-19
#> 6 1 70 2011-08-22 2014-10-09
#> 7 1 90 2021-10-06 2022-01-27
#> 8 1 185 1959-10-01 1970-11-09
#> 9 1 188 2012-07-07 2013-09-22
#> 10 1 91 2021-08-28 2022-01-22
#> # ℹ more rows
cohortCount(cdm$simvastin_1)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 109 99
attrition(cdm$simvastin_1)
#> # A tibble: 1 × 7
#> cohort_definition_id number_records number_subjects reason_id reason
#> <int> <int> <int> <int> <chr>
#> 1 1 109 99 1 Initial qualify…
#> # ℹ 2 more variables: excluded_records <int>, excluded_subjects <int>durationRange specifies the range within
which the duration must fall, where duration will be calculated as:
duration = cohort_end_date - cohort_start_date + 1
The default value is c(1, Inf). See that this parameter
must be a numeric vector of length two, with no NAs and with the first
value equal or bigger than the second one. Duration values outside of
durationRange will be imputed using
imputeDuration. imputeDuration can be set as:
none(default), median, mean,
mode or an integer (count).
cdm <- generateDrugUtilisationCohortSet(cdm,
name = "simvastin_2",
conceptSet = conceptSet_ingredient,
imputeDuration = "none",
durationRange = c(0, Inf) # default as c(1, Inf)
)
attrition(cdm$simvastin_2)
#> # A tibble: 1 × 7
#> cohort_definition_id number_records number_subjects reason_id reason
#> <int> <int> <int> <int> <chr>
#> 1 1 109 99 1 Initial qualify…
#> # ℹ 2 more variables: excluded_records <int>, excluded_subjects <int>The gapEra parameter defines the number of days between
two continuous drug exposures to be considered as a same era. Now let’s
change it from 0 to a larger number to see what happens.
cdm <- generateDrugUtilisationCohortSet(cdm,
name = "simvastin_3",
conceptSet = conceptSet_ingredient,
imputeDuration = "none",
durationRange = c(0, Inf),
gapEra = 30 # default as 0
)
attrition(cdm$simvastin_3) %>% select(number_records, reason, excluded_records, excluded_subjects)
#> # A tibble: 2 × 4
#> number_records reason excluded_records excluded_subjects
#> <int> <chr> <int> <int>
#> 1 109 Initial qualifying events 0 0
#> 2 107 join exposures separated by… 2 0From the simvastin_3 cohort attrition, we can see that when joining eras, it resulted in less records, compared to the simvastin_2 cohort, as exposures with less than 30 days gaps are joined.
The priorUseWashout parameter specifies the number of
prior days without exposure (often termed as ‘washout’) that are
required. By default, it is set to NULL, meaning no washout period is
necessary. See that when increasing this value, the number of records
decrease.
cdm <- generateDrugUtilisationCohortSet(cdm,
name = "simvastin_4",
conceptSet = conceptSet_ingredient,
imputeDuration = "none",
durationRange = c(0, Inf),
gapEra = 30,
priorUseWashout = 30
)
attrition(cdm$simvastin_4) %>% select(number_records, reason, excluded_records, excluded_subjects)
#> # A tibble: 3 × 4
#> number_records reason excluded_records excluded_subjects
#> <int> <chr> <int> <int>
#> 1 109 Initial qualifying events 0 0
#> 2 107 join exposures separated by… 2 0
#> 3 107 require prior use washout o… 0 0The parameter priorObservation defines the minimum
number of days of prior observation necessary for drug eras to be taken
into account. If set to NULL, the drug eras are not required to fall
within the observation_period.
cdm <- generateDrugUtilisationCohortSet(cdm,
name = "simvastin_5",
conceptSet = conceptSet_ingredient,
imputeDuration = "none",
durationRange = c(0, Inf),
gapEra = 30,
priorUseWashout = 30,
priorObservation = 30
)
attrition(cdm$simvastin_5) %>% select(number_records, reason, excluded_records, excluded_subjects)
#> # A tibble: 4 × 4
#> number_records reason excluded_records excluded_subjects
#> <int> <chr> <int> <int>
#> 1 109 Initial qualifying events 0 0
#> 2 107 join exposures separated by… 2 0
#> 3 107 require prior use washout o… 0 0
#> 4 99 require at least 30 prior o… 8 8The cohortDateRange parameter defines the range for the
cohort_start_date and cohort_end_date.
cdm <- generateDrugUtilisationCohortSet(cdm,
name = "simvastin_6",
conceptSet = conceptSet_ingredient,
imputeDuration = "none",
durationRange = c(0, Inf),
gapEra = 30,
priorUseWashout = 30,
priorObservation = 30,
cohortDateRange = as.Date(c("2010-01-01", "2011-01-01"))
)
attrition(cdm$simvastin_6) %>% select(number_records, reason, excluded_records, excluded_subjects)
#> # A tibble: 6 × 4
#> number_records reason excluded_records excluded_subjects
#> <int> <chr> <int> <int>
#> 1 109 Initial qualifying events 0 0
#> 2 107 join exposures separated by… 2 0
#> 3 107 require prior use washout o… 0 0
#> 4 99 require at least 30 prior o… 8 8
#> 5 66 restrict cohort_start_date … 33 30
#> 6 13 restrict cohort_end_date on… 53 48The input limit allows all (default) and
first options. If we set it to first, we will
only obtain the first record that fulfills all the criteria. Observe how
it impacts the attrition of the simvastin_7 in
comparison to the simvastin_6 cohort. The number of
records has decreased because of the First limit.
cdm <- generateDrugUtilisationCohortSet(cdm,
name = "simvastin_7",
conceptSet = conceptSet_ingredient,
imputeDuration = "none",
durationRange = c(0, Inf),
gapEra = 30,
priorUseWashout = 30,
priorObservation = 30,
cohortDateRange = as.Date(c("2010-01-01", "2011-01-01")),
limit = "First"
)
attrition(cdm$simvastin_7) %>% select(number_records, reason, excluded_records, excluded_subjects)
#> # A tibble: 7 × 4
#> number_records reason excluded_records excluded_subjects
#> <int> <chr> <int> <int>
#> 1 109 Initial qualifying events 0 0
#> 2 107 join exposures separated by… 2 0
#> 3 107 require prior use washout o… 0 0
#> 4 99 require at least 30 prior o… 8 8
#> 5 66 restrict cohort_start_date … 33 30
#> 6 13 restrict cohort_end_date on… 53 48
#> 7 13 restric to first record 0 0If we just wanted to get the first-ever era, we can also use this parameter. To achieve that, try the following setting:
cdm <- generateDrugUtilisationCohortSet(cdm,
name = "simvastin_8",
conceptSet = conceptSet_ingredient,
imputeDuration = "none",
durationRange = c(0, Inf),
gapEra = 0,
priorUseWashout = Inf,
priorObservation = 0,
cohortDateRange = as.Date(c(NA, NA)),
limit = "First"
)Constructing concept sets and generating various cohorts are the initial steps in conducting a drug utilisation study. For further guidance on using getting more information like characteristics from these cohorts, please refer to the other vignettes.