This vignette walks through an example of GenEst at the command line and was constructed using GenEst version 1.2.1 on 2018-12-18.
To obtain the most recent version of GenEst, download the most recent version build from GitHub
For this vignette, we will be using a completely generic, mock dataset provided with the GenEst package, which contains Searcher Efficiency (SE), Carcass Persistence (CP), Search Schedule (SS), Density Weighted Proportion (DWP), and Carcass Observation (CO) Data.
The central function for searcher efficiency analyses is pkm, which, in its most basic form, conducts a singular searcher efficiency analysis (i.e., a singular set of \(p\) and \(k\) formulae and a singular size classification of carcasses). As a first example, we will ignore the size category and use intercept-only models for both \(p\) and \(k\):
Here, we have taken advantage of pkm’s default behavior of selecting observation columns (see ?pkm for details).
head(data_SE)
#> seID Visibility HabitatType Season Size Search1 Search2 Search3 Search4
#> 1 se1 L HT1 SF S 1 NA NA NA
#> 2 se2 L HT1 SF S 1 NA NA NA
#> 3 se3 L HT1 WS S 0 0 0 0
#> 4 se4 L HT1 WS S 1 NA NA NA
#> 5 se5 L HT1 WS S 0 1 NA NA
#> 6 se6 L HT1 SF S 1 NA NA NAIf we wanted to explicitly control the observations, we would use the obsCol argument:
pkModel <- pkm(formula_p = p ~ 1, formula_k = k ~ 1, data = data_SE,
obsCol = c("Search1", "Search2", "Search3", "Search4")
)Note that the search observations must be entered in order such that no carcasses have non-detected observations (i.e., 0) after detected observations (i.e., 1). Further, no carcasses can be detected more than once.
If successfully fit, a pkm model output contains a number of elements, some printed automatically:
pkModel
#> $call
#> pkm0(formula_p = formula_p, formula_k = formula_k, data = data,
#> obsCol = obsCol, kFixed = kFixed, kInit = kInit, CL = CL,
#> quiet = quiet)
#>
#> $formula_p
#> p ~ 1
#>
#> $formula_k
#> k ~ 1
#>
#> $predictors
#> character(0)
#>
#> $AICc
#> [1] 1145
#>
#> $convergence
#> [1] 0
#>
#> $cell_pk
#> cell n p_median p_lower p_upper k_median k_lower k_upper
#> 1 all 480 0.568 0.532 0.604 0.599 0.543 0.653
#>
#> $CL
#> [1] 0.9and others available upon request:
names(pkModel)
#> [1] "call" "data" "data0" "formula_p"
#> [5] "formula_k" "predictors" "predictors_p" "predictors_k"
#> [9] "AIC" "AICc" "convergence" "varbeta"
#> [13] "cellMM_p" "cellMM_k" "nbeta_p" "nbeta_k"
#> [17] "betahat_p" "betahat_k" "cells" "ncell"
#> [21] "cell_pk" "CL" "observations" "carcCells"
#> [25] "loglik" "pOnly"
pkModel$cells
#> group CellNames
#> 1 all allThe plot function has been defined for pkm objects, such that one can simply run
to visualize the model’s output.
You can generate random draws of the \(p\) and \(k\) parameters for each cell grouping (in pkModel there are no predictors, so there is one cell grouping called “all”) using the rpk function which, like other r* functions in R (e.g., rnorm, runif) takes the number of random draws (n) as the first argument:
rpk(n = 10, pkModel)
#> $all
#> p k
#> [1,] 0.5862262 0.5572937
#> [2,] 0.5688542 0.6214697
#> [3,] 0.6006360 0.5154768
#> [4,] 0.5397859 0.6326105
#> [5,] 0.6117494 0.5301923
#> [6,] 0.5751229 0.6071008
#> [7,] 0.5861883 0.5736847
#> [8,] 0.6204813 0.5690552
#> [9,] 0.5743785 0.6472131
#> [10,] 0.5568397 0.6341606You can complicate the \(p\) and \(k\) formulae independently
pkm(formula_p = p ~ Visibility, formula_k = k ~ HabitatType, data = data_SE,
obsCol = c("Search1", "Search2", "Search3", "Search4")
)
#> $call
#> pkm0(formula_p = formula_p, formula_k = formula_k, data = data,
#> obsCol = obsCol, kFixed = kFixed, kInit = kInit, CL = CL,
#> quiet = quiet)
#>
#> $formula_p
#> p ~ Visibility
#>
#> $formula_k
#> k ~ HabitatType
#>
#> $predictors
#> [1] "Visibility" "HabitatType"
#>
#> $AICc
#> [1] 1149.67
#>
#> $convergence
#> [1] 0
#>
#> $cell_pk
#> cell n p_median p_lower p_upper k_median k_lower k_upper
#> 1 H.HT1 80 0.564 0.503 0.623 0.560 0.482 0.636
#> 2 L.HT1 80 0.578 0.516 0.637 0.560 0.482 0.636
#> 3 M.HT1 80 0.563 0.505 0.620 0.560 0.482 0.636
#> 4 H.HT2 80 0.564 0.503 0.623 0.631 0.557 0.700
#> 5 L.HT2 80 0.578 0.516 0.637 0.631 0.557 0.700
#> 6 M.HT2 80 0.563 0.505 0.620 0.631 0.557 0.700
#>
#> $CL
#> [1] 0.9And you can fix \(k\) at a nominal value between 0 and 1 (inclusive) using the kFixed argument
pkm(formula_p = p ~ Visibility, kFixed = 0.7, data = data_SE,
obsCol = c("Search1", "Search2", "Search3", "Search4"))
#> $call
#> pkm0(formula_p = formula_p, formula_k = formula_k, data = data,
#> obsCol = obsCol, kFixed = kFixed, kInit = kInit, CL = CL,
#> quiet = quiet)
#>
#> $formula_p
#> p ~ Visibility
#>
#> $formula_k
#> fixedk
#> 0.7
#>
#> $predictors
#> [1] "Visibility"
#>
#> $AICc
#> [1] 1155.63
#>
#> $convergence
#> [1] 0
#>
#> $cell_pk
#> cell n p_median p_lower p_upper k_median k_lower k_upper
#> 1 H 160 0.531 0.474 0.588 0.7 0.7 0.7
#> 2 L 160 0.545 0.487 0.601 0.7 0.7 0.7
#> 3 M 160 0.538 0.482 0.593 0.7 0.7 0.7
#>
#> $CL
#> [1] 0.9If the arg allCombos = TRUE is provided, pkm fits a set of pkm models defined as all allowable models simpler than, and including, the provided model for both formulae (where “allowable” means that any interaction terms have all component terms included in the model).
Consider the following model set analysis, where visibility and habitat type are included in the \(p\) formula but only habitat type is in the \(k\) formula. This generates a set of 10 models:
pkmModSet <- pkm(formula_p = p ~ Visibility*HabitatType,
formula_k = k ~ HabitatType, data = data_SE,
obsCol = c("Search1", "Search2", "Search3", "Search4"),
allCombos = TRUE
)
class(pkmModSet)
#> [1] "pkmSet" "list"
names(pkmModSet)
#> [1] "p ~ Visibility * HabitatType; k ~ HabitatType"
#> [2] "p ~ Visibility + HabitatType; k ~ HabitatType"
#> [3] "p ~ HabitatType; k ~ HabitatType"
#> [4] "p ~ Visibility; k ~ HabitatType"
#> [5] "p ~ 1; k ~ HabitatType"
#> [6] "p ~ Visibility * HabitatType; k ~ 1"
#> [7] "p ~ Visibility + HabitatType; k ~ 1"
#> [8] "p ~ HabitatType; k ~ 1"
#> [9] "p ~ Visibility; k ~ 1"
#> [10] "p ~ 1; k ~ 1"The plot function is defined for the pkmSet class, and by default, creates a new plot window on command for each sub-model. If we want to only plot a specific single (or subset) of models from the full set, we can utilize the specificModel argument:
The resulting model outputs can be compared in an AICc table
aicc(pkmModSet)
#> p Formula k Formula AICc <U+0394>AICc
#> 10 p ~ 1 k ~ 1 1145.00 0.00
#> 5 p ~ 1 k ~ HabitatType 1145.70 0.70
#> 3 p ~ HabitatType k ~ HabitatType 1146.57 1.57
#> 8 p ~ HabitatType k ~ 1 1146.76 1.76
#> 9 p ~ Visibility k ~ 1 1148.96 3.96
#> 4 p ~ Visibility k ~ HabitatType 1149.67 4.67
#> 2 p ~ Visibility + HabitatType k ~ HabitatType 1150.55 5.55
#> 7 p ~ Visibility + HabitatType k ~ 1 1150.73 5.73
#> 1 p ~ Visibility * HabitatType k ~ HabitatType 1153.45 8.45
#> 6 p ~ Visibility * HabitatType k ~ 1 1153.49 8.49Often, carcasses are grouped in multiple size classes, and we are interested in analyzing a set of models separately for each size class. To do so, we use the sizeCol arg to tell pkm which column in data_CP gives the carcass size class. If, in addition, allCombos = TRUE, pkm will fit a pkmSet that runs for each unique size class in the column identified by the sizeCol argument:
pkmModSetSize <- pkm(formula_p = p ~ Visibility*HabitatType,
formula_k = k ~ HabitatType, data = data_SE,
obsCol = c("Search1", "Search2", "Search3", "Search4"),
sizeCol = "Size", allCombos = TRUE)
class(pkmModSetSize)
#> [1] "pkmSetSize" "list"The pkmSetSize object is a list where each element corresponds to a different unique size class, and contains the associated pkmSetobject, which itself is a list of pkm outputs:
names(pkmModSetSize)
#> [1] "L" "M" "S" "XL"
names(pkmModSetSize[[1]])
#> [1] "p ~ Visibility * HabitatType; k ~ HabitatType"
#> [2] "p ~ Visibility + HabitatType; k ~ HabitatType"
#> [3] "p ~ HabitatType; k ~ HabitatType"
#> [4] "p ~ Visibility; k ~ HabitatType"
#> [5] "p ~ 1; k ~ HabitatType"
#> [6] "p ~ Visibility * HabitatType; k ~ 1"
#> [7] "p ~ Visibility + HabitatType; k ~ 1"
#> [8] "p ~ HabitatType; k ~ 1"
#> [9] "p ~ Visibility; k ~ 1"
#> [10] "p ~ 1; k ~ 1"The central function for carcass persistence analyses is cpm, which, in its simplest form, conducts a singular carcass persistence analysis (i.e., a singular set of \(l\) and \(s\) formulae and a singular size classification of carcasses). Note that we use \(l\) and \(s\) to reference \(location\) and \(scale\) as the parameters for survival models, following survreg, however we also provide an alternative parameterization (using parameters \(a\) and \(b\), referred to as “ab” or “ppersist”). As a first example, we will ignore the size category, use intercept-only models for both \(l\) and \(s\), and use the Weibull distribution:
data_CP <- mock$CP
cpModel <- cpm(formula_l = l ~ 1, formula_s = s ~ 1, data = data_CP,
left = "LastPresentDecimalDays",
right = "FirstAbsentDecimalDays", dist = "weibull"
)If successfully fit, a cpm model output contains a number of elements, some printed automatically:
cpModel
#> $call
#> cpm0(formula_l = formula_l, formula_s = formula_s, data = data,
#> left = left, right = right, dist = dist, CL = CL, quiet = quiet)
#>
#> $formula_l
#> l ~ 1
#>
#> $formula_s
#> s ~ 1
#>
#> $distribution
#> [1] "weibull"
#>
#> $predictors
#> character(0)
#>
#> $AICc
#> [1] 2102.11
#>
#> $convergence
#> [1] 0
#>
#> $cell_ls
#> cell n l_median l_lower l_upper s_median s_lower s_upper
#> 1 all 480 2.671 2.592 2.749 0.966 0.901 1.037
#>
#> $cell_ab
#> cell n pda_median pda_lower pda_upper pdb_median pdb_lower pdb_upper
#> 1 all 480 1.035 1.11 0.964 14.454 13.356 15.627
#>
#> $CL
#> [1] 0.9
#>
#> $cell_desc
#> cell medianCP r1 r3 r7 r14 r28
#> 1 all 10.1437 0.9696732 0.9094574 0.8003887 0.6463498 0.4427757and others available upon request:
names(cpModel)
#> [1] "call" "data" "formula_l" "formula_s"
#> [5] "distribution" "predictors" "predictors_l" "predictors_s"
#> [9] "AIC" "AICc" "convergence" "varbeta"
#> [13] "cellMM_l" "cellMM_s" "nbeta_l" "nbeta_s"
#> [17] "betahat_l" "betahat_s" "cells" "ncell"
#> [21] "cell_ls" "cell_ab" "CL" "observations"
#> [25] "carcCells" "loglik" "cell_desc"
cpModel$cells
#> group CellNames
#> 1 all allThe plot function has been defined for cpm objects, such that one can simply run
to visualize the model’s output.
You can generate random draws of the \(l\) and \(s\) (or \(a\) and \(b\)) parameters for each cell grouping (in cpModel there are no predictors, so there is one cell grouping called “all”) using the rcp function which, like other r* functions in R (e.g., rnorm) takes the number of random draws (n) as the first argument:
rcp(n = 10, cpModel)
#> $all
#> l s
#> [1,] 2.644234 0.9685949
#> [2,] 2.612551 0.9541057
#> [3,] 2.715369 0.9655936
#> [4,] 2.638608 0.9173193
#> [5,] 2.766482 0.9562708
#> [6,] 2.707413 0.9185596
#> [7,] 2.613154 0.9914301
#> [8,] 2.657357 0.9822544
#> [9,] 2.585478 0.9970760
#> [10,] 2.601777 0.9725305
rcp(n = 10, cpModel, type = "ppersist")
#> $all
#> pda pdb
#> [1,] 0.9679010 14.16254
#> [2,] 1.0060094 14.44440
#> [3,] 1.0483697 14.02860
#> [4,] 1.0388438 13.81564
#> [5,] 1.0413941 14.35370
#> [6,] 1.1149288 14.23632
#> [7,] 1.0530473 15.36329
#> [8,] 1.0585665 14.06897
#> [9,] 0.9602823 13.38161
#> [10,] 1.0512440 14.66472You can complicate the \(l\) and \(s\) formulae independently
cpm(formula_l = l ~ Visibility * GroundCover, formula_s = s ~ 1, data = data_CP,
left = "LastPresentDecimalDays", right = "FirstAbsentDecimalDays",
dist = "weibull"
)
#> $call
#> cpm0(formula_l = formula_l, formula_s = formula_s, data = data,
#> left = left, right = right, dist = dist, CL = CL, quiet = quiet)
#>
#> $formula_l
#> l ~ Visibility * GroundCover
#>
#> $formula_s
#> s ~ 1
#>
#> $distribution
#> [1] "weibull"
#>
#> $predictors
#> [1] "Visibility" "GroundCover"
#>
#> $AICc
#> [1] 2109.36
#>
#> $convergence
#> [1] 0
#>
#> $cell_ls
#> cell n l_median l_lower l_upper s_median s_lower s_upper
#> 1 H.A 80 2.647 2.457 2.836 0.964 0.898 1.034
#> 2 L.A 80 2.618 2.427 2.809 0.964 0.898 1.034
#> 3 M.A 80 2.536 2.350 2.722 0.964 0.898 1.034
#> 4 H.B 80 2.789 2.597 2.981 0.964 0.898 1.034
#> 5 L.B 80 2.710 2.521 2.900 0.964 0.898 1.034
#> 6 M.B 80 2.716 2.527 2.905 0.964 0.898 1.034
#>
#> $cell_ab
#> cell n pda_median pda_lower pda_upper pdb_median pdb_lower pdb_upper
#> 1 H.A 80 1.037 1.114 0.967 14.112 11.670 17.047
#> 2 L.A 80 1.037 1.114 0.967 13.708 11.325 16.593
#> 3 M.A 80 1.037 1.114 0.967 12.629 10.486 15.211
#> 4 H.B 80 1.037 1.114 0.967 16.265 13.423 19.708
#> 5 L.B 80 1.037 1.114 0.967 15.029 12.441 18.174
#> 6 M.B 80 1.037 1.114 0.967 15.120 12.516 18.265
#>
#> $CL
#> [1] 0.9
#>
#> $cell_desc
#> cell medianCP r1 r3 r7 r14 r28
#> 1 H.A 9.910449 0.9691191 0.9076888 0.7965531 0.6402617 0.4355206
#> 2 L.A 9.626732 0.9681953 0.9050529 0.7912752 0.6323916 0.4266794
#> 3 M.A 8.868981 0.9654396 0.8972323 0.7757825 0.6096922 0.4019134
#> 4 H.B 11.422439 0.9732702 0.9196215 0.8208024 0.6773283 0.4789728
#> 5 L.B 10.554432 0.9710322 0.9131703 0.8076196 0.6569919 0.4547593
#> 6 M.B 10.618339 0.9712095 0.9136797 0.8086542 0.6585719 0.4566077Given that the exponential only has one parameter (\(l\), location), a model for scale (formula_s) is not required:
If the arg allCombos = TRUE is provided, cpm fits a set of cpm models defined as all allowable models simpler than, and including, the provided model formulae (where “allowable” means that any interaction terms have all component terms included in the model).
In addition, cpm with allCombos can include any subset of the four base distributions (exponential, weibull, lognormal, loglogistic) and crosses them with the predictor models.
Consider the following model set analysis, where Visibility and Season are included in the \(l\) formula but only Visibility is in the \(s\) formula, and only the exponential and lognormal distributions are included. This generates a set of 15 models:
cpmModSet <- cpm(formula_l = l ~ Visibility * Season,
formula_s = s ~ Visibility, data = data_CP,
left = "LastPresentDecimalDays",
right = "FirstAbsentDecimalDays",
dist = c("exponential", "lognormal"), allCombos = TRUE
)
class(cpmModSet)
#> [1] "cpmSet" "list"
names(cpmModSet)
#> [1] "dist: exponential; l ~ Visibility * Season; NULL"
#> [2] "dist: exponential; l ~ Visibility + Season; NULL"
#> [3] "dist: exponential; l ~ Season; NULL"
#> [4] "dist: exponential; l ~ Visibility; NULL"
#> [5] "dist: exponential; l ~ 1; NULL"
#> [6] "dist: lognormal; l ~ Visibility * Season; s ~ Visibility"
#> [7] "dist: lognormal; l ~ Visibility + Season; s ~ Visibility"
#> [8] "dist: lognormal; l ~ Season; s ~ Visibility"
#> [9] "dist: lognormal; l ~ Visibility; s ~ Visibility"
#> [10] "dist: lognormal; l ~ 1; s ~ Visibility"
#> [11] "dist: lognormal; l ~ Visibility * Season; s ~ 1"
#> [12] "dist: lognormal; l ~ Visibility + Season; s ~ 1"
#> [13] "dist: lognormal; l ~ Season; s ~ 1"
#> [14] "dist: lognormal; l ~ Visibility; s ~ 1"
#> [15] "dist: lognormal; l ~ 1; s ~ 1"The resulting model outputs can be compared in an AICc table
aicc(cpmModSet)
#> Distribution Location Formula Scale Formula AICc <U+0394>AICc
#> 5 exponential l ~ 1 NULL 2100.72 0.00
#> 3 exponential l ~ Season NULL 2101.08 0.36
#> 4 exponential l ~ Visibility NULL 2104.16 3.44
#> 2 exponential l ~ Visibility + Season NULL 2104.48 3.76
#> 1 exponential l ~ Visibility * Season NULL 2108.17 7.45
#> 15 lognormal l ~ 1 s ~ 1 2159.24 58.52
#> 13 lognormal l ~ Season s ~ 1 2160.78 60.06
#> 10 lognormal l ~ 1 s ~ Visibility 2162.15 61.43
#> 14 lognormal l ~ Visibility s ~ 1 2163.19 62.47
#> 8 lognormal l ~ Season s ~ Visibility 2163.67 62.95
#> 12 lognormal l ~ Visibility + Season s ~ 1 2164.74 64.02
#> 9 lognormal l ~ Visibility s ~ Visibility 2166.13 65.41
#> 11 lognormal l ~ Visibility * Season s ~ 1 2166.91 66.19
#> 7 lognormal l ~ Visibility + Season s ~ Visibility 2167.66 66.94
#> 6 lognormal l ~ Visibility * Season s ~ Visibility 2169.79 69.07The plot function is defined for the cpmSet class, and by default, creates a new plot window on command for each sub-model. If we want to only plot a specific single (or subset) of models from the full set, we can utilize the specificModel argument:
Often, carcasses are grouped in multiple size classes, and we are interested in analyzing a set of models separately for each size class. To do so, we furnish cpm with sizeCol, which is the name of the column in data_CP that gives the size classes of the carcasses. If, in addition, allCombos = TRUE, then cpm returns a cpmSet for each unique size class in the column identified by the sizeCol argument:
cpmModSetSize <- cpm(formula_l = l ~ Visibility * Season,
formula_s = s ~ Visibility, data = data_CP,
left = "LastPresentDecimalDays",
right = "FirstAbsentDecimalDays",
dist = c("exponential", "lognormal"),
sizeCol = "Size", allCombos = TRUE)
class(cpmModSetSize)
#> [1] "cpmSetSize" "list"The cpmSetSize object is a list where each element corresponds to a different unique size class, and contains the associated cpmSeto bject, which itself is a list of cpm outputs:
names(cpmModSetSize)
#> [1] "L" "M" "S" "XL"
names(cpmModSetSize[[1]])
#> [1] "dist: exponential; l ~ Visibility * Season; NULL"
#> [2] "dist: exponential; l ~ Visibility + Season; NULL"
#> [3] "dist: exponential; l ~ Season; NULL"
#> [4] "dist: exponential; l ~ Visibility; NULL"
#> [5] "dist: exponential; l ~ 1; NULL"
#> [6] "dist: lognormal; l ~ Visibility * Season; s ~ Visibility"
#> [7] "dist: lognormal; l ~ Visibility + Season; s ~ Visibility"
#> [8] "dist: lognormal; l ~ Season; s ~ Visibility"
#> [9] "dist: lognormal; l ~ Visibility; s ~ Visibility"
#> [10] "dist: lognormal; l ~ 1; s ~ Visibility"
#> [11] "dist: lognormal; l ~ Visibility * Season; s ~ 1"
#> [12] "dist: lognormal; l ~ Visibility + Season; s ~ 1"
#> [13] "dist: lognormal; l ~ Season; s ~ 1"
#> [14] "dist: lognormal; l ~ Visibility; s ~ 1"
#> [15] "dist: lognormal; l ~ 1; s ~ 1"
class(cpmModSetSize[[1]])
#> [1] "cpmSet" "list"For the purposes of mortality estimation, we calculate carcass-specific detection probabilities (see below), which may be difficult to generalize, given the specific history of each observed carcass. Thus, we also provide a simple means to calculate generic detection probabilities that are cell-specific, rather than carcass-specific.
For any estimation of detection probability (\(\hat{g}\)), we need to have singular SE and CP models to use for each of the size classes. Here, we use the best-fit of the models for each size class:
pkMods <- c("S" = "p ~ 1; k ~ 1", "L" = "p ~ 1; k ~ 1",
"M" = "p ~ 1; k ~ 1", "XL" = "p ~ 1; k ~ HabitatType"
)
cpMods <- c("S" = "dist: exponential; l ~ Season; NULL",
"L" = "dist: exponential; l ~ 1; NULL",
"M" = "dist: exponential; l ~ 1; NULL",
"XL" = "dist: exponential; l ~ 1; NULL"
)The estgGenericSize function produces n random draws of generic (i.e., cell-specific, not carcass-sepecific) detection probabilities for each of the possible carcass cell combinations across the selected SE and CP models across the size classes. estgGeneric is a single-size-class version of function and estgGenericSize actually loops over estgGeneric. The generic \(\hat{g}\) is estimated according to a particular search schedule. When we pass averageSS a full data_SS table like we have here, it will assume that columns filled exclusively with 0s and 1s represent search schedules for units and will create the average search schedule across the units.
data_SS <- mock$SS
avgSS <- averageSS(data_SS)
gsGeneric <- estgGenericSize(nsim = 1000, days = avgSS,
modelSetSize_SE = pkmModSetSize,
modelSetSize_CP = cpmModSetSize,
modelSizeSelections_SE = pkMods,
modelSizeSelections_CP = cpMods
)The output from estgGeneric can be simply summarized
summary(gsGeneric)
#> $L
#> Group 5% 25% 50% 75% 95%
#> 1 all 0.378 0.408 0.431 0.453 0.481
#>
#> $M
#> Group 5% 25% 50% 75% 95%
#> 1 all 0.353 0.384 0.406 0.429 0.457
#>
#> $S
#> Season 5% 25% 50% 75% 95%
#> 1 SF 0.359 0.397 0.426 0.453 0.488
#> 2 WS 0.301 0.333 0.359 0.386 0.422
#>
#> $XL
#> HabitatType 5% 25% 50% 75% 95%
#> 1 HT1 0.317 0.348 0.368 0.390 0.422
#> 2 HT2 0.331 0.360 0.382 0.405 0.438or plotted.
When estimating mortality, detection probability is determined for individual carcasses based on the dates when they are observed, size class values, associated covariates, the searcher efficiency and carcass persistence models, and the search schedule. The carcass-specific detection probabilities (as opposed to the generic/cell-specific detection probabilities above) are therefore calculated before estimating the total mortality. Although it is possible to estimate these detection probabilities separately, they are best interpreted in the context of a full mortality estimation.
The estM function is the general wrapper function for estimating M, whether for a single size class or multiple size classes. Prior to estimation, we need to reduce the model-set-size complexed to just a single chosen model per size class, corresponding to the pkMods and cpMods vectors given above. To reduce the model set complexity, we can use the trimSetSize function:
In addition to the models and search schedule data, estM requires density-weighted proportion (DWP) and carcass observation (CO) data. If more than one size class is represented in the data, a required input is also the column names associated with the DWP value for each size class (argument DWPCol in estM):
data_CO <- mock$CO
data_DWP <- mock$DWP
head(data_DWP)
#> Unit S M L XL
#> 1 Unit1 0.70 0.70 0.60 0.60
#> 2 Unit2 0.70 0.70 0.60 0.60
#> 3 Unit3 0.56 0.56 0.48 0.48
#> 4 Unit4 0.56 0.56 0.48 0.48
#> 5 Unit5 0.70 0.70 0.60 0.60
DWPcolnames <- names(pkmModSize)
eM <- estM(data_CO = data_CO, data_SS = data_SS, data_DWP = data_DWP,
frac = 1, model_SE = pkmModSize, model_CP = cpmModSize,
seed_SE = NULL, seed_CP = NULL, seed_g = NULL, seed_M = NULL,
unitCol = "Unit", COdate = "DateFound",
SSdate = "DateSearched", sizeCol = "Size", nsim = 1000)estM returns an object that contains the random draws of pkm and cpm parameters (named pk and ab, respectively) and the estimated carcass-level detection parameters (g), arrival intervals (Aj), and associated total mortality (Mhat) values for each simulation. These Mhat values should be considered in combination, and can be summarized and plotted simply:
It is possible to split the resulting mortality estimation into components that are denoted according to covariates in either the search schedule or carcass observation data sets.
First, a temporal split:
M_season <- calcSplits(M = eM, split_SS = "Construction",
split_CO = NULL, data_SS = data_SS, data_CO = data_CO
)
summary(M_season)
#> X 5% 25% 50% 75% 95%
#> Before 161.4078 586.1131 636.6669 677.1631 713.3876 777.910
#> After 264.5922 1005.3775 1074.2313 1126.8067 1182.9509 1262.201
#> attr(,"class")
#> [1] "splitSummary"
#> attr(,"CL")
#> [1] 0.9
#> attr(,"vars")
#> [1] "Construction"
#> attr(,"type")
#> [1] "SS"
#> attr(,"times")
#> [1] 0 127 349
plot(M_season)Next, a carcass split:
M_class <- calcSplits(M = eM, split_SS = NULL,
split_CO = "Split", data_SS = data_SS, data_CO = data_CO
)
summary(M_class)
#> X 5% 25% 50% 75% 95%
#> C1 196 729.4675 783.5206 827.0450 869.5507 932.3397
#> C2 230 868.1349 927.6209 975.5499 1028.9970 1105.2876
#> attr(,"class")
#> [1] "splitSummary"
#> attr(,"CL")
#> [1] 0.9
#> attr(,"vars")
#> [1] "Split"
#> attr(,"type")
#> [1] "CO"
plot(M_class)And finally, if two splits are included, the mortality estimation is expanded fully factorially:
M_SbyC <- calcSplits(M = eM, split_SS = "Construction",
split_CO = "Split", data_SS = data_SS, data_CO = data_CO
)
summary(M_SbyC)
#> $C1
#> X 5% 25% 50% 75% 95%
#> Before 80.182 275.6087 308.8076 331.6360 355.4828 393.2600
#> After 115.818 422.6373 462.9255 494.1821 522.8586 569.3464
#>
#> $C2
#> X 5% 25% 50% 75% 95%
#> Before 81.22579 283.3831 320.4294 342.6770 368.1493 409.5829
#> After 148.77421 550.9969 597.9919 632.6221 672.0673 729.3794
#>
#> attr(,"class")
#> [1] "splitSummary"
#> attr(,"CL")
#> [1] 0.9
#> attr(,"vars")
#> [1] "Construction" "Split"
#> attr(,"type")
#> [1] "SS" "CO"
#> attr(,"times")
#> [1] 0 127 349
plot(M_SbyC)