The limitations of linear correlation are well known. Often one uses correlation, when dependence is the intended measure for defining the relationship between variables. NNS dependence NNS.dep is a signal:noise measure robust to nonlinear signals.
Below are some examples comparing NNS correlation NNS.cor and NNS.dep with the standard Pearson’s correlation coefficient cor.
Note the fact that all observations occupy the co-partial moment quadrants.
## [1] 1
## $Correlation
## [1] 1
##
## $Dependence
## [1] 1
Note the fact that all observations occupy the co-partial moment quadrants.
## [1] 0.6610183
## $Correlation
## [1] 0.9413457
##
## $Dependence
## [1] 0.9413457
Note the fact that all observations occupy only co- or divergent partial moment quadrants for a given subquadrant.
set.seed(123)
df <- data.frame(x = runif(10000, -1, 1), y = runif(10000, -1, 1))
df <- subset(df, (x ^ 2 + y ^ 2 <= 1 & x ^ 2 + y ^ 2 >= 0.95))
NNS.dep(df$x, df$y, print.map = TRUE)## $Correlation
## [1] -0.007630343
##
## $Dependence
## [1] 0.9963612
If the user is so motivated, detailed arguments and proofs are provided within the following: