Each procedure’s probability mass function (PMF) and cumulative distribution function (CDF) was implemented in C++ using the Rcpp package. By means of Rcpp::interface, these functions are exported to both the package’s R namespace and C++ headers. That way, the following functions can then be used by other packages that use Rcpp:
/*** Ordinary Poisson Binomial Distribution ***/
/*** Exact Procedures ***/
// Direct Convolution (DC)
// PMF
NumericVector dpb_conv(IntegerVector obs, NumericVector probs);
// CDF
NumericVector ppb_conv(IntegerVector obs, NumericVector probs, bool lower_tail);
// Divide & Conquer FFT Tree Convolution (DC-FFT)
// PMF
NumericVector dpb_dc(IntegerVector obs, NumericVector probs);
// CDF
NumericVector ppb_dc(IntegerVector obs, NumericVector probs, bool lower_tail);
// Discrete Fourier Transformation of the Characteristic Function (DFT-CF)
// PMF
NumericVector dpb_dftcf(IntegerVector obs, NumericVector probs);
// CDF
NumericVector ppb_dftcf(IntegerVector obs, NumericVector probs, bool lower_tail);
// Recursive Formula (RF)
// PMF
NumericVector dpb_rf(IntegerVector obs, NumericVector probs);
// CDF
NumericVector ppb_rf(IntegerVector obs, NumericVector probs, bool lower_tail);
/*** Approximations ***/
// Arithmetic Mean Binomial Approximation (AMBA)
// PMF
NumericVector dpb_mean(IntegerVector obs, NumericVector probs);
// CDF
NumericVector ppb_mean(IntegerVector obs, NumericVector probs,
bool lower_tail);
// Geometric Mean Binomial Approximations (GMBA)
// PMF
NumericVector dpb_gmba(IntegerVector obs, NumericVector probs,
bool anti);
// CDF
NumericVector ppb_gmba(IntegerVector obs, NumericVector probs,
bool anti, bool lower_tail);
// Poisson Approximation (PA)
// PMF
NumericVector dpb_pa(IntegerVector obs, NumericVector probs);
// CDF
NumericVector ppb_pa(IntegerVector obs, NumericVector probs,
bool lower_tail);
// Normal Approximations (NA, RNA)
// PMF
NumericVector dpb_na(IntegerVector obs, NumericVector probs,
bool refined);
// CDF
NumericVector ppb_na(IntegerVector obs, NumericVector probs,
bool refined,bool lower_tail);
/*** Generalized Poisson Binomial Distribution ***/
/*** Exact Procedures ***/
// Generalized Direct Convolution (G-DC)
// PMF
NumericVector dgpb_conv(IntegerVector obs, NumericVector probs,
NumericVector val_p, NumericVector val_q);
// CDF
NumericVector pgpb_conv(IntegerVector obs, NumericVector probs,
NumericVector val_p, NumericVector val_q,
bool lower_tail);
// Generalized Discrete Fourier Transformation of the Characteristic Function (G-DFT-CF)
// PMF
NumericVector dgpb_dftcf(IntegerVector obs, NumericVector probs,
NumericVector val_p, NumericVector val_q);
// CDF
NumericVector pgpb_dftcf(IntegerVector obs, NumericVector probs,
NumericVector val_p, NumericVector val_q,
bool lower_tail);
/*** Approximations ***/
// Generalized Normal Approximations (G-NA, G-RNA)
// PMF
NumericVector dgpb_na(IntegerVector obs, NumericVector probs,
NumericVector val_p, NumericVector val_q, bool refined,
bool lower_tail);
// CDF
NumericVector pgpb_na(IntegerVector obs, NumericVector probs,
NumericVector val_p, NumericVector val_q, bool refined,
bool lower_tail);
There are only a few simple steps to follow:
Rcpp and PoissonBinomial packages to the Imports and LinkingTo fields of the DESCRIPTION file.#include <PoissonBinomial.h> to source (.cpp) and/or header (.h, .hpp) files in which these functions are to be used.using namespace PoissonBinomial;. Without it, the use of functions of this package must be fully qualified with PoissonBinomial::, e.g. PoissonBinomial::dpb_dc instead of dpb_dcFor better performance, the PMFs and CDFs do not check any of their parameters for plausibility! This must be done by the user by means of R or C/C++ functions. It must be made sure that
obs vectors are valid,probs vector are in \((0, 1)\) anddpb_gmba, ppb_gmba, dpb_na, ppb_na, dgpb_na and pgpb_na: the probabilities in the probs vector must not contain zeros or ones.Furthermore, the CDFs only compute non-logarithmic probabilities. If logarithms are needed, they must be computed “manually”.