Assume that we want to describe the following SDE:
Ito form1:
\[\begin{equation}\label{eq:05} dX_{t} = \frac{1}{2}\theta^{2} X_{t} dt + \theta X_{t} dW_{t},\qquad X_{0}=x_{0} > 0 \end{equation}\] Stratonovich form: \[\begin{equation}\label{eq:06} dX_{t} = \frac{1}{2}\theta^{2} X_{t} dt +\theta X_{t} \circ dW_{t},\qquad X_{0}=x_{0} > 0 \end{equation}\]In the above \(f(t,x)=\frac{1}{2}\theta^{2} x\) and \(g(t,x)= \theta x\) (\(\theta > 0\)), \(W_{t}\) is a standard Wiener process. To simulate this models using snssde1d() function we need to specify:
drift and diffusion coefficients as R expressions that depend on the state variable x and time variable t.N=1000 (by default: N=1000).M=500 (by default: M=1).t0=0, x0=10 and end time T=1 (by default: t0=0, x0=0 and T=1).Dt=0.001 (by default: Dt=(T-t0)/N).type="ito" for Ito or type="str" for Stratonovich (by default type="ito").method (by default method="euler").theta = 0.5
f <- expression( (0.5*theta^2*x) )
g <- expression( theta*x )
mod1 <- snssde1d(drift=f,diffusion=g,x0=10,M=500,type="ito") # Using Ito
mod2 <- snssde1d(drift=f,diffusion=g,x0=10,M=500,type="str") # Using Stratonovich
mod1## Ito Sde 1D:
## | dX(t) = (0.5 * theta^2 * X(t)) * dt + theta * X(t) * dW(t)
## Method:
## | Euler scheme of order 0.5
## Summary:
## | Size of process | N = 1000.
## | Number of simulation | M = 500.
## | Initial value | x0 = 10.
## | Time of process | t in [0,1].
## | Discretization | Dt = 0.001.
mod2## Stratonovich Sde 1D:
## | dX(t) = (0.5 * theta^2 * X(t)) * dt + theta * X(t) o dW(t)
## Method:
## | Euler scheme of order 0.5
## Summary:
## | Size of process | N = 1000.
## | Number of simulation | M = 500.
## | Initial value | x0 = 10.
## | Time of process | t in [0,1].
## | Discretization | Dt = 0.001.
Using Monte-Carlo simulations, the following statistical measures (S3 method) for class snssde1d() can be approximated for the \(X_{t}\) process at any time \(t\):
mean.median.quantile.skewness and kurtosis.moment.bconfint.The summary of the results of mod1 and mod2 at time \(t=1\) of class snssde1d() is given by:
summary(mod1, at = 1)##
## Monte-Carlo Statistics for X(t) at time t = 1
##
## Mean 10.99598
## Variance 31.52028
## Median 9.71960
## First quartile 7.01976
## Third quartile 13.57172
## Skewness 1.20481
## Kurtosis 4.47704
## Moment of order 3 213.20873
## Moment of order 4 4448.05997
## Moment of order 5 67075.89171
## Int.conf Inf (95%) 3.54499
## Int.conf Sup (95%) 25.19046
summary(mod2, at = 1)##
## Monte-Carlo Statistics for X(t) at time t = 1
##
## Mean 10.09247
## Variance 27.14782
## Median 9.22196
## First quartile 6.49679
## Third quartile 12.70541
## Skewness 1.66113
## Kurtosis 7.46548
## Moment of order 3 234.96690
## Moment of order 4 5502.08997
## Moment of order 5 114509.25603
## Int.conf Inf (95%) 3.81760
## Int.conf Sup (95%) 23.35448
Hence we can just make use of the rsde1d() function to build our random number generator for the conditional density of the \(X_{t}|X_{0}\) (\(X_{t}^{\text{mod1}}| X_{0}\) and \(X_{t}^{\text{mod2}}|X_{0}\)) at time \(t = 1\).
x1 <- rsde1d(object = mod1, at = 1) # X(t=1) | X(0)=x0 (Itô SDE)
x2 <- rsde1d(object = mod2, at = 1) # X(t=1) | X(0)=x0 (Stratonovich SDE)
summary(data.frame(x1,x2))## x1 x2
## Min. : 2.368 Min. : 2.276
## 1st Qu.: 7.020 1st Qu.: 6.497
## Median : 9.720 Median : 9.222
## Mean :10.996 Mean :10.092
## 3rd Qu.:13.572 3rd Qu.:12.705
## Max. :34.148 Max. :37.802
The function dsde1d() can be used to show the kernel density estimation for \(X_{t}|X_{0}\) at time \(t=1\) with log-normal curves:
mu1 = log(10); sigma1= sqrt(theta^2) # log mean and log variance for mod1
mu2 = log(10)-0.5*theta^2 ; sigma2 = sqrt(theta^2) # log mean and log variance for mod2
AppdensI <- dsde1d(mod1, at = 1)
AppdensS <- dsde1d(mod2, at = 1)
plot(AppdensI , dens = function(x) dlnorm(x,meanlog=mu1,sdlog = sigma1))
plot(AppdensS , dens = function(x) dlnorm(x,meanlog=mu2,sdlog = sigma2))
In Figure 2, we present the flow of trajectories, the mean path (red lines) of solution of and , with their empirical \(95\%\) confidence bands, that is to say from the \(2.5th\) to the \(97.5th\) percentile for each observation at time \(t\) (blue lines):
plot(mod1,plot.type="single",ylab=expression(X^mod1))
lines(time(mod1),mean(mod1),col=2,lwd=2)
lines(time(mod1),bconfint(mod1,level=0.95)[,1],col=4,lwd=2)
lines(time(mod1),bconfint(mod1,level=0.95)[,2],col=4,lwd=2)
legend("topleft",c("mean path",paste("bound of",95,"% confidence")),col=c(2,4),lwd=2,cex=0.8)
plot(mod2,plot.type="single",ylab=expression(X^mod2))
lines(time(mod2),mean(mod2),col=2,lwd=2)
lines(time(mod2),bconfint(mod2,level=0.95)[,1],col=4,lwd=2)
lines(time(mod2),bconfint(mod2,level=0.95)[,2],col=4,lwd=2)
legend("topleft",c("mean path",paste("bound of",95,"% confidence")),col=c(2,4),lwd=2,cex=0.8)
The following \(2\)-dimensional SDE’s with a vector of drift and a diagonal matrix of diffusion coefficients:
Ito form: \[\begin{equation}\label{eq:09} \begin{cases} dX_t = f_{x}(t,X_{t},Y_{t}) dt + g_{x}(t,X_{t},Y_{t}) dW_{1,t}\\ dY_t = f_{y}(t,X_{t},Y_{t}) dt + g_{y}(t,X_{t},Y_{t}) dW_{2,t} \end{cases} \end{equation}\] Stratonovich form: \[\begin{equation}\label{eq:10} \begin{cases} dX_t = f_{x}(t,X_{t},Y_{t}) dt + g_{x}(t,X_{t},Y_{t}) \circ dW_{1,t}\\ dY_t = f_{y}(t,X_{t},Y_{t}) dt + g_{y}(t,X_{t},Y_{t}) \circ dW_{2,t} \end{cases} \end{equation}\]\(W_{1,t}\) and \(W_{2,t}\) is a two independent standard Wiener process. To simulate \(2d\) models using snssde2d() function we need to specify:
drift (2d) and diffusion (2d) coefficients as R expressions that depend on the state variable x, y and time variable t.N (default: N=1000).M (default: M=1).t0, x0 and end time T (default: t0=0, x0=c(0,0) and T=1).Dt (default: Dt=(T-t0)/N).type="ito" for Ito or type="str" for Stratonovich (default type="ito").method (default method="euler").We simulate a flow of \(500\) trajectories of \((X_{t},Y_{t})\), with integration step size \(\Delta t = 0.01\), and using second Milstein method.
x=5;y=0
mu=3;sigma=0.5
fx <- expression(-(x/mu),x)
gx <- expression(sqrt(sigma),0)
mod2d <- snssde2d(drift=fx,diffusion=gx,Dt=0.01,M=500,x0=c(x,y),method="smilstein")
mod2d## Ito Sde 2D:
## | dX(t) = -(X(t)/mu) * dt + sqrt(sigma) * dW1(t)
## | dY(t) = X(t) * dt + 0 * dW2(t)
## Method:
## | Second Milstein scheme of order 1.5
## Summary:
## | Size of process | N = 1000.
## | Number of simulation | M = 500.
## | Initial values | (x0,y0) = (5,0).
## | Time of process | t in [0,10].
## | Discretization | Dt = 0.01.
summary(mod2d)##
## Monte-Carlo Statistics for (X(t),Y(t)) at time t = 10
## X Y
## Mean 0.21799 14.83489
## Variance 0.71889 20.87251
## Median 0.20895 14.93429
## First quartile -0.38134 11.63571
## Third quartile 0.75892 18.10022
## Skewness 0.24042 0.03821
## Kurtosis 3.24206 3.04422
## Moment of order 3 0.14654 3.64326
## Moment of order 4 1.67552 1326.24895
## Moment of order 5 1.31262 2100.80674
## Int.conf Inf (95%) -1.38838 6.25775
## Int.conf Sup (95%) 1.95350 23.29807
For plotting (back in time) using the command plot, the results of the simulation are shown in Figure 3.
plot(mod2d)
Take note of the well known result, which can be derived from either this equations. That for any \(t > 0\) the OU process \(X_t\) and its integral \(Y_t\) will be the normal distribution with mean and variance given by: \[ \begin{cases} \text{E}(X_{t}) =x_{0} e^{-t/\mu} &\text{and}\quad\text{Var}(X_{t})=\frac{\sigma \mu}{2} \left (1-e^{-2t/\mu}\right )\\ \text{E}(Y_{t}) = y_{0}+x_{0}\mu \left (1-e^{-t/\mu}\right ) &\text{and}\quad\text{Var}(Y_{t})=\sigma\mu^{3}\left (\frac{t}{\mu}-2\left (1-e^{-t/\mu}\right )+\frac{1}{2}\left (1-e^{-2t/\mu}\right )\right ) \end{cases} \]
Hence we can just make use of the rsde2d() function to build our random number for \((X_{t},Y_{t})\) at time \(t = 10\).
out <- rsde2d(object = mod2d, at = 10)
summary(out)## x y
## Min. :-2.0829 Min. : 0.2984
## 1st Qu.:-0.3813 1st Qu.:11.6357
## Median : 0.2090 Median :14.9343
## Mean : 0.2180 Mean :14.8349
## 3rd Qu.: 0.7589 3rd Qu.:18.1002
## Max. : 3.4639 Max. :31.6856
For each SDE type and for each numerical scheme, the density of \(X_t\) and \(Y_t\) at time \(t=10\) are reported using dsde2d() function, see e.g. Figure 4: the marginal density of \(X_t\) and \(Y_t\) at time \(t=10\).
denM <- dsde2d(mod2d,pdf="M",at =10)
denM##
## Marginal density for the conditional law of X(t)|X(0) at time t = 10
##
## Data: x (500 obs.); Bandwidth 'bw' = 0.2202
##
## x f(x)
## Min. :-2.743438 Min. :0.0000409
## 1st Qu.:-1.026477 1st Qu.:0.0053135
## Median : 0.690484 Median :0.0736112
## Mean : 0.690484 Mean :0.1454632
## 3rd Qu.: 2.407445 3rd Qu.:0.2763057
## Max. : 4.124406 Max. :0.5007931
##
## Marginal density for the conditional law of Y(t)|Y(0) at time t = 10
##
## Data: y (500 obs.); Bandwidth 'bw' = 1.186
##
## y f(y)
## Min. :-3.26083 Min. :0.00000763
## 1st Qu.: 6.36559 1st Qu.:0.00072703
## Median :15.99201 Median :0.00975566
## Mean :15.99201 Mean :0.02594470
## 3rd Qu.:25.61843 3rd Qu.:0.05366683
## Max. :35.24485 Max. :0.09078235
plot(denM, main="Marginal Density")
Created using dsde2d() plotted in (x, y)-space with dim = 2. A contour and image plot of density obtained from a realization of system \((X_{t},Y_{t})\) at time t=10.
denJ <- dsde2d(mod2d,pdf="J",at =10)
denJ##
## Joint density for the conditional law of X(t),Y(t)|X(0),Y(0) at time t = 10
##
## Data: (x,y) (2 x 500 obs.);
##
## x y f(x,y)
## Min. :-2.082894 Min. : 0.29841 Min. :0.00000000
## 1st Qu.:-0.696205 1st Qu.: 8.14521 1st Qu.:0.00005552
## Median : 0.690484 Median :15.99201 Median :0.00089418
## Mean : 0.690484 Mean :15.99201 Mean :0.00560450
## 3rd Qu.: 2.077173 3rd Qu.:23.83881 3rd Qu.:0.00666960
## Max. : 3.463862 Max. :31.68561 Max. :0.04477607
plot(denJ,display="contour",main="Bivariate Density")
plot(denJ,display="image",drawpoints=TRUE,col.pt="green",cex=0.25,pch=19,main="Bivariate Density")
A \(3\)D plot of the density obtained with:
plot(denJ,main="Bivariate Density")
Implemente in R as follows, with integration step size \(\Delta t = 0.01\) and using stochastic Runge-Kutta methods 1-stage.
mu = 4; sigma=0.1
fx <- expression( y , (mu*( 1-x^2 )* y - x))
gx <- expression( 0 ,2*sigma)
mod2d <- snssde2d(drift=fx,diffusion=gx,N=10000,Dt=0.01,type="str",method="rk1")
mod2d## Stratonovich Sde 2D:
## | dX(t) = Y(t) * dt + 0 o dW1(t)
## | dY(t) = (mu * (1 - X(t)^2) * Y(t) - X(t)) * dt + 2 * sigma o dW2(t)
## Method:
## | Runge-Kutta method of order 1
## Summary:
## | Size of process | N = 10000.
## | Number of simulation | M = 1.
## | Initial values | (x0,y0) = (0,0).
## | Time of process | t in [0,100].
## | Discretization | Dt = 0.01.
plot2d(mod2d) ## in plane (O,X,Y)
plot(mod2d) ## back in time
The following \(3\)-dimensional SDE’s with a vector of drift and a diagonal matrix of diffusion coefficients:
Ito form: \[\begin{equation}\label{eq17} \begin{cases} dX_t = f_{x}(t,X_{t},Y_{t},Z_{t}) dt + g_{x}(t,X_{t},Y_{t},Z_{t}) dW_{1,t}\\ dY_t = f_{y}(t,X_{t},Y_{t},Z_{t}) dt + g_{y}(t,X_{t},Y_{t},Z_{t}) dW_{2,t}\\ dZ_t = f_{z}(t,X_{t},Y_{t},Z_{t}) dt + g_{z}(t,X_{t},Y_{t},Z_{t}) dW_{3,t} \end{cases} \end{equation}\] Stratonovich form: \[\begin{equation}\label{eq18} \begin{cases} dX_t = f_{x}(t,X_{t},Y_{t},Z_{t}) dt + g_{x}(t,X_{t},Y_{t},Z_{t}) \circ dW_{1,t}\\ dY_t = f_{y}(t,X_{t},Y_{t},Z_{t}) dt + g_{y}(t,X_{t},Y_{t},Z_{t}) \circ dW_{2,t}\\ dZ_t = f_{z}(t,X_{t},Y_{t},Z_{t}) dt + g_{z}(t,X_{t},Y_{t},Z_{t}) \circ dW_{3,t} \end{cases} \end{equation}\]\(W_{1,t}\), \(W_{2,t}\) and \(W_{3,t}\) is a 3 independent standard Wiener process. To simulate this system using snssde3d() function we need to specify:
drift (3d) and diffusion (3d) coefficients as R expressions that depend on the state variables x, y , z and time variable t.N (default: N=1000).M (default: M=1).t0, x0 and end time T (default: t0=0, x0=c(0,0,0) and T=1).Dt (default: Dt=(T-t0)/N).type="ito" for Ito or type="str" for Stratonovich (default type="ito").method (default method="euler").We simulate a flow of 500 trajectories, with integration step size \(\Delta t = 0.001\).
fx <- expression(4*(-1-x)*y , 4*(1-y)*x , 4*(1-z)*y)
gx <- rep(expression(0.2),3)
mod3d <- snssde3d(x0=c(x=2,y=-2,z=-2),drift=fx,diffusion=gx,N=1000,M=500)
mod3d## Ito Sde 3D:
## | dX(t) = 4 * (-1 - X(t)) * Y(t) * dt + 0.2 * dW1(t)
## | dY(t) = 4 * (1 - Y(t)) * X(t) * dt + 0.2 * dW2(t)
## | dZ(t) = 4 * (1 - Z(t)) * Y(t) * dt + 0.2 * dW3(t)
## Method:
## | Euler scheme of order 0.5
## Summary:
## | Size of process | N = 1000.
## | Number of simulation | M = 500.
## | Initial values | (x0,y0,z0) = (2,-2,-2).
## | Time of process | t in [0,1].
## | Discretization | Dt = 0.001.
summary(mod3d)##
## Monte-Carlo Statistics for (X(t),Y(t),Z(t)) at time t = 1
## X Y Z
## Mean -0.78788 0.87272 0.78982
## Variance 0.01014 0.10102 0.01012
## Median -0.79794 0.85339 0.79719
## First quartile -0.85617 0.67141 0.72217
## Third quartile -0.73330 1.06789 0.85607
## Skewness 0.70273 0.37686 -0.48184
## Kurtosis 4.13518 3.47136 3.36557
## Moment of order 3 0.00072 0.01210 -0.00049
## Moment of order 4 0.00043 0.03543 0.00034
## Moment of order 5 0.00009 0.01364 -0.00005
## Int.conf Inf (95%) -0.96890 0.25598 0.58101
## Int.conf Sup (95%) -0.57456 1.58272 0.96022
plot(mod3d,union = TRUE) ## back in time
plot3D(mod3d,display="persp") ## in space (O,X,Y,Z)
For each SDE type and for each numerical scheme, the marginal density of \(X_t\), \(Y_t\) and \(Z_t\) at time \(t=1\) are reported using dsde3d() function, see e.g. Figure 8.
den <- dsde3d(mod3d,at =1)
den##
## Marginal density for the conditional law of X(t)|X(0) at time t = 1
##
## Data: x (500 obs.); Bandwidth 'bw' = 0.02381
##
## x f(x)
## Min. :-1.1152504 Min. :0.000388
## 1st Qu.:-0.9119133 1st Qu.:0.075024
## Median :-0.7085761 Median :0.476136
## Mean :-0.7085761 Mean :1.228278
## 3rd Qu.:-0.5052390 3rd Qu.:2.216015
## Max. :-0.3019018 Max. :4.196779
##
## Marginal density for the conditional law of Y(t)|Y(0) at time t = 1
##
## Data: y (500 obs.); Bandwidth 'bw' = 0.07684
##
## y f(y)
## Min. :-0.1396524 Min. :0.0001174
## 1st Qu.: 0.4713330 1st Qu.:0.0273182
## Median : 1.0823185 Median :0.2032677
## Mean : 1.0823185 Mean :0.4087731
## 3rd Qu.: 1.6933039 3rd Qu.:0.7411125
## Max. : 2.3042894 Max. :1.3366929
##
## Marginal density for the conditional law of Z(t)|Z(0) at time t = 1
##
## Data: z (500 obs.); Bandwidth 'bw' = 0.02595
##
## z f(z)
## Min. :0.3019458 Min. :0.000348
## 1st Qu.:0.5014142 1st Qu.:0.047529
## Median :0.7008826 Median :0.561927
## Mean :0.7008826 Mean :1.252100
## 3rd Qu.:0.9003510 3rd Qu.:2.393278
## Max. :1.0998194 Max. :4.295844
plot(den, main="Marginal Density")
For Joint density for \((X_t,Y_t,Z_t)\) see package sm or ks.
out <- rsde3d(mod3d,at =1)
library(sm)
sm.density(out,display="rgl")
##
library(ks)
fhat <- kde(x=out)
plot(fhat, drawpoints=TRUE)with initial conditions \((X_{0},Y_{0},Z_{0})=(1,1,1)\), by specifying the drift and diffusion coefficients of three processes \(X_{t}\), \(Y_{t}\) and \(Z_{t}\) as R expressions which depends on the three state variables (x,y,z) and time variable t, with integration step size Dt=0.0001.
K = 4; s = 1; sigma = 0.2
fx <- expression( (-K*x/sqrt(x^2+y^2+z^2)) , (-K*y/sqrt(x^2+y^2+z^2)) , (-K*z/sqrt(x^2+y^2+z^2)) )
gx <- rep(expression(sigma),3)
mod3d <- snssde3d(drift=fx,diffusion=gx,N=10000,x0=c(x=1,y=1,z=1))
mod3d## Ito Sde 3D:
## | dX(t) = (-K * X(t)/sqrt(X(t)^2 + Y(t)^2 + Z(t)^2)) * dt + sigma * dW1(t)
## | dY(t) = (-K * Y(t)/sqrt(X(t)^2 + Y(t)^2 + Z(t)^2)) * dt + sigma * dW2(t)
## | dZ(t) = (-K * Z(t)/sqrt(X(t)^2 + Y(t)^2 + Z(t)^2)) * dt + sigma * dW3(t)
## Method:
## | Euler scheme of order 0.5
## Summary:
## | Size of process | N = 10000.
## | Number of simulation | M = 1.
## | Initial values | (x0,y0,z0) = (1,1,1).
## | Time of process | t in [0,1].
## | Discretization | Dt = 1e-04.
The results of simulation are shown:
plot3D(mod3d,display="persp",col="blue")
run by calling the function snssde3d() to produce a simulation of the solution, with \(\mu = 1\) and \(\sigma = 1\).
fx <- expression(y,0,0)
gx <- expression(z,1,1)
modtra <- snssde3d(drift=fx,diffusion=gx,M=500)
modtra## Ito Sde 3D:
## | dX(t) = Y(t) * dt + Z(t) * dW1(t)
## | dY(t) = 0 * dt + 1 * dW2(t)
## | dZ(t) = 0 * dt + 1 * dW3(t)
## Method:
## | Euler scheme of order 0.5
## Summary:
## | Size of process | N = 1000.
## | Number of simulation | M = 500.
## | Initial values | (x0,y0,z0) = (0,0,0).
## | Time of process | t in [0,1].
## | Discretization | Dt = 0.001.
summary(modtra)##
## Monte-Carlo Statistics for (X(t),Y(t),Z(t)) at time t = 1
## X Y Z
## Mean 0.02038 -0.00022 -0.04226
## Variance 0.75673 0.98774 0.93418
## Median 0.00419 -0.03371 -0.05310
## First quartile -0.50761 -0.68390 -0.72646
## Third quartile 0.56291 0.69763 0.63591
## Skewness -0.25218 0.07301 0.01379
## Kurtosis 4.04460 2.66176 2.79796
## Moment of order 3 -0.16600 0.07167 0.01245
## Moment of order 4 2.31607 2.59691 2.44178
## Moment of order 5 -2.88379 0.38041 0.00787
## Int.conf Inf (95%) -1.97639 -1.90679 -1.91798
## Int.conf Sup (95%) 1.75167 1.93111 1.78561
the following code produces the result in Figure 9.
plot(modtra$X,plot.type="single",ylab="X")
lines(time(modtra),mean(modtra)$X,col=2,lwd=2)
lines(time(modtra),bconfint(modtra,level=0.95)$X[,1],col=4,lwd=2)
lines(time(modtra),bconfint(modtra,level=0.95)$X[,2],col=4,lwd=2)
legend("topleft",c("mean path",paste("bound of",95,"% confidence")),col=c(2,4),lwd=2,cex=0.8)
The histogram and kernel density of \(X_t\) at time \(t=1\) are reported using dsde3d() function, see e.g. Figure 10.
den <- dsde3d(modtra,at=1)
den$resx##
## Call:
## density.default(x = x, na.rm = TRUE)
##
## Data: x (500 obs.); Bandwidth 'bw' = 0.2075
##
## x y
## Min. :-4.7641 Min. :0.0000021
## 1st Qu.:-2.8019 1st Qu.:0.0026348
## Median :-0.8396 Median :0.0396680
## Mean :-0.8396 Mean :0.1272792
## 3rd Qu.: 1.1226 3rd Qu.:0.2325336
## Max. : 3.0849 Max. :0.4738560
MASS::truehist(den$ech$x,xlab = expression(X[t==1]));box()
lines(den$resx,col="red",lwd=2)
legend("topleft",c("Distribution histogram","Kernel Density"),inset =.01,pch=c(15,NA),lty=c(NA,1),col=c("cyan","red"),lwd=2,cex=0.8)
The equivalently of \(X_{t}^{\text{mod1}}\) the following Stratonovich SDE: \(dX_{t} = \theta X_{t} \circ dW_{t}\).↩