This article will show users on how to register data using the sample data provided within the package. Given an input data, users can directly register the data as illustrated below.
greatR package provides an example of data frame
containing two different species Arabidopsis and B.
rapa with two and three different replicates, respectively. This
data frame can be read as follow:
# Load the package
library(greatR)
library(dplyr)# Gene expression data with replicates
all_data_df <- system.file("extdata/brapa_arabidopsis_all_replicates.csv", package = "greatR") %>%
utils::read.csv()Note that the data has all of six columns required by the package as documented on the preparing data article.
all_data_df %>%
dplyr::group_by(accession) %>%
dplyr::slice(1:6) %>%
knitr::kable()| locus_name | accession | tissue | timepoint | expression_value | group |
|---|---|---|---|---|---|
| BRAA02G018970.3C | Col0 | apex | 7 | 0.4667855 | Col0-07-a |
| BRAA02G018970.3C | Col0 | apex | 7 | 0.0741901 | Col0-07-b |
| BRAA02G018970.3C | Col0 | apex | 8 | 0.0000000 | Col0-08-a |
| BRAA02G018970.3C | Col0 | apex | 8 | 0.0000000 | Col0-08-b |
| BRAA02G018970.3C | Col0 | apex | 9 | 0.3722542 | Col0-09-a |
| BRAA02G018970.3C | Col0 | apex | 9 | 0.0000000 | Col0-09-b |
| BRAA02G018970.3C | Ro18 | apex | 11 | 0.3968734 | Ro18-11-a |
| BRAA02G018970.3C | Ro18 | apex | 11 | 1.4147711 | Ro18-11-b |
| BRAA02G018970.3C | Ro18 | apex | 11 | 0.7423984 | Ro18-11-c |
| BRAA02G018970.3C | Ro18 | apex | 29 | 11.3007002 | Ro18-29-a |
| BRAA02G018970.3C | Ro18 | apex | 29 | 23.2055664 | Ro18-29-b |
| BRAA02G018970.3C | Ro18 | apex | 29 | 22.0307747 | Ro18-29-c |
To align gene expression time-course between Arabidopsis
Col-0 and B. rapa Ro18, we can use function
scale_and_register_data(). Stretch factors as one of the
parameters of function scale_and_register_data() can be
estimated using function:
get_approximate_stretch(
input_df = all_data_df,
accession_data_to_transform = "Col0",
accession_data_ref = "Ro18"
)
#> [1] 2.666667As we can see above, the approximation of the stretch factor is around 2.7. Therefore, users can use some values around the estimation value.
# Running the registration
registration_results <- scale_and_register_data(
input_df = all_data_df,
stretches = c(3, 2.5, 2, 1.5, 1),
shifts = seq(-4, 4, length.out = 33),
min_num_overlapping_points = 4,
initial_rescale = FALSE,
do_rescale = TRUE,
accession_data_to_transform = "Col0",
accession_data_ref = "Ro18",
start_timepoint = "reference"
)
#>
#> ── Information before registration ─────────────────────────────────────────────
#> ℹ Max value of expression_value of all_data_df: 262.28
#>
#> ── Analysing models for all stretch and shift factor ───────────────────────────
#>
#> ── Analysing models for stretch factor = 3 ──
#> ✓ Calculating score for all shifts (10/10) [2.6s]
#> ✓ Normalising expression by mean and sd of compared values (10/10) [85ms]
#> ✓ Applying best shift (10/10) [91ms]
#> ✓ Calculating registration vs non-registration comparison BIC (10/10) [140ms]
#> ✓ Finished analysing models for stretch factor = 3
#>
#> ── Analysing models for stretch factor = 2.5 ──
#> ✓ Calculating score for all shifts (10/10) [2.8s]
#> ✓ Normalising expression by mean and sd of compared values (10/10) [81ms]
#> ✓ Applying best shift (10/10) [103ms]
#> ✓ Calculating registration vs non-registration comparison BIC (10/10) [160ms]
#> ✓ Finished analysing models for stretch factor = 2.5
#>
#> ── Analysing models for stretch factor = 2 ──
#> ✓ Calculating score for all shifts (10/10) [2.9s]
#> ✓ Normalising expression by mean and sd of compared values (10/10) [95ms]
#> ✓ Applying best shift (10/10) [82ms]
#> ✓ Calculating registration vs non-registration comparison BIC (10/10) [164ms]
#> ✓ Finished analysing models for stretch factor = 2
#>
#> ── Analysing models for stretch factor = 1.5 ──
#> ✓ Calculating score for all shifts (10/10) [3s]
#> ✓ Normalising expression by mean and sd of compared values (10/10) [107ms]
#> ✓ Applying best shift (10/10) [84ms]
#> ✓ Calculating registration vs non-registration comparison BIC (10/10) [171ms]
#> ✓ Finished analysing models for stretch factor = 1.5
#>
#> ── Analysing models for stretch factor = 1 ──
#> ✓ Calculating score for all shifts (10/10) [2.7s]
#> ✓ Normalising expression by mean and sd of compared values (10/10) [85ms]
#> ✓ Applying best shift (10/10) [90ms]
#> ✓ Calculating registration vs non-registration comparison BIC (10/10) [154ms]
#> ✓ Finished analysing models for stretch factor = 1
#>
#> ── Model comparison results ────────────────────────────────────────────────────
#> ℹ BIC finds registration better than non-registration for: 10/10
#>
#> ── Applying the best-shifts and stretches to gene expression ───────────────────
#> ✓ Normalising expression by mean and sd of compared values (10/10) [85ms]
#> ✓ Applying best shift (10/10) [98ms]
#> ℹ Max value of expression_value: 9.05
#> ✓ Imputing transformed expression values (10/10) [209ms]
#> Function scale_and_register_data() returns a list of
seven data frames:
mean_df is a data frame containing mean expression
value of each gene and accession for every time point.mean_df_sc is identical to mean_df, with
additional column sc.expression_value which the scaled mean
expression values.to_shift_df is a processed input data frame ready to be
registered.best_shifts is a data frame containing best shift
factor for each given stretch.shifted_mean_df is the registration result – after
stretching and shifting.imputed_mean_df is the imputed registration
result.all_shifts_df is a table containing candidates of
registration parameters and a score after applying each parameter
(stretch and shift factor).model_comparison_df is a table comparing the optimal
registration function for each gene (based on all_shifts_df
scores) to the model with no registration applied.These data frame outputs can further be summarised and visualised; see the documentation on the visualising results article.