library("quanteda")
## Package version: 4.0.2
## Unicode version: 14.0
## ICU version: 71.1
## Parallel computing: disabled
## See https://quanteda.io for tutorials and examples.
library("quanteda.textmodels")quanteda.textmodels implements fast methods for fitting and predicting Naive Bayes textmodels built especially for sparse document-feature matrices from textual data. It implements two models: multinomial and Bernoulli. (See Manning, Raghavan, and Schütze 2008, Chapter 13.)
Here, we compare performance for the two models, and then to the performance from two other packages for fitting these models.
For these tests, we will choose the dataset of 50,000 movie reviews from Maas et. al. (2011). We will use their partition into test and training sets for training and fitting our models.
# large movie review database of 50,000 movie reviews
load(url("https://quanteda.org/data/data_corpus_LMRD.rda"))
dfmat <- tokens(data_corpus_LMRD) %>%
dfm()
dfmat_train <- dfm_subset(dfmat, set == "train")
dfmat_test <- dfm_subset(dfmat, set == "test")Comparing the performance of fitting the model:
library("microbenchmark")
microbenchmark(
multi = textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "multinomial"),
bern = textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "Bernoulli"),
times = 20
)
## Warning in microbenchmark(multi = textmodel_nb(dfmat_train,
## dfmat_train$polarity, : less accurate nanosecond times to avoid potential
## integer overflows
## Unit: milliseconds
## expr min lq mean median uq max neval
## multi 49.48130 50.54550 54.93710 51.95885 59.16956 63.90268 20
## bern 58.41959 65.19896 70.26184 67.28961 69.71076 143.31849 20And for prediction:
microbenchmark(
multi = predict(textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "multinomial"),
newdata = dfmat_test),
bern = predict(textmodel_nb(dfmat_train, dfmat_train$polarity, distribution = "Bernoulli"),
newdata = dfmat_test),
times = 20
)
## Unit: milliseconds
## expr min lq mean median uq max neval
## multi 58.33902 59.19088 66.51920 61.94024 66.63349 140.4699 20
## bern 87.05956 90.54387 98.62696 94.28239 99.40032 171.8418 20Now let’s see how textmodel_nb() compares to equivalent
functions from other packages. Multinomial:
library("fastNaiveBayes")
library("naivebayes")
## naivebayes 1.0.0 loaded
## For more information please visit:
## https://majkamichal.github.io/naivebayes/
microbenchmark(
textmodels = {
tmod <- textmodel_nb(dfmat_train, dfmat_train$polarity, smooth = 1, distribution = "multinomial")
pred <- predict(tmod, newdata = dfmat_test)
},
fastNaiveBayes = {
tmod <- fnb.multinomial(as(dfmat_train, "dgCMatrix"), y = dfmat_train$polarity, laplace = 1, sparse = TRUE)
pred <- predict(tmod, newdata = as(dfmat_test, "dgCMatrix"))
},
naivebayes = {
tmod = multinomial_naive_bayes(as(dfmat_train, "dgCMatrix"), dfmat_train$polarity, laplace = 1)
pred <- predict(tmod, newdata = as(dfmat_test, "dgCMatrix"))
},
times = 20
)
## Unit: milliseconds
## expr min lq mean median uq max neval
## textmodels 58.07256 59.90389 63.10393 60.90741 68.72619 71.4803 20
## fastNaiveBayes 85.73686 96.66390 102.83612 98.28379 102.08590 178.6441 20
## naivebayes 69.26483 70.51531 80.99976 75.15234 78.64688 200.7904 20And Bernoulli. Note here that while we are supplying the Boolean
matrix to textmodel_nb(), this re-weighting from the count
matrix would have been performed automatically within the function had
we not done so in advance - it’s done here just for comparison.
dfmat_train_bern <- dfm_weight(dfmat_train, scheme = "boolean")
dfmat_test_bern <- dfm_weight(dfmat_test, scheme = "boolean")
microbenchmark(
textmodel_nb = {
tmod <- textmodel_nb(dfmat_train_bern, dfmat_train$polarity, smooth = 1, distribution = "Bernoulli")
pred <- predict(tmod, newdata = dfmat_test)
},
fastNaiveBayes = {
tmod <- fnb.bernoulli(as(dfmat_train_bern, "dgCMatrix"), y = dfmat_train$polarity, laplace = 1, sparse = TRUE)
pred <- predict(tmod, newdata = as(dfmat_test_bern, "dgCMatrix"))
},
naivebayes = {
tmod = bernoulli_naive_bayes(as(dfmat_train_bern, "dgCMatrix"), dfmat_train$polarity, laplace = 1)
pred <- predict(tmod, newdata = as(dfmat_test_bern, "dgCMatrix"))
},
times = 20
)
## Unit: milliseconds
## expr min lq mean median uq max neval
## textmodel_nb 84.44725 91.09681 94.37883 93.52768 96.1443 109.0465 20
## fastNaiveBayes 95.57600 103.41438 113.60162 104.92816 107.9759 194.7781 20
## naivebayes 74.78490 76.45424 86.57822 82.58224 85.9739 182.0318 20Maas, Andrew L., Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts (2011). “Learning Word Vectors for Sentiment Analysis”. The 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011).
Majka M (2020). naivebayes: High Performance Implementation of the Naive Bayes Algorithm in R. R package version 0.9.7, <URL: https://CRAN.R-project.org/package=naivebayes>. Date: 2020-03-08.
Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to Information Retrieval. Cambridge University Press.
Skogholt, Martin (2020). fastNaiveBayes: Extremely Fast Implementation of a Naive Bayes Classifier. R package version 2.2.1. https://github.com/mskogholt/fastNaiveBayes. Date: 2020-05-04.