Some geese isotope data is included with this package. Find where it is with:
Load into R with:
library(readxl)
path = system.file("extdata", "geese_data.xls", package = "simmr")
geese_data = lapply(excel_sheets(path), read_excel, path = path)If you want to see what the original Excel sheet looks like you can run system(paste('open',path)).
We can now separate out the data into parts
simmrsimmr and check convergenceCheck that the model fitted well:
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 40
## Unobserved stochastic nodes: 46
## Total graph size: 190
##
## Initializing model
Look at the influence of the prior:
Look at the histogram of the dietary proportions:
## Most popular orderings are as follows:
## Probability
## Day 124 > Day 428 > Day 398 > Day 1 0.1736
## Day 428 > Day 124 > Day 398 > Day 1 0.1342
## Day 124 > Day 428 > Day 1 > Day 398 0.1225
## Day 124 > Day 398 > Day 428 > Day 1 0.0967
## Day 428 > Day 124 > Day 1 > Day 398 0.0797
## Day 428 > Day 398 > Day 124 > Day 1 0.0528
## Day 124 > Day 398 > Day 1 > Day 428 0.0472
## Day 124 > Day 1 > Day 428 > Day 398 0.0469
## Day 398 > Day 124 > Day 428 > Day 1 0.0439
## Day 124 > Day 1 > Day 398 > Day 428 0.0344
## Day 398 > Day 428 > Day 124 > Day 1 0.0289
## Day 428 > Day 1 > Day 124 > Day 398 0.0258
## Day 398 > Day 124 > Day 1 > Day 428 0.0197
## Day 428 > Day 398 > Day 1 > Day 124 0.0192
## Day 428 > Day 1 > Day 398 > Day 124 0.0178
## Day 398 > Day 428 > Day 1 > Day 124 0.0122
## Day 1 > Day 124 > Day 428 > Day 398 0.0094
## Day 1 > Day 428 > Day 124 > Day 398 0.0081
## Day 398 > Day 1 > Day 124 > Day 428 0.0061
## Day 398 > Day 1 > Day 428 > Day 124 0.0061
## Day 1 > Day 124 > Day 398 > Day 428 0.0053
## Day 1 > Day 428 > Day 398 > Day 124 0.0044
## Day 1 > Day 398 > Day 124 > Day 428 0.0025
## Day 1 > Day 398 > Day 428 > Day 124 0.0025
For the many more options available to run and analyse output, see the main vignette via vignette('simmr')