Last updated on 2025-04-28 00:50:37 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.1.0 | 15.02 | 1101.05 | 1116.07 | OK | |
r-devel-linux-x86_64-debian-gcc | 1.1.0 | 10.04 | 1153.35 | 1163.39 | OK | |
r-devel-linux-x86_64-fedora-clang | 1.1.0 | 1168.92 | OK | |||
r-devel-linux-x86_64-fedora-gcc | 1.1.0 | 1285.45 | OK | |||
r-devel-windows-x86_64 | 1.1.0 | 16.00 | 379.00 | 395.00 | OK | |
r-patched-linux-x86_64 | 1.1.0 | 13.94 | 1185.09 | 1199.03 | OK | |
r-release-linux-x86_64 | 1.1.0 | 12.80 | 1084.27 | 1097.07 | OK | |
r-release-macos-arm64 | 1.1.0 | 280.00 | OK | |||
r-release-macos-x86_64 | 1.1.0 | 70.00 | OK | |||
r-release-windows-x86_64 | 1.1.0 | 18.00 | 248.00 | 266.00 | ERROR | |
r-oldrel-macos-arm64 | 1.1.0 | 44.00 | OK | |||
r-oldrel-macos-x86_64 | 1.1.0 | 73.00 | OK | |||
r-oldrel-windows-x86_64 | 1.1.0 | 23.00 | 584.00 | 607.00 | OK |
Version: 1.1.0
Check: tests
Result: ERROR
Running 'testthat.R' [139s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> library(testthat)
> library(spinner)
>
> test_check("spinner")
OMP: Warning #96: Cannot form a team with 48 threads, using 2 instead.
OMP: Hint Consider unsetting KMP_DEVICE_THREAD_LIMIT (KMP_ALL_THREADS), KMP_TEAMS_THREAD_LIMIT, and OMP_THREAD_LIMIT (if any are set).
epoch: 10 Train loss: 0.7317824 Val loss: 0.7621946
epoch: 20 Train loss: 0.6322789 Val loss: 0.7653031
epoch: 30 Train loss: 0.7221151 Val loss: 0.8039527
early stop at epoch: 34 Train loss: 0.6300904 Val loss: 0.756388
epoch: 10 Train loss: 0.7175471 Val loss: 0.5811712
epoch: 20 Train loss: 0.6909837 Val loss: 0.5899688
epoch: 30 Train loss: 0.6618134 Val loss: 0.6638206
epoch: 40 Train loss: 0.6234404 Val loss: 0.6321722
epoch: 50 Train loss: 0.6612909 Val loss: 0.5771581
early stop at epoch: 54 Train loss: 0.7050608 Val loss: 0.6041846
epoch: 10 Train loss: 0.654511 Val loss: 0.3184479
epoch: 20 Train loss: 0.7061145 Val loss: 0.4157068
epoch: 30 Train loss: 0.7505819 Val loss: 0.5504788
epoch: 40 Train loss: 0.5440403 Val loss: 0.5311794
epoch: 50 Train loss: 0.6966549 Val loss: 0.6133323
early stop at epoch: 55 Train loss: 0.803764 Val loss: 0.5741208
epoch: 10 Train loss: 0.5628225 Val loss: 0.3788545
epoch: 20 Train loss: 0.66157 Val loss: 0.797702
epoch: 30 Train loss: 0.5826113 Val loss: 0.7785869
early stop at epoch: 30 Train loss: 0.5826113 Val loss: 0.7785869
time: 35.16 sec elapsed
epoch: 10 Train loss: 0.7409889 Val loss: 0.7343982
epoch: 20 Train loss: 0.6867293 Val loss: 0.7120999
epoch: 30 Train loss: 0.6315681 Val loss: 0.7207493
early stop at epoch: 31 Train loss: 0.5204234 Val loss: 0.777499
epoch: 10 Train loss: 0.6564538 Val loss: 0.7517146
epoch: 20 Train loss: 0.5716132 Val loss: 0.7110354
epoch: 30 Train loss: 0.6047138 Val loss: 0.7200903
early stop at epoch: 30 Train loss: 0.6047138 Val loss: 0.7200903
epoch: 10 Train loss: 0.7298493 Val loss: 0.5944011
epoch: 20 Train loss: 0.701436 Val loss: 0.7832389
epoch: 30 Train loss: 0.6641642 Val loss: 0.6373111
early stop at epoch: 34 Train loss: 0.5590758 Val loss: 0.7329341
epoch: 10 Train loss: 0.6905536 Val loss: 0.6138876
epoch: 20 Train loss: 0.6715042 Val loss: 0.722386
epoch: 30 Train loss: 0.694303 Val loss: 0.7603433
early stop at epoch: 33 Train loss: 0.7030374 Val loss: 0.7828748
time: 25.46 sec elapsed
epoch: 10 Train loss: 0.3249352 Val loss: 0.3522149
epoch: 20 Train loss: 0.3366883 Val loss: 0.2461161
epoch: 30 Train loss: 0.3517227 Val loss: 0.258471
early stop at epoch: 31 Train loss: 0.2865163 Val loss: 0.5111788
epoch: 10 Train loss: 0.335785 Val loss: 0.4863305
epoch: 20 Train loss: 0.3319254 Val loss: 0.3984242
epoch: 30 Train loss: 0.338305 Val loss: 0.2768511
early stop at epoch: 32 Train loss: 0.3111433 Val loss: 0.4069659
epoch: 10 Train loss: 0.2867069 Val loss: 0.4243255
epoch: 20 Train loss: 0.2477084 Val loss: 0.4297781
epoch: 30 Train loss: 0.25424 Val loss: 0.3658085
early stop at epoch: 30 Train loss: 0.25424 Val loss: 0.3658085
epoch: 10 Train loss: 0.2299772 Val loss: 0.3072349
epoch: 20 Train loss: 0.2680575 Val loss: 0.169904
epoch: 30 Train loss: 0.2679525 Val loss: 0.1344198
early stop at epoch: 38 Train loss: 0.2458126 Val loss: 0.3700171
time: 26.53 sec elapsed
epoch: 10 Train loss: 0.5702409 Val loss: 0.4774213
epoch: 20 Train loss: 0.5702409 Val loss: 0.4765813
epoch: 30 Train loss: 0.5702409 Val loss: 0.4765813
epoch: 40 Train loss: 0.5702409 Val loss: 0.4765813
epoch: 50 Train loss: 0.5702409 Val loss: 0.4765813
epoch: 60 Train loss: 0.5702409 Val loss: 0.4765813
epoch: 70 Train loss: 0.5702409 Val loss: 0.4765813
epoch: 80 Train loss: 0.5702409 Val loss: 0.4765813
epoch: 90 Train loss: 0.5702409 Val loss: 0.4765813
epoch: 100 Train loss: 0.5702409 Val loss: 0.4765813
epoch: 10 Train loss: 0.4554161 Val loss: 0.6724439
epoch: 20 Train loss: 0.4554161 Val loss: 0.6724439
epoch: 30 Train loss: 0.4554161 Val loss: 0.6724439
early stop at epoch: 31 Train loss: 0.4554161 Val loss: 0.7056807
epoch: 10 Train loss: 0.5752563 Val loss: 0.6791061
epoch: 20 Train loss: 0.5752563 Val loss: 0.6130908
epoch: 30 Train loss: 0.5752563 Val loss: 0.6069332
early stop at epoch: 37 Train loss: 0.5752563 Val loss: 0.6567641
time: 13.96 sec elapsed
epoch: 10 Train loss: 0.5652817 Val loss: 0.5945494
epoch: 20 Train loss: 0.5766739 Val loss: 0.6136201
epoch: 30 Train loss: 0.5766739 Val loss: 0.6142852
early stop at epoch: 32 Train loss: 0.5766739 Val loss: 0.6047716
epoch: 10 Train loss: 0.7769034 Val loss: 0.6501483
epoch: 20 Train loss: 0.7769034 Val loss: 0.6713287
epoch: 30 Train loss: 0.7769034 Val loss: 0.6501483
epoch: 40 Train loss: 0.8044059 Val loss: 0.6763625
early stop at epoch: 40 Train loss: 0.8044059 Val loss: 0.6763625
epoch: 10 Train loss: 0.6855377 Val loss: 0.6947392
epoch: 20 Train loss: 0.6770796 Val loss: 0.6942887
epoch: 30 Train loss: 0.6759621 Val loss: 0.7478956
early stop at epoch: 30 Train loss: 0.6759621 Val loss: 0.7478956
time: 10.37 sec elapsed
epoch: 10 Train loss: 0.5610423 Val loss: 0.6719236
epoch: 20 Train loss: 0.603376 Val loss: 0.7066973
epoch: 30 Train loss: 0.585977 Val loss: 0.6936437
early stop at epoch: 34 Train loss: 0.5812439 Val loss: 0.7304418
epoch: 10 Train loss: 0.4583791 Val loss: 0.4016303
epoch: 20 Train loss: 0.1186387 Val loss: 0.5465474
epoch: 30 Train loss: 0.4981215 Val loss: 0.5338627
epoch: 40 Train loss: 0.4663077 Val loss: 0.364223
early stop at epoch: 43 Train loss: 0.1277899 Val loss: 0.5148605
epoch: 10 Train loss: 0.3682945 Val loss: 0.4483344
epoch: 20 Train loss: 0.4255118 Val loss: 0.3754213
epoch: 30 Train loss: 0.4197976 Val loss: 0.4472946
early stop at epoch: 33 Train loss: 0.4434004 Val loss: 0.5070518
time: 20.74 sec elapsed
random search: 45.09 sec elapsed
[ FAIL 1 | WARN 66 | SKIP 0 | PASS 46 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test.R:89:13'): Correct outcome format and size for base outcome3 ───
<purrr_error_indexed/rlang_error/error/condition>
Error in `purrr::pmap(hyper_params, ~spinner(graph, target, node_labels,
edge_labels, context_labels, direction = ..1, sampling = NA,
threshold = 0.01, method = ..2, node_embedding_size = ..13,
edge_embedding_size = ..14, context_embedding_size = ..15,
update_order = ..3, n_layers = ..4, skip_shortcut = ..5,
forward_layer = ..6, forward_activation = ..7, forward_drop = ..8,
mode = ..9, optimization = ..10, epochs, lr = ..11, patience,
weight_decay = ..12, reps, folds, holdout, verbose, seed))`: i In index: 1.
Caused by error in `pmap()`:
i In index: 1.
Caused by error in `training_function()`:
! not enough data for training
[ FAIL 1 | WARN 66 | SKIP 0 | PASS 46 ]
Error: Test failures
Execution halted
Flavor: r-release-windows-x86_64