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2 mh_overlay

mh_overlay Overlay Mahalanobis-based Climate Representativeness Classifica-
tions

Description

Combines multiple single-layer rasters (tif), outputs from mh_rep or mh_rep_ch for different input
polygons, into a multi-layered SpatRaster.

This function handles inputs from both mh_rep (which primarily contains Represented areas) and
mh_rep_ch (which includes Retained, Lost, and Novel areas). The output layers consistently rep-
resent counts of each input.

Usage

mh_overlay(folder_path)

Arguments

folder_path character. The path to the directory containing the classification rasters (.tif)
generated by mh_rep or mh_rep_ch. These rasters should primarily contain the
categories: 1 (Retained/Represented), 2 (Lost), and 3 (Novel). Category 0 (Non-
represented) will be ignored for the RGB output.

Details

This function streamlines the aggregation of Climate Representativeness classifications. It is de-
signed to work with outputs from both mh_rep and mh_rep_ch.

For each of the three key categories (Lost, Retained/Represented, Novel), the function:

1. Identifies and reads all .tif files within the folder_path.

2. For each input raster, it creates a binary layer: 1 if the cell’s value matches the target category
(e.g., 2 for ’Lost’), and 0 otherwise.

3. Sums these binary layers to generate a cumulative count for that specific category at each grid
cell.

The three resulting count layers (Lost, Retained, Novel) are then consistently stacked in the follow-
ing order:

• First layer (Red): Cumulative count of Lost.

• Second layer (Green): Cumulative count of Retained.

• Third layer (Blue): Cumulative count of Novel.

This fixed order ensures that the output SpatRaster is immediately ready for direct RGB visual-
ization using terra::plotRGB(), where the color mixtures will intuitively reflect the spatial agree-
ment of these change types.
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The output SpatRaster contains raw counts. While terra::plotRGB() often handles stretching
for visualization, users might normalize these counts manually (e.g., to 0-255) for finer control over
visual contrast.

A new subfolder named overlay/ will be created within the folder_path. The resulting three-
layered RGB will be saved as ClimaRep_overlay.tif inside this new overlay/ subfolder.

Value

Writes the multi-layered (ClimaRep_overlay.tif) outputs to disk in a new overlay subfolder
within the folder_path. When mh_rep_ch results are used, the output layers consistently represent
counts for Lost (Red), Retained (Green), and Novel (Blue) categories across all input rasters.
Designed for direct RGB plotting. When mh_rep results are used, the output layers consistently
represent counts for Represented categories across all input rasters.

Examples

ClimaRep_overlay <- ClimaRep::mh_overlay(folder_path = system.file("extdata", package = "ClimaRep"))
terra::plotRGB(ClimaRep_overlay)
terra::plot(ClimaRep_overlay)

mh_rep Multivariate Climate Representativeness Analysis

Description

This function calculates Mahalanobis-based Climate Representativeness for input polygon within a
defined area.

Representativeness is assessed by comparing the multivariate climate conditions of each cell, of
the reference climate space (climate_variables), with the climate conditions within each specific
input polygon.

Usage

mh_rep(
polygon,
col_name,
climate_variables,
th = 0.95,
dir_output = file.path(tempdir(), "ClimaRep"),
save_raw = FALSE

)

Arguments

polygon An sf object containing the defined areas. Must have the same CRS as climate_variables.

col_name character. Name of the column in the polygon object that contains unique
identifiers for each polygon.
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climate_variables

A SpatRaster stack of climate variables representing the conditions. Its CRS
will be used as the reference system.

th numeric (0-1). Percentile threshold used to define representativeness. Cells
with a Mahalanobis distance below or equal to the th are classified as represen-
tative (default: 0.95).

dir_output character. Path to the directory where output files will be saved. The function
will create subdirectories within this path.

save_raw logical. If TRUE, saves the intermediate continuous Mahalanobis distance
rasters calculated for each polygon before binary classification. The final bi-
nary classification rasters are always saved (default: FALSE).

Details

This function performs a multivariate analysis using Mahalanobis distance to assess the Climate
Representativeness of input polygons for a single time period.

Crucially, this function assumes that all spatial inputs (polygon, climate_variables) are already
correctly aligned and share the same Coordinate Reference System (CRS). If inputs do not meet
these criteria, the function will stop with an informative error.

Here are the key steps:

1. Checking of spatial inputs: Ensures that polygon and climate_variables have matching
CRSs.

2. Calculate the multivariate covariance matrix using climate data from all cells.

3. For each polygon in the polygon object:

• Crop and mask the climate variables raster (climate_variables) to the boundary of the
current polygon.

• Calculate the multivariate mean using the climate data from the previous step. This de-
fines the climate centroid for the current polygon.

• Calculate the Mahalanobis distance for each cell relative to the centroid and covariance
matrix.

• Apply the specified threshold (th) to Mahalanobis distances to determine which cells are
considered representative. This threshold is a percentile of the Mahalanobis distances
within the current polygon.

• Classify each cell as Representative = 1 (Mahalanobis distance ≤ th) or Non-Representative
= 0 (Mahalanobis distance $>$ th).

4. Saves the binary classification raster (.tif) and generates a corresponding visualization map
(.jpeg) for each polygon. These are saved within the specified output directory (dir_output).

It is important to note that Mahalanobis distance is sensitive to collinearity among variables. While
the covariance matrix accounts for correlations, it is strongly recommended that the climate_variables
are not strongly correlated. Consider performing a collinearity analysis beforehand, perhaps using
the vif_filter function from this package.
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Value

Writes the following outputs to disk within subdirectories of dir_output:

• Classification (.tif ) rasters: Binary rasters (0 for Non-representative and1 for Represen-
tative) for each input polygon are saved in the Representativeness/ subdirectory.

• Visualization (.jpeg) maps: Image files visualizing the classification results for each polygon
are saved in the Charts/ subdirectory.

• Raw Mahalanobis distance rasters: Optionally saved as .tif files in the Mh_Raw/ subdirectory
if save_raw = TRUE.

Examples

library(terra)
library(sf)
set.seed(2458)
n_cells <- 100 * 100
r_clim_present <- terra::rast(ncols = 100, nrows = 100, nlyrs = 7)
values(r_clim_present) <- c(

(terra::rowFromCell(r_clim_present, 1:n_cells) * 0.2 + rnorm(n_cells, 0, 3)),
(terra::rowFromCell(r_clim_present, 1:n_cells) * 0.9 + rnorm(n_cells, 0, 0.2)),
(terra::colFromCell(r_clim_present, 1:n_cells) * 0.15 + rnorm(n_cells, 0, 2.5)),
(terra::colFromCell(r_clim_present, 1:n_cells) +

(terra::rowFromCell(r_clim_present, 1:n_cells)) * 0.1 + rnorm(n_cells, 0, 4)),
(terra::colFromCell(r_clim_present, 1:n_cells) /

(terra::rowFromCell(r_clim_present, 1:n_cells)) * 0.1 + rnorm(n_cells, 0, 4)),
(terra::colFromCell(r_clim_present, 1:n_cells) *

(terra::rowFromCell(r_clim_present, 1:n_cells) + 0.1 + rnorm(n_cells, 0, 4))),
(terra::colFromCell(r_clim_present, 1:n_cells) *

(terra::colFromCell(r_clim_present, 1:n_cells) + 0.1 + rnorm(n_cells, 0, 4)))
)
names(r_clim_present) <- c("varA", "varB", "varC", "varD", "varE", "varF", "varG")
terra::crs(r_clim_present) <- "EPSG:4326"

vif_result <- ClimaRep::vif_filter(r_clim_present, th = 5)
print(vif_result$summary)
r_clim_present_filtered <- vif_result$filtered_raster
hex_grid <- sf::st_sf(

sf::st_make_grid(
sf::st_as_sf(

terra::as.polygons(
terra::ext(r_clim_present_filtered))),

square = FALSE)
)

sf::st_crs(hex_grid) <- "EPSG:4326"
polygons <- hex_grid[sample(nrow(hex_grid), 2), ]
polygons$name <- c("Pol_A", "Pol_B")
terra::plot(r_clim_present_filtered[[1]])
terra::plot(polygons, add = TRUE, color = "transparent", lwd = 3)

ClimaRep::mh_rep(
polygon = polygons,
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col_name = "name",
climate_variables = r_clim_present_filtered,
th = 0.95,
dir_output = file.path(tempdir(), "ClimaRep"),
save_raw = TRUE
)

mh_rep_ch Multivariate Temporal Climate Representativeness Change Analysis

Description

This function calculates Mahalanobis-based Climate Representativeness (or forward climate analogs)
for input polygon across two time periods (present and future) within a defined area.

The function identifies areas of climate representativeness Retained, Lost, or Novel.
Representativeness is assessed by comparing the multivariate climate conditions of each cell, of the
reference climate space (present_climate_variables and future_climate_variables), with
the climate conditions within each specific input polygon.

Usage

mh_rep_ch(
polygon,
col_name,
present_climate_variables,
future_climate_variables,
study_area,
th = 0.95,
model,
year,
dir_output = file.path(tempdir(), "ClimaRep"),
save_raw = FALSE

)

Arguments

polygon An sf object containing the defined areas. Must have the same CRS as present_climate_variables.

col_name character. Name of the column in the polygon object that contains unique
identifiers for each polygon.

present_climate_variables

A SpatRaster stack of climate variables representing present conditions. Its
CRS will be used as the reference system.

future_climate_variables

A SpatRaster stack containing the same climate variables as present_climate_variables
but representing future projected conditions. Must have the same CRS, extent,
and resolution as present_climate_variables.
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study_area A single sf polygon. Must have the same CRS as present_climate_variables.

th numeric (0-1). Percentile threshold used to define representativeness. Cells
with a Mahalanobis distance below or equal to the th are classified as represen-
tative (default: 0.95).

model character. Name or identifier of the climate model used (e.g., "MIROC6").
This parameter is used in output filenames and subdirectory names, allowing for
better file management.

year character. Year or period of future climate data (e.g., "2070"). This parame-
ter is used in output filenames and subdirectory names, allowing for better file
management.

dir_output character. Path to the directory where output files will be saved. The function
will create subdirectories within this path.

save_raw logical. If TRUE, saves the intermediate continuous Mahalanobis distance
rasters calculated for each polygon before binary classification. The final bi-
nary classification rasters are always saved (default: FALSE).

Details

This function extends the approach used in mh_rep to assess Changes in Climate Representativeness
(or forward climate analogs) over time. While mh_rep() calculates representativeness in a single
scenario, mh_rep_ch() adapts this by using the mean from the present polygon but a covariance
matrix derived from the overall climate space across both present and future periods combined.

Crucially, this function assumes that all spatial inputs (polygon, present_climate_variables,
future_climate_variables, study_area) are already correctly aligned and share the same Co-
ordinate Reference System (CRS) and consistent spatial properties (extent, resolution). If inputs do
not meet these criteria, the function will stop with an informative error.

Here are the key steps:

1. Checking of spatial inputs: Ensures that present_climate_variables, future_climate_variables,
polygon, and study_area all have matching CRSs, and that present_climate_variables
and future_climate_variables share identical extents and resolutions.

2. Calculate the multivariate covariance matrix using climate data from all cells for both present
and future time periods combined.

3. For each polygon in the polygon object:

• Crop and mask the current climate variables raster (present_climate_variables) to
the boundary of the current polygon.

• Calculate the multivariate mean using the climate data from the previous step. This de-
fines the climate centroid for the current polygon. Calculate the Mahalanobis distance
for each cell relative to the centroid and the overall present and future covariance matrix.
This results in a Mahalanobis distance raster for the present period and another for the
future period.

• Apply the specified threshold (th) to Mahalanobis distances to determine which cells are
considered representative. This threshold is a percentile of the Mahalanobis distances
within the current polygon.

• Classify each cells, for both present and future periods, as Representative = 1 (Maha-
lanobis distance ≤ th) or Non-Representative = 0 (Mahalanobis distance $>$ th).
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4. Compares the binary representativeness of each cell between the present and future periods
and determines cells where conditions are:

• 0: Non-represented: Cells that are outside the defined Mahalanobis threshold in both
present and future periods.

• 1: Retained: Cells that are within the defined Mahalanobis threshold in both present and
future periods.

• 2: Lost: Cells that are within the defined Mahalanobis threshold in the present period but
outside it in the future period.

• 3: Novel: Cells that are outside the defined Mahalanobis threshold in the present period
but within it in the future period.

5. Saves the classification raster (.tif) and generates a corresponding visualization map (.jpeg)
for each polygon. These are saved within the specified output directory (dir_output). All
files are saved using the model and year parameters for better file management.

It is important to note that Mahalanobis distance assumes is sensitive to collinearity among vari-
ables. While the covariance matrix accounts for correlations, it is strongly recommended that the
climate variables (present_climate_variables) are not strongly correlated. Consider performing
a collinearity analysis beforehand, perhaps using the vif_filter function from this package.

Value

Writes the following outputs to disk within subdirectories of dir_output:

• Classification (.tif ) change rasters: Change category rasters (0 for Non-representative, 1
for Retained, 2 for Lost and 3 for Novel) for each input polygon are saved in the Change/
subdirectory.

• Visualization (.jpeg) maps: Image files visualizing the change classification results for each
polygon are saved in the Charts/ subdirectory.

• Raw Mahalanobis distance rasters: Optionally, they are saved as .tif files in the Mh_Raw_Pre/
and Mh_Raw_Fut/ subdirectories if save_raw = TRUE.

Examples

library(terra)
library(sf)
set.seed(2458)
n_cells <- 100 * 100
r_clim_present <- terra::rast(ncols = 100, nrows = 100, nlyrs = 7)
values(r_clim_present) <- c(

(terra::rowFromCell(r_clim_present, 1:n_cells) * 0.2 + rnorm(n_cells, 0, 3)),
(terra::rowFromCell(r_clim_present, 1:n_cells) * 0.9 + rnorm(n_cells, 0, 0.2)),
(terra::colFromCell(r_clim_present, 1:n_cells) * 0.15 + rnorm(n_cells, 0, 2.5)),
(terra::colFromCell(r_clim_present, 1:n_cells) +

(terra::rowFromCell(r_clim_present, 1:n_cells)) * 0.1 + rnorm(n_cells, 0, 4)),
(terra::colFromCell(r_clim_present, 1:n_cells) /

(terra::rowFromCell(r_clim_present, 1:n_cells)) * 0.1 + rnorm(n_cells, 0, 4)),
(terra::colFromCell(r_clim_present, 1:n_cells) *

(terra::rowFromCell(r_clim_present, 1:n_cells) + 0.1 + rnorm(n_cells, 0, 4))),
(terra::colFromCell(r_clim_present, 1:n_cells) *
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(terra::colFromCell(r_clim_present, 1:n_cells) + 0.1 + rnorm(n_cells, 0, 4)))
)
names(r_clim_present) <- c("varA", "varB", "varC", "varD", "varE", "varF", "varG")
terra::crs(r_clim_present) <- "EPSG:4326"

vif_result <- ClimaRep::vif_filter(r_clim_present, th = 5)
print(vif_result$summary)
r_clim_present_filtered <- vif_result$filtered_raster
r_clim_future <- r_clim_present_filtered + 2
names(r_clim_future) <- names(r_clim_present_filtered)
hex_grid <- sf::st_sf(

sf::st_make_grid(
sf::st_as_sf(

terra::as.polygons(
terra::ext(r_clim_present_filtered))),

square = FALSE))
sf::st_crs(hex_grid) <- "EPSG:4326"
polygons <- hex_grid[sample(nrow(hex_grid), 2), ]
polygons$name <- c("Pol_1", "Pol_2")
study_area_polygon <- sf::st_as_sf(terra::as.polygons(terra::ext(r_clim_present_filtered)))
sf::st_crs(study_area_polygon) <- "EPSG:4326"
terra::plot(r_clim_present_filtered[[1]])
terra::plot(polygons, add = TRUE, color = "transparent", lwd = 3)
terra::plot(study_area_polygon, add = TRUE, col = "transparent", lwd = 3, border = "red")

ClimaRep::mh_rep_ch(
polygon = polygons,
col_name = "name",
present_climate_variables = r_clim_present_filtered,
future_climate_variables = r_clim_future,
study_area = study_area_polygon,
th = 0.95,
model = "ExampleModel",
year = "2070",
dir_output = file.path(tempdir(), "ClimaRepChange"),
save_raw = TRUE)

vif_filter Filter SpatRaster Layers based on Variance Inflation Factor (VIF)

Description

This function iteratively filters layers from a SpatRaster object by removing the one with the
highest Variance Inflation Factor (VIF) that exceeds a specified threshold (th).

Usage

vif_filter(x, th = 5)
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Arguments

x A SpatRaster object containing the layers (variables) to filter. Must contain
two or more layers.

th A numeric value specifying the Variance Inflation Factor (VIF) threshold. Lay-
ers whose VIF exceeds this threshold are candidates for removal in each iteration
(default: 5).

Details

This function implements a common iterative procedure to reduce multicollinearity among raster
layers by removing variables with high Variance Inflation Factor (VIF). The VIF for a specific
predictor indicates how much the variance of its estimated coefficient is inflated due to its linear
relationships with all other predictors in the model. Conceptually, it is based on the proportion of
variance that predictor shares with the other independent variables. A high VIF value suggests a
high degree of collinearity with other predictors (values exceeding 5 or 10 are often considered
problematic; see O’Brien, 2007). In this context, the function also provides the Pearson correlation
matrix between all initial variables.

Key steps:

1. Validate inputs: Ensures x is a SpatRaster with at least two layers and th is a valid numeric
value.

2. Convert the input SpatRaster (x) to a data.frame, retaining only unique rows if x has many
cells and few unique climate values.

3. Remove rows containing any NA values across all variables from the data.frame.

4. In each iteration, calculate the VIF for all variables currently remaining in the dataset.

5. Identify the variable with the highest VIF among the remaining variables.

6. If this highest VIF value is greater than the threshold (th), remove the variable with the highest
VIF from the dataset, and the loop continues with the remaining variables.

7. This iterative process repeats until the highest VIF among the remaining variables is less than
or equal to ≤ th, or until only one variable remains in the dataset.

The output of vif_filter returns a list object with a filtered SpatRaster object and a statistics
summary.

The SpatRaster object containing only the variables that were kept and also provides a compre-
hensive summary printed to the console. The summary list including:

• The original Pearson’s correlation matrix between all initial variables.

• The variables names that were kept and those that were excluded.

• The final VIF values for the variables retained after the process.

The internal VIF calculation includes checks to handle potential numerical instability, such as
columns with zero or near-zero variance and cases of perfect collinearity among variables, which
could otherwise lead to errors (e.g., infinite VIFs or issues with matrix inversion). Variables identi-
fied as having infinite VIF due to perfect collinearity are prioritized for removal.

References: O’brien (2007) A Caution Regarding Rules of Thumb for Variance Inflation Factors.
Quality & Quantity, 41: 673–690. doi:10.1007/s11135-006-9018-6
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Value

A SpatRaster object containing only the layers retained by the VIF filtering process.

Examples

library(terra)
library(sf)

set.seed(2458)
n_cells <- 100 * 100
r_clim <- terra::rast(ncols = 100, nrows = 100, nlyrs = 7)
values(r_clim) <- c(

(rowFromCell(r_clim, 1:n_cells) * 0.2 + rnorm(n_cells, 0, 3)),
(rowFromCell(r_clim, 1:n_cells) * 0.9 + rnorm(n_cells, 0, 0.2)),
(colFromCell(r_clim, 1:n_cells) * 0.15 + rnorm(n_cells, 0, 2.5)),
(colFromCell(r_clim, 1:n_cells) +

(rowFromCell(r_clim, 1:n_cells)) * 0.1 + rnorm(n_cells, 0, 4)),
(colFromCell(r_clim, 1:n_cells) /

(rowFromCell(r_clim, 1:n_cells)) * 0.1 + rnorm(n_cells, 0, 4)),
(colFromCell(r_clim, 1:n_cells) *

(rowFromCell(r_clim, 1:n_cells) + 0.1 + rnorm(n_cells, 0, 4))),
(colFromCell(r_clim, 1:n_cells) *

(colFromCell(r_clim, 1:n_cells) + 0.1 + rnorm(n_cells, 0, 4))))
names(r_clim) <- c("varA", "varB", "varC", "varD", "varE", "varF", "varG")
terra::crs(r_clim) <- "EPSG:4326"
terra::plot(r_clim)

vif_result <- ClimaRep::vif_filter(r_clim, th = 5)
print(vif_result$summary)
r_clim_filtered <- vif_result$filtered_raster
terra::plot(r_clim_filtered)
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