
Package ‘IBMPopSim’
October 15, 2024

Type Package

Title Individual Based Model Population Simulation

Version 1.1.0

Date 2024-10-10

Maintainer Daphné Giorgi <daphne.giorgi@sorbonne-universite.fr>

Description
Simulation of the random evolution of heterogeneous populations using stochastic Individual-
Based Models (IBMs) <doi:10.48550/arXiv.2303.06183>.
The package enables users to simulate population evolution, in which individuals are character-
ized by their age and some characteristics, and the population is modified by differ-
ent types of events, including births/arrivals, death/exit events, or changes of characteris-
tics. The frequency at which an event can occur to an individual can depend on their age and char-
acteristics, but also on the characteristics of other individuals (interactions).
Such models have a wide range of applications. For instance, IBMs can be used for simulat-
ing the evolution of a heterogeneous insurance portfolio with selection or for validating mortal-
ity forecasts.
This package overcomes the limitations of time-consuming IBMs simulations by implement-
ing new efficient algorithms based on thinning methods, which are compiled us-
ing the 'Rcpp' package while providing a user-friendly interface.

URL https://github.com/DaphneGiorgi/IBMPopSim,

https://DaphneGiorgi.github.io/IBMPopSim/

BugReports https://github.com/DaphneGiorgi/IBMPopSim/issues

License MIT + file LICENSE

Depends R (>= 3.5.0)

Imports Rcpp (>= 0.12), checkmate, stats, readr, rlang, dplyr (>=
0.8.0), ggplot2

Suggests RcppArmadillo, knitr, rmarkdown, bookdown, ggfortify, magick,
colorspace, gganimate, gridExtra

LinkingTo Rcpp

LazyData true

NeedsCompilation yes

1

https://doi.org/10.48550/arXiv.2303.06183
https://github.com/DaphneGiorgi/IBMPopSim
https://DaphneGiorgi.github.io/IBMPopSim/
https://github.com/DaphneGiorgi/IBMPopSim/issues

2 Contents

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

Author Daphné Giorgi [aut, cre],
Sarah Kaakai [aut],
Vincent Lemaire [aut]

Repository CRAN

Date/Publication 2024-10-15 14:20:07 UTC

Contents
IBMPopSim-package . 3
add_characteristic . 4
add_characteristic.population . 4
age_pyramid . 5
age_pyramid.population . 5
age_pyramids . 6
age_pyramids.population . 6
check_intensity_code . 7
check_interaction_code . 7
check_kernel_code . 8
compatibility_chars_events . 8
compatibility_pop_model . 9
death_table . 9
EWdata_hmd . 10
EW_popIMD_14 . 10
EW_pop_14 . 11
EW_pop_out . 11
exposure_table . 12
get_characteristics . 12
get_characteristics.population . 13
gompertz . 13
linfun . 14
max.stepfun . 15
merge_pop_withid . 15
mk_event_individual . 16
mk_event_inhomogeneous_poisson . 17
mk_event_interaction . 18
mk_event_poisson . 20
mk_model . 21
piecewise_x . 23
piecewise_xy . 24
plot.population . 25
plot.pyramid . 26
popsample . 27
popsample.pyramid . 28

IBMPopSim-package 3

popsim . 28
population . 30
population_alive . 31
population_alive.population . 32
print.event . 32
print.model . 33
print.population . 33
pyramid . 34
stepfun . 34
summary.event . 35
summary.logs . 35
summary.model . 36
summary.population . 36
summary.simulation_output . 37
toy_params . 37
weibull . 38

Index 39

IBMPopSim-package IBMPopSim: Individual Based Model Population Simulation

Description

Simulation of the random evolution of heterogeneous populations using stochastic Individual-Based
Models (IBMs) doi:10.48550/arXiv.2303.06183. The package enables users to simulate population
evolution, in which individuals are characterized by their age and some characteristics, and the
population is modified by different types of events, including births/arrivals, death/exit events, or
changes of characteristics. The frequency at which an event can occur to an individual can depend
on their age and characteristics, but also on the characteristics of other individuals (interactions).
Such models have a wide range of applications. For instance, IBMs can be used for simulating the
evolution of a heterogeneous insurance portfolio with selection or for validating mortality forecasts.
This package overcomes the limitations of time-consuming IBMs simulations by implementing new
efficient algorithms based on thinning methods, which are compiled using the ’Rcpp’ package while
providing a user-friendly interface.

Author(s)

Maintainer: Daphné Giorgi <daphne.giorgi@sorbonne-universite.fr>

Authors:

• Sarah Kaakai <sarah.kaakai@univ-lemans.fr>

• Vincent Lemaire <vincent.lemaire@sorbonne-universite.fr>

https://doi.org/10.48550/arXiv.2303.06183

4 add_characteristic.population

See Also

Useful links:

• https://github.com/DaphneGiorgi/IBMPopSim

• https://DaphneGiorgi.github.io/IBMPopSim/

• Report bugs at https://github.com/DaphneGiorgi/IBMPopSim/issues

add_characteristic Generic method for add_characteristic

Description

Generic method for add_characteristic

Usage

add_characteristic(x, name, value = NA)

Arguments

x An object.

name Name of the characteristic to add.

value Value of the characteristic. By default NA.

add_characteristic.population

Add characteristic to a population

Description

Add characteristic to a population

Usage

S3 method for class 'population'
add_characteristic(x, name, value = NA)

Arguments

x Object of population class representing a population.

name Name of the characteristic to add.

value Value of the characteristic. By default NA.

https://github.com/DaphneGiorgi/IBMPopSim
https://DaphneGiorgi.github.io/IBMPopSim/
https://github.com/DaphneGiorgi/IBMPopSim/issues

age_pyramid 5

age_pyramid Generic method for age_pyramid

Description

Generic method for age_pyramid

Usage

age_pyramid(object, time = 0, ages = c(0:110, Inf), ...)

Arguments

object Population.
time The age pyramid is computed at instant time. Must be a numeric greater than

or equal to 0.
ages (Optional) A numeric vector of distinct positive values composing age groups.

Must be in increasing order.
... Additional parameters

Value

An object of class pyramid containing the age pyramid of a population at instant time.

age_pyramid.population

Age pyramid from a population at a given time.

Description

Reduce a population containing all individuals (with some characteristics) to an age-groups data
frame (preserving characteristics). The function computes the number of individuals at time in
each age group [ages[i],ages[i+1][, for i in {1,...,N-1}.

Usage

S3 method for class 'population'
age_pyramid(object, time = 0, ages = c(0:110, Inf), ...)

Arguments

object Object of population class representing a population.
time The age pyramid is computed at instant time. Must be a numeric greater than

or equal to 0.
ages (Optional) A numeric vector of distinct positive values composing age groups.

Must be in increasing order.
... Additional parameters

6 age_pyramids.population

Value

An object of class pyramid containing the age pyramid of the given population at instant time.

See Also

age_pyramids.population

Examples

age_pyramid(population(EW_pop_14$sample), time = 0)

age_pyramid(population(EW_popIMD_14$sample), time = 0, ages = seq(0, 120, by=2))

age_pyramids Generic method for age_pyramids

Description

Generic method for age_pyramids

Usage

age_pyramids(object, time = 0, ages = c(0:110, Inf))

Arguments

object Population.

time The age pyramid is computed at instant time. Must be a numeric greater than
or equal to 0.

ages (Optional) A numeric vector of distinct positive values composing age groups.
Must be in increasing order.

age_pyramids.population

Age pyramid from a population data frame at some given times.

Description

Vectorial version in time of the function age_pyramid.population. Not compatible with IBMs
including swap events.

Usage

S3 method for class 'population'
age_pyramids(object, time = 0, ages = c(0:110, Inf))

check_intensity_code 7

Arguments

object Object of population class representing a population.

time The age pyramid is computed at instant time. Must be a numeric greater than
or equal to 0.

ages (Optional) A numeric vector of distinct positive values composing age groups.
Must be in increasing order.

Details

For convenience. This is a just a lapply call of age_pyramid.population on the vector time.

check_intensity_code Check the intensity code.

Description

Verifies that the intensity contains the string ’result’.

Usage

check_intensity_code(code)

Arguments

code String containing the intensity code.

check_interaction_code

Check the interaction code.

Description

Verifies that the interaction contains the string ’result’.

Usage

check_interaction_code(code)

Arguments

code String containing the interaction code.

8 compatibility_chars_events

check_kernel_code Check the kernel code.

Description

Verifies the kernel code.

Usage

check_kernel_code(code)

Arguments

code String containing the kernel code.

compatibility_chars_events

Check characteristics-events compatibility

Description

A function to check the compatibility between characteristics and events

Usage

compatibility_chars_events(characteristics, events)

Arguments

characteristics

List of characteristics

events List of events

compatibility_pop_model 9

compatibility_pop_model

Check population-model compatibility

Description

A function to check the compatibility between a population and a model

Usage

compatibility_pop_model(pop, model)

Arguments

pop An object of class population
model An Individual Based Model created with the mk_model function

death_table Death table

Description

Creates a death table from a population object. For each i=1..N-1 and j=1..M, the number of in-
dividuals with age at last birthday in [ages[i],ages[i+1]) and died in [times[j],times[j+1])
is computed.

Usage

death_table(pop, ages, period)

Arguments

pop Object of class population.
ages A vector of size N composed of age groups.
period A vector of size M composed of time intervals.

Details

The function computes the number of death in each time interval [times[j],times[j+1]), j=1..M.

Value

A death table matrix.

Examples

dth_table <- death_table(population(EW_pop_out), 0:101, 0:11)

10 EW_popIMD_14

EWdata_hmd England and Wale mortality data (source: Human Mortality
Database)

Description

Obtained with

EWdata_hmd <- hmd.mx(country = "GBRTENW", username = ... , password = ...,label = "England
and Wales")

Usage

EWdata_hmd

Format

An object of class demogdata of length 7.

EW_popIMD_14 England and Wales (EW) 2014 population and death rates by Index of
Multiple Deprivation (IMD).

Description

EW population, death rates by age, gender and IMD for year 2014 (Source: Office for National
Statistics, reference number 006518).

Usage

EW_popIMD_14

Format

A list containing:

age_pyramid Data frame containing EW age pyramid for year 2014, by gender, IMD and single
year of age (0-115).
Individuals in the age class 90+ are distributed in the single year of age classes as in the EW
population.

death_rates List containing 4 fields:

male Male death rates data frame, by IMD and single year of age (0-90+).
female Female death rates dataframe, by IMD and single year of age (0-90+).

sample Population dataframe composed of 100 000 individuals, sampled from age_pyramid.

EW_pop_14 11

EW_pop_14 England and Wales (EW) 2014 population, death and birth rates.

Description

EW 2014 population and death rates by age and gender (Source: Office for National Statistics,
reference number 006518).

Female birth rates by age of the mother (Source: Office for National Statistics birth summary ta-
bles).

Usage

EW_pop_14

Format

A list containing:

age_pyramid Data frame containing EW age pyramid for year 2014, by gender and single year of
age (0-115).

rates A list containing three data frames:

birth Birth rates data frame, by age of mother and 5 years age groups.
death_male Male death rates data frame, by single year of age (0-90+).
death_female Female death rates dataframe, by single year of age (0-90+).

sample Population dataframe composed of 100 000 individuals, sampled from age_pyramid.

EW_pop_out Example of "human population" after 100 years of simulation.

Description

Example of "human population" data frame after 100 years of simulation, based on a sample of
England and Wales 2014 population and demographic rates.

Usage

EW_pop_out

Format

Data frame containing a population structured by age and gender, simulated with an initial popula-
tion of 100 000 individuals sampled from EW_pop_14$age_pyramid over 100 years, with birth and
death events.

12 get_characteristics

exposure_table Exposure table

Description

Returns the Central Exposure-to-Risk for given ages groups and time period. The central Exposure-
to-risk is computed as the sum of the time spent by individuals in a given age group over a given
period, where age is the age at last birthday.

Usage

exposure_table(pop, ages, period)

Arguments

pop Object of class population.
ages A vector of size N composed of age groups.
period A vector of size M composed of time intervals.

Details

The function computes the central exposure-to-risk in each time interval [t[j],t[j+1]), j=1..M,
and age groups.

Value

An exposure matrix

Examples

ex_table <- exposure_table(population(EW_pop_out),0:101,0:11)

get_characteristics Generic method for get_characteristics

Description

Generic method for get_characteristics

Usage

get_characteristics(object, ...)

Arguments

object An object.
... Additional parameters.

get_characteristics.population 13

get_characteristics.population

Returns names and C types of the characteristics.

Description

Returns names and C types of the characteristics (other than birth and death) of the individuals in a
population, from a population data frame.

Usage

S3 method for class 'population'
get_characteristics(object, ...)

Arguments

object Object of population class representing a population.

... additional arguments.

Value

Named vector composed of characteristics names and C types. If the population has no character-
istics, which means that it has only the birth and death columns, this returns NULL.

Examples

get_characteristics(population(EW_pop_14$sample))

gompertz Gompertz–Makeham intensity function.

Description

The intensity function (or hazard function) for the Gompertz-Makeham law of mortality distribution
is defined as

h(x) = αeβx + λ

with α, β, λ ∈ R+.

Usage

gompertz(alpha, beta, lambda = 0)

14 linfun

Arguments

alpha Non-negative real parameter.

beta Non-negative real parameter.

lambda Non-negative real parameter.

Details

A C++ version of this function is available. See vignette('IBMPopSim_cpp') for more details.

Value

Function which associates x to αexp(βx) + λ.

See Also

https://en.wikipedia.org/wiki/Gompertz%E2%80%93Makeham_law_of_mortality

linfun Linear interpolation function.

Description

Return a function performing the linear interpolation.

Usage

linfun(x, y, yleft = y[1], yright = y[length(y)])

Arguments

x, y Numeric vectors giving the coordinates of the points to be interpolated.

yleft The value to be returned when input x values are less than min(x).

yright The value to be returned when input x values are greater than max(x).

Details

A C++ version of this function is available. See vignette('IBMPopSim_cpp') for more details.

Value

Objet of class linfun and function which is an approxfun function with method = 'linear'.

https://en.wikipedia.org/wiki/Gompertz%E2%80%93Makeham_law_of_mortality

max.stepfun 15

max.stepfun Returns the maximum of a function of class stepfun.

Description

Returns the maximum of a function of class stepfun.

Usage

S3 method for class 'stepfun'
max(..., na.rm = FALSE)

Arguments

... argument of class stepfun

na.rm a logical indicating whether missing values should be removed

Value

The maximum of the step function.

merge_pop_withid A function returning a merged dataframe from a list of population
dataframes with id.

Description

A function returning a merged dataframe from a list of population dataframes with id.

Usage

merge_pop_withid(pop_df_list, chars_tracked = NULL)

Arguments

pop_df_list A list of population dataframe where the first three columns of each dataframe
are id, birth and death.

chars_tracked A vector of characteristics to be tracked over time.

Value

A dataframe composed of all individuals with their characteristics at each simulation time.

16 mk_event_individual

mk_event_individual Creating an event with intensity of class individual

Description

Creates an event with intensity of class individual (without interactions). When the event occurs,
something happens to an individual I in the population. The created event must be used with
mk_model.

Usage

mk_event_individual(type, name, intensity_code, kernel_code = "")

Arguments

type Must be one of 'birth', 'death', 'entry', 'exit', 'swap' or 'custom'. See
details.

name (Optional) If not specified, the name given to the event is its type.

intensity_code String containing some C++ code describing the intensity function. See details.

kernel_code String containing some C++ code describing the event action. Optional for
'birth', 'death' and 'exit' events. See details.

Details

The type argument is one of the following

’birth’ By default, a new individual newI is created, with the same characteristics of the parent I
and birth date equal to the current time. Optional code can be precised in kernel_code.

’death’ By default, the individual I dies. Optional code can be precised in kernel_code.

’entry’ A new individual newI is added to the population, and its characteristics have to be defined
by the user in the entry kernel_code.

’exit’ An individual I exits from the population. Optional code can be precised in kernel_code.

’swap’ The user can change the characteristics of the selected individual I. This requires kernel_code.

’custom’ None of the above types, the user defines kernel_code that can act on the selected
individual I and on the population pop.

The intensity_code argument is a string containing some C++ code describing the event intensity
for individual I at time t. The intensity value must be stored in the variable result. Some of
available variables in the C++ code are: t (the current time), I (the current individual selected for
the event), the name of the model parameters (some variables, or functions, see mk_model). See
vignette('IBMPopSim_Cpp') for more details.

The kernel_code argument is a string containing some C++ code which describing the action of
the event. Some of available variables in the C++ code are: t (the current time), pop (the current
population), I (the current individual selected for the event), newI (the new individual if 'birth'
or 'entry' event), the name of the model parameters (some variables, or functions, see mk_model).
See vignette('IBMPopSim') for more details.

mk_event_inhomogeneous_poisson 17

Value

An S3 object of class event of type individual.

See Also

mk_model, mk_event_poisson, mk_event_inhomogeneous_poisson, and mk_event_interaction.

Examples

params <- list("p_male"= 0.51,
"birth_rate" = stepfun(c(15,40), c(0,0.05,0)),
"death_rate" = gompertz(0.008, 0.02))

death_event <- mk_event_individual(type = "death",
name = "my_death_event",
intensity_code = "result = death_rate(age(I,t));")

birth_event <- mk_event_individual(type = "birth",
intensity_code = "if (I.male) result = 0;

else result = birth_rate(age(I,t));",
kernel_code = "newI.male = CUnif(0, 1) < p_male;")

mk_event_inhomogeneous_poisson

Creating inhomogeneous Poisson class event

Description

The function mk_event_inhomogeneous_poisson is used to create an event with intensity type
inhomogeneous Poisson (time dependent intensity which does not depend on population). When the
event occurs, something happens in the population. The created event must be used with mk_model.

Usage

mk_event_inhomogeneous_poisson(type, name, intensity_code, kernel_code = "")

Arguments

type Must be one of 'birth', 'death', 'entry', 'exit', 'swap' or 'custom'. See
details.

name (Optional) If not specified, the name given to the event is its type.

intensity_code String containing some C++ code describing the intensity function. See details.

kernel_code String containing some C++ code describing the event action. Optional for
'birth', 'death' and 'exit' events. See details.

18 mk_event_interaction

Details

The type argument is one of the following

’birth’ By default, a new individual newI is created, with the same characteristics of the parent I
and birth date equal to the current time. Optional code can be precised in kernel_code.

’death’ By default, the individual I dies. Optional code can be precised in kernel_code.

’entry’ A new individual newI is added to the population, and its characteristics have to be defined
by the user in the entry kernel_code.

’exit’ An individual I exits from the population. Optional code can be precised in kernel_code.

’swap’ The user can change the characteristics of the selected individual I. This requires kernel_code.

’custom’ None of the above types, the user defines kernel_code that can act on the selected
individual I and on the population pop.

The intensity_code argument is a string containing some C++ code describing the event intensity
for individual I at time t. The intensity value must be stored in the variable result. Some of
available variables in the C++ code are: t (the current time), I (the current individual selected for
the event), the name of the model parameters (some variables, or functions, see mk_model). See
vignette('IBMPopSim_Cpp') for more details.

The kernel_code argument is a string containing some C++ code which describing the action of
the event. Some of available variables in the C++ code are: t (the current time), pop (the current
population), I (the current individual selected for the event), newI (the new individual if 'birth'
or 'entry' event), the name of the model parameters (some variables, or functions, see mk_model).
See vignette('IBMPopSim') for more details.

Value

An S3 object of class event of type inhomogeneous Poisson.

See Also

mk_model, mk_event_poisson, mk_event_individual, mk_event_interaction.

mk_event_interaction Creating an event with intensity of type interaction

Description

Creates an event whose intensity depends on an individual and interactions with the population.
When the event occurs, something happens to an individual I in the population. The intensity of
the event can depend on time, the characteristics of I and other individuals in the population, and
can be written as

d(I, t, pop) =
∑

J∈pop

U(I, J, t),

where U is called the interaction function. The created event must be used with mk_model.

mk_event_interaction 19

Usage

mk_event_interaction(
type,
name,
interaction_code,
kernel_code = "",
interaction_type = "random"

)

Arguments

type Must be one of 'birth', 'death', 'entry', 'exit', 'swap' or 'custom'. See
details.

name (Optional) If not specified, the name given to the event is its type.
interaction_code

String containing some C++ code describing the interaction function. See de-
tails.

kernel_code String containing some C++ code describing the event action. Optional for
'birth', 'death' and 'exit' events. See details.

interaction_type

(Optional) Either 'random' or 'full'. By default 'random' which is faster
than 'full'.

Details

The type argument is one of the following

’birth’ By default, a new individual newI is created, with the same characteristics of the parent I
and birth date equal to the current time. Optional code can be precised in kernel_code.

’death’ By default, the individual I dies. Optional code can be precised in kernel_code.
’entry’ A new individual newI is added to the population, and its characteristics have to be defined

by the user in the entry kernel_code.
’exit’ An individual I exits from the population. Optional code can be precised in kernel_code.
’swap’ The user can change the characteristics of the selected individual I. This requires kernel_code.
’custom’ None of the above types, the user defines kernel_code that can act on the selected

individual I and on the population pop.

The interaction_code argument is a string containing some C++ code describing the event inter-
action function U at time t. The interaction value must be stored in the variable result. Some
of available variables in the C++ code are: t (the current time), I (the current individual selected
for the event), J (another individual if interaction_type is 'random'), the name of the model
parameters (some variables, or functions, see mk_model). See vignette('IBMPopSim_Cpp') for
more details.

The kernel_code argument is a string containing some C++ code which describing the action of
the event. Some of available variables in the C++ code are: t (the current time), pop (the current
population), I (the current individual selected for the event), newI (the new individual if 'birth'
or 'entry' event), the name of the model parameters (some variables, or functions, see mk_model).
See vignette('IBMPopSim') for more details.

20 mk_event_poisson

Value

An S3 object of class event of type interaction.

See Also

mk_model, mk_event_poisson, mk_event_inhomogeneous_poisson, mk_event_individual.

Examples

death_interaction_code<- " result = max(J.size -I.size,0);"
event <- mk_event_interaction(type="death",

interaction_code = death_interaction_code)

mk_event_poisson Creating Poisson class event

Description

The function mk_event_poisson is used to create an event with intensity of type Poisson (constant
intensity which does not depend on population or time). When the event occurs, something happens
in the population. The created event must be used with mk_model.

Usage

mk_event_poisson(type, name, intensity, kernel_code = "")

Arguments

type Must be one of 'birth', 'death', 'entry', 'exit', 'swap' or 'custom'. See
details.

name (Optional) If not specified, the name given to the event is its type.

intensity String containing some constant positive value, or name of a parameter which is
a constant positive value.

kernel_code String containing some C++ code describing the event action. Optional for
'birth', 'death' and 'exit' events. See details.

Details

The type argument is one of the following

’birth’ By default, a new individual newI is created, with the same characteristics of the parent I
and birth date equal to the current time. Optional code can be precised in kernel_code.

’death’ By default, the individual I dies. Optional code can be precised in kernel_code.

’entry’ A new individual newI is added to the population, and its characteristics have to be defined
by the user in the entry kernel_code.

mk_model 21

’exit’ An individual I exits from the population. Optional code can be precised in kernel_code.

’swap’ The user can change the characteristics of the selected individual I. This requires kernel_code.

’custom’ None of the above types, the user defines kernel_code that can act on the selected
individual I and on the population pop.

The kernel_code argument is a string containing some C++ code which describing the action of
the event. Some of available variables in the C++ code are: t (the current time), pop (the current
population), I (the current individual selected for the event), newI (the new individual if 'birth'
or 'entry' event), the name of the model parameters (some variables, or functions, see mk_model).
See vignette('IBMPopSim') for more details.

Value

An S3 object of class event of type Poisson.

See Also

mk_model, mk_event_inhomogeneous_poisson, mk_event_individual, mk_event_interaction.

Examples

birth <- mk_event_poisson('birth', intensity = 10)

params <- list(beta = 10)
death <- mk_event_poisson('death', intensity = 'beta') # name of one parameter
mk_model(events = list(birth, death), parameters = params)

mk_model Creates a model for IBMPopSim.

Description

This function creates an Individual Based Model describing the population, events which can occur
in the population, and the model parameters.

Usage

mk_model(
characteristics = NULL,
events,
parameters = NULL,
with_compilation = TRUE

)

22 mk_model

Arguments

characteristics

List containing names and types of characteristics of individuals in the popula-
tion. See get_characteristics.

events List of events in the model. See mk_event_poisson, mk_event_inhomogeneous_poisson,
mk_event_individual, and mk_event_interaction.

parameters Model parameters. A list of parameters of the model.
with_compilation

(Optional) Logical parameter, TRUE by default. If FALSE the sourceCpp function
is not called.

Details

It builds the C++ model code and produces the function popsim_cpp which will be used for simu-
lating the model. The function used to simulate a population from a model is popsim.

Value

model List containing the built model :

• individual_type: Names and types (R and C++) of characteristics.
• parameters_types: Names and types (R and C++) of model parameters.
• events: List of events.
• cpp_code: Output of C++ compilation.

See Also

popsim, mk_event_poisson, mk_event_individual, mk_event_interaction.

Examples

params <- list("p_male"= 0.51,
"birth_rate" = stepfun(c(15,40),c(0,0.05,0)),
"death_rate" = gompertz(0.008,0.02))

death_event <- mk_event_individual(type = "death",
intensity_code = "result = death_rate(age(I,t));")

birth_event <- mk_event_individual(type = 'birth',
intensity_code = "if (I.male) result = 0;

else result=birth_rate(age(I,t));",
kernel_code = "newI.male = CUnif(0, 1) < p_male;")

model <- mk_model(characteristics = get_characteristics(population(EW_pop_14$sample)),
events = list(death_event,birth_event),
parameters = params)

summary(model)

piecewise_x 23

piecewise_x Piecewise real function.

Description

Given the vectors (breaks[1],...,breaks[n]) and the list of IBMPopSim compatible functions
funs = (f[0],f[1],...,f[n]) (one value more!), piecewise_x(breaks, funs) returns the
function

f(x) = f0(x)1x≤breaks[1] +

n−1∑
k=1

fk(x)1[breaksk,breaksk+1)(x) + fn(x)1x≥breaks[n]

Usage

piecewise_x(breaks, funs)

Arguments

breaks Numeric vector giving the breaks of functions given in funs. Must be sorted
with unique values.

funs List of functions.

Details

A C++ version of this function is available. See vignette('IBMPopSim_cpp') for more details.

Value

Piecewise function built with the given intervals and functions.

Examples

dr <- with(EW_pop_14$rates,
stepfun(x=death_male[,"age"], y=c(0,death_male[,"value"])))

before age 80 the stepfun and after age 80 the gompertz function
f <- piecewise_x(80, list(dr, gompertz(0.00006, 0.085)))
x <- seq(40:120)
plot(x, sapply(x, f))

24 piecewise_xy

piecewise_xy Piecewise real function of two variables.

Description

Given the vectors (breaks[1],...,breaks[n]) and the list of IBMPopSim compatible functions
funs = (f[0],f[1],...,f[n]) (one value more!), piecewise_xy(breaks, funs) returns the
function

f(x, y) = f0(x)1y≤breaks[1] +

n−1∑
k=1

fk(x)1[breaksk,breaksk+1)(y) + fn(x)1y≥breaks[n]

Usage

piecewise_xy(breaks, funs)

Arguments

breaks Numeric vector giving the breaks of functions given in funs. Must be sorted
with unique values.

funs List of functions.

Details

A C++ version of this function is available. See vignette('IBMPopSim_cpp') for more details.

Value

Piecewise bivariate function built with the given intervals and functions.

Examples

time_dep_function <- piecewise_xy(c(5),
list(gompertz(0.1, 0.005), gompertz(0.08, 0.005)))

time_dep_function(0, 65) # death intensity at time 0 and age 65.

plot.population 25

plot.population Plot the age pyramid of a population data frame (at a given time).

Description

Plot an age pyramid from age pyramid data frame with possibly several characteristics.

Usage

S3 method for class 'population'
plot(
x,
group_colors = NULL,
group_legend = "Group",
age_breaks = NULL,
value_breaks = NULL,
...

)

Arguments

x Object of class population.

group_colors (Optional) Named character vector.

group_legend (Optional) Legend title name. By default set to "Group".

age_breaks (Optional) An ordered vector of indexes of vector unique(pyr$age) used for
breaks for the axis of ages.

value_breaks (Optional) Breaks for the axis of values.

... Additional arguments

Value

Plot of age pyramid.

See Also

plot.pyramid, age_pyramid.population.

Examples

plot(population(EW_pop_14$sample), time = 0)

26 plot.pyramid

plot.pyramid Plot an age pyramid.

Description

Plot an age pyramid from age pyramid data frame with possibly several characteristics.

Usage

S3 method for class 'pyramid'
plot(
x,
group_colors = NULL,
group_legend = "Group",
age_breaks = NULL,
value_breaks = NULL,
...

)

Arguments

x Object of class pyramid.
(Optional) For plotting an age pyramid composed of several subgroups, the pop-
ulation data frame must contain a column named group_name.

group_colors (Optional) Named character vector.

group_legend (Optional) Legend title name. By default set to "Group".

age_breaks (Optional) An ordered vector of indexes of vector unique(pyr$age) used for
breaks for the axis of ages.

value_breaks (Optional) Breaks for the axis of values.

... Additional parameters

Value

Plot of the age pyramid.

See Also

plot.population

Examples

plot.pyramid(subset(pyramid(EW_pop_14$age_pyramid), as.numeric(age) <= 110))

library(colorspace)
pyr_IMD <- subset(pyramid(EW_popIMD_14$age_pyramid), as.numeric(age) <= 110)

popsample 27

pyr_IMD$group_name <- with(pyr_IMD, ifelse(male, paste('Males - IMD', IMD),
paste('Females - IMD', IMD)))

colors <- c(sequential_hcl(n=5, palette = "Magenta"),
sequential_hcl(n=5, palette = "Teal"))

names(colors) <- c(paste('Females - IMD', 1:5),
paste('Males - IMD', 1:5))

note that you must have setequal(names(colors), pyr_IMD$group_name) is TRUE
plot.pyramid(pyr_IMD, colors)

age pyramids at different times
library(gganimate)
pyrs = age_pyramids(population(EW_popIMD_14$sample), time = 1:10)
plot.pyramid(pyrs) + transition_time(time) + labs(title = "Time: {frame_time}")

popsample Generic method for popsample

Description

Generic method for popsample

Usage

popsample(age_pyramid, size, age_max = 120, time = 0)

Arguments

age_pyramid Age pyramid.

size A non-negative integer giving the number of individuals in population.

age_max (Optional) A non-negative numeric which replace (if exists) the Inf in age_pyramid.population.

time (Optional) The age pyramid is computed at instant time. Must be a numeric
greater than or equal to 0.

Value

Object of population class representing a data frame of size size containing a population of
individuals.

28 popsim

popsample.pyramid Sample a population from an age pyramid (at a given time).

Description

Sample a population from an age pyramid (at a given time).

Usage

S3 method for class 'pyramid'
popsample(age_pyramid, size, age_max = 120, time = 0)

Arguments

age_pyramid Object of pyramid class.

size A non-negative integer giving the number of individuals in population.

age_max (Optional) A non-negative numeric which replace (if exists) the Inf in age_pyramid.population.

time (Optional) The age pyramid is computed at instant time. Must be a numeric
greater than or equal to 0.

Value

Object of population class representing a data frame of size size containing a population of
individuals.

Examples

pop_sample_1e4 <- popsample(pyramid(EW_pop_14$age_pyramid), size = 1e4)

popsim Simulation of a model.

Description

This function simulates the random evolution of an IBM.

popsim 29

Usage

popsim(
model,
initial_population,
events_bounds,
parameters = NULL,
age_max = Inf,
time,
multithreading = FALSE,
num_threads = NULL,
clean_step = NULL,
clean_ratio = 0.1,
seed = NULL,
verbose = FALSE

)

Arguments

model Model resulting from a call to the function mk_model.
initial_population

Object of population class representing the initial population.

events_bounds Named vector of events bounds, with names corresponding to events names.

parameters List of model parameters.

age_max Maximum age of individuals in the population (Inf by default).

time Final time (Numeric). Can be of length 1 or a vector of simulation discretized
times.

multithreading Logical for multithread activation, FALSE by default. Should be only activated
for IBM simulation with no interactions.

num_threads (Optional) Number of threads used for multithreading. Set by default to the
number of concurrent threads supported by the available hardware implementa-
tion.

clean_step (Optional) Optional parameter for improving simulation time. Time step for
removing dead (or exited) individuals from the population. By default, equal to
age_max.

clean_ratio (Optional) Optional parameter for improving simulation time. 0.1 by default.

seed (Optional) Random generator seed, random by default.

verbose (Optional) Activate verbose output, FALSE by default.

Value

List composed of

arguments Simulation inputs (initial population, parameters value, multithreading...)

logs Simulation logs (algorithm duration, accepted/rejected events...).

30 population

population If time is of length 1, population is an object of type population containing of all
individuals who lived in the population in the time interval [0,time]. If time is a vector
(time[1], ..., time[n]), population is a list of n objects of type population, each repre-
senting the state of the population at time time[i], for i = 1,..., n.

See Also

mk_model.

Examples

init_size <- 100000
pop_df <- data.frame(birth = rep(0, init_size), death = NA)
pop <- population(pop_df)

birth = mk_event_poisson(type = 'birth', intensity = 'lambda')
death = mk_event_poisson(type = 'death', intensity = 'mu')
params = list('lambda' = 100, 'mu' = 100)
birth_death <- mk_model(events = list(birth, death),

parameters = params)

sim_out <- popsim(model = birth_death,
initial_population = pop,
events_bounds = c('birth' = params$lambda, 'death' = params$mu),
parameters = params,
time = 10)

population Class population

Description

Data frame containing a population, with at least a birth and a death column, and eventually some
other characteristics

Usage

population(x, entry = FALSE, out = FALSE, id = FALSE)

Arguments

x Data frame or list of data frames, containing at least a birth and a death column

entry Boolean flag. By default set to FALSE. If set to TRUE the population must
contain a column of numerical values named "entry", If the column doesn’t exist
a column named "entry" is added to the data frame with all values set to NA.

out Boolean flag. By default set to FALSE. If set to TRUE the population must
contain a column of boolean values named "out", If the column doesn’t exist a
column named "out" is added to the data frame with all the values set to FALSE.

population_alive 31

id Boolean flag. By default set to FALSE. If set to TRUE the population must con-
tain a column of integer distinct values named "id". If the column doesn’t exist
a column named "id" is added to the data frame with values seq(1, nrow(x)).

Value

Given data frame augmented of the "population" class. If a list of data frames is given, the column
names should contain the string "id" and the list corresponds to the evolution of a population at
different times. The constructor then returns the last population observed in the list (corresponding
to the final state of the population).

population_alive Generic method for population_alive

Description

Generic method for population_alive

Usage

population_alive(object, t, a1 = 0, a2 = Inf, ...)

Arguments

object A population.

t A numeric indicating the time at which alive individuals are observed.

a1 0 by default. Lower bound for age.

a2 Inf by default. Upper bound for age.

... Additional params.

Value

All individuals alive at time t and of age in [a1,a2).

32 print.event

population_alive.population

Returns a population of individuals alive.

Description

Returns a population of individuals alive.

Usage

S3 method for class 'population'
population_alive(object, t, a1 = 0, a2 = Inf, ...)

Arguments

object A population data frame containing at least a column birth and death.

t A numeric indicating the time.

a1 0 by default. All individuals of age over a1 at t are selected.

a2 Inf by default. All individuals of age below a2 at t are selected.

... Additional params.

Value

The function returns a population data frame containing all individuals alive at time t and of age in
[a1,a2).

print.event Print Event

Description

print method for class "event" giving a short description of an event.

Usage

S3 method for class 'event'
print(x, ...)

Arguments

x Argument of class event.

... Additional arguments affecting the summary produced.

print.model 33

print.model Printing of a model

Description

print method for class model.

Usage

S3 method for class 'model'
print(x, ...)

Arguments

x argument of class model

... additional arguments affecting the summary produced.

print.population Printing population

Description

Print a population

Usage

S3 method for class 'population'
print(x, ...)

Arguments

x Object of population class representing a population.

... Additional arguments

Value

Print the population

34 stepfun

pyramid Class pyramid

Description

Data frame containing an age pyramid, with at least an age and a value column, and eventually
some other characteristics. If a male column is present, it must be a logical vector, if a group
column is present, it must be a vector of type character.

Usage

pyramid(x)

Arguments

x Data frame, containing at least an age and a value column

Value

Given data frame augmented of the "age_pyramid" class.

stepfun Step Function.

Description

Given the vectors (x[1],...,x[n]) and (y[0],y[1],...,y[n]) (one value more!), stepfun(x,
y) returns an interpolating step function, say f_n. This is the cadlag version (right = FALSE) of
the stepfun function from package stats. The step function value f_n(t) equals to the constant
y[k-1] for t in [x[k-1], x[k]) so that

fn(t) =
n+1∑
k=1

yk−11[xk−1,xk)(t),

withx0 = −∞ and xn+1 = +∞.

Usage

stepfun(x, y)

Arguments

x Numeric vector giving the knots or jump locations of the step function. Must be
sorted with unique values.

y Numeric vector one longer than x, giving the heights of the function values
between the cx values.

summary.event 35

Details

This function is defined for documentation purposes only. See stepfun and approxfun.

A C++ version of this function is available. See vignette('IBMPopSim_cpp') for more details.

Value

Objet of class stepfun with option right = FALSE (cadlag function).

See Also

plot.stepfun and max.stepfun.

summary.event Summarizing an event

Description

summary method for class event giving a detailed description of an event.

Usage

S3 method for class 'event'
summary(object, ...)

Arguments

object Argument of class event.

... Additional arguments affecting the summary produced.

summary.logs Summary logs

Description

Summary of the logs of a simulation

Usage

S3 method for class 'logs'
summary(object, ...)

Arguments

object Logs of the output of a call to popsim function

... Additional arguments affecting the summary produced

36 summary.population

Value

Print column names and number of individuals

summary.model Summary of a model

Description

summary method for class model.

Usage

S3 method for class 'model'
summary(object, ...)

Arguments

object argument of class model

... additional arguments affecting the summary produced.

summary.population Summary population

Description

Summary of a population with column names and number of individuals

Usage

S3 method for class 'population'
summary(object, ...)

Arguments

object Object of population class representing a population.

... Additional arguments affecting the summary produced

Value

Print column names and number of individuals

summary.simulation_output 37

summary.simulation_output

Summary simulation output

Description

Summary of a simulation output

Usage

S3 method for class 'simulation_output'
summary(object, ...)

Arguments

object Output of a call to popsim function

... Additional arguments affecting the summary produced

Value

Summary of population(s) and the logs

toy_params Toy parameters for IBMPopSim-human_popIMD vignette example.

Description

Toy parameters for IBMPopSim-human_popIMD vignette example.

Usage

toy_params

Format

A list containing:

birth A list of 3 numeric vectors (alpha, beta, TFR_weights) for creating birth intensity with the
Weibull probability density function.

swap A List of one numeric vector and two data frames (ages, intensities and distribution)
for creating the swap intensity and kernel functions.

38 weibull

weibull Weibull function.

Description

The Weibull (density) function is defined as

h(x) =
(k
λ

)(x
λ

)k−1
e−(x/λ)k

with k, λ ∈ (0,+∞).

Usage

weibull(k, lambda = 1)

Arguments

k Shape parameter, a positive real number.

lambda Scale parameter, a positive real number, defaults to 1.

Details

A C++ version of this function is available. See vignette('IBMPopSim_cpp') for more details.

Value

The Weibull density function dweibull with shape parameter k and scale parameter lambda, see
dweibull.

See Also

https://en.wikipedia.org/wiki/Weibull_distribution

https://en.wikipedia.org/wiki/Weibull_distribution

Index

∗ datasets
EW_pop_14, 11
EW_pop_out, 11
EW_popIMD_14, 10
EWdata_hmd, 10
toy_params, 37

add_characteristic, 4
add_characteristic.population, 4
age_pyramid, 5
age_pyramid.population, 5, 6, 25, 27, 28
age_pyramids, 6
age_pyramids.population, 6, 6
approxfun, 14, 35

check_intensity_code, 7
check_interaction_code, 7
check_kernel_code, 8
compatibility_chars_events, 8
compatibility_pop_model, 9

death_table, 9
dweibull, 38

EW_pop_14, 11
EW_pop_out, 11
EW_popIMD_14, 10
EWdata_hmd, 10
exposure_table, 12

get_characteristics, 12, 22
get_characteristics.population, 13
gompertz, 13

IBMPopSim (IBMPopSim-package), 3
IBMPopSim-package, 3

linfun, 14

max.stepfun, 15, 35
merge_pop_withid, 15

mk_event_individual, 16, 18, 20–22
mk_event_inhomogeneous_poisson, 17, 17,

20–22
mk_event_interaction, 17, 18, 18, 21, 22
mk_event_poisson, 17, 18, 20, 20, 22
mk_model, 9, 16–21, 21, 29, 30

piecewise_x, 23
piecewise_xy, 24
plot.population, 25, 26
plot.pyramid, 25, 26
plot.stepfun, 35
popsample, 27
popsample.pyramid, 28
popsim, 22, 28, 35, 37
population, 4, 5, 7, 9, 12, 13, 25, 27–30, 30,

33, 36
population_alive, 31
population_alive.population, 32
print.event, 32
print.model, 33
print.population, 33
pyramid, 5, 6, 26, 28, 34

stepfun, 34, 35
summary.event, 35
summary.logs, 35
summary.model, 36
summary.population, 36
summary.simulation_output, 37

toy_params, 37

weibull, 38

39

	IBMPopSim-package
	add_characteristic
	add_characteristic.population
	age_pyramid
	age_pyramid.population
	age_pyramids
	age_pyramids.population
	check_intensity_code
	check_interaction_code
	check_kernel_code
	compatibility_chars_events
	compatibility_pop_model
	death_table
	EWdata_hmd
	EW_popIMD_14
	EW_pop_14
	EW_pop_out
	exposure_table
	get_characteristics
	get_characteristics.population
	gompertz
	linfun
	max.stepfun
	merge_pop_withid
	mk_event_individual
	mk_event_inhomogeneous_poisson
	mk_event_interaction
	mk_event_poisson
	mk_model
	piecewise_x
	piecewise_xy
	plot.population
	plot.pyramid
	popsample
	popsample.pyramid
	popsim
	population
	population_alive
	population_alive.population
	print.event
	print.model
	print.population
	pyramid
	stepfun
	summary.event
	summary.logs
	summary.model
	summary.population
	summary.simulation_output
	toy_params
	weibull
	Index

