The SPDE model with transparent barriers

Elias T Krainski

October-2024

The transparent barrier model

This model considers an SPDE over a domain Ω which is partitioned into k subdomains Ω_d , $d \in \{1, \ldots, k\}$, where $\bigcup_{d=1}^k \Omega_d = \Omega$. A common marginal variance is assumed but the range can be particular to each Ω_d , r_d . From Bakka et al. (2019), the precision matrix is

$$\mathbf{Q} = \frac{1}{\sigma^2} \mathbf{R} \tilde{\mathbf{C}}^{-1} \mathbf{R} \text{ for } \mathbf{R}_r = \mathbf{C} + \frac{1}{8} \sum_{d=1}^k r_d^2 \mathbf{G}_d, \quad \tilde{\mathbf{C}}_r = \frac{\pi}{2} \sum_{d=1}^k r_d^2 \tilde{\mathbf{C}}_d$$

where σ^2 is the marginal variance. The Finite Element Method - FEM matrices: **C**, defined as

$$\mathbf{C}_{i,j} = \langle \psi_i, \psi_j \rangle = \int_{\Omega} \psi_i(\mathbf{s}) \psi_j(\mathbf{s}) \partial \mathbf{s},$$

computed over the whole domain, while \mathbf{G}_d and $\tilde{\mathbf{C}}_d$ are defined as a pair of matrices for each subdomain

$$(\mathbf{G}_d)_{i,j} = \langle \mathbf{1}_{\Omega_d} \nabla \psi_i, \nabla \psi_j \rangle = \int_{\Omega_d} \nabla \psi_i(\mathbf{s}) \nabla \psi_j(\mathbf{s}) \partial \mathbf{s} \text{ and } (\tilde{\mathbf{C}}_d)_{i,i} = \langle \mathbf{1}_{\Omega_d} \psi_i, \mathbf{1} \rangle = \int_{\Omega_d} \psi_i(\mathbf{s}) \partial \mathbf{s}.$$

In the case when $r = r_1 = r_2 = \ldots = r_k$ we have $\mathbf{R}_r = \mathbf{C} + \frac{r^2}{8}\mathbf{G}$ and $\tilde{\mathbf{C}}_r = \frac{\pi r^2}{2}\tilde{\mathbf{C}}$ giving

$$\mathbf{Q} = \frac{2}{\pi\sigma^2} \left(\frac{1}{r^2} \mathbf{C} \tilde{\mathbf{C}}^{-1} \mathbf{C} + \frac{1}{8} \mathbf{C} \tilde{\mathbf{C}}^{-1} \mathbf{G} + \frac{1}{8} \mathbf{G} \tilde{\mathbf{C}}^{-1} \mathbf{C} + \frac{r^2}{64} \mathbf{G} \tilde{\mathbf{C}}^{-1} \mathbf{G} \right)$$

which coincides with the stationary case in Lindgren and Rue (2015), when using $\tilde{\mathbf{C}}$ in place of \mathbf{C} .

Implementation

In practice we define r_d as $r_d = p_d r$, for known p_1, \ldots, p_k constants. This gives

$$\tilde{\mathbf{C}}_{r} = \frac{\pi r^{2}}{2} \sum_{d=1}^{k} p_{d}^{2} \tilde{\mathbf{C}}_{d} = \frac{\pi r^{2}}{2} \tilde{\mathbf{C}}_{p_{1},\dots,p_{k}} \text{ and } \frac{1}{8} \sum_{d=1}^{k} r_{d}^{2} \mathbf{G}_{d} = \frac{r^{2}}{8} \sum_{d=1}^{k} p_{d}^{2} \tilde{\mathbf{G}}_{d} = \frac{r^{2}}{8} \tilde{\mathbf{G}}_{p_{1},\dots,p_{k}}$$

where $\tilde{\mathbf{C}}_{p_1,\ldots,p_k}$ and $\tilde{\mathbf{G}}_{p_1,\ldots,p_k}$ are pre-computed.

References

- Bakka, H., J. Vanhatalo, J. Illian, D. Simpson, and H. Rue. 2019. "Non-Stationary Gaussian Models with Physical Barriers." Spatial Statistics 29 (March): 268–88. https://doi.org/https://doi.org/10.1016/j.spas ta.2019.01.002.
- Lindgren, Finn, and Havard Rue. 2015. "Bayesian Spatial Modelling with R-INLA." Journal of Statistical Software 63 (19): 1–25.