Package ‘PAutilities’

June 11, 2025

Type Package

Title Streamline Physical Activity Research
Version 1.2.1

Depends R (>=3.5.0)

Description Functions that support a broad range of common tasks in physical
activity research, including but not limited to creation of Bland-Altman
plots (<doi:10.1136/bmj.313.7049.106>), metabolic calculations such as basal
metabolic rate predictions (<https://europepmc.org/article/med/4044297/reloa>),
demographic calculations such as age-for-body-mass-index percentile
(<https://www.cdc.gov/growthcharts/cdc_charts.htm>), and analysis of bout
detection algorithm performance (<https://pubmed.ncbi.nlm.nih.gov/34258524/>).

License GPL-3
Encoding UTF-8
LazyData true

URL https://github.com/paulhibbing/PAutilities

BugReports https://github.com/paulhibbing/PAutilities/issues
RoxygenNote 7.2.3

Imports dplyr (>=0.7), equivalence, ggplot2 (>=2.2), graphics,
lazyeval (>= 0.2), lubridate (>= 1.7.4), magrittr (>= 1.5),
methods, reshape2, rlang (>= 0.3.1), stats, utils, Rcpp

Suggests testthat, knitr, rmarkdown, matchingMarkets (>= 1.0.1)
VignetteBuilder knitr

LinkingTo Rcpp

NeedsCompilation yes

Author Paul R. Hibbing [aut, cre],
Centers for Disease Control and Prevention [ctb]

Maintainer Paul R. Hibbing <paulhibbing@gmail.com>
Repository CRAN
Date/Publication 2025-06-11 15:30:11 UTC

https://doi.org/10.1136/bmj.313.7049.106
https://europepmc.org/article/med/4044297/reloa
https://www.cdc.gov/growthcharts/cdc_charts.htm
https://pubmed.ncbi.nlm.nih.gov/34258524/
https://github.com/paulhibbing/PAutilities
https://github.com/paulhibbing/PAutilities/issues

2 as

Contents
AS L e e e e e 2
ba_analysis 3
ba_plot e e e 3
bout_mvpa e e 5
evd_risK . .o 6
descriptiveso e 9
df_continuous e e e e e e e 10
df reorder e 10
epoch_length_sec 11
ex_data e 12
full_days e e 12
GELLAZE e e e e e e e e e e e 14
get_bmr . . .o 14
get_IndiCes e e e e e 16
GELINENSILY e e e e e e e e e e 17
get_kcal_vo2_conversion 18
GELICE .« . v v e it e e e e e e e e e e e e e e 19
INAEX_TUNS . . . o v v o o o e e e e e e e e 20
manage_procedure e e e e e e e e e 21
mean_Sdo e s 22
paired_equivalence_test.data.frame oL 23
PAutilities e e e e 25
plot.paired_equivalence L 25
PlOLSPULIOUS_CUIVE ottt e e 26
plottransition L. L. 27
residual_adjust L e e e 28
rmr_sliding e 29
rolling_groups 30
SPUIIOUS_CUIVE « « . v v v v e e e it e e e e e e e e e e e e e e e e 30
summaryTransition-class e 31
(ESL_CITOIS . . . v . . o o e e e e e e e e e e e e e e e 32
weight_status L e 33
WEIT_eqUAtION o v v ot e e e e e e e e e e e e e e e e e e 34

Index 35

as As("summaryTransition", "data.frame")
Description

As("summaryTransition", "data.frame")

As("summaryTransition", "list")

ba_analysis 3

ba_analysis Perform Bland-Altman analysis on a data frame

Description

Perform Bland-Altman analysis on a data frame

Usage

ba_analysis(df, x_var, y_var, regress_against = c("Y", "XY_mean"), ...)
Arguments

df the data frame on which to operate

x_var character. The column name of the X variable

y_var character. The column name of the Y variable (criterion measure, if applicable)

regress_against
character. One of "Y" (to regress bias against yvar) or "XY_mean"” (to regress
bias against rowMeans(x_var, y_var)).

optional arguments passed to data. frame, e.g. to give the output results a label

Value

A data frame that has various summaries (means, standard deviations, and missing data details) plus
mean bias (mean_bias column) and limits of agreement (lower_LOA and upper_LOA columns)

Examples
data(ex_data, package = "PAutilities")
ba_analysis(ex_data, "Axis1", "Vector.Magnitude”, "XY_mean”)
ba_analysis(
ex_data, "Axis1", "Vector.Magnitude”, "XY_mean”,
an_arbitrary_added_column = "Example of passing an extra column”
)
ba_plot Create a Bland-Altman plot
Description

Create a Bland-Altman plot

Usage

ba_plot(plotdata, x_var, y_var, x_name, y_name, shape = 16, ...)

4 ba_plot

Arguments
plotdata dataframe from which to build the plot
x_var character expression to evaluate for the x-axis
y_var character expression to evaluate for the y-axis
X_name axis label for the x-axis
y_hame axis label for the y-axis
shape numeric. The point shape to display.
further arguments passed to theme
Value

a Bland-Altman plot

References

Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two
methods of clinical measurement. lancet, 1(8476), 307-310.

See Also

ba_analysis

Examples

data(ex_data, package = "PAutilities")

Reduce the number of data points (for illustration purposes) by isolating
the 150 largest cases

illustration_threshold <-
quantile(ex_data$Axis1, probs = 1 - (150 / nrow(ex_data)))
ex_data <- ex_data[ex_data$Axis1 > illustration_threshold,]

Generate the plot

my_ba <- ba_plot(
ex_data,
"(Axis1 + Axis3) / 2",
"Axis1 - Axis3",
"mean(Axis1, Axis3)",
"Axis1 - Axis3”

)

my_ba

You can add to the plot as you would a normal ggplot object
my_ba +
ggplot2: :geom_text(
X = 2000, y = 9000, label = "A",

bout_mvpa 5

size = 8, fontface = "bold”, colour = "blue”

)

With caution, you can change some automatic options (e.g. color of
regression line) by overwriting in a new layer

my_ba + ggplot2::geom_smooth(method = "1m"”, se = FALSE, colour = "blue")

bout_mvpa Classify moderate-to-vigorous physical activity in bouts of a specific
minimum length

Description

Classify moderate-to-vigorous physical activity in bouts of a specific minimum length

Usage

bout_mvpa(

intensity,

var_type = c("METs", "Intensity"),

min_duration = 10,

termination = 3,

MoreArgs = list(breaks = c(-Inf, 1.51, 3, Inf), labels = c("SB", "LPA", "MVPA"), right
= FALSE),

timestamps = NULL,

output_var = c("is_MVPA", "bout_tracker")

)
Arguments
intensity a vector of intensity classifications to be re-classified according to the bout def-
inition
var_type character scalar indicating whether the intensity variable is a numeric vector
of metabolic equivalents, or a factor variable giving activity intensity classifica-
tion

min_duration numeric scalar: minimum duration of a qualifying bout, in minutes

termination numeric scalar: consecutive minutes of non-MVPA required to terminate the
bout
MoreArgs required arguments passed to cut

optional arguments passed to cut for converting METS to intensity classification

timestamps optional vector of POSIX-formatted timestamps. Must have same length as
intensity

output_var the output variable(s) to give

6 cvd_risk

Value

based on the setting of output_var, one or both of is_MVPA and bout_tracker will be returned,
the former being a vector of indicators (1 or 0) specifying whether a minute is part of a valid MVPA
bout, and the latter being a collapsed data frame giving only the valid bouts of MVPA and the
relevant information (i.e., duration of the bout, minutes of MVPA, and percentage of time spent in
MVPA within the bout). If both are selected, they are returned in a list.

Examples

data(ex_data, package = "PAutilities")
ex_data$DateTime <- as.POSIXct(ex_data$DateTime, "UTC")

Runs with a warning
bout_mvpa(ex_data$METs, "METs")

bout_mvpa(ex_data$METs, "METs”, timestamps = ex_data$DateTime)

Recommended usage

lapply(split(ex_data, strftime(ex_data$DateTime, "%Y-%m-%d", "UTC")),
function(x) {

bout_mvpa(x$METs, "METs"”, timestamps = x$DateTime)

»

lapply(split(ex_data, strftime(ex_data$DateTime, "%Y-%m-%d", "UTC")),
function(x) {

bout_mvpa(x$METs,

"METs",

timestamps = x$DateTime,

output_var = "is_MVPA")

»

lapply(split(ex_data, strftime(ex_data$DateTime, "%Y-%m-%d", "UTC")),
function(x) {

bout_mvpa(x$METs,

"METs",

timestamps = x$DateTime,

output_var = "bout_tracker™)

b

cvd_risk Calculate risk of cardiovascular disease

Description

Calculate risk of cardiovascular disease

cvd._risk

Usage

cvd_risk(
x = NULL,
method = "D'Agostino_2008",
sex,
age,
total_cholesterol,
hdl,
systolic,
bp_treated,
diabetes,
smoker,
points = TRUE,

)

Default S3 method:
cvd_risk(
x = NULL,
method = "D'Agostino_2008",
sex,
age,
total_cholesterol,
hdl,
systolic,
bp_treated,
diabetes,
smoker,
points = TRUE,

)

S3 method for class 'data.frame'
cvd_risk(

x = NULL,

method = "D'Agostino_2008",

sex,

age,

total_cholesterol,

hdl,

systolic,

bp_treated,

diabetes,

smoker,

points = TRUE,

combine = TRUE,

Arguments

X

method

sex

age

cvd_risk

optional data frame. If provided, the other arguments will be taken as column
names under the assumption that each row represents a separate person, and
each column provides one of the requested pieces of information

character. Currently only method = "D'Agostino_2008" is supported.

character scalar indicating either sex for one person (i.e., male or female), or a
column name in x containing sex values for multiple people

either a numeric scalar indicating age for one person, or a character scalar in-
dicating the name of the column in x that contains age information. Units are
years

total_cholesterol

hdl
systolic

bp_treated

diabetes
smoker

points

combine

Value

same as age, but for total cholesterol, in mg/dL
same as age, but for HDL, in mg/dL
same as age, but for systolic blood pressure, in mmHg

either a logical scalar indicating whether a person is taking blood pressure med-
ication, or a character scalar pointing to the column in x that contains the same
information for multiple people

same as bp_treated, but for the presence of diabetes
same asbp_treated, but for smoking status

logical. Return as points (default) or risk percentage?
arguments passed to other methods

logical. Give results as a list of risk_profile objects, or combine the list into
an integer vector (default)?

One or more risk profiles (for default method with points = TRUE, or for data frames with combine
= FALSE & points = TRUE). Otherwise numeric risk percentage (for points = FALSE, scalars and
data frames) or an integer vector (for data frames with combine = TRUE & points = FALSE)

References

D’Agostino et al. (2008)

Examples

cvd_risk(sex = "Female”, age = 111, total_cholesterol = 111, systolic = 111,
hdl = 11, bp_treated = FALSE, diabetes = TRUE, smoker = TRUE)

df <- data.frame(
sex = sample(c(

age = sample(30
tc = sample(150
hdl = sample(30

"Male"”, "Female"), 5, TRUE),
:100, 5, TRUE),
1300, 5, TRUE),
:70, 5, TRUE),

sbp = sample(100:180, 5, TRUE),

https://pubmed.ncbi.nlm.nih.gov/18212285/

descriptives

bpmed = sample(c(TRUE, FALSE), 5, TRUE),
diabetes = sample(c(TRUE, FALSE), 5, TRUE),
smoker = sample(c(TRUE, FALSE), 5, TRUE)

)

cvd_risk(
df, sex = "sex”, age = "age",
total_cholesterol = "tc”, hdl = "hdl",
systolic = "sbp"”, bp_treated = "bpmed”,

diabetes = "diabetes"”, smoker = "smoker",
combine = FALSE
)
descriptives Compute descriptive statistics for a variable in the metabolic data set
Description

Compute descriptive statistics for a variable in the metabolic data set

Usage

descriptives(dataset, variable, group = NULL)

Arguments

dataset the dataset to analyze

variable character scalar giving the variable name to summarize

group character scalar giving an optional grouping variable for the summary
Value

a data frame of formatted summary statistics

Examples

data(ex_data, package = "PAutilities”)
ex_datas$group_var <- rep(

c("One", "Two", "Three"),

each = ceiling(nrow(ex_data)/3)
Y[seq(nrow(ex_data))]

descriptives(ex_data, "Axis1", "group_var")

10 df reorder

df_continuous Check if a dataframe is continuous

Description

Check if a dataframe is continuous

Usage
df_continuous(df, time_var = "Timestamp”, digits =6, ...)
Arguments
df the input data frame
time_var character scalar giving the column name of the variable containing timestamp
information (either character or POSIXt format)
digits see epoch_length_sec
arguments passed to as.POSIXct, for use if time_var is a character rather than
POSIXt variable
Value

a logical scalar indicating whether the dataframe reflects a continuous time series

Examples

data(ex_data, package = "PAutilities”)
df_continuous(ex_data, "DateTime"”, tz = "UTC")
df_continuous(ex_data[-c(300:500),], "DateTime", tz = "UTC")

df_reorder Reorder the columns of a data frame

Description

Reorder the columns of a data frame

Usage

df_reorder(df, columns, after)

Arguments
df the data frame
columns the column(s) to move (either as character names or numeric indices)
after the column after which to insert columns (must be a scalar, either a character

name or a numeric index)

epoch_length_sec 11

Value

The reordered data frame

Examples

df <- data.frame(a = 1:10, b = 11:20, c = 21:30, d = 31:40)
df_reorder(df, 2:3, "d")
df_reorder(df, c("c", "d"), "a")

epoch_length_sec Determine epoch length in seconds

Description

Determine epoch length in seconds

Usage

epoch_length_sec(timestamps, digits = 6)

Arguments
timestamps POSIX-formatted input
digits for rounding. See details
Details

The function is designed to work even when the epoch length is less than one second (e.g., for raw
accelerometry data). Thus, it is not possible to base the code on convenient difftime methods.
Instead, numeric operations are performed after running unclass on the input. This sometimes
results in minuscule fluctuations of the calculated epoch length (e.g., +/- 0.0000002). Thus, the
code rounds everything to the precision indicated by digits. For most applications, the default
value (digits = 6) should be well past the range of meaningful fluctuations and lead to a favorable
outcome. But the digits argument can also be adjusted if greater assurance is needed.

After rounding, the code checks for the existence of multiple epoch lengths. If they are detected
(e.g., due to a discontinuity in the file), a warning is issued and the most prevalent epoch length is
returned. The warning will specify all the different epoch lengths that were detected, which may be
useful information for troubleshooting.

Value

The epoch length of the data, in seconds

Examples

epoch_length_sec(Sys.time() + 0:5)
epoch_length_sec(Sys.time() + seq(@, 25, 5))

12 full_days

ex_data Example data for calculating bouts of moderate-to-vigorous physical
activity

Description

A dataset containing accelerometer data and predicted energy expenditure in metabolic equivalents
(METsS) that can be used to classify moderate-to-vigorous physical activity in continuous bouts.

Usage

ex_data

Format

A data frame with 10080 rows and 12 variables:

FileID character. Name of the file originating the data

Date character giving the date ("%m/%d/%Y")

Time character giving the time ("%H:%M:%S")

DateTime full timestamp (% Y-%m-%d %H:%M:%S) given as character
dayofyear numeric day of the year (i.e., julian date)

minofday numeric minute of the day (i.e., O for midnight and 1439 for 11:59)
Axisl activity counts for the device’s first axis

Axis2 activity counts for the device’s second axis

Axis3 activity counts for the device’s third axis

Steps number of steps taken

Vector.Magnitude vector magnitude (Euclidian norm) of the activity counts from the three axes

METs predicted energy expenditure, in metabolic equivalents

full_days Drop incomplete days from a dataset

Description

Drop incomplete days from a dataset

full_days

Usage

full_days(
df,

13

time_var = "Timestamp”,
drop = c("all”, "leading”, "trailing”, "label"),
epoch_length_sec = NULL,

label_name = "is_full_day",
digits = 6,
check_continuous = TRUE,
discontinuous_action = c("stop”, "warn"),
)
Arguments
df the input data frame
time_var character scalar giving the column name of the variable containing timestamp
information (either character or POSIXt format)
drop character scalar indicating which incomplete days to drop. Can be all (default),

leading (only day/s at the start of the file), trailing (only day/s at the end of
the file), or label. If the latter is selected, the full dataset is returned with
an additional column indicating whether each row of data corresponds with a
complete day (useful for troubleshooting, among other things)

epoch_length_sec

label_name

digits

optional. The epoch length of the data. If no value is passed, epoch_length_sec
is invoked on the time_var column

character scalar. Name to give the indicator column when drop == "label”

see epoch_length_sec

check_continuous

logical. Check the dataframe after dropping to see if it is continuous?

discontinuous_action

Value

character scalar telling what to do if a discontinuity is expected when check_continuous
= TRUE. Can be either warn (the default) or stop

arguments passed to as.POSIXct, for use if time_var is a character rather than
POSIXt variable

an updated copy of df, in which incomplete days are addressed according to the selected value of

drop.

See Also

df_continuous

14 get_bmr

Examples

data(ex_data, package = "PAutilities”)
ex_data <- full_days(
ex_data, "DateTime"”, "label”, 60,
"full_day_indicator”, tz = "UTC"
)
head(ex_data)

get_age Calculate age

Description

Takes two Date objects and calculates age based on difftime (in days) divided by 365.2425 days
per year (for age in years) or 30.4375 days per month (for age in months).

Usage

get_age(birthdate, current_date, units = c("years”, "months"))
Arguments

birthdate Date object giving the date of birth

current_date Date object giving the date from which age is to be calculated

units The units in which age should be reported

Value

Numeric value giving age in the specified units.

Examples

get_age(as.Date("2000-01-01"), Sys.Date(), "years")

get_bmr Retrieve estimated basal metabolic rate for an individual

Description

Retrieve estimated basal metabolic rate for an individual

get_bmr 15

Usage
get_bmr(
Sex = c("M", "F"),
Ht = NULL,
Wt,
Age,
verbose = FALSE,
RER = NULL,

equation = c("ht_wt”, "wt", "both"),
kcal_table = c("Lusk"”, "Peronnet”, "both"),
method = c(”Schofield”, "FAQ", "both"),

MJ_conversion = c("thermochemical”, "dry"”, "convenience”, "all"),
kcal_conversion = 5

)

Arguments

Sex The individual’s sex

Ht The individual’s height, in meters

Wt The individual’s weight, in kilograms

Age The individual’s age, in years

verbose Logical. Should processing updates be printed?

RER numeric. The respiratory exchange ratio

equation The equation to apply

kcal_table The table to reference for converting kilocalories to oxygen consumption. See

get_kcal_vo2_conversion
method The calculation method to use

MJ_conversion The value to use for converting megajoules to kilocalories. Defaults to thermo-
chemical.

kcal_conversion
numeric. If RER is NULL (default), the factor to use for converting kilocalories
to oxygen consumption

Value

a data frame containing predictions of basal metabolic rate in one column, along with additional
columns that indicate how the predictions were obtained (e.g., which sources and conversions were
applied)

References

Schofield, W. N. (1985). Predicting basal metabolic rate, new standards and review of previous
work. Human nutrition. Clinical nutrition, 39, 5-41.

16 get_indices

Examples

Get BMR for an imaginary 900-year-old person (Age is only
used to determine which equations to use, in this case the
equations for someone older than 60)

get_bmr(
Sex = "M", Ht = 1.5, Wt = 80, Age = 900, equation = "both",
method = "both”, RER = 0.865, kcal_table = "both",
MJ_conversion = c("all")

)

get_bmr(
Sex = "M", Ht = 1.5, Wt
kcal_conversion = 4.86

)

80, Age

900, MJ_conversion = "all"”,

get_bmr(
Sex = "M", Ht = 1.5, Wt
kcal_conversion = 4.86

80, Age = 900, method = "FAQ",

get_indices Retrieve indices for a rolling window analysis

Description

Retrieve indices for a rolling window analysis

Usage

get_indices(y_var, window_size = 15L)

Arguments
y_var NumericVector. Input on which to define the indices for each roll of the window
window_size int. The size of the window

Value

a list in which each element contains window_size consecutive integers that indicate which ele-
ments of y_var would be extracted for that roll of the window
Note

For this function, the output elements contain positions (i.e., indices) from y_var, whereas for
rolling_groups the output elements contain the raw values found at each index

get_intensity 17

See Also

rolling_groups

Examples

result <- get_indices(1:100, 10)
head(result)
tail(result)

get_intensity Classify activity intensity

Description

Supports intensity classification via energy expenditure with or without additional posture require-
ments (i.e., for sedentary behavior to be in lying/seated posture)

Usage
get_intensity(mets, posture = NULL, ...)
Arguments
mets numeric vector of metabolic equivalents to classify
posture character vector of postures
further arguments passed to cut
Details

If breaks and labels arguments are not provided, default values are <= 1.5 METs for sedentary
behavior, 1.51-2.99 METs for light physical activity, and >= 3.0 METs for moderate-to-vigorous
physical activity.

It is expected for the elements of posture to be one of c("lie"”,"sit", "stand", "other").
The function will run (with a warning) if that requirement is not met, but the output will likely be
incorrect.

Value

a factor giving intensity classifications for each element of mets

18 get_kcal_vo2_conversion

Examples

mets <- seq(1, 8, 0.2)
posture <- rep(
c("lie"”, "sit", "stand"”, "other"), 9

)

intensity_no_posture <- get_intensity(mets)
intensity_posture <- get_intensity(mets, posture)
head(intensity_no_posture)
head(intensity_posture)

get_kcal_vo2_conversion

Retrieve conversion factors from kilocalories to oxygen consumption

Description

Retrieve conversion factors from kilocalories to oxygen consumption

Usage

get_kcal_vo2_conversion(RER, kcal_table = c("Lusk”, "Peronnet”, "both"))

Arguments
RER numeric. The respiratory exchange ratio
kcal_table The table to reference for converting kilocalories to oxygen consumption. See
get_kcal_vo2_conversion
Details

RER values are matched to the table entries based on the minimum absolute difference. If there is
a tie, the lower RER is taken.
Value

numeric vector giving the conversion factor from the specified table(s)

References

Peronnet, F., & Massicotte, D. (1991). Table of nonprotein respiratory quotient: an update. Can J
Sport Sci, 16(1), 23-29.

Lusk, G. (1924). Analysis of the oxidation of mixtures of carbohydrate and fat: a correction.
Journal of Biological Chemistry, 59, 41-42.

get_ree 19

Examples

get_kcal_vo2_conversion(@.85, "both")

get_ree Calculate resting energy expenditure

Description

Calculate resting energy expenditure

Usage

get_ree(
method = c("harris_benedict”, "schofield_wt", "schofield_wt_ht", "fao”, "muller_wt_ht",
"muller_ffm"),
sex,
age_yr = NA,

output = c("default”, "mj_day"”, "kcal_day”, "vo2_ml_min"),

calorie = c("thermochemical”, "convenience”, "dry"),
RER = 0.86,
kcal_table = c("Lusk"”, "Peronnet”, "both"),
df = NULL
)
Arguments
method character. The equation(s) to use, chosen from "harris_benedict”, "schofield_wt",
"schofield_wt_ht","fao"”, "muller_wt_ht", or "muller_ffm"
sex character. The participant/patient sex, one of "female"” or "male”
age_yr numeric. The participant/patient age in years. Not used for method = "muller_ffm",
but a value must still be given if a data frame is passed. (The value does not need
to correspond with age, it is simply a placeholder to satisfy internal checks that
are applied to all equations when making computations on a data frame.)
arguments (e.g. wt_kg or ht_cm) for calculations. An error message will clarify
which variables need to be passed if they are missing
output character. The desired output unit(s), chosen from "default”, "mj_day"”, "kcal_day"”,
or "vo2_ml_min"
calorie character. The desired conversion factor(s) for calculating MJ from kcal, chosen
from "thermochemical”, "convenience”, or "dry"
RER numeric. The respiratory exchange ratio
kcal_table character. The desired conversion table(s) to use for converting kcal to oxygen
consumption, chosen from "Lusk"”, "Peronnet”, or "both”
df optional data frame. If passed, all prior arguments should be character scalars

pointing to a column in df that contains the corresponding information is stored

20 index_runs

Value

Calculated resting energy expenditure

Examples

get_ree("schofield_wt_ht", "female”, 57.8, wt_kg = 80, ht_m = 1.50)

index_runs Run length encoding with indices

Description

Run length encoding with indices

Usage

index_runs(x, zero_index = FALSE)

Arguments
X vector of values on which to perform run length encoding
zero_index logical. Should indices be indexed from zero (useful for Repp)?
Value

A data frame with information about the runs and start/stop indices

Examples

x <= c(
FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
FALSE, TRUE, TRUE, FALSE, TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE, TRUE, TRUE,
FALSE, TRUE

)

head (index_runs(x))

manage_procedure 21

manage_procedure Printing and timing utility for managing processes

Description

Printing and timing utility for managing processes

Usage

manage_procedure(part = c("Start”, "End"), ..., timer = NULL, verbose = TRUE)

get_duration(timer)

Arguments
part character scalar, either Start or End.
character strings to print. Default messages will print if no arguments are pro-
vided.
timer a proc_time object. Required for manage_procedure only if using the default
message for part = "End"” default message.
verbose logical. Print to console?
Value

For part = "Start", a proc_time object (i.e., a timer passable to an eventual part = "End"” com-
mand); for part = "End", invisible

Examples

manage_procedure(”Start”, "String will be printed\n")
timer <- manage_procedure(
"Start”, "Printing a string is optional”, verbose = FALSE

)

Default starting message
manage_procedure("Start")

Default ending message
manage_procedure("End"”, timer = timer)

Other examples
get_duration(timer)
manage_procedure("End”, "Custom ending message")

22 mean_sd

mean_sd Compute the mean and standard deviation of a vector, returning a
formatted string containing the values as ‘M +/- SD*

Description

Compute the mean and standard deviation of a vector, returning a formatted string containing the
values as ‘M +/- SD*

Usage

mean_sd(
X = NULL,
MoreArgs = NULL,
give_df = TRUE,
mean_x = NULL,
sd_x = NULL

)

Default S3 method:
mean_sd(
x = NULL,
MoreArgs = NULL,
give_df = TRUE,
mean_x = NULL,
sd_x = NULL
)

S3 method for class 'data.frame'
mean_sd(

x = NULL,

MoreArgs = NULL,

give_df = TRUE,

L

mean_x = NULL,

sd_x = NULL
)
Arguments
X numeric vector of values to summarize
MoreArgs named list of arguments to pass to mean and sd
give_df logical. Should mean, sd, and summary string be returned in a data frame?

additional arguments passed to format

paired_equivalence_test.data.frame 23

mean_x an already-calculated mean value for x
sd_x an already-calculated sd value for x
Value

either a formatted character scalar (if give_df == FALSE), or else a data frame containing columns
for the mean value, standard deviation, and formatted character string combining the two.

Examples

mean_sd(rnorm(100, 50))

paired_equivalence_test.data.frame
Perform equivalence testing on paired samples

Description

Perform equivalence testing on paired samples

Usage

S3 method for class 'data.frame'
paired_equivalence_test(

X,

Y,

y_type = c("both”, "criterion”, "comparison"),
alpha = 0.05,

na.rm = TRUE,

scale = c("relative”, "absolute"),

absolute_region_width = NULL,
relative_region_width = NULL,

Default S3 method:
paired_equivalence_test(

X!

Y,

y_type = c("both”, "criterion”, "comparison"),
alpha = 0.05,

na.rm = TRUE,

scale = c("relative”, "absolute"),

absolute_region_width = NULL,
relative_region_width = NULL,

24

paired_equivalence_test.data.frame

paired_equivalence_test(

X7
Y

y_type

alpha
na.rm
scale

c("both", "criterion”, "comparison"),
0.05,

TRUE,

c("relative”, "absolute"),

absolute_region_width = NULL,
relative_region_width = NULL,

Arguments
X

y
y_type

alpha
na.rm

scale

numeric vector representing the (possibly surrogate) sample
numeric vector representing the (possibly criterion) sample. Index paired with x

non

classification of y for the purpose of analysis. Canbe "criterion”, "comparison”,
or "both".

the alpha level for the test
logical. Omit mean values for mean calculations?

character specifying whether the test should occur on an absolute or relative
scale. Must be one of "relative” (default) or "absolute”.

absolute_region_width

the region width for use when scale = "absolute”

relative_region_width

Value

the region width for use when scale = "relative”

further arguments passed to methods. Currently unused.

a ‘paired_equivalence® object summarizing the test input and results

Note

If a value is not specified for the region width that corresponds with scale, a default value will be
assigned with a warning.

References

Dixon et al.

https://pubmed.ncbi.nlm.nih.gov/29135817/

PAutilities 25

Examples

set.seed(1544)

x <- data.frame(
varl = rnorm(500, 15, 4),
var2 = rnorm(500, 23, 7.3)

)
y <- rnorm(500, 17.4, 9)

test_result <- paired_equivalence_test(
X, y, relative_region_width = 0.25

)

lapply(test_result, head)

PAutilities PAutilities: Streamline Physical Activity Research

Description

A collection of utilities that are useful for a broad range of tasks that are common in physical activity
research. The main features (with associated functions in parentheses) are:

Details

* Bland-Altman plots (ba_plot) * Bout analysis for moderate-to-vigorous physical activity (bout_mvpa)

* Formatted descriptive statistics descriptives * Demographic calculations (get_age and get_BMI_percentile)
* Metabolic calculations (get_bmr, weir_equation, and get_kcal_vo2_conversion) * Analy-

sis of bout detection algorithm performance (get_transition_info and associated methods, e.g.

summary and plot)

plot.paired_equivalence
Plot the outcome of a paired equivalence test

Description

Plot the outcome of a paired equivalence test

Usage
S3 method for class 'paired_equivalence'
plot(x, shade = "auto", ...)
shaded_equivalence_plot(results, ...)

unshaded_equivalence_plot(results, ...)

26 plot.spurious_curve
Arguments
X the object to be plotted
shade logical. Should the results be plotted using a shaded equivalence region?
arguments passed to ggplot2: : theme.
results data frame. The results component of a paired_equivalence object
Details

shaded_equivalence_plot plots the results of an equivalence test in which a single equivalence
region applies to all variables. In that case, the equivalence region is displayed as a shaded re-
gion. unshaded_equivalence_plot plots the results of an equivalence test in which variables
have unique equivalence regions. In that case, the equivalence regions are displayed as dodged
"confidence intervals".

Value

A plot of the equivalence test

Examples

set.seed(1544)
y <- rnorm(500, 17.4, 9)
z <- data.frame(
varl = rnorm(500, 15, 4),
var2 = rnorm(500, 23, 7.3)
)

Optionally create artificial missing values to trigger unshaded plot
missing_indices <- sample(seq(nrow(z)), 250)

z$var1[missing_indices] <- NA

X <- paired_equivalence_test(

z, y, "criterion”, scale = "relative”,
relative_region_width = 0.25

)

plot(x)

plot.spurious_curve Plot a spurious curve

Description

Plot a spurious curve

Usage

S3 method for class 'spurious_curve'
plot(x, ...)

plot.transition

Arguments
X a spurious_curve object
further arguments (currently unused)
Value
a plot of the object
See Also

spurious_curve

Examples

set.seed(100)
predictions <- (sample(1:100)%%2)
references <- (sample(1:100)%%2)

trans <- get_transition_info(
predictions, references, 7

27

)
result <- spurious_curve(trans)
plot(result)
plot.transition Plot the transitions and matchings from a transition object
Description

Plot the transitions and matchings from a transition object

Usage
S3 method for class 'transition'
plot(x, ...)
Arguments
X the object to plot
further methods passed to or from methods, currently unused
Value

A plot of the predicted and actual transitions in a transition object, as well as the matchings

between them

28 residual_adjust

Examples

predictions <- (sample(1:100)%%2)
references <- (sample(1:100)%%2)
window_size <- 7
if (isTRUE(requireNamespace("matchingMarkets"”, quietly = TRUE))){
transitions <- get_transition_info(
predictions, references, window_size
)
plot(transitions)

}

residual_adjust Perform residual adjustment on an epidemiologic variable

Description

Perform residual adjustment on an epidemiologic variable

Usage

residual_adjust(d, variable, confounder, label, verbose = FALSE)

Arguments
d the input data frame on which to perform the adjustment
variable character. Name of variable needing adjustment
confounder character. Name of the confounder to adjust for
label character. Name to give the adjusted variable
verbose logical. Print updates to console?

Value

The original d object, with an extra column reflecting residual adjustments on the selected variable.

Examples

d <- data.frame(
VARIABLE = rnorm(100, 10, 2),
CONFOUNDER = rnorm(100, 3, 7)
)
result <- residual_adjust(d, "VARIABLE"”, "CONFOUNDER", "ADJUSTED")

head(d)
head(result)

rmr_sliding 29

rmr_sliding Calculate resting metabolic rate using a sliding window method

Description

Calculate resting metabolic rate using a sliding window method

Usage

rmr_sliding(
vo2_values,
vo2_timestamps,
start_time,
stop_time,
window_size_minutes = 5

Arguments

vo2_values numeric vector of oxygen consumption values
vo2_timestamps timestamps corresponding to each element of vo2_values
start_time the beginning time of the assessment period

stop_time the ending time of the assessment period
window_size_minutes
the size of the sliding window, in minutes

Value

A data frame giving the oxygen consumption from the lowest window, as well as the time difference
from first to last breath in the same window.

Examples

set.seed(144)

fake_start_time <- Sys.time()

fake_stop_time <- fake_start_time + 1800

fake_timestamps <- fake_start_time + cumsum(sample(1:3, 500, TRUE))
fake_timestamps <- fake_timestamps[fake_timestamps <= fake_stop_time]
fake_breaths <- rnorm(length(fake_timestamps), 450, 0.5)

window_size <- 5

rmr_sliding(
fake_breaths, fake_timestamps,
fake_start_time, fake_stop_time,
window_size

)

30 spurious_curve

rolling_groups Loop along a vector, returning n elements at a time in a list

Description

Loop along a vector, returning n elements at a time in a list

Usage

rolling_groups(values, n = 2L)

Arguments

values IntegerVector. The vector to loop along

n int. The number of elements to return in each element of the resulting list
Value

a list in which each element contains n elements from values

Note
For this function, the output elements contain raw values from values, whereas for get_indices
the output elements contain the positions (i.e., indices) rather than the raw values

See Also

get_indices

Examples

groups <- rolling_groups(0:50, 3)
head(groups)
tail(groups)

spurious_curve Perform a spurious curve analysis

Description
Assess performance using the Transition Pairing Method when the spurious pairing threshold is
varied

Usage

spurious_curve(trans, predictions, references, thresholds = 1:20)

summaryTransition-class

Arguments
trans a transition object
predictions vector of predictions indicating transition (1) or non-transition (2)
references vector of criteria indicating transition (1) or non-transition (2)
thresholds the threshold settings to test

Value

an object with class spurious_curve

Examples

set.seed(100)
predictions <- (sample(1:100)%%2)
references <- (sample(1:100)%%2)

trans <- get_transition_info(
predictions, references, 7

)

head(spurious_curve(trans))

31

summaryTransition-class

An 84 class containing summary information about a transition ob-
Jject

Description

An S4 class containing summary information about a transition object

Slots

result adata frame with the summary information

32 test_errors

test_errors Compare numeric variables in a data frame based on root-squared
differences

Description

Compare numeric variables in a data frame based on root-squared differences

Usage

test_errors(
reference,
target,
vars,
tolerance = 0.001005,
return_logical = TRUE

)
Arguments
reference a data frame giving reference data
target a data frame giving target data
vars character vector of variable names to compare in each data frame
tolerance allowable difference between numeric values

return_logical logical. Should result be given as a logical vector (indicating TRUE/FALSE
equality within tolerance) or a data frame of error summary values?

Value

If return_logical = TRUE, a named logical vector with one element per variable compared, in-
dicating whether the maximum and root-mean-squared differences fall within the tolerance. If
return_logical = FALSE, a data frame indicating the variables compared and the maximum and
root-mean-squared differences.

Note

It is assumed that reference and target have equal numbers of rows.

Examples

reference <- data.frame(
a=1:100, b = 75:174
)

target <- data.frame(
a=0.001 + (1:100),
b =176:175

weight_status 33

)
test_errors(reference, target, c("a”, "b"))
test_errors(reference, target, c("a”, "b"), return_logical = FALSE)
weight_status Determine weight status from body mass index
Description

Allows users to determine weight status from body mass index (BMI). The function is designed to
classify adult weight status, with default settings yielding weight classes defined by the Centers for
Disease Control and Prevention (see reference below). Alternatively, the function can be used as a
wrapper for get_BMI_percentile to obtain classifications for youth.

Usage

weight_status(BMI = NULL, breaks = c(-Inf, 18.5, 25, 30, 35, 40, Inf),
labels = c("Underweight”, "Healthy Weight", "Overweight”, "Class 1 Obese”,
"Class 2 Obese”, "Class 3 Obese”), right = FALSE, youth = FALSE, ...)

#get_BMI_percentile(weight_kg, height_cm, age_yrs = NULL, age_mos = NULL,
#sex = c("Male”, "Female"), BMI = NULL, df = NULL,

#output = c("percentile”, "classification”, "both", "summary"))
Arguments

BMI numeric. The participant body mass index

breaks numeric vector. The boundaries for each weight class; passed to base: :cut,
with warnings if -Inf and Inf are not included in the vector.

labels character vector. The labels for each weight class; passed to base: :cut, and
should have a length one less than the length of breaks

right logical. See ?base: :cut

youth logical. Use function as a wrapper for get_BMI_percentile?

Arguments passed to get_BMI_percentile

Value

a factor reflecting weight status

References

https://www.cdc.gov/bmi/adult-calculator/bmi-categories.html

Examples

weight_status(17:42)

https://www.cdc.gov/bmi/adult-calculator/bmi-categories.html

34

weir_equation

weir_equation Calculate energy expenditure using the Weir equation

Description

Calculate energy expenditure using the Weir equation

Usage
weir_equation(V02, VCO2, epochSecs)

Arguments

V02 Oxygen consumption

VCo2 Carbon dioxide production

epochSecs The averaging window of the metabolic data, in seconds
Value

numeric scalar indicating predicted energy expenditure from the Weir equation, based on the inputs

References

De V Weir, J. B. (1949). New methods for calculating metabolic rate with special reference to

protein metabolism. The Journal of physiology, 109(1-2), 1.

Examples

weir_equation(3.5, 3.1, 60)

Index

* datasets
ex_data, 12

* summary Transition
as, 2

as, 2

ba_analysis, 3, 4
ba_plot, 3, 25
bout_mvpa, 5, 25

cvd_risk, 6

descriptives, 9, 25
df_continuous, 10, 13
df_reorder, 10
difftime, /4

epoch_length_sec, 10,11, 13
ex_data, 12

full_days, 12

get_age, 14, 25
get_BMI_percentile, 25, 33
get_bmr, 14, 25

get_duration (manage_procedure), 21
get_indices, 16, 30
get_intensity, 17

get_kcal_vo2_conversion, 15, 18, 18, 25

get_ree, 19
get_transition_info, 25

index_runs, 20

manage_procedure, 21
mean_sd, 22

paired_equivalence_test

paired_equivalence_test.data.frame, 23
PAutilities, 25
plot.paired_equivalence, 25
plot.spurious_curve, 26
plot.transition, 27

residual_adjust, 28
rmr_sliding, 29
rolling_groups, 16, 17, 30

shaded_equivalence_plot
(plot.paired_equivalence), 25
spurious_curve, 27, 30
summaryTransition
(summaryTransition-class), 31
summaryTransition-class, 31

test_errors, 32

unshaded_equivalence_plot
(plot.paired_equivalence), 25

weight_status, 33
weir_equation, 25, 34

(paired_equivalence_test.data.frame),

23

35

	as
	ba_analysis
	ba_plot
	bout_mvpa
	cvd_risk
	descriptives
	df_continuous
	df_reorder
	epoch_length_sec
	ex_data
	full_days
	get_age
	get_bmr
	get_indices
	get_intensity
	get_kcal_vo2_conversion
	get_ree
	index_runs
	manage_procedure
	mean_sd
	paired_equivalence_test.data.frame
	PAutilities
	plot.paired_equivalence
	plot.spurious_curve
	plot.transition
	residual_adjust
	rmr_sliding
	rolling_groups
	spurious_curve
	summaryTransition-class
	test_errors
	weight_status
	weir_equation
	Index

