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1 Introduction

This vignette provides a quick introduction to the QuantilePeer package. The package is

designed to estimate quantile peer effect models, allowing researchers to assess peer effects at

multiple quantiles of the peer outcome distribution (Houndetoungan, 2025). This modeling

approach is more flexible than the standard linear-in-means (LIM) model, which assumes that

all peers exert the same influence on individuals. The quantile peer effect model allows peer

influence to vary across different quantiles of the outcome distribution, making it a useful

framework for testing the assumptions underlying the LIM model.

The package also provides routines for estimating peer effect models with a constant

elasticity of substitution (CES) social norm (Boucher et al., 2024). The CES-based approach

includes a substitution parameter that allows peers with higher or lower outcomes to exert

more influence on individual outcomes.

This documentation is organized as follows. Section 2 provides a brief overview of quantile

peer effect models. Section 3 illustrates how to simulate and estimate these models. Section 4

presents, simulates, and estimates CES-based peer effect models. Section 5 discusses additional

model specifications that can also be estimated using this package.

To cite QuantilePeer, kindly run citation("QuantilePeer") in R. This will display the

citation information, including the BibTEX entry for LATEX users. Please also cite the paper

associated with the package (Houndetoungan, 2025).

2 A brief description of the model

Let N be a set of n agents indexed by the integer i ∈ [1, n]. Agents are connected through

a network that is characterized by an adjacency matrix G = [gij] of dimension n × n, where

gij = 1 if agent j is a friend of agent i, and gij = 0 otherwise. In weighted networks, gij can be

a nonnegative variable (not necessarily binary) that measures the intensity of the outgoing

link from i to j. The model can also accommodate such networks. Note that the network is

generally constituted in many independent subnets (eg: schools).

Let T be a set of quantile levels. The reduced-form specification of the quantile peer effect

models is given by:

yi = ∑
τ∈T

λτqτ,i(y−i) + x
′
iβ + εi, (1)

where y−i = (y1, . . . , yi−1, yi+1, . . . , yn)′ is the vector of outcomes for individuals other than i,

and qτ,i(y−i) denotes the sample τ-quantile of peer outcomes. The term εi is an idiosyncratic

error term, λτ captures the effect of the τ-quantile of peer outcomes on yi, and β captures the

effect of the exogenous variable xi on yi. Hyndman and Fan (1996) distinguish nine types

of quantiles. The results developed in the paper hold for all these types. However, both
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the simulations and empirical analysis use Type 7, which relies on linear interpolation when

the quantile level does not correspond exactly to a peer’s rank.1 If the network matrix is

weighted, a sample weighted quantile can be used, where the outcome for friend j of individual

i is weighted by gij.

One issue in linear peer effect models is that individual preferences with conformity and

spillover (complementarity or substitution) lead to the same reduced form (see Boucher and

Fortin, 2016). However, it is possible to disentangle both types of preferences using isolated

individuals (Boucher et al., 2024). Isolated individuals are those who have no friends, although

they may or may not be considered friends by others. The structural specification of the model

differs between isolated and non-isolated individuals, allowing for the separate identification

of peer effects arising from spillovers and conformity.

For isolated i, the specification is similar to a standard linear-in-means (LIM) model without

social interactions, given by:

yi = x′iβ + εi. (2)

If i is non-isolated, the specification is given by:

yi = ∑
τ∈T

λτqτ,i(y−i) + (1 − λ2)x
′
iβ + εi, (3)

where λ2 determines whether preferences exhibit conformity or anti-conformity. Specifically,

let λ := ∑τ∈T λτ denote the total peer effects at all quantile levels. These total effects can be

decomposed as λ = λ1 + λ2, where λ1 captures total spillover effects and λ2 captures total

conformity effects. As in Boucher et al. (2024), when λ1 > 0, preferences exhibit complemen-

tarity; when λ1 < 0, preferences exhibit substitution. In contrast, when λ2 > 0, preferences

are conformist. Anti-conformity may also arise when λ2 < 0. If peer effects are solely due to

spillovers, then λ1 ̸= 0 and λ2 = 0. Conversely, if peer effects arise only from conformity, then

λ1 = 0 and λ2 ̸= 0. The quantile peer effect model allows for the decomposition of total peer

effects at different quantile levels, measured by the parameters λτ’s.

To identify λ1 and λ2, it is important to observe a sufficient number of isolated individuals

in the network. This enables the identification of β in Equation (2), which in turn makes it

possible to identify λ2 in Equation (3). The underlying assumption here is that the β parameter

is the same in both equations. Alternatively, assuming that a subset of the components of β

are the same is sufficient for the identification of λ2. When the network contains no isolated

nodes, the λτ’s can still be identified, but it is not possible to determine whether they reflect

conformity or spillover effects.

3 Estimating quantile peer effects

The key functions discussed in this section include:

1For example, when an agent has only two friends, the sample median of peer outcomes is simply the average of the two friends’
outcomes. The first decile is a weighted average of the two outcomes, where the friend with the lower outcome receives a weight of 0.9.
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1. qpeer.sim: simulates data from models with quantile peer effects;

2. qpeer.inst: computes instruments for models with quantile peer effects;

3. qpeer, linpeer, and genpeer: estimate models with quantile peer effects;

4. qpeer.test: performs specification tests.

Most of these functions are also implemented as classes, with associated summary and print

methods.

3.1 Data simulation

Throughout this documentation, I use simulated data. To begin, I first create a network matrix

G and two exogenous variables, x1 and x2. Importantly, I include some isolated nodes to

ensure the identification of the structural model.

library(QuantilePeer)

set.seed(123) # Set seed for reproducibility

ngr <- 50 # Number of subnets

nvec <- rep(30, ngr) # Size of subnets

n <- sum(nvec)

# Network matrix

G <- lapply(1:ngr, function(z) {

Gz <- matrix(rbinom(nvec[z]ˆ2, 1, 0.3), nvec[z], nvec[z])

diag(Gz) <- 0

# Adding isolated nodes (important for the structural model)

niso <- sample(0:nvec[z], 1, prob = (nvec[z] + 1):1 / sum((nvec[z] + 1):1))

if (niso > 0) {

Gz[sample(1:nvec[z], niso), ] <- 0

}

Gz

})

X <- cbind(rnorm(n), rpois(n, 2)); colnames(X) <- c("X1", "X2")

Using the network matrix and the exogenous variables, I can now generate the dependent

variables. I consider the quantile levels (0, 1/3, 2/3, 1), which define four quantiles, and two

types of dependent variables. The first is generated from the reduced-form model (without a

conformity parameter), while the second is based on the structural model. The following code

assigns values to the model parameters and simulates the corresponding dependent variables.

tau <- seq(0, 1, 1/3) #quantile level

lambdatau <- c(0.1, 0.25, 0.2, 0.15) #lambda_tau
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lambda2 <- 0.2 # lambda_2

beta <- c(2, -0.5, 1)

# First dependent variable (reduced form without conformity)

y1 <- qpeer.sim(formula = ~ X, Glist = G, tau = tau, lambda = lambdatau,

beta = beta, structural = FALSE,

epsilon = rnorm(n, 0, 0.4))

y1 <- y1$y #qpeer.sim returns a list of several object including y

# Second dependent variable (structural form with conformity)

y2 <- qpeer.sim(formula = ~ X, Glist = G, tau = tau,

lambda = c(lambda2, lambdatau), beta = beta,

structural = TRUE, epsilon = rnorm(n, 0, 0.4))

y2 <- y2$y

Note that we can also include contextual variables, such as averages of x among peers, as

additional exogenous variables.

3.2 Instruments

I propose two instrument sets for quantile peer outcomes. The first type of instruments (Z1)

is the set of quantiles of x among peers. The second type (Z2) also consists of quantiles of x

among peers, but with a key distinction that the values of x are ordered using the values of

the peers’ dependent variable (see the detailed discussion in the paper). The second type of

instruments can yield more efficient estimators but may also be endogenous. Their validity can

be tested using a procedure similar to that of Hausman (1978). It is also possible to combine

Z1 and Z2 to strengthen the instruments.

Instruments can be computed using qpeer.inst. The type of instruments is specified

through the formula argument. If formula is defined without a dependent variable (i.e., an

expression of the form ~ X1 + X2 + ...), then the first type of instruments is computed. In

contrast, if formula includes a dependent variable (i.e., an expression of the form y ~ X1 + X2

+ ...), then the second type of instruments is computed.

For the first type of instruments, it is important to use a finer subdivision of quantile levels

than τ. By including many quantile levels of the characteristics x, one obtains a comprehensive

representation of the distribution of peer characteristics x, which helps effectively approximate

their outcomes and the quantiles of their outcomes. Using a finer subdivision of quantile levels

is not important for the second type of instruments.

# First instrument set

Z1 <- qpeer.inst(formula = ~ X, Glist = G, tau = seq(0, 1, 0.1),

max.distance = 2, checkrank = TRUE) # finer subdivision
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Z1 <- Z1$instruments #qpeer.inst returns a list of several object

# Second instrument set: y1 is used to order X

Z21 <- qpeer.inst(formula = y1 ~ X, Glist = G, tau = tau, max.distance = 2,

checkrank = TRUE)

qy1 <- Z21$qy #quantile of y among peers

Z21 <- Z21$instruments

# Second instrument set: y2 is used to order X

Z22 <- qpeer.inst(formula = y2 ~ X, Glist = G, tau = tau, max.distance = 2,

checkrank = TRUE)

qy2 <- Z22$qy #quantile of y among peers

Z22 <- Z22$instruments

As in the standard linear model, one can use the quantiles of x within direct friends

and long-distance friends (such as friends of friends) to strengthen the instruments. Setting

max.distance = 2 means that the quantiles of x are computed among both direct friends and

friends of friends. The checkrank argument ensures that the resulting instrument set is a

full-rank matrix by removing columns that are linear combinations of others.

3.3 Estimation

Quantile peer effects are estimated using the General Method of Moments (GMM). Estimates

can be obtained using the qpeer function. I begin with the reduced-form specification, using

both types of instruments for each dependent variable.

QtR1 <- qpeer(formula = y1 ~ X, excluded.instruments = ~ Z1, Glist = G,

tau = tau)

summary(QtR1, diagnostic = TRUE)

## Formula: y1 ~ X

## Excluded instruments: ~Z1

##

## Model: Reduced Form

## Estimator: IV

## Fixed effects: No

## Quantile type: 7

## Quantile levels (4): 0 0.3333333 0.6666667 1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## y1_q(total) 0.6916431 0.0062631 110.43111 <2e-16 ***

## y1_q1 0.0821477 0.0173895 4.72397 2.313e-06 ***

## y1_q2 0.2434535 0.0308467 7.89237 2.887e-15 ***

## y1_q3 0.2278337 0.0414335 5.49879 3.824e-08 ***

## y1_q4 0.1382082 0.0181092 7.63193 2.309e-14 ***

## (Intercept) 1.9919391 0.0231787 85.93830 <2e-16 ***

## XX1 -0.5032540 0.0106806 -47.11830 <2e-16 ***
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## XX2 1.0109511 0.0076039 132.95082 <2e-16 ***

##

## Diagnostic tests:

## df1 df2 statistic p-value

## Weak instruments (y1_q1) 44 1453 58.13612 <2e-16 ***

## Weak instruments (y1_q2) 44 1453 345.98901 <2e-16 ***

## Weak instruments (y1_q3) 44 1453 595.86773 <2e-16 ***

## Weak instruments (y1_q4) 44 1453 805.51161 <2e-16 ***

## Kleibergen-Paap rk Wald 41 NA 135.33183 5.207e-12 ***

## Wu-Hausman 4 1489 1.25374 0.2863

## Hansen J 40 NA 36.44111 0.6312

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: IID, sigma: 0.41127

## R-Squared: 0.98547, Adjusted R-squared: 0.98541

## Degree of freedoms of residuals: 1493

QtR2 <- qpeer(formula = y1 ~ X, excluded.instruments = ~ Z1 + Z21, Glist = G,

tau = tau)

summary(QtR2)

## Formula: y1 ~ X

## Excluded instruments: ~Z1 + Z21

##

## Model: Reduced Form

## Estimator: IV

## Fixed effects: No

## Quantile type: 7

## Quantile levels (4): 0 0.3333333 0.6666667 1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## y1_q(total) 0.7001141 0.0041503 168.68936 <2e-16 ***

## y1_q1 0.1067169 0.0094624 11.27799 <2e-16 ***

## y1_q2 0.2242823 0.0216333 10.36745 <2e-16 ***

## y1_q3 0.2258518 0.0286079 7.89475 2.887e-15 ***

## y1_q4 0.1432631 0.0126108 11.36038 <2e-16 ***

## (Intercept) 1.9884601 0.0227889 87.25575 <2e-16 ***

## XX1 -0.5026656 0.0105528 -47.63331 <2e-16 ***

## XX2 1.0118756 0.0074986 134.94141 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: IID, sigma: 0.40668

## R-Squared: 0.98814, Adjusted R-squared: 0.98809

## Degree of freedoms of residuals: 1493

QtR3 <- qpeer(formula = y2 ~ X, excluded.instruments = ~ Z1, Glist = G,

tau = tau)

summary(QtR3)

## Formula: y2 ~ X

## Excluded instruments: ~Z1

##

## Model: Reduced Form

## Estimator: IV
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## Fixed effects: No

## Quantile type: 7

## Quantile levels (4): 0 0.3333333 0.6666667 1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## y2_q(total) 0.6525717 0.0073755 88.47786 <2e-16 ***

## y2_q1 0.1466308 0.0242797 6.03924 1.548e-09 ***

## y2_q2 0.2714595 0.0449646 6.03718 1.568e-09 ***

## y2_q3 0.1509579 0.0511722 2.95000 0.003178 **

## y2_q4 0.0835235 0.0213909 3.90463 9.437e-05 ***

## (Intercept) 2.2236946 0.0224068 99.24187 <2e-16 ***

## XX1 -0.4316099 0.0103426 -41.73109 <2e-16 ***

## XX2 0.8752302 0.0073696 118.76244 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: IID, sigma: 0.39876

## R-Squared: 0.98407, Adjusted R-squared: 0.98401

## Degree of freedoms of residuals: 1493

QtR4 <- qpeer(formula = y2 ~ X, excluded.instruments = ~ Z1 + Z21, Glist = G,

tau = tau)

summary(QtR4)

## Formula: y2 ~ X

## Excluded instruments: ~Z1 + Z21

##

## Model: Reduced Form

## Estimator: IV

## Fixed effects: No

## Quantile type: 7

## Quantile levels (4): 0 0.3333333 0.6666667 1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## y2_q(total) 0.6467303 0.0049670 130.20570 <2e-16 ***

## y2_q1 0.1277322 0.0131509 9.71278 <2e-16 ***

## y2_q2 0.2909670 0.0304924 9.54229 <2e-16 ***

## y2_q3 0.1454283 0.0365219 3.98195 6.835e-05 ***

## y2_q4 0.0826028 0.0156838 5.26676 1.389e-07 ***

## (Intercept) 2.2243059 0.0221615 100.36793 <2e-16 ***

## XX1 -0.4317768 0.0102679 -42.05101 <2e-16 ***

## XX2 0.8747741 0.0073026 119.78966 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: IID, sigma: 0.39602

## R-Squared: 0.9823, Adjusted R-squared: 0.98222

## Degree of freedoms of residuals: 1493

Note that the formula argument does not include the quantiles of peer outcomes, but

only the outcome and the exogenous variables. The quantiles are computed internally

by the function based on the levels specified in the tau argument. Additionally, the

excluded.instruments argument should not contain any instruments that are already

included as explanatory variables.
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The output of the qpeer function is an object of class qpeer, to which the summary method

can be applied. An important argument of the summary method is diagnostics, a logical value

indicating whether diagnostic tests for the instrumental variable regression should be per-

formed. These tests include an F-test and the rank test of Kleibergen and Paap (2006) for weak

instruments, the Wu–Hausman test for endogeneity, and Hansen’s J-test for overidentifying

restrictions (when the number of instruments exceeds the number of endogenous regressors).

The diagnostic test results are displayed for the first estimation shown above.

The reduced-form estimation for y2 is likely to be inconsistent, since the reduced-form

model assumes that preferences exhibit either spillover or conformity, but not both, whereas y2

is generated from a structural model that includes both effects. The following code replicates

the estimations using the structural specification.

QtS1 <- qpeer(formula = y1 ~ X, excluded.instruments = ~ Z1, Glist = G,

tau = tau, structural = TRUE)

summary(QtS1, diagnostic = TRUE)

## Formula: y1 ~ X

## Excluded instruments: ~Z1

##

## Model: Structural

## Estimator: IV

## Fixed effects: No

## Quantile type: 7

## Quantile levels (4): 0 0.3333333 0.6666667 1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## y1_q(spillover) 0.6941622 0.0122645 56.59917 <2e-16 ***

## y1_q(conformity) -0.0024709 0.0132220 -0.18688 0.8518

## y1_q(total) 0.6916913 0.0066830 103.50062 <2e-16 ***

## y1_q1 0.0842941 0.0171865 4.90466 9.359e-07 ***

## y1_q2 0.2416913 0.0309162 7.81762 5.329e-15 ***

## y1_q3 0.2270585 0.0420102 5.40484 6.486e-08 ***

## y1_q4 0.1386474 0.0179838 7.70958 1.266e-14 ***

## (Intercept) 1.9830049 0.0311950 63.56812 <2e-16 ***

## XX1 -0.4903197 0.0185511 -26.43082 <2e-16 ***

## XX2 1.0139227 0.0128029 79.19507 <2e-16 ***

##

## Diagnostic tests:

## df1 df2 statistic p-value

## Weak instruments (y1_q1) 44 918 22.17782 <2e-16 ***

## Weak instruments (y1_q2) 44 918 108.06430 <2e-16 ***

## Weak instruments (y1_q3) 44 918 158.11741 <2e-16 ***

## Weak instruments (y1_q4) 44 918 197.56882 <2e-16 ***

## Kleibergen-Paap rk Wald 41 NA 138.67407 1.561e-12 ***

## Wu-Hausman 4 954 1.17582 0.3199

## Hansen J 40 NA 37.35668 0.5899

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: IID, sigma (isolated): 0.41916, (non-isolated): 0.40538

## R-Squared: 0.98646, Adjusted R-squared: 0.9864

## Degree of freedoms of residuals: 1492
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QtS2 <- qpeer(formula = y1 ~ X, excluded.instruments = ~ Z1 + Z21, Glist = G,

tau = tau, structural = TRUE)

summary(QtS2)

## Formula: y1 ~ X

## Excluded instruments: ~Z1 + Z21

##

## Model: Structural

## Estimator: IV

## Fixed effects: No

## Quantile type: 7

## Quantile levels (4): 0 0.3333333 0.6666667 1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## y1_q(spillover) 0.7017232 0.0107225 65.44387 <2e-16 ***

## y1_q(conformity) -0.0019961 0.0128852 -0.15492 0.8769

## y1_q(total) 0.6997271 0.0050583 138.33252 <2e-16 ***

## y1_q1 0.1071606 0.0092926 11.53187 <2e-16 ***

## y1_q2 0.2241725 0.0220427 10.16990 <2e-16 ***

## y1_q3 0.2252736 0.0290460 7.75576 8.882e-15 ***

## y1_q4 0.1431203 0.0126146 11.34556 <2e-16 ***

## (Intercept) 1.9830049 0.0311950 63.56812 <2e-16 ***

## XX1 -0.4903197 0.0185511 -26.43082 <2e-16 ***

## XX2 1.0139227 0.0128029 79.19507 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: IID, sigma (isolated): 0.41916, (non-isolated): 0.39919

## R-Squared: 0.98845, Adjusted R-squared: 0.9884

## Degree of freedoms of residuals: 1492

QtS3 <- qpeer(formula = y2 ~ X, excluded.instruments = ~ Z1, Glist = G,

tau = tau, structural = TRUE)

summary(QtS3)

## Formula: y2 ~ X

## Excluded instruments: ~Z1

##

## Model: Structural

## Estimator: IV

## Fixed effects: No

## Quantile type: 7

## Quantile levels (4): 0 0.3333333 0.6666667 1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## y2_q(spillover) 0.5091806 0.0098809 51.53171 <2e-16 ***

## y2_q(conformity) 0.1936946 0.0111003 17.44942 <2e-16 ***

## y2_q(total) 0.7028752 0.0067731 103.77439 <2e-16 ***

## y2_q1 0.1082781 0.0196486 5.51072 3.574e-08 ***

## y2_q2 0.1735618 0.0375071 4.62743 3.702e-06 ***

## y2_q3 0.3303373 0.0436932 7.56038 4.019e-14 ***

## y2_q4 0.0906980 0.0174437 5.19946 1.999e-07 ***

## (Intercept) 2.0264225 0.0313213 64.69787 <2e-16 ***

## XX1 -0.4976590 0.0186262 -26.71822 <2e-16 ***

## XX2 0.9915772 0.0128547 77.13725 <2e-16 ***
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## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: IID, sigma (isolated): 0.42086, (non-isolated): 0.40297

## R-Squared: 0.9836, Adjusted R-squared: 0.98352

## Degree of freedoms of residuals: 1492

QtS4 <- qpeer(formula = y2 ~ X, excluded.instruments = ~ Z1 + Z22, Glist = G,

tau = tau, structural = TRUE)

summary(QtS4)

## Formula: y2 ~ X

## Excluded instruments: ~Z1 + Z22

##

## Model: Structural

## Estimator: IV

## Fixed effects: No

## Quantile type: 7

## Quantile levels (4): 0 0.3333333 0.6666667 1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## y2_q(spillover) 0.5092433 0.0085605 59.48758 <2e-16 ***

## y2_q(conformity) 0.1887169 0.0108015 17.47143 <2e-16 ***

## y2_q(total) 0.6979602 0.0051750 134.87172 <2e-16 ***

## y2_q1 0.0979787 0.0104183 9.40450 <2e-16 ***

## y2_q2 0.2419056 0.0244763 9.88325 <2e-16 ***

## y2_q3 0.2299815 0.0300611 7.65047 1.998e-14 ***

## y2_q4 0.1280944 0.0126259 10.14534 <2e-16 ***

## (Intercept) 2.0264225 0.0313213 64.69787 <2e-16 ***

## XX1 -0.4976590 0.0186262 -26.71822 <2e-16 ***

## XX2 0.9915772 0.0128547 77.13725 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: IID, sigma (isolated): 0.42086, (non-isolated): 0.39219

## R-Squared: 0.98476, Adjusted R-squared: 0.98468

## Degree of freedoms of residuals: 1492

In the new results, the estimates appear reliable. For the dependent variable y1, the

conformity parameter is not significant, as the data were simulated under the assumption of

complementarity.

The qpeer function offers several useful options, including the ability to change the type of

GMM estimator, control for subnet fixed effects, and account for heteroskedasticity. The GMM

estimator type is specified using the estimator argument. The default value, "IV", corresponds

to the standard instrumental variables (IV) estimator. It is also possible to use the GMM

estimator with the identity matrix as the weighting matrix (estimator = "gmm.identity")

or with the optimal GMM weighting matrix (estimator = "gmm.optimal"). Jackknife IV

estimators (type 1 and type 2) can be obtained by setting estimator to "JIVE" and "JIVE2",

respectively. Jackknife estimators can be especially useful when the number of instruments is

large, as they help reduce the bias associated with the standard IV estimator (see Mikusheva

and Sun, 2022).

11



The fixed.effects argument specifies how to control for subnet fixed effects. The default

value is FALSE or "no", indicating that no fixed effects are included. Two levels of subnet

fixed effects are supported: a single fixed effect per subnet (fixed.effects = "join") and

separate fixed effects per subnet for isolated and non-isolated individuals (fixed.effects =

"separate").2 For the structural specification, fixed effects must be specified separately for

each type; that is, they are necessarily double per subnet.

The HAC argument specifies the assumed covariance structure of the errors. By default,

homoscedasticity is assumed (HAC = "iid"). To allow for heteroskedasticity at the individual

level, set HAC = "hetero". To account for heteroskedasticity and within-subnet correlation,

where errors may be correlated among individuals in the same subnet, set HAC = "cluster".

Below are examples of model specifications that incorporate these additional options.

QtR5 <- qpeer(formula = y1 ~ X, excluded.instruments = ~ Z1, Glist = G,

tau = tau, structural = FALSE, estimator = "gmm.optimal",

HAC = "cluster", fixed.effects = "separate")

summary(QtR5)

## Formula: y1 ~ X

## Excluded instruments: ~Z1

##

## Model: Reduced Form

## Estimator: GMM (Weight: Optimal)

## Fixed effects: Separate

## Quantile type: 7

## Quantile levels (4): 0 0.3333333 0.6666667 1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## y1_q(total) 0.6948934 0.0068706 101.14065 <2e-16 ***

## y1_q1 0.0877290 0.0072879 12.03759 <2e-16 ***

## y1_q2 0.3084151 0.0162134 19.02218 <2e-16 ***

## y1_q3 0.1438027 0.0208479 6.89770 5.285e-12 ***

## y1_q4 0.1549466 0.0062258 24.88778 <2e-16 ***

## XX1 -0.4980287 0.0033646 -148.01908 <2e-16 ***

## XX2 1.0131613 0.0026961 375.78856 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: Cluster

## R-Squared: 0.94142, Adjusted R-squared: 0.94122

## Degree of freedoms of residuals: 1397

QtS5 <- qpeer(formula = y2 ~ X, excluded.instruments = ~ Z1, Glist = G,

tau = tau, structural = TRUE, estimator = "gmm.optimal",

HAC = "cluster", fixed.effects = "separate")

summary(QtS5)

## Formula: y2 ~ X

2As discussed by Houndetoungan et al. (2024), including two fixed effects per subnetwork may also be necessary to identify peer
effects in unobserved effort, particularly when the dependent variable y is a proxy for that effort (e.g., academic effort and grade point
average).
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## Excluded instruments: ~Z1

##

## Model: Structural

## Estimator: GMM (Weight: Optimal)

## Fixed effects: Separate

## Quantile type: 7

## Quantile levels (4): 0 0.3333333 0.6666667 1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## y2_q(spillover) 0.4932639 0.0131382 37.54415 <2e-16 ***

## y2_q(conformity) 0.1918201 0.0105708 18.14615 <2e-16 ***

## y2_q(total) 0.6850840 0.0107011 64.01977 <2e-16 ***

## y2_q1 0.0965966 0.0161536 5.97989 2.233e-09 ***

## y2_q2 0.1960425 0.0301165 6.50947 7.542e-11 ***

## y2_q3 0.3016819 0.0237666 12.69353 <2e-16 ***

## y2_q4 0.0907630 0.0090673 10.00988 <2e-16 ***

## XX1 -0.4953984 0.0240556 -20.59385 <2e-16 ***

## XX2 0.9951260 0.0119127 83.53512 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: Cluster

## R-Squared: 0.93606, Adjusted R-squared: 0.9358

## Degree of freedoms of residuals: 1397

3.4 Specification tests

Several specification tests have been discussed above. These include weak instrument, endo-

geneity, and overidentification tests, which can be performed by setting diagnostic to TRUE in

the summary method. In this section, I discuss monotonicity tests for quantile peer effects, the

validity of type 2 instruments (see the discussion of the two types of instruments in Section

3.2), and an encompassing test to choose between competing sets of quantile levels.

These tests can be performed using the function qpeer.test. The argument which indi-

cates the type of test. For instance, which can take the values "uniform", "increasing", and

"decreasing" to test whether the λτ’s are uniform, increasing, or decreasing. The uniform

test is based on a standard Wald test for the equality of all λτ’s. The increasing and decreasing

tests are based on Kodde and Palm (1986). Here is an example:

qpeer.test(QtR1, which = "uniform")

## Testing quantile peer effect monotonicity

##

## Quantile peer effects:

## lambda_tau:

## Null hypothesis: lambda_tau is uniform

## Statistic: 34.14108 -- p-value: 1.85e-07

qpeer.test(QtS5, which = "decreasing")

## Testing quantile peer effect monotonicity

##

## Quantile peer effects:

## lambda_tau:

13



## Null hypothesis: lambda_tau is decreasing

## Statistic: 103.8681 -- p-value: 9.313e-10

The monotonicity tests can be useful for selecting a more parsimonious and precise model,

as they involve fewer parameters. For instance, if the null hypothesis that the λτ’s are uniform

is not rejected, then a standard LIM peer effect model can be used instead of a quantile

model. Moreover, if the λτ’s are monotonic (increasing or decreasing), the constant elasticity

of substitution (CES)-based model can be used (see Section 4).

To test the endogeneity of Z2, the argument which can be set to "wald" or "sargan". The

former is a Wald-style test that compares the estimates obtained using Z1 and Z2. If the null

hypothesis that both estimates are equal is not rejected, then Z2 is considered exogenous. The

latter is an overidentification-style test that assesses the validity of the additional information

in Z2 that is not captured by Z1. These tests can be used even if Z2 does not nest Z1. The

following examples illustrate the test:

qpeer.test(QtR1, QtR2, which = "wald")

## Testing instrument validity (Wald Test)

##

## Coefficient differences:

## Estimate Std. Error t value Pr(>|t|)

## y1_q1 -0.024569243 0.01443888 -1.70160328 0.08883 .

## y1_q2 0.019171220 0.02162470 0.88654275 0.3753

## y1_q3 0.001981867 0.02949487 0.06719361 0.9464

## y1_q4 -0.005054888 0.01278518 -0.39537101 0.6926

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## Null hypothesis: Z2 is exogenous

## Statistic: 6.242505 -- p-value: 0.1818

qpeer.test(QtS3, QtS4, which = "sargan")

## Testing instrument validity (J-Sargan Test)

## Null hypothesis: Z2 is exogenous

## Statistic: 36.65356 -- p-value: 0.002346

If the estimations based on the type 2 instrument set are not rejected, then the user can

report these estimates, as the type 2 instrument set is likely stronger.

Choosing suitable quantile levels is important. The qpeer.test function offers an encom-

passing test to choose between two competing specifications. Assume that the quantile peer

effect model is estimated with two sets of quantile levels, T1 and T2. By setting which to

"encompassing", one can test whether one model performs worse; that is, whether it fails to

replicate the features captured by the other. The model1 and model2 arguments are used to

specify both models estimated using the qpeer function. The null hypothesis is that model1 is

not worse.

# Estimating QtS6 with a misspecified tau

QtS6 <- qpeer(formula = y2 ~ X, excluded.instruments = ~ Z1, Glist = G,
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tau = c(0, 1), structural = TRUE, estimator = "gmm.optimal",

HAC = "cluster", fixed.effects = "separate")

qpeer.test(model1 = QtS6, model2 = QtS5, which = "encompassing")

## Encompassing Test

##

## Coefficients for delta:

## Estimate Std. Error t value Pr(>|t|)

## y2_q1 -0.2117737 0.02218823 -9.544417 <2e-16 ***

## y2_q2 0.1960425 0.03011652 6.509466 7.542e-11 ***

## y2_q3 0.3016819 0.02376660 12.693527 <2e-16 ***

## y2_q4 -0.1738932 0.01020049 -17.047529 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## Null hypothesis: Model 1 is not worse

## Robust F statistic: 191.9382 -- p-value: < 2e-16

## KP Wald rank statistic: 767.7528 -- p-value: < 2e-16

In the preceding code, the null hypothesis is that the specification which includes only the

minimum and the maximum as quantile levels does not perform worse. The hypothesis is re-

jected, which is expected since the data are simulated with more quantile levels. Consequently,

the model with only two quantile levels is not a good choice.

In the following code, the null hypothesis is that the model with four quantile levels is not

worse than the competing model with two quantile levels:

qpeer.test(model1 = QtS5, model2 = QtS6, which = "encompassing")

## Encompassing Test

##

## Coefficients for delta:

## Estimate Std. Error t value Pr(>|t|)

## y2_q1 -0.07234141 0.09291490 -0.7785771 0.4362

## y2_q2 -0.02245156 0.02794394 -0.8034500 0.4217

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## Null hypothesis: Model 1 is not worse

## Robust F statistic: 0.3806939 -- p-value: 0.6835

## KP Wald rank statistic: 0.7613879 -- p-value: 0.6834

Here, the null hypothesis is not rejected. However, this does not directly imply that

the other model with four quantiles is well specified. The model should also be compared

with alternative specifications that include, for example, five or six quantile levels. Indeed,

encompassing tests only compare two models and do not imply that one of them is correctly

specified. Of course, in this example, we know that the model with four quantile levels is

well specified because we know the data-generating process. Therefore, the model with four

quantile levels cannot be rejected, in general, against other well-specified competing models.
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4 CES-based peer effect models

This section introduces peer effect models with a CES social norm (see Boucher et al., 2024).

These models include a substitution parameter that determines whether peers with high or

low outcomes have a greater influence.

4.1 A brief description

Boucher et al. (2024) present a flexible social norm using the CES function. They replace the

average outcome among peers in the standard LIM model by the CES function. Specifically,

the model is given by:

yi =

(

∑
j ̸=i

gijy
ρ
j

)
1
ρ

+ x
′
iβ + εi. (4)

This model nests the standard LIM model. When ρ = 1, Equation (4) becomes the standard

LIM model. If ρ > 1, peers with high outcomes are more important in explaining yi. In

contrast, if ρ < 1, peers with low outcomes are more important. To see why, observe that the

CES function is strictly convex when ρ > 1 and strictly concave when ρ < 1. Therefore, peer

effects are either uniform, strictly increasing, or strictly decreasing in peer outcomes. This

model does not accommodate situations where only peers with high and low outcomes matter

while those with moderate outcomes are not influential, and vice versa.

When ρ → +∞, only the peer with the highest outcome matters; when ρ → −∞, only the

peer with the lowest outcome matters. These limiting cases correspond to models where the

average peer outcome is replaced by the maximum or minimum peer outcome (see Tao and

Lee, 2014; Tatsi, 2015).

As in Section 2, CES-based models can describe preferences that exhibit both spillover and

conformity effects. See, for example, Equations (2) and (3). The specification of the outcome for

isolated agents is similar to Equation (2), and that for non-isolated agents is similar to Equation

(3), with the CES function replacing the quantile functions. Disentangling conformity from

spillover effects requires the presence of isolated agents in the network.

4.2 Data simulation

The function cespee.sim can be used to simulate the CES-based peer effect model. This is

useful, for instance, for conducting counterfactual analyses involving changes in the intercept

(e.g., providing subsidies or introducing a tax), in the network structure, or in the exogenous

characteristics x.

The following code defines the sample size, simulates the network matrix and the matrix of

explanatory variables X, assigns values to the model parameters, and simulates the outcomes.

As in Section 3, I simulate two outcomes: one generated from the reduced-form model (with
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only spillovers) and the other from the structural model. One important limitation of the CES

specification is that it does not accommodate zero or negative outcomes. To simulate data from

this model, x
′
iβ + εi must be strictly positive for all i. Consequently, I increase the intercept in

β to ensure this condition is satisfied.

ngr <- 50 # Number of subnets

nvec <- rep(30, ngr) # Size of subnets

n <- sum(nvec)

# Network matrix

G <- lapply(1:ngr, function(z) {

Gz <- matrix(rbinom(nvec[z]ˆ2, 1, 0.3), nvec[z], nvec[z])

diag(Gz) <- 0

# Adding isolated nodes (important for the structural model)

niso <- sample(0:nvec[z], 1, prob = (nvec[z] + 1):1 / sum((nvec[z] + 1):1))

if (niso > 0) {

Gz[sample(1:nvec[z], niso), ] <- 0

}

Gz

rs <- rowSums(Gz); rs[rs == 0] <- 1

Gz <- Gz/rs # rowSums are normalized to one

})

X <- cbind(rnorm(n), rpois(n, 2)); colnames(X) <- c("X1", "X2")

lambda <- 0.55

lambda2 <- 0.2

beta <- c(2.5, -0.5, 1)

rho <- -3

# First dependent variable (reduced form without conformity)

y1 <- cespeer.sim(formula = ~ X, Glist = G, rho = rho,

lambda = lambda, beta = beta, structural = FALSE,

epsilon = rnorm(n, 0, 0.4))

y1 <- y1$y #cespeer.sim returns a list of several object including y

# Second dependent variable (structural form with conformity)

y2 <- cespeer.sim(formula = ~ X, Glist = G, rho = rho,

lambda = c(lambda2, lambda), beta = beta,

structural = TRUE, epsilon = rnorm(n, 0, 0.4))

y2 <- y2$y
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4.3 Estimation

The model can be estimated using the function cespeer. As suggested by Boucher et al. (2024),

the instrument for the social norm can be constructed using an exogenous prediction of the

outcome. This prediction can be obtained from a simple linear regression of the outcome on

the exogenous characteristics, as shown in the following code:

yhat1 <- fitted(lm(y1 ~ X))

yhat2 <- fitted(lm(y2 ~ X))

Using the function cespeer, the exogenous prediction can be specified via the instrument

argument. The remaining arguments are similar to those of the qpeer function, except that the

quantile level vector tau is not required. Additionally, the function includes a fixed.effects

argument to indicate the type fixed effects, and a HAC argument to account for heteroskedastic-

ity and within-group correlation in the error terms.

cesR1 <- cespeer(formula = y1 ~ X, instrument = ~ yhat1, Glist = G,

structural = FALSE)

summary(cesR1)

## Formula: y1 ~ X

## Excluded instrument: ~yhat1

##

## Model: Reduced Form

## Fixed effects: No

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## rho -2.7131121 0.5954264 -4.55659 5.199e-06 ***

## G:y1 0.5410805 0.0139436 38.80481 <2e-16 ***

## (Intercept) 2.4920126 0.0223604 111.44778 <2e-16 ***

## XX1 -0.4842631 0.0103002 -47.01476 <2e-16 ***

## XX2 1.0089103 0.0072483 139.19219 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: IID, sigma: 0.39732

## CES parameter -- testing whether rho = 1: prob = 0

cesS1 <- cespeer(formula = y2 ~ X, instrument = ~ yhat2, Glist = G,

structural = TRUE)

summary(cesS1)

## Formula: y2 ~ X

## Excluded instrument: ~yhat2

##

## Model: Structural

## Fixed effects: No

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## rho -2.6629609 0.4488155 -5.93331 2.969e-09 ***

## G(spillover):y2 0.3410144 0.0093586 36.43870 <2e-16 ***
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## G(conformity):y2 0.2061553 0.0111442 18.49894 <2e-16 ***

## G(total):y2 0.5471697 0.0113477 48.21846 <2e-16 ***

## (Intercept) 2.4685308 0.0307428 80.29623 <2e-16 ***

## XX1 -0.4734778 0.0168873 -28.03744 <2e-16 ***

## XX2 1.0118922 0.0120585 83.91545 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: IID, sigma (isolated): 0.40917, (non-isolated): 0.39826

## CES parameter -- testing whether rho = 1: prob = 0

The estimates appear reasonable, including the estimate of the CES parameter ρ. The output

of the summary function includes a test of whether the ρ parameter is equal to one; that is,

whether the standard LIM model can be used instead of the CES specification. As expected,

the null hypothesis is rejected, since the data were simulated by setting ρ = −3.

Since ρ < 1, peers with low outcomes play a more important role in explaining agent

outcomes. For instance, if the user were to estimate a quantile peer effect model on the same

data, the function qpeer.test can be used to test whether the λτ’s are decreasing:

Z <- qpeer.inst(formula = ~ X, Glist = G, tau = seq(0, 1, 0.1),

max.distance = 2, checkrank = TRUE)$instruments

QtR1 <- qpeer(formula = y1 ~ X, excluded.instruments = ~ Z, Glist = G,

tau = seq(0, 1, 1/3))

qpeer.test(QtR1, which = "decreasing")

## Testing quantile peer effect monotonicity

##

## Quantile peer effects:

## lambda_tau:

## Null hypothesis: lambda_tau is decreasing

## Statistic: 0.01424782 -- p-value: 0.8155

The null hypothesis is not rejected, suggesting that the CES model can be used in this case

to analyze the outcome. The CES model involves fewer parameters and thus provides more

precise estimates than the quantile model.

5 Other specifications

I discuss two important functions in this section for estimating other specifications of peer

effect models. The first function is linpeer, which estimates the standard LIM model. The

second function is genpeer, which allows the user to define their own social norm.

For the standard LIM model, instruments can be GX when the model does not include

contextual effects, or G2X when it does (see Bramoullé et al., 2009). It is also possible to

include higher powers of G to strengthen the instruments (see Houndetoungan and Maoude,

2024). To compute GkX for k ≥ 1, I use the function peer.avg from the PartialNetwork

package (Boucher and Houndetoungan, 2024). In the following code, I use both GX and G2X

as instruments.
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library(PartialNetwork)

GX <- peer.avg(G, X)

GGX <- peer.avg(G, GX)

Ot1 <- linpeer(formula = y2 ~ X, excluded.instruments = ~ GX + GGX, Glist = G,

structural = TRUE, estimator = "gmm.optimal",

fixed.effects = "separate", HAC = "cluster")

summary(Ot1, diagnostic = TRUE)

## Formula: y2 ~ X

## Excluded instruments: ~GX + GGX

##

## Model: Structural

## Estimator: GMM (Weight: Optimal)

## Fixed effects: Separate

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## G(spillover):y2 0.2986862 0.0479851 6.22456 4.829e-10 ***

## G(conformity):y2 0.2103134 0.0122175 17.21408 <2e-16 ***

## G(total):y2 0.5089996 0.0458278 11.10678 <2e-16 ***

## XX1 -0.4730118 0.0195131 -24.24068 <2e-16 ***

## XX2 1.0158273 0.0132346 76.75554 <2e-16 ***

##

## Diagnostic tests:

## df1 df2 statistic p-value

## Weak instruments 4 910 1410.01402 <2e-16 ***

## Kleibergen-Paap rk Wald 4 NA 5640.05609 <2e-16 ***

## Wu-Hausman 1 912 0.35749 0.5501

## Hansen J 3 NA 10.21764 0.0168 *

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: Cluster

## R-Squared: 0.91298, Adjusted R-squared: 0.91281

## Degree of freedoms of residuals: 1398

Furthermore, the package provides the generic function genpeer, which allows users to

define their own endogenous variables. This option is useful for estimating, for example, the

effects of quantiles among girl and boy peers separately, combining average peer effects with

quantile peer effects in the same model, or specifying other custom social norms.

The endogenous.variables argument must be specified as a formula that includes the

desired endogenous variables. The example below illustrates how to estimate peer effects

using both the average outcome of peers and the minimum and maximum peer outcomes.

Gy2 <- peer.avg(G, y2)

qy2 <- qpeer.inst(formula = y2 ~ 1, Glist = G, tau = c(0, 1))$qy #min and max

Ot2 <- genpeer(formula = y2 ~ X, excluded.instruments = ~ Z + GX + GGX,

endogenous.variables = ~ Gy2 + qy2, Glist = G, structural = TRUE,

estimator = "gmm.optimal", fixed.effects = "separate",

HAC = "cluster") # includes average, min, and max of peers
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summary(Ot2, diagnostic = TRUE)

## Formula: y2 ~ X

## Endogenous variables: ~Gy2 + qy2

## Excluded instruments: ~Z + GX + GGX

##

## Model: Structural

## Estimator: GMM (Weight: Optimal)

## Fixed effects: Separate

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## Peers(conformity) 0.2047372 0.0111897 18.29692 <2e-16 ***

## Gy2 0.2163957 0.0117843 18.36303 <2e-16 ***

## qy2y2_q1 0.3240732 0.0182042 17.80211 <2e-16 ***

## qy2y2_q2 0.0019779 0.0058075 0.34058 0.7334

## XX1 -0.4730118 0.0195131 -24.24068 <2e-16 ***

## XX2 1.0158273 0.0132346 76.75554 <2e-16 ***

##

## Diagnostic tests:

## df1 df2 statistic p-value

## Weak instruments (Gy2) 48 866 52845.47792 <2e-16 ***

## Weak instruments (qy2y2_q1) 48 866 14880.91108 <2e-16 ***

## Weak instruments (qy2y2_q2) 48 866 3651.82935 <2e-16 ***

## Kleibergen-Paap rk Wald 46 NA 8361.89482 <2e-16 ***

## Wu-Hausman 3 908 3.80888 0.009923 **

## Hansen J 45 NA 49.00000 0.3158

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## HAC: Cluster

## R-Squared: 0.93894, Adjusted R-squared: 0.93874

## Degree of freedoms of residuals: 1396

6 Conclusion

Thank you for reading this documentation. If you encounter any issues, please report them

via the Issues page on GitHub. If you use QuantilePeer in your research or publications,

please cite it. You can run citation("QuantilePeer") in R to obtain the citation information,

including the BibTEX entry for LATEX users. Please also cite the paper associated with the

package (Houndetoungan, 2025).
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