
Package ‘RobAStBase’
September 2, 2024

Version 1.2.6

Date 2024-08-29

Title Robust Asymptotic Statistics

Description Base S4-classes and functions for robust asymptotic statistics.

Depends R(>= 3.4), methods, rrcov, distr(>= 2.8.0), distrEx(>= 2.8.0),
distrMod(>= 2.8.1), RandVar(>= 1.2.0)

Suggests ROptEst(>= 1.2.0), RUnit(>= 0.4.26)

Imports startupmsg, graphics, grDevices, stats

ByteCompile yes

License LGPL-3

Encoding UTF-8

URL https://r-forge.r-project.org/projects/robast/

LastChangedDate {$LastChangedDate: 2024-08-29 18:14:00 +0200 (Do, 29.
Aug 2024) $}

LastChangedRevision {$LastChangedRevision: 1306 $}

VCS/SVNRevision 1305

NeedsCompilation no

Author Matthias Kohl [cre, cph, aut],
Peter Ruckdeschel [aut, cph],
Mykhailo Pupashenko [ctb] (contributed wrapper functions for diagnostic
plots),

Gerald Kroisandt [ctb] (contributed testing routines),
R Core Team [ctb, cph] (for source file 'format.perc')

Maintainer Matthias Kohl <Matthias.Kohl@stamats.de>

Repository CRAN

Date/Publication 2024-09-02 09:40:02 UTC

1

https://r-forge.r-project.org/projects/robast/

2 Contents

Contents
RobAStBase-package . 3
ALEstimate-class . 4
BdStWeight-class . 7
biastype-methods . 8
BoundedWeight-class . 8
checkIC . 9
ComparePlot . 11
comparePlot-methods . 12
ContIC . 18
ContIC-class . 20
ContNeighborhood . 22
ContNeighborhood-class . 23
cutoff . 24
cutoff-class . 25
ddPlot-methods . 26
evalIC . 30
FixRobModel . 31
FixRobModel-class . 32
generateIC . 33
generateIC.fct-methods . 34
getBiasIC . 35
getBoundedIC . 36
getFiRisk . 37
getRiskFctBV-methods . 38
getRiskIC . 39
getweight-methods . 42
HampelWeight-class . 43
HampIC-class . 45
IC . 46
IC-class . 48
InfluenceCurve . 49
InfluenceCurve-class . 50
InfoPlot . 52
infoPlot . 53
InfRobModel . 59
InfRobModel-class . 60
interpolRisk-class . 61
kStepEstimate-class . 62
kStepEstimator . 64
kStepEstimator.start-methods . 67
locMEstimator . 68
makeIC . 69
masked-methods . 72
MEstimate-class . 73
movToRef-methods . 74
Neighborhood-class . 76

RobAStBase-package 3

normtype-methods . 77
oneStepEstimator . 77
optIC . 79
OptionalInfluenceCurve-class . 80
outlyingPlotIC . 81
plot-methods . 84
PlotIC . 90
qqplot . 91
returnlevelplot . 94
RobAStBaseMASK . 96
RobAStBaseOptions . 97
RobAStControl-class . 98
RobModel-class . 99
RobWeight-class . 100
samplesize-methods . 101
TotalVarIC . 101
TotalVarIC-class . 103
TotalVarNeighborhood . 105
TotalVarNeighborhood-class . 106
UncondNeighborhood-class . 107

Index 108

RobAStBase-package Robust Asymptotic Statistics

Description

Base S4-classes and functions for robust asymptotic statistics.

Details

Package: RobAStBase
Version: 1.2.6
Date: 2024-08-29
Depends: R(>= 3.4), methods, rrcov, distr(>= 2.8.0), distrEx(>= 2.8.0), distrMod(>= 2.8.1),RandVar(>= 1.2.0)
Suggests: ROptEst(>= 1.2.0), RUnit(>= 0.4.26)
Imports: startupmsg, graphics, grDevices, stats
ByteCompile: yes
Encoding: latin1
License: LGPL-3
URL: https://r-forge.r-project.org/projects/robast/
VCS/SVNRevision: 1305

4 ALEstimate-class

Package versions

Note: The first two numbers of package versions do not necessarily reflect package-individual
development, but rather are chosen for the RobAStXXX family as a whole in order to ease updating
"depends" information.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>
Maintainer: Matthias Kohl <matthias.kohl@stamats.de>

References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. See also https://www.stamats.de/wp-content/uploads/2018/04/ThesisMKohl.pdf

See Also

distr-package, distrEx-package, distrMod-package

Examples

library(RobAStBase)
some L2 differentiable parametric family from package distrMod, e.g.
B <- BinomFamily(size = 25, prob = 0.25)
classical optimal IC
IC0 <- optIC(model = B, risk = asCov())
plot(IC0) # plot IC
checkIC(IC0, B)

ALEstimate-class ALEstimate-class.

Description

Class of asymptotically linear estimates.

Details

The (return value) class of an estimator is of class ALEstimate if it is asymptotically linear; then
it has an influence function (implemented in slot pIC) and so all the diagnostics for influence func-
tions are available; in addition it is asymptotically normal, so we can (easily) deduce asymp-
totic covariances, hence may use these in confidence intervals; in particular, the return values
of kStepEstimator oneStepEstimator (and roptest, robest, RMXEstimator, MBREstimator,
OBREstimator, OMSEstimator in package ’ROptEst’) are objects of (subclasses of) this class.

As the return value of CvMMDEEstimator (or MDEstimator with CvMDist or CvMDist2 as distance)
is asymptotically linear, there is class MCALEstimate extending MCEstimate by extra slots pIC
and asbias (only filled optionally with non-NULL values). Again all the diagnostics for influence

ALEstimate-class 5

functions are then available. Classes ML.ALEstimate and class CvMMD.ALEstimate are nominal
subclasses of class MCALEstimate, nominal in the sense that they have no extra slots, but they
might have particular methods later on.

Helper method getPIC by means of the estimator class, and, in case of estimators of class CvMMDEstimate,
also the name (in slot name) produces the (partial) influence function: calling .CvMMDCovariance
– either directly or through wrapper .CvMMDCovarianceWithMux. This is used in the correspond-
ing .checkEstClassForParamFamily method, which coerces object from class "MCEstimate"
to "MCALEstimate".

Objects from the Class

Objects can be created by calls of the form new("ALEstimate", ...).

Slots

name Object of class "character": name of the estimator.

estimate Object of class "ANY": estimate.

estimate.call Object of class "call": call by which estimate was produced.

samplesize object of class "numeric" — the samplesize (only complete cases are counted) at
which the estimate was evaluated.

completecases object of class "logical" — complete cases at which the estimate was evaluated.

asvar object of class "OptionalNumericOrMatrix" which may contain the asymptotic (co)variance
of the estimator.

asbias Optional object of class "numeric": asymptotic bias.

pIC Optional object of class InfluenceCurve: influence curve.

nuis.idx object of class "OptionalNumeric": indices of estimate belonging to the nuisance
part.

fixed object of class "OptionalNumeric": the fixed and known part of the parameter

Infos object of class "matrix" with two columns named method and message: additional infor-
mations.

trafo object of class "list": a list with components fct and mat (see below).

untransformed.estimate Object of class "ANY": untransformed estimate.

untransformed.asvar object of class "OptionalNumericOrMatrix" which may contain the asymp-
totic (co)variance of the untransformed estimator.

Extends

Class ALEstimate extends class "Estimate", directly. Class MCALEstimate extends classes "ALEstimate",
and "MCEstimate" directly. Class ML.ALEstimate extends classes "ALEstimate", and "MLEstimate"
directly. Class CvM.ALEstimate extends classes "ALEstimate", and "CvMMDEstimate" directly.
The last two classes are to be used for method dispatch, later; they have an identical slot structure
to class MCALEstimate.

6 ALEstimate-class

Methods

pIC signature(object = "ALEstimate"): accessor function for slot pIC.
show signature(object = "ALEstimate")

confint signature(object = "ALEstimate", method = "missing"): compute asymptotic (LAN-
based) confidence interval neglecting any bias.

confint signature(object = "ALEstimate", method = "symmetricBias"): compute asymptotic
(LAN-based) confidence interval incorporating bias symmetrically.

confint signature(object = "ALEstimate", method = "onesidedBias"): compute asymptotic
(LAN-based) confidence interval incorporating bias one-sided; i.e., positive or negative, re-
spectively.

confint signature(object = "ALEstimate", method = "asymmetricBias"): compute asymptotic
(LAN-based) confidence interval incorporating bias asymmetrically.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de> and Peter Ruckdeschel <Peter.Ruckdeschel@uni-oldenburg.de>

See Also

Estimate-class

Examples

prototype
new("ALEstimate")

data example
set.seed(123)
x <- rgamma(50, scale = 0.5, shape = 3)

parametric family of probability measures
G <- GammaFamily(scale = 1, shape = 2)

mle <- MLEstimator(x,G)
(picM <- pIC(mle))

Kolmogorov(-Smirnov) minimum distance estimator
ke <- KolmogorovMDEstimator(x = x, ParamFamily = G)
pIC(ke) ## gives NULL

von Mises minimum distance estimator with default mu

to save time for CRAN
system.time(me <- CvMMDEstimator(x = x, ParamFamily = G))
str(me@pIC) ## a call
system.time(pIC0 <- pIC(me))
str(me@pIC) ## now filled

BdStWeight-class 7

BdStWeight-class Robust Weight classes for bounded, standardized weights

Description

Classes for bounded, robust, standardized weights.

Objects from the Class

Objects can be created by calls of the form new("BdStWeight", ...); to fill slot weight, you will
use the generating functions getweight and minbiasweight.

Slots

name Object of class "character"; inherited from class RobWeight.

weight Object of class "function" — the weight function; inherited from class RobWeight.

clip Object of class "numeric" — clipping bound(s); inherited from class BoundedWeight.

stand Object of class "matrix" — standardization.

Extends

Class "RobWeight", via class "BoundedWeight". Class "BoundedWeight", directly.

Methods

stand signature(object = "BdStWeight"): accessor function for slot stand.

stand<- signature(object = "BdStWeight", value = "matrix"): replacement function for slot
stand. This replacement method should be used with great care, as the slot weight is not
simultaneously updated and hence, this may lead to inconsistent objects.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

BoundedWeight-class, RobWeight-class, IC, InfluenceCurve-class

8 BoundedWeight-class

Examples

prototype
new("BdStWeight")

biastype-methods Methods for Function biastype in Package ‘RobAStBase’

Description

biastype-methods

Methods

biastype signature(object = "interpolrisk"): returns the slot biastype of an object of class
"interpolrisk".

Examples

myrisk <- MBRRisk(samplesize=100)
biastype(myrisk)

BoundedWeight-class Robust Weight classes for bounded weights

Description

Classes for bounded, robust weights.

Objects from the Class

Objects can be created by calls of the form new("BoundedWeight", ...).

Slots

name Object of class "character"; inherited from class RobWeight.

weight Object of class "function" — the weight function; inherited from class RobWeight.

clip Object of class "numeric" — clipping bound(s).

Extends

Class "RobWeight", directly.

checkIC 9

Methods

clip signature(x1 = "BoundedWeight"): accessor function for slot clip.

clip<- signature(object = "BoundedWeight", value = "numeric"): replacement function for
slot clip. This replacement method should be used with great care, as the slot weight is not
simultaneously updated and hence, this may lead to inconsistent objects.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

RobWeight-class, IC, InfluenceCurve-class

Examples

prototype
new("BoundedWeight")

checkIC Generic Function for Checking ICs

Description

Generic function for checking centering and Fisher consistency of ICs.

Usage

checkIC(IC, L2Fam, ...)
S4 method for signature 'IC,missing'
checkIC(IC, out = TRUE, ..., diagnostic = FALSE)
S4 method for signature 'IC,L2ParamFamily'
checkIC(IC, L2Fam, out = TRUE,..., diagnostic = FALSE)

10 checkIC

Arguments

IC object of class "IC"

L2Fam L2-differentiable family of probability measures.

out logical: Should the values of the checks be printed out?

... additional parameters

diagnostic logical; if TRUE and out==TRUE, diagnostic information on the integration is
printed; independent of out, if diagnostic==TRUE, this information is returned
as attribute diagnostic of the return value. .

Details

The precisions of the centering and the Fisher consistency are computed.

Diagnostics on the involved integrations are available if argument diagnostic is TRUE. Then there
is attribute diagnostic attached to the return value, which may be inspected and accessed through
showDiagnostic and getDiagnostic.

Value

The maximum deviation from the IC properties is returned.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

L2ParamFamily-class, IC-class

Examples

IC1 <- new("IC")
checkIC(IC1)

ComparePlot 11

ComparePlot Wrapper function for function comparePlot

Description

The wrapper ComparePlot (capital C!) takes most of arguments to function comparePlot (lower
case c!) by default and gives a user possibility to run the function with low number of arguments.

Usage

ComparePlot(IC1, IC2, y, ..., IC3 = NULL, IC4 = NULL,
alpha.trsp = 100, with.legend = TRUE, rescale = FALSE,
withCall = TRUE)

Arguments

IC1 object of class IC

IC2 object of class IC

IC3 object of class IC

IC4 object of class IC

y optional data argument — for plotting observations into the plot

... additional parameters (in particular to be passed on to plot)

alpha.trsp the transparency argument (0 to 100) for ploting the data

with.legend the flag for showing the legend of the plot

rescale the flag for rescaling the axes for better view of the plot

withCall the flag for the call output

Value

invisible(retV) where retV is the return value of the respective call to the full-fledged function
comparePlot with the additional item wrapcall with the call to the wrapper ComparePlot and
wrappedcall the call to to the full-fledged function comparePlot.

Details

Calls comparePlot with suitably chosen defaults; if withCall == TRUE, the call to comparePlot,
i.e., item wrappedcall of the (hidden) return value, is printed.

Examples

Gamma
fam <- GammaFamily()
rfam <- InfRobModel(fam, ContNeighborhood(0.5))
IC1 <- optIC(model = fam, risk = asCov())
IC2 <- makeIC(list(function(x)sin(x),function(x)x^2), L2Fam = fam)

12 comparePlot-methods

Y <- distribution(fam)
y <- r(Y)(100)
ComparePlot(IC1, IC2, y, withCall = TRUE)

comparePlot-methods Compare - Plots

Description

Plots 2-4 influence curves to the same model.

Usage

comparePlot(obj1, obj2, ...)
S4 method for signature 'IC,IC'
comparePlot(obj1, obj2, obj3 = NULL, obj4 = NULL, data = NULL,

..., withSweave = getdistrOption("withSweave"),
forceSameModel = FALSE, main = FALSE, inner = TRUE,
sub = FALSE, col = par("col"), lwd = par("lwd"), lty,
col.inner = par("col.main"), cex.inner = 0.8,
bmar = par("mar")[1], tmar = par("mar")[3],
with.automatic.grid = TRUE, with.legend = FALSE,
legend = NULL, legend.bg = "white",
legend.location = "bottomright", legend.cex = 0.8,
withMBR = FALSE, MBRB = NA, MBR.fac = 2, col.MBR = par("col"),
lty.MBR = "dashed", lwd.MBR = 0.8, x.vec = NULL,
scaleX = FALSE, scaleX.fct, scaleX.inv, scaleY = FALSE,
scaleY.fct = pnorm, scaleY.inv = qnorm, scaleN = 9,
x.ticks = NULL, y.ticks = NULL, mfColRow = TRUE,
to.draw.arg = NULL,
cex.pts = 1, cex.pts.fun = NULL, col.pts = par("col"),
pch.pts = 19, cex.npts = 1, cex.npts.fun = NULL,
col.npts = par("col"), pch.npts = 20, jitter.fac = 1,
with.lab = FALSE, cex.lbs = 1, adj.lbs = c(0, 0),
col.lbs = col.pts, lab.pts = NULL, lab.font = NULL,
alpha.trsp = NA, which.lbs = NULL, which.Order = NULL,
which.nonlbs = NULL, attr.pre = FALSE, return.Order = FALSE,
withSubst = TRUE)

Arguments

obj1 object of class "InfluenceCurve"

obj2 object of class "InfluenceCurve" to be compared with obj1

obj3 optional: object of class "InfluenceCurve" to be compared with obj1

obj4 optional: object of class "InfluenceCurve" to be compared with obj1

data optional data argument — for plotting observations into the plot;

comparePlot-methods 13

withSweave logical: if TRUE (for working with Sweave) no extra device is opened

forceSameModel logical; shall we check / enforce that the model of the ICs obj1, obj2, obj3,
and obj4 be the same?

main logical: is a main title to be used? or
just as argument main in plot.default.

col color[s] of ICs in arguments obj1 [,. . . ,obj4].

lwd linewidth[s] of ICs in arguments obj1 [,. . . ,obj4].

lty line-type[s] of ICs in arguments obj1 [,. . . ,obj4].

inner logical: do panels have their own titles? or
character vector of / cast to length ’number of plotted dimensions’; if argument
to.draw.arg is used, this refers to a vector of length length(to.draw.arg),
the actually plotted dimensions. For further information, see also description of
argument main in plot.default.

sub logical: is a sub-title to be used? or
just as argument sub in plot.default.

tmar top margin – useful for non-standard main title sizes

bmar bottom margin – useful for non-standard sub title sizes

cex.inner magnification to be used for inner titles relative to the current setting of cex; as
in par

col.inner character or integer code; color for the inner title
with.automatic.grid

logical; should a grid be plotted alongside with the ticks of the axes, automati-
cally? If TRUE a respective call to grid in argument panel.first is ignored.

with.legend logical; shall a legend be plotted?

legend either NULL or a list of length (number of plotted panels) of items which can be
used as argument legend in command legend.

legend.location

a valid argument x for legend — the place where to put the legend on the last
issued plot

legend.bg background color for the legend

legend.cex magnification factor for the legend

withMBR logical; shall horizontal lines with min and max of MBRE be plotted for com-
parison?

MBRB matrix (or NA); coerced by usual recycling rules to a matrix with as many rows
as plotted panels and with first column the lower bounds and the second column
the upper bounds for the respective coordinates (ideally given by the MBR-IC).

MBR.fac positive factor; scales the bounds given by argument MBRB

col.MBR color for the MBR lines; as usual col-argument;

lty.MBR line type for the MBR lines; as usual lty-argument;

lwd.MBR line width for the MBR lines; as usual lwd-argument;

14 comparePlot-methods

x.vec a numeric vector of grid points to evaluate the influence curve; by default, x.vec
is NULL; then the grid is produced automatically according to the distribution of
the IC. x.vec can be useful for usage with a rescaling of the x-axis to avoid that
the evaluation points be selected too unevenly (i.e. on an equally spaced grid
in the original scale, but then, after rescaling non-equally). The grid has to be
specified in original scale; i.e.; when used with rescaling, it should be chosen
non-equally spaced.

scaleX logical; shall X-axis be rescaled (by default according to the cdf of the underly-
ing distribution)?

scaleY logical; shall Y-axis be rescaled (by default according to a probit scale)?

scaleX.fct an isotone, vectorized function mapping the domain of the IC to [0,1]; if scaleX
is TRUE and scaleX.fct is missing, the cdf of the underlying observation dis-
tribution.

scaleX.inv the inverse function to scale.fct, i.e., an isotone, vectorized function mapping
[0,1] to the domain of the IC such that for any x in the domain,
scaleX.inv(scaleX.fct(x))==x; if scaleX is TRUE and scaleX.inv is miss-
ing, the quantile function of the underlying observation distribution.

scaleY.fct an isotone, vectorized function mapping for each coordinate the range of the
respective coordinate of the IC to [0,1]; defaulting to the cdf of N (0, 1); can
also be a list of functions with one list element for each of the panels to be plot.

scaleY.inv an isotone, vectorized function mapping for each coordinate the range [0,1] into
the range of the respective coordinate of the IC; defaulting to the quantile func-
tion of N (0, 1); can also be a list of functions with one list element for each of
the panels to be plot.

scaleN integer; defaults to 9; on rescaled axes, number of x and y ticks if drawn auto-
matically;

x.ticks numeric; defaults to NULL; (then ticks are chosen automatically); if non-NULL,
user-given x-ticks (on original scale);

y.ticks numeric; defaults to NULL; (then ticks are chosen automatically); if non-NULL,
user-given y-ticks (on original scale); can be a list with one (numeric or NULL)
item per panel

mfColRow shall default partition in panels be used — defaults to TRUE

to.draw.arg Either NULL (default; everything is plotted) or a vector of either integers (the
indices of the subplots to be drawn) or characters — the names of the subplots
to be drawn: these names are to be chosen either among the row names of the
trafo matrix rownames(trafo(eval(obj1@CallL2Fam)@param)) or if the last
expression is NULL a vector "dim<dimnr>", dimnr running through the number
of rows of the trafo matrix.

withSubst logical; if TRUE (default) pattern substitution for titles and lables is used; other-
wise no substitution is used.

col.pts color of the points of the data argument plotted; can be a vector or a matrix.
More specifically, if argument attr.pre is TRUE, it is recycled to fill a matrix
of dimension n by nIC (n the number of observations prior to any selection
and nIC the number of ICs plotted) where filling is done in order column first.
The columns are used for possibly different colors for the different ICs from

comparePlot-methods 15

arguments obj1, obj2, and, possibly obj3 and obj4. The selection done via
which.lbs and which.Order is then done afterwards and on this matrix; in
this case, argument col.npts is ignored. If attr.pre is FALSE, col.pts is
recycled to fill a matrix of dimension n.s by nIC where n.s is the number
of observations selected for labelling and refers to the index ordering after the
selection. Then argument col.npts deteremines the colors of the shown but
non-labelled observations as given in argument which.nonlbs.

pch.pts symbol of the points of the data argument plotted (may be a vector of length
nIC or a matrix, see col.pts).

cex.pts size of the points of the data argument plotted (may be a vector of length nIC
or a matrix, see col.pts).

cex.pts.fun rescaling function for the size of the points to be plotted; either NULL (default),
then log(1+abs(x)) is used for each of the rescalings, or a function which is
then used for each of the rescalings, or a list of functions; if it is a function or a
list of functions, if necessary it is recylced to length nIC * dim where dim is the
number of dimensions of the pICs to be plotted; in the index of this list, nIC is
incremented first; then dim.

col.npts color of the non-labelled points of the data argument plotted; (may be a vector
of length nIC the number of plotted pICs, i.e., one value for each pIC in argu-
ments obj1, obj2, and, if available, obj3 and obj4, or it can be a matrix nnlb
<- sum(which.nonlbs) by nIC, nnlb the number of non-labelled observations.

pch.npts symbol of the non-labelled points of the data argument plotted (may be a vector
of length nIC or a matrix, see col.npts).

cex.npts size of the non-labelled points of the data argument plotted (may be a vector of
length nIC or a matrix, see col.npts).

cex.npts.fun rescaling function for the size of the non-labelled points to be plotted; either
NULL (default), then log(1+abs(x)) is used for each of the rescalings, or a
function which is then used for each of the rescalings, or a list of functions; if it
is a function or a list of functions, if necessary it is recylced to length nIC * dim
where dim is the number of dimensions of the pICs to be plotted; in the index of
this list, nIC is incremented first; then dim.

lab.pts character or NULL; labels to be plotted to the observations; can be a vector of
length n, n the number of all observations prior to any selection with which.lbs,
which.Order; if lab.pts is NULL, observation indices are used.

with.lab logical; shall labels be plotted to the observations? (May be a vector of length
nIC, see col.pts – but not a matrix).

cex.lbs size of the labels; can be vectorized to an array of dim nlbs x nIC x npnl where
npnl is the number of plotted panels and nlbs the number of plotted labels; if it
is a vector, it is recylced in order labels then plotted ICs then panels.

col.lbs color of the labels; can be vectorized to a matrix of dim nlbs x nIC as col.pts.

adj.lbs adjustment of the labels; can be vectorized to an array of dim 2 x nIC x npnl,
npnl the number of plotted panels; if it is a vector, it is recycled in order (x,y)-
coords then ICs then panels.

lab.font font to be used for labels (may be a vector of length nIC, see with.lab).

16 comparePlot-methods

alpha.trsp alpha transparency to be added ex post to colors col.pch and col.lbl; if one-
dim and NA all colors are left unchanged. Otherwise, with usual recycling rules
alpha.trsp gets shorted/prolongated to length the data-symbols to be plotted.
Coordinates of this vector alpha.trsp with NA are left unchanged, while for
the remaining ones, the alpha channel in rgb space is set to the respective coor-
dinate value of alpha.trsp. The non-NA entries must be integers in [0,255] (0
invisible, 255 opaque).

jitter.fac jittering factor used in case of a DiscreteDistribution for plotting points
of the data argument in a jittered fashion (may be a vector of length 2, see
with.lab).

attr.pre logical; do graphical attributes for plotted data refer to indices prior (TRUE) or
posterior to selection via arguments which.lbs, which.Order, which.nonlbs
(FALSE)?

which.lbs either an integer vector with the indices of the observations to be plotted into
graph or NULL — then no observation is excluded.

which.Order for each of the given ICs, we order the observations (descending) according to
the norm given by the corresponding normtype(object); then which.Order
either is an integer vector with the indices of the ordered observations (remain-
ing after a possible reduction by argument which.lbs) to be plotted into graph
or NULL — then no (further) observation is excluded.

which.nonlbs indices of the observations which should be plotted but not labelled; either an
integer vector with the indices of the observations to be plotted into graph or
NULL — then all non-labelled observations are plotted.

return.Order logical; if TRUE, a list of length maximally four with order vectors is returned —
one for the ordering w.r.t. each of the given ICs; more specifically, the order of
the (remaining) observations given by their original index is returned (remain-
ing means: after a possible reduction by argument which.lbs, and ordering
is according to the norm given by normtype(object)); othervise we return
invisible() as usual.

... further arguments to be passed to plot

Details

Any parameters of plot.default may be passed on to this particular plot method.

For main-, inner, and subtitles given as arguments main, inner, and sub, top and bottom margins
are enlarged to 5 resp. 6 by default but may also be specified by tmar / bmar arguments. If main /
inner / sub are logical then if the respective argument is FALSE nothing is done/plotted, but if it is
TRUE, we use a default main title taking up the calling arguments in case of main, default inner titles
taking up the class and (named) parameter slots of arguments in case of inner, and a "generated
on <data>"-tag in case of sub. Of course, if main / inner / sub are character, this is used for the
title; in case of inner it is then checked whether it has correct length. If argument withSubst is
TRUE, in all title and axis lable arguments, the following patterns are substituted:

"%C1","%C2",["%C3", ["%C4"]] class of argument obj<i>, i=1,..4

"%A1","%A2",["%A3", ["%A4"]] deparsed argument obj<i>, i=1,..4

"%D" time/date-string when the plot was generated

comparePlot-methods 17

If argument ... contains argument ylim, this may either be as in plot.default (i.e. a vector of
length 2) or a vector of length 2*(number of plotted dimensions); in the case of longer length, these
are the values for ylim for the plotted dimensions of the IC, one pair for each dimension.

In addition, argument ... may contain arguments panel.first, panel.last, i.e., hook expres-
sions to be evaluated at the very beginning and at the very end of each panel (within the then valid
coordinates). To be able to use these hooks for each panel individually, they may also be lists of
expressions (of the same length as the number of panels and run through in the same order as the
panels).

Value

An S3 object of class c("plotInfo","DiagnInfo"), i.e., a list containing the information needed
to produce the respective plot, which at a later stage could be used by different graphic engines
(like, e.g. ggplot) to produce the plot in a different framework. A more detailed description will
follow in a subsequent version.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

L2ParamFamily-class, IC-class, plot

Examples

if(require(ROptEst)){

N0 <- NormLocationScaleFamily(mean=0, sd=1)
N0.Rob1 <- InfRobModel(center = N0, neighbor = ContNeighborhood(radius = 0.5))

IC1 <- optIC(model = N0, risk = asCov())
IC2 <- optIC(model = N0.Rob1, risk = asMSE())

comparePlot(IC1,IC2)

set.seed(12); data <- r(N0)(20)
comparePlot(IC1, IC2, data=data, with.lab = TRUE,

which.lbs = c(1:4,15:20),
which.Order = 1:6,
return.Order = TRUE)

don't test to reduce check time on CRAN

selection of subpanels for plotting

18 ContIC

par(mfrow=c(1,1))
comparePlot(IC1, IC2 ,mfColRow = FALSE, to.draw.arg=c("mean"),

panel.first= grid(),ylim=c(-4,4),xlim=c(-6,6))
matrix-valued ylim
comparePlot(IC1, IC2, panel.first= grid(),ylim=c(-4,4,0,4),xlim=c(-6,6))

x <- c(data,-12,10)
comparePlot(IC1, IC2, data=x, which.Order=10,

panel.first= grid(), ylim=c(-4,4,0,4), xlim=c(-6,6))

Y <- Chisq(df=1)* DiscreteDistribution(c(-1,1))
comparePlot(IC1, IC2, data=x, which.Order=10,

scaleX = TRUE, scaleX.fct=pnorm, scaleX.inv=qnorm,
scaleY = TRUE, scaleY.fct=p(Y), scaleY.inv=q.l(Y),
panel.first= grid(), ylim=c(-4,4,0,4), xlim=c(-6,6))

comparePlot(IC1, IC2, data=x, which.Order=10,
scaleX = TRUE, scaleX.fct=pnorm, scaleX.inv=qnorm,
scaleY = TRUE, scaleY.fct=p(Y), scaleY.inv=q.l(Y),
x.ticks = c(-Inf, -10, -1,0,1,10,Inf),
y.ticks = c(-Inf, -5, -1,0,1,5,Inf),
panel.first= grid(), ylim=c(-4,4,0,4), xlim=c(-6,6))

with use of trafo-matrix:
G <- GammaFamily(scale = 1, shape = 2)
explicitely transforming to
MASS parametrization:
mtrafo <- function(x){

nms0 <- names(c(main(param(G)),nuisance(param(G))))
nms <- c("shape","rate")
fval0 <- c(x[2], 1/x[1])
names(fval0) <- nms
mat0 <- matrix(c(0, -1/x[1]^2, 1, 0), nrow = 2, ncol = 2,

dimnames = list(nms,nms0))
list(fval = fval0, mat = mat0)}

G2 <- G
trafo(G2) <- mtrafo
G2
G2.Rob1 <- InfRobModel(center = G2, neighbor = ContNeighborhood(radius = 0.5))
system.time(IC1 <- optIC(model = G2, risk = asCov()))
system.time(IC2 <- optIC(model = G2.Rob1, risk = asMSE()))
system.time(IC2.i <- optIC(model = G2.Rob1, risk = asMSE(normtype=InfoNorm())))
system.time(IC2.s <- optIC(model = G2.Rob1, risk = asMSE(normtype=SelfNorm())))

comparePlot(IC1,IC2, IC2.i, IC2.s)

}

ContIC Generating function for ContIC-class

ContIC 19

Description

Generates an object of class "ContIC"; i.e., an influence curves η of the form

η = (AΛ− a)min(1, b/|AΛ− a|)

with clipping bound b, centering constant a and standardizing matrix A. Λ stands for the L2 deriva-
tive of the corresponding L2 differentiable parametric family which can be created via CallL2Fam.

Usage

ContIC(name, CallL2Fam = call("L2ParamFamily"),
Curve = EuclRandVarList(RealRandVariable(Map = c(function(x){x}),

Domain = Reals())),
Risks, Infos, clip = Inf, cent = 0, stand = as.matrix(1),
lowerCase = NULL, neighborRadius = 0, w = new("HampelWeight"),
normtype = NormType(), biastype = symmetricBias(),
modifyIC = NULL)

Arguments

name object of class "character".

CallL2Fam object of class "call": creates an object of the underlying L2-differentiable
parametric family.

Curve object of class "EuclRandVarList"

Risks object of class "list": list of risks; cf. RiskType-class.

Infos matrix of characters with two columns named method and message: additional
informations.

clip positive real: clipping bound.

cent real: centering constant

stand matrix: standardizing matrix

w HampelWeight: weight object

lowerCase optional constant for lower case solution.

neighborRadius radius of the corresponding (unconditional) contamination neighborhood.

biastype BiasType: type of the bias

normtype NormType: type of the norm

modifyIC object of class "OptionalFunction": function of four arguments: (1) L2Fam
an L2 parametric family (2) IC an optional influence curve, (3) withMakeIC a
logical argument whether to enforce the IC side conditions by makeIC, and (4)
... for arguments to be passed to calls to E in makeIC. Returns an object of class
"IC". This function is mainly used for internal computations!

Value

Object of class "ContIC"

20 ContIC-class

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

IC-class, ContIC , HampIC-class

Examples

IC1 <- ContIC()
plot(IC1)

ContIC-class Influence curve of contamination type

Description

Class of (partial) influence curves of contamination type; i.e., influence curves η of the form

η = (AΛ− a)min(1, b/|AΛ− a|)

with clipping bound b, centering constant a and standardizing matrix A. Λ stands for the L2
derivative of the corresponding L2 differentiable parametric family created via the call in the slot
CallL2Fam.

Objects from the Class

Objects can be created by calls of the form new("ContIC", ...). More frequently they are created
via the generating function ContIC, respectively via the method generateIC.

Slots

CallL2Fam: object of class "call": creates an object of the underlying L2-differentiable paramet-
ric family.

name: object of class "character"

Curve: object of class "EuclRandVarList"

modifyIC object of class "OptionalFunction": function of four arguments: (1) L2Fam an L2 para-
metric family (2) IC an optional influence curve, (3) withMakeIC a logical argument whether
to enforce the IC side conditions by makeIC, and (4) ... for arguments to be passed to calls
to E in makeIC. Returns an object of class "IC". This function is mainly used for internal
computations!

ContIC-class 21

Risks: object of class "list": list of risks; cf. RiskType-class.

Infos: object of class "matrix" with two columns named method and message: additional infor-
mations.

clip: object of class "numeric": clipping bound.

cent: object of class "numeric": centering constant.

stand: object of class "matrix": standardizing matrix.

weight: object of class "HampelWeight": weight function

biastype: object of class "BiasType": bias type (symmetric/onsided/asymmetric)

normtype: object of class "NormType": norm type (Euclidean, information/self-standardized)

lowerCase: object of class "OptionalNumeric": optional constant for lower case solution.

neighborRadius: object of class "numeric": radius of the corresponding (unconditional) contam-
ination neighborhood.

Extends

Class "HampIC", directly.
Class "IC", by class "HampIC".
Class "InfluenceCurve", by class "IC".

Methods

CallL2Fam<- signature(object = "ContIC"): replacement function for slot CallL2Fam.

cent signature(object = "ContIC"): accessor function for slot cent.

cent<- signature(object = "ContIC"): replacement function for slot cent.

clip signature(x1 = "ContIC"): accessor function for slot clip.

clip<- signature(object = "ContIC"): replacement function for slot clip.

stand<- signature(object = "ContIC"): replacement function for slot stand.

lowerCase<- signature(object = "ContIC"): replacement function for slot lowerCase.

neighbor signature(object = "ContIC"): generates an object of class "ContNeighborhood"
with radius given in slot neighborRadius.

generateIC signature(neighbor = "ContNeighborhood", L2Fam = "L2ParamFamily"): gener-
ate an object of class "ContIC". Rarely called directly.

show signature(object = "ContIC")

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

22 ContNeighborhood

See Also

IC-class, ContIC HampIC-class

Examples

IC1 <- new("ContIC")
plot(IC1)

ContNeighborhood Generating function for ContNeighborhood-class

Description

Generates an object of class "ContNeighborhood".

Usage

ContNeighborhood(radius = 0)

Arguments

radius non-negative real: neighborhood radius.

Value

Object of class "ContNeighborhood"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

ContNeighborhood-class

Examples

ContNeighborhood()

The function is currently defined as
function(radius = 0){

new("ContNeighborhood", radius = radius)
}

ContNeighborhood-class 23

ContNeighborhood-class

Contamination Neighborhood

Description

Class of (unconditional) contamination neighborhoods.

Objects from the Class

Objects can be created by calls of the form new("ContNeighborhood", ...). More frequently
they are created via the generating function ContNeighborhood.

Slots

type Object of class "character": “(uncond.) convex contamination neighborhood”.

radius Object of class "numeric": neighborhood radius.

Extends

Class "UncondNeighborhood", directly.
Class "Neighborhood", by class "UncondNeighborhood".

Methods

No methods defined with class "ContNeighborhood" in the signature.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

ContNeighborhood, UncondNeighborhood-class

Examples

new("ContNeighborhood")

24 cutoff

cutoff Generating function(s) for class ’cutoff’

Description

Generating function(s) for class cutoff.

Usage

cutoff(name = "empirical", body.fct0,
cutoff.quantile = 0.95,
norm = NormType(), QF, nsim = 100000)

cutoff.sememp(cutoff.quantile = 0.95)
cutoff.chisq(cutoff.quantile = 0.95)
cutoff.quant(qfct)

Arguments

name argument for name slot of cutoff object

body.fct0 a call generated by code wrapped to substitute resp. quote; the body of the
fct slot of the cutoff object

cutoff.quantile

numeric (in [0,1]); the corresponding slot value for the cutoff object

norm an object of class NormType – the norm/distance by which to produce the cutoff
- value.

nsim integer: the sample size used for determining the quantiles of (xτQx)1/2 for x
multivariate standard normal and Q a corresponding quadratic form

QF a quadratic (positive semidefinite, symmetric) matrix used as quadratic form

qfct a (nominal) quantile function

Details

cutoff generates a valid object of class "cutoff". As function slot fct may only have a formal ar-
gument data, the other arguments to determine the cutoff value, i.e. norm, QF, nsim, cutoff.quantile,
nsim have to enter the scope of this function by lexical scoping; now cutoff.quantile, norm, QF
are to be taken from the calling environment (not from the defining one), so we have delay evalu-
ation of the function body, which is why we assume it to be given wrapped into substitute resp.
quote. body.fct0 is by default (i.e. if argument body.fct0 is missing) set to
quote(quantile(slot(norm,"fct")(data), cutoff.quantile)), internally, i.e.; to an empiri-
cal quantile of the corresponding norms.

cutoff.sememp() is a helper function generating the theoretical (asymptotic) quantile of (the
square root of) a corresponding quadratic form, assuming multivariate normality; to determine this
quantile nsim simulations are used.

cutoff-class 25

cutoff.chisq() is a helper function generating the theoretical (asymptotic) quantile of (the square
root of) a (self-standardized) quadratic form, assuming multivariate normality; i.e.; a corresponding
quantile of a Chi-Square distribution.

cutoff.quant() is a helper function generating the theoretical quantile corresponding to the quan-
tile function qfct; if qfct is missing, it searches the caller environment for an object ..ICloc,
and if this exists it uses the respective model quantile function; the fallback is qnorm. At any rate,
if there is an object ..trf in the scope of the function it is used to transfer the quantile (after its
evaluation).

Value

Object of class "cutoff".

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

cutoff-class, ddPlot

Examples

cutoff()
cutoff.sememp()
cutoff.chisq()

cutoff-class Cutoff class for distance-distance plots

Description

Class of methods to determine cutoff point for distance-distance plots; used to derive other cutoff
methods later by method dispatch.

Objects from the Class

Objects could in principle be created by calls of the form new("cutoff", ...). More frequently
they are created via the generating function cutoff, respectively via the helper functions cutoff.sememp
and cutoff.chisq.

Slots

name: object of class "character"; defaults to "empirical" in prototype;

fct: an object of of class "function"; for this class layer, this function must only have one ar-
gument data (which may but need not be used to determine the cutoff point empirically); in
derived classes this restriction could be dropped, if corresponding special methods for ddPlot
are derived. Defaults to function(data) quantile(data).

26 ddPlot-methods

cutoff.quantile: Object of class "numeric": a probability (in [0,1]) to determine the respective
quantile (empirical or theoretical) to plot the cutoff line; defaults to 0.95 in prototype;

Methods

cutoff.quantile signature(object = "cutoff"): accessor function for slot cutoff.quantile.

cutoff.quantile<- signature(object = "cutoff"): replacement function for slot cutoff.quantile.

fct signature(object = "cutoff"): accessor function for slot fct.

name signature(object = "cutoff"): accessor function for slot name.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

ddPlot, outlyingPlotIC cutoff

Examples

cutoff()

ddPlot-methods Methods for Function ddPlot in Package ‘RobAStBase’

Description

ddPlot-methods

Usage

ddPlot(data, dist.x, dist.y, cutoff.x, cutoff.y, ...)
S4 method for signature 'matrix'
ddPlot(data, dist.x = NormType(), dist.y = NormType(),

cutoff.x, cutoff.y, ...,
cutoff.quantile.x = 0.95, cutoff.quantile.y = cutoff.quantile.x,
transform.x, transform.y = transform.x,

id.n, cex.pts = 1,lab.pts, jitter.pts = 0, alpha.trsp = NA, adj =0, cex.idn,
col.idn, lty.cutoff, lwd.cutoff, col.cutoff, text.abline = TRUE,
text.abline.x = NULL, text.abline.y = NULL,
cex.abline = par("cex"), col.abline = col.cutoff,
font.abline = par("font"), adj.abline = c(0,0),
text.abline.x.x = NULL, text.abline.x.y = NULL,
text.abline.y.x = NULL, text.abline.y.y = NULL,
text.abline.x.fmt.cx = "%7.2f", text.abline.x.fmt.qx = "%4.2f%%",
text.abline.y.fmt.cy = "%7.2f", text.abline.y.fmt.qy = "%4.2f%%",

jitter.fac, jitter.tol = .Machine$double.eps,doplot = TRUE)

ddPlot-methods 27

S4 method for signature 'numeric'
ddPlot(data, dist.x = NormType(), dist.y = NormType(),

cutoff.x, cutoff.y, ...,
cutoff.quantile.x = 0.95, cutoff.quantile.y = cutoff.quantile.x,
transform.x, transform.y = transform.x,

id.n, cex.pts = 1,lab.pts, jitter.pts = 0, alpha.trsp = NA, adj =0, cex.idn,
col.idn, lty.cutoff, lwd.cutoff, col.cutoff, text.abline = TRUE,
text.abline.x = NULL, text.abline.y = NULL,
cex.abline = par("cex"), col.abline = col.cutoff,
font.abline = par("font"), adj.abline = c(0,0),
text.abline.x.x = NULL, text.abline.x.y = NULL,
text.abline.y.x = NULL, text.abline.y.y = NULL,
text.abline.x.fmt.cx = "%7.2f", text.abline.x.fmt.qx = "%4.2f%%",
text.abline.y.fmt.cy = "%7.2f", text.abline.y.fmt.qy = "%4.2f%%",

jitter.fac, jitter.tol=.Machine$double.eps, doplot = TRUE)
S4 method for signature 'data.frame'
ddPlot(data, dist.x = NormType(), dist.y = NormType(),

cutoff.x, cutoff.y, ...,
cutoff.quantile.x = 0.95, cutoff.quantile.y = cutoff.quantile.x,
transform.x, transform.y = transform.x,

id.n, cex.pts = 1,lab.pts, jitter.pts = 0, alpha.trsp = NA, adj =0, cex.idn,
col.idn, lty.cutoff, lwd.cutoff, col.cutoff, text.abline = TRUE,
text.abline.x = NULL, text.abline.y = NULL,
cex.abline = par("cex"), col.abline = col.cutoff,
font.abline = par("font"), adj.abline = c(0,0),
text.abline.x.x = NULL, text.abline.x.y = NULL,
text.abline.y.x = NULL, text.abline.y.y = NULL,
text.abline.x.fmt.cx = "%7.2f", text.abline.x.fmt.qx = "%4.2f%%",
text.abline.y.fmt.cy = "%7.2f", text.abline.y.fmt.qy = "%4.2f%%",

jitter.fac, jitter.tol=.Machine$double.eps, doplot = TRUE)

Arguments

data data coercable to matrix; the data at which to produce the ddPlot.

... further arguments to be passed to plot.default, text, and abline

dist.x object of class NormType; the distance for the x axis.

dist.y object of class NormType; the distance for the y axis.

cutoff.x object of class cutoff; the cutoff information for the x axis (the vertical line
discriminating ’good’ and ’bad’ points).

cutoff.y object of class cutoff; the cutoff information for the y axis (the horizontal line
discriminating ’good’ and ’bad’ points).

cutoff.quantile.x

numeric; the cutoff quantile for the x axis.
cutoff.quantile.y

numeric; the cutoff quantile for the y axis.

transform.x function; a transformation to be performed before determining the distances of
the x axis.

28 ddPlot-methods

transform.y function; a transformation to be performed before determining the distances of
the y axis.

id.n a set of indices (or a corresponding logical vector); to select a subset of the data
in argument data.

cex.pts the corresponding cex argument for plotted points.

lab.pts a vector of labels for the (unsubsetted) data.

jitter.pts the corresponding jitter argument for plotted points; may be a vector of length
2 – for separate factors for x- and y-coordinate.

alpha.trsp alpha transparency to be added ex post to colors col.pch and col.lbl; if one-
dim and NA all colors are left unchanged. Otherwise, with usual recycling rules
alpha.trsp gets shorted/prolongated to length the data-symbols to be plotted.
Coordinates of this vector alpha.trsp with NA are left unchanged, while for
the remaining ones, the alpha channel in rgb space is set to the respective coor-
dinate value of alpha.trsp. The non-NA entries must be integers in [0,255] (0
invisible, 255 opaque).

adj the corresponding argument for text for labelling the outliers.

cex.idn the corresponding cex argument for text for labelling the outliers.

col.idn the corresponding col argument for text for labelling the outliers.

lty.cutoff the corresponding lty argument for abline for drawing the cutoff lines; either
one lty-value (one value or vector) or a list of length 2 of lty-values.

lwd.cutoff (vector cast to length 2): the corresponding lwd argument for abline for draw-
ing the cutoff lines.

col.cutoff (vector cast to length 2): the corresponding col argument for abline for draw-
ing the cutoff lines.

text.abline vector of logicals (cast to length 2): shall text be added to cutoff lines.

text.abline.x text to be added to cutoff lines in x direction; if NULL (default) we use “[pp]
%-cutoff = [ff]” where [pp] is the percentage up to 2 digits and [ff] is the cutoff
value up to 2 digits.

text.abline.y text to be added to cutoff lines in y direction; if NULL (default) we use “[pp]
%-cutoff = [ff]” where [pp] is the percentage up to 2 digits and [ff] is the cutoff
value up to 2 digits.

cex.abline vector of numerics (cast to length 2): cex-value for added cutoff text.

col.abline vector of length 2: color for added cutoff text.

font.abline vector of length 2: font for added cutoff text.

adj.abline cast to 2 x 2 matrix (by recycling rules): adjustment values for added cutoff text.
text.abline.x.y

y-coordinate of text to be added to cutoff lines in x direction; if NULL (default)
set to mid of mean(par("usr")[c(3,4)]).

text.abline.y.x

x-coordinate of text to be added to cutoff lines in y direction; if NULL (default)
set to mid of mean(par("usr")[c(1,2)]).

ddPlot-methods 29

text.abline.x.x

x-coordinate of text to be added to cutoff lines in x direction; if NULL (default)
set to 1.05 times the cutoff value.

text.abline.y.y

y-coordinate of text to be added to cutoff lines in y direction; if NULL (default)
set to 1.05 times the cutoff value.

text.abline.x.fmt.cx

format string (see gettextf) to format the cutoff value in label in x direction.
text.abline.x.fmt.qx

format string to format cutoff probability in label in x direction.
text.abline.y.fmt.cy

format string to format the cutoff value in label in y direction.
text.abline.y.fmt.qy

format string to format cutoff probability in label in y direction.

jitter.fac factor for jittering, see jitter;

jitter.tol threshold for jittering: if distance between points is smaller than jitter.tol,
points are considered replicates.

doplot logical; shall a plot be produced? if FALSE only the return values are produced.

Details

The matrix-method calls .ddPlot.MatNtNtCoCo, the numeric- and data.frame-methods coerce
argument data to matrix — the numeric-method by a call to matrix(data, nrow=1), in the
data.frame-methods by a call to t(as.matrix(data)).

In arguments text.abline.x and text.abline.y the following patterns are substituted:

"%qx" cutoff-quantile in x-direction

"%qy" cutoff-quantile in y-direction

"%cx" cutoff-value in x-direction

"%cy" cutoff-value in y-direction

Value

If argument doplot is FALSE: A list (returned as invisible()) with items

id.x the indices of (possibly transformed) data (within subset id.n) beyond the x-
cutoff

id.y the indices of (possibly transformed) data (within subset id.n) beyond the y-
cutoff

id.xy the indices of (possibly transformed) data (within subset id.n) beyond the x-
cutoff and the y-cutoff

qtx the quantiles of the distances of the (possibly transformed) data in x direction

qty the quantiles of the distances of the (possibly transformed) data in y direction

cutoff.x.v the cutoff value in x direction

cutoff.y.v the cutoff value in y direction

30 evalIC

If argument doplot is TRUE: An S3 object of class c("plotInfo","DiagnInfo"), i.e., a list con-
taining the information needed to produce the respective plot, which at a later stage could be used
by different graphic engines (like, e.g. ggplot) to produce the plot in a different framework. A
more detailed description will follow in a subsequent version. One item is retV which is the return
value in case doplot is FALSE.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

MX <- matrix(rnorm(1500),nrow=6)
QM <- matrix(rnorm(36),nrow=6); QM <- QM %*% t(QM)
ddPlot(data=MX, dist.y=QFNorm(QuadF=PosSemDefSymmMatrix(QM)))

evalIC Generic function for evaluating ICs

Description

Generic function for evaluating ICs.

Usage

evalIC(IC, x)

Arguments

IC object of class "IC"

x numeric vector or matrix

Details

The list of random variables contained in the slot Curve is evaluated at x.

Value

In case x is numeric a vector and in case x is matrix a matrix is returned.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

FixRobModel 31

See Also

IC-class

FixRobModel Generating function for FixRobModel-class

Description

Generates an object of class "FixRobModel".

Usage

FixRobModel(center = ParamFamily(modifyParam =
function(theta) Norm(mean = theta)), neighbor = ContNeighborhood())

Arguments

center object of class "ProbFamily"

neighbor object of class "UncondNeighborhood"

Value

Object of class "FixRobModel"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

FixRobModel-class

Examples

(M1 <- FixRobModel())

The function is currently defined as
function(center = ParamFamily(), neighbor = ContNeighborhood()){

new("FixRobModel", center = center, neighbor = neighbor)
}

32 FixRobModel-class

FixRobModel-class Robust model with fixed (unconditional) neighborhood

Description

Class of robust models with fixed (unconditional) neighborhoods.

Objects from the Class

Objects can be created by calls of the form new("FixRobModel", ...). More frequently they are
created via the generating function FixRobModel.

Slots

center Object of class "ProbFamily".

neighbor Object of class "UncondNeighborhood".

Extends

Class "RobModel", directly.

Methods

neighbor<- signature(object = "FixRobModel"): replacement function for slot neighbor<-

show signature(object = "FixRobModel")

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

ProbFamily-class, UncondNeighborhood-class, FixRobModel

Examples

new("FixRobModel")

generateIC 33

generateIC Generic function for the generation of influence curves

Description

This function is rarely called directly. It is used by other functions to create objects of class "IC".

Usage

generateIC(neighbor, L2Fam, ...)

Arguments

neighbor Object of class "Neighborhood".

L2Fam L2-differentiable family of probability measures.

... additional parameters

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

IC-class, ContIC-class, TotalVarIC-class

34 generateIC.fct-methods

generateIC.fct-methods

Generic Function for making ICs consistent at a possibly different
model

Description

Generic function for providing centering and Fisher consistency of ICs.

Usage

generateIC.fct(neighbor, L2Fam, ...)

Arguments

neighbor object of class "UncondNeighborhood"

L2Fam L2-differentiable family of probability measures; may be missing.

... additional parameters

Value

An IC at the model.

Methods

generateIC.fct signature(IC = "UncondNeighborhood", L2Fam = "L2ParamFamily": ...

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

L2ParamFamily-class, IC-class

getBiasIC 35

getBiasIC Generic function for the computation of the asymptotic bias for an IC

Description

Generic function for the computation of the asymptotic bias for an IC.

Usage

getBiasIC(IC, neighbor, ...)

S4 method for signature 'IC,UncondNeighborhood'
getBiasIC(IC, neighbor, L2Fam,

biastype = symmetricBias(), normtype = NormType(),
tol = .Machine$double.eps^0.25, numbeval = 1e5, withCheck = TRUE, ...)

Arguments

IC object of class "InfluenceCurve"

neighbor object of class "Neighborhood".

L2Fam object of class "L2ParamFamily".

biastype object of class "BiasType"

normtype object of class "NormType"

tol the desired accuracy (convergence tolerance).

numbeval number of evalation points.

withCheck logical: should a call to checkIC be done to check accuracy (defaults to TRUE).

... additional parameters to be passed to expectation E

Value

The bias of the IC is computed.

Methods

IC = "IC", neighbor = "UncondNeighborhood" determines the as. bias by random evaluation
of the IC; this random evaluation is done by the internal S4-method .evalBiasIC; this latter
dispatches according to the signature IC, neighbor, biastype.
For signature IC="IC", neighbor = "ContNeighborhood", biastype = "BiasType", also an
argument normtype is used to be able to use self- or information standardizing norms; besides
this the signatures IC="IC", neighbor = "TotalVarNeighborhood", biastype = "BiasType",
IC="IC", neighbor = "ContNeighborhood", biastype = "onesidedBias", and IC="IC",
neighbor = "ContNeighborhood", biastype = "asymmetricBias" are implemented.

Note

This generic function is still under construction.

36 getBoundedIC

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269–
278.

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Bias of M-estimators on
Neighborhoods.

See Also

getRiskIC-methods, InfRobModel-class

getBoundedIC getBoundedIC

Description

Generates a bounded influence curve.

Usage

getBoundedIC(L2Fam, D=trafo(L2Fam@param), ..., diagnostic = FALSE)

Arguments

L2Fam object of class "L2ParamFamily"

D matrix with as many columns as length(L2Fam@param)

... further arguments to be passed to E

diagnostic logical; if TRUE, the return value obtains an attribute "diagnostic" with diag-
nostic information on the integration.

Value

(a bounded) pIC (to matrix D) given as object of class "EuclRandVariable"

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

getFiRisk 37

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

getFiRisk Generic Function for Computation of Finite-Sample Risks

Description

Generic function for the computation of finite-sample risks. This function is rarely called directly.
It is used by other functions.

Usage

getFiRisk(risk, Distr, neighbor, ...)

S4 method for signature 'fiUnOvShoot,Norm,ContNeighborhood'
getFiRisk(risk, Distr,

neighbor, clip, stand, sampleSize, Algo, cont)

S4 method for signature 'fiUnOvShoot,Norm,TotalVarNeighborhood'
getFiRisk(risk, Distr,

neighbor, clip, stand, sampleSize, Algo, cont)

Arguments

risk object of class "RiskType".

Distr object of class "Distribution".

neighbor object of class "Neighborhood".

... additional parameters.

clip positive real: clipping bound

stand standardizing constant/matrix.

sampleSize integer: sample size.

Algo "A" or "B".

cont "left" or "right".

Details

The computation of the finite-sample under-/overshoot risk is based on FFT. For more details we
refer to Section 11.3 of Kohl (2005).

Value

The finite-sample risk is computed.

38 getRiskFctBV-methods

Methods

risk = "fiUnOvShoot", Distr = "Norm", neighbor = "ContNeighborhood" computes finite-sample
under-/overshoot risk in methods for function getFixRobIC.

risk = "fiUnOvShoot", Distr = "Norm", neighbor = "TotalVarNeighborhood" computes finite-
sample under-/overshoot risk in methods for function getFixRobIC.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269–
278.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk of M-estimators on
Neighborhoods.

See Also

fiRisk-class

getRiskFctBV-methods Methods for Function getRiskFctBV in Package ‘RobAStBase’

Description

getRiskFctBV for a given object of S4 class asGRisk returns a function in bias and variance to
compute the asymptotic risk.

Methods

getRiskFctBV signature(risk = "asGRisk", biastype = "ANY"): returns an error that the re-
spective method is not yet implemented.

getRiskFctBV signature(risk = "asMSE", biastype = "ANY"): returns a function with argu-
ments bias and variance to compute the asymptotic MSE for a given ALE at a situation
where it has bias bias (including the radius!) and variance variance.

getRiskFctBV signature(risk = "asSemivar", biastype = "onesidedBias"): returns a func-
tion with arguments bias and variance to compute the asymptotic semivariance error, i.e.
E[(Sn − θ)2+] resp. E[(Sn − θ)2−], for a given ALE Sn at a situation where it has one-sided
bias bias (including the radius!) and variance variance.

getRiskFctBV signature(risk = "asSemivar", biastype = "asymmetricBias"): returns a func-
tion with arguments bias and variance to compute the asymptotic semivariance error, i.e.
E[ν1(Sn − θ)2+ + ν2(Sn − θ)2−] for a given ALE Sn at a situation where it has one-sided bias
bias (including the radius!) and variance variance.

getRiskIC 39

Examples

myrisk <- asMSE()
getRiskFctBV(myrisk)

getRiskIC Generic function for the computation of a risk for an IC

Description

Generic function for the computation of a risk for an IC.

Usage

getRiskIC(IC, risk, neighbor, L2Fam, ...)

S4 method for signature 'IC,asCov,missing,missing'
getRiskIC(IC, risk,

tol = .Machine$double.eps^0.25, withCheck = TRUE, ...)

S4 method for signature 'IC,asCov,missing,L2ParamFamily'
getRiskIC(IC, risk, L2Fam,

tol = .Machine$double.eps^0.25, withCheck = TRUE, ..., diagnostic = FALSE)

S4 method for signature 'IC,trAsCov,missing,missing'
getRiskIC(IC, risk,

tol = .Machine$double.eps^0.25, withCheck = TRUE, ...)

S4 method for signature 'IC,trAsCov,missing,L2ParamFamily'
getRiskIC(IC, risk, L2Fam,

tol = .Machine$double.eps^0.25, withCheck = TRUE, ...)

S4 method for signature 'IC,asBias,UncondNeighborhood,missing'
getRiskIC(IC, risk, neighbor,

tol = .Machine$double.eps^0.25, withCheck = TRUE, ...)

S4 method for signature 'IC,asBias,UncondNeighborhood,L2ParamFamily'
getRiskIC(IC, risk, neighbor, L2Fam,

tol = .Machine$double.eps^0.25, withCheck = TRUE, ...)

S4 method for signature 'IC,asMSE,UncondNeighborhood,missing'
getRiskIC(IC, risk, neighbor,

tol = .Machine$double.eps^0.25, withCheck = TRUE, ...)

S4 method for signature 'IC,asMSE,UncondNeighborhood,L2ParamFamily'
getRiskIC(IC, risk, neighbor, L2Fam,

tol = .Machine$double.eps^0.25, withCheck = TRUE, ...)

40 getRiskIC

S4 method for signature 'TotalVarIC,asUnOvShoot,UncondNeighborhood,missing'
getRiskIC(IC, risk, neighbor)

S4 method for signature 'IC,fiUnOvShoot,ContNeighborhood,missing'
getRiskIC(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")

S4 method for signature 'IC,fiUnOvShoot,TotalVarNeighborhood,missing'
getRiskIC(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")

Arguments

IC object of class "InfluenceCurve"

risk object of class "RiskType".

neighbor object of class "Neighborhood".

L2Fam object of class "L2ParamFamily".

... additional parameters (e.g. to be passed to E).

tol the desired accuracy (convergence tolerance).

sampleSize integer: sample size.

Algo "A" or "B".

cont "left" or "right".

withCheck logical: should a call to checkIC be done to check accuracy (defaults to TRUE).

diagnostic logical; if TRUE, the return value obtains an attribute "diagnostic" with diag-
nostic information on the integration.

Details

To make sure that the results are valid, it is recommended to include an additional check of the IC
properties of IC using checkIC.

Value

The risk of an IC is computed.

Methods

IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "missing" asymptotic covariance
of IC.

IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "L2ParamFamily" asymptotic co-
variance of IC under L2Fam.

IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "missing" asymptotic covariance
of IC.

IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "L2ParamFamily" asymptotic
covariance of IC under L2Fam.

IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "missing" asymptotic
bias of IC under convex contaminations; uses method getBiasIC.

getRiskIC 41

IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "L2ParamFamily" asymptotic
bias of IC under convex contaminations and L2Fam; uses method getBiasIC.

IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "missing" asymptotic
bias of IC in case of total variation neighborhoods; uses method getBiasIC.

IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "L2ParamFamily"
asymptotic bias of IC under L2Fam in case of total variation neighborhoods; uses method
getBiasIC.

IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "missing" asymptotic
mean square error of IC.

IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "L2ParamFamily"
asymptotic mean square error of IC under L2Fam.

IC = "TotalVarIC", risk = "asUnOvShoot", neighbor = "UncondNeighborhood", L2Fam = "missing"
asymptotic under-/overshoot risk of IC.

IC = "IC", risk = "fiUnOvShoot", neighbor = "ContNeighborhood", L2Fam = "missing" finite-
sample under-/overshoot risk of IC.

IC = "IC", risk = "fiUnOvShoot", neighbor = "TotalVarNeighborhood", L2Fam = "missing"
finite-sample under-/overshoot risk of IC.

Note

This generic function is still under construction.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269–
278.

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk of M-estimators on
Neighborhoods.

See Also

getRiskIC, InfRobModel-class

42 getweight-methods

getweight-methods Generating weights

Description

Generates weight functions of Hampel / BdSt type for different bias and norm types.

Usage

getweight(Weight, neighbor, biastype, ...)
minbiasweight(Weight, neighbor, biastype, ...)
S4 method for signature 'HampelWeight,ContNeighborhood,BiasType'
getweight(Weight, neighbor, biastype, normW)
S4 method for signature 'HampelWeight,ContNeighborhood,BiasType'
minbiasweight(Weight, neighbor, biastype, normW)
S4 method for signature 'HampelWeight,ContNeighborhood,onesidedBias'
getweight(Weight, neighbor, biastype, ...)
S4 method for signature 'HampelWeight,ContNeighborhood,onesidedBias'
minbiasweight(Weight, neighbor, biastype, ...)
S4 method for signature 'HampelWeight,ContNeighborhood,asymmetricBias'
getweight(Weight, neighbor, biastype, ...)
S4 method for signature 'HampelWeight,ContNeighborhood,asymmetricBias'
minbiasweight(Weight, neighbor, biastype, ...)
S4 method for signature 'BdStWeight,TotalVarNeighborhood,BiasType'
getweight(Weight, neighbor, biastype, ...)
S4 method for signature 'BdStWeight,TotalVarNeighborhood,BiasType'
minbiasweight(Weight, neighbor, biastype, ...)

Arguments

Weight Object of class "RobWeight".

neighbor Object of class "Neighborhood".

biastype Object of class "BiasType".

normW Object of class "NormType" — only for signature HampelWeight,ContNeighborhood,BiasType.

... possibly additional (unused) arguments — like in a call to the less specific meth-
ods.

Details

These functions generate the weight function in slot weight in a corresp. object of class RobWeight
and descendants.

Value

Object of class "HampelWeight" resp. "BdStWeight"

HampelWeight-class 43

Methods

getweight signature(Weight = "HampelWeight", neighbor = "ContNeighborhood", biastype
= "BiasType") with additional argument biastype of class "BiasType": produces weight
slot...

minbiasweight signature(Weight = "HampelWeight", neighbor = "ContNeighborhood", biastype
= "BiasType") with additional argument biastype of class "BiasType": produces weight
slot...

getweight signature(Weight = "HampelWeight", neighbor = "ContNeighborhood", biastype
= "onesidedBias"): produces weight slot...

minbiasweight signature(Weight = "HampelWeight", neighbor = "ContNeighborhood", biastype
= "onesidedBias"): produces weight slot...

getweight signature(Weight = "HampelWeight", neighbor = "ContNeighborhood", biastype
= "asymmetricBias"): produces weight slot...

minbiasweight signature(Weight = "HampelWeight", neighbor = "ContNeighborhood", biastype
= "asymmetricBias"): produces weight slot...

getweight signature(Weight = "BdStWeight", neighbor = "TotalVarNeighborhood", biastype
= "BiasType"): produces weight slot...

minbiasweight signature(Weight = "BdStWeight", neighbor = "TotalVarNeighborhood", biastype
= "BiasType"): produces weight slot...

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

BdStWeight-class, HampelWeight-class, IC-class

HampelWeight-class Robust Weight classes for weights of Hampel type

Description

Classes for weights of Hampel type.

44 HampelWeight-class

Objects from the Class

Objects can be created by calls of the form new("HampelWeight", ...); to fill slot weight, you
will use the generating functions getweight and minbiasweight.

Slots

name Object of class "character"; inherited from class RobWeight.

weight Object of class "function" — the weight function; inherited from class RobWeight.

clip Object of class "numeric" — clipping bound(s); inherited from class BoundedWeight.

stand Object of class "matrix" — standardization; inherited from class BdStWeight.

cent Object of class "numeric" — centering.

Extends

Class "RobWeight", via class "BoundedWeight". Class "BoundedWeight", via class "BdStWeight".
Class "BdStWeight", directly.

Methods

cent signature(object = "HampelWeight"): accessor function for slot cent.

cent<- signature(object = "HampelWeight", value = "matrix"): replacement function for slot
cent. This replacement method should be used with great care, as the slot weight is not si-
multaneously updated and hence, this may lead to inconsistent objects.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

BdStWeight-class, BoundedWeight-class, RobWeight-class, IC, InfluenceCurve-class

Examples

prototype
new("HampelWeight")

HampIC-class 45

HampIC-class Influence curve of Hampel type

Description

Class of (partial) influence curves of Hampel (= total variation or contamination) type; used as
common mother class for classes ContIC and TotalVarIC.

Objects from the Class

Objects can be created by calls of the form new("HampIC", ...).

Slots

CallL2Fam object of class "call": creates an object of the underlying L2-differentiable parametric
family.

name object of class "character"

Curve object of class "EuclRandVarList"

modifyIC object of class "OptionalFunction": function of four arguments: (1) L2Fam an L2 para-
metric family (2) IC an optional influence curve, (3) withMakeIC a logical argument whether
to enforce the IC side conditions by makeIC, and (4) ... for arguments to be passed to calls
to E in makeIC. Returns an object of class "IC". This function is mainly used for internal
computations!

Risks object of class "list": list of risks; cf. RiskType-class.

Infos object of class "matrix" with two columns named method and message: additional infor-
mations.

stand object of class "matrix": standardizing matrix.

weight object of class "RobWeight": weight function

biastype object of class "BiasType": bias type (symmetric/onsided/asymmetric)

normtype object of class "NormType": norm type (Euclidean, information/self-standardized)

lowerCase object of class "OptionalNumeric": optional constant for lower case solution.

neighborRadius object of class "numeric": radius of the corresponding (unconditional) contam-
ination neighborhood.

Extends

Class "IC", directly.
Class "InfluenceCurve", by class "IC".

46 IC

Methods

stand signature(object = "HampIC"): accessor function for slot stand.

weight signature(object = "HampIC"): accessor function for slot weight.

biastype signature(object = "HampIC"): accessor function for slot biastype.

normtype signature(object = "HampIC"): accessor function for slot normtype.

lowerCase signature(object = "HampIC"): accessor function for slot lowerCase.

neighborRadius signature(object = "HampIC"): accessor function for slot neighborRadius.

neighborRadius<- signature(object = "HampIC"): replacement function for slot neighborRadius.

neighborRadius signature(object = "ANY"): returns NULL.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Hampributions to the Asymptotic Theory of Robustness. Bayreuth:
Dissertation.

See Also

IC-class

Examples

IC1 <- new("HampIC")
plot(IC1)

IC Generating function for IC-class

Description

Generates an object of class "IC".

Usage

IC(name, Curve = EuclRandVarList(RealRandVariable(Map = list(function(x){x}),
Domain = Reals())),

Risks, Infos, CallL2Fam = call("L2ParamFamily"), modifyIC = NULL)

IC 47

Arguments

name Object of class "character"; the name of the IC.

CallL2Fam object of class "call": creates an object of the underlying L2-differentiable
parametric family.

Curve object of class "EuclRandVarList".

Risks object of class "list": list of risks; cf. RiskType-class.

Infos matrix of characters with two columns named method and message: additional
informations.

modifyIC object of class "OptionalFunction": function of four arguments: (1) L2Fam
an L2 parametric family (2) IC an optional influence curve, (3) withMakeIC a
logical argument whether to enforce the IC side conditions by makeIC, and (4)
... for arguments to be passed to calls to E in makeIC. Returns an object of class
"IC". This function is mainly used for internal computations!

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

IC-class

Examples

IC1 <- IC()
plot(IC1)

48 IC-class

IC-class Influence curve

Description

Class of (partial) influence curves.

Objects from the Class

Objects can be created by calls of the form new("IC", ...). More frequently they are created via
the generating function IC.

Slots

CallL2Fam Object of class "call": creates an object of the underlying L2-differentiable paramet-
ric family.

modifyIC object of class "OptionalFunction": function of four arguments: (1) L2Fam an L2 para-
metric family (2) IC an optional influence curve, (3) withMakeIC a logical argument whether
to enforce the IC side conditions by makeIC, and (4) ... for arguments to be passed to calls
to E in makeIC. Returns an object of class "IC". This function is mainly used for internal
computations!

name Object of class "character".
Curve Object of class "EuclRandVarList".
Risks Object of class "list": list of risks; cf. RiskType-class.
Infos Object of class "matrix" with two columns named method and message: additional infor-

mations.

Extends

Class "InfluenceCurve", directly.

Methods

CallL2Fam signature(object = "IC"): accessor function for slot CallL2Fam.
CallL2Fam<- signature(object = "IC"): replacement function for slot CallL2Fam.
modifyIC signature(object = "IC"): accessor function for slot modifyIC.
checkIC signature(IC = "IC", L2Fam = "missing"): check centering and Fisher consistency

of IC assuming the L2-differentiable parametric family which can be generated via the slot
CallL2Fam of IC.

checkIC signature(IC = "IC", L2Fam = "L2ParamFamily"): check centering and Fisher consis-
tency of IC assuming the L2-differentiable parametric family L2Fam.

evalIC signature(IC = "IC", x = "numeric"): evaluate IC at x.
evalIC signature(IC = "IC", x = "matrix"): evaluate IC at the rows of x.
infoPlot signature(object = "IC"): Plot absolute and relative information of IC.
plot signature(x = "IC", y = "missing")

show signature(object = "IC")

InfluenceCurve 49

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

InfluenceCurve-class, IC

Examples

IC1 <- new("IC")
plot(IC1)

InfluenceCurve Generating function for InfluenceCurve-class

Description

Generates an object of class "InfluenceCurve".

Usage

InfluenceCurve(name, Curve = EuclRandVarList(EuclRandVariable(Domain = Reals())),
Risks, Infos)

Arguments

name character string: name of the influence curve

Curve object of class "EuclRandVarList"

Risks list of risks

Infos matrix of characters with two columns named method and message: additional
informations

Value

Object of class "InfluenceCurve"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

50 InfluenceCurve-class

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

InfluenceCurve-class

Examples

InfluenceCurve()

The function is currently defined as
InfluenceCurve <- function(name, Curve = EuclRandVarList(EuclRandVariable(Domain = Reals())),

Risks, Infos){
if(missing(name))

name <- "influence curve"
if(missing(Risks))

Risks <- list()
if(missing(Infos))

Infos <- matrix(c(character(0),character(0)), ncol=2,
dimnames=list(character(0), c("method", "message")))

return(new("InfluenceCurve", name = name, Curve = Curve,
Risks = Risks, Infos = Infos))

}

InfluenceCurve-class Influence curve

Description

Class of influence curves (functions).

Objects from the Class

Objects can be created by calls of the form new("InfluenceCurve", ...). More frequently they
are created via the generating function InfluenceCurve.

Slots

name object of class "character"
Curve object of class "EuclRandVarList"
Risks object of class "list": list of risks; cf. RiskType-class.
Infos object of class "matrix" with two columns named method and message: additional infor-

mations.

InfluenceCurve-class 51

Methods

name signature(object = "InfluenceCurve"): accessor function for slot name.

name<- signature(object = "InfluenceCurve"): replacement function for slot name.

Curve signature(object = "InfluenceCurve"): accessor function for slot Curve.

Map signature(object = "InfluenceCurve"): accessor function for slot Map of slot Curve.

Domain signature(object = "InfluenceCurve"): accessor function for slot Domain of slot
Curve.

Range signature(object = "InfluenceCurve"): accessor function for slot Range of slot Curve.

Infos signature(object = "InfluenceCurve"): accessor function for slot Infos.

Infos<- signature(object = "InfluenceCurve"): replacement function for slot Infos.

addInfo<- signature(object = "InfluenceCurve"): function to add an information to slot Infos.

Risks signature(object = "InfluenceCurve"): accessor function for slot Risks. By means of
internal function .evalListRec recursively evaluates all non evaluated calls and writes back
the evaluated calls to the calling envirionment.

Risks<- signature(object = "InfluenceCurve"): replacement function for slot Risks.

addRisk<- signature(object = "InfluenceCurve"): function to add a risk to slot Risks.

show signature(object = "InfluenceCurve")

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

InfluenceCurve, RiskType-class

Examples

new("InfluenceCurve")

52 InfoPlot

InfoPlot Wrapper function for information plot method

Description

The wrapper InfoPlot (captial I!) takes most of arguments to the plot method infoPlot (lower
case i!) by default and gives a user possibility to run the function with low number of arguments.

Usage

InfoPlot(IC, data, ..., alpha.trsp = 100,
with.legend = TRUE, rescale = FALSE, withCall = TRUE)

Arguments

IC object of class IC

data optional data argument — for plotting observations into the plot

... additional parameters (in particular to be passed on to plot)

alpha.trsp the transparency argument (0 to 100) for ploting the data

with.legend the flag for showing the legend of the plot

rescale the flag for rescaling the axes for better view of the plot

withCall the flag for the call output

Value

invisible(retV) where retV is the return value of the respective call to the full-fledged func-
tion infoPlot with the additional item wrapcall with the call to the wrapper InfoPlot and
wrappedcall the call to to the full-fledged function infoPlot.

Details

Calls infoPlot with suitably chosen defaults. If withCall == TRUE, the call to infoPlot, i.e., item
wrappedcall of the (hidden) return value, is returned

Examples

Gamma
fam <- GammaFamily()
IC <- optIC(model = fam, risk = asCov())
Y <- distribution(fam)
data <- r(Y)(500)
InfoPlot(IC, data, withCall = FALSE)

infoPlot 53

infoPlot Plot absolute and relative information

Description

Plot absolute and relative information of influence curves.

Usage

infoPlot(object, ...)
S4 method for signature 'IC'
infoPlot(object, data = NULL,

..., withSweave = getdistrOption("withSweave"),
col = par("col"), lwd = par("lwd"), lty,
colI = grey(0.5), lwdI = 0.7*par("lwd"), ltyI = "dotted",
main = FALSE, inner = TRUE, sub = FALSE,
col.inner = par("col.main"), cex.inner = 0.8,
bmar = par("mar")[1], tmar = par("mar")[3],
with.automatic.grid = TRUE,
with.legend = TRUE, legend = NULL, legend.bg = "white",
legend.location = "bottomright", legend.cex = 0.8,
x.vec = NULL, scaleX = FALSE, scaleX.fct, scaleX.inv,
scaleY = FALSE, scaleY.fct = pnorm, scaleY.inv=qnorm,
scaleN = 9, x.ticks = NULL, y.ticks = NULL,
mfColRow = TRUE, to.draw.arg = NULL,
cex.pts = 1, cex.pts.fun = NULL, col.pts = par("col"),
pch.pts = 19,
cex.npts = 1, cex.npts.fun = NULL, col.npts = grey(.5),
pch.npts = 20,
jitter.fac = 1, with.lab = FALSE, cex.lbs = 1, adj.lbs = c(0, 0),

col.lbs = col.pts, lab.pts = NULL, lab.font = NULL, alpha.trsp = NA,
which.lbs = NULL, which.Order = NULL, which.nonlbs = NULL,
attr.pre = FALSE, return.Order = FALSE,
ylab.abs = "absolute information",
ylab.rel= "relative information",
withSubst = TRUE)

Arguments

object object of class "InfluenceCurve"

data optional data argument — for plotting observations into the plot;

withSweave logical: if TRUE (for working with Sweave) no extra device is opened

main logical: is a main title to be used? or
just as argument main in plot.default.

54 infoPlot

inner logical: do panels have their own titles? or
character vector of / cast to length ’number of compared dimensions’; if argu-
ment to.draw.arg is used, this refers to a vector of length 1 (absolute informa-
tion) + length(to.draw.arg), the actually plotted relative informations. For
further information, see also main in plot.default.

sub logical: is a sub-title to be used? or
just as argument sub in plot.default.

tmar top margin – useful for non-standard main title sizes; may be a vector with
individual values for each of the panels to be plotted.

bmar bottom margin – useful for non-standard sub title sizes; may be a vector with
individual values for each of the panels to be plotted.

col color of IC in argument object.

lwd linewidth of IC in argument object.

lty line-type of IC in argument object.

colI color of the classically optimal IC.

lwdI linewidth of the classically optimal IC.

ltyI line-type of the classically optimal IC.

cex.inner magnification to be used for inner titles relative to the current setting of cex; as
in par.

col.inner character or integer code; color for the inner title
with.automatic.grid

logical; should a grid be plotted alongside with the ticks of the axes, automati-
cally? If TRUE a respective call to grid in argument panel.first is ignored.

with.legend logical; shall a legend be plotted?

legend either NULL or a list of length (number of plotted panels) of items which can be
used as argument legend in command legend.

legend.location

a valid argument x for legend — the place where to put the legend on the last
issued plot — or a list of length (number of plotted panels) of such arguments,
one for each plotted panel.

legend.bg background color for the legend

legend.cex magnification factor for the legend

x.vec a numeric vector of grid points to evaluate the influence curve; by default, x.vec
is NULL; then the grid is produced automatically according to the distribution of
the IC. x.vec can be useful for usage with a rescaling of the x-axis to avoid that
the evaluation points be selected too unevenly (i.e. on an equally spaced grid
in the original scale, but then, after rescaling non-equally). The grid has to be
specified in original scale; i.e.; when used with rescaling, it should be chosen
non-equally spaced.

scaleX logical; shall X-axis be rescaled (by default according to the cdf of the underly-
ing distribution)?

scaleY logical; shall Y-axis be rescaled for abs.info-plot (by default according to a pro-
bit scale)?

infoPlot 55

scaleX.fct an isotone, vectorized function mapping the domain of the IC to [0,1]; if scaleX
is TRUE and scaleX.fct is missing, the cdf of the underlying observation dis-
tribution.

scaleX.inv the inverse function to scale.fct, i.e., an isotone, vectorized function mapping
[0,1] to the domain of the IC such that for any x in the domain, scaleX.inv(scaleX.fct(x))==x;
if scaleX is TRUE and scaleX.inv is missing, the quantile function of the un-
derlying observation distribution.

scaleY.fct an isotone, vectorized function mapping the range of the norm of the IC to [0,1];
defaulting to the cdf of N (0, 1); can also be a list of functions with one list
element for each of the panels to be plot.

scaleY.inv an isotone, vectorized function mapping [0,1] into the range of the norm of the
IC; defaulting to the quantile function of N (0, 1); can also be a list of functions
with one list element for each of the panels to be plot.

scaleN integer; defaults to 9; on rescaled axes, number of x and y ticks if drawn auto-
matically;

x.ticks numeric; defaults to NULL; (then ticks are chosen automatically); if non-NULL,
user-given x-ticks (on original scale);

y.ticks numeric; defaults to NULL; (then ticks are chosen automatically); if non-NULL,
user-given y-ticks (on original scale); can be a list with one (numeric or NULL)
item per panel

mfColRow shall default partition in panels be used — defaults to TRUE

to.draw.arg Either NULL (default; everything is plotted) or a vector making a selection among
the relative information plots; the absolute information being plotted in any case.
This vector is either a vector of integers (the indices of the subplots to be drawn)
or characters — the names of the subplots to be drawn: these names are to be
chosen either among the row names of the trafo matrix rownames(trafo(eval(object@CallL2Fam)@param))
or if the last expression is NULL a vector "dim<dimnr>", dimnr running through
the number of rows of the trafo matrix.

withSubst logical; if TRUE (default) pattern substitution for titles and lables is used; other-
wise no substitution is used.

col.pts color of the points of the data argument plotted; can be a vector or a matrix.
More specifically, if argument attr.pre is TRUE, it is recycled to fill a matrix
of dimension n by 2 (n the number of observations prior to any selection) where
filling is done in order column first. The two columns are used for possibly
different colors for the actual IC from the argument and the classical IC which
is also shown. The selection done via which.lbs and which.Order is then
done afterwards and on this matrix; argument col.npts is ignored in this case.
If attr.pre is FALSE, col.pts is recycled to fill a matrix of dimension n.s
by 2 where n.s is the number of observations selected for labelling and refers
to the index ordering after the selection. Then argument col.npts deterem-
ines the colors of the shown but non-labelled observations as given in argument
which.nonlbs.

pch.pts symbol of the points of the data argument plotted (may be a vector of length 2
or a matrix, see col.pts, with argument pch.npts as counterpart).

cex.pts size of the points of the data argument plotted (may be a vector of length 2 or a
matrix, see col.pts, with argument cex.npts as counterpart).

56 infoPlot

cex.pts.fun rescaling function for the size of the points to be plotted; either NULL (default),
then log(1+abs(x)) is used for each of the rescalings, or a function which is
then used for each of the rescalings, or a list of functions; if it is a function or a
list of functions, if necessary it is recylced to length 2 * dim where 2 is for the
classical IC and the IC in argument object and dim is the number of dimensions
of the pICs to be plotted; in the index of this list, 2 is incremented first; then dim.

col.npts color of the non-labelled points of the data argument plotted; (may be a vector
of length 2, or it can be a matrix nnlb <- sum(which.nonlbs) by 2, nnlb the
number of non-labelled shown observations.

pch.npts symbol of the non-labelled points of the data argument plotted (may be a vector
of length 2 or a matrix, see col.npts).

cex.npts size of the non-labelled points of the data argument plotted (may be a vector of
length 2 or a matrix, see col.npts).

cex.npts.fun rescaling function for the size of the non-labelled points to be plotted; either
NULL (default), then log(1+abs(x)) is used for each of the rescalings, or a
function which is then used for each of the rescalings, or a list of functions; if
it is a function or a list of functions, if necessary it is recylced to length 2 * dim
where dim is the number of dimensions of the pICs to be plotted; in the index of
this list, 2 is incremented first; then dim.

attr.pre logical; do graphical attributes for plotted data refer to indices prior (TRUE) or
posterior to selection via arguments which.lbs, which.Order, which.nonlbs
(FALSE)?

with.lab logical; shall labels be plotted to the observations? (may be a vector of length 2,
see col.pts – but not a matrix)

cex.lbs size of the labels; can be vectorized to an array of dim nlbs x 2 x npnl where
npnl is the number of plotted panels and nlbs the number of plotted labels; if it
is a vector, it is recylced in order labels then ICs [arg IC/classic] then panels.

col.lbs color of the labels; can be vectorized to a matrix of dim nlbs x 2 as col.pts.

adj.lbs adjustment of the labels; can be vectorized to an array of dim 2 x 2 x npnl
matrix, npnl the number of plotted panels; if it is a vector, it is recycled in order
(x,y)-coords then ICs [arg IC/classic] then panels.

lab.pts character or NULL; labels to be plotted to the observations; can be a vector of
length n, n the number of all observations prior to any selection with which.lbs,
which.Order; if lab.pts is NULL, observation indices are used.

lab.font font to be used for labels; (may be a vector of length 2, see with.lab).

alpha.trsp alpha transparency to be added ex post to colors col.pch and col.nonlbl; if
one-dim and NA all colors are left unchanged. Otherwise, with usual recycling
rules alpha.trsp gets shorted/prolongated to length the number of panel data-
symbols to be plotted. Coordinates of this vector alpha.trsp with NA are left
unchanged, while for the remaining ones, the alpha channel in rgb space is set
to the respective coordinate value of alpha.trsp. The non-NA entries must be
integers in [0,255] (0 invisible, 255 opaque).

jitter.fac jittering factor used in case of a DiscreteDistribution for plotting points
of the data argument in a jittered fashion (may be a vector of length 2, see
with.lab).

infoPlot 57

which.lbs either an integer vector with the indices of the observations to be plotted into
graph or NULL — then no observation is excluded

which.Order we order the observations (descending) according to the norm given by normtype(object);
then which.Order either is an integer vector with the indices of the ordered ob-
servations (remaining after a possible reduction by argument which.lbs) to be
plotted into graph or NULL — then no (further) observation is excluded.

which.nonlbs indices of the observations which should be plotted but not labelled; either an
integer vector with the indices of the observations to be plotted into graph or
NULL — then all non-labelled observations are plotted.

return.Order logical; if TRUE, a list of length two with order vectors is returned — one
for ordering w.r.t. the given IC, one for ordering w.r.t. the classically op-
timal IC; more specifically, the order of the (remaining) observations given
by their original index is returned (remaining means: after a possible reduc-
tion by argument which.lbs, and ordering is according to the norm given by
normtype(object)); otherwise we return invisible() as usual.

ylab.abs character; label to be used for y-axis in absolute information panel
ylab.rel character; label to be used for y-axis in relative information panel
... further parameters for plot

Details

Absolute information is defined as the square of the length of an IC. The relative information is
defined as the absolute information of one component with respect to the absolute information of
the whole IC; confer Section 8.1 of Kohl (2005).

Any parameters of plot.default may be passed on to this particular plot method.

For main-, inner, and subtitles given as arguments main, inner, and sub, top and bottom margins
are enlarged to 5 resp. 6 by default but may also be specified by tmar / bmar arguments. If main /
inner / sub are logical then if the respective argument is FALSE nothing is done/plotted, but if it is
TRUE, we use a default main title taking up the calling arguments in case of main, default inner titles
taking up the class and (named) parameter slots of arguments in case of inner, and a "generated
on <data>"-tag in case of sub. Of course, if main / inner / sub are character, this is used for the
title; in case of inner it is then checked whether it has correct length. If argument withSubst is
TRUE, in all title and axis lable arguments, the following patterns are substituted:

"%C" class of argument object
"%A" deparsed argument object
"%D" time/date-string when the plot was generated

If argument ... contains argument ylim, this may either be as in plot.default (i.e. a vector of
length 2) or a vector of length 2*(number of plotted dimensions + e), where e is 1 or 0 depending
on whether absolute information is plotted or not; in the case of longer length, if e is 1, the first two
elements are the values for ylim in panel "Abs", while the last 2*(number of plotted dimensions)
are the values for ylim for the plotted dimensions of the IC, one pair for each dimension.

Similarly, if argument ... contains arguments xaxt or yaxt, these may be vectorized, with one
value for each of the panels to be plotted. This is useful for stacking panels over each other, using a
common x-axis (see example below).

58 infoPlot

The ... argument may also contain an argument withbox which if TRUE warrants that even if xaxt
and yaxt both are FALSE, a box is drawn around the respective panel.

In addition, argument ... may contain arguments panel.first, panel.last, i.e., hook expres-
sions to be evaluated at the very beginning and at the very end of each panel (within the then valid
coordinates). To be able to use these hooks for each panel individually, they may also be lists of
expressions (of the same length as the number of panels and run through in the same order as the
panels).

Value

An S3 object of class c("plotInfo","DiagnInfo"), i.e., a list containing the information needed
to produce the respective plot, which at a later stage could be used by different graphic engines
(like, e.g. ggplot) to produce the plot in a different framework. A more detailed description will
follow in a subsequent version.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

L2ParamFamily-class, IC-class

Examples

N <- NormLocationScaleFamily(mean=0, sd=1)
IC1 <- optIC(model = N, risk = asCov())
infoPlot(IC1)

don't run to reduce check time on CRAN

selection of subpanels for plotting
par(mfrow=c(1,2))
infoPlot(IC1, mfColRow = FALSE, to.draw.arg=c("Abs","sd"))
infoPlot(IC1, mfColRow = FALSE, to.draw.arg=c("Abs","sd"), log="y")

infoPlot(IC1, mfColRow = FALSE, to.draw.arg=c("Abs","mean"),
panel.first= grid(), ylim = c(0,4), xlim = c(-6,6))

infoPlot(IC1, mfColRow = FALSE, to.draw.arg=c("Abs","mean"),
panel.first= grid(), ylim = c(0,4,-3,3), xlim = c(-6,6))

par(mfrow=c(1,3))
infoPlot(IC1, mfColRow = FALSE, panel.first= grid(),

ylim = c(0,4,0,.3,0,.8), xlim=c(-6,6))
par(mfrow=c(1,1))

InfRobModel 59

data <- r(N)(20)
par(mfrow=c(1,3))
infoPlot(IC1, data=data, mfColRow = FALSE, panel.first= grid(),

with.lab = TRUE, cex.pts=2,
which.lbs = c(1:4,15:20), which.Order = 1:6,
return.Order = TRUE)

infoPlot(IC1, data=data[1:10], mfColRow = FALSE, panel.first= grid(),
with.lab = TRUE, cex.pts=0.7)

par(mfrow=c(1,1))

ICr <- makeIC(list(function(x)sign(x),function(x)sign(abs(x)-qnorm(.75))),N)
data <- r(N)(600)
data.c <- c(data, 1000*data[1:30])
par(mfrow=c(3,1))
infoPlot(ICr, data=data.c, tmar=c(4.1,0,0), bmar=c(0,0,4.1),

xaxt=c("n","n","s"), mfColRow = FALSE, panel.first= grid(),
cex.pts=c(.9,.9), alpha.trsp=20, lwd=2, lwdI=1.5, col=3,
col.pts=c(3,2), colI=2, pch.pts=c(20,20), inner=FALSE,
scaleX = TRUE, scaleX.fct=pnorm, scaleX.inv=qnorm,
scaleY=TRUE, scaleY.fct=function(x) pchisq(x,df=1),
scaleY.inv=function(x)qchisq(x,df=1),legend.cex = 1.0)

InfRobModel Generating function for InfRobModel-class

Description

Generates an object of class "InfRobModel".

Usage

InfRobModel(center = L2ParamFamily(), neighbor = ContNeighborhood())

Arguments

center object of class "ProbFamily"

neighbor object of class "UncondNeighborhood"

Value

Object of class "FixRobModel"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

60 InfRobModel-class

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

RobModel-class, FixRobModel-class

Examples

(M1 <- InfRobModel())

The function is currently defined as
function(center = L2ParamFamily(), neighbor = ContNeighborhood()){

new("InfRobModel", center = center, neighbor = neighbor)
}

InfRobModel-class Robust model with infinitesimal (unconditional) neighborhood

Description

Class of robust models with infinitesimal (unconditional) neighborhoods; i.e., the neighborhood is
shrinking at a rate of

√
n.

Objects from the Class

Objects can be created by calls of the form new("InfRobModel", ...). More frequently they are
created via the generating function InfRobModel.

Slots

center Object of class "ProbFamily".

neighbor Object of class "UncondNeighborhood".

Extends

Class "RobModel", directly.

Methods

neighbor<- signature(object = "InfRobModel"): replacement function for slot neighbor<-

show signature(object = "InfRobModel")

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

interpolRisk-class 61

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

ProbFamily-class, UncondNeighborhood-class, InfRobModel

Examples

new("InfRobModel")

interpolRisk-class Interpolated Risks

Description

Class of risks for which algorithms dispatch to speed-up algorithms

Usage

MBRRisk(samplesize=100)
OMSRRisk(samplesize=100)
RMXRRisk(samplesize=100)

Arguments

samplesize sample size at which to look at the risk.

Details

The main purpose of classes OMSRRisk, MBRRisk, and RMXRRisk is to help to dispatch into speed-up
algorithms later in function roptest. In all these risks, we assume convex contamination neighbor-
hoods. OMSRRisk stands for optimal MSE-robust estimation (where we assume a radius r of 0.5),
RMXRRisk stands for optimal optimally RMX-robust estimation and MBRRisk stands for optimal
Bias-robust estimation. All these risks have an additional slot samplesize, defaulting to 100, and for
which there is a replacement and an accessor method.

Objects from the Class

interpolRisk is a virtual class: No objects may be created from it. the other classes are generated
via generating functions.

Slots

type Object of class "character": type of risk. (Inherited from RiskType).

62 kStepEstimate-class

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

new("OMSRRisk")
OMSRRisk()
RMXRRisk()
MBRRisk()
myrisk <- MBRRisk(samplesize=100)
samplesize(myrisk)
samplesize(myrisk) <- 20

kStepEstimate-class kStepEstimate-class.

Description

Class of asymptotically linear estimates.

Objects from the Class

Objects can be created by calls of the form new("kStepEstimate", ...). More frequently they
are created via the generating function kStepEstimator.

Slots

name Object of class "character": name of the estimator.

estimate Object of class "ANY": estimate.

estimate.call Object of class "call": call by which estimate was produced.

samplesize object of class "numeric" — the samplesize (only complete cases are counted) at
which the estimate was evaluated.

completecases: object of class "logical" — complete cases at which the estimate was evaluated.

asvar object of class "OptionalNumericOrMatrix" which may contain the asymptotic (co)variance
of the estimator.

asbias Optional object of class "numeric": asymptotic bias.

pIC Optional object of class InfluenceCurve: influence curve.

nuis.idx object of class "OptionalNumeric": indices of estimate belonging to the nuisance
part.

fixed object of class "OptionalNumeric": the fixed and known part of the parameter.

steps Object of class "integer": number of steps.

Infos object of class "matrix" with two columns named method and message: additional infor-
mations.

trafo object of class "list": a list with components fct and mat (see below).

kStepEstimate-class 63

untransformed.estimate: Object of class "ANY": untransformed estimate.

untransformed.asvar: object of class "OptionalNumericOrMatrix" which may contain the asymp-
totic (co)variance of the untransformed estimator.

pICList Optional object of class "OptionalpICList": the list of (intermediate) (partial) influence
curves used; only filled when called from kStepEstimator with argument withPICList==TRUE.

ICList Optional object of class "OptionalpICList": the list of (intermediate) (total) influence
curves used; only filled when called from kStepEstimator with argument withICList==TRUE.

start The argument start — of class "StartClass" used in call to kStepEstimator.

startval Object of class matrix: the starting value with which the k-step Estimator was initialized
(in p-space / transformed).

ustartval Object of class matrix: the starting value with which the k-step Estimator was initial-
ized (in k-space / untransformed).

ksteps Object of class "OptionalMatrix": the intermediate estimates (in p-space) for the param-
eter; only filled when called from kStepEstimator.

uksteps Object of class "OptionalMatrix": the intermediate estimates (in k-space) for the pa-
rameter; only filled when called from kStepEstimator.

robestcall Object of class "OptionalCall", i.e., a call or NULL: only filled when called from
roptest in package ROptEst.

Extends

Class "ALEstimate", directly.
Class "Estimate", by class "ALEstimate"

Methods

steps signature(object = "kStepEstimate"): accessor function for slot steps.

ksteps signature(object = "kStepEstimate"): accessor function for slot ksteps; has addi-
tional argument diff, defaulting to FALSE; if the latter is TRUE, the starting value from slot
startval is prepended as first column; otherwise we return the corresponding increments in
each step.

uksteps signature(object = "kStepEstimate"): accessor function for slot uksteps; has addi-
tional argument diff, defaulting to FALSE; if the latter is TRUE, the starting value from slot
ustartval is prepended as first column; otherwise we return the corresponding increments in
each step.

start signature(object = "kStepEstimate"): accessor function for slot start.

startval signature(object = "kStepEstimate"): accessor function for slot startval.

ustartval signature(object = "kStepEstimate"): accessor function for slot startval.

ICList signature(object = "kStepEstimate"): accessor function for slot ICList.

pICList signature(object = "kStepEstimate"): accessor function for slot pICList.

robestCall signature(object = "kStepEstimate"): accessor function for slot robestCall.

timings signature(object = "kStepEstimate"): accessor function for attribute "timings".

show signature(object = "kStepEstimate"): a show method;

64 kStepEstimator

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de> and Peter Ruckdeschel <peter.ruckdeschel@uni-oldenurg.de>

See Also

ALEstimate-class

kStepEstimator Function for the computation of k-step estimates

Description

Function for the computation of k-step estimates.

Usage

kStepEstimator(x, IC, start = NULL, steps = 1L,
useLast = getRobAStBaseOption("kStepUseLast"),
withUpdateInKer = getRobAStBaseOption("withUpdateInKer"),
IC.UpdateInKer = getRobAStBaseOption("IC.UpdateInKer"),
withICList = getRobAStBaseOption("withICList"),
withPICList = getRobAStBaseOption("withPICList"),
na.rm = TRUE, startArgList = NULL, ...,
withLogScale = TRUE, withEvalAsVar = TRUE,
withMakeIC = FALSE, E.argList = NULL, diagnostic = FALSE)

Arguments

x sample

IC object of class "IC"

start initial estimate (for full parameter,i.e. in dimension k respective joint length of
main and nuisance part of the parameter): either a numerical value, or an object
of class "Estimate" or a function producing either a numerical value, or an
object of class "Estimate" when evaluated at x,...; if missing or NULL, we
use slot startPar of the L2family L2Fam from within IC

steps integer: number of steps

useLast which parameter estimate (initial estimate or k-step estimate) shall be used to
fill the slots pIC, asvar and asbias of the return value.

withUpdateInKer

if there is a non-trivial trafo in the model with matrix D, shall the parameter be
updated on ker(D)?

IC.UpdateInKer if there is a non-trivial trafo in the model with matrix D, the IC to be used for
this; if NULL the result of getboundedIC(L2Fam,D) is taken; this IC will then be
projected onto ker(D).

na.rm logical: if TRUE, the estimator is evaluated at complete.cases(x).

kStepEstimator 65

startArgList a list of arguments to be given to argument start if the latter is a function;
this list by default already starts with two unnamed items, the sample x, and the
model eval(CallL2Fam(IC)).

withPICList logical: shall slot pICList of return value be filled?

withICList logical: shall slot ICList of return value be filled?

... additional parameters

withLogScale logical; if TRUE, a scale component (if existing and found with name scalename)
is computed on log-scale and backtransformed afterwards (default). This avoids
crossing 0.

withEvalAsVar logical; if TRUE (default), tells R to evaluate the asymptotic variance or just to
produces a call to do so.

withMakeIC logical; if TRUE the [p]IC is passed through makeIC before return.

E.argList NULL (default) or a named list of arguments to be passed to calls to E from
kStepEstimator; potential clashes with arguments of the same name in ...
are resolved by inserting the items of argument list E.argList as named items
to the argument lists, so in case of collisions the item of E.argList overwrites
the existing one from

diagnostic logical; if TRUE, diagnostic information on the performed integrations is gath-
ered and shipped out as an attribute diagnostic of the return value of kStepEstimator.

Details

Given an initial estimation start, a sample x and an influence curve IC the corresponding k-step
estimator is computed.

The default value of argument useLast is set by the global option kStepUseLast which by default
is set to FALSE. In case of general models useLast remains unchanged during the computations.
However, if slot CallL2Fam of IC generates an object of class "L2GroupParamFamily" the value
of useLast is changed to TRUE. Explicitly setting useLast to TRUE should be done with care as in
this situation the influence curve is re-computed using the value of the one-step estimate which may
take quite a long time depending on the model.

If useLast is set to TRUE and slot modifyIC of IC is filled with some function (which can be used
to re-compute the IC for a different parameter), the computation of asvar, asbias and IC is based
on the k-step estimate.

Timings for the several substeps are available as attribute timings of the return value.

Diagnostics on the involved integrations are available if argument diagnostic is TRUE. Then there
is attribute diagnostic attached to the return value, which may be inspected and accessed through
showDiagnostic and getDiagnostic.

Value

Object of class "kStepEstimate".

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

66 kStepEstimator

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

IC-class, kStepEstimate-class

Examples

don't run to reduce check time on CRAN

if(require(ROptEst)){
1. generate a contaminated sample
ind <- rbinom(100, size=1, prob=0.05)
x <- rnorm(100, mean=0, sd=(1-ind) + ind*9)

2. Kolmogorov(-Smirnov) minimum distance estimator
(est0 <- MDEstimator(x=x, NormLocationScaleFamily()))

3. k-step estimation: radius known
N1 <- NormLocationScaleFamily(mean=estimate(est0)["mean"], sd=estimate(est0)["sd"])
N1.Rob <- InfRobModel(center = N1, neighbor = ContNeighborhood(radius = 0.5))
IC1 <- optIC(model = N1.Rob, risk = asMSE())
(est1 <- kStepEstimator(x, IC1, est0, steps = 3, withPIC = TRUE))
estimate(est1)
ksteps(est1)
pICList(est1)
start(est1)
attr(est1,"timings")

a transformed model
tfct <- function(x){

nms0 <- c("mean","sd")
nms <- "comb"
fval0 <- x[1]+2*x[2]
names(fval0) <- nms
mat0 <- matrix(c(1,2), nrow = 1, dimnames = list(nms,nms0))
return(list(fval = fval0, mat = mat0))

}

N1.traf <- N1; trafo(N1.traf) <- tfct
N1R.traf <- N1.Rob; trafo(N1R.traf) <- tfct
IC1.traf <- optIC(model = N1R.traf, risk = asMSE())
(est0.traf <- MDEstimator(x, N1.traf))
(est1.traf <- kStepEstimator(x, IC1.traf, est0, steps = 3,

withIC = TRUE, withPIC = TRUE, withUpdateInKer = FALSE))
(est1a.traf <- kStepEstimator(x, IC1.traf, est0, steps = 3,

withIC = TRUE, withPIC = TRUE, withUpdateInKer = TRUE))
estimate(est1.traf)

kStepEstimator.start-methods 67

ksteps(est1.traf)
pICList(est1.traf)
startval(est1.traf)

untransformed.estimate(est1.traf)
uksteps(est1.traf)
ICList(est1.traf)
ustartval(est1.traf)

estimate(est1a.traf)
ksteps(est1a.traf)
pICList(est1a.traf)
startval(est1a.traf)

untransformed.estimate(est1a.traf)
uksteps(est1a.traf)
ICList(est1a.traf)
ustartval(est1a.traf)
}

kStepEstimator.start-methods

Methods for function kStepEstimator.start in Package ‘RobAStBase’

Description

kStepEstimator.start-methods; these are called from within kStepEstimator to produce a numeric
value of for the starting estimator in the end.

Usage

kStepEstimator.start(start, ...)
S4 method for signature 'numeric'
kStepEstimator.start(start, nrvalues, ...)
S4 method for signature 'Estimate'
kStepEstimator.start(start, nrvalues, ...)
S4 method for signature 'function'
kStepEstimator.start(start, x, nrvalues, na.rm, L2Fam, startList)

Arguments

start the start slot of an object of class kStepEstimator

nrvalues numeric; dimension k of the original model, i.e.; length of the untransformed
parameter, or joint length of main and nuisance part of the parameter.

x the data at which the starting estimator is to be evaluated.

na.rm logical: if TRUE, the estimator is evaluated at complete.cases(x).

startList a list of arguments to be given to the call to start if this is a function;

68 locMEstimator

L2Fam the parametric famliy;

... further arguments for kStepEstimator.start.

Value

a numeric vector with the corresponding value of the start estimator (in k space)

Methods

kStepEstimator.start signature(start = "numeric"): returns the unchanged argument start
if it has the correct length; otherwise throws an error.

kStepEstimator.start signature(start = "Estimate"): returns slot untransformed.estimate
of start if it is not NULL, and else slot estimate if the latter has dimension nrvalues.

kStepEstimator.start signature(start = "function"): returns kStepEstimator.start(do.call(start,
args=c(list(x,L2Fam),startList) where, if na.rm == TRUE, beforehand x has been mod-
ified to x <- complete.cases(x).

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

See Also

kStepEstimator,ALEstimate-class

locMEstimator Generic function for the computation of location M estimates

Description

Generic function for the computation of location M estimates.

Usage

locMEstimator(x, IC, ...)

S4 method for signature 'numeric,InfluenceCurve'
locMEstimator(x, IC, eps = .Machine$double.eps^0.5, na.rm = TRUE)

makeIC 69

Arguments

x sample

IC object of class "InfluenceCurve"

... additional parameters

eps the desired accuracy (convergence tolerance).

na.rm logical: if TRUE, the estimator is evaluated at complete.cases(x).

Details

Given some sample x and some influence curve IC an M estimate is computed by solving the
corresponding M equation.

Value

Object of class "MEstimate"

Methods

x = "numeric", IC = "InfluenceCurve" univariate location.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Huber, P.J. (1964) Robust estimation of a location parameter. Ann. Math. Stat. 35: 73–101.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

InfluenceCurve-class, MEstimate-class

makeIC Generic Function for making ICs consistent at a possibly different
model

Description

Generic function for providing centering and Fisher consistency of ICs.

70 makeIC

Usage

makeIC(IC, L2Fam, ...)
S4 method for signature 'IC,L2ParamFamily'
makeIC(IC, L2Fam, ..., diagnostic = FALSE)
S4 method for signature 'list,L2ParamFamily'
makeIC(IC, L2Fam, forceIC = TRUE, name, Risks,

Infos, modifyIC = NULL, ..., diagnostic = FALSE)
S4 method for signature 'function,L2ParamFamily'
makeIC(IC, L2Fam, forceIC = TRUE, name,

Risks, Infos, modifyIC = NULL, ..., diagnostic = FALSE)

Arguments

IC object of class "IC" for signature IC="IC", respectively a list of functions in one
argument for signature IC="list", respectively a function in one argument for
signature IC="function".

L2Fam L2-differentiable family of probability measures; may be missing, in which case
it is replaced by the family in slot CallL2Fam of IC.

forceIC logical; shall centeredness and Fisher consistency be enforced applying an affine
linear transformation?

name Object of class "character"; the name of the IC

Risks object of class "list": list of risks; cf. RiskType-class.

Infos matrix of characters with two columns named method and message: additional
informations.

modifyIC object of class "OptionalFunction": function of four arguments: (1) L2Fam
an L2 parametric family (2) IC an optional influence curve, (3) withMakeIC a
logical argument whether to enforce the IC side conditions by makeIC, and (4)
... for arguments to be passed to calls to E in makeIC. Returns an object of class
"IC". This function is mainly used for internal computations!

... additional parameters to be passed to expectation E

diagnostic logical; if TRUE, diagnostic information on the integration is printed and returned
as attribute diagnostic of the return value.

Details

Argument IC is transformed affinely such that the transformed IC satisfies the defining side condi-
tions of an IC, i.e., centeredness and Fisher consistency:

E[IC] = 0

E[ICΛτ] = D

where Λ is the L2 derivative of the model and D is the Jacobian of transformation trafo.

Diagnostics on the involved integrations are available if argument diagnostic is TRUE. Then there
is attribute diagnostic attached to the return value, which may be inspected and accessed through
showDiagnostic and getDiagnostic.

makeIC 71

Value

An IC of class "IC" at the model.

Methods

makeIC signature(IC = "IC", L2Fam = "missing": creates an object of class "IC" at the para-
metric model of its own slot CallL2Fam; enforces IC conditions centeredness and Fisher con-
sistency, applying an affine linear transformation.

makeIC signature(IC = "IC", L2Fam = "L2ParamFamily": creates an object of class "IC" at the
parametric model L2Fam; enforces IC conditions centeredness and Fisher consistency, apply-
ing an affine linear transformation.

makeIC signature(IC = "list", L2Fam = "L2ParamFamily": creates an object of class "IC"
out of a list of functions given by argument IC at the parametric model L2Fam; enforces IC
conditions centeredness and Fisher consistency, applying an affine linear transformation.

makeIC signature(IC = "function", L2Fam = "L2ParamFamily": creates an object of class "IC"
out of a function given by argument IC at the parametric model L2Fam; enforces IC conditions
centeredness and Fisher consistency, applying an affine linear transformation.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

L2ParamFamily-class, IC-class

Examples

default IC
IC1 <- new("IC")

L2-differentiable parametric family
B <- BinomFamily(13, 0.3)

check IC properties
checkIC(IC1, B)

make IC
IC2 <- makeIC(IC1, B)

check IC properties
checkIC(IC2)

72 masked-methods

slot modifyIC is filled in case of IC2
IC3 <- modifyIC(IC2)(BinomFamily(13, 0.2), IC2)
checkIC(IC3)
identical to
checkIC(IC3, BinomFamily(13, 0.2))

IC4 <- makeIC(sin, B)
checkIC(IC4)

(IC5 <- makeIC(list(function(x)x^3), B, name="a try"))
plot(IC5)
checkIC(IC5)

don't run to reduce check time on CRAN

N0 <- NormLocationScaleFamily()
IC6 <- makeIC(list(sin,cos),N0)
plot(IC6)
checkIC(IC6)

getRiskIC(IC6,risk=trAsCov())$trAsCov$value
getRiskIC(IC6,risk=asBias(),neighbor=ContNeighborhood())$asBias$value

masked-methods Masked Methods from Packages ‘stats’ and ‘graphics’ in Package
‘RobAStBase’

Description

masked methods from packages stats and graphics

Usage

clip(x1,...)
S4 method for signature 'ANY'
clip(x1,x2,y1,y2)
start(x,...)
S4 method for signature 'ANY'
start(x,...)

Arguments

x, ... see start.

x1, x2, y1, y2 see clip.

MEstimate-class 73

Details

In order to make accessible the otherwise masked functions start, clip, we generate correspond-
ing S4-methods.

Value

see start, clip

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

MEstimate-class MEstimate-class.

Description

Class of asymptotically linear estimates.

Objects from the Class

Objects can be created by calls of the form new("MEstimate", ...). More frequently they are
created via the generating function locMEstimator.

Slots

name Object of class "character": name of the estimator.

estimate Object of class "ANY": estimate.

samplesize Object of class "numeric": sample size.

asvar Optional object of class "matrix": asymptotic variance.

asbias Optional object of class "numeric": asymptotic bias.

pIC Optional object of class InfluenceCurve: influence curve.

nuis.idx object of class "OptionalNumeric": indices of estimate belonging to the nuisance
part.

Mroot Object of class "numeric": value of the M equation at the estimate.

Infos object of class "matrix" with two columns named method and message: additional infor-
mations.

Extends

Class "ALEstimate", directly.
Class "Estimate", by class "ALEstimate".

74 movToRef-methods

Methods

Mroot signature(object = "MEstimate"): accessor function for slot Mroot.

show signature(object = "MEstimate")

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

ALEstimate-class

Examples

prototype
new("MEstimate")

movToRef-methods Methods for Functions moving from and to reference parameter in
Package ‘ROptEst’

Description

In optIC a gain in accuracy can be obtained when computing the optimally-robust ICs at a reference
parameter of the model (instead of an arbtirary one). To this end, moveL2Fam2RefParam moved the
model to the reference parameter and moveICBackFromRefParam moves the obtained optimal IC
back to the original parameter.

Usage

moveL2Fam2RefParam(L2Fam, ...)
moveICBackFromRefParam(IC, L2Fam,...)

Arguments

L2Fam object of class L2ParamFamily

IC IC of class HampIC

... further arguments to be passed on.

Details

moveL2Fam2RefParam and moveICBackFromRefParam are used internally in functions robest and
roptest to compute the optimally robust influence function according to the arguments given to
them.

movToRef-methods 75

Value

moveL2Fam2RefParam

the L2 Family transformed to reference parameter.

moveICBackFromRefParam

the backtransformed IC.

Methods

moveL2Fam2RefParam signature(L2Fam = "L2ParamFamily"): returns L2Fam unchanged.

moveL2Fam2RefParam signature(L2Fam = "L2LocationFamily"): moves L2Fam to location
0.

moveL2Fam2RefParam signature(L2Fam = "L2ScaleFamily"): moves L2Fam to location 0
and scale 1.

moveL2Fam2RefParam signature(L2Fam = "L2LocationScaleFamily"): moves L2Fam to lo-
cation 0 and scale 1.

moveL2Fam2RefParam signature(L2Fam = "L2LocationUnknownScaleFamily"): moves L2Fam
to location 0 and scale 1.

moveL2Fam2RefParam signature(L2Fam = "L2ScaleUnknownLocationFamily"): moves L2Fam
to location 0 and scale 1.

moveICBackFromRefParam signature(IC = "IC", L2Fam = "L2ParamFamily"): returns IC un-
changed.

moveICBackFromRefParam signature(IC = "IC", L2Fam = "L2LocationFamily"): moves IC
in IC back to original location in L2Fam.

moveICBackFromRefParam signature(IC = "IC", L2Fam = "L2ScaleFamily"): moves IC in
IC back to original location and scale in L2Fam, rescaling risk where necessary.

moveICBackFromRefParam signature(IC = "IC", L2Fam = "L2LocationScaleFamily"): moves
IC in IC back to original location and scale in L2Fam, rescaling risk where necessary.

moveICBackFromRefParam signature(IC = "IC", L2Fam = "L2LocationUnknownScaleFamily"):
moves IC in IC back to original location and scale in L2Fam, rescaling risk where necessary.

moveICBackFromRefParam signature(IC = "IC", L2Fam = "L2ScaleUnknownLocationFamily"):
moves IC in IC back to original location and scale in L2Fam, rescaling risk where necessary.

moveICBackFromRefParam signature(IC = "HampIC", L2Fam = "L2ParamFamily"): moves
IC in IC back to original location and scale in L2Fam (and in addition changes Lagrange
multipliers accordingly), rescaling risk where necessary.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

76 Neighborhood-class

Neighborhood-class Neighborhood

Description

Class of neighborhoods of families of probability measures.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

type Object of class "character": type of the neighborhood.

radius Object of class "numeric": neighborhood radius.

Methods

type signature(object = "Neighborhood"): accessor function for slot type.

radius signature(object = "Neighborhood"): accessor function for slot radius.

show signature(object = "Neighborhood")

radius<- signature(object = "Neighborhood"): replacement function for slot radius.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

ProbFamily-class

normtype-methods 77

normtype-methods Methods for Function normtype in Package ‘RobAStBase’

Description

normtype-methods

Methods

normtype signature(object = "interpolrisk"): returns the slot normtype of an object of
class "interpolrisk".

Examples

myrisk <- MBRRisk(samplesize=100)
normtype(myrisk)

oneStepEstimator Function for the computation of one-step estimates

Description

Function for the computation of one-step estimates.

Usage

oneStepEstimator(x, IC, start = NULL,
useLast = getRobAStBaseOption("kStepUseLast"),
withUpdateInKer = getRobAStBaseOption("withUpdateInKer"),
IC.UpdateInKer = getRobAStBaseOption("IC.UpdateInKer"),
na.rm = TRUE, startArgList = NULL, withMakeIC = FALSE, ...,
E.argList = NULL)

Arguments

x sample

IC object of class "InfluenceCurve"

start initial estimate (for full parameter,i.e. in dimension k respective joint length of
main and nuisance part of the parameter): either a numerical value, or an object
of class "Estimate" or a function producing either a numerical value, or an
object of class "Estimate" when evaluated at x,...; if missing or NULL, we
use slot startPar of the L2family L2Fam from within IC.

useLast which parameter estimate (initial estimate or one-step estimate) shall be used to
fill the slots pIC, asvar and asbias of the return value.

78 oneStepEstimator

withUpdateInKer

if there is a non-trivial trafo in the model with matrix D, shall the parameter be
updated on ker(D)?

IC.UpdateInKer if there is a non-trivial trafo in the model with matrix D, the IC to be used for
this; if NULL the result of getboundedIC(L2Fam,D) is taken; this IC will then be
projected onto ker(D).

na.rm logical: if TRUE, the estimator is evaluated at complete.cases(x).

startArgList a list of arguments to be given to argument start if the latter is a function;
this list by default already starts with two unnamed items, the sample x, and the
model eval(CallL2Fam(IC)); in case IC is not of class IC, the model argument
L2Fam will be set to NULL.

withMakeIC logical; if TRUE the [p]IC is passed through makeIC before return.

... additional arguments

E.argList NULL (default) or a named list of arguments to be passed to calls to E from
kStepEstimator; potential clashes with arguments of the same name in ...
are resolved by inserting the items of argument list E.argList as named items
to the argument lists, so in case of collisions the item of E.argList overwrites
the existing one from

Details

Given an initial estimation start, a sample x and an influence curve IC the corresponding one-step
estimator is computed.

In case IC is an object of class "IC" the slots asvar and asbias of the return value are filled (based
on the initial estimate).

The default value of argument useLast is set by the global option kStepUseLast which by default
is set to FALSE. In case of general models useLast remains unchanged during the computations.
However, if slot CallL2Fam of IC generates an object of class "L2GroupParamFamily" the value
of useLast is changed to TRUE. Explicitly setting useLast to TRUE should be done with care as in
this situation the influence curve is re-computed using the value of the one-step estimate which may
take quite a long time depending on the model.

If useLast is set to TRUE and slot modifyIC of IC is filled with some function (which can be used
to re-compute the IC for a different parameter), the computation of asvar, asbias and IC is based
on the one-step estimate.

Value

Object of class "kStepEstimate"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

optIC 79

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

InfluenceCurve-class, kStepEstimate-class

optIC Generic function for the computation of optimally robust ICs

Description

Generic function for the computation of optimally robust ICs.

Usage

optIC(model, risk, ...)

S4 method for signature 'L2ParamFamily,asCov'
optIC(model, risk, withMakeIC = FALSE, ...)

Arguments

model probability model.

risk object of class "RiskType".

... additional parameters (here used for makeIC, resp. for E).

withMakeIC logical; if TRUE the [p]IC is passed through makeIC before return.

Details

The classical optimal IC which ist optimal in sense of the Cramer-Rao bound is computed.

Value

Some optimally robust IC is computed.

Methods

model = "L2ParamFamily", risk = "asCov" computes classical optimal influence curve for L2
differentiable parametric families.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

80 OptionalInfluenceCurve-class

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

InfluenceCurve-class, RiskType-class

Examples

B <- BinomFamily(size = 25, prob = 0.25)

classical optimal IC
IC0 <- optIC(model = B, risk = asCov())
plot(IC0) # plot IC
checkIC(IC0, B)

OptionalInfluenceCurve-class

Some helper Classes in package ’RobAStBase’

Description

Some helper Classes in package ’RobAStBase’: Classes OptionalInfluenceCurve, OptionalpICList,
StartClass, pICList

Class Unions

OptionalInfluenceCurve is a class union of classes InfluenceCurve and NULL; OptionalInfluenceCurveOrCall
is a class union of classes InfluenceCurve, call, and NULL — it is the slot class of slot pIC in
ALEstimate; OptionalpICList is a class union of classes pICList and NULL — it is the slot class
of slot pICList in kStepEstimate; StartClass is a class union of classes function, numeric and
Estimate — it is the slot class of slot start in kStepEstimate.

List Classes

pICList is a descendant of class list which requires its members —if any— to be of class pIC.

Methods

show signature(object = "OptionalpICList"): particular show-method.

show signature(object = "pICList"): particular show-method.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

outlyingPlotIC 81

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

InfluenceCurve, RiskType-class

outlyingPlotIC Function outlyingPlotIC in Package ‘RobAStBase’

Description

outlyingPlotIC produces an outlyingness plot based on distances applied to ICs

Usage

outlyingPlotIC(data,IC.x, IC.y = IC.x, dist.x = NormType(), dist.y,
cutoff.x = cutoff.sememp(0.95), cutoff.y = cutoff.chisq(0.95), ...,
cutoff.quantile.x = 0.95, cutoff.quantile.y = cutoff.quantile.x,
id.n, cex.pts = 1, lab.pts, jitter.pts = 0, alpha.trsp = NA, adj, cex.idn,
col.idn, lty.cutoff, lwd.cutoff, col.cutoff, text.abline = TRUE,
text.abline.x = NULL, text.abline.y = NULL, cex.abline = par("cex"),
col.abline = col.cutoff, font.abline = par("font"), adj.abline = c(0,0),
text.abline.x.x = NULL, text.abline.x.y = NULL, text.abline.y.x = NULL,
text.abline.y.y = NULL, text.abline.x.fmt.cx = "%7.2f",
text.abline.x.fmt.qx = "%4.2f%%", text.abline.y.fmt.cy = "%7.2f",
text.abline.y.fmt.qy = "%4.2f%%", robCov.x = TRUE, robCov.y = TRUE,
tf.x = NULL,tf.y = NULL, jitter.fac=10, jitter.tol=.Machine$double.eps,
doplot = TRUE,
main = gettext("Outlyingness \n by means of a distance-distance plot")
)

Arguments

data data coercable to matrix; the data at which to produce the ddPlot.

IC.x object of class IC the influence curve to produce the distances for the x axis.

IC.y object of class IC the influence curve to produce the distances for the y axis.

... further arguments to be passed to plot.default, text, and abline

dist.x object of class NormType; the distance for the x axis.

dist.y object of class NormType; the distance for the y axis.

82 outlyingPlotIC

cutoff.x object of class cutoff; the cutoff information for the x axis (the vertical line
discriminating ’good’ and ’bad’ points).

cutoff.y object of class cutoff; the cutoff information for the y axis (the horizontal line
discriminating ’good’ and ’bad’ points).

cutoff.quantile.x

numeric; the cutoff quantile for the x axis.
cutoff.quantile.y

numeric; the cutoff quantile for the y axis.

id.n a set of indices (or a corresponding logical vector); to select a subset of the data
in argument data.

cex.pts the corresponding cex argument for plotted points.

lab.pts a vector of labels for the (unsubsetted) data.

jitter.pts the corresponding jitter argument for plotted points; may be a vector of length
2 – for separate factors for x- and y-coordinate.

alpha.trsp alpha transparency to be added ex post to colors col.pch and col.lbl; if one-
dim and NA all colors are left unchanged. Otherwise, with usual recycling rules
alpha.trsp gets shorted/prolongated to length the data-symbols to be plotted.
Coordinates of this vector alpha.trsp with NA are left unchanged, while for
the remaining ones, the alpha channel in rgb space is set to the respective coor-
dinate value of alpha.trsp. The non-NA entries must be integers in [0,255] (0
invisible, 255 opaque).

adj the corresponding argument for text for labelling the outliers.

cex.idn the corresponding cex argument for text for labelling the outliers.

col.idn the corresponding col argument for text for labelling the outliers.

lty.cutoff the corresponding lty argument for abline for drawing the cutoff lines.

lwd.cutoff the corresponding lwd argument for abline for drawing the cutoff lines.

col.cutoff the corresponding col argument for abline for drawing the cutoff lines.

text.abline vector of logicals (cast to length 2): shall text be added to cutoff lines.

text.abline.x text to be added to cutoff lines in x direction; if NULL (default) we use “[pp]
%-cutoff = [ff]” where [pp] is the percentage up to 2 digits and [ff] is the cutoff
value up to 2 digits.

text.abline.y text to be added to cutoff lines in y direction; if NULL (default) we use “[pp]
%-cutoff = [ff]” where [pp] is the percentage up to 2 digits and [ff] is the cutoff
value up to 2 digits.

cex.abline vector of numerics (cast to length 2): cex-value for added cutoff text.

col.abline vector of length 2: color for added cutoff text.

font.abline vector of length 2: font for added cutoff text.

adj.abline cast to 2 x 2 matrix (by recycling rules): adjustment values for added cutoff text.
text.abline.x.y

y-coordinate of text to be added to cutoff lines in x direction; if NULL (default)
set to mid of mean(par("usr")[c(3,4)]).

outlyingPlotIC 83

text.abline.y.x

x-coordinate of text to be added to cutoff lines in y direction; if NULL (default)
set to mid of mean(par("usr")[c(1,2)]).

text.abline.x.x

x-coordinate of text to be added to cutoff lines in x direction; if NULL (default)
set to 1.05 times the cutoff value.

text.abline.y.y

y-coordinate of text to be added to cutoff lines in y direction; if NULL (default)
set to 1.05 times the cutoff value.

text.abline.x.fmt.cx

format string (see gettextf) to format the cutoff value in label in x direction.
text.abline.x.fmt.qx

format string to format cutoff probability in label in x direction.
text.abline.y.fmt.cy

format string to format the cutoff value in label in y direction.
text.abline.y.fmt.qy

format string to format cutoff probability in label in y direction.

robCov.x shall x-distances be based on MCD, i.e., robust covariances (TRUE) or on clas-
sical covariance be used?

robCov.y shall y-distances be based on MCD, i.e., robust covariances (TRUE) or on clas-
sical covariance be used?

tf.x transformation for x axis: a function returning the transformed x-coordinates
when applied to the data; if tf.x is NULL (default), internally this is set to the
evaluation function of the IC.x.

tf.y transformation for y axis: a function returning the transformed y-coordinates
when applied to the data; if tf.x is NULL (default), internally this is set to the
evaluation function of IC.y.

jitter.fac factor for jittering, see jitter;

jitter.tol threshold for jittering: if distance between points is smaller than jitter.tol,
points are considered replicates.

doplot logical; shall a plot be produced? if FALSE only the return values are produced.

main the main title.

Details

calls a corresponding ddPlot method to produce the plot.

Value

If argument doplot is FALSE: A list (returned as invisible()) with items

id.x the indices of (possibly transformed) data (within subset id.n) beyond the x-
cutoff

id.y the indices of (possibly transformed) data (within subset id.n) beyond the y-
cutoff

84 plot-methods

id.xy the indices of (possibly transformed) data (within subset id.n) beyond the x-
cutoff and the y-cutoff

qtx the quantiles of the distances of the (possibly transformed) data in x direction

qty the quantiles of the distances of the (possibly transformed) data in y direction

cutoff.x.v the cutoff value in x direction

cutoff.y.v the cutoff value in y direction

If argument doplot is TRUE: An S3 object of class c("plotInfo","DiagnInfo"), i.e., a list con-
taining the information needed to produce the respective plot, which at a later stage could be used
by different graphic engines (like, e.g. ggplot) to produce the plot in a different framework. A
more detailed description will follow in a subsequent version.a list (returned as invisible()) with
items; one item is retV which is the return value in case doplot is FALSE.

Note

If you want to use the return value of cutoff.quant() for arguments cutoff.x or cutoff.y,
remember to set the arguments tf.x resp. tf.y to the identity, i.e., function(x)x.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

if(require(ROptEst)){
generates normal location and scale family with mean = -2 and sd = 3
N0 <- NormLocationScaleFamily()
N0.IC0 <- optIC(model = N0, risk = asCov())
N0.Rob1 <- InfRobModel(center = N0, neighbor = ContNeighborhood(radius = 0.5))
N0.IC1 <- optIC(model = N0.Rob1, risk = asMSE())
set.seed(123)
xn <- c(rnorm(100),rcauchy(20)+20)
outlyingPlotIC(xn, IC.x=N0.IC0)
outlyingPlotIC(xn, IC.x=N0.IC1)

example for usage with cutoff.quant()
classIC <- optIC(NormLocationScaleFamily(mean = 3.3, sd = 0.67),

risk = asCov())
outlyingPlotIC(data = chem[-17], classIC, cex.pts = 3, jitter.fac = 1,

cutoff.x = cutoff.quant(), tf.x =function(x)(x))
}

plot-methods Methods for Function plot in Package ‘RobAStBase’

Description

plot-methods

plot-methods 85

Usage

plot(x, y, ...)
S4 method for signature 'IC,missing'
plot(x, ..., withSweave = getdistrOption("withSweave"),

main = FALSE, inner = TRUE, sub = FALSE,
col.inner = par("col.main"), cex.inner = 0.8,
bmar = par("mar")[1], tmar = par("mar")[3],
with.automatic.grid = TRUE,
with.legend = FALSE, legend = NULL, legend.bg = "white",
legend.location = "bottomright", legend.cex = 0.8,
withMBR = FALSE, MBRB = NA, MBR.fac = 2, col.MBR = par("col"),
lty.MBR = "dashed", lwd.MBR = 0.8,
x.vec = NULL, scaleX = FALSE, scaleX.fct, scaleX.inv,
scaleY = FALSE, scaleY.fct = pnorm, scaleY.inv=qnorm,
scaleN = 9, x.ticks = NULL, y.ticks = NULL,
mfColRow = TRUE, to.draw.arg = NULL,
withSubst = TRUE)

S4 method for signature 'IC,numeric'
plot(x, y, ...,

cex.pts = 1, cex.pts.fun = NULL, col.pts = par("col"),
pch.pts = 19,
cex.npts = 1, cex.npts.fun = NULL, col.npts = par("col"),
pch.npts = 20,

jitter.fac = 1, with.lab = FALSE, cex.lbs = 1, adj.lbs = c(0,0),
col.lbs = col.pts, lab.pts = NULL, lab.font = NULL,
alpha.trsp = NA, which.lbs = NULL,
which.Order = NULL, which.nonlbs = NULL, attr.pre = FALSE,
return.Order = FALSE)

Arguments

x object of class "IC": IC to be plotted

y missing or numeric (a dataset, e.g.)

withSweave logical: if TRUE (for working with Sweave) no extra device is opened

main logical: is a main title to be used? or
just as argument main in plot.default.

inner logical: do panels have their own titles? or
character vector of inner titles/ cast to length ’number of plotted dimensions’; if
argument to.draw.arg is used, this refers to a vector of length length(to.draw.arg),
the actually plotted dimensions. For further information, see also description of
argument main in plot.default.

sub logical: is a sub-title to be used? or
just as argument sub in plot.default.

tmar top margin – useful for non-standard main title sizes

bmar bottom margin – useful for non-standard sub title sizes

86 plot-methods

cex.inner magnification to be used for inner titles relative to the current setting of cex; as
in par

col.inner character or integer code; color for the inner title
with.automatic.grid

logical; should a grid be plotted alongside with the ticks of the axes, automati-
cally? If TRUE a respective call to grid in argument panel.first is ignored.

with.legend logical; shall a legend be plotted?

legend either NULL or a list of length (number of plotted panels) of items which can be
used as argument legend in command legend.

legend.location

a valid argument x for legend — the place where to put the legend on the last
issued plot — or a list of length (number of plotted panels) of such arguments,
one for each plotted panel.

legend.bg background color for the legend

legend.cex magnification factor for the legend

withMBR logical; shall horizontal lines with min and max of MBRE be plotted for com-
parison?

MBRB matrix (or NA); coerced by usual recycling rules to a matrix with as many rows
as plotted panels and with first column the lower bounds and the second column
the upper bounds for the respective coordinates (ideally given by the MBR-IC).

MBR.fac positive factor; scales the bounds given by argument MBRB

col.MBR color for the MBR lines; as usual col-argument;

lty.MBR line type for the MBR lines; as usual lty-argument;

lwd.MBR line width for the MBR lines; as usual lwd-argument;

x.vec a numeric vector of grid points to evaluate the influence curve; by default, x.vec
is NULL; then the grid is produced automatically according to the distribution of
the IC. x.vec can be useful for usage with a rescaling of the x-axis to avoid that
the evaluation points be selected too unevenly (i.e. on an equally spaced grid
in the original scale, but then, after rescaling non-equally). The grid has to be
specified in original scale; i.e.; when used with rescaling, it should be chosen
non-equally spaced.

scaleX logical; shall X-axis be rescaled (by default according to the cdf of the underly-
ing distribution)?

scaleY logical; shall Y-axis be rescaled (by default according to a probit scale)?

scaleX.fct an isotone, vectorized function mapping the domain of the IC to [0,1]; if scaleX
is TRUE and scaleX.fct is missing, the cdf of the underlying observation distri-
bution; can also be a list of functions with one list element for each of the panels
to be plot.

scaleX.inv the inverse function to scale.fct, i.e., an isotone, vectorized function mapping
[0,1] to the domain of the IC such that for any x in the domain, scaleX.inv(scaleX.fct(x))==x;
if scaleX is TRUE and scaleX.inv is missing, the quantile function of the un-
derlying observation distribution; can also be a list of functions with one list
element for each of the panels to be plot.

plot-methods 87

scaleY.fct an isotone, vectorized function mapping for each coordinate the range of the
respective coordinate of the IC to [0,1]; defaulting to the cdf of N (0, 1).

scaleY.inv an isotone, vectorized function mapping for each coordinate the range [0,1] into
the range of the respective coordinate of the IC; defaulting to the quantile func-
tion of N (0, 1).

scaleN integer; defaults to 9; on rescaled axes, number of x and y ticks if drawn auto-
matically;

x.ticks numeric; defaults to NULL; (then ticks are chosen automatically); if non-NULL,
user-given x-ticks (on original scale);

y.ticks numeric; defaults to NULL; (then ticks are chosen automatically); if non-NULL,
user-given y-ticks (on original scale); can be a list with one (numeric or NULL)
item per panel

mfColRow shall default partition in panels be used — defaults to TRUE

to.draw.arg Either NULL (default; everything is plotted) or a vector of either integers (the
indices of the subplots to be drawn) or characters — the names of the subplots
to be drawn: these names are to be chosen either among the row names of the
trafo matrix rownames(trafo(eval(x@CallL2Fam)@param)) or if the last ex-
pression is NULL a vector "dim<dimnr>", dimnr running through the number of
rows of the trafo matrix.

withSubst logical; if TRUE (default) pattern substitution for titles and lables is used; other-
wise no substitution is used.

cex.pts size of the points of the second argument plotted, can be a vector; if argument
attr.pre is TRUE, it is recycled to the length of all observations and determines
the sizes of all plotted symbols, i.e., the selection is done within this argument;
in this case argument col.npts is ignored. If attr.pre is FALSE, cex.pts
is recycled to the number of the observations selected for labelling and refers
to the index ordering after the selection. Then argument cex.npts deterem-
ines the sizes of the shown but non-labelled observations as given in argument
which.nonlbs.

cex.pts.fun rescaling function for the size of the points to be plotted; either NULL (default),
then log(1+abs(x)) is used for each of the rescalings, or a function which is
then used for each of the rescalings, or a list of functions; if it is a function
or a list of functions, if necessary it is recylced to length dim where dim is the
number of dimensions of the pICs to be plotted.

col.pts color of the points of the second argument plotted, can be a vector as in cex.pts
(with col.npts as counterpart).

pch.pts symbol of the points of the second argument plotted, can be a vector as in
cex.pts (with pch.npts as counterpart).

col.npts color of the non-labelled points of the data argument plotted; (may be a vector).

pch.npts symbol of the non-labelled points of the data argument plotted (may be a vec-
tor).

cex.npts size of the non-labelled points of the data argument plotted (may be a vector).

cex.npts.fun rescaling function for the size of the non-labelled points to be plotted; either
NULL (default), then log(1+abs(x)) is used for each of the rescalings, or a

88 plot-methods

function which is then used for each of the rescalings, or a list of functions; if it
is a function or a list of functions, if necessary it is recylced to length dim where
dim is the number of dimensions of the pICs to be plotted.

with.lab logical; shall labels be plotted to the observations?

cex.lbs size of the labels; can be vectorized to a matrix of dim nlbs x npnl where npnl
is the number of plotted panels and nlbs the number of plotted labels; if it is a
vector, it is recylced in order label then panel.

col.lbs color of the labels; can be vectorized as col.pts.

adj.lbs adjustment of the labels; can be vectorized to a 2 x npnl matrix, npnl the number
of plotted panels; if it is a vector, it is recycled in order (x,y)-coords then panel.

lab.pts character or NULL; labels to be plotted to the observations; if NULL observation
indices;

lab.font font to be used for labels (of the observations).

alpha.trsp alpha transparency to be added ex post to colors col.pch and col.lbl; if one-
dim and NA all colors are left unchanged. Otherwise, with usual recycling rules
alpha.trsp gets shorted/prolongated to length the data-symbols to be plotted.
Coordinates of this vector alpha.trsp with NA are left unchanged, while for
the remaining ones, the alpha channel in rgb space is set to the respective coor-
dinate value of alpha.trsp. The non-NA entries must be integers in [0,255] (0
invisible, 255 opaque).

jitter.fac jittering factor used in case of a DiscreteDistribution for plotting points of
the second argument in a jittered fashion.

attr.pre logical; do graphical attributes for plotted data refer to indices prior (TRUE) or
posterior to selection via arguments which.lbs, which.Order, which.nonlbs
(FALSE)?

which.lbs either an integer vector with the indices of the observations to be plotted into
graph or NULL — then no observation is excluded

which.Order we order the observations (descending) according to the norm given by normtype(object);
then which.Order either is an integer vector with the indices of the ordered ob-
servations (remaining after a possible reduction by argument which.lbs) to be
plotted (with labels) into graph or NULL — then no (further) observation is ex-
cluded.

which.nonlbs indices of the observations which should be plotted but not labelled; either an
integer vector with the indices of the observations to be plotted into graph or
NULL — then all non-labelled observations are plotted

return.Order logical; if TRUE, an order vector is returned; more specifically, the order of
the (remaining) observations given by their original index is returned (remain-
ing means: after a possible reduction by argument which.lbs, and ordering
is according to the norm given by normtype(object)); otherwise we return
invisible() as usual.

... further parameters for plot

plot-methods 89

Details

Any parameters of plot.default may be passed on to this particular plot method.

We start describing the IC,missing-method: For main-, inner, and subtitles given as arguments
main, inner, and sub, top and bottom margins are enlarged to 5 resp. 6 by default but may also
be specified by tmar / bmar arguments. If main / inner / sub are logical then if the respective
argument is FALSE nothing is done/plotted, but if it is TRUE, we use a default main title taking up
the calling arguments in case of main, default inner titles taking up the class and (named) parameter
slots of arguments in case of inner, and a "generated on <data>"-tag in case of sub. Of course,
if main / inner / sub are character, this is used for the title; in case of inner it is then checked
whether it has correct length. If argument withSubst is TRUE, in all title and axis lable arguments,
the following patterns are substituted:

"%C" class of argument object

"%A" deparsed argument object

"%D" time/date-string when the plot was generated

If argument ... contains argument ylim, this may either be as in plot.default (i.e. a vector of
length 2) or a vector of length 2*(number of plotted dimensions + 2), where the first two elements
are the values for ylim in panel "d", the first two are for ylim resp. xlim for panels "p" and "q",
and the last 2*(number of plotted dimensions) are the values for ylim for the plotted dimensions of
the L2derivative, one pair for each dimension.

The IC,numeric-method calls the IC,missing-method but in addition plots the values of a dataset
into the IC.

In addition, argument ... may contain arguments panel.first, panel.last, i.e., hook expres-
sions to be evaluated at the very beginning and at the very end of each panel (within the then valid
coordinates). To be able to use these hooks for each panel individually, they may also be lists of
expressions (of the same length as the number of panels and run through in the same order as the
panels).

Value

An S3 object of class c("plotInfo","DiagnInfo"), i.e., a list containing the information needed
to produce the respective plot, which at a later stage could be used by different graphic engines
(like, e.g. ggplot) to produce the plot in a different framework. A more detailed description will
follow in a subsequent version.

Examples

IC1 <- new("IC")
plot(IC1)
plot(IC1, main = TRUE, panel.first= grid(),

col = "blue", cex.main = 2, cex.inner = 1)

selection of subpanels for plotting
N <- NormLocationScaleFamily(mean=0, sd=1)
IC2 <- optIC(model = N, risk = asCov())
par(mfrow=c(1,1))
plot(IC2, main = TRUE, panel.first= grid(),

90 PlotIC

col = "blue", cex.main = 2, cex.inner = 0.6,
mfColRow = FALSE, to.draw.arg=c("sd"))

xlim and ylim arguments
plot(IC2, main = TRUE, panel.first= grid(),

ylim=c(-3,3), xlim=c(-2,3))
plot(IC2, main = TRUE, panel.first= grid(),

ylim=c(-3,3,-1,3), xlim=c(-2,3),
with.legend = TRUE)

data <- r(N)(30)
plot(IC2, data, panel.first= grid(),

ylim = c(-3,3,-1,3), xlim=c(-2,3),
cex.pts = 3, pch.pts = 1:2, col.pts="green",
with.lab = TRUE, which.lbs = c(1:4,15:20),
which.Order = 1:6, return.Order = TRUE)

PlotIC Wrapper function for plot method for IC

Description

The wrapper PlotIC takes most of arguments to the plot method by default and gives a user
possibility to run the function with low number of arguments.

Usage

PlotIC(IC, y, ..., alpha.trsp = 100, with.legend = TRUE,
rescale = FALSE, withCall = TRUE)

Arguments

IC object of class IC

y optional data argument — for plotting observations into the plot

... additional parameters (in particular to be passed on to plot)

alpha.trsp the transparency argument (0 to 100) for ploting the data

with.legend the flag for showing the legend of the plot

rescale the flag for rescaling the axes for better view of the plot

withCall the flag for the call output

Value

invisible(retV) where retV is the return value of the respective call to the full-fledged plot
method with the additional item wrapcall with the call to PlotIC and wrappedcall the call to to
the full-fledged plot method.

qqplot 91

Details

Calls plot with suitably chosen defaults; if withCall == TRUE, the call to plot, i.e., item wrappedcall
from the (hidden) return value, is printed.

Examples

Gamma
fam <- GammaFamily()
rfam <- InfRobModel(fam, ContNeighborhood(0.5))
IC <- optIC(model = fam, risk = asCov())
Y <- distribution(fam)
y <- r(Y)(1000)
PlotIC(IC, y, withCall = FALSE)

qqplot Methods for Function qqplot in Package ‘RobAStBase’

Description

We generalize function qqplot from package stats to be applicable to distribution and probability
model objects. In this context, qqplot produces a QQ plot of data (argument x) against a (model)
distribution. For arguments y of class RobModel, points at a high “distance” to the model are plotted
smaller. For arguments y of class kStepEstimate, points at with low weight in the [p]IC are plotted
bigger and their color gets faded out slowly. Graphical parameters may be given as arguments to
qqplot.

Usage

qqplot(x, y, ...)
S4 method for signature 'ANY,RobModel'
qqplot(x, y,

n = length(x), withIdLine = TRUE, withConf = TRUE,
withConf.pw = withConf, withConf.sim = withConf,
plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ..., distance = NormType(),
n.adj = TRUE)

S4 method for signature 'ANY,InfRobModel'
qqplot(x, y, n = length(x), withIdLine = TRUE,
withConf = TRUE, withConf.pw = withConf, withConf.sim = withConf,
plot.it = TRUE, xlab = deparse(substitute(x)), ylab =
deparse(substitute(y)), ..., cex.pts.fun = NULL, n.adj = TRUE)

S4 method for signature 'ANY,kStepEstimate'
qqplot(x, y,

n = length(x), withIdLine = TRUE, withConf = TRUE,
withConf.pw = withConf, withConf.sim = withConf,
plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...,

92 qqplot

exp.cex2.lbs = -.15,
exp.cex2.pts = -.35,
exp.fadcol.lbs = 1.85,
exp.fadcol.pts = 1.85,
bg = "white")

Arguments

x data to be checked for compatibility with distribution/model y.

y object of class "RobModel", of class "InfRobModel" or of class "kStepEstimate".

n numeric; number of quantiles at which to do the comparison.

withIdLine logical; shall line y = x be plotted in?

withConf logical; shall confidence lines be plotted?

withConf.pw logical; shall pointwise confidence lines be plotted?

withConf.sim logical; shall simultaneous confidence lines be plotted?

plot.it logical; shall be plotted at all (inherited from qqplot)?

xlab x-label

ylab y-label

... further parameters for method qqplot with signature ANY,ProbFamily (see
qqplot) or with function plot

cex.pts.fun rescaling function for the size of the points to be plotted; either NULL (default),
then log(1+abs(x)) is used, or a function which is then used.

n.adj logical; shall sample size be adjusted for possible outliers according to radius of
the corresponding neighborhood?

distance a function mapping observations x to the positive reals; used to determine the
size of the plotted points (the larger distance(x), the smaller the points are
plotted.

exp.cex2.lbs for objects kStepEstimate based on a [p]IC of class HampIC: exponent for the
weights of this [p]IC used to magnify the labels.

exp.cex2.pts for objects kStepEstimate based on a [p]IC of class HampIC: exponent for the
weights of this [p]IC used to magnify the symbols.

exp.fadcol.lbs for objects kStepEstimate based on a [p]IC of class HampIC: exponent for the
weights of this [p]IC used to find out-fading colors.

exp.fadcol.pts for objects kStepEstimate based on a [p]IC of class HampIC: exponent for the
weights of this [p]IC used to find out-fading colors.

bg background color to fade against

Details

qqplot signature(x = "ANY", y = "RobModel"): produces a QQ plot of a dataset x against the
theoretical quantiles of distribution of robust model y.

qqplot signature(x = "ANY", y = "InfRobModel"): produces a QQ plot of a dataset x against
the theoretical quantiles of distribution of infinitesimally robust model y.

qqplot 93

qqplot signature(x = "ANY", y = "kStepEstimate"): produces a QQ plot of a dataset x against
the theoretical quantiles of the model distribution of model at which the corresponding kStepEstimate
y had been calibrated at. By default, if the [p]IC of the kStepEstimate is of class HampIC,
i.e.; has a corresponding weight function, points (and, if with.lab==TRUE, labels) are scaled
and faded according to this weight function. Corresponding arguments exp.cex2.pts and
exp.fadcol.pts control this scaling and fading, respectively (and analogously exp.cex2.lbs
and exp.fadcol.lbs for the labels). The choice of these arguments has to be done on a case-
by-case basis. Positive exponents induce fading, magnification with increasing weight, for
negative exponents the same is true for decreasing weight; higher (absolute) values increase
the speed of fading / magnification.

Value

As for function qqplot from package stats: a list with components

x The x coordinates of the points that were/would be plotted

y The corresponding quantiles of the second distribution, including NAs.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

qqplot from package stats – the standard QQ plot function, qqplot from package distr for com-
parisons of distributions, and qqplot from package distrMod (which is called intermediately by
this method), as well as qqbounds, used by qqplot to produce confidence intervals.

Examples

\donttest to reduce check time

qqplot(rnorm(40, mean = 15, sd = sqrt(30)), Chisq(df=15))
RobM <- InfRobModel(center = NormLocationFamily(mean=13,sd=sqrt(28)),

neighbor = ContNeighborhood(radius = 0.4))

x <- rnorm(20, mean = 15, sd = sqrt(30))
qqplot(x, RobM)
qqplot(x, RobM, alpha.CI=0.9, add.points.CI=FALSE)

further examples for ANY,kStepEstimator-method
in example to roptest() in package ROptEst

94 returnlevelplot

returnlevelplot Methods for Function returnlevelplot in Package ‘RobAStBase’

Description

We generalize function returnlevelplot from package distrMod to be applicable to distribution
and probability model objects. In this context, returnlevelplot produces a rescaled QQ plot of
data (argument x) against a (model) distribution. For arguments y of class RobModel, points at a
high “distance” to the model are plotted smaller. For arguments y of class kStepEstimate, points at
with low weight in the [p]IC are plotted bigger and their color gets faded out slowly. This parallels
the behaviour of the respective qqplot methods. Graphical parameters may be given as arguments
to returnlevelplot.

Usage

returnlevelplot(x, y, ...)
S4 method for signature 'ANY,RobModel'
returnlevelplot(x, y,

n = length(x), withIdLine = TRUE, withConf = TRUE,
withConf.pw = withConf, withConf.sim = withConf,
plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ..., distance = NormType(),
n.adj = TRUE)

S4 method for signature 'ANY,InfRobModel'
returnlevelplot(x, y, n = length(x), withIdLine = TRUE,
withConf = TRUE, withConf.pw = withConf, withConf.sim = withConf,
plot.it = TRUE, xlab = deparse(substitute(x)), ylab =
deparse(substitute(y)), ..., cex.pts.fun = NULL, n.adj = TRUE)

S4 method for signature 'ANY,kStepEstimate'
returnlevelplot(x, y,

n = length(x), withIdLine = TRUE, withConf = TRUE,
withConf.pw = withConf, withConf.sim = withConf,
plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...,
exp.cex2.lbs = -.15,
exp.cex2.pts = -.35,
exp.fadcol.lbs = 1.85,
exp.fadcol.pts = 1.85,
bg = "white")

Arguments

x data to be checked for compatibility with distribution/model y.

y object of class "RobModel", of class "InfRobModel" or of class "kStepEstimate".

n numeric; number of quantiles at which to do the comparison.

returnlevelplot 95

withIdLine logical; shall line y = x be plotted in?

withConf logical; shall confidence lines be plotted?

withConf.pw logical; shall pointwise confidence lines be plotted?

withConf.sim logical; shall simultaneous confidence lines be plotted?

plot.it logical; shall be plotted at all (inherited from returnlevelplot)?

xlab x-label

ylab y-label

... further parameters for method returnlevelplot with signature ANY,ProbFamily
(see returnlevelplot) or with function plot

cex.pts.fun rescaling function for the size of the points to be plotted; either NULL (default),
then log(1+abs(x)) is used, or a function which is then used.

n.adj logical; shall sample size be adjusted for possible outliers according to radius of
the corresponding neighborhood?

distance a function mapping observations x to the positive reals; used to determine the
size of the plotted points (the larger distance(x), the smaller the points are
plotted.

exp.cex2.lbs for objects kStepEstimate based on a [p]IC of class HampIC: exponent for the
weights of this [p]IC used to magnify the labels.

exp.cex2.pts for objects kStepEstimate based on a [p]IC of class HampIC: exponent for the
weights of this [p]IC used to magnify the symbols.

exp.fadcol.lbs for objects kStepEstimate based on a [p]IC of class HampIC: exponent for the
weights of this [p]IC used to find out-fading colors.

exp.fadcol.pts for objects kStepEstimate based on a [p]IC of class HampIC: exponent for the
weights of this [p]IC used to find out-fading colors.

bg background color to fade against

Details

returnlevelplot signature(x = "ANY", y = "RobModel"): produces a QQ plot of a dataset x against
the theoretical quantiles of distribution of robust model y.

returnlevelplot signature(x = "ANY", y = "InfRobModel"): produces a QQ plot of a dataset x
against the theoretical quantiles of distribution of infinitesimally robust model y.

returnlevelplot signature(x = "ANY", y = "kStepEstimate"): produces a QQ plot of a dataset
x against the theoretical quantiles of the model distribution of model at which the correspond-
ing kStepEstimate y had been calibrated at. By default, if the [p]IC of the kStepEstimate
is of class HampIC, i.e.; has a corresponding weight function, points (and, if withLab==TRUE,
labels) are scaled and faded according to this weight function. Corresponding arguments
exp.cex2.pts and exp.fadcol.pts control this scaling and fading, respectively (and anal-
ogously exp.cex2.lbs and exp.fadcol.lbs for the labels). The choice of these arguments
has to be done on a case-by-case basis. Positive exponents induce fading, magnification with
increasing weight, for negative exponents the same is true for decreasing weight; higher (ab-
solute) values increase the speed of fading / magnification.

96 RobAStBaseMASK

Value

As for function returnlevelplot from package stats.

Note

The confidence bands given in our version of the return level plot differ from the ones given in
package ismev. We use non-parametric bands, hence also allow for non-parametric deviances from
the model, whereas in in package ismev they are based on profiling, hence only check for variability
within the parametric class.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

ismev: An Introduction to Statistical Modeling of Extreme Values. R package version 1.39. https://CRAN.R-
project.org/package=ismev; original S functions written by Janet E. Heffernan with R port and R
documentation provided by Alec G. Stephenson. (2012).

Coles, S. (2001). An introduction to statistical modeling of extreme values. London: Springer.

See Also

qqplot from package stats – the standard QQ plot function, returnlevelplot from package distr-
Mod (which is called intermediately by this method), as well as qqbounds, used by returnlevelplot
to produce confidence intervals.

Examples

returnlevelplot(rnorm(40, mean = 15, sd = sqrt(30)), Chisq(df=15))
RobM <- InfRobModel(center = NormLocationFamily(mean=13,sd=sqrt(28)),

neighbor = ContNeighborhood(radius = 0.4))

\donttest to reduce check time
x <- rnorm(20, mean = 15, sd = sqrt(30))
returnlevelplot(x, RobM)
returnlevelplot(x, RobM, alpha.CI=0.9, add.points.CI=FALSE)

further examples for ANY,kStepEstimator-method
in example to roptest() in package ROptEst

RobAStBaseMASK Masking of/by other functions in package "RobAStBase"

Description

Provides information on the (intended) masking of and (non-intended) masking by other other func-
tions in package RobAStBase

RobAStBaseOptions 97

Usage

RobAStBaseMASK(library = NULL)

Arguments

library a character vector with path names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries

Value

no value is returned

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

IGNORE_RDIFF_BEGIN
RobAStBaseMASK()
IGNORE_RDIFF_END

RobAStBaseOptions Function to change the global variables of the package ‘RobAStBase’

Description

With RobAStBaseOptions you can inspect and change the global variables of the package RobASt-
Base.

Usage

RobAStBaseOptions(...)
getRobAStBaseOption(x)

Arguments

... any options can be defined, using name = value or by passing a list of such
tagged values.

x a character string holding an option name.

Value

RobAStBaseOptions() returns a list of the global variables.
RobAStBaseOptions(x) returns the global variable x.
getRobAStBaseOption(x) returns the global variable x .
RobAStBaseOptions(x=y) sets the value of the global variable x to y .

98 RobAStControl-class

Global Options

kStepUseLast: The default value of argument kStepUseLast is FALSE. Explicitly setting kStepUseLast
to TRUE should be done with care as in this situation the influence curve in case of oneStepEstimator
and kStepEstimator is re-computed using the value of the one- resp. k-step estimate which
may take quite a long time depending on the model.

withUpdateInKer: if there is a non-trivial trafo in the model with matrix D, shall the parameter
be updated on ker(D)? Defaults to FALSE.

IC.UpdateInKer: if there is a non-trivial trafo in the model with matrix D, the IC to be used for
this; if NULL the result of getboundedIC(L2Fam,D) is taken; this IC will then be projected
onto ker(D); defaults to NULL.

all.verbose: argument verbose passed on by default to many calls of optIC, radiusminimaxIC,
getinfRobIC etc.; well suited for testing purposes. Defaults to FALSE.

withPICList: logical: shall slot pICList of return value of kStepEstimator be filled? Defaults
to FALSE.

withICList: logical: shall slot ICList of return value of kStepEstimator be filled? Defaults to
FALSE.

modifyICwarn: logical: should a (warning) information be added if modifyIC is applied and
hence some optimality information could no longer be valid? Defaults to TRUE.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

options, getOption

Examples

RobAStBaseOptions()
RobAStBaseOptions("kStepUseLast")
RobAStBaseOptions("kStepUseLast" = TRUE)
or
RobAStBaseOptions(kStepUseLast = 1e-6)
getRobAStBaseOption("kStepUseLast")

RobAStControl-class Control classes in package RobAStBase

Description

Control classes in package RobAStBase.

Objects from the Class

This class is virtual; that is no objects may be created.

RobModel-class 99

Slots

name Object of class "character": name of the control object.

Methods

name signature(object = "RobAStControl"): accessor function for slot name.
name<- signature(object = "RobAStControl", value = "character"): replacement function

for slot name.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

RobModel-class Robust model

Description

Class of robust models. A robust model consists of family of probability measures center and a
neighborhood neighbor about this family.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

center Object of class "ProbFamily"
neighbor Object of class "Neighborhood"

Methods

center signature(object = "RobModel"): accessor function for slot center.
center<- signature(object = "RobModel"): replacement function for slot center.
neighbor signature(object = "RobModel"): accessor function for slot neighbor.
neighbor<- signature(object = "RobModel"): replacement function for slot neighbor.
trafo signature(object = "RobModel", param = "missing"): accessor function for slot trafo

of slot center.
trafo<- signature(object = "RobModel"): replacement function for slot trafo of slot center.

100 RobWeight-class

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

ProbFamily-class, Neighborhood-class

RobWeight-class Robust Weight classes

Description

Classes for robust weights.

Objects from the Class

Objects can be created by calls of the form new("RobWeight", ...).

Slots

name Object of class "character".
weight Object of class "function" — the weight function.

Methods

name signature(object = "RobWeight"): accessor function for slot name.
name<- signature(object = "RobWeight"): replacement function for slot name.
weight signature(object = "RobWeight"): accessor function for slot weight.
weight<- signature(object = "RobWeight"): replacement function for slot weight.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York:
Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

samplesize-methods 101

See Also

InfluenceCurve-class, IC

Examples

prototype
new("RobWeight")

samplesize-methods Methods for Function samplesize in Package ‘RobAStBase’

Description

samplesize-methods

Methods

samplesize signature(object = "interpolrisk"): returns the slot samplesize of an object of
class "interpolrisk".

samplesize<- signature(object = "interpolrisk", value = "ANY"): modifies the slot samplesize
of an object of class "interpolrisk".

Examples

myrisk <- MBRRisk(samplesize=100)
samplesize(myrisk)
samplesize(myrisk) <- 20

TotalVarIC Generating function for TotalVarIC-class

Description

Generates an object of class "TotalVarIC"; i.e., an influence curves η of the form

η = c ∨AΛ ∧ d

with lower clipping bound c, upper clipping bound d and standardizing matrix A. Λ stands for the
L2 derivative of the corresponding L2 differentiable parametric family which can be created via
CallL2Fam.

102 TotalVarIC

Usage

TotalVarIC(name, CallL2Fam = call("L2ParamFamily"),
Curve = EuclRandVarList(RealRandVariable(Map = c(function(x) {x}),

Domain = Reals())),
Risks, Infos, clipLo = -Inf, clipUp = Inf, stand = as.matrix(1),
lowerCase = NULL, neighborRadius = 0, w = new("BdStWeight"),
normtype = NormType(), biastype = symmetricBias(),
modifyIC = NULL)

Arguments

name object of class "character".

CallL2Fam object of class "call": creates an object of the underlying L2-differentiable
parametric family.

Curve object of class "EuclRandVarList".

Risks object of class "list": list of risks; cf. RiskType-class.

Infos matrix of characters with two columns named method and message: additional
informations.

clipLo negative real: lower clipping bound.

clipUp positive real: lower clipping bound.

stand matrix: standardizing matrix

w BdStWeight: weight object

lowerCase optional constant for lower case solution.

neighborRadius radius of the corresponding (unconditional) contamination neighborhood.

biastype BiasType: type of the bias

normtype NormType: type of the norm

modifyIC object of class "OptionalFunction": function of four arguments: (1) L2Fam
an L2 parametric family (2) IC an optional influence curve, (3) withMakeIC a
logical argument whether to enforce the IC side conditions by makeIC, and (4)
... for arguments to be passed to calls to E in makeIC. Returns an object of class
"IC". This function is mainly used for internal computations!

Value

Object of class "TotalVarIC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

TotalVarIC-class 103

See Also

IC-class, ContIC

Examples

IC1 <- TotalVarIC()
plot(IC1)

TotalVarIC-class Influence curve of total variation type

Description

Class of (partial) influence curves of total variation type. i.e., an influence curves η of the form

η = c ∨AΛ ∧ d

with lower clipping bound c, upper clipping bound d and standardizing matrix A. Λ stands for the
L2 derivative of the corresponding L2 differentiable parametric family which can be created via
CallL2Fam.

Objects from the Class

Objects can be created by calls of the form new("TotalVarIC", ...). More frequently they are
created via the generating function TotalVarIC, respectively via the method generateIC.

Slots

CallL2Fam object of class "call": creates an object of the underlying L2-differentiable parametric
family.

name object of class "character".
Curve object of class "EuclRandVarList".
modifyIC object of class "OptionalFunction": function of four arguments: (1) L2Fam an L2 para-

metric family (2) IC an optional influence curve, (3) withMakeIC a logical argument whether
to enforce the IC side conditions by makeIC, and (4) ... for arguments to be passed to calls
to E in makeIC. Returns an object of class "IC". This function is mainly used for internal
computations!

Risks object of class "list": list of risks; cf. RiskType-class.
Infos object of class "matrix" with two columns named method and message: additional infor-

mations.
clipLo object of class "numeric": lower clipping bound.
clipUp object of class "numeric": upper clipping bound.
stand object of class "matrix": standardizing matrix.
weight object of class "BdStWeight": weight function
biastype object of class "BiasType": bias type (symmetric/onsided/asymmetric)
normtype object of class "NormType": norm type (Euclidean, information/self-standardized)
neighborRadius object of class "numeric": radius of the corresponding (unconditional) contam-

ination neighborhood.

104 TotalVarIC-class

Extends

Class "HampIC", directly.
Class "IC", by class "HampIC".
Class "InfluenceCurve", by class "IC".

Methods

CallL2Fam<- signature(object = "TotalVarIC"): replacement function for slot CallL2Fam.

clipLo signature(object = "TotalVarIC"): accessor function for slot clipLo.

clipLo<- signature(object = "TotalVarIC"): replacement function for slot clipLo.

clipUp signature(object = "TotalVarIC"): accessor function for slot clipUp.

clipUp<- signature(object = "TotalVarIC"): replacement function for slot clipUp.

clip signature(x1 = "TotalVarIC"): returns clipUp-clipLo.

stand<- signature(object = "TotalVarIC"): replacement function for slot stand.

lowerCase<- signature(object = "TotalVarIC"): replacement function for slot lowerCase.

neighbor signature(object = "TotalVarIC"): generates an object of class "TotalVarNeighborhood"
with radius given in slot neighborRadius.

generateIC signature(neighbor = "TotalVarNeighborhood", L2Fam = "L2ParamFamily"): gen-
erate an object of class "TotalVarIC". Rarely called directly.

show signature(object = "TotalVarIC")

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

IC-class, ContIC, HampIC-class

Examples

IC1 <- new("TotalVarIC")
plot(IC1)

TotalVarNeighborhood 105

TotalVarNeighborhood Generating function for TotalVarNeighborhood-class

Description

Generates an object of class "TotalVarNeighborhood".

Usage

TotalVarNeighborhood(radius = 0)

Arguments

radius non-negative real: neighborhood radius.

Value

Object of class "ContNeighborhood"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

TotalVarNeighborhood-class

Examples

TotalVarNeighborhood()

The function is currently defined as
function(radius = 0){

new("TotalVarNeighborhood", radius = radius)
}

106 TotalVarNeighborhood-class

TotalVarNeighborhood-class

Total variation neighborhood

Description

Class of (unconditional) total variation neighborhoods.

Objects from the Class

Objects can be created by calls of the form new("TotalVarNeighborhood", ...). More fre-
quently they are created via the generating function TotalVarNeighborhood.

Slots

type Object of class "character": “(uncond.) total variation neighborhood”.

radius Object of class "numeric": neighborhood radius.

Extends

Class "UncondNeighborhood", directly.
Class "Neighborhood", by class "UncondNeighborhood".

Methods

No methods defined with class "TotalVarNeighborhood" in the signature.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

TotalVarNeighborhood, UncondNeighborhood-class

Examples

new("TotalVarNeighborhood")

UncondNeighborhood-class 107

UncondNeighborhood-class

Unconditional neighborhood

Description

Class of unconditonal (errors-in-variables) neighborhoods.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

type Object of class "character": type of the neighborhood.

radius Object of class "numeric": neighborhood radius.

Extends

Class "Neighborhood", directly.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dis-
sertation.

See Also

Neighborhood-class

Index

∗ M estimator
locMEstimator, 68

∗ absolute information
infoPlot, 53

∗ asymptotic risk
movToRef-methods, 74

∗ classes
ALEstimate-class, 4
BdStWeight-class, 7
biastype-methods, 8
BoundedWeight-class, 8
ContIC-class, 20
ContNeighborhood-class, 23
cutoff-class, 25
FixRobModel-class, 32
getRiskFctBV-methods, 38
HampelWeight-class, 43
HampIC-class, 45
IC-class, 48
InfluenceCurve-class, 50
InfRobModel-class, 60
interpolRisk-class, 61
kStepEstimate-class, 62
kStepEstimator.start-methods, 67
MEstimate-class, 73
movToRef-methods, 74
Neighborhood-class, 76
normtype-methods, 77
OptionalInfluenceCurve-class, 80
RobAStControl-class, 98
RobModel-class, 99
RobWeight-class, 100
samplesize-methods, 101
TotalVarIC-class, 103
TotalVarNeighborhood-class, 106
UncondNeighborhood-class, 107

∗ contamination neighborhood
ContNeighborhood, 22
ContNeighborhood-class, 23

TotalVarNeighborhood, 105
∗ distribution

plot-methods, 84
qqplot, 91
returnlevelplot, 94
RobAStBaseMASK, 96

∗ documentation
RobAStBaseMASK, 96

∗ estimate
ALEstimate-class, 4
kStepEstimate-class, 62
kStepEstimator.start-methods, 67
MEstimate-class, 73

∗ estimator
kStepEstimator, 64
locMEstimator, 68
oneStepEstimator, 77

∗ finite-sample risk
getFiRisk, 37

∗ fixed neighborhood
FixRobModel, 31
FixRobModel-class, 32
getBoundedIC, 36

∗ global options
RobAStBaseOptions, 97

∗ hplot
cutoff, 24
ddPlot-methods, 26
outlyingPlotIC, 81
qqplot, 91
returnlevelplot, 94

∗ infinitesimal neighborhood
InfRobModel, 59
InfRobModel-class, 60

∗ influence curve
BdStWeight-class, 7
BoundedWeight-class, 8
checkIC, 9
ContIC, 18

108

INDEX 109

ContIC-class, 20
evalIC, 30
generateIC, 33
generateIC.fct-methods, 34
getBiasIC, 35
getRiskIC, 39
getweight-methods, 42
HampelWeight-class, 43
HampIC-class, 45
IC, 46
IC-class, 48
InfluenceCurve, 49
InfluenceCurve-class, 50
makeIC, 69
optIC, 79
OptionalInfluenceCurve-class, 80
RobAStControl-class, 98
RobWeight-class, 100
TotalVarIC, 101
TotalVarIC-class, 103

∗ info file
RobAStBaseMASK, 96

∗ k-step estimator
kStepEstimator, 64

∗ masking
RobAStBaseMASK, 96

∗ methods
ddPlot-methods, 26
masked-methods, 72
plot-methods, 84

∗ misc
RobAStBaseOptions, 97

∗ models
ContNeighborhood, 22
ContNeighborhood-class, 23
FixRobModel, 31
FixRobModel-class, 32
getBoundedIC, 36
InfRobModel, 59
InfRobModel-class, 60
Neighborhood-class, 76
RobModel-class, 99
TotalVarNeighborhood, 105
TotalVarNeighborhood-class, 106
UncondNeighborhood-class, 107

∗ neighborhood
ContNeighborhood, 22
ContNeighborhood-class, 23

Neighborhood-class, 76
TotalVarNeighborhood, 105
TotalVarNeighborhood-class, 106
UncondNeighborhood-class, 107

∗ one-step estimator
oneStepEstimator, 77

∗ options
RobAStBaseOptions, 97

∗ package
RobAStBase-package, 3

∗ programming
RobAStBaseMASK, 96

∗ relative information
infoPlot, 53

∗ risk
biastype-methods, 8
getFiRisk, 37
getRiskFctBV-methods, 38
interpolRisk-class, 61
movToRef-methods, 74
normtype-methods, 77
samplesize-methods, 101

∗ robust influence curve
optIC, 79

∗ robust model
FixRobModel, 31
FixRobModel-class, 32
getBoundedIC, 36
InfRobModel, 59
InfRobModel-class, 60
RobModel-class, 99

∗ robust
checkIC, 9
comparePlot-methods, 12
ContIC, 18
evalIC, 30
generateIC, 33
generateIC.fct-methods, 34
getBiasIC, 35
getFiRisk, 37
getRiskIC, 39
getweight-methods, 42
IC, 46
IC-class, 48
InfluenceCurve, 49
InfluenceCurve-class, 50
infoPlot, 53
kStepEstimator, 64

110 INDEX

locMEstimator, 68
makeIC, 69
oneStepEstimator, 77
optIC, 79
OptionalInfluenceCurve-class, 80
RobAStBaseOptions, 97
TotalVarIC, 101
TotalVarIC-class, 103

∗ shrinking neighborhood
InfRobModel, 59
InfRobModel-class, 60

∗ total variation neighborhood
TotalVarNeighborhood-class, 106

∗ unconditional neighborhood
UncondNeighborhood-class, 107

∗ univar
kStepEstimator, 64
locMEstimator, 68
oneStepEstimator, 77

.checkEstClassForParamFamily,ANY,CvMMDEstimate-method
(ALEstimate-class), 4

.checkEstClassForParamFamily,ANY,MLEstimate-method
(ALEstimate-class), 4

abline, 28, 82
addInfo<- (InfluenceCurve-class), 50
addInfo<-,InfluenceCurve-method

(InfluenceCurve-class), 50
addRisk<- (InfluenceCurve-class), 50
addRisk<-,InfluenceCurve-method

(InfluenceCurve-class), 50
ALEstimate-class, 4
all.verbose (RobAStBaseOptions), 97
asbias (ALEstimate-class), 4
asbias,ALEstimate-method

(ALEstimate-class), 4

BdStWeight-class, 7
biastype (biastype-methods), 8
biastype,HampIC-method (HampIC-class),

45
biastype,interpolRisk-method

(biastype-methods), 8
biastype-methods, 8
BoundedWeight-class, 8

CallL2Fam (IC-class), 48
CallL2Fam,IC-method (IC-class), 48
CallL2Fam<- (IC-class), 48

CallL2Fam<-,ContIC-method
(ContIC-class), 20

CallL2Fam<-,IC-method (IC-class), 48
CallL2Fam<-,TotalVarIC-method

(TotalVarIC-class), 103
cent (ContIC-class), 20
cent,ContIC-method (ContIC-class), 20
cent,HampelWeight-method

(HampelWeight-class), 43
cent<- (ContIC-class), 20
cent<-,ContIC-method (ContIC-class), 20
cent<-,HampelWeight-method

(HampelWeight-class), 43
center (RobModel-class), 99
center,RobModel-method

(RobModel-class), 99
center<- (RobModel-class), 99
center<-,RobModel-method

(RobModel-class), 99
checkIC, 9
checkIC,IC,L2ParamFamily-method

(checkIC), 9
checkIC,IC,missing-method (checkIC), 9
clip, 72, 73
clip (masked-methods), 72
clip,ANY-method (masked-methods), 72
clip,BoundedWeight-method

(BoundedWeight-class), 8
clip,ContIC-method (ContIC-class), 20
clip,TotalVarIC-method

(TotalVarIC-class), 103
clip-methods (masked-methods), 72
clip<- (ContIC-class), 20
clip<-,BoundedWeight-method

(BoundedWeight-class), 8
clip<-,ContIC-method (ContIC-class), 20
clipLo (TotalVarIC-class), 103
clipLo,TotalVarIC-method

(TotalVarIC-class), 103
clipLo<- (TotalVarIC-class), 103
clipLo<-,TotalVarIC-method

(TotalVarIC-class), 103
clipUp (TotalVarIC-class), 103
clipUp,TotalVarIC-method

(TotalVarIC-class), 103
clipUp<- (TotalVarIC-class), 103
clipUp<-,TotalVarIC-method

(TotalVarIC-class), 103

INDEX 111

ComparePlot, 11
comparePlot (comparePlot-methods), 12
comparePlot,IC,IC-method

(comparePlot-methods), 12
comparePlot-methods, 12
confint,ALEstimate,asymmetricBias-method

(ALEstimate-class), 4
confint,ALEstimate,missing-method

(ALEstimate-class), 4
confint,ALEstimate,onesidedBias-method

(ALEstimate-class), 4
confint,ALEstimate,symmetricBias-method

(ALEstimate-class), 4
ContIC, 18, 20, 22, 103, 104
ContIC-class, 20
ContNeighborhood, 22, 23
ContNeighborhood-class, 23
Curve (InfluenceCurve-class), 50
Curve,InfluenceCurve-method

(InfluenceCurve-class), 50
cutoff, 24, 25, 26
cutoff-class, 25
cutoff.quantile (cutoff-class), 25
cutoff.quantile,cutoff-method

(cutoff-class), 25
cutoff.quantile<- (cutoff-class), 25
cutoff.quantile<-,cutoff-method

(cutoff-class), 25
CvMMD.ALEstimate-class

(ALEstimate-class), 4

ddPlot, 25, 26, 83
ddPlot (ddPlot-methods), 26
ddPlot,data.frame-method

(ddPlot-methods), 26
ddPlot,matrix-method (ddPlot-methods),

26
ddPlot,numeric-method (ddPlot-methods),

26
ddPlot-methods, 26
Domain,InfluenceCurve-method

(InfluenceCurve-class), 50

evalIC, 30
evalIC,IC,matrix-method (IC-class), 48
evalIC,IC,numeric-method (IC-class), 48

fct,cutoff-method (cutoff-class), 25
FixRobModel, 31, 32

FixRobModel-class, 32

generateIC, 33
generateIC,ContNeighborhood,L2ParamFamily-method

(ContIC-class), 20
generateIC,TotalVarNeighborhood,L2ParamFamily-method

(TotalVarIC-class), 103
generateIC.fct

(generateIC.fct-methods), 34
generateIC.fct,UncondNeighborhood,L2ParamFamily-method

(generateIC.fct-methods), 34
generateIC.fct-methods, 34
getBiasIC, 35, 40, 41
getBiasIC,IC,UncondNeighborhood-method

(getBiasIC), 35
getBiasIC-methods (getBiasIC), 35
getBoundedIC, 36
getDiagnostic, 10, 65, 70
getFiRisk, 37
getFiRisk,fiUnOvShoot,Norm,ContNeighborhood-method

(getFiRisk), 37
getFiRisk,fiUnOvShoot,Norm,TotalVarNeighborhood-method

(getFiRisk), 37
getFiRisk-methods (getFiRisk), 37
getOption, 98
getPIC (ALEstimate-class), 4
getPIC,ANY-method (ALEstimate-class), 4
getPIC,CvMMDEstimate-method

(ALEstimate-class), 4
getPIC,MLEstimate-method

(ALEstimate-class), 4
getRiskFctBV (getRiskFctBV-methods), 38
getRiskFctBV,asGRisk,ANY-method

(getRiskFctBV-methods), 38
getRiskFctBV,asMSE,ANY-method

(getRiskFctBV-methods), 38
getRiskFctBV,asSemivar,asymmetricBias-method

(getRiskFctBV-methods), 38
getRiskFctBV,asSemivar,onesidedBias-method

(getRiskFctBV-methods), 38
getRiskFctBV,interpolRisk,ANY-method

(getRiskFctBV-methods), 38
getRiskFctBV-methods, 38
getRiskIC, 39, 41
getRiskIC,IC,asBias,UncondNeighborhood,L2ParamFamily-method

(getRiskIC), 39
getRiskIC,IC,asBias,UncondNeighborhood,missing-method

(getRiskIC), 39

112 INDEX

getRiskIC,IC,asCov,missing,L2ParamFamily-method
(getRiskIC), 39

getRiskIC,IC,asCov,missing,missing-method
(getRiskIC), 39

getRiskIC,IC,asMSE,UncondNeighborhood,L2ParamFamily-method
(getRiskIC), 39

getRiskIC,IC,asMSE,UncondNeighborhood,missing-method
(getRiskIC), 39

getRiskIC,IC,fiUnOvShoot,ContNeighborhood,missing-method
(getRiskIC), 39

getRiskIC,IC,fiUnOvShoot,TotalVarNeighborhood,missing-method
(getRiskIC), 39

getRiskIC,IC,trAsCov,missing,L2ParamFamily-method
(getRiskIC), 39

getRiskIC,IC,trAsCov,missing,missing-method
(getRiskIC), 39

getRiskIC,TotalVarIC,asUnOvShoot,UncondNeighborhood,missing-method
(getRiskIC), 39

getRiskIC-methods (getRiskIC), 39
getRobAStBaseOption

(RobAStBaseOptions), 97
gettextf, 29, 83
getweight, 7, 44
getweight (getweight-methods), 42
getweight,BdStWeight,TotalVarNeighborhood,BiasType-method

(getweight-methods), 42
getweight,HampelWeight,ContNeighborhood,asymmetricBias-method

(getweight-methods), 42
getweight,HampelWeight,ContNeighborhood,BiasType-method

(getweight-methods), 42
getweight,HampelWeight,ContNeighborhood,onesidedBias-method

(getweight-methods), 42
getweight-methods, 42

HampelWeight-class, 43
HampIC-class, 45

IC, 7, 9, 44, 46, 49, 101
IC-class, 48
IC.UpdateInKer (RobAStBaseOptions), 97
ICList (kStepEstimate-class), 62
ICList,kStepEstimate-method

(kStepEstimate-class), 62
InfluenceCurve, 49, 51, 81
InfluenceCurve-class, 50
InfoPlot, 52
infoPlot, 53
infoPlot,IC-method (infoPlot), 53
infoPlot-methods (infoPlot), 53

Infos (InfluenceCurve-class), 50
Infos,InfluenceCurve-method

(InfluenceCurve-class), 50
Infos<- (InfluenceCurve-class), 50
Infos<-,InfluenceCurve-method

(InfluenceCurve-class), 50
InfRobModel, 59, 61
InfRobModel-class, 60
interpolRisk-class, 61

jitter, 83

kStepEstimate-class, 62
kStepEstimator, 64, 68
kStepEstimator.start

(kStepEstimator.start-methods),
67

kStepEstimator.start,Estimate-method
(kStepEstimator.start-methods),
67

kStepEstimator.start,function-method
(kStepEstimator.start-methods),
67

kStepEstimator.start,numeric-method
(kStepEstimator.start-methods),
67

kStepEstimator.start-methods, 67
ksteps (kStepEstimate-class), 62
ksteps,kStepEstimate-method

(kStepEstimate-class), 62
kStepUseLast (RobAStBaseOptions), 97

legend, 13, 54, 86
locMEstimator, 68
locMEstimator,numeric,InfluenceCurve-method

(locMEstimator), 68
locMEstimator-methods (locMEstimator),

68
lowerCase (HampIC-class), 45
lowerCase,HampIC-method (HampIC-class),

45
lowerCase<- (ContIC-class), 20
lowerCase<-,ContIC-method

(ContIC-class), 20
lowerCase<-,TotalVarIC-method

(TotalVarIC-class), 103

makeIC, 69
makeIC,function,L2ParamFamily-method

(makeIC), 69

INDEX 113

makeIC,IC,L2ParamFamily-method
(makeIC), 69

makeIC,IC,missing-method (makeIC), 69
makeIC,list,L2ParamFamily-method

(makeIC), 69
makeIC-methods (makeIC), 69
Map,InfluenceCurve-method

(InfluenceCurve-class), 50
masked-methods, 72
maskedMethods (masked-methods), 72
MASKING (RobAStBaseMASK), 96
MBRRisk (interpolRisk-class), 61
MBRRisk-class (interpolRisk-class), 61
MCALEstimate-class (ALEstimate-class), 4
MEstimate-class, 73
minbiasweight, 7, 44
minbiasweight (getweight-methods), 42
minbiasweight,BdStWeight,TotalVarNeighborhood,BiasType-method

(getweight-methods), 42
minbiasweight,HampelWeight,ContNeighborhood,asymmetricBias-method

(getweight-methods), 42
minbiasweight,HampelWeight,ContNeighborhood,BiasType-method

(getweight-methods), 42
minbiasweight,HampelWeight,ContNeighborhood,onesidedBias-method

(getweight-methods), 42
minbiasweight-methods

(getweight-methods), 42
ML.ALEstimate-class (ALEstimate-class),

4
modifyIC (IC-class), 48
modifyIC,IC-method (IC-class), 48
modifyICwarn (RobAStBaseOptions), 97
moveICBackFromRefParam

(movToRef-methods), 74
moveICBackFromRefParam,HampIC,L2ParamFamily-method

(movToRef-methods), 74
moveICBackFromRefParam,IC,L2LocationFamily-method

(movToRef-methods), 74
moveICBackFromRefParam,IC,L2LocationScaleFamily-method

(movToRef-methods), 74
moveICBackFromRefParam,IC,L2ParamFamily-method

(movToRef-methods), 74
moveICBackFromRefParam,IC,L2ScaleFamily-method

(movToRef-methods), 74
moveICBackFromRefParam-methods

(movToRef-methods), 74
moveL2Fam2RefParam (movToRef-methods),

74

moveL2Fam2RefParam,L2LocationFamily-method
(movToRef-methods), 74

moveL2Fam2RefParam,L2LocationScaleFamily-method
(movToRef-methods), 74

moveL2Fam2RefParam,L2ParamFamily-method
(movToRef-methods), 74

moveL2Fam2RefParam,L2ScaleFamily-method
(movToRef-methods), 74

moveL2Fam2RefParam-methods
(movToRef-methods), 74

movToRef-methods, 74
Mroot (MEstimate-class), 73
Mroot,MEstimate-method

(MEstimate-class), 73

NA, 93
name,cutoff-method (cutoff-class), 25
name,InfluenceCurve-method

(InfluenceCurve-class), 50
name,RobAStControl-method

(RobAStControl-class), 98
name,RobModel-method (RobModel-class),

99
name,RobWeight-method

(RobWeight-class), 100
name<-,InfluenceCurve-method

(InfluenceCurve-class), 50
name<-,RobAStControl-method

(RobAStControl-class), 98
name<-,RobWeight-method

(RobWeight-class), 100
neighbor (RobModel-class), 99
neighbor,ContIC-method (ContIC-class),

20
neighbor,RobModel-method

(RobModel-class), 99
neighbor,TotalVarIC-method

(TotalVarIC-class), 103
neighbor<- (RobModel-class), 99
neighbor<-,FixRobModel-method

(FixRobModel-class), 32
neighbor<-,InfRobModel-method

(InfRobModel-class), 60
neighbor<-,RobModel-method

(RobModel-class), 99
Neighborhood-class, 76
neighborRadius (HampIC-class), 45
neighborRadius,ANY-method

(HampIC-class), 45

114 INDEX

neighborRadius,HampIC-method
(HampIC-class), 45

neighborRadius<- (HampIC-class), 45
neighborRadius<-,HampIC-method

(HampIC-class), 45
normtype (normtype-methods), 77
normtype,HampIC-method (HampIC-class),

45
normtype,interpolRisk-method

(normtype-methods), 77
normtype-methods, 77

OMSRRisk (interpolRisk-class), 61
OMSRRisk-class (interpolRisk-class), 61
oneStepEstimator, 77
optIC, 79
optIC,L2ParamFamily,asCov-method

(optIC), 79
optIC-methods (optIC), 79
OptionalCall-class

(kStepEstimate-class), 62
OptionalInfluenceCurve-class, 80
OptionalInfluenceCurveOrCall-class

(OptionalInfluenceCurve-class),
80

OptionalpICList-class
(OptionalInfluenceCurve-class),
80

options, 98
outlyingPlotIC, 26, 81

par, 13, 54, 86
pIC (ALEstimate-class), 4
pIC,ALEstimate-method

(ALEstimate-class), 4
pIC,CvMMD.ALEstimate-method

(ALEstimate-class), 4
pIC,CvMMDEstimate-method

(ALEstimate-class), 4
pIC,MCALEstimate-method

(ALEstimate-class), 4
pIC,MCEstimate-method

(ALEstimate-class), 4
pIC,ML.ALEstimate-method

(ALEstimate-class), 4
pIC,MLEstimate-method

(ALEstimate-class), 4
pICList (kStepEstimate-class), 62

pICList,kStepEstimate-method
(kStepEstimate-class), 62

pICList-class
(OptionalInfluenceCurve-class),
80

plot, 17
plot (plot-methods), 84
plot,IC,missing-method (plot-methods),

84
plot,IC,numeric-method (plot-methods),

84
plot-methods, 84
plot.default, 13, 53, 54, 85
PlotIC, 90

qqbounds, 93, 96
qqplot, 91, 91, 92, 93, 96
qqplot,ANY,InfRobModel-method (qqplot),

91
qqplot,ANY,kStepEstimate-method

(qqplot), 91
qqplot,ANY,RobModel-method (qqplot), 91
qqplot-methods (qqplot), 91

radius (Neighborhood-class), 76
radius,Neighborhood-method

(Neighborhood-class), 76
radius<- (Neighborhood-class), 76
radius<-,Neighborhood-method

(Neighborhood-class), 76
Range,InfluenceCurve-method

(InfluenceCurve-class), 50
returnlevelplot, 94, 94, 95, 96
returnlevelplot,ANY,InfRobModel-method

(returnlevelplot), 94
returnlevelplot,ANY,kStepEstimate-method

(returnlevelplot), 94
returnlevelplot,ANY,RobModel-method

(returnlevelplot), 94
returnlevelplot-methods

(returnlevelplot), 94
Risks (InfluenceCurve-class), 50
Risks,InfluenceCurve-method

(InfluenceCurve-class), 50
Risks<- (InfluenceCurve-class), 50
Risks<-,InfluenceCurve-method

(InfluenceCurve-class), 50
RMXRRisk (interpolRisk-class), 61
RMXRRisk-class (interpolRisk-class), 61

INDEX 115

RobAStBase (RobAStBase-package), 3
RobAStBase-package, 3
RobAStBaseMASK, 96
RobAStBaseOptions, 97
RobAStControl-class, 98
robestCall (kStepEstimate-class), 62
robestCall,kStepEstimate-method

(kStepEstimate-class), 62
RobModel-class, 99
RobWeight-class, 100

samplesize (samplesize-methods), 101
samplesize,interpolRisk-method

(samplesize-methods), 101
samplesize-methods, 101
samplesize<- (samplesize-methods), 101
samplesize<-,interpolRisk-method

(samplesize-methods), 101
show,ALEstimate-method

(ALEstimate-class), 4
show,ContIC-method (ContIC-class), 20
show,FixRobModel-method

(FixRobModel-class), 32
show,IC-method (IC-class), 48
show,InfluenceCurve-method

(InfluenceCurve-class), 50
show,InfRobModel-method

(InfRobModel-class), 60
show,kStepEstimate-method

(kStepEstimate-class), 62
show,MCALEstimate-method

(ALEstimate-class), 4
show,MEstimate-method

(MEstimate-class), 73
show,Neighborhood-method

(Neighborhood-class), 76
show,OptionalpICList-method

(OptionalInfluenceCurve-class),
80

show,pICList-method
(OptionalInfluenceCurve-class),
80

show,TotalVarIC-method
(TotalVarIC-class), 103

showDiagnostic, 10, 65, 70
stand (HampIC-class), 45
stand,BdStWeight-method

(BdStWeight-class), 7
stand,HampIC-method (HampIC-class), 45

stand<- (ContIC-class), 20
stand<-,BdStWeight-method

(BdStWeight-class), 7
stand<-,ContIC-method (ContIC-class), 20
stand<-,TotalVarIC-method

(TotalVarIC-class), 103
start, 72, 73
start (masked-methods), 72
start,ANY-method (masked-methods), 72
start,kStepEstimate-method

(kStepEstimate-class), 62
start-methods (masked-methods), 72
StartClass-class

(OptionalInfluenceCurve-class),
80

startval (kStepEstimate-class), 62
startval,kStepEstimate-method

(kStepEstimate-class), 62
steps (kStepEstimate-class), 62
steps,kStepEstimate-method

(kStepEstimate-class), 62

text, 28, 82
timings (kStepEstimate-class), 62
timings,kStepEstimate-method

(kStepEstimate-class), 62
TotalVarIC, 101
TotalVarIC-class, 103
TotalVarNeighborhood, 105, 106
TotalVarNeighborhood-class, 106
trafo,RobModel,missing-method

(RobModel-class), 99
trafo<-,RobModel-method

(RobModel-class), 99
type,Neighborhood-method

(Neighborhood-class), 76

uksteps (kStepEstimate-class), 62
uksteps,kStepEstimate-method

(kStepEstimate-class), 62
UncondNeighborhood-class, 107
ustartval (kStepEstimate-class), 62
ustartval,kStepEstimate-method

(kStepEstimate-class), 62

weight (RobWeight-class), 100
weight,HampIC-method (HampIC-class), 45
weight,RobWeight-method

(RobWeight-class), 100

116 INDEX

weight<- (RobWeight-class), 100
weight<-,RobWeight-method

(RobWeight-class), 100
weight<--methods (RobWeight-class), 100
withICList (RobAStBaseOptions), 97
withPICList (RobAStBaseOptions), 97
withUpdateInKer (RobAStBaseOptions), 97

	RobAStBase-package
	ALEstimate-class
	BdStWeight-class
	biastype-methods
	BoundedWeight-class
	checkIC
	ComparePlot
	comparePlot-methods
	ContIC
	ContIC-class
	ContNeighborhood
	ContNeighborhood-class
	cutoff
	cutoff-class
	ddPlot-methods
	evalIC
	FixRobModel
	FixRobModel-class
	generateIC
	generateIC.fct-methods
	getBiasIC
	getBoundedIC
	getFiRisk
	getRiskFctBV-methods
	getRiskIC
	getweight-methods
	HampelWeight-class
	HampIC-class
	IC
	IC-class
	InfluenceCurve
	InfluenceCurve-class
	InfoPlot
	infoPlot
	InfRobModel
	InfRobModel-class
	interpolRisk-class
	kStepEstimate-class
	kStepEstimator
	kStepEstimator.start-methods
	locMEstimator
	makeIC
	masked-methods
	MEstimate-class
	movToRef-methods
	Neighborhood-class
	normtype-methods
	oneStepEstimator
	optIC
	OptionalInfluenceCurve-class
	outlyingPlotIC
	plot-methods
	PlotIC
	qqplot
	returnlevelplot
	RobAStBaseMASK
	RobAStBaseOptions
	RobAStControl-class
	RobModel-class
	RobWeight-class
	samplesize-methods
	TotalVarIC
	TotalVarIC-class
	TotalVarNeighborhood
	TotalVarNeighborhood-class
	UncondNeighborhood-class
	Index

