TemporalForest: Network-Guided Temporal Forests for Feature Selection in High-Dimensional Longitudinal Data

Implements the Temporal Forest algorithm for feature selection in high-dimensional longitudinal data. The method combines time-aware network construction via weighted gene co-expression network analysis (WGCNA), module-based feature screening, and stability selection using tree-based models. This package provides tools for reproducible longitudinal analysis, closely following the methodology described in Shao, Moore, and Ramirez (2025) <https://github.com/SisiShao/TemporalForest>.

Version: 0.1.4
Depends: R (≥ 3.5.0)
Imports: WGCNA, dynamicTreeCut, flashClust, glmertree, partykit, stats, graphics, grDevices
Suggests: knitr, rmarkdown, igraph, Matrix, MASS
Published: 2025-12-22
DOI: 10.32614/CRAN.package.TemporalForest (may not be active yet)
Author: Sisi Shao ORCID iD [aut, cre], Jason H. Moore ORCID iD [aut], Christina M. Ramirez ORCID iD [aut]
Maintainer: Sisi Shao <sisishao at g.ucla.edu>
BugReports: https://github.com/SisiShao/TemporalForest/issues
License: MIT + file LICENSE
URL: https://github.com/SisiShao/TemporalForest
NeedsCompilation: no
Language: en-US
Citation: TemporalForest citation info
Materials: README
CRAN checks: TemporalForest results

Documentation:

Reference manual: TemporalForest.html , TemporalForest.pdf
Vignettes: A Quick Start Guide to TemporalForest (source, R code)

Downloads:

Package source: TemporalForest_0.1.4.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=TemporalForest to link to this page.