
Package ‘adsasi’
February 1, 2026

Title Adaptive Sample Size Simulator

Version 0.9.0.1

Description A simulations-first sample size determination package that aims at making sam-
ple size formulae obsolete for most easily computable statistical experiments ; the main envi-
sioned use case is clinical trials. The proposed clinical trial must be writ-
ten by the user in the form of a function that takes as argument a sample size and re-
turns a boolean (for whether or not the trial is a success). The 'adsasi' func-
tions will then use it to find the correct sample size empirically. The unavoidable mis-
specification is obviated by trying sample size values close to the right value, the latter being un-
derstood as the value that gives the probability of success the user wants (usu-
ally 80 or 90% in biostatistics, corresponding to 20 or 10% type II error).

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.3

Depends abind, grDevices, graphics, stats

NeedsCompilation no

Author Skerdi Haviari [aut, cre]

Maintainer Skerdi Haviari <skerdi.haviari@aphp.fr>

Repository CRAN

Date/Publication 2026-02-01 07:50:11 UTC

Contents

adsasi_0d . 2
adsasi_1d . 4

Index 8

1

2 adsasi_0d

adsasi_0d Adaptive Sample Size Finder For Fixed Designs

Description

This function empirically finds the relationship between sample size and power, for a given expe-
riental simulation scenario supplied by the user in the form of a function (most typically a clinical
trial, but any experiment whose success rate increases with the number of observations can be pro-
cessed). adsasi_0d will try different sample sizes and progressively zoom on the ones where power
is nominal. Power is understood in a broad sense here, as a probability of success of the experiment
rather than a strict statistical power.

Usage

adsasi_0d(
simfun,
tar_power = 0.9,
...,
nsims = 5000,
verbose = FALSE,
impNN = Inf,
capNN = 2000,
initiation = TRUE,
savegraphs = FALSE,
keepsims = FALSE

)

Arguments

simfun (function) The user-supplied function that describes the clinical trial scenario (or
similar experiment) that needs to be explored. Must have as named arguments a
sample size (named NN) and an arbitrary number of design parameters. Must re-
turn a boolean indicating whether the trial is successful or not, after performing
any required computations (regressions, bootstraps) as written by the user, and
never return NA.

tar_power (single number between 0 and 1) Target power (or more broadly, probability
of success). adsasi_0d will seek regions where simfun returns TRUE with a
frequency of tar_power, assuming that higher sample size equals higher prob-
ability of success.

... Additional named arguments to be passed to simfun. Some of these arguments
can be functions themselves (e.g. for trying different analysis models). Any
simfun argument without a default value must be specified here.

nsims (single number) Number of simulations to be run. After initialization, simu-
lations are run in batches of 10% of the number of existing simulations, until
nsims is reached.

verbose (boolean) Whether to print extra diagnostics messages throughout the run.

adsasi_0d 3

impNN (single number, or infinity) Sample size that is considered impossible (either
computationnally, or logistically). The simulator will exit if, after 500+ simula-
tions, it looks like the best value is above this. In practice, is mostly useful to
avoid expensive computations in situations where simfun is not written well or
is prohibitively long to compute for large sample sizes.

capNN (single number, or infinity) Maximum sample size that will be simulated. Also
mostly useful to avoid expensive computations. Values between capNN and
impNN will be extrapolations of unclear validity, so if it looks like the answer
is really above capNN, try running the wrapper again with a higher capNN.

initiation (boolean, or numeric matrix) Either a boolean indicating whether or not to keep
the first 150 simulations for the relationship inference (those tend to be far from
tar_power), or a matrix with simulation results from a previous run which the
user wants enrich with more simulations (formatted exactly as produced by
adsasi_0d with the same simfun). See keepsims and Note below for how
to store and retrieve this data.

savegraphs (boolean or string) Whether to save graphs on drive (vs. showing them in the
console). If string, is interpreted as a typical name to be used (several graphs
will be drawn, with iteration number, timestamp and .png file extension ap-
pended). The string can contain a filepath, but folders must already exist (e.g.
with dir.create() from base, if automated).

keepsims (boolean) Whether to keep the simulations sizes and individual outcomes in the
output. See Note for format details.

Value

(list) A list with one (by default) element named size_estimate with the sample size to obtain
probability of success equal to tar_power. If keepsims=TRUE, additional elements with fits and
simulation results (see Note).

Note

Standard error of estimated sample size is shown on graphs but not saved by default anywhere.

With keepsims=TRUE, additional elements will be returned : trials for all the used simulations,
confint for 95% confidence interval of size_estimate. The confidence interval is obtained in
square root form and is assymetric ; the reverse calculation needs to be done to extract the standard
error of its root (take the roots of the bounds & divide their distance by 2*1.96).

The trials element can be fed back into adsasi_0d using argument initiation=trials to re-
sume with the same simulations as before. Note that the second adsasi_0d call will need to use the
same simfun and its arguments for this to make sense.

Examples

First, the user defines a function for their target situation. In this simple example, a 2-sample
t-test with unequal allocation. Note the syntax to avoid returning NAs.
simulate_unequal_t_test = function(NN=20,ratio_n1_NN=0.5,delta=1)
{
n1 = round(ratio_n1_NN*NN) ; n2 = NN-n1
yy1 = rnorm(n1) ; yy2 = rnorm(n2,delta)

4 adsasi_1d

pp=NA ; try(pp <- t.test(yy1,yy2)$p.value,silent=TRUE)
!is.na(pp) & pp<0.05
}

simulate_unequal_t_test()
Now we empirically find the relationship between sample size and the parameter of interest.
Note that we can change the simfun parameters directly from the adsasi_0d call.
nsims should generally be much higher than in this fast-running example (>5000).
adsasi_0d(simulate_unequal_t_test,delta=1.25,nsims=200)

adsasi_1d Adaptive Sample Size Finder With One Floating Parameter

Description

This function empirically finds the relationship between sample size and a numeric parameter of
interest, for a given experiental simulation scenario supplied by the user in the form of a function
(most typically a clinical trial, but any experiment whose success rate increases with the number
of observations can be processed). adsasi_1d will search the two-dimensional space empirically
(sample size x parameter of interest), favoring exploration of low sample size regions, to find the
line where power is nominal. Power is understood in a broad sense here, as a probability of success
of the experiment rather than a strict statistical power.

Usage

adsasi_1d(
simfun,
tar_power = 0.9,
...,
optivar,
optiwin = c(min = 0, max = 1),
optilog = FALSE,
optiround = FALSE,
nsims = 5000,
verbose = FALSE,
impNN = Inf,
capNN = 2000,
initiation = TRUE,
savegraphs = FALSE,
keepsims = FALSE,
n_slope_coefs = 3,
n_size_coefs = 5

)

Arguments

simfun (function) The user-supplied function that describes the clinical trial scenario (or
similar experiment) that needs to be explored. Must have as named arguments
a sample size (named NN) and an arbitrary number of design parameters (one

adsasi_1d 5

of which will be optimized). Must return a boolean indicating whether the trial
is successful or not, after performing any required computations (regressions,
bootstraps) as written by the user, and never return NA.

tar_power (single number between 0 and 1) Target power (or more broadly, probability
of success). adsasi_1d will seek regions where simfun returns TRUE with a
frequency of tar_power, assuming that higher sample size equals higher prob-
ability of success.

... Additional named arguments to be passed to simfun. Some of these arguments
can be functions themselves (e.g. for trying different analysis models). Any
simfun argument without a default value must be specified here.

optivar (single string) Name of the simfun argument that needs to be optimized.

optiwin (numeric vector of size 2) Bounds of the region to be explored for values of
optivar.

optilog (boolean) Whether optivar is best explored and drawn in log scale (as in the
case of a ratio) or linearly. If for example optiwin is c(0.1,10) for a ratio,
graphs will be drawn with 1 as the middle value if optilog is TRUE and 5.05 is
it is FALSE.

optiround (boolean) Whether optivar needs to be rounded to the nearest integer to make
sense for simfun (for example, if it is a number of centers in a cluster-randomized
trial).

nsims (single number) Number of simulations to be run across all values of optivar.
After initialization, simulations are run in batches of 10% of existing simula-
tions, until nsims is reached.

verbose (boolean) Whether to print extra diagnostics messages throughout the run.

impNN (single number, or infinity) Sample size that is considered impossible (either
computationnally, or logistically). The simulator will exit if, after 500+ simula-
tions, it looks like the best value is above this. In practice, is mostly useful to
avoid expensive computations in situations where simfun is not written well or
is prohibitively long to compute for large sample sizes.

capNN (single number, or infinity) Maximum sample size that will be simulated. Also
mostly useful to avoid expensive computations.

initiation (boolean, or numeric matrix) Either a boolean indicating whether or not to keep
the first 150 simulations for the relationship inference (those tend to be far from
tar_power), or a matrix with simulation results from a previous run which the
user wants enrich with more simulations (formatted exactly as produced by
adsasi_1d with the same opti* arguments). See Value and Notes below for
how to get this data from the output to be able to reuse it.

savegraphs (boolean or string) Whether to save graphs on drive (vs. showing them in the
console). If string, is interpreted as a typical name to be used (several graphs
will be drawn, with iteration number, timestamp and .png file extension ap-
pended). The string can contain a filepath, but folders must already exist (e.g.
with dir.create() from base, if automated).

keepsims (boolean or string) Whether to keep simulations and last fit in the returned ob-
ject, which by default only containe the best value.

6 adsasi_1d

n_slope_coefs (single integer) Number of coefficients for the slope polynomial. The slope poly-
nomial tries to model the relationship between optivar and the loss of power
as sample size locally deviates from the (unknown) target.

n_size_coefs (single integer) Number of coefficients for the size polynomial. The size poly-
nomial tries to model the relationship between optivar and the target sample
size. Its shape is the most useful output of the function.

Value

A list with 2 numbers in it : minimum sample size, named min_NN, and corresponding best
parameter value, named min_optival. If keepsims=TRUE, several other objects will be appended
to the list (see Note).

Note

The graph modelling the relationship between parameter value and sample size is generally the
most useful output, and is shown but not saved by default.

With keepsims=TRUE, the function keeps summary simulation results in the returned list, which
can, among others, be used to draw the main graph again in a different style (as in Examples).
The returned list will have the following extra elements : min_NN (last sample sizes simulated),
min_optival (corresponding values for the parameter indicated by optivar, scaled between -1 and
1), trials (all the used simulations, including a rescaled optival), abscissae (natural-scale val-
ues for the optimization parameter, for which sample sizes have been computed), slope_natural_estimate_by_optival
(slope variation by optivar values, see below for plotting), slope_confint_lower_by_optival
(lower bound of confidence interval), slope_confint_higher_by_optival (higher bound of con-
fidence interval), size_natural_estimate_by_optival (sample size variation by optivar val-
ues, see below for plotting), size_confint_lower_by_optival (lower bound of confidence inter-
val), size_confint_higher_by_optival (higher bound of confidence interval).

The trials element can be fed back into adsasi_1d using argument initiation=x[["trials"]]
(if the previous call was saved in x) to resume with the same simulations as before. Note that
the second adsasi_1d call will need to use the same simfun, fixed simfun arguments, optivar,
optiwin and optilog arguments for this to make sense, because values for optivar stored in
trials are between -1 and +1 and are scaled using these arguments before being passed to simfun
or shown to the user. If one wants to widen the window, the rescaling will need to be done manually.

Examples

First, the user defines a function for their target situation. In this simple example, a 2-sample
t-test with unequal allocation. The design parameter of interest will be the ratio of
n1 (observations in arm 1) to NN (total sample size). Note the syntax to avoid returning NAs.
simulate_unequal_t_test = function(NN=20,ratio_n1_NN=0.5,delta=1)
{
n1 = round(ratio_n1_NN*NN) ; n2 = NN-n1
yy1 = rnorm(n1) ; yy2 = rnorm(n2,delta)
pp=NA ; try(pp <- t.test(yy1,yy2)$p.value,silent=TRUE)
!is.na(pp) & pp<0.05
}

simulate_unequal_t_test()
Now we empirically find the relationship between sample size and the parameter of interest.

adsasi_1d 7

Note that we can change the delta parameter directly from the adsasi_1d call.
nsims should generally be much higher than in this fast-running example (>5000).
batch=adsasi_1d(simulate_unequal_t_test,delta=1.25,optivar="ratio_n1_NN",nsims=200,keepsims=TRUE)
Drawing the output in a different style
plot(batch[["abscissae"]],batch[["size_natural_estimate_by_optival"]]

,xlab="Optimization parameter",ylab="Estimated sample size",type="o",col="red"
)

polygon(c(batch[["abscissae"]],rev(batch[["abscissae"]]))
,c(batch[["size_confint_higher_by_optival"]]

,rev(batch[["size_confint_lower_by_optival"]])
)

,col="#55000088",border=NA
)

Index

∗ optimization
adsasi_0d, 2
adsasi_1d, 4

∗ sample
adsasi_0d, 2
adsasi_1d, 4

∗ simulation
adsasi_0d, 2
adsasi_1d, 4

∗ size
adsasi_0d, 2
adsasi_1d, 4

adsasi_0d, 2
adsasi_1d, 4

8

	adsasi_0d
	adsasi_1d
	Index

