Real-world example: biomarker assessment and prediction model evaluation

The goal of is this vignette is to illustrate the cases functionality by means of a real-world example focused on biomarker assessment and prediction model evaluation.

Preparation

Load the package:

## load packages:
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(cases)
library(glmnet)
#> Loading required package: Matrix
#> Loaded glmnet 4.1-8
library(splitstackshape)

Introduction

We utilize the breast cancer wisconsin (diagnostic) data set.

# ?data_wdbc
data <- data_wdbc
dim(data)
#> [1] 569  31

table(data$diagnosis)
#> 
#>   0   1 
#> 357 212

## Missing values?
colSums(is.na(data)) # -> no missing values
#>              diagnosis            radius_mean           texture_mean 
#>                      0                      0                      0 
#>         perimeter_mean              area_mean        smoothness_mean 
#>                      0                      0                      0 
#>       compactness_mean         concavity_mean    concave_points_mean 
#>                      0                      0                      0 
#>          symmetry_mean fractal_dimension_mean              radius_sd 
#>                      0                      0                      0 
#>             texture_sd           perimeter_sd                area_sd 
#>                      0                      0                      0 
#>          smoothness_sd         compactness_sd           concavity_sd 
#>                      0                      0                      0 
#>      concave_points_sd            symmetry_sd   fractal_dimension_sd 
#>                      0                      0                      0 
#>            radius_peak           texture_peak         perimeter_peak 
#>                      0                      0                      0 
#>              area_peak        smoothness_peak       compactness_peak 
#>                      0                      0                      0 
#>         concavity_peak    concave_points_peak          symmetry_peak 
#>                      0                      0                      0 
#> fractal_dimension_peak 
#>                      0
summary(data)
#>  diagnosis  radius_mean      texture_mean   perimeter_mean     area_mean     
#>  0:357     Min.   : 6.981   Min.   : 9.71   Min.   : 43.79   Min.   : 143.5  
#>  1:212     1st Qu.:11.700   1st Qu.:16.17   1st Qu.: 75.17   1st Qu.: 420.3  
#>            Median :13.370   Median :18.84   Median : 86.24   Median : 551.1  
#>            Mean   :14.127   Mean   :19.29   Mean   : 91.97   Mean   : 654.9  
#>            3rd Qu.:15.780   3rd Qu.:21.80   3rd Qu.:104.10   3rd Qu.: 782.7  
#>            Max.   :28.110   Max.   :39.28   Max.   :188.50   Max.   :2501.0  
#>  smoothness_mean   compactness_mean  concavity_mean    concave_points_mean
#>  Min.   :0.05263   Min.   :0.01938   Min.   :0.00000   Min.   :0.00000    
#>  1st Qu.:0.08637   1st Qu.:0.06492   1st Qu.:0.02956   1st Qu.:0.02031    
#>  Median :0.09587   Median :0.09263   Median :0.06154   Median :0.03350    
#>  Mean   :0.09636   Mean   :0.10434   Mean   :0.08880   Mean   :0.04892    
#>  3rd Qu.:0.10530   3rd Qu.:0.13040   3rd Qu.:0.13070   3rd Qu.:0.07400    
#>  Max.   :0.16340   Max.   :0.34540   Max.   :0.42680   Max.   :0.20120    
#>  symmetry_mean    fractal_dimension_mean   radius_sd        texture_sd    
#>  Min.   :0.1060   Min.   :0.04996        Min.   :0.1115   Min.   :0.3602  
#>  1st Qu.:0.1619   1st Qu.:0.05770        1st Qu.:0.2324   1st Qu.:0.8339  
#>  Median :0.1792   Median :0.06154        Median :0.3242   Median :1.1080  
#>  Mean   :0.1812   Mean   :0.06280        Mean   :0.4052   Mean   :1.2169  
#>  3rd Qu.:0.1957   3rd Qu.:0.06612        3rd Qu.:0.4789   3rd Qu.:1.4740  
#>  Max.   :0.3040   Max.   :0.09744        Max.   :2.8730   Max.   :4.8850  
#>   perimeter_sd       area_sd        smoothness_sd      compactness_sd    
#>  Min.   : 0.757   Min.   :  6.802   Min.   :0.001713   Min.   :0.002252  
#>  1st Qu.: 1.606   1st Qu.: 17.850   1st Qu.:0.005169   1st Qu.:0.013080  
#>  Median : 2.287   Median : 24.530   Median :0.006380   Median :0.020450  
#>  Mean   : 2.866   Mean   : 40.337   Mean   :0.007041   Mean   :0.025478  
#>  3rd Qu.: 3.357   3rd Qu.: 45.190   3rd Qu.:0.008146   3rd Qu.:0.032450  
#>  Max.   :21.980   Max.   :542.200   Max.   :0.031130   Max.   :0.135400  
#>   concavity_sd     concave_points_sd   symmetry_sd       fractal_dimension_sd
#>  Min.   :0.00000   Min.   :0.000000   Min.   :0.007882   Min.   :0.0008948   
#>  1st Qu.:0.01509   1st Qu.:0.007638   1st Qu.:0.015160   1st Qu.:0.0022480   
#>  Median :0.02589   Median :0.010930   Median :0.018730   Median :0.0031870   
#>  Mean   :0.03189   Mean   :0.011796   Mean   :0.020542   Mean   :0.0037949   
#>  3rd Qu.:0.04205   3rd Qu.:0.014710   3rd Qu.:0.023480   3rd Qu.:0.0045580   
#>  Max.   :0.39600   Max.   :0.052790   Max.   :0.078950   Max.   :0.0298400   
#>   radius_peak     texture_peak   perimeter_peak     area_peak     
#>  Min.   : 7.93   Min.   :12.02   Min.   : 50.41   Min.   : 185.2  
#>  1st Qu.:13.01   1st Qu.:21.08   1st Qu.: 84.11   1st Qu.: 515.3  
#>  Median :14.97   Median :25.41   Median : 97.66   Median : 686.5  
#>  Mean   :16.27   Mean   :25.68   Mean   :107.26   Mean   : 880.6  
#>  3rd Qu.:18.79   3rd Qu.:29.72   3rd Qu.:125.40   3rd Qu.:1084.0  
#>  Max.   :36.04   Max.   :49.54   Max.   :251.20   Max.   :4254.0  
#>  smoothness_peak   compactness_peak  concavity_peak   concave_points_peak
#>  Min.   :0.07117   Min.   :0.02729   Min.   :0.0000   Min.   :0.00000    
#>  1st Qu.:0.11660   1st Qu.:0.14720   1st Qu.:0.1145   1st Qu.:0.06493    
#>  Median :0.13130   Median :0.21190   Median :0.2267   Median :0.09993    
#>  Mean   :0.13237   Mean   :0.25427   Mean   :0.2722   Mean   :0.11461    
#>  3rd Qu.:0.14600   3rd Qu.:0.33910   3rd Qu.:0.3829   3rd Qu.:0.16140    
#>  Max.   :0.22260   Max.   :1.05800   Max.   :1.2520   Max.   :0.29100    
#>  symmetry_peak    fractal_dimension_peak
#>  Min.   :0.1565   Min.   :0.05504       
#>  1st Qu.:0.2504   1st Qu.:0.07146       
#>  Median :0.2822   Median :0.08004       
#>  Mean   :0.2901   Mean   :0.08395       
#>  3rd Qu.:0.3179   3rd Qu.:0.09208       
#>  Max.   :0.6638   Max.   :0.20750
## define minimal acceptable criteria for specificity, sensitivity:
sp0 <- 0.7
se0 <- 0.9
benchmark <- c(sp0, se0)

Scenario A: Biomarker assessment

pr <- seq(0, 1, 0.1)

quantile(data$area_peak, pr) # 500, 600, 700, 800, 900 ---> area
#>      0%     10%     20%     30%     40%     50%     60%     70%     80%     90% 
#>  185.20  384.72  475.98  544.14  599.70  686.50  781.18  926.96 1269.00 1673.00 
#>    100% 
#> 4254.00
quantile(data$compactness_peak, pr) # 0.10, 0.15, 0.20, 0.25, 0.30 ---> compactness (perimeter^2 / area - 1.0)
#>       0%      10%      20%      30%      40%      50%      60%      70% 
#> 0.027290 0.093676 0.125660 0.161400 0.184620 0.211900 0.251400 0.303960 
#>      80%      90%     100% 
#> 0.367060 0.447840 1.058000
quantile(data$concavity_peak, pr) # 0.10, 0.15, 0.20, 0.25, 0.30 ---> concavity (severity of concave portions of the contour)
#>       0%      10%      20%      30%      40%      50%      60%      70% 
#> 0.000000 0.045652 0.091974 0.136880 0.177180 0.226700 0.286600 0.349920 
#>      80%      90%     100% 
#> 0.419540 0.571320 1.252000
cc <- c(
  500, 600, 700, 800, 900,
  0.10, 0.15, 0.20, 0.25, 0.30,
  0.10, 0.15, 0.20, 0.25, 0.30
)
comp_bm <- data %>%
  dplyr::select(area_peak, compactness_peak, concavity_peak) %>%
  cases::categorize(cc, rep(1:3, each = 5)) %>%
  cases::compare(labels = as.numeric(as.character(data$diagnosis)))

results_bm <- cases::evaluate(comp_bm,
  benchmark = benchmark,
  alternative = "greater", alpha = 0.025,
  adj = "boot", regu = 1
)
#> Drawing 2000 'pairs' bootstrap samples...
results_bm
#> [cases] evaluation results:
#> $specificity
#>                parameter hypothesis estimate  lower upper    tstat   pval
#> 1          area_peak_500     <= 0.7   0.3645 0.2886   Inf -13.2067 1.0000
#> 2          area_peak_600     <= 0.7   0.6243 0.5479   Inf  -2.9615 1.0000
#> 3          area_peak_700     <= 0.7   0.8059 0.7434   Inf   5.0713 0.0000
#> 4          area_peak_800     <= 0.7   0.9064 0.8605   Inf  13.4296 0.0000
#> 5          area_peak_900     <= 0.7   0.9763 0.9522   Inf  34.3804 0.0000
#> 6   compactness_peak_0.1     <= 0.7   0.1913 0.1293   Inf -24.5012 1.0000
#> 7  compactness_peak_0.15     <= 0.7   0.3980 0.3208   Inf -11.6880 1.0000
#> 8   compactness_peak_0.2     <= 0.7   0.6466 0.5712   Inf  -2.1148 1.0000
#> 9  compactness_peak_0.25     <= 0.7   0.7975 0.7341   Inf   4.5962 0.0005
#> 10  compactness_peak_0.3     <= 0.7   0.8925 0.8436   Inf  11.7707 0.0000
#> 11    concavity_peak_0.1     <= 0.7   0.3422 0.2673   Inf -14.2900 1.0000
#> 12   concavity_peak_0.15     <= 0.7   0.5321 0.4534   Inf  -6.3748 1.0000
#> 13    concavity_peak_0.2     <= 0.7   0.7221 0.6514   Inf   0.9333 0.7760
#> 14   concavity_peak_0.25     <= 0.7   0.8059 0.7434   Inf   5.0713 0.0000
#> 15    concavity_peak_0.3     <= 0.7   0.8673 0.8138   Inf   9.3454 0.0000
#>    reject pval_all reject_all
#> 1   FALSE   1.0000      FALSE
#> 2   FALSE   1.0000      FALSE
#> 3    TRUE   0.0005       TRUE
#> 4    TRUE   1.0000      FALSE
#> 5    TRUE   1.0000      FALSE
#> 6   FALSE   1.0000      FALSE
#> 7   FALSE   1.0000      FALSE
#> 8   FALSE   1.0000      FALSE
#> 9    TRUE   1.0000      FALSE
#> 10   TRUE   1.0000      FALSE
#> 11  FALSE   1.0000      FALSE
#> 12  FALSE   1.0000      FALSE
#> 13  FALSE   0.7760      FALSE
#> 14   TRUE   0.9795      FALSE
#> 15   TRUE   1.0000      FALSE
#> 
#> $sensitivity
#>                parameter hypothesis estimate  lower upper   tstat   pval reject
#> 1          area_peak_500     <= 0.9   0.9977 0.9878   Inf 29.5193 0.0000   TRUE
#> 2          area_peak_600     <= 0.9   0.9742 0.9418   Inf  6.8419 0.0000   TRUE
#> 3          area_peak_700     <= 0.9   0.9601 0.9201   Inf  4.4912 0.0005   TRUE
#> 4          area_peak_800     <= 0.9   0.8850 0.8198   Inf -0.6888 1.0000  FALSE
#> 5          area_peak_900     <= 0.9   0.8052 0.7242   Inf -3.5027 1.0000  FALSE
#> 6   compactness_peak_0.1     <= 0.9   0.9836 0.9576   Inf  9.6161 0.0000   TRUE
#> 7  compactness_peak_0.15     <= 0.9   0.9648 0.9271   Inf  5.1422 0.0000   TRUE
#> 8   compactness_peak_0.2     <= 0.9   0.8756 0.8081   Inf -1.0821 1.0000  FALSE
#> 9  compactness_peak_0.25     <= 0.9   0.7441 0.6549   Inf -5.2256 1.0000  FALSE
#> 10  compactness_peak_0.3     <= 0.9   0.6362 0.5378   Inf -8.0227 1.0000  FALSE
#> 11    concavity_peak_0.1     <= 0.9   0.9883 0.9662   Inf 11.9886 0.0000   TRUE
#> 12   concavity_peak_0.15     <= 0.9   0.9789 0.9495   Inf  8.0234 0.0000   TRUE
#> 13    concavity_peak_0.2     <= 0.9   0.9695 0.9343   Inf  5.9095 0.0000   TRUE
#> 14   concavity_peak_0.25     <= 0.9   0.9038 0.8435   Inf  0.1863 0.9795  FALSE
#> 15    concavity_peak_0.3     <= 0.9   0.8052 0.7242   Inf -3.5027 1.0000  FALSE
#>    pval_all reject_all
#> 1    1.0000      FALSE
#> 2    1.0000      FALSE
#> 3    0.0005       TRUE
#> 4    1.0000      FALSE
#> 5    1.0000      FALSE
#> 6    1.0000      FALSE
#> 7    1.0000      FALSE
#> 8    1.0000      FALSE
#> 9    1.0000      FALSE
#> 10   1.0000      FALSE
#> 11   1.0000      FALSE
#> 12   1.0000      FALSE
#> 13   0.7760      FALSE
#> 14   0.9795      FALSE
#> 15   1.0000      FALSE
visualize(results_bm)

Scenario B: Prediction model evaluation

## data splitting:
set.seed(1337)
split <- stratified(data, c("diagnosis"), 1 / 3, bothSets = TRUE)
val <- split[[1]] %>% as.data.frame()
trn <- split[[2]] %>% as.data.frame()
dim(trn)
#> [1] 379  31
dim(val)
#> [1] 190  31
table(val$diagnosis)
#> 
#>   0   1 
#> 119  71
## train example model
mod <- glmnet(x = trn[, -1], y = trn[, 1], family = "binomial", alpha = 0.25)
str(mod, 0)
#> List of 13
#>  - attr(*, "class")= chr [1:2] "lognet" "glmnet"
set.seed(1337)

## define hyperparameter values for L1/L2 penalty mixing parameter (alpha):
aa <- c(0, 0.25, 0.5, 0.75, 1)

## train models and create predictions:
pred_pm <- sapply(aa, function(alpha) {
  mod_pm <- cv.glmnet(
    x = as.matrix(trn[, -1]), y = trn[, 1],
    family = "binomial",
    type.measure = "class",
    alpha = alpha
  )
  message(paste0("cv.glmnet (alpha = ", alpha, "):"))
  print(mod_pm)
  message("+++++")
  predict(mod_pm, as.matrix(val[, -1]), type = "response")
})
#> cv.glmnet (alpha = 0):
#> 
#> Call:  cv.glmnet(x = as.matrix(trn[, -1]), y = trn[, 1], type.measure = "class",      family = "binomial", alpha = alpha) 
#> 
#> Measure: Misclassification Error 
#> 
#>      Lambda Index Measure       SE Nonzero
#> min 0.03847   100 0.01847 0.006853      30
#> 1se 0.04634    98 0.02375 0.008289      30
#> +++++
#> cv.glmnet (alpha = 0.25):
#> 
#> Call:  cv.glmnet(x = as.matrix(trn[, -1]), y = trn[, 1], type.measure = "class",      family = "binomial", alpha = alpha) 
#> 
#> Measure: Misclassification Error 
#> 
#>       Lambda Index Measure       SE Nonzero
#> min 0.004383    64 0.01055 0.004299      27
#> 1se 0.012195    53 0.01319 0.005888      23
#> +++++
#> cv.glmnet (alpha = 0.5):
#> 
#> Call:  cv.glmnet(x = as.matrix(trn[, -1]), y = trn[, 1], type.measure = "class",      family = "binomial", alpha = alpha) 
#> 
#> Measure: Misclassification Error 
#> 
#>       Lambda Index Measure       SE Nonzero
#> min 0.004612    56 0.01055 0.008061      22
#> 1se 0.012834    45 0.01847 0.008869      19
#> +++++
#> cv.glmnet (alpha = 0.75):
#> 
#> Call:  cv.glmnet(x = as.matrix(trn[, -1]), y = trn[, 1], type.measure = "class",      family = "binomial", alpha = alpha) 
#> 
#> Measure: Misclassification Error 
#> 
#>       Lambda Index  Measure       SE Nonzero
#> min 0.002802    57 0.007916 0.004023      19
#> 1se 0.009391    44 0.010554 0.005824      18
#> +++++
#> cv.glmnet (alpha = 1):
#> 
#> Call:  cv.glmnet(x = as.matrix(trn[, -1]), y = trn[, 1], type.measure = "class",      family = "binomial", alpha = alpha) 
#> 
#> Measure: Misclassification Error 
#> 
#>       Lambda Index Measure       SE Nonzero
#> min 0.003672    51 0.01319 0.005888      13
#> 1se 0.005328    47 0.01847 0.008822      11
#> +++++
colnames(pred_pm) <- paste0("en", aa * 100)
head(pred_pm)
#>            en0      en25      en50      en75     en100
#> [1,] 0.9747700 0.9961507 0.9938921 0.9964515 0.9992168
#> [2,] 0.9996722 0.9999897 0.9999674 0.9999877 0.9999995
#> [3,] 0.9142164 0.9763833 0.9698399 0.9816259 0.9949924
#> [4,] 0.9955105 0.9995248 0.9991571 0.9995259 0.9999234
#> [5,] 0.9559590 0.9885991 0.9807955 0.9856935 0.9949629
#> [6,] 0.7573470 0.7981572 0.7785671 0.7485468 0.6770751
## define cutpoints (probability scale):
cc <- rep(seq(0.1, 0.5, 0.1), 5)
mm <- rep(1:5, each = 5)

## create predictions:
comp_pm <- pred_pm %>%
  cases::categorize(cc, mm) %>%
  cases::compare(labels = as.numeric(as.character(val$diagnosis)))
str(comp_pm, 1)
#> List of 2
#>  $ specificity:'data.frame': 119 obs. of  25 variables:
#>  $ sensitivity:'data.frame': 71 obs. of  25 variables:
## conduct statistical analysis:
set.seed(1337)
results_pm <- cases::evaluate(comp_pm,
  benchmark = benchmark,
  alternative = "greater", alpha = 0.025,
  adj = "boot", regu = 1
)
#> Drawing 2000 'pairs' bootstrap samples...
str(results_pm, 1)
#> List of 2
#>  $ specificity:'data.frame': 25 obs. of  10 variables:
#>  $ sensitivity:'data.frame': 25 obs. of  10 variables:
#>  - attr(*, "class")= chr [1:2] "list" "cases_results"
#>  - attr(*, "n_obs")= Named int [1:2] 119 71
#>   ..- attr(*, "names")= chr [1:2] "specificity" "sensitivity"
#>  - attr(*, "n_params")= int 25
#>  - attr(*, "n_groups")= int 2
#>  - attr(*, "critval")= num [1:2] -3.63 Inf
#>  - attr(*, "alpha_adj")= num 0.0095
#>  - attr(*, "call")=List of 8
results_pm %>% lapply(filter, reject_all)
#> $specificity
#>   parameter hypothesis  estimate     lower upper    tstat   pval reject
#> 1  en25_0.1     <= 0.7 0.8541667 0.7375908   Inf 4.804890 0.0095   TRUE
#> 2  en50_0.1     <= 0.7 0.8541667 0.7375908   Inf 4.804890 0.0095   TRUE
#> 3  en75_0.1     <= 0.7 0.8708333 0.7600558   Inf 5.603025 0.0045   TRUE
#> 4 en100_0.1     <= 0.7 0.8875000 0.7831315   Inf 6.527299 0.0040   TRUE
#>   pval_all reject_all
#> 1   0.0095       TRUE
#> 2   0.0095       TRUE
#> 3   0.0045       TRUE
#> 4   0.0095       TRUE
#> 
#> $sensitivity
#>   parameter hypothesis  estimate     lower upper    tstat   pval reject
#> 1  en25_0.1     <= 0.9 0.9791667 0.9184304   Inf 4.735830 0.0095   TRUE
#> 2  en50_0.1     <= 0.9 0.9930556 0.9577417   Inf 9.574106 0.0000   TRUE
#> 3  en75_0.1     <= 0.9 0.9930556 0.9577417   Inf 9.574106 0.0000   TRUE
#> 4 en100_0.1     <= 0.9 0.9791667 0.9184304   Inf 4.735830 0.0095   TRUE
#>   pval_all reject_all
#> 1   0.0095       TRUE
#> 2   0.0095       TRUE
#> 3   0.0045       TRUE
#> 4   0.0095       TRUE
visualize(results_pm)


References

  1. Westphal M, Zapf A. Statistical inference for diagnostic test accuracy studies with multiple comparisons. Statistical Methods in Medical Research. 2024;0(0). doi:10.1177/09622802241236933