Package 'ebmstate'

October 19, 2024

Type Package

Title Empirical Bayes Multi-State Cox Model

Version 0.1.5

Description

Implements an empirical Bayes, multi-state Cox model for survival analysis. Run ``?'ebmstate-package''' for details. See also Schall (1991) <doi:10.1093/biomet/78.4.719>.

Depends R (>= 3.6.0), survival (>= 2.44-1.1), mstate (>= 0.2.11)

Imports Rcpp, HDInterval, stats, utils, methods

License GPL (>= 3)

LinkingTo Rcpp

RoxygenNote 7.2.3

Encoding UTF-8

LazyData true

NeedsCompilation yes

Author Rui Costa [aut, cre],

Moritz Gerstung [aut],

Terry M Therneau [ctb] (author of 'survival', a package from which code parts were copied),

Thomas Lumley [ctb] (contributor to 'survival', a package from which code parts were copied),

Hein Putter [ctb] (co-author of 'mstate', a package from which code parts were copied),

Liesbeth de Wreede [ctb] (co-author of 'mstate', a package from which code parts were copied),

Marta Fiocco [ctb] (co-author of 'mstate', a package from which code parts were copied),

Ronald Geskus [ctb] (contributor to 'mstate', a package from which code parts were copied)

Maintainer Rui Costa <ruibarrigana@hotmail.com>

Repository CRAN

Date/Publication 2024-10-19 14:20:01 UTC

2 ebmstate-package

Contents

state			 	 		 															
state kforward kreset		· · · · · · · · · · · · · · · · · · ·	 	· · · ·																	
state	· · · · · · · · · · · · · · · · · · ·																				5
cforward creset																					
creset										•											6
																					7
																					8
sample																					8
																					11
_target_trai	nsiti	on																			11
																					12
1																					13
rd_functio	n.																				14
																					15
																					16
																					17
mple																					19
																					20
mple																					20
																					21
																					21
onvolution																					22
onvolution _.	_clo	ckf	orw	ard																	23
onvolution	_clo	ckr	eset																		24
state																					25
																					26
te																					27
sitions																					29
·																					30
																					30
																					32
	mple	mple	mple	mple	mple	mple	mple	mple	mple	mple	mple	mple	mple monvolution onvolution onvolution_clockforward onvolution_clockreset state te sitions	mple	mple monvolution onvolution onvolution_clockforward onvolution_clockreset state te sitions	mple	mple mple monvolution onvolution onvolution_clockforward onvolution_clockreset state te sitions	mple	mple	mple mple monvolution onvolution onvolution_clockforward onvolution_clockreset state te sitions	mple monvolution onvolution onvolution_clockforward onvolution_clockreset state te sitions x

ebmstate-package

Empirical Bayes multi-state Cox model

Description

This package implements an empirical Bayes, multi-state Cox model. Different groups of regression coefficients can be defined, with coefficients of the same group sharing the same Gaussian prior. It takes as input a data set in 'long format' and generates estimates of relative hazards, cumulative hazard functions and transition probabilities. It relies on packages survival and mstate and incorporates some of their functions to reduce upstream dependency.

boot_coxrfx 3

Details

Package: ebmstate
Type: Package
Version: 0.0.73
Date: 2020-01-21
License: GPL 3

Author(s)

Rui Costa, Moritz Gerstung

boot_coxrfx

Bootstrap confidence intervals for regression coefficients

Description

This function computes 95% highest density bootstrap confidence intervals (non-parametric) for the regression coefficients estimated by CoxRFX.

Usage

```
boot_coxrfx(
   mstate_data_expanded,
   which_group,
   min_nr_samples = 100,
   output = "CIs",
   ...
)
```

Arguments

mstate_data_expanded

Data in 'long format', possibly with 'expanded' covariates (as obtained by run-

ning mstate::expand.covs).

which_group A character vector with the same meaning as the 'groups' argument of the func-

tion CoxRFX but named (with the covariate names).

min_nr_samples The confidence interval of any coefficient is based on a number of bootstrap

samples at least as high as this argument. See details.

output Determines the sort of output. See value.

Further arguments to the CoxRFX function.

4 boot_ebmstate

Details

In a given bootstrap sample there might not be enough information to generate estimates for all coefficients. If a covariate has little or no variation in a given bootstrap sample, no estimate of its coefficient will be computed. The present function will keep taking bootstrap samples until every coefficient has been estimated at least min_nr_samples times.

Value

For each regression coefficient, the confidence intervals and the number of bootstrap samples on which they are based, if the 'output' argument is equal to 'CIs'; if 'output' is equal to 'CIs_and_coxrfx_fits', also the CoxRFX objects for each bootstrap sample.

Author(s)

Rui Costa

boot_ebmstate

Bootstrap samples and bootstrap interval estimates

Description

This function computes bootstrap samples of regression coefficients, cumulative hazard functions, and transition probability functions.

Usage

```
boot_ebmstate(
   mstate_data = NULL,
   which_group = NULL,
   min_nr_samples = NULL,
   patient_data = NULL,
   initial_state = NULL,
   time_model = NULL,
   backup_file = NULL,
   input_file = NULL,
   coxrfx_args = NULL,
   msfit_args = NULL,
   probtrans_args = NULL)
```

Arguments

mstate_data A data frame with outcome and covariate data in long format.

which_group A character vector with the same meaning as the 'groups' argument of the func-

tion CoxRFX but named (with the covariate names).

boot_probtrans 5

min_nr_samples	The confidence interval of any coefficient is based on a number of bootstrap samples at least as high as this argument. See details.
patient_data	The covariate data for which the estimates of cumulative hazards and transition probabilities are computed. Must contain: one row of data for each transition, all the covariate columns in the fitted model, and also the 'strata' column.
initial_state	The initial state for which transition probability estimates should be computed
tmat	$Transition\ matrix\ for\ the\ multi-state\ model,\ as\ obtained\ by\ running\ mstate:: \texttt{transMat}$
time_model	The model of time-dependency: either 'clockforward' or 'clockreset'.
backup_file	Path to file. Objects generated while the present function is running are stored in this file. This avoids losing all estimates if and when the algorithm breaks down. See argument input_file.
input_file	Path to backup_file (see argument backup_file). If this argument is given, all other arguments should be NULL.
coxrfx_args	Named list with arguments to the CoxRFX function other than Z,surv and groups.
msfit_args	Named list with arguments to the msfit_generic.coxrfx function other than object,newdata and trans.
probtrans_args	Named list with arguments to the probtrans_ebmstate function other than initia_state,cumhaz and model.

Details

In a given bootstrap sample there might not be enough information to generate estimates for all coefficients. If a covariate has little or no variation in a given bootstrap sample, no estimate of its coefficient will be computed. The present function will keep taking bootstrap samples until every coefficient has been estimated at least min_nr_samples times. covariate_df should only contain the covariates of the model one wishes to estimate.

Value

A list with: 95% bootstrap intervals for each regression coefficient and for transition probabilities; bootstrap samples of regression coefficients, cumulative hazards and transition probabilities.

Author(s)

Rui Costa

boot_probtrans	Bootstrap confidence intervals for transition probabilities
----------------	---

Description

Generates 95% highest density bootstrap interval estimates for transition probabilities computed using probtrans_ebmstate (clock-reset version).

CIs_for_target_state

Usage

```
boot_probtrans(coxrfx_fits_boot, patient_data, tmat, initial_state, max_time)
```

Arguments

coxrfx_fits_boot

The list of CoxRFX objects obtained by running boot_coxrfx.

patient_data (Single) patient data in 'long format', possibly with 'expanded' covariates (as

obtained by running mstate::expand.covs).

tmat Transition matrix for the multi-state model, as obtained by running mstate::transMat

initial_state The initial state for which transition probability estimates should be computed

max_time The maximum time for which estimates should be computed

Value

Interval estimates for transition probabilities.

Author(s)

Rui Costa

See Also

```
probtrans_ebmstate; boot_coxrfx; transMat; expand.covs
```

Description

Computes 95% highest density bootstrap confidence intervals for the transition probabilities into target_state, given a list object with boostrap estimates of transition probabilities into multiple states. This function is not meant to be called by the user.

Usage

```
CIs_for_target_state(target_state, probtrans_objects_boot)
```

Arguments

target_state The target state for whose transition probabilties the confidence intervals are computed.

probtrans_objects_boot

A list containing bootstrap estimates of transition probabilities.

convolute_clockforward

Details

Uses function extract_function.

Value

95% highest density bootstrap confidence intervals for the transition probabilities into target_state.

7

Author(s)

Rui Costa

See Also

```
boot_ebmstate; extract_function.
```

convolute_clockforward

Convolution function for clock-forward models

Description

Internal function of probtrans_by_convolution_clockforward. It is written in C++ and is not meant to be called directly by the user.

Usage

```
convolute_clockforward(
  time_vector,
  diff_vector,
  probtrans_vector_1,
  probtrans_vector_2
)
```

Arguments

```
time_vector, diff_vector, probtrans_vector_1, probtrans_vector_2
Numeric vectors.
```

Author(s)

Moritz Gerstung & Rui Costa

See Also

probtrans_by_convolution_clockforward.

8 CoxRFX

convolute_clockreset Convolution function for clock-reset models

Description

Internal function of probtrans_by_convolution_clockreset. It is written in C++ and is not meant to be called directly by the user.

Usage

```
convolute_clockreset(time_vector, integrand_1, integrand_2)
```

Arguments

```
time_vector, integrand_1, integrand_2 Numeric vectors.
```

Author(s)

Moritz Gerstung & Rui Costa

See Also

probtrans_by_convolution_clockreset.

CoxRFX

Empirical Bayes, multi-state Cox model

Description

This function estimates a multi-state Cox model with one or more Gaussian priors imposed on the regression coefficients (see Therneau et al., 2003). Multiple groups of coefficients can be defined: coefficients within a group share the same (possibly unknown) mean and variance. The parameters and hyperparameters are efficiently estimated by an EM-type algorithm built around the function survival::coxph.

Usage

```
CoxRFX(
   Z,
   surv,
   groups = rep(1, ncol(Z)),
   which.mu = unique(groups),
   tol = 0.001,
   max.iter = 50,
   sigma0 = 0.1,
```

CoxRFX 9

```
sigma.hat = c("df", "MLE", "REML", "BLUP"),
  verbose = FALSE,
)
```

Arguments

Z	A data frame consisting of the covariate columns of a data set in 'long format', and two extra columns: one named 'trans', with the transition that each row refers to, and another named 'strata', with the stratum of each transition (transitions belonging to the same stratum are assumed to have the same baseline hazard function).
surv	A 'survival' object created with survival::Surv.
groups	A character or numeric vector whose i th element gives the group of the regression coefficient associated with the i th covariate column of Z (coefficients belonging to the same group share the same Gaussian prior).
which.mu	A vector with names or numbers of coefficient groups (see argument groups). If the name or number of a group of coefficients is given in this argument, CoxRFX will estimate the mean of its Gaussian distribution; otherwise the mean will be fixed at zero.
tol	Convergence criterium of the EM algorithm. The algorithm stops unless there is at least one parameter (or hyperparameter) for which it holds that the current estimate differs in absolute terms by more than tol from the previous estimate.
max.iter	The maximum number of iterations in the EM algorithm.
sigma0	A vector with the initial value of the variance hyperparameter for each group of coefficients. Or a single value, in case the initial value of the variance hyperparameter is meant to be the same for all groups.
sigma.hat	Which estimator to use for the variance hyperparameters (see details).
verbose	Gives more output.
	Further arguments passed to the function survival::coxph.

Details

Different estimators exist for the variance hyperparameters: the default is "df", as used by Perperoglou (2014) and introduced by Schall (1991). Alternatives are MLE, REML, and BLUP, as defined by Therneau et al. (2003). Simulations suggest that the 'df' method is the most accurate.

The model can also be fitted using package coxme; the coxme routine numerically optimises the integrated partial likelihood, which may be more accurate, but is computationally expensive.

Value

An object of class c(coxrfx, coxph.penal, coxph), which is essentially a coxph object with a few extra fields [the inputs \$groups, \$Z and \$surv, and the hyperparameters \$sigma2 (variances) and \$mu (means)]. See survival::coxph.object.

10 CoxRFX

Author(s)

Moritz Gerstung & Rui Costa, extending the work of Terry Therneau et al. in the package survival.

References

Terry M Therneau, Patricia M Grambsch & V. Shane Pankratz (2003) Penalized Survival Models and Frailty, Journal of Computational and Graphical Statistics, 12:1, 156-175, http://dx.doi.org/10.1198/1061860031365

A. Perperoglou (2014). Cox models with dynamic ridge penalties on time-varying effects of the covariates. Stat Med, 33:170-80. http://dx.doi.org/10.1002/sim.5921

R. Schall (1991). Estimation in generalized linear models with random effects. Biometrika, 78:719-727. http://dx.doi.org/10.1093/biomet/78.4.719

See Also

Package survival survival::coxph.object; survival::Surv; package coxme.

Examples

```
# Fit an empirical Bayes Cox model using
# simulated, illness-death data from 250
# patients ('mstate_data_sample').
#load simulated data
data("mstate_data_sample")
# Set class of 'mstate_data_sample'
class(mstate_data_sample)<-c("data.frame", "msdata")</pre>
# add transition matrix as attribute
tmat < -mstate::transMat(x=list(c(2,3),c(4),c(),c()),
      names=c("health","illness","death",
     "death_after_illness"))
attr(mstate_data_sample, "trans")<-tmat
# expand covariates by transition:
covariates.expanded<-mstate::expand.covs(</pre>
      mstate_data_sample,
      covs=names(mstate_data_sample)
      [!names(mstate_data_sample)%in%c("id", "from",
      "to", "trans", "Tstart", "Tstop", "time", "status",
      "strata")],append=FALSE)
# argument 'Z' of coxrfx
Z<-data.frame(covariates.expanded,</pre>
   trans=mstate_data_sample$trans,
   strata=mstate_data_sample$trans)
# argument 'surv' for a non-homogeneous
# Markov model
surv<-survival::Surv(mstate_data_sample$Tstart,</pre>
```

coxrfx_object_sample 11

Description

An RData object containing the model fit obtained by running CoxRFX on the data set mstate_data_sample (included in the present package).

Usage

```
coxrfx_object_sample
```

Format

An object of class c(coxrfx, coxph.penal, coxph), which is essentially a coxph object with a few extra fields [the inputs \$groups, \$Z, and \$surv, and the hyperparameters \$sigma2 (variances) and \$mu (means)].

See Also

```
mstate_data_sample; CoxRFX.
```

Description

Computes 95% highest density, non-parametric bootstrap confidence intervals for the cumulative hazard rate functions, given a list of msfit objects with boostrap estimates of cumulative hazard rate functions for multiple transitions. This function is not meant to be called by the user.

12 cumhaz_splines

Usage

```
cumhazCIs_for_target_transition(transition, msfit_objects_boot)
```

Arguments

transition The transition for which transition confidence intervals are computed. msfit_objects_boot

List of msfit objects with boostrap estimates of cumulative hazard rate functions for multiple transitions.

Value

95% highest density, non-parametric bootstrap confidence intervals for the cumulative hazard rate functions.

Author(s)

Rui Costa

See Also

boot_ebmstate.

cumhaz_splines

Spline approximations of the cumulative hazard functions

Description

Creates a spline approximation for the vector of cumulative hazards of each transition.

Usage

```
cumhaz_splines(cumhaz)
```

Arguments

cumhaz

An object of class msfit, created by msfit_generic or msfit.

Details

This function is used by the function probtrans_by_convolution. It is not meant to be called by the user.

Value

A list of estimated cumulative hazard functions (one for each transition).

extract_function 13

Author(s)

Rui Costa

See Also

msfit_generic; msfit; probtrans_by_convolution.

extract_function

Ancillary function to boot_ebmstate.

Description

Extracts the bootstrap estimates of transition probabilities for target state 'tstate' from a list with bootstrap estimates of transition probabilities into multiple states. This function is not meant to be called by the user.

Usage

```
extract_function(list_object, tstate)
```

Arguments

list_object A list in which each individual element is a single bootstrap estimate of the

probability of transition into different states.

tstate The state whose bootstrap estimates of transition probabilities we wish to extract

from list_object.

Details

This function is an ancillary function of CIs_for_target_state, which in turn is an ancillary function of boot_ebmstate.

Value

Bootstrap estimates of transition probabilities into target state 'tstate'.

Author(s)

Rui Costa

See Also

```
CIs_for_target_state; boot_ebmstate
```

joint_cum_hazard_function

Compute the cumulative hazard of leaving a given state

Description

This function is not meant to be called by the user. It is an internal function of probtrans_by_convolution_clockforward and probtrans_by_convolution_clockreset.

joint_cum_hazard_function returns the cumulative hazard of leaving state i to any state that can be reached directly from i, at each of the time points in t. There is no explicit argument i: this state is entirely defined by the transitions that can occur when the patient is in it (and these transitions are given in the argument competing_transitions).

Usage

```
joint_cum_hazard_function(t, competing_transitions, spline_list)
```

Arguments

t A vector of time points.

competing_transitions

The transitions that can occur when the process is in state i.

spline_list

A list whose elements are spline functions approximating the cumulative hazard of making each possible transition in the process. This is normally a list object created by running cumhaz_splines.

Value

A vector with the cumulative hazard of leaving a given state evaluated at given time points.

Author(s)

Rui Costa

See Also

probtrans_by_convolution_clockforward; probtrans_by_convolution_clockreset; cumhaz_splines.

loo_ebmstate 15

loo_ebmstate	Leave-one-out estimation	

Description

This function computes leave-one-out estimation of regression coefficients, cumulative hazard functions, and transition probability functions.

Usage

```
loo_ebmstate(
   mstate_data,
   mstate_data_expanded,
   which_group,
   patient_IDs,
   initial_state,
   tmat,
   time_model,
   backup_file = NULL,
   input_file = NULL,
   coxrfx_args = list(),
   msfit_args = NULL,
   probtrans_args = NULL)
```

Arguments

mstate_data	Data in 'long format'.				
mstate_data_expanded					
	Data in 'long format', possibly with 'expanded' covariates (as obtained by running mstate::expand.covs).				
which_group	A character vector with the same meaning as the 'groups' argument of the function CoxRFX but named (with the covariate names).				
patient_IDs	The IDs of the patients whose cumulative hazards and transition probabilities one wishes to estimate.				
initial_state	The initial state for which transition probability estimates should be computed				
tmat	Transition matrix for the multi-state model, as obtained by running mstate::transMat				
time_model	The model of time-dependency: either 'clockforward' or 'clockreset'.				
backup_file	Path to file. Objects generated while the present function is running are stored in this file. This avoids losing all estimates if and when the algorithm breaks down. See argument input_file.				
input_file	Path to backup_file (see argument backup_file). If this argument is given, all other arguments should be NULL.				
coxrfx_args	Named list with arguments to the CoxRFX function other than Z, surv and groups.				

16 MakeInteger

 ${\tt msfit_args} \qquad \qquad {\tt Named \ list \ with \ arguments \ to \ the \ msfit_generic.coxrfx \ function \ other \ than}$

object, newdata and trans.

 $probtrans_args \quad Named \ list \ with \ arguments \ to \ the \ probtrans_ebm state \ function \ other \ than$

initia_state,cumhaz and model.

Details

In a given bootstrap sample there might not be enough information to generate estimates for all coefficients. If a covariate has little or no variation in a given bootstrap sample, no estimate of its coefficient will be computed. The present function will keep taking bootstrap samples until every coefficient has been estimated at least min_nr_samples times.

Value

A list with: 95% bootstrap intervals for each regression coefficient and for transition probabilities; bootstrap samples of regression coefficients, cumulative hazards and transition probabilities.

Author(s)

Rui Costa

MakeInteger

Convert factor to integer.

Description

Convert factor to integer.

Usage

MakeInteger(v)

Arguments

٧

A factor vector.

Details

An internal function of CoxRFX, not meant to called directly by the user.

Value

A data frame with columns corresponding to levels in the factor.

Author(s)

Moritz Gerstung

msfit_generic 17

See Also

CoxRFX

msfit_generic

Compute subject-specific transition hazards.

Description

This function computes subject-specific or overall cumulative transition hazards for each of the possible transitions in the multi-state model. This help page is an adaptation of the mstate::msfit help page.

Usage

```
msfit_generic(object, ...)
## Default S3 method:
msfit_generic(
  object,
  newdata,
  variance = TRUE,
  vartype = c("aalen", "greenwood"),
  trans,
  ...
)
## S3 method for class 'coxrfx'
msfit_generic(object, newdata, trans, ...)
```

Arguments

object An object describing the fit of a multi-state Cox model.

... Further arguments

newdata A data frame in 'long format'. See details.

variance A logical value indicating whether the (co-)variances of the subject-specific tran-

sition hazards should be computed.

vartype A character string specifying the type of variances to be computed (so only

needed if variance=TRUE).

trans Transition matrix describing the states and transitions in the multi-state model.

See trans in msprep for more detailed information.

18 msfit_generic

Details

The purpose of msfit_generic is to be able to use mstate::msfit on model fit objects of class coxrfx (i.e. objects generated by CoxRFX). This can now be done with msfit_generic.coxrfx, which introduces minor modifications to mstate::msfit. In particular, it precludes msfit from computing the (co-)variances of transition hazard estimators, as this computation relies on asymptotic results for the fixed effects Cox model (see de Wreede et al, 2010, section 2.3.2). The method msfit_generic.default corresponds to the original mstate::msfit function. The data frame given as newdata input needs to have one row for each transition in the multi-state model, and one column for each covariate. An additional column strata (numeric) is needed to describe for each transition to which stratum it belongs. The name has to be strata, even if in the original coxph call another variable was used. See msfit for more details.

Value

An 'msfit' object. See msfit for details. If the S3 method msfit_generic.coxrfx is called, the returned object will be of class c(msfit,coxrfx); otherwise, it will be of class msfit.

Author(s)

Rui Costa, adapting the work of L. de Wreede, M. Fiocco and H. Putter in the mstate package.

References

de Wreede LC, Fiocco M, and Putter H (2010). The mstate package for estimation and prediction in non- and semi-parametric multi-state and competing risks models. *Computer Methods and Programs in Biomedicine* **99**, 261–274.

See Also

```
msfit; msprep; plot.msfit.
```

Examples

```
# Compute cumulative hazard rates
# under a (pre-estimated) empirical Bayes Cox
# model.

#load simulated data (illness-death model,
#500 patients) and estimated empirical
# Bayes Cox model
data("mstate_data_sample")
data("coxrfx_object_sample")

# Make objects 'surv' and 'Z'
# with the data used in the estimation

#outcome data
surv<-coxrfx_object_sample$surv

#covariate data</pre>
```

msfit_object_sample 19

```
Z<-coxrfx_object_sample$Z
 # Build a data frame 'patient_data'
 # with the covariate values for which
 # cumulative hazards are to be computed
 # (patient 1 covariate values in this case).
  # 'patient_data' must have one row for each
 # transition in the model
 # and the same columns as 'Z'. The assignment
 # of transitions to strata (made in the 'strata'
  # column) must follow the original model in
 # 'coxrfx_object_sample'.
 patient_data<-mstate_data_sample[mstate_data_sample$id==1,</pre>
     ,drop=FALSE][rep(1,3),]
 patient_data$strata<-patient_data$trans<-1:3</pre>
 patient_data<-mstate::expand.covs(patient_data,</pre>
     covs=names(patient_data)[!names(patient_data)%in%
    c("id", "from", "to", "trans", "Tstart", "Tstop", "time",
     "to", "trans", "Tstart", "Tstop", "time", "status",
     "strata")],append=TRUE)
  # compute cumulative hazards
 msfit_object<-msfit_generic(coxrfx_object_sample,</pre>
                               patient_data,
                               coxrfx_object_sample$tmat)
  # show estimates
 print(msfit_object)
msfit_object_sample
                          Estimated cumulative hazard rates under an empirical Bayes Cox
```

Description

An RData object containing estimated cumulative hazards, obtained by running msfit_generic on the object_coxrfx_object_sample (also included in the present package).

model (example)

Usage

```
msfit_object_sample
```

Format

An object of class c(msfit,coxrfx). See msfit_generic and mstate::msfit for details.

See Also

```
coxrfx_object_sample.
```

20 mstate_data_sample

mstate_data

An example of long-format multistate data

Description

An RData object containing disease progression data for a sample of 576 patients with myelodys-plastic syndromes (MDS), as an example of long-format multistate data.

Usage

mstate_data

Format

A data frame.

mstate_data_sample

A simulated event-history data set

Description

A data set generated by simulation from an illness-death Cox model. This is an object of double class 'data.frame' and 'msdata', whose 'trans' attribute is a transition matrix (attr(mstate_data_sample, "trans")).

Usage

mstate_data_sample

Format

A data frame with 649 rows and 18 variables (250 patients):

id patient identification number

from state in which the patient is

to state to which the patient is at risk of going to

trans transition ID number

Tstart when the risk of the transition started

Tstop the time at which the risk of the transition ended or the last follow-up time (whichever happened first)

time Tstop-Tstart

status did the transition occur at Tstop?

Cov1,Cov2,Cov3,Cov4,Cov5,Cov6,Cov7,Cov8,Cov9,Cov10 covariates

print.coxrfx 21

print.coxrfx

Print method for CoxRFX objects

Description

This function implicitly calls summary.coxrfx().

Usage

```
## S3 method for class 'coxrfx'
print(x, ...)
```

Arguments

x A coxrfx object

... further arguments passed to or from other methods.

Details

Prints two data frames, one with hyperparameter estimates and another with regression coefficient estimates.

Value

Returns an invisible NULL object.

Author(s)

Moritz Gerstung & Rui Costa

print.msfit

Print method for msfit objects generated by msfit_generic

Description

This method is a simple call to print.default. Its main purpose is to override print.coxrfx when printing an object of double class msfit and coxrfx.

Usage

```
## S3 method for class 'msfit' print(x, ...)
```

Arguments

x An object of class msfit or double class msfit and coxrfx.

. . . Further arguments passed to or from other methods.

Value

The input object (an object of double class msfit and coxrfx).

Author(s)

Rui Costa

probtrans_by_convolution

Compute all transition probabilities from a given state using convolu-

Description

probtrans_by_convolution is an internal function of probtrans_ebmstate and is not meant to be called directly by the user. It is itself a wrapper for the functions probtrans_by_convolution_clockforward and probtrans_by_convolution_clockreset, which are the workhorses of the convolution algorithm.

Usage

```
probtrans_by_convolution(tmat, cumhaz, from_state, model, max_time, nr_steps)
```

Arguments

tmat A transition matrix extracted from the cumhaz argument to probtrans_ebmstate.

cumhaz msfit object (argument passed on from probtrans_ebmstate).
from_state Initial state (argument passed on from probtrans_ebmstate).

max_time The maximum time for which transition probabilities are estimated.

nr_steps The number of steps in the convolution algorithm (larger increases precision but

makes it slower)

Details

For more information on the arguments of this function see probtrans_ebmstate.

Author(s)

Rui Costa & Moritz Gerstung

See Also

probtrans_ebmstate;probtrans_by_convolution_clockforward; probtrans_by_convolution_clockreset.

```
probtrans_by_convolution_clockforward
```

Compute transition probabilities under a clock-forward model using a convolution algorithm.

Description

Compute transition probabilities for a given starting state and target state under a clock-forward model, using a convolution algorithm.

probtrans_by_convolution_clockforward is an internal function of probtrans_by_convolution and is not meant to be called directly by the user.

Usage

```
probtrans_by_convolution_clockforward(
   tmat,
   cumhaz,
   from_state,
   to_state,
   spline_list,
   unique_paths_object,
   time
)
```

Arguments

tmat Transition matrix.

cumhaz msfit object.

from_state Initial state.

to_state Target state.

A list whose elements are spline functions approximating the cumulative hazard

of making each possible transition in the process. This is normally a list object

created by running $cumhaz_splines$.

unique_paths_object

spline_list

An object created by running unique_paths.

time A vector of ordered time points.

Author(s)

Rui Costa & Moritz Gerstung

See Also

probtrans_ebmstate; probtrans_by_convolution_clockreset; probtrans_by_convolution; unique_paths; cumhaz_splines. probtrans_by_convolution_clockreset

Compute transition probabilities under a clock-reset model using a convolution algorithm.

Description

Compute transition probabilities for a given starting state and target state under a clock-reset model with a single time scale (sojourn time), using a convolution algorithm.

probtrans_by_convolution_clockreset is an internal function of probtrans_by_convolution and is not meant to be called directly by the user.

Usage

```
probtrans_by_convolution_clockreset(
   tmat,
   cumhaz,
   from_state,
   to_state,
   spline_list,
   unique_paths_object,
   time
)
```

Arguments

tmat Transition matrix.
cumhaz msfit object.
from_state Initial state.
to_state Target state.

spline_list A list whose elements are spline functions approximating the cumulative hazard

of making each possible transition in the process. This is normally a list object

created by running cumhaz_splines.

unique_paths_object

An object created by running unique_paths.

time A vector of ordered time points.

Author(s)

Rui Costa & Moritz Gerstung

See Also

probtrans_ebmstate; probtrans_by_convolution_clockforward; probtrans_by_convolution; unique_paths; cumhaz_splines. probtrans_ebmstate 25

probtrans_ebmstate

Compute subject-specific transition probabilities using convolution.

Description

Compute subject-specific transition probabilities using convolution.

Usage

```
probtrans_ebmstate(
   initial_state,
   cumhaz,
   model,
   max_time = NULL,
   nr_steps = 10000
)
```

Arguments

initial_state The present function estimates transition probabilities from the state given in

this argument.

cumhaz An msfit object created by running mstate or mstate_generic.

model Either 'clockforward' or 'clockreset'. See details.

max_time The maximum time for which transition probabilities are estimated.

nr_steps The number of steps in the convolution algorithm (larger increases precision but

makes it slower)

Details

The clock-forward model is a model in which the transition hazard rates depend only on time since the initiating event. The clock-reset model has a single time scale: the sojourn time in the current state.

The algorithm behind probtrans_ebmstate is based on the convolution of density and survival functions and is suitable for processes with a tree-like transition structure only.

Value

An object of class 'probtrans'. See the 'value' section in the help page of mstate::probtrans.

Author(s)

Rui Costa & Moritz Gerstung

See Also

```
probtrans;
```

26 probtrans_fft

Examples

probtrans_fft

Compute subject-specific transition probabilities using a convolution algorithm based on the Fast Fourier transform.

Description

Compute subject-specific transition probabilities using a convolution algorithm based on the Fast Fourier transform.

Usage

```
probtrans_fft(initial_state, cumhaz, max_time, nr_steps = 10000)
```

Arguments

initial_state The present function estimates state occupation probabilities from the state given

in this argument.

cumhaz An msfit object created by running mstate or mstate_generic.

max_time The maximum time for which transition probabilities are estimated.

nr_steps The number of steps in the convolution algorithm (larger increases precision but

makes it slower)

Details

The time argument is crucial for precision. The density of time points and the upper time limit should be increased until the estimated curves become stable. A useful rule of thumb is to set the upper time limit to a time point in which the probability of each transient state is zero and the probability of each absorbing state is constant.

For the same approximation grid, probtrans_fft doesn't always yield the same result as probtrans_ebmstate (semi-Markov version), even though they are meant to approximate exactly the same convolution. probtrans_ebmstate is sensitive to the grid interval size, but not such much to the maximum grid time. probtrans_fft is sensitive to both these parameters, as referred above.

The algorithm behind probtrans_ebmstate is based on the convolution of density and survival functions and is suitable for processes with a tree-like transition structure only.

probtrans_mstate 27

Value

An object of class 'probtrans'. See the 'value' section in the help page of mstate::probtrans.

Author(s)

Rui Costa

See Also

```
probtrans; probtrans_ebmstate
```

probtrans_mstate

Compute subject-specific or overall transition probabilities

Description

This function is a wrapper for mstate::probtrans. Its purpose is to preclude the computation of (co-)variances of the transition probability estimator when the fitted Cox model is empirical Bayes. This help page is an adaptation of the mstate::probtrans help page.

Usage

```
probtrans_mstate(object, ...)

## Default S3 method:
probtrans_mstate(
   object,
   predt,
   direction = c("forward", "fixedhorizon"),
   method = c("aalen", "greenwood"),
   variance = TRUE,
   covariance = FALSE,
   ...
)

## S3 method for class 'coxrfx'
probtrans_mstate(object, predt, direction = c("forward", "fixedhorizon"), ...)
```

Arguments

object An msfit object containing estimated cumulative hazards for each of the transi-

tions in the multi-state model and, if standard errors are requested, (co)variances

of these cumulative hazards for each pair of transitions.

... other arguments.

predt A positive number indicating the prediction time. This is either the time at

which the prediction is made (if direction= "forward") or the time for which the

prediction is to be made (if direction="fixedhorizon").

28 probtrans_mstate

direction

One of "forward" (default) or "fixedhorizon", indicating whether prediction is forward or for a fixed horizon.

Method

A character string specifying the type of variances to be computed (so only needed if either variance or covariance is TRUE). Possible values are "aalen" or "greenwood".

Variance

Logical value indicating whether standard errors are to be calculated (default is TRUE).

Covariance

Logical value indicating whether covariances of transition probabilities for different states are to be calculated (default is FALSE).

Details

probtrans_mstate computes estimates of transition probabilities for an object generated by msfit_generic. It calls the method probtrans_mstate.coxrfx, if the msfit object was generated by msfit_generic.coxrfx, or the method probtrans_mstate.default otherwise. Both methods are identical to the function mstate::probtrans. The only reserve is that probtrans_mstate.coxrfx does not allow the computation of the (co-)variances of the transition probability estimator. In fact, this computation relies on asymptotic results for the *fixed* effects Cox model (see de Wreede et al, 2010, section 2.3.2), and msfit_generic.coxrfx produces estimates of cumulative hazards under a random effects/empirical Bayes Cox model.

probtrans_mstate should only be used for Markov models, as it relies on product limit calculations.

Value

An object of class probtrans. See the 'value' section in the help page of probtrans for details.

Author(s)

Rui Costa, adapting the work of L. de Wreede, M. Fiocco and H. Putter in the mstate package.

References

de Wreede LC, Fiocco M, and Putter H (2010). The mstate package for estimation and prediction in non- and semi-parametric multi-state and competing risks models. *Computer Methods and Programs in Biomedicine* **99**, 261–274.

See Also

probtrans; msfit; msfit_generic.

successful_transitions 29

successful_transitions

Find the unique possible path until an absorbing state

Description

From a unique_paths object that shows all possible paths until absorption from an initial state, successful_transitions picks the path that finishes in to_state, if there is one. The initial state is the one defined in the argument from_state to the function unique_paths. The process must have a tree-like structure.

Usage

```
successful_transitions(unique_paths_object, to_state, tmat)
```

Arguments

unique_paths_object

An object created by running unique_paths.

to_state An absorbing state.

tmat Transition matrix.

Details

This function is used by probtrans_by_convolution_clockforward and probtrans_by_convolution_clockreset. It is not meant to be called by the user.

Value

A vector with the unique sequence of states between two states.

Author(s)

Rui Costa

See Also

unique_paths; probtrans_by_convolution_clockforward; probtrans_by_convolution_clockreset.

30 unique_paths

summary.coxrfx

A summary method for CoxRFX models

Description

This function prints the point estimates of parameters and hyperparameters contained in a coxrfx object.

Usage

```
## S3 method for class 'coxrfx'
summary(object, ...)
```

Arguments

object

A coxrfx object (obtained by running the function CoxRFX).

. . .

Further arguments passed to or from other methods.

Details

Prints two data frames, one with hyperparameter estimates and another with regression coefficient estimates.

Value

Returns an invisible NULL object.

Author(s)

Rui Costa

unique_paths

Find all possible paths until absorption from a given starting state

Description

unique_paths finds all possible sequences of states until absorption when the process has a tree-like structure.

Usage

```
unique_paths(from_state, tmat)
```

unique_paths 31

Arguments

from_state Initial state.

tmat A transition matrix describing the states and transitions in the multi-state model,

as can be obtained by running transMat. See argument trans in msprep (mstate

package) for more detailed information.

Details

This function is used by the function probtrans_by_convolution. It is not meant to be called by the user.

Value

A matrix where each column is a sequence of states taken by the process until absorption. There are as many columns as the number of possible paths until absorption.

Author(s)

Rui Costa

See Also

probtrans_by_convolution; transMat.

Index

```
* datasets
    coxrfx_object_sample, 11
    msfit_object_sample, 19
    mstate_data, 20
    mstate_data_sample, 20
* package
    ebmstate-package, 2
boot_coxrfx, 3, 6
boot_ebmstate, 4, 7, 12, 13
boot_probtrans, 5
CIs_for_target_state, 6, 13
convolute_clockforward, 7
convolute_clockreset, 8
CoxRFX, 8, 11, 17, 18
coxrfx_object_sample, 11, 19
cumhaz_splines, 12, 14, 23, 24
cumhazCIs\_for\_target\_transition, 11
ebmstate-package, 2
expand.covs, 6
extract_function, 7, 13
joint_cum_hazard_function, 14
loo_ebmstate, 15
MakeInteger, 16
msfit, 12, 13, 18, 28
msfit_generic, 12, 13, 17, 19, 28
msfit_object_sample, 19
msprep, 17, 18, 31
mstate::msfit, 19
mstate_data, 20
mstate_data_sample, 11, 20
plot.msfit, 18
print.coxrfx, 21
print.msfit, 21
probtrans, 25, 27, 28
```

```
probtrans_by_convolution, 13, 22, 23, 24,
probtrans_by_convolution_clockforward,
         7, 14, 22, 23, 24, 29
probtrans_by_convolution_clockreset, 8,
        14, 22, 23, 24, 29
probtrans_ebmstate, 6, 22-24, 25, 27
probtrans_fft, 26
probtrans_mstate, 27
successful_transitions, 29
summary.coxrfx, 30
survival::coxph.object, 9, 10
survival::Surv, 10
transMat, 6, 31
unique_paths, 23, 24, 29, 30
```