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1 Supplementary information I - mathemat-

ical resolution

1.1 Efficiencies depending on predator identity

We will consider in the following that feeding efficiencies depend on preda-
tor identity. We define e as the vector of efficiencies and W as the matrix
such that Wij is the proportion of energy entering j that is obtained from
i (
∑

j Wij = 1). Fij is the flux from species i to i. Li, the energy loss of
species j is defined by:

Li = Xi +
n
∑

j=1

Fij, (1)

where n is the number of species and Xi are the physiological losses of species
i. Thus, for satisfying the equilibrium criteria, Fi, the sum of fluxes entering
i is:

Fi =
1

ei

(

Xi +
n
∑

j=1

Fij

)

. (2)

As Wij sets the proportion of energy entering j obtained from species i, using
Fij = WijFj, we can write

Fi =
1

ei

(

Xi +
n
∑

j=1

WijFj

)

, (3)

where values Wij are estimated accordingly to species preferences (wij) and
prey abundances:

Wij =
wijBi

∑n

k=1
wkjBk

. (4)
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We then have:

eiFi = Xi +
n
∑

j=1

WijFj, (5)

which can be rewritten as:

diag(E)F = X +WF, (6)

where diag(e) is the diagonal matrix such that diag(e)ii = ei. Provided that
(diag(e)−W ) is invertible, the system solves as:

F = (diag(e)−W )−1
X. (7)

Then, all fluxes Fij = WijFj are derived from Fj using W .

1.2 Efficiencies depending on prey identity

Another common method is to define feeding efficiencies according to prey
identity. This section proposes a method to adapt the previous framework
to this case.

As preferences are defined at the prey level, we need to adapt the previous
framework by adding a nutrient node on which all basal species feed with an
efficiency of one. Then, eq.3 becomes:

Fi

(

n
∑

j=1

Wjiej + bi

)

= Xi +
n
∑

j=1

WijFj (8)

⇔ Fi

(

n
∑

j=1

W T
ij ej + bi

)

= Xi +
n
∑

j=1

WijFj (9)

were bi is 1 if i is a basal species, 0 otherwise. This can be rewritten as:

diag(W T e+ b⃗)F = X +WF, (10)

and, provided that (diag(W T e+ b⃗)−W ) is invertible, solved by:

F = (diag(W T e+ b⃗)−W )−1X (11)
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1.3 Efficiencies depending on the link identity

It is possible to generalise this approach to efficiencies defined for each prey-
predator couple. The solution needs the definition of matrix U such as Uij =
Wijeij. Then, eq. 3 becomes:

Fi

n
∑

j=1

UT
ij = Xi +

n
∑

j=1

WijFj (12)

and the system then reads:

diag(UT 1⃗)F = X +WF (13)

where 1⃗ is the vector of ones. System is solved as:

F = (diag(UT 1⃗)−W )−1X (14)

2 Supplementary information II - Stability

This document presents how the fluxes calculated under the steady state
hypothesis can easily be used to assess system stability, following the frame-
work of Moore and de Ruiter 2012. Here we use resilience as a definition of
stability. Resilience is determined from the Jacobian matrix. The system is
in a stable equilibrium only if the real parts of eigenvalues from the Jacobian
are all negative. In this case, resilience is the absolute value of the real part
of the largest eigenvalue, which is the value returned by the stability function
from the fluxweb package.
Another measure of stability, provided by the function make.stability, is to
find the minimal value of a scalar s defining the proportion of physiological
losses related to species density. In this case, physiological loss terms in the
diagonal of the Jacobian matrix are now defined as sXi and directly affect
the resilience value, s being the measure of stability. We will show in the
following section how fluxes at equilibrium can relate to a Lotka-Volterra
system in an equilibrium state, and how to compute the Jacobian matrix,
first assuming that feeding efficiencies relate to predator identity and then
assuming that they depend on prey identity.
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2.1 Derivation of the Jacobian matrix

2.1.1 Efficiencies defined at predator level

We can consider the following system of equations, describing the dynamics
of population biomasses in a community:

dBi

dt
= riBi −

∑

j

aijBiBj (for producers) (15a)

dBi

dt
= di −

∑

j

aijBiBj (for detritus) (15b)

dBi

dt
= −XiBi +

∑

j

eiajiBiBj −
∑

j

aijBiBj (for consumers) (15c)

aij is the coefficient of interaction between prey i and predator j and ri
is the relative growth rate of producer i. Pi and pi respectively define the
sets of predators and prey of species i. di defines the rate of replenishment
for detritus, assumed to be independent to the detritus mass. This model
assumes a type I functional response fij defined as:

fij = aijBi. (16)

As the whole method assumes that fluxes and biomasses are at an equilibrium
state, we have:

Fij = aijB
∗
iB

∗
j , (17)

B∗
i denoting biomass of species i at equilibrium. Then, off-diagonal elements

αij from the Jacobian matrix correspond to the per capita effects (effect of
one unit of species biomass). Considering the possible presence of cycles of
length 1 (species i is at the same time a prey and a predator of species j),
off diagonal elements are

αij =
δ dBi

dt

δBj

= eiajiBi − aijBi i ̸= j (18)

and at equilibrium, from eq. 17 we have B∗
i =

Fij

aijB
∗

j

and B∗
i =

Fji

ajiB
∗

j

. We can

use it to replace elements from eq. 18 and obtain:

αij = ei
Fji

B∗
j

−
Fij

B∗
j

i ̸= j (19)
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Diagonal elements, considering possible cannibalistic loops, for producers
(p), detritus (d) and consumers (c) are:

αpp = rp −
∑

j

apjBj = 0 (20a)

αdd = −
∑

j

adjBj (20b)

αcc = −Xc + 2ecaccBc +
∑

j ̸=c

ecajcBj − 2accBc −
∑

j ̸=c

acjBj (20c)

= −Xc +
∑

j

ecajcBj −
∑

j

acjBj + ecaccBc − accBc (20d)

= ecaccBc − accBc (20e)

with aii ̸= 0 only if species i is cannibalistic. Note that the first three terms
for αcc sum to 0 at equilibrium. Again, using B∗

i =
Fij

aijB
∗

j

and B∗
i =

Fji

ajiB
∗

j

we

obtain at equilibrium:

αpp = 0 (21a)

αdd = −
1

B∗
d

∑

j

Fdj (21b)

αcc =
Fcc

B∗
c

(ec − 1) (21c)

2.1.2 Efficiencies defined at prey level

The equation for consumers is now written as:

dBi

dt
= −XiBi +

∑

j

ejajiBiBj −
∑

j

aijBiBj (22)

Here ej defines efficiency of prey species j. At equilibrium, off-diagonal
elements of the Jacobian are as above:

αij = ej
Fji

B∗
j

−
Fij

B∗
j

i ̸= j (23)

Diagonal elements, considering possible cannibalistic loops for consumers
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(c) are:

αcc = −Xc + 2ecaccBc +
∑

j ̸=c

ejajcBj − 2accBc −
∑

j ̸=c

acjBj (24a)

= −Xc + ecaccBc +
∑

j

ejajcBj − accBc −
∑

j

acjBj (24b)

= ecaccBc − accBc (24c)

which, at equilibrium leads, like above, to:

αpp = 0 (25a)

αdd = −
1

B∗
d

∑

j

Fdj (25b)

αcc =
Fcc

B∗
c

(ec − 1) (25c)

2.1.3 Preferences defined at link level

Following the same mathematical derivation as before, we obtain:

αij = eij
Fji

B∗
j

−
Fij

B∗
j

i ̸= j (26a)

αpp = 0 (26b)

αdd = −
1

B∗
d

∑

j

Fdj (26c)

αcc =
Fcc

B∗
c

(ecc − 1) (26d)
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