
Graphical Independence Networks

A vignette for the gRain package

Søren Højsgaard

Contents

1 Bayesian networks 1
1.1 Introduction . 1

1.1.1 Example: Chest clinic . 1
1.2 Building a Bayesian network . 2
1.3 Queries to networks . 3
1.4 A one–minute version of gRain . 3

1.4.1 Specifying a Bayesian network . 3
1.4.2 Setting evidence and querying a network . 4

1.5 Setting evidence . 6
1.6 Hints and shortcuts . 6
1.7 Conditioning on evidence with zero probability . 9
1.8 Hard and soft (likelihood) evidence . 9

1.8.1 Hard evidence . 10
1.8.2 Soft evidence (also called virtual evidence or likelihood evidence) 10

1.9 Building a network from data . 11
1.9.1 Building a network from a known network . 11

1.10 Building networks from data . 13
1.10.1 Handling zeros in the data . 15
1.10.2 Building a network from an unknown network . 17

1.11 Extending networks to include other types of variables . 18
1.12 Brute force computations and why they fail . 21

Contents

1 Bayesian networks

1.1 Introduction

The gRain package implements Bayesian Networks (hereafter often abbreviated BNs). The name gRain is
an acronym for [gra]phical [i]ndependence [n]etworks. The main reference for gRain is Højsgaard (2012),
see also citation("gRain").

Moreover, Højsgaard, Edwards, and Lauritzen (2012) gives a broad treatment of graphical models
(including Bayesian networks) More information about the package, other graphical modelling packages
and development versions is available from

(http://people.math.aau.dk/ sorenh/software/gR)

1.1.1 Example: Chest clinic

This section reviews the chest clinic example of Lauritzen and Spiegelhalter (1988) (illustrated in Figure
@ref(fig:chest-LS)) and shows one way of specifying the model in gRain. Lauritzen and Spiegelhalter
(1988) motivate the chest clinic example with the following narrative:

1

“Shortness–of–breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis, or none of them,
or more than one of them. A recent visit to Asia increases the chances of tuberculosis, while smoking is
known to be a risk factor for both lung cancer and bronchitis. The results of a single chest X–ray do not
discriminate between lung cancer and tuberculosis, as neither does the presence or absence of dyspnoea.’ ’

chest_dag <- dag(list("asia", c("tub", "asia"), "smoke", c("lung", "smoke"), c("bronc",

"smoke"), c("either", "tub", "lung"), c("xray", "either"), c("dysp",

"bronc", "either")))

library(igraph)

par(mar=c(0,0,0,0))

plot(chest_dag)

asia

tub

smoke

lung

bronc

either

xray

dysp

asiatub

smoke

lung

bronc

either

xray

dysp

Figure 1: Chest clinic example from Lauritzen and Spiegelhalter (1988).

1.2 Building a Bayesian network

The description above involves the following binary variables: a = asia, s = smoker, t = tuberculosis,
l = lung cancer, b = bronchitis, e = either tuberculosis or lung cancer, d = dyspnoea and x = xray.

Each variable is binary and can take the values “yes” and “no”: Note that e is a logical variable which is
true (yes) if either t or l are true (yes) and false (no) otherwise. The connection between the variables is
displayed by the DAG (directed acyclic graph) in Figure~@ref(fig:chest-LS).

A joint probability density factorizing according to a DAG with nodes V can be constructed as follows:

2

Each node v ∈ V has a set pa(v) of parents and each node v ∈ V has a finite set of states. A joint
distribution over the variables V can be given as a product of conditional distributions

(#eq : dagfact1)p(V) =
∏

v∈V

p(v|pa(v)) (1)

where p(v|pa(v)) is a function defined on (v, pa(v)). This function satisfies that

∑

v∗

p(v = v∗|pa(v)) = 1,

i.e. that for each configuration of the parents pa(v), the sum over the levels of v equals one. Hence
p(v|pa(v)) becomes the conditional distribution of v given pa(v). In practice p(v|pa(v)) is specified as
a table called a conditional probability table or a CPT for short. Thus, a Bayesian network can be
regarded as a complex stochastic model built up by putting together simple components (conditional
probability distributions). A joint probability density for all eight variables in Figure~@ref(fig:chest-LS)
can be constructed as

(#eq : chestfact1)p(V) = p(a)p(s)p(t|a)p(l|s)p(b|s)p(e|t, l)p(d|e, b)p(x|e). (2)

1.3 Queries to networks

Suppose we are given the evidence (sometimes also called “finding”) that a set of variables E ⊂ V
have a specific value e∗. With this evidence, we are often interested in the conditional distribution
p(v|E = e∗) for some of the variables v ∈ V \ E or in p(U |E = e∗) for a set U ⊂ V \ E. Interest might
also be in calculating the probability of a specific event, e.g. the probability of seeing a specific evidence,
i.e. p(E = e∗). Other types of evidence (called soft evidence, virtual evidence or likelihood evidence) are
discussed in Section @ref(sec:hard-soft).

For example that a person has recently visited Asia and suffers from dyspnoea, i.e. a = yes and d = yes.
In the chest clinic example, interest might be in p(l|e∗), p(t|e∗) and p(b|e∗), or possibly in the joint
(conditional) distribution p(l, t, b|e∗).

1.4 A one–minute version of gRain

1.4.1 Specifying a Bayesian network

A simple way of specifying the model for the chest clinic example is as follows.

Specify conditional probability tables (with values as given in Lauritzen and Spiegelhalter (1988)) (there
are other ways of specifying conditional probability tables, see the package documentation):

yn <- c("yes","no")

a <- cpt(~asia, values=c(1, 99),levels=yn)

t.a <- cpt(~tub|asia, values=c(5, 95, 1, 99),levels=yn)

s <- cpt(~smoke, values=c(5, 5), levels=yn)

l.s <- cpt(~lung|smoke, values=c(1, 9, 1, 99), levels=yn)

b.s <- cpt(~bronc|smoke, values=c(6, 4, 3, 7), levels=yn)

e.lt <- cpt(~either|lung:tub,values=c(1, 0, 1, 0, 1, 0, 0, 1),levels=yn)

x.e <- cpt(~xray|either, values=c(98, 2, 5, 95), levels=yn)

d.be <- cpt(~dysp|bronc:either, values=c(9, 1, 7, 3, 8, 2, 1, 9), levels=yn)

Compile list of conditional probability tables.

chest_cpt <- compile_cpt(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)

chest_cpt

3

P(asia)

P(tub | asia)

P(smoke)

P(lung | smoke)

P(bronc | smoke)

P(either | lung tub)

P(xray | either)

P(dysp | bronc either)

The components are arrays, but coercion into dataframes sometimes makes it easier to digest the
components.

chest_cpt$tub

asia

tub yes no

yes 0.05 0.01

no 0.95 0.99

chest_cpt$tub |> as.data.frame.table()

tub asia Freq

1 yes yes 0.05

2 no yes 0.95

3 yes no 0.01

4 no no 0.99

Create the network:

chest_bn <- grain(chest_cpt)

chest_bn

Independence network: Compiled: TRUE Propagated: FALSE Evidence: FALSE

Default is that the network is compiled at creation time, but if one chooses not to do so, compilation can
be done with:

chest_bn <- compile(chest_bn)

1.4.2 Setting evidence and querying a network

In the chest clinic example, there are three disease variables, two background variables and two symptoms.
Following the narrative, we can set evidence that a person has recently visited Asia and has dyspnoea:

disease <- c("tub", "lung", "bronc")

asia_dysp <- list(asia="yes", dysp="yes")

Initially, the network can be queried without evidence:

chest_bn |> qgrain(nodes=disease, type="marginal")

$tub

tub

yes no

0.0104 0.9896

##

$lung

lung

yes no

0.055 0.945

##

$bronc

bronc

yes no

4

0.45 0.55

chest_bn |> qgrain(nodes=disease, type="marginal", simplify = TRUE)

yes no

tub 0.0104 0.9896

lung 0.0550 0.9450

bronc 0.4500 0.5500

chest_bn |> qgrain(nodes=disease, type="joint")

, , bronc = yes

##

lung

tub yes no

yes 0.0003276 0.004352

no 0.0311724 0.414148

##

, , bronc = no

##

lung

tub yes no

yes 0.0002444 0.005476

no 0.0232556 0.521024

chest_bn |> qgrain(nodes=disease, type="joint", simplify = TRUE)

tub lung bronc Freq

1 yes yes yes 0.0003276

2 no yes yes 0.0311724

3 yes no yes 0.0043524

4 no no yes 0.4141476

5 yes yes no 0.0002444

6 no yes no 0.0232556

7 yes no no 0.0054756

8 no no no 0.5210244

chest_bn |> qgrain(nodes=disease, type="conditional")

, , bronc = yes

##

lung

tub yes no

yes 0.0104 0.0104

no 0.9896 0.9896

##

, , bronc = no

##

lung

tub yes no

yes 0.0104 0.0104

no 0.9896 0.9896

chest_bn |> qgrain(nodes=disease, type="conditional", simplify = TRUE)

tub lung bronc Freq

1 yes yes yes 0.0104

2 no yes yes 0.9896

3 yes no yes 0.0104

4 no no yes 0.9896

5 yes yes no 0.0104

6 no yes no 0.9896

5

7 yes no no 0.0104

8 no no no 0.9896

Above we obtain the marginal, joint distributions and conditional distribution for the disease variables.
The output can in some cases be simplified to dataframes. For the conditional distribution, we obtain the
conditional distribution of the first node given the rest of the nodes.

1.5 Setting evidence

Evidence can be entered in different ways:

asia_dysp <- list(asia="yes", dysp="yes")

chest_ev <- chest_bn |>

setEvidence(evidence=asia_dysp)

chest_ev <- chest_bn |> ## For backward compatibility

setEvidence(nodes=c("asia", "dysp"), states=c("yes", "yes"))

The evidence is a list and can conveniently be displayed as a dataframe:

chest_ev |> getEvidence() |> as.data.frame()

nodes is_hard hard_state evi_weight

1 asia TRUE yes 1, 0

2 dysp TRUE yes 1, 0

chest_ev |> querygrain(nodes=disease, simplify = TRUE)

yes no

tub 0.08775 0.9122

lung 0.09953 0.9005

bronc 0.81140 0.1886

chest_ev |> pEvidence()

[1] 0.004501

The network can be queried again, and we can also obtain the probability of observing this evidence:

chest_ev |> querygrain(nodes=disease, simplify=TRUE)

yes no

tub 0.08775 0.9122

lung 0.09953 0.9005

bronc 0.81140 0.1886

chest_ev |> pEvidence()

[1] 0.004501

chest_bn |> pEvidence(evidence=list(asia="yes", dysp="yes"))

[1] 0.004501

The probability of observing a specific evidence can be found by setting the evidence as a vector of weights.
This is useful in connection with soft evidence (also called likelihood evidence), see Section~@ref(sec:hard-
soft).

1.6 Hints and shortcuts

An alternative way of specifying a network is by first defining CPTs and then entering values afterwards.
Programmatically, this can be done as:

yn <- c("yes", "no")

node_parents_list <-

6

list("asia", c("tub", "asia"), "smoke", c("lung", "smoke"),

c("bronc", "smoke"), c("either", "tub", "lung"),

c("xray", "either"), c("dysp", "bronc", "either"))

nms <- unique(unlist(node_parents_list))

universe <- setNames(rep(list(yn),length(nms)), nms)

universe |> head(3)

chest_dummy_cpt2 <- lapply(node_parents_list, function(f){

cpt(f, levels=yn)

})

bn_template <- compile_cpt(chest_dummy_cpt2) |> grain()

Above the network has ones in all potentials. Next update values in (some of the) potentials:

cpt_values <- list(asia=c(1, 99),

tub=c(5, 95, 1, 99),

smoke=c(5, 5),

lung=c(1, 9, 1, 99),

bronc=c(6, 4, 3, 7),

either=c(1, 0, 1, 0, 1, 0, 0, 1),

xray=c(98, 2, 5, 95),

dysp=c(9, 1, 7, 3, 8, 2, 1, 9)

)

bn_real <- replace_cpt(bn_template, cpt_values)

bn_template |> qgrain(evi=asia_dysp, nodes=disease, simplify = TRUE)

yes no

tub 0.5 0.5

lung 0.5 0.5

bronc 0.5 0.5

bn_real |> qgrain(evi=asia_dysp, nodes=disease, simplify = TRUE)

yes no

tub 0.08775 0.9122

lung 0.09953 0.9005

bronc 0.81140 0.1886

Consider querying a network where focus is on marginal distributions (the default). If all variables have
the same levels (as the case is here), the output can be coerced to a dataframe:

querygrain(chest_bn, nodes=disease, simplify = TRUE)

yes no

tub 0.0104 0.9896

lung 0.0550 0.9450

bronc 0.4500 0.5500

In the more general case the output can be coerced to a list of dataframes

querygrain(chest_bn, nodes=disease, result="data.frame")

$tub

tub

yes no

0.0104 0.9896

##

$lung

lung

7

yes no

0.055 0.945

##

$bronc

bronc

yes no

0.45 0.55

A typical use of gRain involves setting evidence and then querying the network afterwards. This can all
be done in one call of querygrain() (notice that this does not alter the network object):

chest_bn |> querygrain(evidence=asia_dysp,

nodes=disease, simplify = TRUE)

yes no

tub 0.08775 0.9122

lung 0.09953 0.9005

bronc 0.81140 0.1886

Evidence can be also be given as a vector of weights.

chest_bn |> querygrain(evidence=list(asia=c(1, 0), dysp=c(1, 0)),

nodes=disease, simplify = TRUE)

yes no

tub 0.08775 0.9122

lung 0.09953 0.9005

bronc 0.81140 0.1886

The weights must be non-negative but need not sum to one. This is important in connection with soft
evidence (also called likelihood evidence), see Section~@ref(sec:hard-soft). Above, the weights could also
have been set as c(.1, 0). The important part is that the zero excludes certain states as being impossible.

Nodes on which evidence is given are not reported unless exclude=FALSE

querygrain(chest_bn,

evidence=list(asia=c(1, 0), dysp=c(1, 0)),

nodes=c("lung", "bronc", "asia", "dysp"),

exclude=FALSE, simplify = TRUE)

yes no

lung 0.09953 0.9005

bronc 0.81140 0.1886

asia 1.00000 0.0000

dysp 1.00000 0.0000

If nodesare not specified, queries for all nodes without evidence are reported.

querygrain(chest_bn,

evidence=asia_dysp,

simplify = TRUE)

yes no

NA NA NA

tub 0.08775 0.9122

smoke 0.62592 0.3741

lung 0.09953 0.9005

bronc 0.81140 0.1886

either 0.18230 0.8177

xray 0.21954 0.7805

NA.1 NA NA

If nodes are not specified and exclude=FALSE, then queries for all nodes are reported.

8

querygrain(chest_bn,

evidence=asia_dysp,

exclude = FALSE, simplify = TRUE)

yes no

asia 1.00000 0.0000

tub 0.08775 0.9122

smoke 0.62592 0.3741

lung 0.09953 0.9005

bronc 0.81140 0.1886

either 0.18230 0.8177

xray 0.21954 0.7805

dysp 1.00000 0.0000

1.7 Conditioning on evidence with zero probability

Consider setting the evidence

chest_bn3 <- setEvidence(chest_bn, evidence=list(either="no", tub="yes"))

Under the model, this specific evidence has zero probability: either is true if tub is true or lung is true
(or both). Hence the specific evidence is impossible and therefore, all conditional probabilities are (under
the model) undefined:

pEvidence(chest_bn3)

[1] 0

querygrain(chest_bn3, nodes=disease, type="joint")

bronc

lung yes no

yes NaN NaN

no NaN NaN

1.8 Hard and soft (likelihood) evidence

Below we describe how to work with virtual evidence (also known as soft evidence or likelihood evidence)
in gRain. This is done via the function setEvidence().

The clique potential representation in a Bayesian network gives

p(x) ∝ ψ(x) =
∏

C

ψC(xC). (3)

Here we recall that the whole idea in computations with Bayesian networks is to avoid calculation the
product on the right hand side above. Instead computations are based on propagation (multiplying,
dividing and summing clique potentials ψC in an appropriate order, and such an appropriate order
comes from a junction tree). The normalizing constant, say c =

∑
x ψ(x), comes out of propagation as a

“by-product”.

Suppose a set of nodes E are known to have a specific value, i.e. xE = x∗

E . This is called hard evidence.
The probability of the event xE = x∗

E is

p(xE = x∗

E) = Ep{I(xE = x∗

E)} =
∑

x

I(xE = x∗

E)p(x) =
1

c

∑

x

I(xE = x∗

E)ψ(x) (4)

The computations are based on modifying the clique potentials ψC by giving value zero to states in ψC

which are not consistent with xE = x∗

E . This can be achieved with an indicator function, say LC(xC) such
that we obtain a set of new potentials ψ̃C(x) = LC(xC)ψC(xC). Propagation with these new potentials
gives, as a by product, c̃ =

∑
ψ̃(x) where ψ̃(x) =

∏
C ψ̃C(xC). Consequently, we have p(xE = x∗

E) = c̃/c.

9

In a more general setting we may have non–negative weights L(x) for each value of x. We may calculate

Ep{L(X)} =
∑

x

L(x)p(x) (5)

If L(X) factorizes as L(X) =
∏

C LC(XC) then the computations are carried out as outlined above,
i.e. by the message passing scheme.

1.8.1 Hard evidence

Suppose we want to make a diagnosis about tuberculosis given the evidence that a person is a smoker.
We call such evidence hard evidence because the state of the variables are known with certainty. The
function setEvidence() can be used for this purpose. The following forms are equivalent (the reason will
be explained below):

chest_ev1 <- setEvidence(chest_bn, evidence=list(smoke="yes"))

chest_ev2 <- setEvidence(chest_bn, evidence=list(smoke=c(1, 0)))

chest_bn |> querygrain(nodes=disease, simplify = TRUE)

yes no

tub 0.0104 0.9896

lung 0.0550 0.9450

bronc 0.4500 0.5500

chest_ev1 |> querygrain(nodes=disease, simplify = TRUE)

yes no

tub 0.0104 0.9896

lung 0.1000 0.9000

bronc 0.6000 0.4000

1.8.2 Soft evidence (also called virtual evidence or likelihood evidence)

Suppose we are not certain if a patient is a smoker or not. We shall assume that for patients who are
smokers, we would (correctly) guess so in 80% of the cases, whereas for patients who are not smokers we
would (erroneously) guess that they are smokers in 10% of the cases.

In gRain this, situation can be handled in two different ways. One way is to introduce a new variable
smoke_guess with smoke as its only parent and then we enter evidence for this node.

g.s <- cpt(~ smoke_guess|smoke, levels=yn,

values=c(.8, .2, .1, .9))

g.s

smoke

smoke_guess yes no

yes 0.8 0.1

no 0.2 0.9

chest_ext <- c(cpt_list, list(g.s)) |> compile_cpt() |> grain()

querygrain(chest_ext, nodes=disease, simplify = TRUE)

yes no

tub 0.0104 0.9896

lung 0.0550 0.9450

bronc 0.4500 0.5500

querygrain(chest_ext, nodes=disease, evidence=list(smoke="yes"), simplify = TRUE)

yes no

tub 0.0104 0.9896

lung 0.1000 0.9000

bronc 0.6000 0.4000

10

querygrain(chest_ext, nodes=disease, evidence=list(smoke_guess="yes"), simplify = TRUE)

yes no

tub 0.0104 0.9896

lung 0.0900 0.9100

bronc 0.5667 0.4333

Another approach is to enter virtual evidence in the original network as shown below.

chest_ve <- chest_bn |>

setEvidence(evidence = list(smoke = c(.8, .1)))

chest_ve |> querygrain(nodes=disease, simplify = TRUE)

yes no

tub 0.0104 0.9896

lung 0.0900 0.9100

bronc 0.5667 0.4333

getEvidence(chest_ve)

$nodes

[1] "smoke"

##

$is_hard

[1] FALSE

##

$hard_state

[1] NA

##

$evi_weight

$evi_weight[[1]]

smoke

yes no

0.8 0.1

##

##

attr(,"class")

[1] "grain_evidence" "list"

Consequently, specifying the hard evidence that smoke="yes" can be done as

chest_bn |> setEvidence(evidence=list(smoke=c(1, 0)))

Independence network: Compiled: TRUE Propagated: TRUE Evidence: TRUE

1.9 Building a network from data

When building a network from data, there are two situations to be distinguished between. 1) The network
is known and the data is used to estimate the parameters in the network. 2) The network is unknown
and the data is used to estimate the network structure and the parameters in the network.

In both cases it is possible to have a network specified as a dag or as an undirected (chordal) graph. The
following code illustrates how to build a network from data. The data is simulated data from the chest
clinic example.

1.9.1 Building a network from a known network

The following list defines a dag for the chest clinic example: Each component is a list with two elements:
the first element is the node and the second element is a vector of parents.

node_parents_list <- list("asia", c("tub", "asia"), "smoke", c("lung", "smoke"),

c("bronc", "smoke"), c("either", "tub", "lung"),

11

c("xray", "either"), c("dysp", "bronc", "either"))

g1 <- dag(node_parents_list)

par(mar=c(0,0,0,0))

plot(g1)

asia

tub

smoke

lung

bronc

either

xray

dysp

The following list defines an undirected graph for the chest clinic example: Each component is a list with
the nodes in the clique.

cliq <- list(c("xray", "either"), c("asia", "tub"), c("smoke", "lung",

"bronc"), c("lung", "either", "tub"), c("lung", "either", "bronc"

), c("bronc", "either", "dysp"))

g2 <- ug(cliq)

par(mar=c(0,0,0,0))

plot(g2)

eitherxray

asia

tub

lung

smoke
bronc

dysp

A netowrk can be built from data using:

bn1 <- grain(g1, data=gRbase::chestSim100000)

bn2 <- grain(g2, data=gRbase::chestSim100000)

NAs found in clique potential(s) for clique(s):

c("bronc", "lung", "either")

12

... consider using the smooth argument

It is explained in the references that the two networks specify the same joint distribution because internally
a dag is converted to an undirected chordal graph which provides the basis for the computations. In
practice the two joint distributions differ slightly, and this is because the way in which information is
extracted from data, see examples below.

j1 <- querygrain(bn1, type="joint")

j2 <- querygrain(bn2, type="joint")

d <- j1 %a-% j2

max(abs(d))

[1] NaN

1.10 Building networks from data

The following two graphs specify the same model stating that A and C are conditionally independent
given B. The first graph is a directed acyclic graph (DAG) and the second graph is an undirected graph
(UG).

g1 <- dag(~A:C + B:C, result="igraph")

g2 <- ug(~A:C + B:C, result="igraph")

par(mfrow=c(1,2), mar=c(0,0,0,0))

plot(g1); plot(g2)

C

A

B A

C

B

Given such a graph, we can build a network from data. Suppose data is as follows:

tab <- tabNew(~A:B:C, levels=c("+", "-"),

values=c(1, 2, 3, 5, 1, 2, 1, 4))

A network can be built from data using:

bn1 <- grain(g1, data=tab)

bn2 <- grain(g2, data=tab)

The two networks specify the same joint distribution:

j1 <- querygrain(bn1, type="joint")

j2 <- querygrain(bn2, type="joint")

d <- j1 %a-% j2

max(abs(d))

[1] 2.776e-17

In the process of creating networks, conditional probability tables are extracted when the graph is a dag
and clique potentials are extracted when the graph is a chordal (i.e. triangulated) undirected graph. This
takes place as follows (internally):

Neet to estimate p(A|B), p(C|B) and p(B) from the data. This can be done as follows:

13

p <- extract_cpt(tab, g1) |> c()

p

[[1]]

C

+ -

0.5789 0.4211

##

[[2]]

C

A + -

+ 0.3636 0.25

- 0.6364 0.75

##

[[3]]

C

B + -

+ 0.2727 0.375

- 0.7273 0.625

Likewise, we can extract the clique potentials from the data, call these q(AC) and q(BC):

q <- extract_pot(tab, g2) |> c()

q

[[1]]

C

A + -

+ 0.2105 0.1053

- 0.3684 0.3158

##

[[2]]

C

B + -

+ 0.2727 0.375

- 0.7273 0.625

Clique potentials are not uniquely defined, but the product of clique potentials is. In the implementation
in gRain, q(AC) is the relative frequency in the AC-marginal table, i.e. p(AB). Moreover and q(BC) is
the frequency in the BC-marginal table divided by the frequency in the C-marginal table. Hence, the
product of the clique potentials and the product of the cpts is the same as the joint distribution:

tabProd(p) |> ftable()

C + -

A B

+ + 0.05742 0.03947

- 0.15311 0.06579

- + 0.10048 0.11842

- 0.26794 0.19737

tabProd(q) |> ftable()

C + -

A B

+ + 0.05742 0.03947

- 0.15311 0.06579

- + 0.10048 0.11842

- 0.26794 0.19737

14

1.10.1 Handling zeros in the data

Next suppose data is as follows

tab0 <- tab

tab0[1:4] <- 0

tab0

, , C = +

##

B

A + -

+ 0 0

- 0 0

##

, , C = -

##

B

A + -

+ 1 1

- 2 4

In the process of creating networks above, the following quantities are computed:

n_BC <- tab0 |> tabMarg(~B:C)

n_AC <- tab0 |> tabMarg(~A:C)

n_C <- tab0 |> tabMarg(~C)

p.B_C <- n_BC %a/% n_C

p.A_C <- n_AC %a/% n_C

p.C <- n_C / sum(n_C)

p.C

C

+ -

0 1

p.B_C

C

B + -

+ NaN 0.375

- NaN 0.625

p.A_C

C

A + -

+ NaN 0.25

- NaN 0.75

bn01 <- grain(g1, data=tab0)

NAs found in cpt(s) for node(s): A, B

... consider using the smooth argument

bn02 <- grain(g2, data=tab0)

NAs found in clique potential(s) for clique(s):

c("B", "C")

... consider using the smooth argument

p <- extract_cpt(tab0, g1) |> c()

NAs found in cpt(s) for node(s): A, B

15

... consider using the smooth argument

q <- extract_pot(tab0, g2) |> c()

NAs found in clique potential(s) for clique(s):

c("B", "C")

... consider using the smooth argument

p

[[1]]

C

+ -

0 1

##

[[2]]

C

A + -

+ NaN 0.25

- NaN 0.75

##

[[3]]

C

B + -

+ NaN 0.375

- NaN 0.625

q

[[1]]

C

A + -

+ 0 0.25

- 0 0.75

##

[[2]]

C

B + -

+ NaN 0.375

- NaN 0.625

tabProd(p) |> ftable()

C + -

A B

+ + NaN 0.09375

- NaN 0.15625

- + NaN 0.28125

- NaN 0.46875

tabProd(q) |> ftable()

C + -

A B

+ + NaN 0.09375

- NaN 0.15625

- + NaN 0.28125

- NaN 0.46875

eps <- 0.01

bn01e <- grain(g1, data=tab0, smooth=eps)

bn02e <- grain(g2, data=tab0, smooth=eps)

16

j1 <- querygrain(bn01e, type="joint")

j2 <- querygrain(bn02e, type="joint")

j1

, , B = +

##

A

C + -

+ 0.0006219 0.0006219

- 0.0941379 0.2805496

##

, , B = -

##

A

C + -

+ 0.0006219 0.0006219

- 0.1564809 0.4663440

j2

, , B = +

##

C

A + -

+ 0.0006219 0.09383

- 0.0006219 0.28055

##

, , B = -

##

C

A + -

+ 0.0006219 0.1562

- 0.0006219 0.4670

d <- j1 %a-% j2

max(abs(d))

[1] 0.0006182

1.10.2 Building a network from an unknown network

This is a more complex task, sometimes called structural learning. The following code illustrates how to
build a network from data. The data is simulated data from the chest clinic example.

We illustrate two approaches: 1) based on the stepwise algorithm in the gRim package and 2) based on
the hill climbing algorithm in the bnlearn package.

dat <- gRbase::chestSim10000

Using gRim and stepwise selection

sat_model <- gRim::dmod(~.ˆ., data=dat)

mm1 <- stepwise(sat_model, criterion="aic", type="decomposable")

bn1 <- grain(mm1$modelinfo$ug, data=dat)

NAs found in clique potential(s) for clique(s):

c("dysp", "bronc", "tub", "either"), c("asia", "either", "tub", "dysp")

... consider using the smooth argument

bn1 <- grain(mm1$modelinfo$ug, data=dat, smooth=0.01)

bn1 <- gRim::as.grain(mm1) ## DO WE WANT THIS???

Using bnlearn and hill climbing

17

sat_graph <- bnlearn::random.graph(names(dat), prob = 1) # complete graph

mm2 <- bnlearn::hc(dat, start=sat_graph)

bn2 <- bnlearn::as.grain(bnlearn::bn.fit(mm2, dat))

An important detail is that gRim works with decomposable undirected graphical models (see Figure
@ref(fig:bn1)) while bnlearn works with dags (see Figure @ref(fig:bn2), left). However, even for models
specified as dags, all comptational structures are based on a corresponding undirected graph (see Figure
@ref(fig:bn2), left). For details, see the references.

lung

tub

bronc

either

dysp
asia

xray

smoke

Figure 2: XXXX.

smoke

lung

bronc

tub
either

xray

dysp
asia

smoke

lung

bronc

tub
either

xray

dysp
asia

Figure 3: XXXX.

1.11 Extending networks to include other types of variables

gRain only handles discrete variables with a finite state space, but using likelihood evidence it is possible
to work with networks with both discrete and continuous variables (or other types of variables). This is
possible only when he networks have a specific structure. This is possible when no discrete variable has
non–discrete parents.

Take a simple example: Form a network for variables x = (x1, x2). Conceptually augment this network
with additional variables y = (y1, y2) where y1|x1 = k ∼ N(µk, v) and y2|x2 = k ∼ Poi(lk) for k = 1, 2.
Also we make the assumption that y1 and y2 are independent given x = (x1, x2). This gives the DAG
below:

18

par(mar=c(0,0,0,0))

plot(dag(~y1:x1 + x2:x1 + y2:x2))

x1

y1

x2

y2

A network for x can be constructed as:

u <- list(x1=yn, x2=yn)

x1 <- cpt(~x1, values=c(1, 3), levels=u)

x2 <- cpt(~x2|x1, values=c(1, 3, 3, 1), levels=u)

bn <- grain(compile_cpt(x1, x2))

querygrain(bn, simplify=TRUE)

yes no

x1 0.250 0.750

x2 0.625 0.375

The augmentation of y|x can go along these lines: The parameters describing y|x are set to be:

s <- 2

mu <- c(mu1=2, mu2=5)

lambda <- c(lambda1=1, lambda2=7)

Suppose we observe y1 = y∗

1
. Then

p(x|y1 = y∗

1
) ∝ p(x1)p(x2|x1)p(y1 = y∗

1
|x1) = p(x1)p(x2|x1)L1(x1) (6)

where L1(x1) denotes the likelihood. In a network setting this corresponds to changing p(x1) as

p(x1)← p(x1)L1(x1) (7)

and then carry on with propagation. This can be achieved in different ways.

The likelihood is:

y1_obs <- 14 # Observed value for y1_obs

lik1 <- dnorm(y1_obs, mean=mu, sd=s)

lik1

mu1 mu2

3.038e-09 7.992e-06

One is by setting the likelihood as evidence. An alternative is to explicitly modify the CPT which specifies
p(x1):

19

querygrain(bn, simplify=TRUE, exclude=FALSE)

yes no

x1 0.250 0.750

x2 0.625 0.375

bn1 <- setEvidence(bn, evidence=list(x1=lik1))

querygrain(bn1, simplify=TRUE, exclude=FALSE)

yes no

x1 0.0001267 0.9999

x2 0.7499367 0.2501

x1_upd <- getgrain(bn, "cptlist")$x1 * lik1

bn2 <- replace_cpt(bn, list(x1=x1_upd))

querygrain(bn2, simplify=TRUE)

yes no

x1 0.0001267 0.9999

x2 0.7499367 0.2501

A final remark: The conditional distribution of y1 is normal, but the unconditional distribution is
a mixture of normals. Likewise, the conditional distribution of y2 is poisson, but the unconditional
distribution is a mixture of two poisson distributions. Evidence on, say y1 changes the belief in x1 and x2

and this in turn changes the distribution of y2 (evidence changes the mixture weights.)

nsim <- 10000

xsim_marg <- simulate(bn, nsim, seed=2022)

xsim_cond <- simulate(bn1, nsim, seed=2022)

y2marg <- rpois(n=nsim, lambda=lambda[xsim_marg$x2])

y2cond <- rpois(n=nsim, lambda=lambda[xsim_cond$x2])

summary(y2marg)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 1.00 2.00 3.24 6.00 18.00

summary(y2cond)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 0.0 1.0 2.5 3.0 18.0

par(mfrow=c(1,2))

y2marg |> hist(prob=T, ylim=c(0, .4), breaks=20, main="marginal p(y2)")

y2cond |> hist(prob=T, ylim=c(0, .4), breaks=20, main="conditional p(y2|y1*)")

marginal p(y2)

y2marg

D
en

si
ty

0 5 10

0.
0

0.
2

0.
4

conditional p(y2|y1*)

y2cond

D
en

si
ty

0 5 10

0.
0

0.
2

0.
4

20

1.12 Brute force computations and why they fail

The gRain package makes computations as those outlined above in a very efficient way; please see the
references. However, it is in this small example also possible to make the computations directly: We can
construct the joint distribution (an array with 28 = 256 entries) directly as:

joint <- tabProd(chest_cpt)

dim(joint)

[1] 2 2 2 2 2 2 2 2

joint |> as.data.frame.table() |> head()

xray smoke asia lung tub dysp bronc either Freq

1 yes yes yes yes yes yes yes yes 1.323e-05

2 no yes yes yes yes yes yes yes 2.700e-07

3 yes no yes yes yes yes yes yes 6.615e-07

4 no no yes yes yes yes yes yes 1.350e-08

5 yes yes no yes yes yes yes yes 2.620e-04

6 no yes no yes yes yes yes yes 5.346e-06

This will clearly fail even moderate size problems: For example, a model with 80 nodes each with 10
levels will give a joint state space with 1080 states; that is about the number of atoms in the universe.
Similarly, 265 binary variables will result in a joint state space of about the same size. Yet, gRain has
been used successfully in models with tens of thousand variables. The “trick’ ’ in gRain is to make all
computations without ever forming the joint distribution.

However, we can do all the computations by brute force methods as we will illustrate here:

Marginal distributions are

tabMarg(joint, "lung")

lung

yes no

0.055 0.945

tabMarg(joint, "bronc")

bronc

yes no

0.45 0.55

Conditioning on evidence can be done in different ways: The conditional density is a 6–way slice of the
original 8–way joint distribution:

asia_dysp

$asia

[1] "yes"

##

$dysp

[1] "yes"

cond1 <- tabSlice(joint, slice=asia_dysp)

cond1 <- cond1 / sum(cond1)

dim(cond1)

[1] 2 2 2 2 2 2

tabMarg(cond1, "lung")

lung

yes no

0.09953 0.90047

21

tabMarg(cond1, "bronc")

bronc

yes no

0.8114 0.1886

Alternatively, multiply all entries not consistent by zero and all other entries by one and then marginalize:

cond2 <- tabSliceMult(joint, slice=asia_dysp)

cond2 <- cond2 / sum(cond2)

dim(cond2)

[1] 2 2 2 2 2 2 2 2

tabMarg(cond2, "lung")

lung

yes no

0.09953 0.90047

tabMarg(cond2, "bronc")

bronc

yes no

0.8114 0.1886

Højsgaard, Søren. 2012. “Graphical Independence Networks with the gRain Package for R.” Journal of
Statistical Software 46 (10): 1–26. http://www.jstatsoft.org/v46/i10/.

Højsgaard, Søren, David Edwards, and Steffen L. Lauritzen. 2012. Graphical Models with r. Springer.
Lauritzen, Steffen L., and David Spiegelhalter. 1988. “Local Computations with Probabilities on Graphical

Structures and Their Application to Expert Systems.” J. Roy. Stat. Soc. Ser. B 50 (2): 157–224.

22

http://www.jstatsoft.org/v46/i10/

	Bayesian networks
	Introduction
	Example: Chest clinic

	Building a Bayesian network
	Queries to networks
	A one–minute version of gRain
	Specifying a Bayesian network
	Setting evidence and querying a network

	Setting evidence
	Hints and shortcuts
	Conditioning on evidence with zero probability
	Hard and soft (likelihood) evidence
	Hard evidence
	Soft evidence (also called virtual evidence or likelihood evidence)

	Building a network from data
	Building a network from a known network

	Building networks from data
	Handling zeros in the data
	Building a network from an unknown network

	Extending networks to include other types of variables
	Brute force computations and why they fail

