gsaot gsaot website

R-CMD-check test-coverage CRAN status

The package gsaot provides a set of tools to compute and plot Optimal Transport (OT) based sensitivity indices. The core functions of the package are:

The package also provides functions to plot the resulting indices and the separation measures.

Installation

install.packages("gsaot")

You can install the development version of gsaot from GitHub with:

# install.packages("remotes")
remotes::install_github("pietrocipolla/gsaot")

:exclamation: :exclamation: Installation note

The sinkhorn and sinkhorn_log solvers in gsaot greatly benefit from optimization in compilation. To add this option (before package installation), edit your .R/Makevars file with the desired flags. Even though different compilers have different options, a common flag to enable a safe level of optimization is

CXXFLAGS+=-O2

More detailed information on how to customize the R packages compilation can be found in the R guide.

Example

We can use a gaussian toy model with three outputs as an example:

library(gsaot)

N <- 1000

mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)

x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)

x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)

A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))

x <- data.frame(x)

After having defined the number of partitions, we compute the sensitivity indices using different solvers. First, Sinkhorn solver and default parameters:

M <- 25

sensitivity_indices <- ot_indices(x, y, M)
sensitivity_indices
#> Method: sinkhorn 
#> 
#> Indices:
#>        X1        X2        X3 
#> 0.6031932 0.6393549 0.2909608

Second, Network Simplex solver:

sensitivity_indices <- ot_indices(x, y, M, solver = "transport")
sensitivity_indices
#> Method: transport 
#> 
#> Indices:
#>        X1        X2        X3 
#> 0.5162013 0.5415555 0.1877354

Third, Wasserstein-Bures solver, with bootstrap:

sensitivity_indices <- ot_indices_wb(x, y, M, boot = TRUE, R = 100)
sensitivity_indices
#> Method: wass-bures 
#> 
#> Indices:
#>        X1        X2        X3 
#> 0.4885120 0.5054757 0.1229026 
#> 
#> Advective component:
#>        X1        X2        X3 
#> 0.3009818 0.3219897 0.1140059 
#> 
#> Diffusive component:
#>          X1          X2          X3 
#> 0.187530164 0.183486027 0.008896719 
#> 
#> Type of confidence interval: norm 
#> Number of replicates: 100 
#> Confidence level: 0.95 
#> Bootstrap statistics:
#>   input  component   original        bias      low.ci    high.ci
#> 1    X1 wass-bures 0.49667580 0.008163843 0.468723594 0.50830032
#> 2    X2 wass-bures 0.51587698 0.010401260 0.488833470 0.52211796
#> 3    X3 wass-bures 0.14051178 0.017609164 0.100609467 0.14519576
#> 4    X1  advective 0.30528762 0.004305824 0.287574863 0.31438872
#> 5    X2  advective 0.32623677 0.004247080 0.311596522 0.33238286
#> 6    X3  advective 0.12288466 0.008878763 0.096443965 0.13156783
#> 7    X1  diffusive 0.19138818 0.003858020 0.179239540 0.19582079
#> 8    X2  diffusive 0.18964021 0.006154180 0.175642996 0.19132906
#> 9    X3  diffusive 0.01762712 0.008730402 0.002568677 0.01522476

Fourth, we can use the package to compute the sensitivity map on the output:

sensitivity_indices <- ot_indices_smap(x, y, M)
sensitivity_indices
#>             X1        X2        X3
#> [1,] 0.5875288 0.0502585 0.1888214
#> [2,] 0.3329492 0.7251396 0.1465783