Package ‘mvs’

August 29, 2024

Type Package
Title Methods for High-Dimensional Multi-View Learning
Version 2.0.0

Description Methods for high-dimensional multi-view learning based on the multi-
view stacking (MVS) framework.
For technical details on the MVS and stacked penalized logistic regression (StaPLR) meth-
ods see Van Loon, Fokkema, Sz-
abo, & De Rooij (2020) <doi: 10.1016/j.inffus.2020.03.007> and Van Loon et al. (2022) <doi:10.3389/fnins.2022.830630>.

License GPL-2

Encoding UTF-8

RoxygenNote 7.3.2

Depends glmnet (>= 1.9-8)

Imports foreach (>=1.4.4)

Suggests testthat (>= 3.0.0), mice (>= 3.16.0), missForest (>= 1.5)
Config/testthat/edition 3

NeedsCompilation no

Author Wouter van Loon [aut, cre],
Marjolein Fokkema [ctb]

Maintainer Wouter van Loon <w.s.van.loon@fsw.leidenuniv.nl>
Repository CRAN
Date/Publication 2024-08-29 13:00:02 UTC

Contents
mvs-package L e 2
coef. MVS . . L 2
coef.StaPLR 3
MRM . . 4
MV S 6
predict MVS . . . L 8
predict.StaPLR 9

https://doi.org/10.1016/j.inffus.2020.03.007
https://doi.org/10.3389/fnins.2022.830630

2 coef. MVS

predict.StaPLRcoef 10
StaPLR . . . e 12
Index 17
mvs-package mvs: Methods for High-Dimensional Multi-View Learning.
Description

Methods for high-dimensional multi-view learning based on the multi-view stacking (MVS) frame-
work. For technical details on the MVS and StaPLR methods see <doi:10.1016/j.inffus.2020.03.007>
and <doi:10.3389/fnins.2022.830630>.

Details

Details

Author(s)

Wouter van Loon [cre, aut] <<w.s.van.loon@fsw.leidenuniv.nl>>

Marjolein Fokkema [ctb]

coef.MVS Extract coefficients from an "MVS" object.

Description

Extract coefficients at each level from an "MVS" object at the CV-optimal values of the penalty

parameters.
Usage
S3 method for class 'MVS'
coef(object, cvlambda = "lambda.min"”, ...)
Arguments
object An object of class "MVS".
cvlambda By default, the coefficients are extracted at the CV-optimal values of the penalty

parameters. Choosing "lambda.1se" will extract them at the largest values within
one standard error of the minima.

Further arguments to be passed to coef.cv.glmnet.

Value

An object of S3 class "MV Scoef".

coef.StaPLR 3

Author(s)

Wouter van Loon <w.s.van.loon @fsw.leidenuniv.nl>

Examples

set.seed(012)

n <- 1000

X <- matrix(rnorm(8500), nrow=n, ncol=85)

top_level <- c(rep(1,45), rep(2,20), rep(3,20))

bottom_level <- c(rep(1:3, each=15), rep(4:5, each=10), rep(6:9, each=5))
views <- cbind(bottom_level, top_level)

beta <- c(rep(10, 55), rep(@, 30)) * ((rbinom(85, 1, 0.5)*2)-1)

eta <- X %*% beta

p <=1 /(1 + exp(-eta))

y <= rbinom(n, 1, p)

fit <- MVS(x=X, y=y, views=views, type="StaPLR", levels=3, alphas=c(0,1,1), nnc=c(0,1,1))
coefficients <- coef(fit)

new_X <- matrix(rnorm(2x85), nrow=2)
predict(fit, new_X)

coef.StaPLR Extract coefficients from a "StaPLR" object.

Description

Extract base- and meta-level coefficients from a "StaPLR" object at the CV-optimal values of the
penalty parameters.

Usage
S3 method for class 'StaPLR'
coef(object, cvlambda = "lambda.min”, ...)
Arguments
object Fitted "StaPLR" model object.
cvlambda By default, the coefficients are extracted at the CV-optimal values of the penalty

parameters. Choosing "lambda.1se" will extract them at the largest values within
one standard error of the minima.

Further arguments to be passed to coef.cv.glmnet.

Value

An object with S3 class "StaPLRcoef".

Author(s)

Wouter van Loon <w.s.van.loon @fsw.leidenuniv.nl>

Examples

set.seed(012)

n <- 1000

cors <- seq(0.1,0.7,0.1)

X <- matrix(NA, nrow=n, ncol=length(cors)+1)
X[,1]1 <= rnorm(n)

for(i in 1:length(cors)){
X[,i+1] <= X[,1]*cors[i] + rnorm(n, @, sqrt(l-cors[i]*2))
3

beta <- ¢(1,0,0,0,0,0,0,0)

eta <- X %x% beta

p <- exp(eta)/(1+exp(eta))

y <= rbinom(n, 1, p)

view_index <- rep(1:(ncol(X)/2), each=2)

fit <- StaPLR(X, y, view_index)
coef (fit)$meta

new_X <- matrix(rnorm(16), nrow=2)
predict(fit, new_X)

MRM Minority Report Measure

Description

Calculate the Minority Report Measure (MRM) for each view in a (hierarchical) multi-view stack-

ing model.
Usage
MRM(fit, constant, level = 2, a =0, b = 1, cvlambda = "lambda.min")
mrm(fit, constant, level = 2, a =0, b = 1, cvlambda = "lambda.min")
Arguments
fit an object of class MVS.
constant the value at which to keep the predictions of the other views constant. The

recommended value is the mean of the outcome variable.

MRM 5

level the level at which to calculate the MRM. In a 3-level MV S model, 1level = 2 (the
default) is generally the level for which one would want to calculate the MRM.
Note that calculating the MRM for level =1 (the feature level) is possible, but
generally not sensible except under specific conditions.

a the start of the interval over which to calculate the MRM. Defaults to O.
b the end of the interval over which to calculate the MRM. Defaults to 1.
cvlambda denotes which values of the penalty parameters to use for calculating predic-

tions. This corresponds to the defaults used during model fitting.

Details

The Minority Report Measure (MRM) considers the view-specific sub-models at a given level of
the hierarchy as members of a committee making predictions of the outcome variable. For each
view, the MRM quantifies how much the final prediction of the stacked model changes if the pre-
diction of the corresponding sub-model changes from a to b, while keeping the predictions cor-
responding to the other views constant at constant. For more information about the MRM see
<doi:10.3389/fnins.2022.830630>.

Value

A numeric vector of a length equal to the number of views at the specified level, containing the
values of the MRM for each view.

Author(s)

Wouter van Loon <w.s.van.loon @fsw.leidenuniv.nl>

Examples

set.seed(012)

n <- 1000

X <- matrix(rnorm(8500), nrow=n, ncol=85)

beta <- c(rep(10, 55), rep(@, 30)) * ((rbinom(85, 1, 0.5)*2)-1)
eta <- X %*% beta

p<-1/Q + exp(-eta))

y <= rbinom(n, 1, p)

3-level MVS

bottom_level <- c(rep(1:3, each=15), rep(4:5, each=10), rep(6:9, each=5))
top_level <- c(rep(1,45), rep(2,20), rep(3,20))

views <- cbind(bottom_level, top_level)

fit <- MVS(x=X, y=y, views=views, levels=3, alphas=c(0,1,1), nnc=c(0,1,1))
MRM(fit, constant=mean(y))

MVS

MVS

Multi-View Stacking

Description

Fit a multi-view stacking model with two or more levels.

Usage

MVS(

)

X!

Y,

views,

type = "StaPLR",
levels = 2,

alphas = c(0, 1),
nnc = c(0, 1),
parallel = FALSE,
seeds = NULL,
progress = TRUE,
relax = FALSE,
adaptive = FALSE,
na.action = "fail",
na.arguments = NULL,

mvs (

X7

Y,

views,

type = "StaPLR",
levels = 2,

alphas = c(0, 1),
nnc = c(0, 1),
parallel = FALSE,
seeds = NULL,
progress = TRUE,
relax = FALSE,
adaptive = FALSE,
na.action = "fail”,
na.arguments = NULL,

Arguments

X

input matrix of dimension nobs x nvars.

MVS

y
views

type
levels
alphas

nnc

parallel

seeds
progress

relax

adaptive

na.action

na.arguments

Value

outcome vector of length nobs.

a matrix of dimension nvars x (levels - 1), where each entry is an integer de-
scribing to which view each feature corresponds.

the type of MVS model to be fitted. Currently only type "StaPLR" is supported.
an integer >= 2, specifying the number of levels in the MVS procedure.

a numeric vector of length levels specifying the value of the alpha parameter
to use at each level.

a binary vector specifying whether to apply nonnegativity constraints or not
(1/0) at each level.

whether to use foreach to fit the learners and obtain the cross-validated predic-
tions at each level in parallel. Executes sequentially unless a parallel back-end
is registered beforehand.

(optional) a vector specifying the seed to use at each level.
whether to show a progress bar (only supported when parallel = FALSE).

either a logical vector of length levels specifying whether model relaxation
(e.g. the relaxed lasso) should be employed at each level, or a single TRUE or
FALSE to enable or disable relaxing across all levels. Defaults to FALSE.

either a logical vector of length levels specifying whether adaptive weights
(e.g. the adaptive lasso) should be employed at each level, or a single TRUE or
FALSE to enable or disable adaptive weights across all levels. Note that using
adaptive weights is generally only sensible if alpha > 0. Defaults to FALSE.
character specifying what to do with missing values (NA). Options are "pass",
"fail", "mean", "mice", and "missForest". Options "mice" and "missForest" re-
quires the respective R package to be installed. Defaults to "fail".

(optional) a named list of arguments to pass to the imputation function (e.g. to
mice or missForest).

additional arguments to pass to the learning algorithm. See e.g. ?StaPLR. Note
that these arguments are passed to the the learner at every level of the MVS
procedure.

An object of S3 class "MVS".

Author(s)

Wouter van Loon <w.s.van.loon @fsw.leidenuniv.nl>

Examples

set.seed(012)
n <- 1000

X <- matrix(rnorm(8500), nrow=n, ncol=85)

beta <- c(rep(10,
eta <- X %*% beta
p<-1/(1 + exp(

55), rep(@, 30)) * ((rbinom(85, 1, 0.5)*2)-1)

-eta))

8 predict MVS

y <= rbinom(n, 1, p)

2-level MVS
views <- c(rep(1,45), rep(2,20), rep(3,20))
fit <- MVS(x=X, y=y, views=views)

3-level MVS

bottom_level <- c(rep(1:3, each=15), rep(4:5, each=10), rep(6:9, each=5))
top_level <- c(rep(1,45), rep(2,20), rep(3,20))

views <- cbind(bottom_level, top_level)

fit <- MVS(x=X, y=y, views=views, levels=3, alphas=c(0,1,1), nnc=c(0,1,1))
coefficients <- coef(fit)

new_X <- matrix(rnorm(2%85), nrow=2)
predict(fit, new_X)

predict.MVS Make predictions from an "MVS" object.

Description

Make predictions from a "MVS" object.

Usage

S3 method for class 'MVS'

predict(object, newx, predtype = "response”, cvlambda = "lambda.min”, ...)
Arguments

object An object of class "MVS".

newx Matrix of new values for x at which predictions are to be made. Must be a

matrix.
predtype The type of prediction returned by the meta-learner. Supported are types "re-

non

sponse”, "class" and "link".

cvlambda Values of the penalty parameters at which predictions are to be made. Defaults
to the values giving minimum cross-validation error.

Further arguments to be passed to predict.cv.glmnet.

Value

A matrix of predictions.

Author(s)

Wouter van Loon <w.s.van.loon @fsw.leidenuniv.nl>

predict.StaPLR 9

Examples

set.seed(012)

n <- 1000

X <- matrix(rnorm(8500), nrow=n, ncol=85)

top_level <- c(rep(1,45), rep(2,20), rep(3,20))

bottom_level <- c(rep(1:3, each=15), rep(4:5, each=10), rep(6:9, each=5))
views <- cbind(bottom_level, top_level)

beta <- c(rep(10, 55), rep(@, 30)) * ((rbinom(85, 1, 0.5)*2)-1)

eta <- X %*% beta

p<-1/(1 + exp(-eta))

y <= rbinom(n, 1, p)

fit <- MVS(x=X, y=y, views=views, type="StaPLR", levels=3, alphas=c(0,1,1), nnc=c(0,1,1))
coefficients <- coef(fit)

new_X <- matrix(rnorm(2x85), nrow=2)
predict(fit, new_X)

predict.StaPLR Make predictions from a "StaPLR" object.

Description

Make predictions from a "StaPLR" object.

Usage
S3 method for class 'StaPLR'
predict(
object,
newx,
newcf = NULL,
predtype = "response”,
cvlambda = "lambda.min"”,
)
Arguments
object Fitted "StaPLR" model object.
newx Matrix of new values for x at which predictions are to be made. Must be a
matrix.
newcf Matrix of new values of correction features, if correct.for was specified during
model fitting.
predtype The type of prediction returned by the meta-learner.
cvlambda Values of the penalty parameters at which predictions are to be made. Defaults

to the values giving minimum cross-validation error.

Further arguments to be passed to predict.cv.glmnet.

10 predict.StaPLRcoef

Value

A matrix of predictions.

Author(s)

Wouter van Loon <w.s.van.loon @fsw.leidenuniv.nl>

Examples

set.seed(012)

n <- 1000

cors <- seq(0.1,0.7,0.1)

X <- matrix(NA, nrow=n, ncol=length(cors)+1)
X[,11 <- rnorm(n)

for(i in 1:length(cors)){
X[,i+1] <= X[,1J*cors[i] + rnorm(n, @, sqrt(1-cors[i]*2))
3

beta <- ¢(1,0,0,0,0,0,0,0)

eta <- X %*% beta

p <- exp(eta)/(1+exp(eta))

y <= rbinom(n, 1, p)

view_index <- rep(1:(ncol(X)/2), each=2)

fit <- StaPLR(X, y, view_index)
coef(fit)$meta

new_X <- matrix(rnorm(16), nrow=2)
predict(fit, new_X)

predict.StaPLRcoef Make predictions from a "StaPLRcoef" object.

Description

Predict using a "StaPLRcoef" object. A "StaPLRcoef" object can be considerably smaller than a
full "StaPLR" object for large data sets.

Usage

S3 method for class 'StaPLRcoef'
predict(object, newx, view, newcf = NULL, predtype = "response”, ...)

predict.StaPLRcoef

Arguments

object

newx

view

newcf

predtype

Value

11

Extracted StaPLR coefficients as a "StaPLRcoef" object.

Matrix of new values for x at which predictions are to be made. Must be a
matrix.

a vector of length nvars, where each entry is an integer describing to which view
each feature corresponds.

Matrix of new values of correction features, if correct.for was specified during
model fitting.

The type of prediction returned by the meta-learner. Allowed values are "re-
sponse”, "link", and "class".

Not currently used.

A matrix of predictions.

Author(s)

Wouter van Loon <w.s.van.loon @fsw.leidenuniv.nl>

Examples

set.seed(012)

n <- 1000

cors <- seq(0.1,0
X <= matrix(NA, n
X[,1]1 <= rnorm(n)

for(i in 1:length
X[,i+1] <- X[,1
3

beta <- ¢(1,0,0,0
eta <- X %*% beta

.7,0.1)
row=n, ncol=length(cors)+1)

(cors)){

Jxcors[i] + rnorm(n, @, sqrt(1-cors[i]*2))

!0!0’0’0)

p <- exp(eta)/(1+exp(eta))

y <- rbinom(n, 1,
view_index <- rep

P)
(1:(ncol(X)/2), each=2)

fit <- StaPLR(X, y, view_index)
coefficients <- coef(fit)

new_X <- matrix(rnorm(16), nrow=2)
predict(coefficients, new_X, view_index)

12

StaPLR

StaPLR Stacked Penalized Logistic Regression

Description

Fit a two-level stacked penalized (logistic) regression model with a single base-learner and a single
meta-learner. Stacked penalized regression models with a Gaussian or Poisson outcome can be
fitted using the family argument.

Usage

StaPLR(
X,
Y,
view,
view.names = NULL,
family = "binomial”,
correct.for = NULL,
alphal = 0,
alpha2 =1,
relax = FALSE,
nfolds = 10,
na.action = "fail”,
na.arguments = NULL,
seed = NULL,

std.base = FALSE,
std.meta = FALSE,

111 = -Inf,

ull = Inf,

112 = o,

ul2 = Inf,

cvloss = "deviance”,
metadat = "response”,
cvlambda = "lambda.min"

cvparallel = FALSE,
lambda.ratio = 1e-04,
fdev = 0,
penalty.weights.meta
penalty.weights.base

NULL,
NULL,

gamma.seq = c(0.5, 1, 2),

parallel = FALSE,
skip.version = TRUE,
skip.meta = FALSE,
skip.cv = FALSE,
progress = TRUE,
relax.base = FALSE,
relax.meta = FALSE

StaPLR 13

)

staplr(
X7
Y,
view,
view.names = NULL,
family = "binomial”,
correct.for = NULL,
alphal = 0,
alpha2 = 1,
relax = FALSE,
nfolds = 10,
na.action = "fail",
na.arguments = NULL,
seed = NULL,

std.base = FALSE,
std.meta = FALSE,

111 = -Inf,

ull = Inf,

112 = o,

ul2 = Inf,

cvloss = "deviance”,
metadat = "response”,
cvlambda = "lambda.min"”,

cvparallel = FALSE,
lambda.ratio = 1e-04,

fdev = 0,
penalty.weights.meta = NULL,
penalty.weights.base = NULL,
gamma.seq = c(0.5, 1, 2),
parallel = FALSE,
skip.version = TRUE,
skip.meta = FALSE,

skip.cv = FALSE,

progress = TRUE,

relax.base = FALSE,
relax.meta = FALSE

)
Arguments
X input matrix of dimension nobs x nvars
y outcome vector of length nobs
view a vector of length nvars, where each entry is an integer describing to which view

each feature corresponds.

view.names (optional) a character vector of length nviews specifying a name for each view.

14

family

correct.for

alphal
alpha2
relax

nfolds

na.action

na.arguments

seed

std.base

std.meta

111

ul1l
112

ul2

cvloss

metadat

cvlambda

cvparallel

lambda.ratio

fdev

StaPLR

Either a character string representing one of the built-in families, or else a glm()
family object. For more information, see family argument’s documentation in

glmnet. Note that "multinomial”, "mgaussian"”, "cox", or 2-column responses

with "binomial" family are not yet supported.

(optional) a matrix with nrow = nobs, where each column is a feature which
should be included directly into the meta.learner. By default these features are
not penalized (see penalty.weights.meta) and appear at the top of the coefficient
list.

(base) alpha parameter for glmnet: lasso(1) / ridge(0)

(meta) alpha parameter for glmnet: lasso(1) / ridge(0)

logical, whether relaxed lasso should be used at base and meta level.
number of folds to use for all cross-validation.

character specifying what to do with missing values (NA). Options are "pass”,

"fail", "mean", "mice", and "missForest". Options "mice" and "missForest" re-

quires the respective R package to be installed. Defaults to "pass".

(optional) a named list of arguments to pass to the imputation function (e.g. to
mice or missForest).

(optional) numeric value specifying the seed. Setting the seed this way ensures
the results are reproducible even when the computations are performed in paral-
lel.

should features be standardized at the base level?

should cross-validated predictions be standardized at the meta level?
lower limit(s) for each coefficient at the base-level. Defaults to -Inf.
upper limit(s) for each coefficient at the base-level. Defaults to Inf.

lower limit(s) for each coefficient at the meta-level. Defaults to O (non-negativity
constraints). Does not apply to correct.for features.

upper limit(s) for each coefficient at the meta-level. Defaults to Inf. Does not
apply to correct.for features.

loss to use for cross-validation.

which attribute of the base learners should be used as input for the meta learner?
Allowed values are "response”, "link", and "class".

value of lambda at which cross-validated predictions are made. Defaults to the
value giving minimum internal cross-validation error.

whether to use ’foreach’ to fit each CV fold (DO NOT USE, USE OPTION
parallel INSTEAD).

the ratio between the largest and smallest lambda value.

sets the minimum fractional change in deviance for stopping the path to the
specified value, ignoring the value of fdev set through glmnet.control. Setting
fdev=NULL will use the value set through glmnet.control instead. It is strongly
recommended to use the default value of zero.

StaPLR 15

penalty.weights.meta
(optional) either a vector of length nviews containing different penalty factors
for the meta-learner, or "adaptive" to calculate the weights from the data. The
default value NULL implies an equal penalty for each view. The penalty factor
is set to O for correct. for features.

penalty.weights.base
(optional) either a list of length nviews, where each entry is a vector containing
different penalty factors for each feature in that view, or "adaptive" to calculate
the weights from the data. The default value NULL implies an equal penalty for
each view. Note that using adaptive weights at the base level is generally only
sensible if alphal > 0.

gamma. seq a sequence of gamma values over which to optimize the adaptive weights. Only
used when penalty.weights.meta="adaptive" orpenalty.weights.base="adaptive".
parallel whether to use foreach to fit the base-learners and obtain the cross-validated pre-
dictions in parallel. Executes sequentially unless a parallel backend is registered
beforehand.
skip.version whether to skip checking the version of the glmnet package.
skip.meta whether to skip training the metalearner.
skip.cv whether to skip generating the cross-validated predictions.
progress whether to show a progress bar (only supported when parallel = FALSE).
relax.base logical indicating whether relaxed lasso should be employed for fitting the base

learners. If TRUE, then CV is done with respect to the mixing parameter gamma
as well as lambda.

relax.meta logical indicating whether relaxed lasso should be employed for fitting the meta
learner. If TRUE, then CV is done with respect to the mixing parameter gamma
as well as lambda.

Value

An object with S3 class "StaPLR".

Author(s)

Wouter van Loon <w.s.van.loon @fsw.leidenuniv.nl>

Examples

set.seed(012)

n <- 1000

cors <- seq(0.1,0.7,0.1)

X <- matrix(NA, nrow=n, ncol=length(cors)+1)
X[,1]1 <= rnorm(n)

for(i in 1:length(cors)){
X[,i+1] <= X[,1]*cors[i] + rnorm(n, @, sqrt(1-cors[i]*2))
}

beta <- ¢(1,0,0,0,0,0,0,0)

16

eta <- X %x% beta

p <- exp(eta)/(1+exp(eta))

y <= rbinom(n, 1, p) ## create binary response
view_index <- rep(1:(ncol(X)/2), each=2)

Stacked penalized logistic regression
fit <- StaPLR(X, y, view_index)
coef (fit)$meta

new_X <- matrix(rnorm(16), nrow=2)
predict(fit, new_X)

Stacked penalized linear regression

y <- eta + rnorm(100) ## create continuous response
fit <- StaPLR(X, y, view_index, family = "gaussian")
coef (fit)$meta

coef (fit)$base

new_X <- matrix(rnorm(16), nrow=2)

predict(fit, new_X)

Stacked penalized Poisson regression

y <- ceiling(eta + 4) ## create count response

fit <- StaPLR(X, y, view_index, family = "poisson”)
coef(fit)$meta

coef(fit)$base

new_X <- matrix(rnorm(16), nrow=2)

predict(fit, new_X)

StaPLR

Index

+ TBA
coef.MVS, 2
coef.StaPLR, 3
MRM, 4
MVS, 6
predict.MVS, 8
predict.StaPLR, 9
predict.StaPLRcoef, 10
StaPLR, 12

coef.cv.glmnet, 2, 3
coef.MVS, 2
coef.StaPLR, 3

glmnet, 14

MRM, 4

mrm (MRM), 4
MVS, 4, 6

mvs (MVS), 6
mvs-package, 2

predict.cv.glmnet, §, 9
predict.MVS, 8
predict.StaPLR, 9
predict.StaPLRcoef, 10

StaPLR, 12
staplr (StaPLR), 12

17

	mvs-package
	coef.MVS
	coef.StaPLR
	MRM
	MVS
	predict.MVS
	predict.StaPLR
	predict.StaPLRcoef
	StaPLR
	Index

