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as.pplot

as.pplot

Coerce into a ’pplot’ object

Description

Coerce into a ’pplot’ object. This function allows (1) to overlay and colorize multiple plots of IRF
and confidence bands in a single 'ggplot’ object and (2) to overwrite shock and variable names in
verbatim LaTeX math mode suitable for the export via tikzDevice.

Usage
as.pplot(
names_k = NULL,
names_s = NULL,
names_g = NULL,
color_g = NULL,
shape_g = NULL,
n.rows = NULL,
scales = "free_y",
Latex = FALSE
)
Arguments
A single ggplot or list(s) of ggplots to be transformed.
names_k Vector. Names of the variables k = 1, ..., K. If NULL (the default), the names of
the first plot are reused. For LaTeX exports, use e.g. paste@("y_{ ", 1:dim_K,
n }H).
names_s Vector. Names of the shocks s = 1,...,.S. If NULL (the default), the names of
the first plot are reused. For LaTeX exports, use e.g. paste@(”\\epsilon_{ ",
1:dim_S, " }").
names_g Vector. Names of the layered plots g = 1,...,G. If NULL (the default), the
names of the plots given in . . . are reused.
color_g Vector. Colors of the layered plots g = 1,...,G.
shape_g Vector. Shapes of the layered plots g = 1, ..., G, see ggplot2’s geom_point for
shapes. If NULL (the default), no points will be set on the IRF-lines.
n.rows Integer. Number of rows in facet_wrap. If NULL (the default), the dimensions
of the facet plots given in . . . are reused.
scales Character. Should scales be fixed ("fixed"), free ("free"), or free in one di-
mension ("free_x", "free_y", the default)? See facet_wrap.
Latex Logical. If TRUE, the arrows of the facet labels are written in LaTeX math mode.
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Details

as.pplot is used as an intermediary in the ’pplot’ functions to achieve compatibility with different
classes. Equivalently to as.pvarx for panels of N VAR objects, as.pplot summarizes panels of
G plot objects that have been returned from the *plot’ method for class *svarirf’ or *sboot’. If
the user wishes to extend the compatibility of the *pplot’ functions with further classes, she may
simply specify accordant as.pplot-methods instead of altering the original pplot’ functions.

Value

A list of class 'pplot’. Objects of this class contain the elements:

F.plot "ggplot’ object for the merged plot.
L.plot List of *ggplot’ objects containing all G plots.
args_pplot List of characters and integers indicating the specifications used for creating
F.plot.
See Also

PP, irf.pvarx, pid.dc, and id.iv for further examples of edited plots, in particular for subset and
reordered facet plots with reshaped facet dimensions.

Examples

### gallery of merged IRF plots ###

library("ggplot2")

data("PCAP")

names_k = c("g", "k", "1", "y") # variable names

names_i = levels(PCAP$id_i) # country names

L.data = sapply(names_i, FUN=function(i)
ts(PCAP[PCAP$id_i==i, names_k], start=1960, end=2019, frequency=1),
simplify=FALSE)

L.vars = lapply(L.data, FUN=function(x) vars::VAR(x, p=2, type="both"))

L.chol = lapply(L.vars, FUN=function(x) svars::id.chol(x))

# overlay all IRF to get an overview on the stability #

L.irf = lapply(L.chol, FUN=function(x) plot(irf(x, n.ahead=30)))
summary (as.pvarx(L.vars))

as.pplot(L.irf)

# overlay IRF of selected countries and quantiles of all countries #

F.mg = plot(sboot.mg(L.chol, n.ahead=30), lowerq=0.05, upperq=0.95)

R.irf = as.pplot(MG=F.mg, L.irf[c("DEU", "FRA", "ITA", "JPN")1)

plot(R.irf) # emphasize MG-IRF in next step

R.irf = as.pplot(R.irf, color_g="black”, shape_g=c(20, rep(NA, 4)))
R.irf$F.plot + guides(fill="none") + labs(color="Country”, shape="Country")

# compare two mean-groups and their quantiles #
idx_nord = c(5, 6, 10, 17, 20) # Nordic countries
R.irf = as.pplot(color_g=c("black”, "blue"),

Other = plot(sboot.mg(L.chol[-idx_nord])),
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Nordic = plot(sboot.mg(L.chol[ idx_nordl)))
plot(R.irf)

compare different shock ordering for MG-IRF #
.pid1 = pid.chol(L.vars)

.pid2 = pid.chol(L.vars, order_k=4:1)

.pid3 = pid.chol(L.vars, order_k=c(1,4,2,3))

D 0 0 H

o)

.pal = RColorBrewer::brewer.pal(n=8, name="Spectral”)[c(8, 1, 4)]
R.irf = as.pplot(color_g=R.pal, shape_g=c(2, 3, 20),

GKLY = plot(irf(R.pid1, n.ahead=25)),

YLKG = plot(irf(R.pid2, n.ahead=25)),

GYKL = plot(irf(R.pid3, n.ahead=25)))
R.mg = as.pplot(color_g=R.pal, shape_g=c(2, 3, 20),
GKLY = plot(sboot.mg(R.pid1, n.ahead=25), lowerqg=0.05, upperqg=0.95),
YLKG = plot(sboot.mg(R.pid2, n.ahead=25), lowerq=0.05, upperqg=0.95),
GYKL = plot(sboot.mg(R.pid3, n.ahead=25), lowerqg=0.05, upperg=0.95))

# colorize and export a single sub-plot to Latex #
library("tikzDevice")

textwidth = 15.5/2.54 # LaTeX textwidth from "cm” into "inch”
file_fig = file.path(tempdir(), "Fig_irf.tex")

R.irf = as.pplot(
DEU = plot(irf(L.chol[["DEU"]], n.ahead=50), selection=list(4, 1)),
FRA = plot(irf(L.chol[["FRA"]1]1, n.ahead=50), selection=list(4, 1)),
color_g = c("black”, "blue"),

names_g = c("Germany”, "France"),
names_k = "y",

names_s = "\\epsilon_{ g }",
Latex = TRUE)

tikz(file=file_fig, width=1.2*textwidth, height=0.8*textwidth)
R.irf$F.plot + labs(color="Country") + theme_minimal()
dev.off()

as.pvarx Coerce into a pvarx’ object

Description
Coerce into a ’pvarx’ object. On top of the parent class *pvarx’, the child class *pid’ is imposed if
the input object to be transformed contains a panel SVAR model.

Usage

as.pvarx(x, w = NULL, ...)



Arguments

Details

as.pvarx

A panel VAR object to be transformed.

Numeric, logical, or character vector. N numeric elements weighting the indi-
vidual coefficients, or names or N logical elements selecting a subset from the
individuals ¢+ = 1,..., N for the MG estimation. If NULL (the default), all NV
individuals are included without weights.

Additional arguments to be passed to or from methods.

as.pvarx is used as an intermediary in the pvars functions to achieve compatibility with different
classes of panel VAR objects. If the user wishes to extend this compatibility with further classes, she
may simply specify accordant as.pvarx-methods instead of altering the original pvars function.

Value

A list of class "pvarx’. Objects of this class contain the elements:

A

beta

L.varx

args_pvarx

args_pid

Examples

data("PCAP")
names_k = c("g",

Matrix. The lined-up coefficient matrices A;,j = 1, ..., p for the lagged vari-
ables in the panel VAR.

Matrix. The (K x S) structural impact matrix of the panel SVAR model or an
identity matrix Ik as a placeholder for the unidentified VAR model.

Matrix. The ((K + ng1) X r) cointegrating matrix of the VAR model if trans-
formed from a rank-restricted VECM.

List of varx objects for the individual estimation results.

List of characters and integers indicating the estimator and specifications that
have been used.

List of characters and integers indicating the identification methods and specifi-
cations that have been used. This element is specific to the child-class ’pid’ for
panel SVAR models, that inherit from parent-class "pvarx’ for any panel VAR
model.

"k", "1", "y") # variable names

names_i = levels(PCAP$id_i) # country names
L.data = sapply(names_i, FUN=function(i)
ts(PCAP[PCAP$id_i==i, names_k], start=1960, end=2019, frequency=1),

simplify=FALSE)

L.vars = lapply(L.data, FUN=function(x) vars::VAR(x, p=2, type="both"))

as.pvarx(L.vars)
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as.tD Deterministic regressors in pvars

Description

pvars defines three kind of deterministic regressors, namely the conventional ’type’, customized
’D’, and period-specific t_D’. While ’type’ is a single character and D’ a data matrix of dimension
(ne x (p+T)), the specifications for 7 in the list *t_D’ are more complex and therefore preventively
checked by as.t_D.

Usage
as.t_D(x, ...)
Arguments
X A list of vectors for 7 to be checked. Since 'x' is just checked, Section "Value"
explains function-input and -output likewise.
Additional arguments to be passed to or from methods.
Value

A list of class "t_D’ specifying 7. Objects of this class can exclusively contain the elements:

t_break Vector of integers. The activating periods for trend breaksd = [...,0,0,1,2,3,...].
t_shift Vector of integers. The activating periods for shifts in the constantd = [...,0,0,1,1,1,...].
t_impulse Vector of integers. The activating periods for single impulsesd = [...,0,0,1,0,0,...].
t_blip Vector of integers. The activating period for blipsd = [...,0,0,1,—1,0,...].

n.season Integer. The number of seasons.

Reference Time Interval

The complete time series (i.e. including the presample) constitutes the reference time interval.
Accordingly, ’D’ contains p + 1" observations, and *t_D’ contains the positions of activating periods
T7inl,...,(p+ 7). In a balanced panel p; + T; = T*, the same date implies the same 7 in
1,...,T*, as shown in the example for pcoint.CAIN. However, in an unbalanced panel, the same
date can imply different 7 across i in accordance with the individual time interval 1, ..., (p; + T;).
Note that across the time series in ’L.data’, it is the last observation in each data matrix that refers
to the same date.

Conventional Type
An overview is given here and a detailed explanation in the package vignette.

* type (VAR) is specified in VAR models just as in vars’ VAR, namely by a "const’, a linear
’trend’, ’both’, or ’none’ of those.
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 type_SL is used in the ’additive’ SL procedure for testing the cointegration rank only, which
removes the mean (’SL_mean’) or mean and linear trend ("SL_trend’) by GLS-detrending.

* type (VECM) is used in the ’innovative’ Johansen procedure for testing the cointegration
rank and estimating the VECM. In accordance with Juselius (2007, Ch.6.3), the available
model specifications are: ’Case1’ for none, ’Case2’ for a constant in the cointegration relation,
"Case3’ for an unrestricted constant, ’Case4’ for a linear trend in the cointegration relation and
an unrestricted constant, or ’Case5’ for an unrestricted constant and linear trend.

References

Juselius, K. (2007): The Cointegrated VAR Model: Methodology and Applications, Advanced Texts
in Econometrics, Oxford University Press, USA, 2nd ed.

Examples

t_D = list(t_impulse=c(10, 20, 35), t_shift=10)
as.t_D(t_D)

as.varx Coerce into a 'varx’ object

Description

Coerce into a ’varx’ object. On top of the parent class *varx’, the child class *id’ is imposed if the
input object to be transformed contains an SVAR model.

Usage
as.varx(x, ...)
Arguments
X A VAR object to be transformed.
Additional arguments to be passed to or from methods.
Details

as.varx is used as an intermediary in the pvars functions to achieve compatibility with different
classes of VAR objects. If the user wishes to extend this compatibility with further classes, she may
simply specify accordant as. varx-methods instead of altering the original pvars function. Classes
already covered by pvars are those of the vars ecosystem, in particular the classes

e ’varest’ for reduced-form VAR estimates from VAR,

e ’vec2var’ for reduced-form VECM estimates from vec2var,

e ’svarest’ for structural VAR estimates from BQ,

¢ ’svecest’ for structural VECM estimates from SVEC, and
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e ’svars’ for structural VAR estimates from svars’ id.chol, id.cvm, or id.dc.

By transformation to ’varx’, these VAR estimates can thus be subjected to pvars’ bootstrap proce-
dure sboot.mb and S3 methods such as summary and tolLatex.

Value

A list of class "varx’. Objects of this class contain the elements:

A

SIGMA

Matrix. The lined-up VAR coefficient matrices A;,j = 1, ..., p for the lagged
variables.

Matrix. The (K x S) structural impact matrix of the SVAR model or an identity
matrix g as a placeholder for the unidentified VAR model.

Matrix. The (K x K) residual covariance matrix estimated by least-squares.

The following integers indicate the size of dimensions:

dim_K
dim_S
dim_T
dim_p

dim_r

Integer. The number of endogenous variables K in the full-system.
Integer. The number of identified shocks S in the SVAR model.
Integer. The number of time periods 7' without presample.

Integer. The lag-order p of the VAR model in levels.

Integer. The cointegration rank r of the VAR model if transformed from a rank-
restricted VECM.

Some further elements required for the bootstrap functions are:

y
D, D1, D2

resid
beta

args_id

Examples

data("PCIT")

Matrix. The (K x (p + T')) endogenous variables.

Matrices. The (ne x (p + T')) deterministic variables, fixed over bootstrap it-
erations, (un)restricted to the cointegration relations of the VAR model if trans-
formed from a rank-restricted VECM.

Matrix. The (K x T') residual matrix.

Matrix. The ((K + ng1) X 7) cointegrating matrix of the VAR model if trans-
formed from a rank-restricted VECM.

List of characters and integers indicating the identification methods and specifi-
cations that have been used. This element is specific to the child-class id’ for
SVAR models, that inherit from parent-class varx’ for any VAR model.

names_k = c(”APITR”, "ACITR", "PITB"”, "CITB", "GOV", "RGDP", "DEBT")

# estimate reduced-form VAR and coerce into 'varx' object #
R.vars = vars::VAR(PCIT[ , names_k], p=4, type="const")

as.varx(R.vars)

# identify structural VAR and coerce into 'id' object #
R.svar = svars::id.chol(R.vars, order_k=names_k)

as.varx(R.svar)
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coint Test procedures for the cointegration rank

Description

Performs test procedures for the rank of cointegration in a single VAR model. The p-values are ap-
proximated by gamma distributions, whose moments are automatically adjusted to potential period-
specific deterministic regressors and weakly exogenous regressors in the partial VECM.

Usage

coint.JO(
"
dim_p,
x = NULL,
dim_q = dim_p,
type = c("Casel”, "Case2", "Case3", "Case4", "Case5"),
t_D1 = NULL,
t_D2 = NULL
)

coint.SL(y, dim_p, type_SL = c("SL_mean"”, "SL_trend”), t_D = NULL)

Arguments

y Matrix. A (K x (p+T)) data matrix of the K endogenous time series variables.

dim_p Integer. Lag-order p for the endogenous variables y.

X Matrix. A (L x (¢ + T')) data matrix of the L weakly exogenous time series
variables.

dim_q Integer. Lag-order ¢ for the weakly exogenous variables x. The literature uses
dim_p (the default).

type Character. The conventional case of the deterministic term in the Johansen pro-
cedure.

t_D1 List of vectors. The activating break periods 7 for the period-specific deter-
ministic regressors in d; ¢, which are restricted to the cointegration relations.
The accompanying lagged regressors are automatically included in da ;. The
p-values are calculated for up to two breaks resp. three sub-samples.

t_D2 List of vectors. The activating break periods 7 for the period-specific determin-
istic regressors in dg ;, which are unrestricted.

type_SL Character. The conventional case of the deterministic term in the Saikkonen-
Luetkepohl (SL) procedure.

t.D List of vectors. The activation periods 7 for the period-specific deterministic

regressors in d; of the SL-procedure. The accompanying lagged regressors are
automatically included in d;. The p-values are calculated for up to two breaks
resp. three sub-samples.
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Value
A list of class "coint’, which contains elements of length K for each rgg =0,..., K — 1:
r_Ho Rank under each null hypothesis.
stats_TR Trace (TR) test statistics.
stats_ME Maximum eigenvalue (ME) test statistics.
pvals_TR p-values of the TR test.
pvals_ME p-values of the ME test. NA if moments of the gamma distribution are not avail-
able for the chosen data generating process.
lambda Eigenvalues, the squared canonical correlation coeffcients (saved only for the
Johansen procedure).
args_coint List of characters and integers indicating the cointegration test and specifications
that have been used.
Functions
e coint.JO(): Johansen procedure.
e coint.SL(): (Trenkler)-Saikkonen-Luetkepohl procedure.
References

Johansen, S. (1988): "Statistical Analysis of Cointegration Vectors", Journal of Economic Dynam-
ics and Control, 12, pp. 231-254.

Doornik, J. (1998): "Approximations to the Asymptotic Distributions of Cointegration Tests", Jour-
nal of Economic Surveys, 12, pp. 573-93.

Johansen, S., Mosconi, R., and Nielsen, B. (2000): "Cointegration Analysis in the Presence of
Structural Breaks in the Deterministic Trend", Econometrics Journal, 3, pp. 216-249.

Kaurita, T., Nielsen, B. (2019): "Partial Cointegrated Vector Autoregressive Models with Structural
Breaks in Deterministic Terms", Econometrics, 7, pp. 1-35.

Saikkonen, P., and Luetkepohl, H. (2000): "Trend Adjustment Prior to Testing for the Cointegrating
Rank of a Vector Autoregressive Process", Journal of Time Series Analysis, 21, pp. 435-456.

Trenkler, C. (2008): "Determining p-Values for Systems Cointegration Tests with a Prior Adjust-
ment for Deterministic Terms", Computational Statistics, 23, pp. 19-39.

Trenkler, C., Saikkonen, P., and Luetkepohl, H. (2008): "Testing for the Cointegrating Rank of a
VAR Process with Level Shift and Trend Break", Journal of Time Series Analysis, 29, pp. 331-358.

Examples

### reproduce basic example in "urca" #it#
library("urca”)

data(denmark)

sjd = denmark[ , c("LRM", "LRY", "IBO", "IDE")]

# rank test and estimation of the full VECM as in "urca”" #
R.JOrank = coint.JO(y=sjd, dim_p=2, type="Case2"”, t_D2=list(n.season=4))
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R.JOvecm = VECM(y=sjd, dim_r=1, dim_p=2, type="Case2", t_D2=list(n.season=4))

# ... and of the partial VECM, i.e. after imposing weak exogeneity #
R.KNrank = coint.JO(y=sjd[ , c("LRM"), drop=FALSE], dim_p=2,
x=sjd[ , c("LRY", "IBO", "IDE")], dim_g=2,
type="Case2"”, t_D1=list(t_shift=36), t_D2=list(n.season=4))
R.KNvecm = VECM(y=sjd[ , c("LRM"), drop=FALSE], dim_p=2,
x=sjd[ , c("LRY", "IBO", "IDE")], dim_g=2, dim_r=1,
type="Case2"”, t_D1=list(t_shift=36), t_D2=list(n.season=4))

### reproduce Oersal,Arsova 2016:22, Tab.7.5 "France" #it#
data("ERPT")
names_k = c("1pm5", "1fp5", "llcusd”) # variable names for "Chemicals and related products”
names_i = levels(ERPT$id_i)[c(1,6,2,5,4,3,7)] # ordered country names
L.data = sapply(names_i, FUN=function(i)
ts(ERPTLERPT$id_i==i, names_k], start=c(1995, 1), frequency=12),
simplify=FALSE)
R.TSLrank = coint.SL(y=L.data$France, dim_p=3, type_SL="SL_trend”, t_D=list(t_break=89))

ERPT Data set on the Exchange Rate Pass-Through

Description

The data set ERPT consists of monthly observations for the logarithm of import prices Im*, foreign
prices [ f*, and the exchange rate against the US dollar llcusd. It covers the period January 1995 to
March 2005 (T = 123) for N = 7 countries. The asterisk denotes the industry of the variables and
can take values from 0 to 8:

)

: Food and live animals chiefly for food
* 1: Beverages and tobacco

: Crude materials (inedible, except fuels)

: Mineral fuels, lubricants and related materials

: Animal and vegetable oils, fats and waxes

: Chemicals and related products

: Manufactured goods classified chiefly by materials

: Machines, transport equipment

.
0 N N L A W N =

: Manufactured goods

Usage
data("ERPT")

Format

A long-format data panel of class data.frame’, where the columns id_i and id_t indicate the
country and month respectively.
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Source
The prepared Eurostat data set is directly obtainable from the ZBW Journal Data Archive: doi:10.15456/
jae.2022321.0717881037. This is open data under the CC BY 4.0 license.

References
Banerjee, A., and Carrion-i-Silvestre, J. L. (2015): "Cointegration in Panel Data with Structural
Breaks and Cross-Section Dependence", Journal of Applied Econometrics, 30 (1), pp. 1-23.

See Also

Other data sets: EURO, EU_w, ICAP, MDEM, MERM, PCAP, PCIT

EURO Data set on the BEuro Monetary Policy Transmission

Description

The data set EURO is a list of 15 data. frame’ objects, each consisting of quarterly observations for

* the first-difference of log real GDP on national di_G D P or aggregated EA-level EA_dI_GDP,

* the annualized inflation of the (log) GDP deflator on national dl_de flator or aggregated EA-
level EA_pi,

» the EA-wide short-term interest rate I R,

* the EA-wide option-adjusted bond spreads BBB,

¢ the first-difference of log real GDP in the remaining countries di_GDP_FE A,
* the weighted inflation in the remaining countries di_de flator_E A,

* the inflation of a world commodity price index WCP,

« the US effective federal funds rate US_F FR,

¢ the trade volume in percentage of GDP trade, and

* the government spending in percentage of GDP ge.

The data covers the period Q1 2001 to Q1 2020 (T" = 77) for the aggregate of the Euro area (EA,
first element in list) and N = 14 of its member countries (subsequent 14 elements in list).

Usage
data("EURO")

Format

A list-format data panel of class 1ist’ containing 15 *data. frame’ objects with named time series.


https://doi.org/10.15456/jae.2022321.0717881037
https://doi.org/10.15456/jae.2022321.0717881037
https://creativecommons.org/licenses/by/4.0/
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Source

The prepared Eurostat data set is directly obtainable from the ZBW Journal Data Archive: doi:10.15456/
jae.2024044.1425287131. This is open data under the CC BY 4.0 license in accordance with the
deposit license of the ZBW Journal Data Archive.

References

Herwartz, H., and Wang, S. (2024): "Statistical Identification in Panel Structural Vector Autore-
gressive Models based on Independence Criteria", Journal of Applied Econometrics, 39 (4), pp.
620-639.

See Also
Other data sets: ERPT, EU_w, ICAP, MDEM, MERM, PCAP, PCIT

EU_w Weights for the Euro Monetary Policy Transmission

Description
The data set EU_w is a vector of 14 elements. These are weights for N = 14 member countries of
the Euro area, constructed as the average share of their respective real GDP over the sample period
in Herwartz, Wang (2024).

Usage

data("EU_w")

Format

A numeric vector containing 14 named elements.

Source

The prepared Eurostat data set is directly obtainable from the ZBW Journal Data Archive: doi:10.15456/
jae.2024044.1425287131. This is open data under the CC BY 4.0 license in accordance with the
deposit license of the ZBW Journal Data Archive.

References

Herwartz, H., and Wang, S. (2024): "Statistical Identification in Panel Structural Vector Autore-
gressive Models based on Independence Criteria", Journal of Applied Econometrics, 39 (4), pp.
620-639.

See Also

Other data sets: ERPT, EURO, ICAP, MDEM, MERM, PCAP, PCIT


https://doi.org/10.15456/jae.2024044.1425287131
https://doi.org/10.15456/jae.2024044.1425287131
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15456/jae.2024044.1425287131
https://doi.org/10.15456/jae.2024044.1425287131
https://creativecommons.org/licenses/by/4.0/
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fevd.id Forecast Error Variance Decomposition

Description

Calculates the forecast error variance decomposition. Respects SVAR models of cases S # K, i.e.
partially identified or excess shocks, too.

Usage

## S3 method for class 'id'
fevd(x, n.ahead = 10, ...)

Arguments
X SVAR object of class *id’ or any other that will be coerced to (’id’, *varx’).
n.ahead Integer specifying the steps ahead, i.e. the horizon of the FEVD.
Currently not used.
Value

A list of class *svarfevd’ holding the forecast error variance decomposition of each variables as a
’data.frame’.

References

Luetkepohl, H. (2005): New Introduction to Multiple Time Series Analysis, Springer, 2nd ed.

Jentsch, Lunsford (2022): "Asymptotically Valid Bootstrap Inference for Proxy SVARs", Journal
of Business and Economic Statistics, 40, pp. 1876-1891.

Examples

data("PCIT")

names_k = c("APITR", "ACITR", "PITB", "CITB", "GOV", "RGDP", "DEBT")
names_1 = c("m_PI", "m_CI") # proxy names

names_s = paste@("epsilon[ ", c("PI", "CI"), " 1") # shock names
dim_p 4 # lag-order

# estimate and identify proxy SVAR #

R.vars = vars::VAR(PCIT[ , names_k], p=dim_p, type="const")

R.idBL = id.iv(R.vars, iv=PCIT[-(1:dim_p), names_l1], S2="MR", cov_u="OMEGA")
colnames(R.idBL$B) = names_s # labeling

# calculate and plot FEVD under partial identification #
plot(fevd(R.idBL, n.ahead=20))
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ICAP Data set on Infrastructure Capital Stocks

Description
The data set ICAP consists of annual observations for

¢ the real GDP Y in US dollars,

* the physical capital stocks K in US dollars,

* the physical capital stocks K BC30 via "backcasting" in US dollars,
* the number of workers LW DI providing the total labor force, and

* the average years of secondary education secondary of the population.
It further reports physical measures of infrastructure given by

* the electricity generation capacity EGC in megawatts,
¢ the number of main phone lines mlines,

* the kilometers of total roads troads,

¢ the number of cell phones lines cells,

* the kilometers of paved roads proads, and

* the kilometers of rails rails.
It covers the period 1960 to 2000 (7" = 41) for N = 97 countries. The monetary values are given
in US-Dollars at 2000 prices, i.e. constant PPP.
Usage
data("ICAP")

Format
A long-format data panel of class data.frame’, where the columns id_i and id_t indicate the
country and year respectively. Column COUNTRY contains the complete country names.

Source
The prepared data set is directly obtainable from the ZBW Journal Data Archive: doi:10.15456/
jae.2022321.0717368489. This is open data under the CC BY 4.0 license.

References
Calderon, C., Moral-Benito, E., and Serven, L. (2015): "Is Infrastructure Capital Productive? A
Dynamic Heterogeneous Approach", Journal of Applied Econometrics, 30 (2), pp. 177-198.

See Also

Other data sets: ERPT, EURO, EU_w, MDEM, MERM, PCAP, PCIT


https://doi.org/10.15456/jae.2022321.0717368489
https://doi.org/10.15456/jae.2022321.0717368489
https://creativecommons.org/licenses/by/4.0/
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id.grt Identification of SVEC models by imposing long- and short-run re-
strictions

Description

Identifies an SVEC model by utilizing a scoring algorithm to impose long- and short-run restric-
tions. See the details of SVEC in vars.

Usage

id.grt(
X,
LR = NULL,
SR = NULL,
start = NULL,
max.iter = 100,
conv.crit = 1e-07,

maxls = 1
)
Arguments
X VAR object of class ’varx’ estimated under rank-restriction or any other that
will be coerced to ’varx’.
LR Matrix. The restricted long-run impact matrix.
SR Matrix. The restricted contemporaneous impact matrix.
start Vector. The starting values for ~, set by rnorm if NULL (the default).
max.iter Integer. The maximum number of iterations.
conv.crit Real number. Convergence value of algorithm.
maxls Real number. Maximum movement of the parameters between two iterations of
the scoring algorithm.
Value

List of class *id’.

References

Amisano, G. and Giannini, C. (1997): Topics in Structural VAR Econometrics, Springer, 2nd ed.

Breitung, J., Brueggemann R., and Luetkepohl, H. (2004): "Structural Vector Autoregressive Mod-
eling and Impulse Responses", in Applied Time Series Econometrics, ed. by H. Luetkepohl and M.
Kraetzig, Cambridge University Press, Cambridge.

Johansen, S. (1996): Likelihood-Based Inference in Cointegrated Vector Autoregressive Models,
Advanced Texts in Econometrics, Oxford University Press, USA.
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Luetkepohl, H. (2005): New Introduction to Multiple Time Series Analysis, Springer, 2nd ed.

Pfaff, B. (2008): "VAR, SVAR and SVEC Models: Implementation within R Package vars", Jour-
nal of Statistical Software, 27, pp. 1-32.

See Also

...the original SVEC by Pfaff (2008) in vars. Note that id.grt is just a graftage, but allows for
the additional model specifications in VECM and for the bootstrap procedures in sboot.mb, both
provided by the pvars package.

Other identification functions: id.iv()

Examples

### reproduce basic example in "vars" #it#
library(vars)

data("”Canada")

names_k = c("prod”, "e", "U", "rw") # variable names
names_s = NULL # optional shock names

# colnames of the restriction matrices are passed as shock names #
SR = matrix(NA, nrow=4, ncol=4, dimnames=list(names_k, names_s))
SR[4, 2] =@

LR = matrix(NA, nrow=4, ncol=4, dimnames=list(names_k, names_s))
LR[1, 2:4] =0

LR[2:4, 4] = 0

# estimate and identify SVECM #
R.vecm = VECM(y=Canadal[ , names_k], dim_p=3, dim_r=1, type="Case4")
R.grt = id.grt(R.vecm, LR=LR, SR=SR)

id.iv Identification of SVAR models by means of proxy variables

Description

Given an estimated VAR model, this function uses proxy variables to partially identify the structural
impact matrix B of the corresponding SVAR model

yr=ce + Ay + oo+ Apyrp +up

=c+A1y—1+ ... + ApYr—p + Bey.

In general, identification procedures determine B up to column ordering, scale, and sign. For a
unique solution, id. iv follows the literature on proxy SVAR. The S columns in B = [B; : Bs] of
the identified shocks €5, s = 1, ..., S, are ordered first, and the variance o2 ; = 1 is normalized to
unity (see e.g. Lunsford 2015:6, Eq. 9). Further, the sign is fixed to a positive correlation between
proxy and shock series. A normalization of the impulsed shock that may fix the size of the impact
response in the IRF can be imposed subsequently via ’normf’ in irf.varx and sboot.mb.
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Usage

id.iv(x, iv, S2

Arguments

X
iv

S2

cov_u

RO

Value

List of class *id’.

References

19

= c("MR”, "JL", "NQ"), cov_u = "OMEGA"”, RO = NULL)

VAR object of class ’varx’ or any other that will be coerced to *varx’.
Matrix. A (L x T') data matrix of the L proxy time series m;.

Character. Identification within multiple proxies m; via MR’ for lower-triangular
[Is : —BuBl}l]Bl by Mertens, Ravn (2013), via *JL’ for chol(X,,, 25 ' ¥0m)
by Jentsch, Lunsford (2021), or via ’NQ’ for the nearest orthogonal matrix from
svd decomposition by Empting et al. (2025). In case of S = L = 1 proxy, all
three choices provide identical results on B; .

Character. Selection of the estimated residual covariance matrix flu to be used in
the identification procedure. Either 'OMEGA' (the default) for uu’ /T; as used in
Mertens, Ravn (2013) and Jentsch, Lunsford (2021) or 'SIGMA' for UU’/(T —
n,), which corrects for the number of regressors n,. Both character options
refer to the name of the respective estimate in the *varx’ object.

Matrix. A (L x S) selection matrix for ’NQ” that governs the attribution of the L
proxies to their specific S structural shock series. If NULL (the default), R0 = Ig
will be used such that the S = L columns of B; are one-by-one estimated from
the S = L proxy series iv’ available.

Mertens, K., and Ravn, M. O. (2013): "The Dynamic Effects of Personal and Corporate Income
Tax Changes in the United States", American Economic Review, 103, pp. 1212-1247.

Lunsford, K. G. (2015): "Identifying Structural VARs with a Proxy Variable and a Test for a Weak
Proxy", Working Paper, No 15-28, Federal Reserve Bank of Cleveland.

Jentsch, C., and Lunsford, K. G. (2019): "The Dynamic Effects of Personal and Corporate Income
Tax Changes in the United States: Comment", American Economic Review, 109, pp. 2655-2678.

Jentsch, C., and Lunsford, K. G. (2021): "Asymptotically Valid Bootstrap Inference for Proxy
SVARSs", Journal of Business and Economic Statistics, 40, pp. 1876-1891.

Empting, L. F. T., Maxand, S., Oeztuerk, S., and Wagner, K. (2025): "Inference in Panel SVARs
with Cross-Sectional Dependence of Unknown Form".

See Also

... the individual identification approaches by Lange et al. (2021) in svars.

Other identification functions: id.grt()
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Examples

### reproduce Jentsch,Lunsford 2019:2668, Ch.III #i##
data("PCIT")
names_k = c("APITR", "ACITR", "PITB", "CITB", "GOV", "RGDP", "DEBT")

names_1 = c("m_PI", "m_CI") # proxy names
names_s = paste@("epsilon[ ", c("PI", "CI"), " 1") # shock names
dim_p =4 # lag-order

# estimate and identify under ordering "BLUE" of Fig.1 and 2 #

R.vars = vars::VAR(PCIT[ , names_k], p=dim_p, type="const")

R.idBL = id.iv(R.vars, iv=PCIT[-(1:dim_p), names_l1], S2="MR", cov_u="OMEGA")
colnames(R.idBL$B) = names_s # labeling

# estimate and identify under ordering "RED" of Fig.1 and 2 #

R.vars = vars::VAR(PCIT[ , names_k[c(2:1, 3:7)]1], p=dim_p, type="const")

R.idRD = id.iv(R.vars, iv=PCIT[-(1:dim_p),names_1[2:1]1], S2="MR", cov_u="OMEGA")
colnames(R.idRD$B) = names_s[2:1] # labeling

# select minimal or full example #
is_min = TRUE
n.boot = ifelse(is_min, 5, 10000)

# bootstrap both under 1%-response normalization #

set.seed(2389)

R.norm = function(B) B / matrix(-diag(B), nrow(B), ncol(B), byrow=TRUE)
R.sbBL = sboot.mb(R.idBL, b.length=19, n.boot=n.boot, normf=R.norm)
R.sbRD = sboot.mb(R.idRD, b.length=19, n.boot=n.boot, normf=R.norm)

# plot IRF of Fig.1 and 2 with 68%-confidence levels #
library("ggplot2")
L.idx = list(BLUE1=c(1, 11, 5, 7, 3, 9)+0.1,

RED1 =c(4, 12, 6, 8, 2, 10)+0.1,

RED2 =c(1, 11, 7, 5, 3, 9)+0.1,

BLUE2=c(4, 12, 8, 6, 2, 10)+0.1)
# Indexes to subset and reorder sub-plots in plot.sboot(), where
# the 14 IRF-subplots in the 2D-panel are numbered as a 1D-sequence
# vectorized by row. '+0.1' makes sub-setting robust against
# truncation errors from as.integer(). In a given figure, the plots
# RED and BLUE display the same selection of IRF-subplots.

R.figl = as.pplot(

BLUE=plot(R.sbBL, lowerg=0.16, upperq=0.84, selection=list(1, L.idx[[1]11)),
RED =plot(R.sbRD, lowerq=0.16, upperq=0.84, selection=list(1, L.idx[[2]1)),
names_g=c("APITR first”, "ACITR first"), color_g=c("blue”, "red"), n.rows=3)

R.fig2 = as.pplot(

RED =plot(R.sbRD, lowerg=0.16, upperqg=0.84, selection=list(1, L.idx[[3]1)),

BLUE=plot(R.sbBL, lowerg=0.16, upperq=0.84, selection=list(1, L.idx[[4]1)),

names_g=c("ACITR first”, "APITR first"), color_g=c("red”, "blue"), n.rows=3)

R.figl1$F.plot + labs(x="Quarters", color="Ordering”, fill="Ordering")
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R.fig2$F.plot + labs(x="Quarters", color="Ordering”, fill="Ordering")

irf.pvarx Impulse Response Functions for panel SVAR models

Description

Calculates impulse response functions for panel VAR objects.

Usage
## S3 method for class 'pvarx'
irf(x, ..., n.ahead = 20, normf = NULL, w = NULL, MG_IRF = TRUE)
Arguments
X Panel VAR object of class *pid’ or ’pvarx’ or a list of VAR objects that will be

coerced to 'varx’.

Currently not used.

n.ahead Integer. Number of periods to consider after the initial impulse, i.e. the horizon
of the IRF.
normf Function. A given function that normalizes the K x S input-matrix into an output

matrix of same dimension. See the example in id. iv for the normalization of
Jentsch and Lunsford (2021) that fixes the size of the impact response.

w Numeric, logical, or character vector. /N numeric elements weighting the indi-
vidual coefficients, or names or N logical elements selecting a subset from the
individuals 7 = 1,..., N for the MG estimation. If NULL (the default), all N
individuals are included without weights.

MG_IRF Logical. If TRUE (the default), the mean-group of individual IRF is calculated in
accordance with Gambacorta et al. (2014). If FALSE, the IRF is calculated for
the mean-group of individual VAR estimates.

Value

A list of class svarirf’ holding the impulse response functions as a ’data. frame’.

References

Luetkepohl, H. (2005): New Introduction to Multiple Time Series Analysis, Springer, 2nd ed.

Gambacorta L., Hofmann B., and Peersman G. (2014): "The Effectiveness of Unconventional Mon-
etary Policy at the Zero Lower Bound: A Cross-Country Analysis", Journal of Money, Credit and
Banking, 46, pp. 615-642.

Jentsch, C., and Lunsford, K. G. (2021): "Asymptotically Valid Bootstrap Inference for Proxy
SVARSs", Journal of Business and Economic Statistics, 40, pp. 1876-1891.
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Examples

data("PCAP")

names_k = c("g", "k", "1", "y") # variable names

names_i = levels(PCAP$id_i) # country names

L.data = sapply(names_i, FUN=function(i)
ts(PCAP[PCAP$id_i==i, names_k], start=1960, end=2019, frequency=1),
simplify=FALSE)

# estimate and identify panel SVAR #
.vars = lapply(L.data, FUN=function(x) vars::VAR(x, p=2, type="both"))
R.pid = pid.chol(L.vars, order_k=names_k)

—

# calculate and plot MG-IRF #

library("ggplot2")

R.irf = irf(R.pid, n.ahead=60)

F.irf = plot(R.irf, selection=list(2:4, 1:2))

as.pplot(F.irf=F.irf, color_g="black"”, n.rows=3)$F.plot + guides(color="none")

irf.varx Impulse Response Functions

Description

Calculates impulse response functions.

Usage
## S3 method for class 'varx'
irf(x, ..., n.ahead = 20, normf = NULL)
Arguments
X VAR object of class varx’, *id’, or any other that will be coerced to "varx’.

Currently not used.

n.ahead Integer. Number of periods to consider after the initial impulse, i.e. the horizon
of the IRF.
normf Function. A given function that normalizes the K x S input-matrix into an output

matrix of same dimension. See the example in id. iv for the normalization of
Jentsch and Lunsford (2021) that fixes the size of the impact response.

Value

A list of class *svarirf’ holding the impulse response functions as a ’data.frame’.
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References

Luetkepohl, H. (2005): New Introduction to Multiple Time Series Analysis, Springer, 2nd ed.

Jentsch, C., and Lunsford, K. G. (2021): "Asymptotically Valid Bootstrap Inference for Proxy
SVARSs", Journal of Business and Economic Statistics, 40, pp. 1876-1891.

Examples

data("PCIT")

names_k = c("APITR", "ACITR", "PITB", "CITB", "GOV", "RGDP", "DEBT")
names_1 = c("m_PI", "m_CI") # proxy names

names_s = paste@("epsilon[ ", c("PI", "CI"), " 1") # shock names
dim_p 4 # lag-order

# estimate and identify proxy SVAR #

R.vars = vars::VAR(PCIT[ , names_k], p=dim_p, type="const")

R.idBL = id.iv(R.vars, iv=PCIT[-(1:dim_p), names_l], S2="MR", cov_u="OMEGA")
colnames(R.idBL$B) = names_s # labeling

# calculate and plot normalized IRF #
R.norm = function(B) B / matrix(-diag(B), nrow(B), ncol(B), byrow=TRUE)
plot(irf(R.idBL, normf=R.norm))

MDEM Data set for the Monetary Demand Model

Description

The data set MDEM consists of annual observations for the nominal short-term interest rate R and the
logarithm of the real money aggregate m1 and real GDP gdp. It covers the period 1957 to 1996
(T = 40) for N = 19 countries.

Usage
data(”MDEM")

Format

A long-format data panel of class data.frame’, where the columns id_i and id_t indicate the
country and year respectively.

Source

The prepared data is sourced from OECD and IMF’s International Financial Statistics of the year
1998, see the open terms of use. Employed by Carrion-i-Silvestre and Surdeanu (2011:24, Ch.6.1),
it has been originally compiled and described in the unpublished appendix of Mark and Sul (2003).
See the related working paper of Mark and Sul (1999, Appendix B).


https://legacydata.imf.org/?sk=4c514d48-b6ba-49ed-8ab9-52b0c1a0179b
https://www.imf.org/en/About/copyright-and-terms#data
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References

Carrion-i-Silvestre, J. L., and Surdeanu L. (2011): "Panel Cointegration Rank Testing with Cross-
Section Dependence", Studies in Nonlinear Dynamics & Econometrics, 15 (4), pp. 1-43.

Mark, N. C., and Sul, D. (1999): "A Computationally Simple Cointegration Vector Estimator for
Panel Data", Working Paper, Department of Economics, Ohio State University.

Mark, N. C., and Sul, D. (2003): "Cointegration Vector Estimation by Panel DOLS and Long-Run
Money Demand," Oxford Bulletin of Economics and Statistics, 65, pp. 655-680.

See Also

Other data sets: ERPT, EURO, EU_w, ICAP, MERM, PCAP, PCIT

MERM Data set for the Monetary Exchange Rate Model

Description

The data set MERM consists of monthly observations for the log-ratios of prices p, money supply m,
and industrial production y as well as the natural logarithm of nominal exchange rates against the
dollar s. It covers the period January 1995 to December 2007 (T' = 156) for N = 19 countries.

Usage
data(”MERM")

Format

A long-format data panel of class data.frame’, where the columns id_i and id_t indicate the
country and month respectively.

Source

The prepared data set is directly obtainable from the journal website: doi:10.1016/j.ecosta.2016.10.001.
Supplementary Raw Research Data. This is open data under the CC BY 4.0 license.

References

Oersal, D. D. K., and Arsova, A. (2017): "Meta-Analytic Panel Cointegrating Rank Tests for De-
pendent Panels", Econometrics and Statistics, 2, pp. 61-72.

See Also

Other data sets: ERPT, EURO, EU_w, ICAP, MDEM, PCAP, PCIT


https://doi.org/10.1016/j.ecosta.2016.10.001
https://creativecommons.org/licenses/by/4.0/
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PCAP Data set on Public Capital Stocks

Description

The data set PCAP consists of annual observations for

* the governmental capital stocks G and their logarithm g,
* the private capital stocks K and their logarithm £k,
* the total hours worked L and their logarithm [, and

¢ the real GDP Y and its logarithm y.
It is constructed from the annual observations for

* the governmental investments /G,

* the private non-residential investments and capital stocks I B and B,
* the private housing investments and capital stocks / H and H, and

* the persons employed ET and hours worked per person HRS.

It covers the period 1960 to 2019 (T' = 60) for N = 23 OECD countries. All monetary values are
given in US-Dollars at 2005 prices, i.e. constant PPP.

Usage
data("PCAP")

Format

A long-format data panel of class ’data.frame’, where the columns id_i and id_t indicate the
country and year respectively.

Source

Own compilation based on data from PWT, Eurostat, and OECD’s Economic Outlook. Capital
stocks are derived by the Perpetual Inventory Method as described by Kamps (2006). This is open
data under the CC BY 4.0 license.

References
Empting, L. F. T., and Herwartz, H. (2025): "Revisiting the *Productivity of Public Capital’: VAR
Evidence on the Heterogeneous Dynamics in a New Panel of 23 OECD Countries".

Feenstra, R. C., Inklaar, R., and Timmer, M. P. (2015): "The Next Generation of the Penn World
Table", American Economic Review, 105, pp. 3150-3182.

Kamps, C. (2006): "New Estimates of Government Net Capital Stocks for 22 OECD Countries,
1960-2001", IMF Staff Papers, 53, pp. 120-150.


https://creativecommons.org/licenses/by/4.0/
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See Also

Other data sets: ERPT, EURO, EU_w, ICAP, MDEM, MERM, PCIT

Examples

#i## Latex figure: public capital stocks #iH#
data(PCAP)
names_i = c("DEU", "FRA", "GRC", "ITA", "NLD") # select 5 exemplary countries
idx_i = PCAP$id_i %in% names_i
idx_pl = c(1, 3, 5, 9, 10)
pallet = c(RColorBrewer: :brewer.pal(n=11, name="Spectral”)[idx_pl], "#000000")
names(pallet) = c(names_i, "\\023")
breaks = factor(c(names_i, "\\023"), levels=c(names_i, "\\023"))
events = data.frame(
label = paste@(”\\quad \\textbf{ ",
c("0il Crisis”, "0il Crisis II", "Early 1990s”, "Early 2000s",
"Great Recession”, "European Debt Crisis”, "COVID-19"), " 3}"),
t_start = c(1973, 1979, 1990, 2000, 2007, 2010, 2020),
t_end c(1975, 1982, 1993, 2003, 2010, 2013, 2022))

# plot events #
library("ggplot2")
F.base <- ggplot() +
geom_hline(yintercept = @, color="grey") +
geom_rect(data=events, aes(xmin=t_start, xmax=t_end, ymin=-Inf, ymax=+Inf),
fill="black"”, alpha=0.2) +
geom_text(data=events, aes(x=(t_start+t_end)/2, y=-Inf, label=label),
hjust=0, angle=90, colour='white') +
scale_x_continuous(breaks = seq(1960, 2020, 10), limits = c(1960, 2022)) +
theme_bw(base_size=10)

# add levels #
F.G <- F.base +
geom_line(data=PCAP[idx_i, ], aes(x=id_t, y=G/1e+12, colour=id_i, group=id_i),
linewidth=2) +
stat_summary(data=PCAP[idx_i, ], aes(x=id_t, y=G/1e+12, color="\\023"),
fun=mean, geom="line"”, linewidth=0) +
geom_text (data=events, aes(x=(t_start+t_end)/2, y=-Inf, label=label),
hjust=0, angle=90, colour='white', alpha=0.6) +
scale_colour_manual(values=pallet, breaks=breaks) +
labs(x=NULL, y="Trillion US-\\$ at 2005 prices”, colour="Country”, title=NULL) +
guides(colour=guide_legend(override.aes = list(linewidth=2))) +
theme(legend.position="inside"”, legend.position.inside=c(0.01, 0.99),
legend. justification = c(0, 1),
legend.title=element_text(size=8), legend.text=element_text(size=6),
legend.key.width = unit(0.35, "cm"), legend.key.height = unit(@.35, "cm"))

# add growth rates #
PCAP$gG = ave(PCAP$G, PCAP$id_i, FUN=function(x)
c(diff(x), NA)/xx100) # beginning-of-the-year observations!
F.gG <- F.base +
geom_line(data=PCAP[idx_i, ], aes(x=id_t, y=gG, colour=id_i, group=id_i),
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linewidth=2) +
stat_summary(data=PCAP, aes(x=id_t, y=gG, color="\\023"),
fun=mean, geom="line"”, linewidth=2) +
geom_text(data=events, aes(x=(t_start+t_end)/2, y=-Inf, label=label),
hjust=0, angle=90, colour='white', alpha=0.6) +
scale_colour_manual(values=pallet, breaks=breaks, guide="none") +
labs(x="Year", y="Growth in \\%", colour="Country"”, title=NULL)

# export to Latex #

library(tikzDevice)
textwidth = 15.5/2.54 # LaTeX textwidth from "cm” into "inch”
file_fig = file.path(tempdir(), "Fig_G.tex")

tikz(file=file_fig, width=1.2*textwidth, height=0.8*textwidth)

# gridExtra::grid.arrange(grobs=1ist(F.G, F.gG), layout_matrix=cbind(1:2))
ggpubr: :ggarrange(F.G, F.gG, ncol=1, nrow=2, align="v")

dev.off()

PCIT Data set on Personal and Corporate Income Tax

Description
The data set PCIT consists of quarterly observations for

* the average personal income tax rates APITR,

* the average corporate income tax rates ACITR,

* the logarithm of the personal income tax base PIT B,

¢ the logarithm of the corporate income tax base CIT B,

* the logarithm of government spending GOV,

* the logarithm of GDP divided by population RGD P, and

¢ the logarithm of government debt held by the public divided by the GDP deflator and popula-
tion DEBT.

Moreover, the proxies for shocks to personal m_P1 and corporate m_C'I income taxes are prepended,

where non-zero observations from the related narratively identified shock series 7'_P1I resp. T_CT1

have been demeaned. The data set covers the period Q1 1950 to Q4 2006 (T' = 228) for the US.
Usage

data("PCIT")

Format

A time series data set of class data.frame’, where the column id_t indicates the quarter of the
year.
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Source

The prepared data set is directly obtainable from openICPSR: doi:10.3886/E116190V1. Supple-
mentary Research Data. This is open data under the CC BY 4.0 license.

References

Mertens, K., and Ravn, M. O. (2013): "The Dynamic Effects of Personal and Corporate Income
Tax Changes in the United States", American Economic Review, 103, pp. 1212-1247.

Jentsch, C., and Lunsford, K. G. (2019): "The Dynamic Effects of Personal and Corporate Income
Tax Changes in the United States: Comment", American Economic Review, 109, pp. 2655-2678.

Mertens, K., and Ravn, M. O. (2019): "The Dynamic Effects of Personal and Corporate Income
Tax Changes in the United States: Reply", American Economic Review, 109, pp. 2679-2691.

See Also
Other data sets: ERPT, EURO, EU_w, ICAP, MDEM, MERM, PCAP

pcoint Panel cointegration rank tests

Description

Performs test procedures for the rank of cointegration in a panel of VAR models. First, the chosen
individual procedure is applied over all N individual entities for 79 = 0,..., K — 1. Then, the
K x N individual statistics and p-values are combined to panel test results on each 77 using all
combination approaches available for the chosen procedure.

Usage

pcoint.JO(
L.data,
lags,
type = c("Casel”, "Case2", "Case3", "Case4"),
t_D1 = NULL,
t_D2 = NULL,
n.factors = FALSE

)

pcoint.BR(
L.data,
lags,
type = c("Casel”, "Case2”, "Case3", "Case4"),
t_D1 = NULL,
t_D2 = NULL,

n.iterations = FALSE


https://doi.org/10.3886/E116190V1
https://creativecommons.org/licenses/by/4.0/

pcoint

29

pcoint.SL(L.data, lags, type = "SL_trend”, t_D = NULL, n.factors = FALSE)

pcoint.CAIN(L.data, lags, type = "SL_trend”, t_D = NULL)

Arguments

L.data

lags

type
t_D1

t_D2

n.factors

n.iterations

t_D

Value

List of "data.frame’ objects for each individual. The variables must have the
same succession £ = 1, ..., K in each individual data. frame’.

Integer or vector of integers. Lag-order of the VAR models in levels, which is
either a common p for all individuals or individual-specific p; for each individ-
ual. In the vector, p; must have the same successionz = 1,..., N as argument
L.data.

Character. The conventional case of the deterministic term.

List of vectors. The activating break periods 7 for the period-specific deter-
ministic regressors in d; ;+, which are restricted to the cointegration relations.
The accompanying lagged regressors are automatically included in dg ;. The
p-values are calculated for up to two breaks resp. three sub-samples.

List of vectors. The activating break periods 7 for the period-specific determin-
istic regressors in dy ;;, which are unrestricted.

Integer. Number of common factors to be subtracted for the PANIC by Arsova
and Oersal (2017, 2018). Deactivated if FALSE (the default).

Integer. The (maximum) number of iterations for the pooled estimation of the
cointegrating vectors.

List of vectors. The activating break periods 7 for the period-specific determin-
istic regressors in d;; of the SL-procedure. The accompanying lagged regres-
sors are automatically included in d;;. The p-values are calculated for up to two
breaks resp. three sub-samples.

A list of class ’pcoint’ with elements:

panel

individual

CSD

args_pcoint

beta_Ho

List for the panel test results, which contains one matrix for the test statistics
and one for the p-values.

List for the individual test results, which contains one matrix for the test statistics
and one for the p-values.

List of measures for cross-sectional dependency. NULL if a first generation test
has been used.

List of characters and integers indicating the panel cointegration test and speci-
fications that have been used.

List of matrices, which comprise the pooled cointegrating vectors for each rank
rro- NULL if any other test than BR has been used.
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Functions

* pcoint.JO(): based on the Johansen procedure.
* pcoint.BR(): based on the pooled two-step estimation of the cointegrating vectors.
* pcoint.SL(): based on the Saikkonen-Luetkepohl procedure.

* pcoint.CAIN(): accounting for correlated probits between the individual SL-procedures.

References

Larsson, R., Lyhagen, J., and Lothgren, M. (2001): "Likelihood-based Cointegration Tests in Het-
erogeneous Panels", Econometrics Journal, 4, pp. 109-142.

Choi, I. (2001): "Unit Root Tests for Panel Data", Journal of International Money and Finance, 20,
pp. 249-272.

Arsova, A., and Oersal, D. D. K. (2018): "Likelihood-based Panel Cointegration Test in the Pres-
ence of a Linear Time Trend and Cross-Sectional Dependence", Econometric Reviews, 37, pp.
1033-1050.

Breitung, J. (2005): "A Parametric Approach to the Estimation of Cointegration Vectors in Panel
Data", Econometric Reviews, 24, pp. 151-173.

Oersal, D. D. K., and Droge, B. (2014): "Panel Cointegration Testing in the Presence of a Time
Trend", Computational Statistics & Data Analysis, 76, pp. 377-390.

Oersal, D. D. K., and Arsova, A. (2017): "Meta-Analytic Cointegrating Rank Tests for Dependent
Panels", Econometrics and Statistics, 2, pp. 61-72.

Arsova, A., and Oersal, D. D. K. (2018): "Likelihood-based Panel Cointegration Test in the Pres-
ence of a Linear Time Trend and Cross-Sectional Dependence", Econometric Reviews, 37, pp.
1033-1050.

Hartung, J. (1999): "A Note on Combining Dependent Tests of Significance", Biometrical Journal,
41, pp. 849-855.

Arsova, A., and Oersal, D. D. K. (2021): "A Panel Cointegrating Rank Test with Structural Breaks
and Cross-Sectional Dependence", Econometrics and Statistics, 17, pp. 107-129.

Examples

### reproduce Oersal,Arsova 2017:67, Ch.5 #i#i#

data("MERM")

names_k = colnames(MERM)[-(1:2)] # variable names

names_i = levels(MERM$id_i) # country names

L.data = sapply(names_i, FUN=function(i)
ts(MERM[MERM$id_i==i, names_k], start=c(1995, 1), frequency=12),
simplify=FALSE)

# Oersal,Arsova 2017:67, Tab.5 #

R.lags = c(2, 2, 2, 2,1, 2,2, 4,2,3,2,2,2,2,2,1,1, 2,2
names(R.lags) = names_i # individual lags by AIC (lag_max=4)

n.factors = 8 # number of common factors by Onatski's (2010) criterion
R.pcsl = pcoint.SL(L.data, lags=R.lags, n.factors=n.factors, type="SL_trend")
R.pcjo = pcoint.JO(L.data, lags=R.lags, n.factors=n.factors, type="Case4")
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# Oersal
R.Ftsl =
R.Ftjo =

### repr
data("ER
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,Arsova 2017:67, Tab.6 #
coint.SL(y=R.pcs1$CSD$Ft, dim_p=2, type_SL="SL_trend") # lag-order by AIC
coint.JO(y=R.pcs1$CSD$Ft, dim_p=2, type="Case4")

oduce Oersal,Arsova 2016:13, Ch.6 #i##
PT™)

names_k = c("1pm5", "1fp5", "llcusd”) # variable names for "Chemicals and related products”

names_i = levels(ERPT$id_i)[c(1,6,2,5,4,3,7)] # ordered country names
L.data = sapply(names_i, FUN=function(i)
ts(ERPTLERPT$id_i==i, names_k], start=c(1995, 1), frequency=12),
simplify=FALSE)
# Oersal,Arsova 2016:21, Tab.6 (only for individual results) #
R.lags = c(3, 3, 3, 4, 3, 3, 3); names(R.lags)=names_i # lags of VAR model by MAIC
R.cain = pcoint.CAIN(L.data, lags=R.lags, type="SL_trend")
R.pcsl = pcoint.SL(L.data, lags=R.lags, type="SL_trend")
# Oersal,Arsova 2016:22, Tab.7/8 #
R.lags = c(3, 3, 3, 4, 4, 3, 4); names(R.lags)=names_i # lags of VAR model by MAIC
R.t_D = list(t_break=89) # a level shift and trend break in 2002_May for all countries
R.cain = pcoint.CAIN(L.data, lags=R.lags, t_D=R.t_D, type="SL_trend")
pid.chol Recursive identification of panel SVAR models via Cholesky decompo-
sition
Description
Given an estimated panel of VAR models, this function uses the Cholesky decomposition to identify

the structural impact matrix B; of the corresponding SVAR model

Yit = Cit + A1¥ip—1+ .. + Ai p, Vi t—p, + Uit

=cit + Ain¥it—1 + oo + Aip,Yit—p, T Bicit.

Matrix B; corresponds to the decomposition of the least squares covariance matrix ¥, ; = B; B].

Usage

pid.chol(x, order_k = NULL)

Arguments

X

order_k

An object of class "pvarx’ or a list of VAR objects that will be coerced to varx’.
Estimated panel of VAR objects.

Vector. Vector of characters or integers specifying the assumed structure of
the recursive causality. Change the causal ordering in the instantaneous effects
without permuting variables and re-estimating the VAR model.
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Value

List of class ’pid’ with elements:

A Matrix. The lined-up coefficient matrices A;,j = 1, ..., p for the lagged vari-
ables in the panel VAR.
B Matrix. Mean group of the estimated structural impact matrices B;, i.e. the

unique decomposition of the covariance matrices of reduced-form errors.

L.varx List of *varx’ objects for the individual estimation results to which the structural
impact matrices B; have been added.

args_pid List of characters and integers indicating the identification methods and specifi-
cations that have been used.

args_pvarx List of characters and integers indicating the estimator and specifications that
have been used.

References

Luetkepohl, H. (2005): New Introduction to Multiple Time Series Analysis, Springer, 2nd ed.
Sims, C. A. (2008): "Macroeconomics and Reality", Econometrica, 48, pp. 1-48.

See Also

Other panel identification functions: pid.cvm(), pid.dc(), pid.grt(), pid.iv()

Examples

data("PCAP")

names_k = c("g", "k", "1", "y") # variable names

names_i = levels(PCAP$id_i) # country names

L.data = sapply(names_i, FUN=function(i)
ts(PCAP[PCAP$id_i==i, names_k], start=1960, end=2019, frequency=1),
simplify=FALSE)

# estimate and identify panel SVAR #
.vars = lapply(L.data, FUN=function(x) vars::VAR(x, p=2, type="both"))
R.pid = pid.chol(L.vars, order_k=names_k)

—

pid.cvm Independence-based identification of panel SVAR models via Cramer-
von Mises (CVM) distance
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Description

Given an estimated panel of VAR models, this function applies independence-based identification
for the structural impact matrix B; of the corresponding SVAR model

Yit = Cit + AnYit—1 + oo+ Aip,Yit—p; + Wit

=ci + Ain¥ir—1 + . + Aip,Yit—p, + Bicit.

Matrix B; corresponds to the unique decomposition of the least squares covariance matrix ¥, ; =
B; B! if the vector of structural shocks €;; contains at most one Gaussian shock (Comon, 1994). A
nonparametric dependence measure, the Cramer-von Mises distance (Genest and Remillard, 2004),
determines least dependent structural shocks. The minimum is obtained by a two step optimization
algorithm similar to the technique described in Herwartz and Ploedt (2016).

Usage

pid.cvm(
X,
combine = c("group”, "pool”, "indiv"),
n.factors = NULL,
dd = NULL,

itermax = 500,
steptol = 100,

iter2 = 75
)
Arguments

X An object of class "pvarx’ or a list of VAR objects that will be coerced to varx’.
Estimated panel of VAR objects.

combine Character. The combination of the individual reduced-form residuals via ’group’
for the group ICA by Calhoun et al. (2001) using common structural shocks, via
’pool’ for the pooled shocks by Herwartz and Wang (2024) using a common ro-
tation matrix, or via indiv’ for individual-specific B;Vi using strictly separated
identification runs.

n.factors Integer. Number of common structural shocks across all individuals if the group
ICA is selected.

dd Object of class *indepTestDist’ generated by *indepTest’ from package *copula’.
Simulated independent sample(s) of the same size as the data. If the sample sizes
T; — p; differ across ’’, the strictly separated identification requires a list of IV
individual indepTestDist’-objects with respective sample sizes. If NULL (the
default), a suitable object will be calculated during the call of pid.cvm.

itermax Integer. Maximum number of iterations for DEoptim.

steptol Numeric. Tolerance for steps without improvement for DEoptim.

iter2 Integer. Number of iterations for the second optimization.
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Value

List of class ’pid’ with elements:

A Matrix. The lined-up coefficient matrices A;,j = 1, ..., p for the lagged vari-
ables in the panel VAR.
B Matrix. Mean group of the estimated structural impact matrices B;, i.e. the

unique decomposition of the covariance matrices of reduced-form errors.

L.varx List of *varx’ objects for the individual estimation results to which the structural
impact matrices B; have been added.

epso Matrix. The combined whitened residuals €y to which the ICA procedure has
been applied subsequently. These are still the unrotated baseline shocks! NULL
if indiv’ identifications have been used.

ICA List of objects resulting from the underlying ICA procedure. NULL if *indiv’
identifications have been used.

rotation_angles

Numeric vector. The rotation angles suggested by the combined identification
procedure. NULL if "indiv’ identifications have been used.

args_pid List of characters and integers indicating the identification methods and specifi-
cations that have been used.

args_pvarx List of characters and integers indicating the estimator and specifications that
have been used.

References
Comon, P. (1994): "Independent Component Analysis: A new Concept?", Signal Processing, 36,
pp- 287-314.

Genest, C., and Remillard, B. (2004): "Tests of Independence and Randomness based on the Em-
pirical Copula Process", Test, 13, pp. 335-370.

Herwartz, H., and Wang, S. (2024): "Statistical Identification in Panel Structural Vector Autore-
gressive Models based on Independence Criteria", Journal of Applied Econometrics, 39 (4), pp.
620-639.

Herwartz, H. (2018): "Hodges Lehmann detection of structural shocks - An Analysis of macroeco-
nomic Dynamics in the Euro Area", Oxford Bulletin of Economics and Statistics, 80, pp. 736-754.

Herwartz, H., and Ploedt, M. (2016): "The Macroeconomic Effects of Oil Price Shocks: Evidence
from a Statistical Identification Approach”, Journal of International Money and Finance, 61, pp.
30-44.

See Also

...the individual id.cvmby Lange et al. (2021) in svars. Note that pid. cvmrelies on a modification
of their procedure and thus performs ICA on the pre-whitened shocks eps@’ directly.

Other panel identification functions: pid.chol(), pid.dc(), pid.grt(), pid.iv()
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Examples

# select minimal or full example #
is_min = TRUE
idx_i = ifelse(is_min, 1, 1:14)

# load and prepare data #
data("EURQO")

data("EU_w")

names_i = names(EURO[idx_i+1]) # country names (#1 is EA-wide aggregated data)
idx_k = 1:4 # endogenous variables in individual data matrices

idx_t = 1:76 # periods from 2001Q1 to 2019Q4

trend2 = idx_t*2

# individual VARX models with common lag-order p=2 #

L.data = lapply(EURO[idx_i+1], FUN=function(x) x[idx_t, idx_k])
L

L

.exog = lapply(EURO[idx_i+1], FUN=function(x) cbind(trend2, x[idx_t, 5:101]))
.vars = sapply(names_i, FUN=function(i)

vars::VAR(L.data[[i]], p=2, type="both”, exogen=L.exog[[il]),
simplify=FALSE)

identify under common orthogonal matrix (with pooled sample size (T-p)*N) #
.pind = copula::indepTestSim(n=(76-2)*length(names_i), p=length(idx_k), N=100)
.pcvm = pid.cvm(L.vars, dd=S.pind, combine="pool")

.irf = irf(R.pcvm, n.ahead=50, w=EU_w)

plot(R.irf, selection=list(1:2, 3:4))

D XV n HF

# identify individually (with same sample size T-p for all 'i') #
S.pind = copula::indepTestSim(n=(76-2), p=length(idx_k), N=100)
R.pcvm = pid.cvm(L.vars, dd=S.pind, combine="indiv")

R.irf = irf(R.pcvm, n.ahead=50, w=EU_w)

plot(R.irf, selection=list(1:2, 3:4))

pid.dc Independence-based identification of panel SVAR models using dis-
tance covariance (DC) statistic

Description

Given an estimated panel of VAR models, this function applies independence-based identification
for the structural impact matrix B; of the corresponding SVAR model

Yit = Cit + AnYit—1 + oo+ AipYit—p; + Wit

=cit + Ai¥iz—1+ .. + Aip,Yit—p, + Bicit.
Matrix B; corresponds to the unique decomposition of the least squares covariance matrix X, ; =
B; B! if the vector of structural shocks €;; contains at most one Gaussian shock (Comon, 1994).
A nonparametric dependence measure, the distance covariance (Szekely et al., 2007), determines
least dependent structural shocks. The algorithm described in Matteson and Tsay (2013) is applied
to calculate the matrix B;.
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Usage

pid.dc(
X,
combine = c("group”, "pool”, "indiv"),
n.factors = NULL,
n.iterations = 100,

PIT = FALSE
)
Arguments

X An object of class "pvarx’ or a list of VAR objects that will be coerced to varx’.
Estimated panel of VAR objects.

combine Character. The combination of the individual reduced-form residuals via ’group’
for the group ICA by Calhoun et al. (2001) using common structural shocks, via
"pool’ for the pooled shocks by Herwartz and Wang (2024) using a common ro-
tation matrix, or via *indiv’ for individual-specific B;V: using strictly separated
identification runs.

n.factors Integer. Number of common structural shocks across all individuals if the group

ICA is selected.

n.iterations  Integer. The maximum number of iterations in the ’steadyICA’ algorithm. The
default in "steadyICA’ is 100.

PIT Logical. If PIT="TRUE’, the distribution and density of the independent com-
ponents are estimated using Gaussian kernel density estimates.

Value

List of class ’pid’ with elements:

A Matrix. The lined-up coefficient matrices A;,j = 1,...,p for the lagged vari-
ables in the panel VAR.
B Matrix. Mean group of the estimated structural impact matrices B;, i.e. the

unique decomposition of the covariance matrices of reduced-form errors.

L.varx List of *varx’ objects for the individual estimation results to which the structural
impact matrices B; have been added.

epso Matrix. The combined whitened residuals €y to which the ICA procedure has
been applied subsequently. These are still the unrotated baseline shocks! NULL
if indiv’ identifications have been used.

ICA List of objects resulting from the underlying ICA procedure. NULL if *indiv’
identifications have been used.

rotation_angles
Numeric vector. The rotation angles suggested by the combined identification
procedure. NULL if *indiv’ identifications have been used.

args_pid List of characters and integers indicating the identification methods and specifi-
cations that have been used.

args_pvarx List of characters and integers indicating the estimator and specifications that
have been used.
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Notes on the Reproduction in ""Examples'

The reproduction of Herwartz and Wang (HW, 2024:630) serves as an exemplary application and
unit-test of the implementation by pvars. While vars’ VAR employs equation-wise 1m with the QR-
decomposition of the regressor matrix X, HW2024 and accordingly the reproduction by pvarx. VAR
both calculate X’ (X X’)~! for the multivariate least-squares estimation of A;. Moreover, both use
steadyICA for identification such that the reproduction result for the pooled rotation matrix Q is
close to HW2024, the mean absolute difference between both 4x4 matrices is less than 0.0032.
Note that the single EA-Model is estimated and identified the same way, which can be extracted as
a separate "varx’ object from the trivial panel object by $L.varx[[1]] and even bootstrapped by
sboot . mb.

Some differences remain such that the example does not exactly reproduce the results in HW2024.
To account for the n exogenous and deterministic regressors in slot $D, pvarx. VAR calculates >, ;
with the degrees of freedom T' — Kp; — n instead of HW2024’s T' — Kp; — 1. Moreover, the
confidence bands for the IRF are based on pvars’ panel moving-block- instead of HW2024’s wild
bootstrap. The responses of real GDP and of inflation are not scaled by 0.01, unlike in HW2024.
Note that both bootstrap procedures keep D fixed over their iterations.

References

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001): "A Method for Making Group In-
ferences from Functional MRI Data using Independent Component Analysis", Human Brain Map-
ping, 16, pp. 673-690.

Comon, P. (1994): "Independent Component Analysis: A new Concept?", Signal Processing, 36,
pp. 287-314.

Herwartz, H., and Wang, S. (2024): "Statistical Identification in Panel Structural Vector Autore-

gressive Models based on Independence Criteria", Journal of Applied Econometrics, 39 (4), pp.
620-639.

Matteson, D. S., and Tsay, R. S. (2017): "Independent Component Analysis via Distance Covari-
ance", Journal of the American Statistical Association, 112, pp. 623-637.

Risk, B., Matteson, D. S., Ruppert, D., Eloyan, A., and Caffo, B. S. (2014): "An Evaluation of
Independent Component Analyses with an Application to Resting-State fMRI", Biometrics, 70, pp.
224-236.

Szekely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007): "Measuring and Testing Dependence by
Correlation of Distances", Annals of Statistics, 35, pp. 2769-2794.

See Also

Other panel identification functions: pid.chol(), pid.cvm(), pid.grt(), pid.iv()

Examples

#i## replicate Herwartz,Wang 2024:630, Ch.4 #i##

# select minimal or full example #
is_min = TRUE

n.boot = ifelse(is_min, 5, 1000)
idx_i ifelse(is_min, 1, 1:14)
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# load and prepare data #
data(”EURO™)
names_i = names(EURO[idx_i+1]) # country names (#1 is EA-wide aggregated data)

names_s = paste@("epsilon[ ", c(1:2, "m", "f"), " 1") # shock names
idx_k = 1:4 # endogenous variables in individual data matrices
idx_t = 1:(nrow(EUROL[1]11)-1) # periods from 2001Q1 to 2019Q4

trend2 = idx_t*2

# panel SVARX model, Ch.4.1 #

L.data = lapply(EURO[idx_i+1], FUN=function(x) x[idx_t, idx_k1)

L.exog = lapply(EURO[idx_i+1], FUN=function(x) cbind(trend2, x[idx_t, 5:101))
R.lags = ¢(1,2,1,2,2,2,2,2,1,2,2,2,2,1)[idx_i]; names(R.lags) = names_i
R.pvar = pvarx.VAR(L.data, lags=R.lags, type="both"”, D=L.exog)

R.pid = pid.dc(R.pvar, combine="pool")

print(R.pid) # suggests e3 and e4 to be MP and financial shocks, respectively.
colnames(R.pid$B) = names_s # accordant labeling

# EA-wide SVARX model, Ch.4.2 #

R.data = EURO[[1]]1[idx_t, idx_kJ

R.exog = cbind(trend2, EURO[[1]][idx_t, 5:61)

R.varx = pvarx.VAR(list(EA=R.data), lags=2, type="both", D=list(EA=R.exog))
R.id = pid.dc(R.varx, combine="indiv")$L.varx$EA

colnames(R.1id$B) = names_s # labeling

# comparison of IRF without confidence bands, Ch.4.3.1 #
data(”"EU_w") # GDP weights with the same ordering names_i as L.varx in R.pid
R.norm = function(B) B / matrix(diag(B), nrow(B), ncol(B), byrow=TRUE) * 25
R.irf = as.pplot(
EA=plot(irf(R.id, normf=R.norm), selection=list(idx_k, 3:4)),
MG=plot(irf(R.pid, normf=R.norm, w=EU_w), selection=list(idx_k, 3:4)),
color_g=c("#3B4992FF", "#0Q8B45FF"), shape_g=16:17, n.rows=length(idx_k))
plot(R.irf)

# comparison of IRF with confidence bands, Ch.4.3.1 #

.boot_EA = sboot.mb(R.id, b.length=8, n.boot=n.boot, n.cores=2, normf=R.norm)

R.boot_MG = sboot.pmb(R.pid, b.dim=c(8, FALSE), n.boot=n.boot, n.cores=2,
normf=R.norm, w=EU_w)

o)

R.irf = as.pplot(
EA=plot(R.boot_EA, lowerq=0.16, upperq=0.84, selection=list(idx_k, 3:4)),
MG=plot(R.boot_MG, lowerg=0.16, upperqg=0.84, selection=list(idx_k, 3:4)),
color_g=c("#3B4992FF", "#0Q0Q8B45FF"), shape_g=16:17, n.rows=length(idx_k))
plot(R.irf)

pid.grt Identification of panel SVEC models by imposing long- and short-run
restrictions
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Description
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Identifies a panel of SVEC models by utilizing a scoring algorithm to impose long- and short-run
restrictions. See the details of SVEC in vars.

Usage

pid.grt(
X’

LR = NULL,

SR = NULL,
start = NULL,
100,

max.iter

conv.crit = 1e-07,

maxls = 1

Arguments

X

LR

SR

start
max.iter
conv.crit

maxls

Value

An object of class ’pvarx’ or a list of VECM objects that will be coerced to
’varx’. Panel of VAR objects estimated under rank-restriction.

Matrix. The restricted long-run impact matrix.

Matrix. The restricted contemporaneous impact matrix.

Vector. The starting values for ~y, set by rnorm if NULL (the default).
Integer. The maximum number of iterations.

Real number. Convergence value of algorithm.

Real number. Maximum movement of the parameters between two iterations of
the scoring algorithm.

List of class ’pid’ with elements:

A

L.varx

args_pid

args_pvarx

Matrix. The lined-up coefficient matrices A;,7 = 1,...,p or the lagged vari-
ables in the panel VAR.

Matrix. Mean group of the estimated structural impact matrices B;, i.e. the
unique decomposition of the covariance matrices of reduced-form errors.

List of *varx’ objects for the individual estimation results to which the structural
impact matrices B; have been added.

List of characters and integers indicating the identification methods and specifi-
cations that have been used.

List of characters and integers indicating the estimator and specifications that
have been used.
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References

pid.iv

Amisano, G. and Giannini, C. (1997): Topics in Structural VAR Econometrics, Springer, 2nd ed.

Breitung, J., Brueggemann R., and Luetkepohl, H. (2004): "Structural Vector Autoregressive Mod-
eling and Impulse Responses", in Applied Time Series Econometrics, ed. by H. Luetkepohl and M.

Kraetzig, Cambridge University Press, Cambridge.

Johansen, S. (1996): Likelihood-Based Inference in Cointegrated Vector Autoregressive Models,

Advanced Texts in Econometrics, Oxford University Press, USA.

Luetkepohl, H. (2005): New Introduction to Multiple Time Series Analysis, Springer, 2nd ed.

Pfaff, B. (2008): "VAR, SVAR and SVEC Models: Implementation within R Package vars", Jour-

nal of Statistical Software, 27, pp. 1-32.

See Also

...the original SVEC by Pfaff (2008) in vars. Note that pid. grt relies on this underlying procedure,
but allows for the additional model specifications in pvarx.VEC and for the bootstrap procedures in

sboot. pmb, both provided by the pvars package.

Other panel identification functions: pid.chol(), pid.cvm(), pid.dc(), pid.iv()

Examples

data("PCAP")

names_k = c("g", "k", "1", "y") # variable names
names_i = levels(PCAP$id_i) # country names
names_s = NULL # optional shock names

L.data = sapply(names_i, FUN=function(i)
ts(PCAP[PCAP$id_i==i, names_k], start=1960, end=2019, frequency=1),
simplify=FALSE)

# colnames of the restriction matrices are passed as shock names #
SR = matrix(NA, nrow=4, ncol=4, dimnames=list(names_k, names_s))
SR[1, 2] =0

SR[3, 41 =0

LR = matrix(NA, nrow=4, ncol=4, dimnames=list(names_k, names_s))
LRLC , 3:41 =0

# estimate and identify panel SVECM #
R.pvec = pvarx.VEC(L.data, lags=2, dim_r=2, type="Case4")
R.pid = pid.grt(R.pvec, LR=LR, SR=SR)

pid.iv Identification of panel SVAR models by means of proxy variables
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Description

Given an estimated panel of VAR models, this function applies independence-based identification
for the structural impact matrix B; of the corresponding SVAR model

Yit = Cit + A1¥ip—1+ .. + Ai p, Vi t—p, + Uit

=ci + An¥ir—1+ .. + Aip,Yit—p;, + Bicit.

In general, identification procedures determine B; up to column ordering, scale, and sign. For a
unique solution, pid. iv follows the literature on proxy SVAR. The S columns in B; = [B; 1 : B; 2]
of the identified shocks €;;5, s = 1,..., S, are ordered first, and the variance 06211»8 = 1 is normalized
to unity (see e.g. Lunsford 2015:6, Eq. 9). Further, the sign is fixed to a positive correlation between
proxy and shock series. A normalization of the impulsed shock that may fix the size of the impact

response in the IRF can be imposed subsequently via 'normf” in irf.pvarx and sboot. pmb.

Usage

pid.iv(
X,
iv,
S2 = c("MR", "JL", "NQ"),
cov_u = "OMEGA",
RO = NULL,
combine = c("pool”, "indiv")

Arguments

X An object of class *pvarx’ or a list of VAR objects that will be coerced to varx’.
Estimated panel of VAR objects.

iv List. A single *data.frame’ of the L common proxy time series m; or a list of
N ’data.frame’ objects of the L individual proxy time series m;;. The proxies
must have the same succession [ = 1,..., L in each individual 'data.frame’.

S2 Character. Identification within multiple proxies m;; via ’MR’ for lower-triangular
s : —BLHB;llQ]BM by Mertens, Ravn (2013), via’JL’ for chol(Emu’iZ;iEumﬁi)
by Jentsch, Lunsford (2021), or via ’NQ’ for the nearest orthogonal matrix from
svd decomposition by Empting et al. (2025). In case of S = L = 1 proxy, all
three choices provide identical results on B; ;. In case of combine="pool', the
argument is automatically fixed to ’NQ’.

cov_u Character. Selection of the estimated residual covariance matrices ﬁ]m to be
used in the identification procedure. Either 'OMEGA' (the default) for Ui U 1T
as used in Mertens, Ravn (2013) and Jentsch, Lunsford (2021) or 'SIGMA' for
02- U{ /(T;—n;), which corrects for the number of regressors n..;. Both character
options refer to the name of the respective estimate in the *varx’ objects.

RO Matrix. A (L x S) selection matrix for 'NQ’ that governs the attribution of the L
proxies to their specific S structural shock series. If NULL (the default), R0 = Ig
will be used such that the S = L columns of B; ; are one-by-one estimated from
the S = L proxy series *iv’ available.
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combine

Value

pid.iv

Character. The combination of the individual reduced-form residuals via ’pool’
for the pooled shocks by Empting et al. (2025) using a common orthogonal
matrix or via ’indiv’ for individual-specific B;Vi using strictly separated iden-
tification runs.

List of class ’pid’ with elements:

A

L.varx

epso

args_pid

args_pvarx

References

Matrix. The lined-up coefficient matrices A;,j = 1,...,p for the lagged vari-
ables in the panel VAR.

Matrix. Mean group of the estimated structural impact matrices B;, i.e. the
unique decomposition of the covariance matrices of reduced-form errors.

List of *varx’ objects for the individual estimation results to which the structural
impact matrices B; have been added.

Matrix. The combined whitened residuals € to which the pooled identification
procedure has been applied subsequently. These are still the unrotated baseline
shocks! NULL if *indiv’ identifications have been used.

Matrix. The orthogonal matrix suggested by the pooled identification procedure.
NULL if *indiv’ identifications have been used.

List of characters and integers indicating the identification methods and specifi-
cations that have been used.

List of characters and integers indicating the estimator and specifications that
have been used.

Mertens, K., and Ravn, M. O. (2013): "The Dynamic Effects of Personal and Corporate Income
Tax Changes in the United States", American Economic Review, 103, pp. 1212-1247.

Jentsch, C., and Lunsford, K. G. (2019): "The Dynamic Effects of Personal and Corporate Income
Tax Changes in the United States: Comment", American Economic Review, 109, pp. 2655-2678.

Jentsch, C., and Lunsford, K. G. (2021): "Asymptotically Valid Bootstrap Inference for Proxy
SVARSs", Journal of Business and Economic Statistics, 40, pp. 1876-1891.

Empting, L. F. T., Maxand, S., Oeztuerk, S., and Wagner, K. (2025): "Inference in Panel SVARs
with Cross-Sectional Dependence of Unknown Form".

See Also

Other panel identification functions: pid.chol(), pid.cvm(), pid.dc(), pid.grt()

Examples

data("PCIT")

c("APITR", "ACITR", "PITB"”, "CITB", "GOV", "RGDP", "DEBT")
c("m_PI", "m_CI") # proxy names

pasted("epsilon[ ", c("PI", "CI"), " 1") # shock names

4 # lag-order

names_k
names_1
names_s
dim_p
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# estimate and identify panel SVAR #

L.vars =
L.iv
R.pid =

list(USA = vars::VAR(PCIT[ , names_k], p=dim_p, type="const"))
list(USA = PCIT[-(1:dim_p), names_11)
pid.iv(L.vars, iv=L.iv, S2="NQ", cov_u="SIGMA", combine="pool")

colnames(R.pid$B)[1:2] = names_s # labeling

PP

Persistence Profiles

Description

Calculates persistence profiles for each of the r long-run relationships.

Usage

PP.system(x, n.ahead = 20)

PP.variable(x, n.ahead = 20, shock = NULL)

Arguments

X

n.ahead

shock

Value

Rank-restricted VAR object of class ’varx’ or any other that can be coerced to
varx’, e.g. vec2var’. If the object is also of child class *id’, PP.variable
calculates the persistence profiles which are initiated by the provided structural
shocks.

Integer. Number of periods to consider after the initial impulse, i.e. the horizon
of the PP.

Matrix. Each column vector specifies a set of simultaneous shocks, which initi-
ate r persistence profiles. If NULL (the default), a separate unit impulse is set for
each shock.

A list of class *svarirf’ holding the persistence profiles as a ’data.frame’.

Functions

* PP.system(): PP due to a system-wide shock

e PP.variable(): PP due to a structural or variable-specific shock

References

Lee, K., C., Pesaran, M. H. (1993): "Persistence Profiles and Business Cycle Fluctuations in a
Disaggregated Model of UK Output Growth", Richerche Economiche, 47, pp. 293-322.

Pesaran, M. H., and Shin, Y. (1996): "Cointegration and Speed of Convergence to Equilibrium",
Journal of Econometrics, 71, pp. 117-143.
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Examples

data("PCAP")

names_k = c("g", "k", "1", "y") # variable names
names_i = levels(PCAP$id_i) # country names
L.data = sapply(names_i, FUN=function(i)
ts(PCAP[PCAP$id_i==i, names_k], start=1960, end=2019, frequency=1),

simplify=FALSE)

# estimate VAR for DNK under rank-restriction r=2 #

dim_r = 2 # cointegrataion rank

R.t_D1 list(t_break=c(23, 49)) # trend breaks

R.vecm = VECM(y=L.data$DNK, dim_p=2, dim_r=dim_r, type="Case4”, t_D1=R.t_D1)

# define shocks #

shockl = diag(4) # 4 separate shocks

shock2 = cbind(c(1, @, @, @), # positive shock on "g"
c(0, o, -1, @), # negative shock on "1"
c(@, 9, 1, 1)) # simultaneous shocks

# calculate persistence profiles #

R.ppvl = PP.variable(R.vecm, n.ahead=50, shock=shockl)
R.ppv2 = PP.variable(R.vecm, n.ahead=50, shock=shock2)
R.ppsy = PP.system(R.vecm, n.ahead=50)

# edit plots #

library("ggplot2")

as.pplot(ppvi=plot(R.ppv1), n.rows=4)$F.plot + guides(color="none")
as.pplot(ppv2=plot(R.ppv2), n.rows=3, color_g="black"”) # reshape facet array
plot(R.ppsy, selection=list(1, c(1,4))) # dismiss cross-term PP

pvars pvars: VAR Modeling for Heterogeneous Panels

Description

This package implements (1) panel cointegration rank tests, (2) estimators for panel vector autore-
gressive (VAR) models, and (3) identification methods for panel structural vector autoregressive
(SVAR) models as described in the accompanying vignette. The implemented functions allow to
account for cross-sectional dependence and for structural breaks in the deterministic terms of the
VAR processes.

Details

(1) The panel functions to determine the cointegration rank are:

* pcoint.JO panel Johansen procedures,
* pcoint.BR panel test with pooled two-step estimation,

* pcoint.SL panel Saikkonen-Luetkepohl procedures,
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e pcoint.CAIN correlation-augmented inverse normal test.
(2) The panel functions to estimate the VAR models are:

* pvarx.VAR mean-group of a panel of VAR models,
* pvarx.VEC pooled cointegrating vectors in a panel VECM.
(3) The panel functions to retrieve structural impact matrices are:
* pid.chol identification of panel SVAR models using Cholesky decomposition to impose re-
cursive causality,
* pid.grt identification of panel SVEC models by imposing long- and short-run restrictions,
* pid.iv identification of panel SVAR models by means of proxy variables,

* pid.dc independence-based identification of panel SVAR models using distance covariance
(DC) statistic,

* pid.cvm independence-based identification of panel SVAR models using Cramer-von Mises
(CVM) distance.

Supporting tools, such as the specification functions (speci. VAR, speci.factors) and the panel
block bootstrap procedure (sboot.pmb), complement the panel VAR functions and complete this
coherent approach to VAR modeling for heterogeneous panels within the vars ecosystem. The
provided data sets further allow for the exact replication of the implemented literature.

Author(s)

Lennart Empting <lennart.empting@vwl.uni-due.de> (ORCID: 0009-0004-5068-4639)

See Also

Useful links:

* https://github.com/Lenni89/pvars
* Report bugs at https://github.com/Lenni89/pvars/issues

pvarx Estimation of VAR models for heterogeneous panels

Description

Performs the (pooled) mean-group estimation of a panel VAR model. First, VAR models are esti-
mated for all N individual entities. Then, their (pooled) mean-group estimate is calculated for each
coefficient.


https://orcid.org/0009-0004-5068-4639
https://github.com/Lenni89/pvars
https://github.com/Lenni89/pvars/issues
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Usage

pvarx.VAR(
L.data,
lags,

pvarx

type = c("const”, "trend”, "both”, "none"),

t_D = NULL,

D = NULL,
n.factors

FALSE,

n.iterations = FALSE

)

pvarx.VEC(
L.data,
lags,
dim_r,

type = c("Casel”, "Case2", "Case3", "Cased4”, "Caseb"),

t_D1

D1 = NULL,
D2 = NULL,

NULL,
t_D2 = NULL,

idx_pool = NULL,

n.factors

n.iterations

Arguments

L.data

lags

type
t_D

n.factors

n.iterations

dim_r

FALSE,
= FALSE

List of "data.frame’ objects for each individual. The variables must have the
same succession £ = 1,..., K in each individual data. frame’.

Integer or vector of integers. Lag-order of the VAR models in levels, which is
either a common p for all individuals or individual-specific p; for each individ-
ual. In the vector, p; must have the same succession ¢ = 1,..., N as argument
L.data’.

Character. The conventional case of the deterministic term.

List of vectors. The activating break periods 7 for the period-specific determin-
istic regressors in d;; of the VAR model in levels.

List. A single *data.frame’ of common deterministic regressors or a list of
N ’data.frame’ objects of the individual deterministic regressors added to d;;.
These customized regressors correspond to ’exogen’ in vars’ VAR, which is fixed
over bootstrap iterations.

Integer. Number of common factors to be used for SUR. Deactivated if FALSE
(the default).

Integer. The (maximum) number of iterations for the estimation of SUR resp.
the pooled cointegrating vectors.

Integer. Common cointegration-rank r of the VECM.
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t_D1

t_D2

D1

D2

idx_pool

Value
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List of vectors. The activating break periods 7 for the period-specific determin-
istic regressors in d; ;+, which are restricted to the cointegration relations. Just
as in pcoint, the accompanying lagged regressors are automatically included in
da it

List of vectors. The activating break periods 7 for the period-specific determin-
istic regressors in dg ;;, which are unrestricted.

List. A single data.frame’ of common deterministic regressors regressors or
a list of IV ’data.frame’ objects of individual deterministic regressors added
to d 4+, which are restricted to the cointegration relations. Unlike *t_D1’, these
customized regressors require potential accompanying lagged regressors to be
manually included in ds ;;

List. A single ’data.frame’ of common deterministic regressors or a list of
N ’data.frame’ objects of individual deterministic regressors added to dg ¢,
which are unrestricted. These customized regressors correspond to dumvar’ in
urca’s ca. jo, which is fixed over bootstrap iterations.

Vector. Position £ = 1,..., K + n; of each variable to be pooled using the
two-step estimator by Breitung (2005). The integer vector specifies throughout
heterogeneous coefficients up to the uniform upper block I, estimated with the
individual estimator by Ahn and Reinsel (1990) if exclusively in the interval
[0, ..., r]. Deactivated if NULL (the default).

A list of class ’pvarx’ with the elements:

A

B
beta

L.varx
L.data
CSD

args_pvarx

Functions

Matrix. The lined-up coefficient matrices A;,j = 1,...,p for the lagged vari-
ables in the panel VAR estimated by mean-group.

Matrix. Placeholder for the structural impact matrix.

Matrix. The ((K + ng1) X r) cointegrating matrix of the VAR model if trans-
formed from a rank-restricted VECM.

List of "varx’ objects for the individual estimation results.
List of "data. frame’ objects for each individual.

List of measures for cross-sectional dependency. NULL if the individual VAR
models have been estimated under independence.

List of characters and integers indicating the estimator and specifications that
have been used.

* pvarx.VAR(): Mean Group (MG) of VAR models in levels.
* pvarx.VEC(): (Pooled) Mean Group (PMG) of VECM.

References

Canova, F., and Ciccarelli, M. (2013): "Panel Vector Autoregressive Models: A Survey", Advances
in Econometrics, 32, pp. 205-246.
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Hsiao, C. (2014): Analysis of Panel Data, Econometric Society Monographs, Cambridge University
Press, 3rd ed.

Luetkepohl, H. (2005): New Introduction to Multiple Time Series Analysis, Springer, 2nd ed.

Pesaran, M. H., and Smith R. J. (1995): "Estimating Long-Run Relationships from Dynamic Het-
erogeneous Panels", Journal of Econometrics, 68, pp. 79-113.

Rebucci, A. (2010): "Estimating VARs with Long Stationary Heterogeneous Panels: A Comparison
of the Fixed Effect and the Mean Group Estimators", Economic Modelling, 27, pp. 1183-1198.

Ahn, S. K., and Reinsel (1990): "Estimation for Partially Nonstationary Multivariate Autoregressive
Models", Journal of the American Statistical Association, 85, pp. 813-823.

Breitung, J. (2005): "A Parametric Approach to the Estimation of Cointegration Vectors in Panel
Data", Econometric Reviews, 24, pp. 151-173.

Johansen, S. (1996): Likelihood-based Inference in Cointegrated Vector Autoregressive Models,
Advanced Texts in Econometrics, Oxford University Press, USA.

Pesaran, M. H., Shin, Y, and Smith R. J. (1999): "Pooled Mean Group Estimation of Dynamic
Heterogeneous Panels", Journal of the American Statistical Association, 94, pp. 621-634.

Examples

data("PCAP")

names_k = c("g", "k", "1", "y") # variable names
names_i = levels(PCAP$id_i) # country names
L.data = sapply(names_i, FUN=function(i)
ts(PCAP[PCAP$id_i==i, names_k], start=1960, end=2019, frequency=1),

simplify=FALSE)
R.lags = c(2, 4, 2, 3, 2, 4, 4, 2, 2, 3, 3, 3, 2, 4, 4, 2, 2,2, 4, 2, 2, 2, 4)
names(R.lags) = names_i

#i## MG of VAR by OLS #i##

R.t_D = list(t_shift=10) # common level shift for all countries
R.pvar = pvarx.VAR(L.data, lags=R.lags, type="both", t_D=R.t_D)

R.pirf = irf(R.pvar, n.ahead=50) # MG of individual forecast-error IRF
plot(R.pirf)

### Pooled MG of rank-restricted VAR ###

R.pvec = pvarx.VEC(L.data, lags=R.lags, dim_r=2, idx_pool=1:4, type="Case4")
R.pirf = irf(R.pvec, n.ahead=50) # MG of individual forecast-error IRF
plot(R.pirf)

rboot.normality Bootstrap for JB normality test

Description

Bootstraps the distribution of the Jarque-Bera test for individual VAR and VECM as described by
Kilian, Demiroglu (2000).
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Usage

rboot.normality(x, n.boot = 1000, n.cores = 1, fix_beta = FALSE)

Arguments
X VAR object of class ’varx’ or any other that will be coerced to *varx’.
n.boot Integer. Number of bootstrap iterations.
n.cores Integer. Number of allocated processor cores.
fix_beta Logical. If TRUE, the cointegrating vectors (3 are fixed over all bootstrap itera-
tions. Kilian and Demiroglu (2000:43) suggest this for VECM with known S.
Ignored in case of rank-unrestricted VAR.
Value

A list of class *rboot’ with elements:

sim Array of dimension (3 x (1 + K)X n.boot) containing the n.boot iteration
results for (i) the JB, skewness and kurtosis test and for (ii) the multivariate and
each univariate test for the K residual time series.

stats Matrix of dimension (3 x (1 + K)) containing the empirical test statistics.
pvals Matrix of dimension (3 x (1 + K)) containing the p-values.
varx Input VAR object of class 'varx’.
args_rboot List of characters and integers indicating the test and specifications that have
been used.
References

Jarque, C. M. and Bera, A. K. (1987): "A Test for Normality of Observations and Regression
Residuals", International Statistical Review, 55, pp. 163-172.

Kilian, L. and Demiroglu, U. (2000): "Residual-Based Tests for Normality in Autoregressions:
Asymptotic Theory and Simulation Evidence", Journal of Business and Economic Statistics, 32,
pp. 40-50.

See Also

...the normality.test by Pfaff (2008) in vars, which relies on theoretical distributions. Just
as this asymptotic version, the bootstrapped version is computed by using the residuals that are
standardized by a Cholesky decomposition of the residual covariance matrix. Therefore, the results
of the multivariate test depend on the ordering of the variables in the VAR model.

Examples

# select minimal or full example #
is_min = TRUE
n.boot = ifelse(is_min, 50, 5000)

# prepare the data, estimate and test the VAR model #



50 sboot.mb

set.seed(23211)

library("vars”

data("Canada")

exogen = cbind(qtrend=(1:nrow(Canada))*2) # quadratic trend

R.vars = VAR(Canada, p=2, type="both", exogen=exogen)

R.norm = rboot.normality(x=R.vars, n.boot=n.boot, n.cores=1)

# density plot #

library("ggplot2")

R.data = data.frame(t(R.norm$sim[ , "MULTI", 1))

R.args = list(df=2*R.vars$K)

F.density = ggplot() +
stat_density(data=R.data, aes(x=JB, color="bootstrap”), geom="line") +
stat_function(fun=dchisq, args=R.args, n=500, aes(color="theoretical”)) +
labs(x="JB statistic”, y="Density"”, color="Distribution”, title=NULL) +
theme_bw()

plot(F.density)

sboot.mb Bootstrap with residual moving blocks for individual SVAR models

Description

Calculates confidence bands for impulse response functions via recursive-design bootstrap.

Usage
sboot.mb(
X’
b.length = 1,
n.ahead = 20,
n.boot = 500,

n.cores = 1,
fix_beta = TRUE,
deltas = cumprod((100:0)/100),

normf = NULL
)
Arguments

X VAR object of class ’id’ or ’varx’ or any other that can be coerced to ’varx’,
e.g. 'svars’. If a bias term x$PSI_bc is available for coefficient matrix A (such
as in sboot2’), the bias-corrected second-step of the bootstrap-after-bootstrap
procedure by Kilian (1998) is performed.

b.length Integer. Length b(;) of each residual time series block, which is often set to

T/10.
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n.ahead

n.boot
n.cores

fix_beta

deltas

normf

Value
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Integer. Number of periods to consider after the initial impulse, i.e. the horizon
of the IRF.

Integer. Number of bootstrap iterations.
Integer. Number of allocated processor cores.

Logical. If TRUE (the default), the cointegrating vectors /3 are fixed over all
bootstrap iterations. Ignored in case of rank-unrestricted VAR. Use this for
VECM with known (3, too. Note that 3 is fixed in vars:::.bootsvec, but
notin vars:::.bootirfsvec orvars:::.bootirfvec2var.

Vector. Numeric weights J; that are successively multiplied to the bias estimate

U fora stationary correction. The default weights deltas = cumprod((100:0)/100)

correspond to the iterative correction procedure of Step 1b in Kilian (1998).
Choosing deltas = NULL deactivates the bootstrap-after-bootstrap procedure.

Function. A given function that normalizes the K x S input-matrix into an output
matrix of same dimension. See the example in id.iv for the normalization of
Jentsch and Lunsford (2021) that fixes the size of the impact response in the IRF.

A list of class sboot2’ with elements:

true
bootstrap
A

PSI_bc

varx

nboot
b_length
design
method

stars

References

Point estimate of impulse response functions.
List of length "n.boot’ holding bootstrap impulse response functions.

List for the VAR coefficients containing the matrix of point estimates par’ and
the array of bootstrap results *sim’.

List for the structural impact matrix containing the matrix of point estimates
’par’ and the array of bootstrap results sim’.

Matrix of the estimated bias term ¥ for the VAR coefficients A according to
Kilian (1998).

Input VAR object of class *varx’ that has been subjected to the first-step bias-
correction.

Number of correct bootstrap iterations.

Length of each block.

Character indicating that the recursive design bootstrap has been performed.
Used bootstrap method.

Matrix of (1'xn.boot) integers containing the 7" resampling draws from each
bootstrap iteration.

Breitung, J., Brueggemann R., and Luetkepohl, H. (2004): "Structural Vector Autoregressive Mod-
eling and Impulse Responses", in Applied Time Series Econometrics, ed. by H. Luetkepohl and M.
Kraetzig, Cambridge University Press, Cambridge.

Brueggemann R., Jentsch, C., and Trenkler, C. (2016): "Inference in VARs with Conditional Het-
eroskedasticity of Unknown Form", Journal of Econometrics, 191, pp. 69-85.
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Jentsch, C., and Lunsford, K. G. (2021): "Asymptotically Valid Bootstrap Inference for Proxy
SVARSs", Journal of Business and Economic Statistics, 40, pp. 1876-1891.

Kilian, L. (1998): "Small-Sample Confidence Intervals for Impulse Response Functions", Review
of Economics and Statistics, 80, pp. 218-230.

Luetkepohl, H. (2005): New Introduction to Multiple Time Series Analysis, Springer, 2nd ed.

See Also

mb.boot, irf, and the panel counterpart sboot.pmb.

Examples

# select minimal or full example #
is_min = TRUE
n.boot = ifelse(is_min, 5, 500)

# use 'b.length=1"' to conduct basic "vars"” bootstraps #

set.seed(23211)

data("”Canada")

R.vars = vars::VAR(Canada, p=2, type="const")

R.svar = svars::id.chol(R.vars)

R.boot = sboot.mb(R.svar, b.length=1, n.boot=n.boot, n.ahead=30, n.cores=1)
summary(R.boot, idx_par="A", level=0.9) # VAR coefficients with 90%-confidence intervals
plot(R.boot, lowerq = c(0.05, 0.1, @0.16), upperqg = c(0.95, 0.9, 0.84))

# second step of bootstrap-after-bootstrap #

R.bab = sboot.mb(R.boot, b.length=1, n.boot=n.boot, n.ahead=30, n.cores=1)

summary (R.bab, idx_par="A", level=0.9) # VAR coefficients with 90%-confidence intervals
plot(R.bab, lowerq = c(0.05, 0.1, 0.16), upperq = c(0.95, 0.9, 0.84))

# conduct bootstraps for Blanchard-Quah type SVAR from "vars” #

set.seed(23211)

data("Canada")

R.vars = vars::VAR(Canada, p=2, type="const")

R.svar = vars::BQ(R.vars)

R.boot = sboot.mb(R.svar, b.length=1, n.boot=n.boot, n.ahead=30, n.cores=1)

summary (R.boot, idx_par="B", level=0.9) # impact matrix with 90%-confidence intervals
plot(R.boot, lowerq = c(0.05, @0.1), upperq = c(0.95, 0.9), cumulative=2:3)

# impulse responses of the second and third variable are accumulated

# set 'args_id' to CvM defaults of "svars” bootstraps #
set.seed(23211)

data("USA")

R.vars = vars::VAR(USA, lag.max=10@, ic="AIC")

R.cob = copula::indepTestSim(R.vars$obs, R.vars$K, verbose=FALSE)
R.svar = svars::id.cvm(R.vars, dd=R.cob)

R.varx = as.varx(R.svar, dd=R.cob, itermax=300, steptol=200, iter2=50)
R.boot = sboot.mb(R.varx, b.length=15, n.boot=n.boot, n.ahead=30, n.cores=1)
plot(R.boot, lowerq = c(0.05, 0.1, ©0.16), upperq = c(0.95, 0.9, 0.84))
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sboot.mg Mean group inference for panel SVAR models

Description

Calculates confidence bands for impulse response functions via mean group inference. The function
does not perform bootstraps, but coerces the panel VAR object to class *sboot’ and, therewith, gives
a distributional overview on the parameter heterogeneity.

Usage
sboot.mg(x, n.ahead = 20, normf = NULL, idx_i = NULL)

Arguments
X Panel VAR object of class *pid’ or ’pvarx’ or a list of VAR objects that will be
coerced to ’varx’.
n.ahead Integer. Number of periods to consider after the initial impulse, i.e. the horizon
of the IRF.
normf Function. A given function that normalizes the K xS input-matrix into an output
matrix of same dimension. See the example in id. iv for the normalization of
Jentsch and Lunsford (2021) that fixes the size of the impact response in the IRF.
idx_i Logical or character vector. Names or N logical elements selecting a subset
from the individuals ¢ = 1, ..., N for the MG estimation. If NULL (the default),
all N individuals are included.
Details

MG inference presumes the individual estimates to be the empirical variation around a common
parameter. In case of heterogeneous lag-orders p;, specifically the *summary’ of VAR coefficient
matrices fills Aij = Ogxk for p; < j < maz(p1,...,pn) in accordance with the finite order
VAR(pi).

Value

A list of class sboot2’ with elements:

true Mean group estimate of impulse response functions.

bootstrap List of length NV holding the individual impulse response functions.

A List for the VAR coefficients containing the matrix of mean group estimates
’par’ and the array of individual results *sim’.

B List for the structural impact matrix containing the matrix of mean group esti-
mates ’par’ and the array of individual results *sim’.

pvarx Input panel VAR object of class "pvarx’.

nboot Integer ’0’ indicating that no bootstrap iteration has been performed.

method Method used for inference.
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References

sboot.pmb

Pesaran, M. H., and Smith R. J. (1995): "Estimating Long-Run Relationships from Dynamic Het-

erogeneous Panels", Journal of Econometrics, 68, pp. 79-113

See Also

For an actual panel bootstrap procedure see sboot . pmb.

Examples

data("PCA
names_k =
names_i =
L.data =

ts(PCAP[PCAP$id_i==i, names_k], start=1960, end=2019, frequency=1),

simplif
R.lags =
names(R.1
idx_nord

R.pvec =
R.pid
R.boot =

plot(R.boot, lowerqg=c(@, 0.25), upperqg=c(1, 0.75))

Pn)

C(”g", nkn’ nlu’ uyn) # variable names

levels(PCAP$id_i)

# country names

sapply(names_i, FUN=function(i)

y=FALSE)

c(2,4,2,3,2,4,4,2,2,3,3,3,2,4,4,2,2,2,4,2,2,2,4

ags) = names_i

= c("DNK”, "FIN", "ISL", "SWE")

pvarx.VEC(L.data, lags=R.lags, dim_r=2, type="Case4")

pid.chol(R.pvec)

sboot.mg(R.pid, idx_i=idx_nord)

summary(as.pvarx(R.pids$L.varx[idx_nordl))

# suppress imprecise results of restricted cointegrating coefficients #
dim_r = R.pvec$args_pvarx$dim_r
R.boot$beta$sim[ , 1:dim_r, ] = diag(dim_r)

summary (R.boot, idx_par="beta"”, level=0.95)

# for normalized beta

sboot.pmb

Bootstrap with residual panel blocks for panel SVAR models

Description

Calculates confidence bands for impulse response functions via recursive-design bootstrap.

Usage
sboot. pmb(
X7
b.dim = c(1, 1),
n.ahead = 20,
n.boot = 500,

n.cores = 1,
fix_beta = TRUE,

deltas = cumprod((100

:0)/100),
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normf = NULL,

w = NULL,

MG_IRF = TRUE
)

Arguments

X Panel VAR object of class *pid’ or ’pvarx’ or a list of VAR objects that will be
coerced to 'varx’. If a list x$L.PSI_bc of NV bias terms are available for the NV
coefficient matrices A; (such as in sboot2), the bias-corrected second-step of
the bootstrap-after-bootstrap procedure by Empting et al. (2025) is performed.

b.dim Vector of two integers. The dimensions (b(t), b(i)) of each residual panel block
for temporal and cross-sectional resampling. The default c(1, 1) specifies an
i.1.d. resampling in both dimensions, c(1, FALSE) a temporal resampling, and
c(FALSE, 1) a cross-sectional resampling. Integers > 1 assemble blocks of
consecutive residuals.

n.ahead Integer. Number of periods to consider after the initial impulse, i.e. the horizon
of the IRF.

n.boot Integer. Number of bootstrap iterations.
n.cores Integer. Number of allocated processor cores.

fix_beta Logical. If TRUE (the default), the cointegrating vectors [ are fixed over all
bootstrap iterations. Ignored in case of rank-unrestricted VAR. Use this for
VECM with known £, too. Note that 3 is fixed in vars:::.bootsvec, but
notin vars:::.bootirfsvec or vars:::.bootirfvec2var.

deltas Vector. Numeric weights §; that are successively multiplied to each bias esti-
mate \ill for a stationary correction. The default weights deltas = cumprod((100:0)/100)
correspond to the iterative correction procedure of Step 1b in Kilian (1998).
Choosing deltas = NULL deactivates the bootstrap-after-bootstrap procedure.

normf Function. A given function that normalizes the K x.S input-matrix into an output
matrix of same dimension. See the example in id.iv for the normalization of
Jentsch and Lunsford (2021) that fixes the size of the impact response in the IRF.

w Numeric, logical, or character vector. N numeric elements weighting the indi-
vidual coefficients, or names or N logical elements selecting a subset from the
individuals © = 1,..., N for the MG estimation. If NULL (the default), all NV
individuals are included without weights.

MG_IRF Logical. If TRUE (the default), the mean-group of individual IRF is calculated in
accordance with Gambacorta et al. (2014). If FALSE, the IRF is calculated for
the mean-group of individual VAR estimates.

Details

In case of heterogeneous lag-orders p; or sample sizes Tj, the initial periods are fixed in accordance
with the usage of presamples. Only the (K X T,,;, X N) array of the T,,;, = min(T1,...,Tn)
last residuals is resampled.
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Value

sboot.pmb

A list of class sboot2’ with elements:

true
bootstrap

A

L.PSI_bc

pvarx

b.dim
nboot
design
method

stars_t

stars_i

References

Mean group estimate of impulse response functions.
List of length nboot holding bootstrap impulse response functions.

List for the VAR coefficients containing the matrix of point estimates "par’ and
the array of bootstrap results sim’.

List for the structural impact matrix containing the matrix of point estimates
’par’ and the array of bootstrap results *sim’.

List of the NV estimated bias terms \i/i for the individual VAR coefficients AZ-
according to Kilian (1998).

Input panel VAR object of class "pvarx’ that has been subjected to the first-step
bias-correction.

Dimensions of each block.

Number of correct bootstrap iterations.

Character indicating that the recursive design bootstrap has been performed.
Used bootstrap method.

Matrix of (1T'xn.boot) integers containing the 7' temporal resampling draws
from each bootstrap iteration.

Matrix of (/N xn.boot) integers containing the /N cross-sectional resampling
draws from each bootstrap iteration.

Brueggemann R., Jentsch, C., and Trenkler, C. (2016): "Inference in VARs with Conditional Het-
eroskedasticity of Unknown Form", Journal of Econometrics, 191, pp. 69-85.

Empting, L. F. T., Maxand, S., Oeztuerk, S., and Wagner, K. (2025): "Inference in Panel SVARs
with Cross-Sectional Dependence of Unknown Form".

Kapetanios, G. (2008): "A Bootstrap Procedure for Panel Data Sets with many Cross-sectional
Units", The Econometrics Journal, 11, pp.377-395.

Kilian, L. (1998): "Small-Sample Confidence Intervals for Impulse Response Functions”, Review
of Economics and Statistics, 80, pp. 218-230.

Gambacorta L., Hofmann B., and Peersman G. (2014): "The Effectiveness of Unconventional Mon-
etary Policy at the Zero Lower Bound: A Cross-Country Analysis", Journal of Money, Credit and
Banking, 46, pp. 615-642.

See Also

For the the individual counterpart see sboot.mb.
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Examples

# select minimal or full example #
is_min = TRUE
n.boot = ifelse(is_min, 5, 500)

# prepare data panel #

data("PCAP")

names_k = c("g", "k", "1", "y") # variable names

names_i = levels(PCAP$id_i) # country names

L.data = sapply(names_i, FUN=function(i)
ts(PCAP[PCAP$id_i==i, names_k], start=1960, end=2019, frequency=1),
simplify=FALSE)

R.lags = c(2, 4, 2, 3, 2, 4, 4, 2,2, 3,3, 3,2, 4, 4,2,2,2,4,2,2,2,4)

names(R.lags) = names_i

# estimate, identify, and bootstrap #

R.pvar = pvarx.VAR(L.data, lags=R.lags, type="both")

R.pid pid.chol(R.pvar)

R.boot = sboot.pmb(R.pid, n.boot=n.boot)

summary (R.boot, idx_par="A", level=0.95) # VAR coefficients with 95%-confidence intervals
plot(R.boot, lowerq = c(0.05, 0.1, @0.16), upperqg = c(0.95, 0.9, 0.84))

# second step of bootstrap-after-bootstrap #

R.bab = sboot.pmb(R.boot, n.boot=n.boot)

summary (R.bab, idx_par="A", level=0.95) # VAR coefficients with 95%-confidence intervals
plot(R.bab, lowerq = c(0.05, 0.1, 0.16), upperq = c(0.95, 0.9, 0.84))

speci.factors Criteria on the number of common factors

Description

Determines the number of factors in an approximate factor model for a data panel, where both
dimensions (T' x K N) are large, and calculates the factor time series and corresponding list of N
idiosyncratic components. See Corona et al. (2017) for an overview and further details.

Usage
speci.factors(
L.data,
k_max = 20,

n.iterations = 4,
differenced = FALSE,
centered = FALSE,
scaled = FALSE,
n.factors = NULL
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Arguments

L.data

k_max
n.iterations

differenced

centered

scaled

n.factors

Details

speci.factors

List of IV data. frame objects each collecting the K; time series along the rows
t=1,...,T. The Zf\il K, = NK time series are immediately combined into
the T x K N data panel X.

Integer. The maximum number of factors to consider.
Integer. Number of iterations for the Onatski criterion.

Logical. If TRUE, each time series of the panel X is first-differenced prior to any
further transformation. Thereby, all criteria are calculated as outlined by Corona
etal. (2017).

Logical. If TRUE, each time series of the panel X is centered.

Logical. If TRUE, each time series of the panel X is scaled. Thereby, the PCA is
applied via the correlation matrix instead of the covariance matrix of X.

Integer. A presumed number of factors under which the idiosyncratic component
L.idio is calculated. Deactivated if NULL (the default).

If differenced is TRUE, the approximate factor model is estimated as proposed by Bai, Ng (2004).
If all data transformations are selected, the estimation results are identical to the objects in $CSD for
PANIC analyses in ’pcoint’ objects.

Value

A list of class *speci’, which contains the elements:

eigenvals

Ahn

Onatski

Bai

selection

Ft
LAMBDA

L.idio

args_speci

Data frame. The eigenvalues of the PCA, which have been used to calculate the
criteria, and their respective share on the total variance in the data panel.

Matrix. The eigenvalue ratio ER(k) and growth rate G R(k) by Ahn, Horenstein
(2013) for k = 0, . .. ,k_max factors.

Matrix. The calibrated threshold § and suggested number of factors 7(J) by
Onatski (2010) for each iteration.

Array. The values of the criteria PC(k), IC(k), and IPC(k) with penalty
weights pl, p2, and p3 for k = 0, ... ,k_max factors.

List of the optimal number of common factors: (1) A matrix of k* which min-
imizes each information criterion with each penalty weight. (2) A vector of k*
which maximizes ER and GR respectively. ED denotes the result by Onatski’s
(2010) "edge distribution" after convergence.

Matrix. The common factors of dimension (7'x n.factors) estimated by PCA.
Matrix. The loadings of dimension (K N x n.factors) estimated by OLS.

List of NV data.frame objects each collecting the K; idiosyncratic series €;;
along the rows ¢t = 1,...,T. The series é;; are given in levels and may contain
a deterministic component with (1) the initial é;; being non-zero and (2) re-
accumulated means of the the first-differenced series.

List of characters and integers indicating the specifications that have been used.
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References

Ahn, S., and Horenstein, A. (2013): "Eigenvalue Ratio Test for the Number of Factors", Economet-
rica, 81, pp. 1203-1227.

Bai, J. (2004): "Estimating Cross-Section Common Stochastic Trends in Nonstationary Panel Data",
Journal of Econometrics, 122, pp. 137-183.

Bai, J., and Ng, S. (2002): "Determining the Number of Factors in Approximate Factor Models",
Econometrica, 70, pp. 191-221.

Bai, J., and Ng, S. (2004): "A PANIC Attack on Unit Roots and Cointegration", Econometrica, 72,
pp- 1127-117.

Corona, F., Poncela, P., and Ruiz, E. (2017): "Determining the Number of Factors after Stationary
Univariate Transformations", Empirical Economics, 53, pp. 351-372.

Onatski, A. (2010): "Determining the Number of Factors from Empirical Distribution of Eigenval-
ues", Review of Econometrics and Statistics, 92, pp. 1004-1016.

See Also

Other specification functions: speci.VAR()

Examples

### reproduce Oersal,Arsova 2017:67, Ch.5 #it#

data("MERM")

names_k = colnames(MERM)[-(1:2)] # variable names

names_i = levels(MERM$id_i) # country names

L.data = sapply(names_i, FUN=function(i)
ts(MERM[MERM$id_i==i, names_k], start=c(1995, 1), frequency=12),
simplify=FALSE)

R.facl = speci.factors(L.data, k_max=20, n.iterations=4)
R.fac@ = speci.factors(L.data, k_max=20, n.iterations=4,
differenced=TRUE, centered=TRUE, scaled=TRUE, n.factors=8)

# scree plot #

library("ggplot2")

pal = c("#999999", RColorBrewer: :brewer.pal(n=8, name="Spectral”))

1vl = levels(R.fac@$eigenvals$scree)

F.scree = ggplot(R.fac@$eigenvals[1:20, J) +
geom_col (aes(x=n, y=share, fill=scree), color="black”, width=0.75) +
scale_fill_manual(values=pal, breaks=1lvl, guide="none") +
labs(x="Component number”, y="Share on total variance”, title=NULL) +
theme_bw()

plot(F.scree)

# factor plot (comp. Oersal,Arsova 2017:71, Fig.4) #

library("ggfortify")

Ft = ts(R.fac@$Ft, start=c(1995, 1), frequency=12)

F.factors = autoplot(Ft, facets=FALSE, size=1.5) +
scale_color_brewer(palette="Spectral”) +
labs(x="Year"”, y=NULL, color="Factor”, title=NULL) +
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theme_bw()
plot(F.factors)

speci.VAR Criteria on the lag-order and break period(s)

Description

Determines the lag-order p and break period(s) 7 jointly via information criteria on the OLS-
estimated VAR model for a given number of breaks. These m breaks are common to all K equations
of the system and partial, as pertaining the deterministic term only.

Usage
speci.VAR(
X,
lag_set = 1:10,
dim_m = FALSE,
trim = 0.15,
type_break = "const",
add_dummy = FALSE,
n.cores = 1
)
Arguments
X VAR object of class 'varx’ or any other that will be coerced to *varx’. Specif-
ically for vars’ VAR, use p =min(lag_set) or simply p=1 such that the cus-
tomized $D from the coerced ’varx’ object contains no NA in the effective sam-
ple.
lag_set Vector. Set of candidates for the lag-order p. If only a single integer is provided,
the criteria just reflect the variation of det(U-U;) uniformly and determine the
break period(s) 7 unanimously as 7 = arg min det(U, U ) under the given p.
dim_m Integer. Number of breaks in the deterministic term to consider. If FALSE (the
default), the criteria determine only the lag-order p just like vars’ VARselect.
trim Numeric. Either a numeric value h € (pyq./T, 1/m) that defines the minimal
fraction relative to the total sample size 7" or an integer that defines the minimal
number of observations in each sub-sample. For example, h = 0.15 (the default)
specifies the window [0.15- T, 0.85- T'] that is often used as the set of candidates
for m = 1 single period 7.
type_break Character. Whether the m common breaks pertain the *const’ (the default), the
linear *trend’, or ’both’. Adds the period-specific deterministic term activated
during 7.
add_dummy Logical. If TRUE (not the default), accompanying impulse dummies activated in

7+ (0,...,p— 1) are added to each break.
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n.cores Integer. Number of allocated processor cores. Note that parallel processing is
exclusively activated for the combined determination of lag-order p and break
period(s) T only.
Details

The literature on structural breaks in time series deals mostly with the determination of the number
m and position 7 of breaks (e.g. Bai, Perron 1998 and 2003), but leaves the lag-order p aside.
For example, under a given p, Luetkepohl et al. (2004) use a full-rank VAR in levels to determine
m = 1 common break period 7 and subsequently perform cointegration analysis with coint.SL
(which actually provides p-values for up to m = 2). Note yet that the lag-order of a VECM is
usually determined via information criteria of a full-rank VAR in levels alike.

speci. VAR combines Bai, Perron (2003) and Approach 3 of Yang (2002) into a global minimization
of information criteria on the pair (p, 7). Specifically, Yang (2002:378, Ch.2.2) estimates all candi-
date VAR models by OLS and then determines their optimal lag-order p* and m = 1 break period 7*
jointly via the global minimum of the information criteria. Bai and Perron (2003, Ch.3) determine

7 = (1f,...,7}) of multiple breaks via the minimum sum of squared residuals from a single-

r'm
equation model (K = 1). They use dynamic programming to reduce the number of least-squares
operations. Although adapting their streamlined set of admissible combinations for 7, speci.VAR
yet resorts to (parallelized brute-force) OLS estimation of all candidate VAR models and therewith

circumvents issues of correct initialization and iterative updating for the models with partial breaks.

Value

A list of class ’speci’, which contains the elements:

df A ’data.frame’ of (1 + m) + 4 columns for all admissible combinations of
candidate (p,7) and their values of AIC(p,7), HQC(p,7), SIC(p,7), and
FPE(p,T).

selection A (1 + m) x 4 matrix of the specification pairs (p*,7*) suggested by the

global minimum of the AIC (Akaike 1969), HQC (Hannan, Quinn 1979), SIC
(Schwarz 1978), and FPE respectively.

args_speci List of characters and integers indicating the specifications that have been used.

References

Bai, J., and Perron, P. (1998): "Estimating and Testing Linear Models with Multiple Structural
Changes", Econometrica, 66, pp. 47-78.

Bai, J., and Perron, P. (2003): "Computation and Analysis of Multiple Structural Change Models",
Journal of Applied Econometrics, 18, pp. 1-22.

Luetkepohl, H., Saikkonen, P., and Trenkler, C. (2004): "Testing for the Cointegrating Rank of a
VAR Process with Level Shift at Unknown Time", Econometrica, 72, pp. 647-662.

Yang, M. (2002): "Lag Length and Mean Break in Stationary VAR Models", Econometrics Journal,
5, pp. 374-386.

See Also

Other specification functions: speci.factors()
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Examples

#i## extend basic example in "urca” ###
library("urca")

library("vars")

data("denmark™)

sjd = denmark[, c("LRM”, "LRY", "IBO", "IDE")]

# use the single lag-order p=2 to determine only the break period #
R.vars = VAR(sjd, type="both"”, p=1, season=4)
R.speci = speci.VAR(R.vars, lag_set=2, dim_m=1, trim=3, add_dummy=FALSE)

library("ggfortify")

autoplot(ts(R.speci$df[3:5], start=1+R.speci$args_speci$trim),

main="For a single 'p', all IC just reflect the variation of det(UU').")
print(R.speci)

# perform cointegration test procedure with detrending #

R.t_.D = list(t_shift=8, n.season=4)

R.coint = coint.SL(sjd, dim_p=2, type_SL="SL_trend”, t_D=R.t_D)
summary (R.coint)

# m=1: line plot #

library("ggplot2")

R.specil = speci.VAR(R.vars, lag_set=1:5, dim_m=1, trim=6)

R.values = c("#BDD7E7", "#6BAED6", "#3182BD", "#08519C", "#08306B")

F.line ggplot(R.specil$df) +
geom_line( aes(x=tau_1, y=HQC, color=as.factor(p), group=as.factor(p))) +
geom_point(aes(x=tau_1, y=HQC, color=as.factor(p), group=as.factor(p))) +
geom_point(x=R.specil$selection["tau_1", "HQC"],

y=min(R.specil1$df$HQC), color="red") +

scale_x_continuous(limits=c(1, nrow(sjd))) +
scale_color_manual(values=R.values) +
labs(x=expression(tau), y="HQ Criterion"”, color="Lag order”, title=NULL) +
theme_bw()

plot(F.line)

# m=2: discrete heat map #

R.speci2 = speci.VAR(R.vars, lag_set=2, dim_m=2, trim=3)

dim_T nrow(sjd) # total sample size

F.heat = ggplot(R.speci2$df) +
geom_point(aes(x=tau_1, y=tau_2, color=AIC), size=3) +
geom_abline(intercept=0, slope=-1, color="grey") +
scale_x_continuous(limits=c(1, dim_T), expand=c(@, 0)) +
scale_y_reverse(limits=c(dim_T, 1), expand=c(@, @)) +
scale_color_continuous(type="viridis") +
labs(x=expression(taul[1]), y=expression(tau[2]), color="AIC", title=NULL) +
theme_bw()

plot(F.heat)
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VECM

Estimation of a Vector Error Correction Model

Description

Estimates a VECM under a given cointegration-rank restriction or cointegrating vectors.

Usage

VECM(
Y,

dim_p,

x = NULL,

dim_q = dim_p,

dim_r

beta
type
t_D1
t_D2
D1 =
D2 =

Arguments

y
dim_p

X

dim_q

dim_r
beta

type

t_D1

t_D2

D1

c("Casel”, "Case2", "Case3", "Case4", "Case5"),
list(),

list(),

NULL,

NULL

Matrix. A (K x (p+T)) data matrix of the K endogenous time series variables.
Integer. Lag-order p for the endogenous variables y.

Matrix. A (L x (p + T')) data matrix of the L weakly exogenous time series
variables.

Integer. Lag-order g for the distributed lag of the weakly exogenous variables x.
Integer. Cointegration-rank r of the VECM.

Matrix. A ((K +L+ng41)xr) cointegrating matrix to be imposed — or estimated
by the reduced-rank regression if NULL (the default).

Character. The conventional case of the deterministic term in the Johansen pro-
cedure.

List of vectors. The activating break periods 7 for the period-specific determin-
istic regressors in dy,;, which are restricted to the cointegration relations. Just
as in coint, the accompanying lagged regressors are automatically included in
da .

List of vectors. The activating break periods 7 for the period-specific determin-
istic regressors in ds ;, which are unrestricted.

Matrix. A (ne X (p + T')) data matrix of customized deterministic regres-
sors added to d; ¢, which are restricted to the cointegration relations. Unlike
’t_D1’, these customized regressors require potential accompanying regressors
to be manually included in d ;.
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D2 Matrix. A (ne x (p+ T')) data matrix of customized deterministic regressors
added to ds ;, which are unrestricted. These additional regressors correspond to
’dumvar’ in urca’s ca. jo, which is fixed over bootstrap iterations.

Value

A list of class "varx’.

References

Johansen, S. (1996): Likelihood-Based Inference in Cointegrated Vector Autoregressive Models,
Advanced Texts in Econometrics, Oxford University Press, USA.

Luetkepohl, H. (2005): New Introduction to Multiple Time Series Analysis, Springer, 2nd ed.

Examples

#i## extend basic example in "vars" #iH#

library(vars)

data(Canada)

names_k = c("e", "U", "rw") # names of endogenous variables
names_l = c("prod"”) # names of exogenous variables

names_s = NULL # optional shock names

x = Canadal , names_l, drop=FALSE]

y = Canadal[ , names_k, drop=FALSE]

# colnames of the restriction matrices are passed as shock names #
SR = matrix(NA, nrow=4, ncol=4, dimnames=1list(NULL, names_s))
SR[4, 2] =0

LR = matrix(NA, nrow=4, ncol=4, dimnames=list(NULL, names_s))
LR[1, 2:4]1 =0

LR[2:4, 4] =0

# estimate, identify, and plot the IRF #

R.vecm = VECM(y=y, dim_p=3, x=x, dim_g=3, dim_r=1, type="Case4")
R.grt = id.grt(R.vecm, LR=LR, SR=SR)

R.irf = irf(R.grt, n.ahead=50)

plot(R.irf)
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