
Package ‘simDAG’
September 3, 2024

Title Simulate Data from a DAG and Associated Node Information

Version 0.2.0

Maintainer Robin Denz <robin.denz@rub.de>

Description Simulate complex data from a given directed acyclic graph and informa-
tion about each individual node.
Root nodes are simply sampled from the specified distribution. Child Nodes are simulated ac-
cording to
one of many implemented regressions, such as logistic regression, linear
regression, poisson regression and more. Also includes a comprehensive framework for discrete-
time
simulation, which can generate even more complex longitudinal data.

License GPL (>= 3)

URL https://github.com/RobinDenz1/simDAG,

https://robindenz1.github.io/simDAG/

BugReports https://github.com/RobinDenz1/siMDAG/issues

Imports data.table (>= 1.15.0), Rfast, rlang, igraph

Suggests knitr, rmarkdown, testthat (>= 3.0.0), vdiffr (>= 1.0.0),
ggplot2, ggforce, MASS, covr, foreach, doSNOW, doRNG, parallel

VignetteBuilder knitr

Config/testthat/edition 3

Contact <robin.denz@rub.de>

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation no

Author Robin Denz [aut, cre],
Katharina Meiszl [aut]

Repository CRAN

Date/Publication 2024-09-03 06:40:02 UTC

1

https://github.com/RobinDenz1/simDAG
https://robindenz1.github.io/simDAG/
https://github.com/RobinDenz1/siMDAG/issues

2 simDAG-package

Contents
simDAG-package . 2
add_node . 4
as.igraph.DAG . 5
dag2matrix . 6
dag_from_data . 8
do . 11
empty_dag . 12
long2start_stop . 13
matrix2dag . 14
node . 15
node_binomial . 20
node_competing_events . 22
node_conditional_distr . 26
node_conditional_prob . 28
node_cox . 31
node_custom . 33
node_gaussian . 37
node_multinomial . 39
node_negative_binomial . 41
node_poisson . 42
node_time_to_event . 44
plot.DAG . 48
plot.simDT . 52
rbernoulli . 56
rcategorical . 57
rconstant . 58
sim2data . 59
sim_discrete_time . 63
sim_from_dag . 68
sim_n_datasets . 70

Index 73

simDAG-package Simulate Data from a DAG and Associated Node Information

Description

What is this package about?

This package aims to give a comprehensive framework to simulate static and longitudinal data given
a directed acyclic graph and some information about each node. Our goal is to make this package
as user-friendly and intuitive as possible, while allowing extreme flexibility and while keeping the
underlying code as fast and RAM efficient as possible.

What features are included in this package?

simDAG-package 3

This package includes two main simulation functions: the sim_from_dag function, which can
be used to simulate data from a previously defined causal DAG and node information and the
sim_discrete_time function, which implements a framework to conduct discrete-time simula-
tions. The former is very easy to use, but cannot deal with time-varying variable easily. The latter is
a little more difficult to use (usually requiring the user to write some functions himself), but allows
the simulation of arbitrarily complex longitudinal data.

Through a collection of implemented node types, this package allows the user to generate data
with a mix of binary, categorical, count and time-to-event data. The sim_discrete_time function
additionally enables the user to generate time-to-event data with, if desired, a mix of competing
events, recurrent events, time-varying variables that influence each other and any types of censoring.

The package also includes a few functions to transform resulting data into multiple formats, to
augment existing DAGs, to plot DAGs and to plot a flow-chart of the data generation process.

What does a typical workflow using this package look like?

Users should start by defining a DAG object using the empty_dag and node functions. This DAG can
then be passed to one of the two simulation functions included in this package. More information
on how to do this can be found in the respective documentation pages and the three vignettes of this
package.

When should I use sim_from_dag and when sim_discrete_time?

If you want to simulate data that is easily described using a standard DAG without time-varying
variables, you should use the sim_from_dag function. If the DAG includes time-varying variables,
but you only want to consider a few points in time and can easily describe the relations between
those manually, you can still use the sim_from_dag function. If you want more complex data with
time-varying variables, particularly with time-to-event outcomes, you should consider using the
sim_discrete_time function.

What features are missing from this package?

The package currently only implements some possible child nodes. In the future we would like
to implement more child node types, such as nodes with generalized mixed linear models or more
complex survival time models.

Why should I use this package instead of the simCausal package?

The simCausal package was a big inspiration for this package. In contrast to it, however, it al-
lows quite a bit more flexibility. A big difference is that this package includes a comprehensive
framework for discrete-time simulations and the simCausal package does not.

Where can I get more information?

The documentation pages contain a lot of information, relevant examples and some literature refer-
ences. Additional examples can be found in the vignettes of this package, which can be accessed
using:

• vignette(topic="v_sim_from_dag", package="simDAG")

• vignette(topic="v_sim_discrete_time", package="simDAG")

• vignette(topic="v_covid_example", package="simDAG")

• vignette(topic="v_using_formulas", package="simDAG")

We are also working on a separate article on this package that is going to be published in a peer-
reviewed journal.

4 add_node

I have a problem using the sim_discrete_time function

The sim_discrete_time function can become difficult to use depending on what kind of data
the user wants to generate. For this reason we put in extra effort to make the documentation and
examples as clear and helpful as possible. Please consult the relevant documentation pages and
the vignettes before contacting the authors directly with programming related questions that are not
clearly bugs in the code.

I want to suggest a new feature / I want to report a bug. Where can I do this?

Bug reports, suggestions and feature requests are highly welcome. Please file an issue on the official
github page or contact the author directly using the supplied e-mail address.

Author(s)

Robin Denz, <robin.denz@rub.de>

References

Banks, Jerry, John S. Carson II, Barry L. Nelson, and David M. Nicol (2014). Discrete-Event
System Simulation. Vol. 5. Edinburgh Gate: Pearson Education Limited.

add_node Add a DAG.node object to a DAG object

Description

This function allows users to add DAG.node objects created using the node or node_td function to
DAG objects created using the empty_dag function, which makes it easy to fully specify a DAG to
use in the sim_from_dag function and sim_discrete_time.

Usage

add_node(dag, node)

S3 method for class 'DAG'
object_1 + object_2

Arguments

dag A DAG object created using the empty_dag function.

node A DAG.node object created using the node function or node_td function.

object_1 Either a DAG object or a DAG.node object. The order of the objects does not
change the result.

object_2 See argument object_1.

as.igraph.DAG 5

Details

The two ways of adding a node to a DAG object are: dag <- add_node(dag, node(...)) and dag
<- dag + node(...), which give identical results (note that the ... should be replaced with actual
arguments and that the initial dag should be created with a call to empty_dag). See node for more
information on how to specify a DAG for use in the sim_from_dag and node_td functions.

Value

Returns an DAG object with the DAG.node object added to it.

Author(s)

Robin Denz

Examples

library(simDAG)

add nodes to DAG using +
dag <- empty_dag() +

node("age", type="rnorm", mean=50, sd=5) +
node("sex", type="rbernoulli", p=0.5) +
node("income", type="gaussian", parents=c("age", "sex"), betas=c(1.1, 0.2),

intercept=-5, error=4)

add nodes to DAG using add_node()
dag <- empty_dag()
dag <- add_node(dag, node("age", type="rnorm", mean=50, sd=5))

as.igraph.DAG Transform a DAG object into an igraph object

Description

This function extends the as.igraph function from the igraph package to allow the input of a
DAG object. The result is an igraph object that includes only the structure of the DAG, not any
specifications. May be useful for plotting purposes.

Usage

S3 method for class 'DAG'
as.igraph(x, ...)

6 dag2matrix

Arguments

x A DAG object created using the empty_dag function with nodes added to it us-
ing the + syntax. See ?empty_dag or ?node for more details. Supports DAGs
with time-dependent nodes added using the node_td function. However, in-
cluding such DAGs may result in cyclic causal structures, because time is not
represented in the output matrix.

... Currently not used.

Value

Returns a igraph object.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td

Examples

library(simDAG)

some example DAG
dag <- empty_dag() +

node("death", type="binomial", parents=c("age", "sex"), betas=c(1, 2),
intercept=-10) +

node("age", type="rnorm", mean=10, sd=2) +
node("sex", parents="", type="rbernoulli", p=0.5) +
node("smoking", parents=c("sex", "age"), type="binomial",

betas=c(0.6, 0.2), intercept=-2)

if (requireNamespace("igraph")) {
g <- igraph::as.igraph(dag)
plot(g)

}

dag2matrix Obtain a Adjacency Matrix from a DAG object

Description

The sim_from_dag function requires the user to specify the causal relationships inside a DAG object
containing node information. This function takes this object as input and outputs the underlying
adjacency matrix. This can be useful to plot the theoretical DAG or to check if the nodes have been
specified correctly.

dag2matrix 7

Usage

dag2matrix(dag, include_root_nodes=TRUE, include_td_nodes=FALSE)

Arguments

dag A DAG object created using the empty_dag function with nodes added to it us-
ing the + syntax. See ?empty_dag or ?node for more details. Supports DAGs
with time-dependent nodes added using the node_td function. However, in-
cluding such DAGs may result in cyclic causal structures, because time is not
represented in the output matrix.

include_root_nodes

Whether to include root nodes in the output matrix. Should usually be kept at
TRUE (default).

include_td_nodes

Whether to include time-dependent nodes added to the dag using the node_td
function or not. When including these types of nodes, it is possible for the
adjacency matrix to contain cycles, e.g. that it is not a classic DAG anymore,
due to the matrix not representing the passage of time.

Details

An adjacency matrix is simply a square matrix in which each node has one column and one row
associated with it. For example, if the node A has a causal effect on node B, the matrix will contain
1 in the spot matrix["A", "B"].

If a time-varying node is also defined as a time-fixed node, the parents of both parts will be pooled
when creating the output matrix.

Value

Returns a numeric square matrix with one row and one column per used node in dag.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td

Examples

library(simDAG)

some example DAG
dag <- empty_dag() +

node("death", type="binomial", parents=c("age", "sex"), betas=c(1, 2),
intercept=-10) +

node("age", type="rnorm", mean=10, sd=2) +
node("sex", parents="", type="rbernoulli", p=0.5) +

8 dag_from_data

node("smoking", parents=c("sex", "age"), type="binomial",
betas=c(0.6, 0.2), intercept=-2)

get adjacency matrix
dag2matrix(dag)

get adjacency matrix using only the child nodes
dag2matrix(dag, include_root_nodes=FALSE)

adding time-varying nodes
dag <- dag +

node_td("disease", type="time_to_event", parents=c("age", "smoking"),
prob_fun=0.01) +

node_td("death", type="time_to_event", parents=c("age", "sex", "smoking",
"disease"),

prob_fun=0.001, event_duration=Inf)

get adjacency matrix including all nodes
dag2matrix(dag, include_td_nodes=TRUE)

get adjacency matrix including only time-constant nodes
dag2matrix(dag, include_td_nodes=FALSE)

get adjacency matrix using only the child nodes
dag2matrix(dag, include_root_nodes=FALSE)

dag_from_data Fills a partially specified DAG object with parameters estimated from
reference data

Description

Given a partially specified DAG object, where only the name, type and the parents are specified
plus a data.frame containing realizations of these nodes, return a fully specified DAG (with beta-
coefficients, intercepts, errors, ...). The returned DAG can be used directly to simulate data with the
sim_from_dag function.

Usage

dag_from_data(dag, data, return_models=FALSE, na.rm=FALSE)

Arguments

dag A partially specified DAG object created using the empty_dag and node func-
tions. See ?node for a more detailed description on how to do this. All nodes
need to contain information about their name, type and parents. All other
attributes will be added (or overwritten if already in there) when using this func-
tion. Currently does not support DAGs with time-dependent nodes added with
the node_td function.

dag_from_data 9

data A data.frame or data.table used to obtain the parameters needed in the DAG
object. It needs to contain a column for every node specified in the dag argu-
ment.

return_models Whether to return a list of all models that were fit to estimate the information
for all child nodes (elements in dag where the parents argument is not NULL).

na.rm Whether to remove missing values or not.

Details

How it works:

It can be cumbersome to specify all the node information needed for the simulation, especially when
there are a lot of nodes to consider. Additionally, if data is available, it is natural to fit appropriate
models to the data to get an empirical estimate of the node information for the simulation. This
function automates this process. If the user has a reasonable DAG and knows the node types, this is
a very fast way to generate synthetic data that corresponds well to the empirical data.

All the user has to do is create a minimal DAG object including only information on the parents,
the name and the node type. For root nodes, the required distribution parameters are extracted
from the data. For child nodes, regression models corresponding to the specified type are fit to the
data using the parents as independent covariates and the name as dependent variable. All required
information is extracted from these models and added to the respective node. The output contains
a fully specified DAG object which can then be used directly in the sim_from_dag function. It may
also include a list containing the fitted models for further inspection, if return_models=TRUE.

Supported root node types:

Currently, the following root node types are supported:

• "rnorm": Estimates parameters of a normal distribution.

• "rbernoulli": Estimates the p parameter of a Bernoulli distribution.

• "rcategorical": Estimates the class probabilities in a categorical distribution.

Other types need to be implemented by the user.

Supported child node types:

Currently, the following child node types are supported:

• "gaussian": Estimates parameters for a node of type "gaussian".

• "binomial": Estimates parameters for a node of type "binomial".

• "poisson": Estimates parameters for a node of type "poisson".

• "negative_binomial": Estimates parameters for a node of type "negative_binomial".

• "conditional_prob": Estimates parameters for a node of type "conditional_prob".

Other types need to be implemented by the user.

Support for custom nodes:

The sim_from_dag function supports custom node functions, as described in node_custom. It is
impossible for us to directly support these custom types in this function directly. However, the user
can extend this function easily to accommodate any of his/her custom types. Similar to defining a

10 dag_from_data

custom node type, the user simply has to write a function that returns a correctly specified node.DAG
object, given the named arguments name, parents, type, data and return_model. The first three
arguments should simply be added directly to the output. The data should be used inside your
function to fit a model or obtain the required parameters in some other way. The return_model
argument should control whether the model should be added to the output (in a named argument
called model). The function name should be paste0("gen_node_", YOURTYPE). An examples is
given below.

Interactions & cubic terms:

This function currently does not support the usage of interaction effects or non-linear terms (such
as using A ~ B + I(B^2) as a formula). Instead, it will be assumed that all values in parents have
a linear effect on the respective node. For example, using parents=c("A", "B") for a node named
"C" will use the formula C ~ A + B. If other behavior is desired, users need to integrate this into their
own custom function as described above.

Value

A list of length two containing the new fully specified DAG object named dag and a list of the fitted
models (if return_models=TRUE) in the object named models.

Author(s)

Robin Denz

Examples

library(simDAG)

set.seed(457456)

get some example data from a known DAG
dag <- empty_dag() +

node("death", type="binomial", parents=c("age", "sex"), betas=c(1, 2),
intercept=-10) +

node("age", type="rnorm", mean=10, sd=2) +
node("sex", parents="", type="rbernoulli", p=0.5) +
node("smoking", parents=c("sex", "age"), type="binomial",

betas=c(0.6, 0.2), intercept=-2)

data <- sim_from_dag(dag=dag, n_sim=1000)

suppose we only know the causal structure and the node type:
dag <- empty_dag() +

node("death", type="binomial", parents=c("age", "sex")) +
node("age", type="rnorm") +
node("sex", type="rbernoulli") +
node("smoking", type="binomial", parents=c("sex", "age"))

get parameter estimates from data
dag_full <- dag_from_data(dag=dag, data=data)

can now be used to simulate data

do 11

data2 <- sim_from_dag(dag=dag_full$dag, n_sim=100)

do Pearls do-operator for DAG objects

Description

This function can be used to set one or more nodes in a given DAG object to a specific value, which
corresponds to an intervention on a DAG as defined by the do-operator introduced by Judea Pearl.

Usage

do(dag, names, values)

Arguments

dag A DAG object created using the empty_dag and node functions. See ?node for
more information on how to specify a DAG.

names A character string specifying names of nodes in the dag object. The value of
these nodes will be set to the corresponding value specified in the values argu-
ment. If the node is not already defined in dag, a new one will be added without
warning.

values A vector or list of any values. These nodes defined with the names argument
will be set to those values.

Details

Internally this function simply removes the old node definition of all nodes in names and replaces
it with a new node definition that defines the node as a constant value, irrespective of the original
definition. The same effect can be created by directly specifying the DAG in this way from the start
(see examples).

This function does not alter the original DAG in place. Instead, it returns a modified version of the
DAG. In other words, using only do(dag, names="A", values=3) will not change the dag object.

Value

Returns a DAG object with updated node definitions.

Author(s)

Robin Denz

References

Judea Pearl (2009). Causality: Models, Reasoning and Inference. 2nd ed. Cambridge: Cambridge
University Press

12 empty_dag

Examples

library(simDAG)

define some initial DAG
dag <- empty_dag() +

node("death", "binomial", c("age", "sex"), betas=c(1, 2), intercept=-10) +
node("age", type="rnorm", mean=10, sd=2) +
node("sex", parents="", type="rbernoulli", p=0.5) +
node("smoking", parents=c("sex", "age"), type="binomial",

betas=c(0.6, 0.2), intercept=-2)

return new DAG with do(smoking = TRUE)
dag2 <- do(dag, names="smoking", values=TRUE)

which is equivalent to
dag2 <- empty_dag() +

node("death", "binomial", c("age", "sex"), betas=c(1, 2), intercept=-10) +
node("age", type="rnorm", mean=10, sd=2) +
node("sex", parents="", type="rbernoulli", p=0.5) +
node("smoking", type="rconstant", constant=TRUE)

use do() on multiple variables: do(smoking = TRUE, sex = FALSE)
dag2 <- do(dag, names=c("smoking", "sex"), values=list(TRUE, FALSE))

empty_dag Initialize an empty DAG object

Description

This function should be used in conjunction with multiple calls to node or node_td to create a DAG
object, which can then be used to simulate data using the sim_from_dag and sim_discrete_time
functions.

Usage

empty_dag()

Details

Note that this function is only used to initialize an empty DAG object. Actual information about the
respective nodes have to be added using the node function or the node_td function. The documen-
tation page of that function contains more information on how to correctly do this.

Value

Returns an empty DAG object.

Author(s)

Robin Denz

long2start_stop 13

Examples

library(simDAG)

just an empty DAG
empty_dag()

adding a node to it
empty_dag() + node("age", type="rnorm", mean=20, sd=5)

long2start_stop Transform a data.table in the long-format to a data.table in the
start-stop format

Description

This function transforms a data.table in the long-format (one row per person per time point) to
a data.table in the start-stop format (one row per person-specific period in which no variables
changed).

Usage

long2start_stop(data, id, time, varying, overlap=FALSE,
check_inputs=TRUE)

Arguments

data A data.table or an object that can be coerced to a data.table (such as a
data.frame) including data in the long-format.

id A single character string specifying a unique person identifier included in in
data.

time A single character string specifying a time variable included in in data coded as
integers starting from 1.

varying A character vector specifying names of variables included in in data that may
change over time.

overlap Specifies whether the intervals should overlap or not. If TRUE, the "stop" col-
umn is simply increased by one, as compared to the output when overlap=FALSE.
This means that changes for a given t are recorded at the start of the next interval,
but the previous interval ends on that same day.

check_inputs Whether to check if the user input is correct or not. Can be turned off by setting
it to FALSE to save computation time.

Details

This function relies on data.table syntax to make the data transformation as RAM efficient and
fast as possible.

14 matrix2dag

Value

Returns a data.table containing the columns .id (the unique person identifier), .time (an integer
variable encoding the time) and all other variables included in the input data in the long format.

Author(s)

Robin Denz

Examples

library(simDAG)
library(data.table)

generate example data in long format
long <- data.table(.id=rep(seq_len(10), each=5),

.time=rep(seq_len(5), 10),
A=c(rep(FALSE, 43), TRUE, TRUE, rep(FALSE, 3), TRUE,

TRUE),
B=FALSE)

setkey(long, .id, .time)

transform to start-stop format
long2start_stop(data=long, id=".id", time=".time", varying=c("A", "B"))

matrix2dag Obtain a DAG object from a Adjacency Matrix and a List of Node Types

Description

The sim_from_dag function requires the user to specify the causal relationships inside a DAG object
containing node information. This function creates such an object using a adjacency matrix and a
list of node types. The resulting DAG will be only partially specified, which may be useful for the
dag_from_data function.

Usage

matrix2dag(mat, type)

Arguments

mat A p x p adjacency matrix where p is the number of variables. The matrix should
be filled with zeros. Only places where the variable specified by the row has a
direct causal effect on the variable specified by the column should be 1. Both the
columns and the rows should be named with the corresponding variable names.

type A named list with one entry for each variable in mat, specifying the type of the
corresponding node. See node for available node types.

node 15

Details

An adjacency matrix is simply a square matrix in which each node has one column and one row
associated with it. For example, if the node A has a causal effect on node B, the matrix will contain
1 in the spot matrix["A", "B"]. This function uses this kind of matrix and additional information
about the node type to create a DAG object. The resulting DAG cannot be used in the sim_from_dag
function directly, because it will not contain the necessary parameters such as beta-coefficients or
intercepts etc. It may, however, be passed directly to the dag_from_data function. This is pretty
much it’s only valid use-case. If the goal is to to specify a full DAG manually, the user should
use the empty_dag function in conjunction with node calls instead, as described in the respective
documentation pages and the vignettes.

The output will never contain time-dependent nodes. If this is necessary, the user needs to manually
define the DAG.

Value

Returns a partially specified DAG object.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, dag_from_data

Examples

library(simDAG)

simple example adjacency matrix
mat <- matrix(c(0, 0, 1, 0, 0, 1, 0, 0, 0), ncol=3, byrow=TRUE)
colnames(mat) <- c("age", "sex", "death")
rownames(mat) <- c("age", "sex", "death")

type <- list(age="rnorm", sex="rbernoulli", death="binomial")

matrix2dag(mat=mat, type=type)

node Create a node object to grow a DAG step-by-step

Description

These functions should be used in conjunction with the empty_dag function to create DAG objects,
which can then be used to simulate data using the sim_from_dag function or the sim_discrete_time
function.

16 node

Usage

node(name, type, parents=NULL, formula=NULL, ...)

node_td(name, type, parents=NULL, formula=NULL, ...)

Arguments

name A character vector with at least one entry specifying the name of the node. If
a character vector containing multiple different names is supplied, one separate
node will be created for each name. These nodes are completely independent,
but have the exact same node definition as supplied by the user. If only a single
character string is provided, only one node is generated.

type A single character string specifying the type of the node. Depending on whether
the node is a root node, a child node or a time-dependent node different node
types are allowed. See details. Alternatively, a suitable function may be passed
directly to this argument.

parents A character vector of names, specifying the parents of the node or NULL (default).
If NULL, the node is treated as a root node. For convenience it is also allowed to
set parents="" to indicate that the node is a root node.

formula An optional formula object to describe how the node should be generated or
NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side should define the entire structural equation,
including the betas and intercepts. It may contain any valid formula syntax,
such as ~ -2 + A*3 + B*4 or ~ -2 + A*3 + B*4 + I(A^2)*0.3 + A:B*1.1, allow-
ing arbitrary non-linear effects, arbitrary interactions and multiple coefficients
for categorical variables. If this argument is defined, there is no need to de-
fine the betas and intercept argument. The parents argument should still
be specified whenever a categorical variable is used in the formula. This argu-
ment is currently only supported for nodes of type "binomial", "gaussian",
"poisson", "negative_binomial" and "cox". See examples and the associ-
ated vignette for an in-depth explanation.

... Further named arguments needed to specify the node. Those can be parameters
of distribution functions such as the p argument in the rbernoulli function
for root nodes or arbitrary named arguments such as the betas argument of the
node_gaussian function.

Details

To generate data using the sim_from_dag function or the sim_discrete_time function, it is re-
quired to create a DAG object first. This object needs to contain information about the causal structure
of the data (e.g. which variable causes which variable) and the specific structural equations for each
variable (information about causal coefficients, type of distribution etc.). In this package, the node
and/or node_td function is used in conjunction with the empty_dag function to create this object.

This works by first initializing an empty DAG using the empty_dag function and then adding multiple
calls to the node and/or node_td functions to it using a simple +, where each call to node and/or
node_td adds information about a single node that should be generated. Multiple examples are
given below.

node 17

In each call to node or node_td the user needs to indicate what the node should be called (name),
which function should be used to generate the node (type), whether the node has any parents and
if so which (parents) and any additional arguments needed to actually call the data-generating
function of this node later passed to the three-dot syntax (...).

node vs. node_td:

By calling node you are indicating that this node is a time-fixed variable which should only be
generated once. By using node_td you are indicating that it is a time-dependent node, which will
be updated at each step in time when using a discrete-time simulation.

node_td should only be used if you are planning to perform a discrete-time simulation with the
sim_discrete_time function. DAG objects including time-dependent nodes may not be used in the
sim_from_dag function.

Implemented Root Node Types:

Any function can be used to generate root nodes. The only requirement is that the function has at
least one named argument called n which controls the length of the resulting vector. For example,
the user could specify a node of type "rnorm" to create a normally distributed node with no parents.
The argument n will be set internally, but any additional arguments can be specified using the ...
syntax. In the type="rnorm" example, the user could set the mean and standard deviation using
node(name="example", type="rnorm", mean=10, sd=5).

For convenience, this package additionally includes three custom root-node functions:

• "rbernoulli": Draws randomly from a bernoulli distribution.

• "rcategorical": Draws randomly from any discrete probability density function.

• "rconstant": Used to set a variable to a constant value.

Implemented Child Node Types:

Currently, the following node types are implemented directly for convenience:

• "gaussian": A node based on linear regression.

• "binomial": A node based on logistic regression.

• "conditional_prob": A node based on conditional probabilities.

• "conditional_distr": A node based on conditional draws from different distributions.

• "multinomial": A node based on multinomial regression.

• "poisson": A node based on poisson regression.

• "negative_binomial": A node based on negative binomial regression.

• "cox": A node based on cox-regression.

For custom child node types, see below.

Implemented Time-Dependent Node Types:

Currently, the following node types are implemented directly for convenience to use in node_td
calls:

• "time_to_event": A node based on repeatedly checking whether an event occurs at each point
in time.

18 node

• "competing_events": A node based on repeatedly checking whether one of multiple mutually
exclusive events occurs at each point in time.

However, the user may also use any of the child node types in a node_td call directly. For custom
time-dependent node types, see below.

Custom Node Types

It is very simple to write a new custom node_function to be used instead, allowing the user to use
any type of data-generation mechanism for any type of node (root / child / time-dependent). All
that is required of this function is, that it has the named arguments data (the sample as generated so
far) and, if it’s a child node, parents (a character vector specifying the parents) and outputs either
a vector containing n_sim entries, or a data.frame with n_sim rows and an arbitrary amount of
columns. More information about this can be found on the node_custom documentation page.

Using child nodes as parents for other nodes:

If the data generated by a child node is categorical (such as when using node_multinomial) they
can still be used as parents of other nodes for most standard node types without issues. All the
user has to do is to use formula argument to supply an enhanced formula, instead of defining
the parents and betas argument directly. This works well for all node types that directly sup-
port formula input. For other node types, users may need to write custom functions to make this
work. See the associated vignette: vignette(topic="v_using_formulas", package="simDAG")
for more information on how to correctly use formulas.

Cyclic causal structures:

The name DAG (directed acyclic graph) implies that cycles are not allowed. This means that if you
start from any node and only follow the arrows in the direction they are pointing, there should be no
way to get back to your original node. This is necessary both theoretically and for practical reasons
if we are dealing with static DAGs created using the node function. If the user attempts to generate
data from a static cyclic graph using the sim_from_dag function, an error will be produced.

However, in the realm of discrete-time simulations, cyclic causal structures are perfectly reasonable.
A variable A at t = 1 may influence a variable B at t = 2, which in turn may influence variable A
at t = 3 again. Therefore, when using the node_td function to simulate time-dependent data using
the sim_discrete_time function, cyclic structures are allowed to be present and no error will be
produced.

Value

Returns a DAG.node object which can be added to a DAG object directly.

Note

Contrary to the R standard, this function does NOT support partial matching of argument names.
This means that supplying nam="age" will not be recognized as name="age" and instead will be
added as additional node argument used in the respective data-generating function call when using
sim_from_dag.

Author(s)

Robin Denz

node 19

Examples

library(simDAG)

creating a DAG with a single root node
dag <- empty_dag() +

node("age", type="rnorm", mean=30, sd=4)

creating a DAG with multiple root nodes
(passing the functions directly to 'type' works too)
dag <- empty_dag() +

node("sex", type=rbernoulli, p=0.5) +
node("income", type=rnorm, mean=2700, sd=500)

creating a DAG with multiple root nodes + multiple names in one node
dag <- empty_dag() +

node("sex", type="rbernoulli", p=0.5) +
node(c("income_1", "income_2"), type="rnorm", mean=2700, sd=500)

also using child nodes
dag <- empty_dag() +

node("sex", type="rbernoulli", p=0.5) +
node("income", type="rnorm", mean=2700, sd=500) +
node("sickness", type="binomial", parents=c("sex", "income"),

betas=c(1.2, -0.3), intercept=-15) +
node("death", type="binomial", parents=c("sex", "income", "sickness"),

betas=c(0.1, -0.4, 0.8), intercept=-20)

creating the same DAG as above, but using the enhanced formula interface
dag <- empty_dag() +

node("sex", type="rbernoulli", p=0.5) +
node("income", type="rnorm", mean=2700, sd=500) +
node("sickness", type="binomial",

formula= ~ -15 + sexTRUE*1.2 + income*-0.3) +
node("death", type="binomial",

formula= ~ -20 + sexTRUE*0.1 + income*-0.4 + sickness*0.8)

using time-dependent nodes
NOTE: to simulate data from this DAG, the sim_discrete_time() function needs
to be used due to "sickness" being a time-dependent node
dag <- empty_dag() +

node("sex", type="rbernoulli", p=0.5) +
node("income", type="rnorm", mean=2700, sd=500) +
node_td("sickness", type="binomial", parents=c("sex", "income"),

betas=c(0.1, -0.4), intercept=-50)

we could also use a DAG with only time-varying variables
dag <- empty_dag() +

node_td("vaccine", type="time_to_event", prob_fun=0.001, event_duration=21) +
node_td("covid", type="time_to_event", prob_fun=0.01, event_duration=15,

immunity_duration=100)

20 node_binomial

node_binomial Simulate a Node Using Logistic Regression

Description

Data from the parents is used to generate the node using logistic regression by predicting the co-
variate specific probability of 1 and sampling from a Bernoulli distribution accordingly.

Usage

node_binomial(data, parents, formula=NULL, betas, intercept,
return_prob=FALSE, output="logical", labels=NULL)

Arguments

data A data.table (or something that can be coerced to a data.table) containing
all columns specified by parents.

parents A character vector specifying the names of the parents that this particular child
node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.

formula An optional formula object to describe how the node should be generated or
NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side may contain any valid formula syntax, such
as A + B or A + B + I(A^2), allowing non-linear effects. If this argument is de-
fined, there is no need to define the parents argument. For example, using
parents=c("A", "B") is equal to using formula= ~ A + B.

betas A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

intercept A single number specifying the intercept that should be used when generating
the node.

return_prob Either TRUE or FALSE (default). If TRUE, the calculated probability is returned
instead of the results of bernoulli trials.

output A single character string, must be either "logical" (default), "numeric", "character"
or "factor". If output="character" or output="factor", the labels (or lev-
els in case of a factor) can be set using the labels argument.

labels A character vector of length 2 or NULL (default). If NULL, the resulting vector
is returned as is. If a character vector is supplied and output="character" or
output="factor" is used, all TRUE values are replaced by the first entry of this
vector and all FALSE values are replaced by the second argument of this vector.
The output will then be a character variable or factor variable, depending on the
output argument. This argument is ignored if output is set to "numeric" or
"logical".

node_binomial 21

Details

Using the normal form a logistic regression model, the observation specific event probability is
generated for every observation in the dataset. Using the rbernoulli function, this probability is
then used to take one bernoulli sample for each observation in the dataset. If only the probability
should be returned return_prob should be set to TRUE.

Formal Description:

Formally, the data generation can be described as:

Y ∼ Bernoulli(logit(intercept+ parents1 · betas1 + ...+ parentsn · betasn)),

where Bernoulli(p) denotes one Bernoulli trial with success probability p, n is the number of
parents (length(parents)) and the logit(x) function is defined as:

logit(x) = ln(
x

1− x
).

For example, given intercept=-15, parents=c("A", "B") and betas=c(0.2, 1.3) the data gen-
eration process is defined as:

Y ∼ Bernoulli(logit(−15 +A · 0.2 +B · 1.3)).

Output Format:
By default this function returns a logical vector containing only TRUE and FALSE entries, where
TRUE corresponds to an event and FALSE to no event. This may be changed by using the output and
labels arguments. The last three arguments of this function are ignored if return_prob is set to
TRUE.

Value

Returns a logical vector (or numeric vector if return_prob=TRUE) of length nrow(data).

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)

set.seed(5425)

define needed DAG
dag <- empty_dag() +

node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +

22 node_competing_events

node("smoking", type="binomial", parents=c("age", "sex"),
betas=c(1.1, 0.4), intercept=-2)

define the same DAG, but using a pretty formula
dag <- empty_dag() +

node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("smoking", type="binomial",

formula= ~ -2 + age*1.1 + sexTRUE*0.4)

simulate data from it
sim_dat <- sim_from_dag(dag=dag, n_sim=100)

returning only the estimated probability instead
dag <- empty_dag() +

node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("smoking", type="binomial", parents=c("age", "sex"),

betas=c(1.1, 0.4), intercept=-2, return_prob=TRUE)

sim_dat <- sim_from_dag(dag=dag, n_sim=100)

node_competing_events Simulate a Time-to-Event Node with Multiple Mutually Exclusive
Events in Discrete-Time Simulation

Description

This node essentially models a categorical time-dependent variable for which the time and the type
of the event will be important for later usage. It adds two columns to data: name_event (which
type of event the person is currently experiencing) and name_time (the time at which the current
event started). Can only be used inside of the sim_discrete_time function, not outside of it. Past
events and their kind are stored in two lists. See details.

Usage

node_competing_events(data, parents, sim_time, name,
prob_fun, ..., event_duration=c(1, 1),
immunity_duration=max(event_duration),
save_past_events=TRUE, check_inputs=TRUE,
envir)

Arguments

data A data.table containing all columns specified by parents. Similar objects
such as data.frames are not supported.

parents A character vector specifying the names of the parents that this particular child
node has.

node_competing_events 23

sim_time The current time of the simulation.

name The name of the node. This will be used as prefix before the _event, _time,
_past_event_times and _past_event_kind columns.

prob_fun A function that returns a numeric matrix with nrow(data) rows and one col-
umn storing probabilities of occurrence for each possible event type plus a col-
umn for no events. For example, if there are two possible events such as re-
currence and death, the matrix would need to contain three columns. The first
storing the probability of no-event and the other two columns storing probabil-
ities for recurrence and death per person. Since the numbers are probabilities,
the matrix should only contain numbers between 0 and 1 that sum to 1 in each
row. These numbers specify the person-specific probability of experiencing the
events modeled by this node at the particular point in time of the simulation.
The corresponding event will be generated internally using the rcategorical
function.

... An arbitrary number of additional named arguments passed to prob_fun. Ignore
this if you do not want to pass any arguments.

event_duration A numeric vector containing one positive integer for each type of event of inter-
est, specifying how long that event should last. For example, if we are interested
in modelling the time to a cardiovascular event with death as competing event,
this argument would need 2 entries. One would specify the duration of the car-
diovascular event and the other would be Inf (because death is a terminal event).

immunity_duration

A single number >= max(event_duration) specifying how long the person
should be immune to all events after experiencing one. The count internally
starts when the event starts, so in order to use an immunity duration of 10 time
units after the event is over max(event_duration) + 10 should be used.

save_past_events

When the event modeled using this node is recurrent (immunity_duration <
Inf & any(event_duration < Inf)), the same person may experience multi-
ple events over the course of the simulation. Those are generally stored in the
ce_past_events list and ce_past_causes list which are included in the output
of the sim_discrete_time function. This extends the runtime and increases
RAM usage, so if you are not interested in the timing of previous events or if
you are using save_states="all" this functionality can be turned off by setting
this argument to FALSE

check_inputs Whether to perform plausibility checks for the user input or not. Is set to TRUE
by default, but can be set to FALSE in order to speed things up when using this
function in a simulation study or something similar.

envir Only used internally to efficiently store the past event times. Cannot be used by
the user.

Details

When performing discrete-time simulation using the sim_discrete_time function, the standard
node functions implemented in this package are usually not sufficient because they don’t capture
the time-dependent nature of some very interesting variables. Often, the variable that should be
modelled has some probability of occurring at each point in time. Once it does occur, it has some

24 node_competing_events

kind of influence on other variables for a period of time until it goes back to normal (or doesn’t).
This could be a car crash, a surgery, a vaccination etc. The node_time_to_event node function
can be used to model these kinds of nodes in a fairly straightforward fashion.

This function is an extended version of the node_time_to_event function. Instead of simulating a
binary event, it can generate multiple competing events, where the occurrence of one event at time
t is mutually exclusive with the occurrence of an other event at that time. In other words, multiple
events are possible, but only one can occur at a time.

How it Works:

At t = 1, this node will be initialized for the first time. It adds two columns to the data: name_event
(whether the person currently has an event) and name_time (the time at which the current event
started) where name is the name of the node. Additionally, it adds a list with max_t entries to the
ce_past_events list returned by the sim_discrete_time function, which records which individ-
uals experienced a new event at each point in time. The ce_past_causes list additionally records
which kind of event happened at that time.

In a nutshell, it simply models the occurrence of some event by calculating the probability of oc-
currence at t and drawing a single multinomial trial from this probability. If the trial is a "success",
the corresponding event column will be set to the drawn event type (described using integers, where
0 is no event and all other events are numbered consecutively), the time column will be set to the
current simulation time t and the columns storing the past event times and types will receive an
entry.

The event column will stay at its new integer value until the event is over. The duration for that
is controlled by the event_duration parameter. When modeling terminal events such as death,
one can simply set this parameter to Inf, making the event eternal. In many cases it will also
be necessary to implement some kind of immunity after the event, which can be done using the
immunity_duration argument. This effectively sets the probability of another occurrence of the
event to 0 in the next immunity_duration time steps. During the immunity duration, the event
may be > 0 (if the event is still ongoing) or 0 (if the event_duration for that event type has already
passed).

The probability of occurrence is calculated using the function provided by the user using the
prob_fun argument. This can be an arbitrary complex function. The only requirement is that it
takes data as a first argument. The columns defined by the parents argument will be passed to
this argument automatically. If it has an argument called sim_time, the current time of the sim-
ulation will automatically be passed to it as well. Any further arguments can be passed using the
prob_fun_args argument. A simple example could be a multinomial logistic regression node, in
which the probabilities are calculated as an additive linear combination of the columns defined by
parents. A more complex function could include simulation-time dependent effects, further effects
dependent on past event times etc. Examples can be found below and in the vignettes.

What can be done with it:
This type of node naturally support the implementation of competing events, where some may be
terminal or recurrent in nature and may be influenced by pretty much anything. By specifying the
parents and prob_fun arguments correctly, it is possible to create an event type that is dependent
on past events of itself or other time-to-event variables and other variables in general. The user can
include any amount of these nodes in their simulation. It may also be used to simulate any kind of
binary time-dependent variable that one would usually not associate with the name "event" as well.
It is very flexible, but it does require the user to do some coding by themselves.

What can’t be done with it:

node_competing_events 25

This function may only be used to generate competing events, meaning that the occurrence of event
1 at t = 1 makes it impossible for event 2 at t = 1 to occur. If the user wants to generate multiple
events that are not mutually exclusive, he or she may add multiple node_time_to_event based
nodes to the dag argument of the sim_discrete_time function.

In fact, a competing events node may be simulated using multiple calls to the node_time_to_event
based nodes as well, by defining the prob_fun argument of these nodes in such a way that the
occurrence of event A makes the occurrence of event B impossible. This might actually be easier to
implement in some situations, because it doesn’t require the user to manually define a probability
function that outputs a matrix of subject-specific probabilities.

Value

Returns a data.table containing the updated columns of the node.

Note

This function cannot be called outside of the sim_discrete_time function. It only makes sense to
use it as a type in a node_td function call, as described in the documentation and vignettes.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)

a competing_events node with only terminal events, all with a constant
probability of occurrence, independent of any other variable
prob_death_illness <- function(data) {

simply repeat the same probabilities for everyone
n <- nrow(data)
p_mat <- matrix(c(rep(0.9, n), rep(0.005, n), rep(0.005, n)),

byrow = FALSE, ncol=3)

return(p_mat)
}

dag <- empty_dag() +
node_td("death_illness", type="competing_events", prob_fun=prob_death_illness,

event_duration=c(Inf, Inf))

making one of the event-types terminal and the other recurrent
dag <- empty_dag() +

node_td("death_illness", type="competing_events", prob_fun=prob_death_illness,
event_duration=c(15, Inf))

26 node_conditional_distr

call the sim_discrete_time function to generate data from it
sim <- sim_discrete_time(dag, n_sim=100, max_t=500)

more examples on how to use the sim_discrete_time function can be found
in the documentation page of the node_time_to_event function and
in the package vignettes

node_conditional_distr

Simulate a Node by Sampling from Different Distributions based on
Strata

Description

This function can be used to generate any kind of dichotomous, categorical or numeric variables de-
pendent on one or more categorical variables by randomly sampling from user-defined distributions
in each strata defined by the nodes parents.

Usage

node_conditional_distr(data, parents, distr, default_distr=NULL,
default_distr_args=list(), default_val=NA_real_,
coerce2numeric=TRUE, check_inputs=TRUE)

Arguments

data A data.table (or something that can be coerced to a data.table) containing
all columns specified by parents.

parents A character vector specifying the names of the parents that this particular child
node has.

distr A named list where each element corresponds to one stratum defined by par-
ents. If only one name is given in parents, this means that there should be
one element for possible values of the variable given in parents. If the node
has multiple parents, there needs to be one element for possible combinations
of parents (see examples). The values of those elements should be a list
themselves, with the first argument being a callable function (such as rnorm,
rcategorical, ...) and the rest should be named arguments of that function.
Any function can be used, as long as it returns a vector of n values, with n being
an argument of the function. n is set internally based on the stratum size and
cannot be set by the user. If this list does not contain one element for each possi-
ble strata defined by parents, the default_val or default_distr arguments
will be used.

default_distr A function that should be used to generate values for all strata that are not
explicitly mentioned in the distr argument, or NULL (default). If NULL, the
default_val argument will be used to fill the missing strata with values. A
function passed to this argument should contain the argument n, which should

node_conditional_distr 27

define the number of samples to generate. It should return a vector with n values.
Some examples are (again), rnorm or rbernoulli.

default_distr_args

A named list of arguments which are passed to the function defined by the
default_distr argument. Ignored if default_distr is NULL.

default_val A single value which is used as an output for strata that are not mentioned in
distr. Ignored if default_distr is not NULL.

coerce2numeric A single logical value specifying whether to try to coerce the resulting variable
to numeric or not.

check_inputs A single logical value specifying whether to perform input checks or not. May
be set to TRUE to speed up things a little if you are sure your input is correct.

Details

Utilizing the user-defined distribution in each stratum of parents (supplied using the distr argu-
ment), this function simply calls the user-defined function with the arguments given by the user to
generate a new variable. This allows the new variable to consist of a mix of different distributions,
based on categorical parents.

Formal Description:

Formally, the data generation process can be described as a series of conditional equations. For
example, suppose that there is just one parent node sex with the levels male and female with the
goal of creating a continuous outcome that has a normal distribution of N(10, 3) for males and
N(7, 2) for females. The conditional equation is then:

Y ∼

{
N(10, 3), if sex="male"
N(7, 2), if sex="female"

,

If there are more than two variables, the conditional distribution would be stratified by the intersec-
tion of all subgroups defined by the variables.

Value

Returns a numeric vector of length nrow(data).

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)

set.seed(42)

28 node_conditional_prob

with one parent node

define conditional distributions
distr <- list(male=list("rnorm", mean=100, sd=5),

female=list("rcategorical", probs=c(0.1, 0.2, 0.7)))

define DAG
dag <- empty_dag() +

node("sex", type="rcategorical", labels=c("male", "female"),
output="factor", probs=c(0.4, 0.6)) +

node("chemo", type="rbernoulli", p=0.5) +
node("A", type="conditional_distr", parents="sex", distr=distr)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

with two parent nodes

define conditional distributions with interaction between parents
distr <- list(male.FALSE=list("rnorm", mean=100, sd=5),

male.TRUE=list("rnorm", mean=100, sd=20),
female.FALSE=list("rbernoulli", p=0.5),
female.TRUE=list("rcategorical", probs=c(0.1, 0.2, 0.7)))

define DAG
dag <- empty_dag() +

node("sex", type="rcategorical", labels=c("male", "female"),
output="factor", probs=c(0.4, 0.6)) +

node("chemo", type="rbernoulli", p=0.5) +
node("A", type="conditional_distr", parents=c("sex", "chemo"), distr=distr)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

node_conditional_prob Simulate a Node Using Conditional Probabilities

Description

This function can be used to generate dichotomous or categorical variables dependent on one or
more categorical variables where the probabilities of occurrence in each strata defined by those
variables is known.

Usage

node_conditional_prob(data, parents, probs, default_probs=NULL,
default_val=NA, labels=NULL,
coerce2factor=FALSE, check_inputs=TRUE)

node_conditional_prob 29

Arguments

data A data.table (or something that can be coerced to a data.table) containing
all columns specified by parents.

parents A character vector specifying the names of the parents that this particular child
node has.

probs A named list where each element corresponds to one stratum defined by par-
ents. If only one name is given in parents, this means that there should be one
element for possible value of the variable given in parents. If the node has
multiple parents, there needs to be one element for possible combinations of
parents (see examples). The values of those elements should either be a single
number, corresponding to the probability of occurrence of a single event/value in
case of a dichotomous variable, or a vector of probabilities that sum to 1, corre-
sponding to class probabilities. In either case, the length of all elements should
be the same. If possible strata of parents (or their possible combinations in
case of multiple parents) are omitted, the result will be set to default_val for
these omitted strata. See argument default_val and argument default_probs
for an alternative.

default_probs If not all possible strata of parents are included in probs, the user may set
default probabilities for all omitted strata. For example, if there are three strata
(A, B and C) defined by parents and probs only contains defined probabilities
for strata A, the probabilities for strata B and C can be set simultaneously by
using this argument. Should be a single value between 0 and 1 for Bernoulli
trials and a numeric vector with sum 1 for multinomial trials. If NULL (default)
the value of the produced output for missing strata will be set to default_val
(see below).

default_val Value of the produced variable in strata that are not included in the probs argu-
ment. If default_probs is not NULL, that arguments functionality will be used
instead.

labels A vector of labels for the generated output. If NULL (default) and the output
is dichotomous, a logical variable will be returned. If NULL and the output is
categorical, it simply uses integers starting from 1 as class labels.

coerce2factor A single logical value specifying whether to return the drawn events as a factor
or not.

check_inputs A single logical value specifying whether input checks should be performed or
not. Set to FALSE to save some computation time in simulations.

Details

Utilizing the user-defined discrete probability distribution in each stratum of parents (supplied
using the probs argument), this function simply calls either the rbernoulli or the rcategorical
function.

Formal Description:

Formally, the data generation process can be described as a series of conditional equations. For
example, suppose that there is just one parent node sex with the levels male and female with the
goal of creating a binary outcome that has a probability of occurrence of 0.5 for males and 0.7 for
females. The conditional equation is then:

30 node_conditional_prob

Y ∼ Bernoulli(p),

where:

p =

{
0.5, if sex="male"
0.7, if sex="female"

,

and Bernoulli(p) is the Bernoulli distribution with success probability p. If the outcome has more
than two categories, the Bernoulli distribution would be replaced by Multinomial(p) with p being
replaced by a matrix of class probabilities. If there are more than two variables, the conditional
distribution would be stratified by the intersection of all subgroups defined by the variables.

Value

Returns a numeric vector of length nrow(data).

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)

set.seed(42)

two classes, one parent node

define conditional probs
probs <- list(male=0.5, female=0.8)

define DAG
dag <- empty_dag() +

node("sex", type="rcategorical", labels=c("male", "female"),
output="factor", probs=c(0.5, 0.5)) +

node("chemo", type="rbernoulli", p=0.5) +
node("A", type="conditional_prob", parents="sex", probs=probs)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

three classes, one parent node

define conditional probs
probs <- list(male=c(0.5, 0.2, 0.3), female=c(0.8, 0.1, 0.1))

node_cox 31

define DAG
dag <- empty_dag() +

node("sex", type="rcategorical", labels=c("male", "female"),
output="factor", probs=c(0.5, 0.5)) +

node("chemo", type="rbernoulli", p=0.5) +
node("A", type="conditional_prob", parents="sex", probs=probs)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

two classes, two parent nodes

define conditional probs
probs <- list(male.FALSE=0.5,

male.TRUE=0.8,
female.FALSE=0.1,
female.TRUE=0.3)

define DAG
dag <- empty_dag() +

node("sex", type="rcategorical", labels=c("male", "female"),
output="factor", probs=c(0.5, 0.5)) +

node("chemo", type="rbernoulli", p=0.5) +
node("A", type="conditional_prob", parents=c("sex", "chemo"), probs=probs)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

three classes, two parent nodes

define conditional probs
probs <- list(male.FALSE=c(0.5, 0.1, 0.4),

male.TRUE=c(0.8, 0.1, 0.1),
female.FALSE=c(0.1, 0.7, 0.2),
female.TRUE=c(0.3, 0.4, 0.3))

define dag
dag <- empty_dag() +

node("sex", type="rcategorical", labels=c("male", "female"),
output="factor", probs=c(0.5, 0.5)) +

node("chemo", type="rbernoulli", p=0.5) +
node("A", type="conditional_prob", parents=c("sex", "chemo"), probs=probs)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

node_cox Simulate a Node Using Cox-Regression

32 node_cox

Description

Data from the parents is used to generate the node using cox-regression using the method of Bender
et al. (2005).

Usage

node_cox(data, parents, formula=NULL, betas, surv_dist, lambda, gamma,
cens_dist, cens_args, name)

Arguments

data A data.table (or something that can be coerced to a data.table) containing
all columns specified by parents.

parents A character vector specifying the names of the parents that this particular child
node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.

formula An optional formula object to describe how the node should be generated or
NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side may contain any valid formula syntax, such
as A + B or A + B + I(A^2), allowing non-linear effects. If this argument is de-
fined, there is no need to define the parents argument. For example, using
parents=c("A", "B") is equal to using formula= ~ A + B.

betas A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

surv_dist A single character specifying the distribution that should be used when generat-
ing the survival times. Can be either "weibull" or "exponential".

lambda A single number used as parameter defined by surv_dist.

gamma A single number used as parameter defined by surv_dist.

cens_dist A single character naming the distribution function that should be used to gen-
erate the censoring times. For example, "runif" could be used to generate
uniformly distributed censoring times. Set to NULL to get no censoring.

cens_args A list of named arguments which will be passed to the function specified by the
cens_dist argument.

name A single character string specifying the name of the node.

Details

The survival times are generated according to the cox proportional-hazards regression model as
defined by the user. How exactly the data-generation works is described in detail in Bender et al.
(2005). To also include censoring, this function allows the user to supply a function that generates
random censoring times. If the censoring time is smaller than the generated survival time, the
individual is considered censored.

Unlike the other node type functions, this function adds two columns to the resulting dataset instead
of one. The first column is called paste0(name, "_event") and is a logical variable, where TRUE
indicates that the event has happened and FALSE indicates right-censoring. The second column is

node_custom 33

named paste0(name, "_time") and includes the survival or censoring time corresponding to the
previously mentioned event indicator. This is the standard format for right-censored time-to-event
data without time-varying covariates.

To simulate more complex time-to-event data, the user may need to use the sim_discrete_time
function instead.

Value

Returns a data.table of length nrow(data) containing two columns. Both starting with the nodes
name and ending with _event and _time. The first is a logical vector, the second a numeric one.

Author(s)

Robin Denz

References

Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards
models. Statistics in Medicine. 2005; 24 (11): 1713-1723.

Examples

library(simDAG)

set.seed(3454)

define DAG
dag <- empty_dag() +

node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("death", type="cox", parents=c("sex", "age"), betas=c(1.1, 0.4),

surv_dist="weibull", lambda=1.1, gamma=0.7, cens_dist="runif",
cens_args=list(min=0, max=1))

sim_dat <- sim_from_dag(dag=dag, n_sim=1000)

node_custom Create Your Own Function to Simulate a Root Node, Child Node or
Time-Dependent Node

Description

This page describes in detail how to define custom functions to allow the usage of root nodes, child
nodes or time-dependent nodes that are not directly implemented in this package. By doing so,
users may create data with any functional dependence they can think of.

34 node_custom

Details

The number of available types of nodes is limited, but this package allows the user to easily im-
plement their own node types by writing a single custom function. Users may create their own
root nodes, child nodes and time-dependent nodes. The requirements for each node type are listed
below. Some simple examples for each node type are given further below.

If you think that your custom node type might be useful to others, please contact the maintainer of
this package via the supplied e-mail address or github and we might add it to this package.

Root Nodes:

Any function that generates some vector of size n with n==nrow(data), or a data.frame with as
many rows as the current data can be used as a child node. The only requirement is:

• 1.) The function should have an argument called n which controls how many samples to
generate.

Some examples that are already implemented in R outside of this package are rnorm(), rgamma()
and rbeta(). The function may take any amount of further arguments, which will be passed
through the three-dot syntax.

Child Nodes:

Again, almost any function may be used to generate a child node. Only four things are required for
this to work properly:

• 1.) Its’ name should start with node_ (if you want to use a string to define it in type).
• 2.) It should contain an argument called data (contains the already generated data).
• 3.) It should contain an argument called parents (contains a vector of the child nodes parents).
• 4.) It should return either a vector of length n_sim or a data.frame with any number of

columns and n_sim rows.

The function may include any amount of additional arguments specified by the user.

Time-Dependent Nodes:

By time-dependent nodes we mean nodes that are created using the node_td function. In general,
this works in essentially the same way as for simple root nodes or child nodes. The requirements
are:

• 1.) Its’ name should start with node_ (if you want to use a string to define it in type).
• 2.) It should contain an argument called data (contains the already generated data).
• 3.) If it is a child node, it should contain an argument called parents (contains a vector of the

child nodes parents). This is not necessary for nodes that are independently generated.
• 4.) It should return either a vector of length n_sim or a data.frame with any number of

columns and n_sim rows.

Again, any number of additional arguments is allowed and will be passed through the three-dot
syntax. Additionally, users may add an argument to this function called sim_time. If included
in the function definition, the current time of the simulation will be passed to the function on
every call made to it. Similarly, the argument past_states may be added. If done so, a list
containing all previous states of the simulation (as saved using the save_states argument of the
sim_discrete_time) function) will be passed to it internally, giving the user access to the data
generated at previous points in time.

node_custom 35

Value

Should return either a vector of length nrow(data) or a data.table or data.frame with nrow(data)
rows.

Author(s)

Robin Denz

Examples

library(simDAG)

set.seed(3545)

################ Custom Root Nodes ###################

using external functions without defining them yourself can be done this way
dag <- empty_dag() +

node("A", type="rgamma", shape=0.1, rate=2) +
node("B", type="rbeta", shape1=2, shape2=0.3)

define your own root node instead
this function takes the sum of a normally distributed random number and an
uniformly distributed random number
custom_root <- function(n, min=0, max=1, mean=0, sd=1) {

out <- runif(n, min=min, max=max) + rnorm(n, mean=mean, sd=sd)
return(out)

}

dag <- empty_dag() +
node("A", type="custom_root", min=0, max=10, mean=5, sd=2)

equivalently, the function can be supplied directly
dag <- empty_dag() +

node("A", type=custom_root, min=0, max=10, mean=5, sd=2)

############### Custom Child Nodes ###################

create a custom node function, which is just a gaussian node that
includes (bad) truncation
node_gaussian_trunc <- function(data, parents, betas, intercept, error,

left, right) {
out <- node_gaussian(data=data, parents=parents, betas=betas,

intercept=intercept, error=error)
out <- ifelse(out <= left, left,

ifelse(out >= right, right, out))
return(out)

}

another custom node function, which simply returns a sum of the parents
parents_sum <- function(data, parents, betas=NULL) {

out <- rowSums(data[, parents, with=FALSE])

36 node_custom

return(out)
}

an example of using these new node types in a simulation
dag <- empty_dag() +

node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("custom_1", type="gaussian_trunc", parents=c("sex", "age"),

betas=c(1.1, 0.4), intercept=-2, error=2, left=10, right=25) +
node("custom_2", type=parents_sum, parents=c("age", "custom_1"))

sim_dat <- sim_from_dag(dag=dag, n_sim=100)

########## Custom Time-Dependent Nodes ###############

example for a custom time-dependent node with no parents
this node simply draws a new value from a normal distribution at
each point in time
node_custom_root_td <- function(data, n, mean=0, sd=1) {

return(rnorm(n=n, mean=mean, sd=sd))
}

n_sim <- 100

dag <- empty_dag() +
node_td(name="Something", type=node_custom_root_td, n=n_sim, mean=10, sd=5)

sim <- sim_discrete_time(dag, n_sim=n_sim, max_t=10)

example for a custom time-dependent child node
draw from a normal distribution with different specifications based on
whether a previously updated time-dependent node is currently TRUE
node_custom_child <- function(data, parents) {

out <- numeric(nrow(data))
out[data$other_event] <- rnorm(n=sum(data$other_event), mean=10, sd=3)
out[!data$other_event] <- rnorm(n=sum(!data$other_event), mean=5, sd=10)
return(out)

}

dag <- empty_dag() +
node_td("other", type="time_to_event", prob_fun=0.1) +
node_td("whatever", type="custom_child", parents="other_event")

sim <- sim_discrete_time(dag, n_sim=50, max_t=10)

using the sim_time argument in a custom node function
this function returns a continuous variable that is simply the
current simulation time squared
node_square_sim_time <- function(data, sim_time, n_sim) {

return(rep(sim_time^2, n=n_sim))
}

note that we should not actually define the sim_time argument in the

node_gaussian 37

node_td() call below, because it will be passed internally, just like data
dag <- empty_dag() +

node_td("unclear", type=node_square_sim_time, n_sim=100)

sim <- sim_discrete_time(dag, n_sim=100, max_t=10)

a node using previous states of the simulation

this function simply returns the value used two simulation time steps ago +
a normally distributed random value
node_prev_state <- function(data, past_states, sim_time) {

if (sim_time < 3) {
return(rnorm(n=nrow(data)))

} else {
return(past_states[[sim_time-2]]$A + rnorm(n=nrow(data)))

}
}

note that we again do not specify the sim_time and past_states argument
directly here, because they are set internally
dag <- empty_dag() +

node_td("A", type=node_prev_state, parents="A")

save_states="all" is needed, because we use them internally
sim <- sim_discrete_time(dag, n_sim=100, max_t=10, save_states="all")

node_gaussian Simulate a Node Using Linear Regression

Description

Data from the parents is used to generate the node using linear regression by predicting the covariate
specific mean and sampling from a normal distribution with that mean and a specified standard
deviation.

Usage

node_gaussian(data, parents, formula=NULL, betas, intercept, error)

Arguments

data A data.table (or something that can be coerced to a data.table) containing
all columns specified by parents.

parents A character vector specifying the names of the parents that this particular child
node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.

formula An optional formula object to describe how the node should be generated or
NULL (default). If supplied it should start with ~, having nothing else on the

38 node_gaussian

left hand side. The right hand side may contain any valid formula syntax, such
as A + B or A + B + I(A^2), allowing non-linear effects. If this argument is de-
fined, there is no need to define the parents argument. For example, using
parents=c("A", "B") is equal to using formula= ~ A + B.

betas A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

intercept A single number specifying the intercept that should be used when generating
the node.

error A single number specifying the sigma error that should be used when generating
the node.

Details

Using the general linear regression equation, the observation-specific value that would be expected
given the model is generated for every observation in the dataset generated thus far. We could
stop here, but this would create a perfect fit for the node, which is unrealistic. Instead, we add an
error term by taking one sample of a normal distribution for each observation with mean zero and
standard deviation error. This error term is then added to the predicted mean.

Formal Description:

Formally, the data generation can be described as:

Y ∼ intercept+ parents1 · betas1 + ...+ parentsn · betasn +N(0, error),

where N(0, error) denotes the normal distribution with mean 0 and a standard deviation of error
and n is the number of parents (length(parents)).

For example, given intercept=-15, parents=c("A", "B"), betas=c(0.2, 1.3) and error=2 the
data generation process is defined as:

Y ∼ −15 +A · 0.2 +B · 1.3 +N(0, 2).

Value

Returns a numeric vector of length nrow(data).

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

node_multinomial 39

Examples

library(simDAG)

set.seed(12455432)

define a DAG
dag <- empty_dag() +

node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("bmi", type="gaussian", parents=c("sex", "age"),

betas=c(1.1, 0.4), intercept=12, error=2)

define the same DAG, but with a pretty formula for the child node
dag <- empty_dag() +

node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("bmi", type="gaussian", error=2,

formula= ~ 12 + sexTRUE*1.1 + age*0.4)

sim_dat <- sim_from_dag(dag=dag, n_sim=100)

node_multinomial Simulate a Node Using Multinomial Regression

Description

Data from the parents is used to generate the node using multinomial regression by predicting the
covariate specific probability of each class and sampling from a multinomial distribution accord-
ingly.

Usage

node_multinomial(data, parents, betas, intercepts,
labels=NULL, output="factor",
return_prob=FALSE)

Arguments

data A data.table (or something that can be coerced to a data.table) containing
all columns specified by parents.

parents A character vector specifying the names of the parents that this particular child
node has.

betas A numeric matrix with length(parents) columns and one row for each class
that should be simulated, specifying the causal beta coefficients used to generate
the node.

intercepts A numeric vector with one entry for each class that should be simulated, speci-
fying the intercepts used to generate the node.

40 node_multinomial

labels An optional character vector giving the factor levels of the generated classes. If
NULL (default), the integers are simply used as factor levels.

output A single character string specifying the output format. Must be one of "factor"
(default), "character" or "numeric". If the argument labels is supplied, the
output will coerced to "character" by default.

return_prob Either TRUE or FALSE (default). Specifies whether to return the matrix of class
probabilities or not. If you are using this function inside of a node call, you
cannot set this to TRUE because it will return a matrix. It may, however, be
useful when using this function by itself, or as a probability generating function
for the node_competing_events function.

Details

This function works essentially like the node_binomial function. First, the matrix of betas coef-
ficients is used in conjunction with the values defined in the parents nodes and the intercepts to
calculate the expected subject-specific probabilities of occurrence for each possible category. This
is done using the standard multinomial regression equations. Using those probabilities in conjunc-
tion with the rcategorical function, a single one of the possible categories is drawn for each
individual.

Since this function produces categorical output (as it should), it may be difficult to use this node
type as a parent for other nodes. Nevertheless, it is of course possible using a user-defined node
type (see node_custom for some infos on how to define those).

Value

Returns a vector of length nrow(data). Depending on the used arguments, this vector may be of
type character, numeric of factor. If return_prob was used it instead returns a numeric matrix
containing one column per possible event and nrow(data) rows.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)

set.seed(3345235)

dag <- empty_dag() +
node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("UICC", type="multinomial", parents=c("sex", "age"),

betas=matrix(c(0.2, 0.4, 0.1, 0.5, 1.1, 1.2), ncol=2),
intercepts=1)

node_negative_binomial 41

sim_dat <- sim_from_dag(dag=dag, n_sim=100)

node_negative_binomial

Simulate a Node Using Negative Binomial Regression

Description

Data from the parents is used to generate the node using negative binomial regression by applying
the betas to the design matrix and sampling from the rnbinom function.

Usage

node_negative_binomial(data, parents, formula=NULL, betas,
intercept, theta)

Arguments

data A data.table (or something that can be coerced to a data.table) containing
all columns specified by parents.

parents A character vector specifying the names of the parents that this particular child
node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.

formula An optional formula object to describe how the node should be generated or
NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side may contain any valid formula syntax, such
as A + B or A + B + I(A^2), allowing non-linear effects. If this argument is de-
fined, there is no need to define the parents argument. For example, using
parents=c("A", "B") is equal to using formula= ~ A + B.

betas A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

intercept A single number specifying the intercept that should be used when generating
the node.

theta A single number specifying the theta parameter (size argument in rnbinom).

Details

This function uses the linear predictor defined by the betas and the input design matrix to sample
from a subject-specific negative binomial distribution. It does to by calculating the linear predictor
using the data, betas and intercept, exponentiating it and passing it to the mu argument of the
rnbinom function of the stats package.

Value

Returns a numeric vector of length nrow(data).

42 node_poisson

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)

set.seed(124554)

dag <- empty_dag() +
node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("smoking", type="negative_binomial", theta=0.05,

formula= ~ -2 + sexTRUE*1.1 + age*0.4)

sim_dat <- sim_from_dag(dag=dag, n_sim=100, sort_dag=FALSE)

node_poisson Simulate a Node Using Poisson Regression

Description

Data from the parents is used to generate the node using poisson regression by predicting the co-
variate specific lambda and sampling from a poisson distribution accordingly.

Usage

node_poisson(data, parents, formula=NULL, betas, intercept)

Arguments

data A data.table (or something that can be coerced to a data.table) containing
all columns specified by parents.

parents A character vector specifying the names of the parents that this particular child
node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.

formula An optional formula object to describe how the node should be generated or
NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side may contain any valid formula syntax, such
as A + B or A + B + I(A^2), allowing non-linear effects. If this argument is de-
fined, there is no need to define the parents argument. For example, using
parents=c("A", "B") is equal to using formula= ~ A + B.

node_poisson 43

betas A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

intercept A single number specifying the intercept that should be used when generating
the node.

Details

Essentially, this function simply calculates the linear predictor defined by the betas-coefficients,
the intercept and the values of the parents. The exponential function is then applied to this
predictor and the result is passed to the rpois function. The result is a draw from a subject-specific
poisson distribution, resembling the user-defined poisson regression model.

Formal Description:

Formally, the data generation can be described as:

Y ∼ Poisson(λ),

where Poisson() means that the variable is Poisson distributed with:

Pλ(k) =
λke−λ

k!
.

Here, k is the count and e is eulers number. The parameter λ is determined as:

λ = exp(intercept+ parents1 · betas1 + ...+ parentsn · betasn),

where n is the number of parents (length(parents)).

For example, given intercept=-15, parents=c("A", "B"), betas=c(0.2, 1.3) the data genera-
tion process is defined as:

Y ∼ Poisson(exp(−15 +A · 0.2 +B · 1.3)).

Value

Returns a numeric vector of length nrow(data).

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

44 node_time_to_event

Examples

library(simDAG)

set.seed(345345)

dag <- empty_dag() +
node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("smoking", type="poisson",

formula= ~ -2 + sexTRUE*1.1 + age*0.4)

sim_dat <- sim_from_dag(dag=dag, n_sim=100)

node_time_to_event Simulate a Time-to-Event Node in Discrete-Time Simulation

Description

This node essentially models a dichotomous time-dependent variable for which the time of the event
will be important for later usage. It adds two columns to data: name_event (whether the person
currently has an event) and name_time (the time at which the current event started). Past events are
stored in a list. Can only be used inside of the sim_discrete_time function, not outside of it. See
details.

Usage

node_time_to_event(data, parents, sim_time, name,
prob_fun, ..., event_duration=1,
immunity_duration=event_duration,
time_since_last=FALSE, event_count=FALSE,
save_past_events=TRUE, check_inputs=TRUE,
envir)

Arguments

data A data.table containing all columns specified by parents. Similar objects
such as data.frames are not supported.

parents A character vector specifying the names of the parents that this particular child
node has. Those child nodes should be valid column names in data. Because
the state of this variable is by definition dependent on its previous states, the
columns produced by this function will automatically be considered its parents
without the user having to manually specify this.

sim_time The current time of the simulation.

name The name of the node. This will be used as prefix before the _event, _time
columns. If the time_since_last or event_count arguments are set to TRUE,
this will also be used as prefix for those respective columns.

node_time_to_event 45

prob_fun A function that returns a numeric vector of size nrow(data) containing only
numbers between 0 and 1. These numbers specify the person-specific probabil-
ity of experiencing the event modeled by this node at the particular point in time
of the simulation. The corresponding event will be generated internally using
the rbernoulli function. The function needs to have a named argument called
data. If the function has an argument named sim_time, the current simulation
time will also be passed to this function automatically, allowing time-dependent
probabilities to be generated. Alternatively this argument can be set to a sin-
gle number (between 0 and 1), resulting in a fixed probability of occurrence for
every simulated individual at every point in time.

... An arbitrary amount of additional named arguments passed to prob_fun. Ignore
this if you do not want to pass any arguments. Also ignored if prob_fun is a
single number.

event_duration A single number > 0 specifying how long the event should last. The point in
time at which an event occurs also counts into this duration. For example, if an
event occurs at t = 2 and it has a duration of 3, the event will be set to TRUE
on t ∈ {2, 3, 4}. Therefore, all events must have a duration of at least 1 unit
(otherwise they never happened).

immunity_duration

A single number >= event_duration specifying how long the person should be
immune to the event after it is over. The count internally starts when the event
starts, so in order to use an immunity duration of 10 time units after the event is
over event_duration + 10 should be used.

time_since_last

Either TRUE or FALSE (default), indicating whether an additional column should
be generated that tracks the number of time units since the individual had its
last event onset. For example, if the individual experienced a single event at
t = 10, this column would be NA before time 10, 0 at time 10 and increased
by 1 at each point in time. If another event happens, the time is set to 0 again.
The column is named paste0(name, "_time_since_last"). The difference
to the column ending with "_time" is that this column will not be set to NA
again if the immunity_duration is over. It keeps counting until the end of
the simulation, which may be useful when constructing event-time dependent
probability functions.

event_count Either TRUE or FALSE (default), indicating whether an additional column should
be generated that tracks the number of events the individual has already experi-
enced. This column is 0 for all individuals at t = 0. Each time a new event occurs,
the counter is increased by one. Note that only new events increase this counter.
For example, an individual with an event at t = 10 that has an event_duration
of 15 will have a value of 0 before t = 10, and will have a value of 1 at t = 10
and afterwards. The column will be named paste0(name, "_event_count").

save_past_events

When the event modeled using this node is recurrent (immunity_duration <
Inf & event_duration < Inf), the same person may experience multiple events
over the course of the simulation. Those are generally stored in the tte_past_events
list which is included in the output of the sim_discrete_time function. This
extends the runtime and increases RAM usage, so if you are not interested in the

46 node_time_to_event

timing of previous events or if you are using save_states="all" this function-
ality can be turned off by setting this argument to FALSE.

check_inputs Whether to perform plausibility checks for the user input or not. Is set to TRUE
by default, but can be set to FALSE in order to speed things up when using this
function in a simulation study or something similar.

envir Only used internally to efficiently store the past event times. Cannot be used by
the user.

Details

When performing discrete-time simulation using the sim_discrete_time function, the standard
node functions implemented in this package are usually not sufficient because they don’t capture
the time-dependent nature of some very interesting variables. Often, the variable that should be
modelled has some probability of occurring at each point in time. Once it does occur, it has some
kind of influence on other variables for a period of time until it goes back to normal (or doesn’t).
This could be a car crash, a surgery, a vaccination etc. The time_to_event node function can be
used to model these kinds of nodes in a fairly straightforward fashion.

How it Works:

At t = 1, this node will be initialized for the first time. It adds two columns to the data: name_event
(whether the person currently has an event) and name_time (the time at which the current event
started) where name is the name of the node. Additionally, it adds a list with max_t entries to the
tte_past_events list returned by the sim_discrete_time function, which records which individ-
uals experienced a new event at each point in time.

In a nutshell, it simply models the occurrence of some event by calculating the probability of oc-
currence at t and drawing a single bernoulli trial from this probability. If the trial is a "success",
the corresponding event column will be set to TRUE, the time column will be set to the current
simulation time t and the column storing the past event times will receive an entry.

The _event column will stay TRUE until the event is over. The duration for that is controlled by
the event_duration parameter. When modeling terminal events such as death, one can simply set
this parameter to Inf, making the event eternal. In many cases it will also be necessary to imple-
ment some kind of immunity after the event, which can be done using the immunity_duration
argument. This effectively sets the probability of another occurrence of the event to 0 in the next
immunity_duration time steps. During the immunity duration, the event may be TRUE (if the event
is still ongoing) or FALSE (if the event_duration has already passed). The _time column is sim-
ilarly set to the time of occurrence of the event and reset to NA when the immunity_duration is
over.

The probability of occurrence is calculated using the function provided by the user using the
prob_fun argument. This can be an arbitrary complex function. The only requirement is that it
takes data as a first argument. The columns defined by the parents argument will be passed to
this argument automatically. If it has an argument called sim_time, the current time of the simula-
tion will automatically be passed to it as well. Any further arguments can be passed using the ...
syntax. A simple example could be a logistic regression node, in which the probability is calculated
as an additive linear combination of the columns defined by parents. A more complex function
could include simulation-time dependent effects, further effects dependent on past event times etc.
Examples can be found below and in the vignettes.

How it is Used:

node_time_to_event 47

This function should never be called directly by the user. Instead, the user should define a DAG
object using the empty_dag and node_td functions and set the type argument inside of a node_td
call to "time_to_event". This DAG can be passed to the sim_discrete_time function to generate
the desired data. Many examples and more explanations are given below and in the vignettes of this
package.

What can be done with it:

This type of node naturally supports the implementation of terminal and recurrent events that may be
influenced by pretty much anything. By specifying the parents and prob_fun arguments correctly,
it is possible to create an event type that is dependent on past events of itself or other time-to-event
variables and other variables in general. The user can include any amount of these nodes in their
simulation. It may also be used to simulate any kind of binary time-dependent variable that one
would usually not associate with the name "event" as well. It is very flexible, but it does require the
user to do some coding by themselves (e.g. creating a suitable function for the prob_fun argument).

What can’t be done with it:

Currently this function only allows binary events. Categorical event types may be implemented
using the node_competing_events function, which works in a very similar fashion.

Value

Returns a data.table containing at least two columns with updated values of the node.

Note

This function cannot be called outside of the sim_discrete_time function. It only makes sense to
use it as a type in a node_td function call, as described in the documentation and vignettes.

Author(s)

Robin Denz, Katharina Meiszl

See Also

empty_dag, node_td, sim_discrete_time

Examples

library(simDAG)

a simple terminal time-to-event node, with a constant probability of
occurrence, independent of any other variable
dag <- empty_dag() +

node_td("death", type="time_to_event", prob_fun=0.0001,
event_duration=Inf)

a simple recurrent time-to-event node with a constant probability of
occurrence, independent of any other variable
dag <- empty_dag() +

node_td("car_crash", type="time_to_event", prob_fun=0.001, event_duration=1)

48 plot.DAG

a time-to-event node with a time-dependent probability function that
has an additional argument
prob_car_crash <- function(data, sim_time, base_p) {

return(base_p + sim_time * 0.0001)
}

dag <- empty_dag() +
node_td("car_crash", type="time_to_event", prob_fun=prob_car_crash,

event_duration=1, base_p=0.0001)

a time-to-event node with a probability function dependent on a
time-fixed variable
prob_car_crash <- function(data) {

ifelse(data$sex==1, 0.001, 0.01)
}

dag <- empty_dag() +
node("sex", type="rbernoulli", p=0.5) +
node_td("car_crash", type="time_to_event", prob_fun=prob_car_crash,

parents="sex")

a little more complex car crash simulation, where the probability for
a car crash is dependent on the sex, and the probability of death is
highly increased for 3 days after a car crash happened
prob_car_crash <- function(data) {

ifelse(data$sex==1, 0.001, 0.01)
}

prob_death <- function(data) {
ifelse(data$car_crash_event, 0.1, 0.0001)

}

dag <- empty_dag() +
node("sex", type="rbernoulli", p=0.5) +
node_td("car_crash", type="time_to_event", prob_fun=prob_car_crash,

parents="sex") +
node_td("death", type="time_to_event", prob_fun=prob_death,

parents="car_crash_event")

use the sim_discrete_time function to simulate data from one of these DAGs:
sim <- sim_discrete_time(dag, n_sim=20, max_t=500)

more examples can be found in the vignettes of this package

plot.DAG Plot a DAG object

Description

Using the node information contained in the DAG object this function plots the corresponding DAG
in a quick and convenient way. Some options to customize the plot are available, but it may be

plot.DAG 49

advisable to use other packages made explicitly to visualize DAGs instead if those do not meet the
users needs.

Usage

S3 method for class 'DAG'
plot(x, layout="nicely", node_size=0.2,

node_names=NULL, node_color="black",
node_fill="red", node_linewidth=0.5,
node_linetype="solid", node_alpha=1,
node_text_color="black", node_text_alpha=1,
node_text_size=8, node_text_family="sans",
node_text_fontface="bold", arrow_color="black",
arrow_linetype="solid", arrow_linewidth=1,
arrow_alpha=1, arrow_head_size=0.3,
arrow_head_unit="cm", arrow_type="closed",
arrow_node_dist=0.03, gg_theme=ggplot2::theme_void(),
include_td_nodes=TRUE, mark_td_nodes=TRUE,
...)

Arguments

x A DAG object created using the empty_dag function with nodes added to it using
the + syntax. See empty_dag or node for more details.

layout A single character string specifying the layout of the plot. This internally calls
the layout_ function of the igraph package, which offers a great variety of
ways to layout the nodes of a graph. Defaults to "nicely". Some other op-
tions are: "as_star", "as_tree", "in_circle", "on_spere", "randomly"
and many more. For more details see ?layout_.

node_size Either a single positive number or a numeric vector with one entry per node in
the DAG, specifying the radius of the circles used to draw the nodes. If a single
number is supplied, all nodes will be the same size (default).

node_names A character vector with one entry for each node in the DAG specifying names
that should be used for in the nodes or NULL (default). If NULL, the node names
that were set during the creation of the DAG object will be used as names.

node_color A single character string specifying the color of the outline of the node circles.

node_fill A single character string specifying the color with which the nodes are filled.
Ignored if time-varying nodes are present and both include_td_nodes and
mark_td_nodes are set to TRUE.

node_linewidth A single number specifying the width of the outline of the node circles.

node_linetype A single character string specifying the linetype of the outline of the node cir-
cles.

node_alpha A single number between 0 and 1 specifying the transparency level of the nodes.
node_text_color

A single character string specifying the color of the text inside the node circles.

50 plot.DAG

node_text_alpha

A single number between 0 and 1 specifying the transparency level of the text
inside the node circles.

node_text_size A single number specifying the size of the text inside of the node circles.

node_text_family

A single character string specifying the family of the text inside the node circles.

node_text_fontface

A single character string specifying the fontface of the text inside the node cir-
cles.

arrow_color A single character string specifying the color of the arrows between the nodes.

arrow_linetype A single character string specifying the linetype of the arrows.

arrow_linewidth

A single number specifying the width of the arrows.

arrow_alpha A single number between 0 and 1 specifying the transparency level of the ar-
rows.

arrow_head_size

A single number specifying the size of the arrow heads. The unit for this size
parameter can be changed using the arrow_head_unit argument.

arrow_head_unit

A single character string specifying the unit of the arrow_head_size argument.

arrow_type Either "open" or "closed", which controls the type of head the arrows should
have. See ?arrow.

arrow_node_dist

A single positive number specifying the distance between nodes and the arrows.
By setting this to values greater than 0 the arrows will not touch the node circles,
leaving a bit of space instead.

gg_theme A ggplot2 theme. By default this is set to theme_void, to get rid off everything
but the plotted nodes (e.g. everything about the axis and the background). Might
be useful to change this to something else when searching for good parameters
of the number arguments of this function.

include_td_nodes

Whether to include time-varying nodes added to the dag using the node_td
function or not. If one node is both specified as a time-fixed and time-varying
node, it’s parents in both calls will be pooled and it will be considered a time-
varying node if this argument is TRUE. It will, however, also show up if it’s
argument is FALSE. In this case however, only the parents of that node in the
standard node call will be considered.

mark_td_nodes Whether to distinguish time-varying and time-fixed nodes by fill color. If
TRUE, the color will be set automatically using the standard ggplot2 palette, ig-
noring the color specified in node_fill. Ignored if include_td_nodes=FALSE
or if there are no time-varying variables.

... Further arguments passed to the layout function specified by the argument of
the same name.

plot.DAG 51

Details

This function uses the igraph package to find a suitable layout for the plot and then uses the ggplot2
package in conjunction with the geom_circle function of the ggforce package to plot the directed
acyclic graph defined by a DAG object. Since it returns a ggplot object, the user may use any
standard ggplot2 syntax to augment the plot or to save it using the ggsave function.

Note that there are multiple great packages specifically designed to plot directed acyclic graphs,
such as the igraph package. This function is not meant to be a competitor to those packages. The
functionality offered here is rather limited. It is designed to produce decent plots for small DAGs
which are easy to create. If this function is not enough to create an adequate plot, users can use the
dag2matrix function to obtain an adjacency matrix from the DAG object and directly use this matrix
and the igraph package (or similar ones) to get much better plots.

If the DAG supplied to this function contains time-varying variables, the resulting plot may contain
cycles or even bi-directional arrows, depending on the DAG. The reason for that is, that the time-
dimension is not shown in the plot. Note also that even though, technically, every time-varying
node has itself as a parent, no arrows showing this dependence will be added to the plot.

Value

Returns a standard ggplot2 object.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td

Examples

library(simDAG)

2 root nodes, 1 child node
dag <- empty_dag() +

node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("smoking", type="binomial", parents=c("sex", "age"), betas=c(1.1, 0.4),

intercept=-2)

if (requireNamespace("ggplot2") & requireNamespace("ggforce")) {

library(ggplot2)
library(igraph)
library(ggforce)

plot(dag)

get plot using the igraph package instead
g1 <- as.igraph(dag)
plot(g1)

52 plot.simDT

plot with a time-varying node
dag <- dag +

node_td("lottery", type="time_to_event", parents=c("age", "smoking"))

plot(dag)
}

plot.simDT Create a Simple Flowchart for a Discrete-Time Simulation

Description

Given a simDT object obtained with the sim_discrete_time function, plots a relatively simple
flowchart of how the simulation was performed. Shows only some general information extracted
from the dag.

Usage

S3 method for class 'simDT'
plot(x, right_boxes=TRUE,

box_hdist=1, box_vdist=1,
box_l_width=0.35, box_l_height=0.23,
box_r_width=box_l_width,
box_r_height=box_l_height + 0.1,
box_alpha=0.5, box_linetype="solid",
box_linewidth=0.5, box_border_colors=NULL,
box_fill_colors=NULL, box_text_color="black",
box_text_alpha=1, box_text_angle=0,
box_text_family="sans", box_text_fontface="plain",
box_text_size=5, box_text_lineheight=1,
box_1_text_left="Create initial data",
box_1_text_right=NULL, box_2_text="Increase t by 1",
box_l_node_labels=NULL, box_r_node_labels=NULL,
box_last_text=paste0("t <= ", x$max_t, "?"),
arrow_line_type="solid", arrow_line_width=0.5,
arrow_line_color="black", arrow_line_alpha=1,
arrow_head_angle=30, arrow_head_size=0.3,
arrow_head_unit="cm", arrow_head_type="closed",
arrow_left_pad=0.3, hline_width=0.5,
hline_type="dashed", hline_color="black",
hline_alpha=1, ...)

Arguments

x A simDT object created using the sim_discrete_time function.

right_boxes Either TRUE (default) or FALSE, specifying whether to add boxes on the right
with some additional information about the nodes on the left.

plot.simDT 53

box_hdist A single positive number specifying the horizontal distance of the left and the
right boxes.

box_vdist A single positive number specifying the vertical distance of the boxes.

box_l_width A single positive number specifying the width of the boxes on the left side.

box_l_height A single positive number specifying the height of the boxes on the left side.

box_r_width A single positive number specifying the width of the boxes on the right side.
Ignored if right_boxes=FALSE.

box_r_height A single positive number specifying the height of the boxes on the right side.
Ignored if right_boxes=FALSE.

box_alpha A single number between 0 and 1 specifying the transparency level of the boxes.

box_linetype A single positive number specifying the linetype of the box outlines.

box_linewidth A single positive number specifying the width of the box outlines.
box_border_colors

A character vector of length two specifying the colors of the box outlines. Set
to NULL (default) to use ggplot2 default colors.

box_fill_colors

A character vector of length two specifying the colors of the inside of the boxes.
Set to NULL (default) to use ggplot2 default colors.

box_text_color A single character string specifying the color of the text inside the boxes.

box_text_alpha A single number between 0 and 1 specifying the transparency level of the text
inside the boxes.

box_text_angle A single positive number specifying the angle of the text inside the boxes.
box_text_family

A single character string specifying the family of the text inside the boxes. May
be one of "sans", "serif", "mono".

box_text_fontface

A single character string specifying the fontface of the text inside the boxes.
May be one of "plain", "bold", "italic", "bold.italic".

box_text_size A single number specifying the size of the text inside the boxes.
box_text_lineheight

A single number specifying the lineheight of the text inside the boxes.
box_1_text_left

A single character string specifying the text inside the first box from the top on
the left side.

box_1_text_right

A single character string specifying the text inside the first box from the top on
the right side or NULL. If NULL (default) it will simply state which variables were
generated at t = 0.

box_2_text A single character string specifying the text inside the second box from the top.
box_l_node_labels

A character vector with one entry for each time-varying node used in the sim-
ulation. These will be used to fill the boxes on the left side of the plot. Set to
NULL to use default values.

54 plot.simDT

box_r_node_labels

A character vector with one entry for each time-varying node used in the simu-
lation. These will be used to fill the boxes on the right side of the plot. Set to
NULL to use default values. Ignored if right_boxes=FALSE.

box_last_text A single character string specifying the text inside the last box on the left side.
By default it uses the max_t argument from the initial function call to construct
a fitting text.

arrow_line_type

A single character string specifying the linetype of the arrows.
arrow_line_width

A single positive number specifying the line width of the arrows.
arrow_line_color

A single character string specifying the color of the arrows.
arrow_line_alpha

A single number between 0 and 1 specifying the transparency level of the ar-
rows.

arrow_head_angle

A single number specifying the angle of the arrow heads.
arrow_head_size

A single number specifying the size of the arrow heads. The unit is defined by
the arrow_head_size argument.

arrow_head_unit

A single character string specifying which unit to use when specifying the arrow_head_size
argument. Defaults to "cm".

arrow_head_type

A single character string specifying which type of arrow head to use. See ?arrow
for more details.

arrow_left_pad A single positive number specifying the distance between the left boxes and the
arrow line to the left of it.

hline_width A single number specifying the width of the horizontal lines between the left
and right boxes.

hline_type A single character string specifying the linetype of the horizontal lines between
the left and right boxes.

hline_color A single character string specifying the color of the horizontal lines between the
left and right boxes.

hline_alpha A single number between 0 and 1 specifying the transparency level of the hori-
zontal lines between the left and right boxes.

... Currently not used.

Details

The resulting flowchart includes two columns of boxes next to each other. On the left side it always
starts with the same two boxes: a box about the creation of the initial data and a box about increasing
the simulation time by 1. Next, there will be a box for each time-varying variable in the simDT
object. Afterwards there is another box which asks if the maximum simulation time was reached.

plot.simDT 55

An arrow to the left that points back to the second box from the top indicates the iterative nature of
the simulation process. The right column of boxes includes additional information about the boxes
on the left.

The text in all boxes may be changed to custom text by using the box_1_text_left, box_1_text_right,
box_2_text, box_l_node_labels, box_r_node_labels and box_last_text arguments. It is also
possible to completely remove the left line of boxes and to change various sizes and appearances.
Although these are quite some options, it is still a rather fixed function in nature. One cannot add
further boxes or arrows in a simple way. The general structure may also not be changed. It may
be useful to visualize a general idea of the simulation flow, but it may be too limited for usage in
scientific publications if the simulation is more complex.

The graphic is created using the ggplot2 package and the output is a standard ggplot object.
This means that the user can change the result using standard ggplot syntax (adding more stuff,
changing geoms, ...).

Value

Returns a standard ggplot object.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_discrete_time

Examples

library(simDAG)

set.seed(435345)

exemplary car crash simulation, where the probability for
a car crash is dependent on the sex, and the probability of death is
highly increased for 3 days after a car crash happened
prob_car_crash <- function(data) {

ifelse(data$sex==1, 0.001, 0.01)
}

prob_death <- function(data) {
ifelse(data$car_crash_event, 0.1, 0.0001)

}

dag <- empty_dag() +
node("sex", type="rbernoulli", p=0.5) +
node_td("car_crash", type="time_to_event", prob_fun=prob_car_crash,

parents="sex") +
node_td("death", type="time_to_event", prob_fun=prob_death,

parents="car_crash_event")

generate some data

56 rbernoulli

sim <- sim_discrete_time(dag, n_sim=20, max_t=500, save_states="last")

if (requireNamespace("ggplot2")) {

default plot
plot(sim)

removing boxes on the right
plot(sim, right_boxes=FALSE)
}

rbernoulli Generate Random Draws from a Bernoulli Distribution

Description

A very fast implementation for generating bernoulli trials. Can take a vector of probabilities which
makes it very useful for simulation studies.

Usage

rbernoulli(n, p=0.5, output="logical")

Arguments

n How many draws to make.

p A numeric vector of probabilities, used when drawing the trials.

output A single character string, specifying which format the output should be re-
turned as. Must be one of "logical" (default), "numeric", "character" or
"factor".

Details

Internally, it uses only a single call to runif, making it much faster and more memory efficient than
using rbinomial.

Note that this function accepts values of p that are smaller then 0 and greater than 1. For p < 0 it
will always return FALSE, for p > 1 it will always return TRUE.

Value

Returns a vector of length n in the desired output format.

Author(s)

Robin Denz

rcategorical 57

Examples

library(simDAG)

generating 5 bernoulli random draws from an unbiased coin
rbernoulli(n=5, p=0.5)

using different probabilities for each coin throw
rbernoulli(n=5, p=c(0.1, 0.2, 0.3, 0.2, 0.7))

return as numeric instead
rbernoulli(n=5, p=0.5, output="numeric")

rcategorical Generate Random Draws from a Discrete Set of Labels with Associ-
ated Probabilities

Description

Allows different class probabilities for each person by supplying a matrix with one column for each
class and one row for each person.

Usage

rcategorical(n, probs, labels=NULL, output="numeric")

Arguments

n How many draws to make. Passed to the size argument of the sample function
if probs is not a matrix.

probs Either a numeric vector of probabilities which sums to one or a matrix with one
column for each desired class and n rows. Passed to the probs argument of the
sample function if a numeric vector is passed.

labels A vector of labels to draw from. If NULL (default), it simply uses integers starting
from 1. Passed to the x argument of the sample function if probs is not a matrix.

output A single character string specifying the output format of the results. Must be
either "numeric" (default), "character" or "factor". If labels are supplied,
the output will be parsed as characters by default.

Details

In case of a simple numeric vector (class probabilities should be the same for all draws), this func-
tion is only a wrapper for the sample function, to make the code more consistent. It uses weighted
sampling with replacement. Otherwise, custom code is used which is faster than the standard
rmultinom function.

Value

Returns a numeric vector (or factor vector if coerce2factor=TRUE) of length n.

58 rconstant

Author(s)

Robin Denz

Examples

library(simDAG)

rcategorical(n=5, labels=c("A", "B", "C"), probs=c(0.1, 0.2, 0.7))

rcategorical(n=2, probs=matrix(c(0.1, 0.2, 0.5, 0.7, 0.4, 0.1), nrow=2))

rconstant Use a single constant value for a root node

Description

This is a small convenience function that simply returns the value passed to it, in order to allow the
use of a constant node as root node in the sim_from_dag function.

Usage

rconstant(n, constant)

Arguments

n The number of times the constant should be repeated.

constant A single value of any kind which is used as the only value of the resulting vari-
able.

Value

Returns a vector of length n with the same type as constant.

Author(s)

Robin Denz

Examples

library(simDAG)

rconstant(n=10, constant=7)

rconstant(n=4, constant="Male")

sim2data 59

sim2data Transform sim_discrete_time output into the start-stop, long- or
wide-format

Description

This function transforms the output of the sim_discrete_time function into a single data.table
structured in the start-stop format (also known as counting process format), the long format (one
row per person per point in time) or the wide format (one row per person, one column per point in
time for time-varying variables). See details.

Usage

sim2data(sim, to, use_saved_states=sim$save_states=="all",
overlap=FALSE, target_event=NULL,
keep_only_first=FALSE, as_data_frame=FALSE,
check_inputs=TRUE, ...)

S3 method for class 'simDT'
as.data.table(x, keep.rownames=FALSE, to, overlap=FALSE,

target_event=NULL, keep_only_first=FALSE,
use_saved_states=x$save_states=="all",
check_inputs=TRUE, ...)

S3 method for class 'simDT'
as.data.frame(x, row.names=NULL, optional=FALSE, to,

overlap=FALSE, target_event=NULL,
keep_only_first=FALSE,
use_saved_states=x$save_states=="all",
check_inputs=TRUE, ...)

Arguments

sim, x An object created with the sim_discrete_time function.

to Specifies the format of the output data. Must be one of: "start_stop", "long",
"wide".

use_saved_states

Whether the saved simulation states (argument save_states in sim_discrete_time
function) should be used to construct the resulting data or not. See details.

overlap Only used when to="start_stop". Specifies whether the intervals should over-
lap or not. If TRUE, the "stop" column is simply increased by one, as compared
to the output when overlap=FALSE. This means that changes for a given t are
recorded at the start of the next interval, but the previous interval ends on that
same day.

target_event Only used when to="start_stop". By default (keeping this argument at NULL)
all time-to-event nodes are treated equally when creating the start-stop intervals.

60 sim2data

This can be changed by supplying a single character string to this argument,
naming one time-to-event node. This node will then be treated as the outcome.
The output then corresponds to what would be needed to fit a Cox proportional
hazards model. See details.

keep_only_first

Only used when to="start_stop" and target_event is not NULL. Either TRUE
or FALSE (default). If TRUE, all information after the first event per person will be
discarded. Useful when target_event should be treated as a terminal variable.

as_data_frame Set this argument to TRUE to return a data.frame instead of a data.table.

check_inputs Whether to perform input checks (TRUE by default). Prints warning messages if
the output may be incorrect due to missing information.

keep.rownames Currently not used.

row.names Passed to the as.data.frame function which is called on the finished data.table.
See ?as.data.frame for more information.

optional Passed to the as.data.frame function which is called on the finished data.table.
See ?as.data.frame for more information.

... Further arguments passed to as.data.frame (conversion from finished data.table
to data.frame). Only available when directly calling sim2data with as_data_frame=TRUE
or when using as.data.frame.simDT.

Details

The raw output of the sim_discrete_time function may be difficult to use for further analysis. Us-
ing one of these functions, it is straightforward to transform that output into three different formats,
which are described below. Note that some caution needs to be applied when using this function,
which is also described below. Both as.data.table and as.data.frame internally call sim2data
and only exist for user convenience.

The start-stop format:

The start-stop format (to="start_stop"), also known as counting process or period format cor-
responds to a data.table containing multiple rows per person, where each row corresponds to a
period of time in which no variables changed. These intervals are defined by the start and stop
columns. The start column gives the time at which the period started, the stop column denotes the
time when the period ended. By default these intervals are coded to be non-overlapping, meaning
that the edges of the periods are included in the period itself. For example, if the respective period
is exactly 1 point in time long, start will be equal to stop. If non-overlapping periods are desired,
the user can specify overlap=TRUE instead.

By default, all time-to-event nodes are treated equally. This is not optimal when the goal is to fit
survival regression models. In this case, we usually want the target event to be treated in a special
way (see for example Chiou et al. 2023). In general, instead of creating new intervals for it we want
existing intervals to end at event times with the corresponding event indicator. This can be achieved
by naming the target outcome in the target_event variable. The previously specified duration of
this target event is then ignored. If only the first occurrence of the event is of interest, users may
also set keep_only_first=TRUE to keep only information up until the first event per person.

The long format:

sim2data 61

The long format (to="long") corresponds to a data.table in which there is one row per person
per point in time. The unique person identifier is stored in the .id column and the unique points in
time are given in the .time column.

The wide format:

The wide format (to="wide") corresponds to a data.table with exactly one row per person and
multiple columns per points in time for each time-varying variable. All time-varying variables are
coded as their original variable name with an underscore and the time-point appended to the end.
For example, the variable sickness at time-point 3 is named "sickness_3".

Output with use_saved_states=TRUE:

If use_saved_states=TRUE, this function will use only the data that is stored in the past_states
list of the sim object to construct the resulting data.table. This results in the following behavior,
depending on which save_states option was used in the original sim_discrete_time function
call:

• save_states="all": A complete data.table in the desired format with information for all
observations at all points in time for all variables will be created. This is the safest option,
but also uses the most RAM and computational time.

• save_states="at_t": A data.table in the desired format with correct information for all
observations at the user specified times (save_states_at argument) for all variables will
be created. The state of the simulation at all other times will be ignored, because it wasn’t
stored. This may be useful in some scenarios, but is generally discouraged unless you have
good reasons to use it. A warning message about this is printed if check_inputs=TRUE.

• save_states="last": Since only the last state of the simulation was saved, an error message
is returned. No data.table is produced.

Output with use_saved_states=FALSE:

If use_saved_states=FALSE, this function will use only the data that is stored in the final state
of the simulation (data object in sim) and information about node_time_to_event objects. If all
tx_nodes are time_to_event nodes or if all the user cares about are the time_to_event nodes
and time-fixed variables, this is the best option.

A data.table in the desired format with correct information about all observations at all
times is produced, but only with correct entries for some time-varying variables, namely time_to_event
nodes. Note that this information will also only be correct if the user used save_past_events=TRUE
in all time_to_event nodes. Support for competing_events nodes will be implemented in the fu-
ture as well.

The other time-varying variables specified in the tx_nodes argument will still appear in the output,
but it will only be the value that was observed at the last state of the simulation.

Optional columns created using a time_to_event node:

When using a time-dependent node of type "time_to_event" with event_count=TRUE or time_since_last=TRUE,
the columns created using either argument are not included in the output if to="start_stop", but
will be included if to is set to either "long" or "wide". The reason for this behavior is that includ-
ing these columns would lead to nonsense intervals in the start-stop format, but makes sense in the
other formats.

What about tx_nodes that are not time_to_event nodes?:

62 sim2data

If you want the correct output for all tx_nodes and one or more of those are not time_to_event
nodes, you will have to use save_states="all" in the original sim_discrete_time call. We
plan to add support for competing_events with other save_states arguments in the near future.
Support for arbitrary tx_nodes will probably take longer.

Value

Returns a single data.table (or data.frame) containing all simulated variables in the desired
format.

Note

Using the node names "start", "stop", ".id", ".time" or names that are automatically generated
by time-dependent nodes of type "time_to_event" may break this function.

Author(s)

Robin Denz

References

Sy Han Chiou, Gongjun Xu, Jun Yan, and Chiung-Yu Huang (2023). "Regression Modeling for
Recurrent Events Possibly with an Informative Terminal Event Using R Package reReg". In: Journal
of Statistical Software. 105.5, pp. 1-34.

See Also

sim_discrete_time

Examples

library(simDAG)

set.seed(435345)

exemplary car crash simulation, where the probability for
a car crash is dependent on the sex, and the probability of death is
highly increased for 3 days after a car crash happened
prob_car_crash <- function(data) {

ifelse(data$sex==1, 0.001, 0.01)
}

prob_death <- function(data) {
ifelse(data$car_crash_event, 0.1, 0.001)

}

dag <- empty_dag() +
node("sex", type="rbernoulli", p=0.5) +
node_td("car_crash", type="time_to_event", prob_fun=prob_car_crash,

parents="sex", event_duration=3) +
node_td("death", type="time_to_event", prob_fun=prob_death,

parents="car_crash_event", event_duration=Inf)

sim_discrete_time 63

generate some data, only saving the last state
not a problem here, because the only time-varying nodes are
time-to-event nodes where the event times are saved
sim <- sim_discrete_time(dag, n_sim=20, max_t=500, save_states="last")

transform to standard start-stop format
d_start_stop <- sim2data(sim, to="start_stop")
head(d_start_stop)

transform to "death" centric start-stop format
and keep only information until death, cause it's a terminal event
(this could be used in a Cox model)
d_start_stop <- sim2data(sim, to="start_stop", target_event="death",

keep_only_first=TRUE, overlap=TRUE)
head(d_start_stop)

transform to long-format
d_long <- sim2data(sim, to="long")
head(d_long)

transform to wide-format
d_wide <- sim2data(sim, to="wide")
#head(d_wide)

sim_discrete_time Using Discrete-Time Simulation to Generate Complex Data from a
Given DAG and Node Information

Description

Similar to the sim_from_dag function, this function can be used to generate data from a given DAG.
In contrast to the sim_from_dag function, this function utilizes a discrete-time simulation approach.
This is not an "off-the-shelves" simulation function, it should rather be seen as a "framework-
function", making it easier to create discrete-time-simulations. It usually requires custom functions
written by the user. See details.

Usage

sim_discrete_time(dag, n_sim=NULL, t0_sort_dag=TRUE,
t0_data=NULL, t0_transform_fun=NULL,
t0_transform_args=list(), max_t,
tx_nodes_order=NULL, tx_transform_fun=NULL,
tx_transform_args=list(),
save_states="last", save_states_at=NULL,
verbose=FALSE, check_inputs=TRUE)

64 sim_discrete_time

Arguments

dag A DAG object created using the empty_dag function with node_td calls added
to it (see details and examples). If the dag contains root nodes and child nodes
which are time-fixed (those who were added using node calls), data according
to this DAG will be generated for time = 0. That data will then be used as
starting data for the following simulation. Alternatively, the user can specify the
t0_data argument directly. In either case, the supplied dag needs to contain at
least one time-dependent node added using the node_td function.

n_sim A single number specifying how many observations should be generated. If a
data.table is supplied to the t0_data argument, this argument is ignored. The
sample size will then correspond to the number of rows in t0_data.

t0_sort_dag Corresponds to the sort_dag argument in the sim_from_dag function. Ignored
if t0_data is specified.

t0_data An optional data.table like object (also accepts a data.frame, tibble etc.)
containing values for all relevant variables at t = 0. This dataset will then be
transformed over time according to the node functions specified in tx_nodes.
Alternatively, data for t = 0 may be generated automatically by this function if
standard node calls were added to the dag.

t0_transform_fun

An optional function that takes the data created at t = 0 as the first argument.
The function will be applied to the starting data and its output will replace the
data.table. Can be used to perform arbitrary data transformations after the
starting data was created. Set to NULL (default) to not use this functionality.

t0_transform_args

A named list of additional arguments passed to the t0_transform_fun. Ignored
if t0_transform_fun=NULL.

max_t A single integer specifying the final point in time to which the simulation should
be carried out. The simulation will start at t = 1 (after creating the starting data
with the arguments above) and will continue until max_t by increasing the time
by one unit at every step, updating the time-dependent nodes along the way.

tx_nodes_order A numeric vector specifying the order in which the time-dependent nodes added
to the dag object using the node_td function should be executed at each time
step. If NULL (default), the nodes will be generated in the order in which they
were originally added.

tx_transform_fun

An optional function that takes the data created after every point in time t > 0 as
the first argument and the simulation time as the second argument. The function
will be applied to that data after all node functions at that point in time have
been executed and its output will replace the previous data.table. Can be
used to perform arbitrary data transformations at every point in time. Set to
NULL (default) to not use this functionality.

tx_transform_args

A named list of additional arguments passed to the tx_transform_fun. Ignored
if tx_transform_fun=NULL.

save_states Specifies the amount of simulation states that should be saved in the output
object. Has to be one of "all", "at_t" or "last" (default). If set to "all", a

sim_discrete_time 65

list of containing the data.table after every point in time will be added to the
output object. If "at_t", only the states at specific points in time specified by
the save_states_at argument will be saved (plus the final state). If "last",
only the final state of the data.table is added to the output.

save_states_at The specific points in time at which the simulated data.table should be saved.
Ignored if save_states!="at_t".

verbose If TRUE prints one line at every point in time before a node function is executed.
This can be useful when debugging custom node functions. Defaults to FALSE.

check_inputs Whether to perform plausibility checks for the user input or not. Is set to TRUE
by default, but can be set to FALSE in order to speed things up when using this
function in a simulation study or something similar.

Details

Sometimes it is necessary to simulate complex data that cannot be described easily with a single
DAG and node information. This may be the case if the desired data should contain multiple time-
dependent variables or time-to-event variables in which the event has time-dependent effects on
other events. An example for this is data on vaccinations and their effects on the occurrence of
adverse events (see vignette). Discrete-Time Simulation can be an effective tool to generate these
kinds of datasets.

What is Discrete-Time Simulation?:

In a discrete-time simulation, there are entities who have certain states associated with them that
only change at discrete points in time. For example, the entities could be people and the state could
be alive or dead. In this example we could generate 100 people with some covariates such as age,
sex etc.. We then start by increasing the simulation time by one day. For each person we now check
if the person has died using a bernoulli trial, where the probability of dying is generated at each
point in time based on some of the covariates. The simulation time is then increased again and the
process is repeated until we reach max_t.

Due to the iterative process it is very easy to simulate arbitrarily complex data. The covariates may
change over time in arbitrary ways, the event probability can have any functional relationship with
the covariates and so on. If we want to model an event type that is not terminal, such as occurrence
of cardiovascular disease, events can easily be simulated to be dependent on the timing and number
of previous events. Since Discrete-Time Simulation is a special case of Discrete-Event Simulation,
introductory textbooks on the latter can be of great help in getting a better understanding of the
former.

How it Works:

Internally, this function works by first simulating data using the sim_from_dag function. Alterna-
tively, the user can supply a custom data.table using the t0_data argument. This data defines
the state of all entities at t = 0. Afterwards, the simulation time is increased by one unit and the
data is transformed in place by calling each node function defined by the time-dependent nodes
which were added to the dag using the node_td function (either in the order in which they were
added to the dag object or by the order defined by the tx_nodes_order argument). Usually, each
transformation changes the state of the entities in some way. For example if there is an age variable,
we would probably increase the age of each person by one time unit at every step. Once max_t is
reached, the resulting data.table will be returned. It contains the state of all entities at the last
step with additional information of when they experienced some events (if node_time_to_event

66 sim_discrete_time

was used as time-dependent node). Multiple in-depth examples can be found in the vignettes of this
package.

Specifying the dag argument:

The dag argument should be specified as described in the node documentation page. More examples
specific to discrete-time simulations can be found in the vignettes and the examples. The only
difference to specifying a dag for the sim_from_dag function is that the dag here should contain at
least one time-dependent node added using the node_td function. Usage of the formula argument
with non-linear or interaction terms is discouraged for performance reasons.

Speed Considerations:

All functions in this package rely on the data.table backend in order to make them more memory
efficient and faster. It is however important to note that the time to simulate a dataset increases
non-linearly with an increasing max_t value and additional time-dependent nodes. This is usually
not a concern for smaller datasets, but if n_sim is very large (say > 1 million) this function will get
rather slow. Note also that using the formula argument is a lot more computationally expensive
than using the parents, betas approach to specify certain nodes.

What do I do with the output?:

This function outputs a simDT object, not a data.table. To obtain an actual dataset from the
output of this function, users should use the sim2data function to transform it into the desired
format. Currently, the long-format, the wide-format and the start-stop format are supported. See
sim2data for more information.

A Few Words of Caution:

In most cases it will be necessary for the user to write their own functions in order to actually use the
sim_discrete_time function. Unlike the sim_from_dag function, in which many popular node
types can be implemented in a re-usable way, discrete-time simulation will always require some
custom input by the user. This is the price users have to pay for the almost unlimited flexibility
offered by this simulation methodology.

Value

Returns a simDT object, containing some general information about the simulated data as well
as the final state of the simulated dataset (and more states, depending on the specification of the
save_states argument). In particular, it includes the following objects:

• past_states: A list containing the generated data at the specified points in time.

• save_states: The value of the save_states argument supplied by the user.

• data: The data at time max_t.

• tte_past_events: A list storing the times at which events happened in variables of type
"time_to_event", if specified.

• ce_past_events: A list storing the times at which events happened in variables of type
"competing_events", if specified.

• ce_past_causes: A list storing the types of events which happened at in variables of type
"competing_events", if specified.

• tx_nodes: A list of all time-varying nodes, as specified in the supplied dag object.

• max_t: The value of max_t, as supplied by the user.

sim_discrete_time 67

• t0_var_names: A character vector containing the names of all variable names that do not vary
over time.

To obtain a single dataset from this function that can be processed further, please use the sim2data
function.

Author(s)

Robin Denz, Katharina Meiszl

References

Tang, Jiangjun, George Leu, und Hussein A. Abbass. 2020. Simulation and Computational Red
Teaming for Problem Solving. Hoboken: IEEE Press.

Banks, Jerry, John S. Carson II, Barry L. Nelson, and David M. Nicol (2014). Discrete-Event
System Simulation. Vol. 5. Edinburgh Gate: Pearson Education Limited.

See Also

empty_dag, node, node_td, sim2data, plot.simDT

Examples

library(simDAG)

set.seed(454236)

simulating death dependent on age, sex, bmi
NOTE: this example is explained in detail in one of the vignettes

initializing a DAG with nodes for generating data at t0
dag <- empty_dag() +

node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("bmi", type="gaussian", parents=c("sex", "age"),

betas=c(1.1, 0.4), intercept=12, error=2)

a function that increases age as time goes on
node_advance_age <- function(data) {

return(data$age + 1/365)
}

a function to calculate the probability of death as a
linear combination of age, sex and bmi on the log scale
prob_death <- function(data, beta_age, beta_sex, beta_bmi, intercept) {

prob <- intercept + data$age*beta_age + data$sex*beta_sex + data$bmi*beta_bmi
prob <- 1/(1 + exp(-prob))
return(prob)

}

adding time-dependent nodes to the dag
dag <- dag +

68 sim_from_dag

node_td("age", type="advance_age", parents="age") +
node_td("death", type="time_to_event", parents=c("age", "sex", "bmi"),

prob_fun=prob_death, beta_age=0.1, beta_bmi=0.3, beta_sex=-0.2,
intercept=-20, event_duration=Inf, save_past_events=FALSE)

run simulation for 100 people, 50 days long
sim_dt <- sim_discrete_time(n_sim=100,

dag=dag,
max_t=50,
verbose=FALSE)

sim_from_dag Simulate Data from a Given DAG and Node Information

Description

This function can be used to generate data from a given DAG. It additionally requires information
on node distributions, beta coefficients and, depending on the node type, more parameters such as
intercepts.

Usage

sim_from_dag(dag, n_sim, sort_dag=FALSE, check_inputs=TRUE)

Arguments

dag A DAG object created using the empty_dag function with nodes added to it using
the + syntax. See details.

n_sim A single number specifying how many observations should be generated.

sort_dag Whether to topologically sort the DAG before starting the simulation or not. If
the nodes in dag were already added in a topologically sorted manner, this argu-
ment can be kept at FALSE to safe some computation time. This usually won’t
safe too much time though, because it internally uses the topological_sort
function from the Rfast package, which is very fast.

check_inputs Whether to perform plausibility checks for the user input or not. Is set to TRUE
by default, but can be set to FALSE in order to speed things up when using this
function in a simulation study or something similar.

Details

How it Works:

First, n_sim i.i.d. samples from the root nodes are drawn. Children of these nodes are then generated
one by one according to specified relationships and causal coefficients. For example, lets suppose
there are two root nodes, age and sex. Those are generated from a normal distribution and a
bernoulli distribution respectively. Afterward, the child node height is generated using both of
these variables as parents according to a linear regression with defined coefficients, intercept and
sigma (random error). This works because every DAG has at least one topological ordering, which

sim_from_dag 69

is a linear ordering of vertices such that for every directed edge u v, vertex u comes before v in the
ordering. By using sort_dag=TRUE it is ensured that the nodes are processed in such an ordering.

This procedure is simple in theory, but can get very complex when manually coded. This function
offers a simplified workflow by only requiring the user to define the dag object with appropriate
information (see documentation of node function). A sample of size n_sim is then generated from
the DAG specified by those two arguments.

Specifying the DAG:

Concrete details on how to specify the needed dag object are given in the documentation page of
the node function and in the vignettes of this package.

Can this function create longitudinal data?

Yes and no. It theoretically can, but only if the user-specified dag directly specifies a node for each
desired point in time. Using the sim_discrete_time is better in some cases. A brief discussion
about this topic can be found in the vignettes of this package.

If time-dependent nodes were added to the dag using node_td calls, this function may not be used.
Only the sim_discrete_time function will work in that case.

Value

Returns a single data.table including the simulated data with (at least) one column per node
specified in dag and n_sim rows.

Author(s)

Robin Denz

See Also

empty_dag, node, plot.DAG, sim_discrete_time

Examples

library(simDAG)

set.seed(345345)

dag <- empty_dag() +
node("age", type="rnorm", mean=50, sd=4) +
node("sex", type="rbernoulli", p=0.5) +
node("bmi", type="gaussian", parents=c("sex", "age"),

betas=c(1.1, 0.4), intercept=12, error=2)

sim_dat <- sim_from_dag(dag=dag, n_sim=1000)

More examples for each directly supported node type as well as for custom
nodes can be found in the documentation page of the respective node function

70 sim_n_datasets

sim_n_datasets Generate multiple datasets from a single DAG object

Description

This function takes a single DAG object and generates a list of multiple datasets, possible using
parallel processing

Usage

sim_n_datasets(dag, n_sim, n_repeats, n_cores=parallel::detectCores(),
data_format="raw", data_format_args=list(),
seed=stats::runif(1), progressbar=TRUE, ...)

Arguments

dag A DAG object created using the empty_dag function with nodes added to it using
the + syntax. See ?empty_dag or ?node for more details. If the dag contains
time-varying nodes added using the node_td function, the sim_discrete_time
function will be used to generate the data. Otherwise, the sim_from_dag func-
tion will be used.

n_sim A single number specifying how many observations per dataset should be gen-
erated.

n_repeats A single number specifying how many datasets should be generated.

n_cores A single number specifying the amount of cores that should be used. If n_cores
= 1, a simple for loop is used to generate the datasets with no parallel process-
ing. If n_cores > 1 is used, the doSNOW package is used in conjunction with
the doRNG package to generate the datasets in parallel. By using the doRNG
package, the results are completely reproducible by setting a seed.

data_format An optional character string specifying the output format of the generated datasets.
If "raw" (default), the dataset will be returned as generated by the respective
data generation function. If the dag contains time-varying nodes added using
the node_td function and this argument is set to either "start_stop", "long"
or "wide", the sim2data function will be called to transform the dataset into
the defined format. If any other string is supplied, regardless of whether time-
varying nodes are included in the dag or not, the function with the name given
in the string is called to transform the data. This can be any function. The
only requirement is that it has a named argument called data. Arguments to the
function can be set using the data_format_args argument (see below).

data_format_args

An optional list of named arguments passed to the function specified by data_format.
Set to list() to use no arguments. Ignored if data_format="raw".

seed A seed for the random number generator. By supplying a value to this argument,
the results will be replicable, even if parallel processing is used to generate the
datasets (using n_cores > 1), thanks to the magic performed by the doRNG
package.

sim_n_datasets 71

progressbar Either TRUE (default) or FALSE, specifying whether a progressbar should be used.
Currently only works if n_cores > 1, ignored otherwise.

... Further arguments passed to the sim_from_dag function (if the dag does not
contain time-varying nodes) or the sim_discrete_time function (if the dag
contains time-varying nodes).

Details

Generating a number of datasets from a single defined dag object is usually the first step when
conducting monte-carlo simulation studies. This is simply a convenience function which automates
this process using parallel processing (if specified).

Note that for more complex monte-carlo simulations this function may not be ideal, because it
does not allow the user to vary aspects of the data-generation mechanism inside the main for loop,
because it can only handle a single dag. For example, if the user wants to simulate n_repeats
datasets with confounding and n_repeats datasets without confounding, he/she has to call this
function twice. This is not optimal, because setting up the clusters for parallel processing takes
some processing time. If many different dags should be used, it would make more sense to write a
single function that generates the dag itself for each of the desired settings. This can sadly not be
automated by us though.

Value

Returns a list of length n_repeats containing datasets generated according to the supplied dag
object.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time, sim2data

Examples

library(simDAG)

some example DAG
dag <- empty_dag() +

node("death", type="binomial", parents=c("age", "sex"), betas=c(1, 2),
intercept=-10) +

node("age", type="rnorm", mean=10, sd=2) +
node("sex", parents="", type="rbernoulli", p=0.5) +
node("smoking", parents=c("sex", "age"), type="binomial",

betas=c(0.6, 0.2), intercept=-2)

generate 10 datasets without parallel processing
out <- sim_n_datasets(dag, n_repeats=10, n_cores=1, n_sim=100)

if (requireNamespace("doSNOW") & requireNamespace("doRNG") &

72 sim_n_datasets

requireNamespace("foreach")) {

generate 10 datasets with parallel processing
out <- sim_n_datasets(dag, n_repeats=10, n_cores=2, n_sim=100)
}

generate 10 datasets and transforming the output
(using the sim2data function internally)
dag <- dag + node_td("CV", type="time_to_event", prob_fun=0.01)
out <- sim_n_datasets(dag, n_repeats=10, n_cores=1, n_sim=100,

max_t=20, data_format="start_stop")

Index

+.DAG (add_node), 4

add_node, 4
as.data.frame.simDT (sim2data), 59
as.data.table.simDT (sim2data), 59
as.igraph.DAG, 5

binomial, 9, 17

competing_events, 18
conditional_distr, 17
conditional_prob, 9, 17
cox, 17

dag2matrix, 6, 51
dag_from_data, 8, 14, 15
do, 11

empty_dag, 3, 4, 6–8, 11, 12, 15, 16, 21, 25,
27, 30, 38, 40, 42, 43, 47, 49, 51, 55,
67–71

gaussian, 9, 17

long2start_stop, 13

matrix2dag, 14
multinomial, 17

negative_binomial, 9, 17
node, 3–8, 11, 12, 14, 15, 15, 21, 25, 27, 30,

32, 38, 40, 42, 43, 49–51, 55, 64, 66,
67, 69, 71

node_binomial, 20, 40
node_competing_events, 22, 40, 47
node_conditional_distr, 26
node_conditional_prob, 28
node_cox, 31
node_custom, 9, 33, 40
node_gaussian, 16, 37
node_multinomial, 39

node_negative_binomial, 41
node_poisson, 42
node_td, 4–8, 12, 15, 21, 25, 27, 30, 34, 38,

40, 42, 43, 47, 50, 51, 55, 64–67,
69–71

node_td (node), 15
node_time_to_event, 24, 25, 44, 65

plot.DAG, 48, 69
plot.simDT, 52, 67
poisson, 9, 17

rbernoulli, 16, 17, 27, 29, 45, 56
rcategorical, 17, 23, 29, 40, 57
rconstant, 17, 58
rnorm, 27
rpois, 43

sim2data, 59, 66, 67, 70, 71
sim_discrete_time, 3, 4, 12, 15–18, 21–23,

25, 27, 30, 33, 34, 38, 40, 42–44, 46,
47, 52, 55, 59, 62, 63, 69–71

sim_from_dag, 3–6, 8, 9, 12, 14–18, 21, 25,
27, 30, 38, 40, 42, 43, 58, 63–66, 68,
70, 71

sim_n_datasets, 70
simDAG-package, 2

time_to_event, 17

73

	simDAG-package
	add_node
	as.igraph.DAG
	dag2matrix
	dag_from_data
	do
	empty_dag
	long2start_stop
	matrix2dag
	node
	node_binomial
	node_competing_events
	node_conditional_distr
	node_conditional_prob
	node_cox
	node_custom
	node_gaussian
	node_multinomial
	node_negative_binomial
	node_poisson
	node_time_to_event
	plot.DAG
	plot.simDT
	rbernoulli
	rcategorical
	rconstant
	sim2data
	sim_discrete_time
	sim_from_dag
	sim_n_datasets
	Index

