
simcausal Package: Technical Details and Extended

Examples of Simulations with Complex

Longitudinal Data

Oleg Sofrygin
Division of Research,

Kaiser Permanente Northern California
University of California, Berkeley

Mark J. van der Laan
University of California, Berkeley

Romain Neugebauer
Division of Research,

Kaiser Permanente Northern California

Abstract

The simcausal R package is a tool for specification and simulation of complex longitu-
dinal data structures that are based on structural equation models. The package aims to
provide a flexible tool for simplifying the conduct of transparent and reproducible simula-
tion studies, with a particular emphasis on the types of data and interventions frequently
encountered in real-world causal inference problems, such as, observational data with time-
dependent confounding, selection bias, and random monitoring processes. The package
interface allows for concise expression of complex functional dependencies between a large
number of nodes, where each node may represent a measurement at a specific time point.
The package allows for specification and simulation of counterfactual data under various
user-specified interventions (e.g., static, dynamic, deterministic, or stochastic). In par-
ticular, the interventions may represent exposures to treatment regimens, the occurrence
or non-occurrence of right-censoring events, or of clinical monitoring events. Finally, the
package enables the computation of a selected set of user-specified features of the distribu-
tion of the counterfactual data that represent common causal quantities of interest, such
as, treatment-specific means, the average treatment effects and coefficients from working
marginal structural models. The applicability of simcausal is demonstrated by replicating
the results of two published simulation studies.

Keywords: causal inference, simulation, marginal structural model, structural equation model,
directed acyclic graph, causal model, R.

2 simcausal: Causal Simulation Package

Contents

Introduction 3

Technical details 5

The workflow . 5

Specifying a structural equation model . 6

Specifying interventions . 8

Specifying a target causal parameter . 9

Simulating data and evaluating the target causal parameter 11

Simulation study with single time point interventions 12

Specifying the structural equation model . 12

Simulating observed data (sim) . 14

Specifying interventions (+ action) . 14

Simulating counterfactual data (sim) . 15

Defining and evaluating various causal target parameters 16

Defining node distributions and vectorizing node formula functions 18

Simulation study with multiple time point interventions 25

Specifying the structural equation model . 25

Simulating observed data (sim) . 28

Specifying interventions (+ action) . 29

Simulating counterfactual data (sim) . 34

Converting datasets from wide to long format (DF.to.long) 36

Implementing imputation by last time point value carried forward (doLTCF) . . . 37

Defining and evaluating various causal target parameters 38

Replication study of the comparative performances of two estimators 50

Replication study of the impact of misspecification of propensity score models 54

Discussion 60

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 3

1. Introduction

This article describes the simcausal package (Sofrygin et al. 2015), a comprehensive set of
tools for the specification and simulation of complex longitudinal data structures to study
causal inference methodologies. The package is developed using the R system for statistical
computing (R Core Team 2015) and is available from the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/package=simcausal. Our package is intended to
provide a flexible tool to facilitate the process of conducting transparent and reproducible sim-
ulation studies, with a particular emphasis on the types of data and interventions frequently
encountered in real-world causal inference problems. For example, our package simplifies the
simulation of observational data based on random clinical monitoring to evaluate the effect
of time-varying interventions in the presence of time-dependent confounding and sources of
selection bias (e.g., informative right censoring). The package provides a novel user-interface
that allows concise and intuitive expression of complex functional dependencies between a
large number of nodes that may represent time-varying random variables (e.g., repeated mea-
surements over time of the same subject-matter attribute, such as, blood pressure).

In this package, a data generating distribution is defined via the specification of a struc-
tural equation model (SEM) (Pearl 1995, 2009, 2010). Therefore, simcausal also allows for
specification and simulation of counterfactual data under various user-specified interventions
(e.g., static, dynamic, deterministic, or stochastic), which are referred to as “actions”. These
actions may represent exposure to treatment regimens, the occurrence or non-occurrence of
right-censoring events, or of clinical monitoring events (e.g., laboratory measurements based
on which treatment decisions may be made). Finally, the package enables the computation
of a selected set of user-specified features of the distribution of the counterfactual data that
represent common causal quantities of interest, referred to as causal target parameters, such
as, treatment-specific means, the average treatment effects (ATE) (on the multiplicative or
additive scale) and coefficients from working marginal structural model (MSM) (Robins 1998;
Neugebauer and van der Laan 2007) are a few of the causal target parameters implemented
that can be evaluated by the package.

The CRAN system contains several R packages for conducting data simulations with various
statistical applications. We reference some of these packages below. Our review is not in-
tended to be exhaustive and we focus on two key aspects in which simcausal differ from these
other simulation tools.

First, simulations in the simcausal package are based on data generating distributions that
can be specified via general structural equation models. By allowing the specification of a
broad range of structural equations with independent or dependent errors, the set of possible
distributions available to the analyst for simulating data is meant to be not overly restric-
tive. For instance, any sampling distribution that is currently available in R or that can
be user-defined in the R programming environment can be used for defining the conditional
distribution of a node given its parents. Some of the other R packages rely on alternative
approaches for specifying and simulating data. For example, the package gems (Blaser et al.
2015) is based on the generalized multistate models, and the package survsim (Moriña and
Navarro 2014) is based on the Weibull, log-logistic or log-normal models. Finally, the follow-

http://CRAN.R-project.org/package=simcausal

4 simcausal: Causal Simulation Package

ing R simulation packages rely on linear structural equation models: lavaan (Rosseel 2012),
lavaan.survey (Oberski 2014), sem (Fox 2006; Fox et al. 2014), semPLS (Monecke and Leisch
2012), OpenMx (Boker et al. 2011, 2014) and simsem (Pornprasertmanit et al. 2015).

Second, unlike the simFrame package, which is meant as a general object-oriented tool for de-
signing simulation studies, the simcausal package is instead tailored to study causal inference
methodologies and is particularly suited to investigate problems based on complex longitudi-
nal data structures (Robins 1998). Indeed, simcausal provides a single pipeline for performing
the following common steps frequently encountered in simulation studies from the causal infer-
ence literature: defining the observed data distribution, defining intervention/counterfactual
distributions, defining causal parameters, simulating observed and counterfactual data, and
evaluating the true value of causal parameters. In addition, the package introduces an intu-
itive user-interface for specifying complex data-generating distributions to emulate realistic
real-world longitudinal data studies characterized by a large number of repeated measure-
ments of the same subject-matter attributes over time. In particular, the simcausal package
was designed to facilitate the study of causal inference methods for investigating the effects
of complex intervention regimens such as dynamic and stochastic interventions (not just the
common static and deterministic intervention regimens), and summary measures of these
effects defined by (working) marginal structural models. We note, however, that while the
package was initially developed for this particular methodological research purpose, its utility
can be extended to a broader range of causal inference research, e.g., to perform simulation-
based power calculations for informing the design of real-world studies.

The rest of this vignette is organized as follows. In Section 2, we provide an overview of
the technical details for a typical use of the package. In Section 3, we describe a template
workflow for a simple simulation study with single time point interventions. In Section 4, we
describe the use of the package for a more realistic and complex simulation study example
based on survival data with repeated measures and dynamic interventions at multiple time
points. In Section 5, we apply the simcausal package to replicate results of a previously
published simulation study by Neugebauer et al. (2014, 2015). In Section 6, we apply the
simcausal package to replicate results of another published simulation study by Lefebvre et al.
(2008). We conclude with a discussion in Section 7.

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 5

2. Technical details

2.1. The workflow

The following schematic shows the order in which simcausal routines would be utilized in a
typical simulation study:

D = DAG.empty()
↓

D = D + node(. . .) + node(. . .)
↓

D = set.DAG(D) −→ sim(D)
↓

D = D + action(. . .) −→ sim(D, actions = . . .)
↓

D = set.targetE(D, . . .)
D = set.targetMSM(D, . . .)

↓
eval.target(D)

Data structures. The following most common types of output are produced by the pack-
age.

parameterized causal DAG model - object that specifies the structural equation model,
along with interventions and the causal target parameter of interest.

observed data - data simulated from the (pre-intervention) distribution specified by the
structural equation model.

counterfactual data - data simulated from one or more post-intervention distributions de-
fined by actions on the structural equation model.

causal target parameter - the true value of the causal target parameter evaluated with
counterfactual data.

Routines. The following routines will be generally invoked by a user, in the same order as
presented below.

DAG.empty initiates an empty DAG object that contains no nodes.

node defines a node in the structural equation model and its conditional distribution, i.e., the
outcome of one equation in the structural equation model and the formula that links
the outcome value to that of earlier covariates, referred to as parent nodes. A call to
node can specify either a single node or multiple nodes at once, with name and distr

being the only required arguments. To specify multiple nodes with a single node call,
one must also provide an indexing vector of integers as an argument t. In this case, each
node shares the same name, but is indexed by distinct values in t. The simultaneous
specification of multiple nodes is particularly relevant for providing a shorthand syntax

6 simcausal: Causal Simulation Package

for defining a time-varying covariate, i.e., for defining repeated measurements over time
of the same subject-matter attribute, as shown in the example in Section 4.1.

add.nodes or D + node provide two equivalent ways of growing the structural equation
model by adding new nodes and their conditional distributions. Informally, these rou-
tines are intended to be used to sequentially populate a DAG object with all the structural
equations that make up the causal model of interest. See Sections 3.1 and 4.1 for ex-
amples.

set.DAG locks the DAG object in the sense that no additional nodes can be subsequently added
to the structural equation model. In addition, this routine performs several consistency
checks of the user-populated DAG object. In particular, the routine attempts to simulate
observations to verify that all conditional distributions in the DAG object are well-defined.

sim simulates independent and identically distributed (iid) observations of the complete node
sequence defined by a DAG object. The output dataset is stored as a data.frame and is
referred to as the observed data. It can be structured in one of two formats, as discussed
in Section 4.5.

add.action or D + action provides two equivalent ways to define one or more actions. An
action modifies the conditional distribution of one or more nodes of the structural
equation model. The resulting data generating distribution is referred to as the post-
intervention distribution. It is saved in the DAG object alongside the original structural
equation model. See Sections 3.3 and 4.3 for examples.

sim(..., actions = ...) can also be used for simulating independent observations from
one or more post-intervention distributions, as specified by the actions argument.
The resulting output is a named list of data.frame objects, collectively referred to as
the counterfactual data. The number of data.frame objects in this list is equal to the
number of post-intervention distributions specified in the actions argument, where each
data.frame object is an iid sample from a particular post-intervention distribution.

set.targetE and set.targetMSM define two distinct types of target causal parameters. The
output from these routines is the input DAG object with the definition of the target causal
parameter saved alongside the interventions. See Sections 3.5 and 4.7 for examples
defining various target parameters.

eval.target evaluates the causal parameter of interest using simulated counterfactual data.
As input, it can take previously simulated counterfactual data (i.e., the output of a call
to the sim(..., actions = ...) function) or, alternatively, the user can specify the
sample size n, based on which counterfactual data will be simulated first.

2.2. Specifying a structural equation model

The simcausal package encodes a structural equation model using a DAG object. The DAG

object is a collection of nodes, each node represented by a DAG.node object that captures a
single equation of the structural equation model. DAG.node objects are created by calling the
node function. When the node function is used to simultaneously define multiple nodes, these
nodes share the same name, but must be indexed by distinct user-specified integer values of

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 7

the time variable t, as shown in the example in Section 4.1. We will refer to a collection of
nodes defined simultaneously in this manner as a time-varying node and we will refer to each
node of such a collection as a measurement at a specific time point.

Each node is usually added to a growing DAG object by using either the add.nodes function
or equivalently the ’+’ function, as shown in the example in Sections 3.1 and 4.1. Each new
node added to a DAG object must be uniquely identified by its name or the combination of a
name and a value for the time variable argument t.

The user may explicitly specify the temporal ordering of each node using the order argument
of the node() function. However, if this argument is omitted, the add.nodes function assigns
the temporal ordering to a node by using the actual order in which this node was added to
the DAG object and, if applicable, the value of the time variable that indexes this node (earlier
added nodes receive a lower order value, compared to those that are added later; nodes with
a lower value for the t argument receive a lower order value, compared to those with a higher
value of t).

The node function also defines the conditional distribution of a node, given its parents, with
a combination of the sampling distribution specified by the distr argument and the distri-
butional parameters specified as additional named arguments to the node() function. This
distr argument can be set to the name of any R function that accepts an integer argument
named n and returns a vector of size n. Examples of such distribution functions are provided
in Section 3.6.

The distributional parameters are specified as additional named arguments of the node() func-
tion and can be either constants or some summary measures of the parent nodes. Their values
can be set to any evaluable R expressions that may reference any standard or user-specified R

function, and also, may invoke a novel and intuitive shorthand syntax for referencing specific
measurements of time-varying parent nodes, i.e., nodes identified by the combination of a
node name and a time point value t. The syntax for identifying specific measurements of
time-varying nodes is based on a re-purposed R square-bracket vector subsetting function
’[’: e.g., writing the expression sum(A[0:5]), where A is the name of a previously defined
time-varying node, defines the summary measure that is the sum of the node values over
time points t = 0,. . .,5. This syntax may also be invoked to simultaneously define the con-
ditional distribution of the measurements of a time-varying node over multiple time points t

at once. For example, defining the conditional distribution of a time-varying node with the
R expression sum(A[max(0, t - 5):t]) + t will resolve to different node formulas for each
measurement of the time-varying node, depending on the value of t:

1. A[0] at t = 0;

2. sum(A[0:1]) + 1 at t = 1, . . ., sum(A[0:5]) + 5 at t = 5;

3. sum(A[1:6]) + 6 at t = 6, . . ., sum(A[5:10]) + 10 at t = 10.

Concrete applications of this syntax are described in Section 4.1, as well as in the documen-
tation of the node() function (?node).

8 simcausal: Causal Simulation Package

Note that the user can also define a causal model with one or more nodes that represent the
occurrence of end of follow-up (EFU) events (e.g., right-censoring events or failure events of
interest). Such nodes are defined by calling the node() function with the EFU argument being
set to TRUE. The EFU nodes encode binary random variables whose value of 1 indicates that,
by default, all of the subsequent nodes (i.e., nodes with a higher temporal order value) are
to be replaced with a constant NA (missing) value. As an alternative, the user may choose to
impute missing values for the time-varying node that represents the failure event of interest
using the last time point value carried forward (LTCF) imputation method. This imputation
procedure consists in replacing missing values for measurements of a time-varying node at
time points t after an end of follow-up event with its last known measurement value prior to
the occurrence of an end of follow-up event. Additional details about this imputation proce-
dure are provided in Sections 2.5 and 4.6 and its relevance is demonstrated in Section 4.7.2
(Example 1 of set.targetMSM).

Finally, we note that the package includes pre-written wrapper functions for random sampling
from some commonly employed distributions. These routines can be passed directly to the
distr argument of the node function with the relevant distributional parameters on which
they depend. These built-in functions can be listed at any time by calling distr.list().
In particular, the routines "rbern", "rconst", and "rcat.b1" can be used for specifying a
Bernoulli distribution, a degenerate distribution (constant at a given value), and a categor-
ical distribution, respectively. One can also use any of the standard random generating R

functions, e.g., "rnorm" for sampling from the normal distribution and "runif" for sampling
from the uniform distribution, as demonstrated in Sections 3.1 and 3.6.

2.3. Specifying interventions

An intervention regimen (also referred to as action regimen) is defined as a sequence of condi-
tional distributions that replace the original distributions of a subset of nodes in a DAG object.
To specify an intervention regimen, the user must identify the set of nodes to be intervened
upon and provide new node distributions for them. The user may define a static, dynamic,
deterministic or stochastic intervention on any given node, depending on the type of distri-
butions specified. A deterministic static intervention is characterized by replacing a node
distribution with a degenerate distribution such that the node takes on a constant value. A
deterministic dynamic intervention is characterized by a conditional degenerate distribution
such that the node takes on a value that is only a function of the values of its parents (i.e.,
a decision rule). A stochastic intervention is characterized by a non-degenerate conditional
distribution. A stochastic intervention is dynamic if it is characterized by a non-degenerate
conditional distribution that is defined as a function of the parent nodes and it is static oth-
erwise. Note that a particular intervention may span different types of nodes and consist
of different types of distributions, e.g., an intervention on a monitoring node can be static,
while the intervention on a treatment node from the same structural equation model may be
dynamic.

To define an intervention the user must call D + action(A, nodes = B) (or equivalently
add.action(D, A, nodes = B)), where D is a DAG object, A is a unique character string that
represents the intervention name, and B is a list of DAG.node objects defining the intervention

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 9

regimen. To construct B the user must first aggregate the output from one or more calls to
node (using c(..., ...)), with the name argument of the node function call set to node
names that already exist in the locked DAG object D. The example in Section 4.3 demonstrates
this functionality. Alternatively, repeated calls to add.action or D+action with the same
intervention name, e.g., A = "A1", allow the incremental definition of an intervention regimen
by passing each time a different node object, enabling iterative build-up of the collection B of
the intervened nodes that define the intervention regimen. Note, however, that by calling D

+ action or add.action(D, ...) with a new action name, e.g., action("A2", ...), the
user initiates the definition of a new intervention regimen.

2.4. Specifying a target causal parameter

The causal parameter of interest (possibly a vector) is defined by either calling the function
set.targetE or set.targetMSM. The function set.targetE defines causal parameters as the
expected value(s) of DAG node(s) under one post-intervention distribution or the contrast of
such expected value(s) from two post-intervention distributions. The function set.targetMSM

defines causal parameters based on a working marginal structural model (Neugebauer and
van der Laan 2007). In both cases, the true value of the causal parameter is defined by one
or several post-intervention distributions and can thus be approximated using counterfactual
data.

The following types of causal parameters can be defined with the function set.targetE:

• The expectation of an outcome node under an intervention regimen denoted by d, where
the outcome under d is denoted by Yd. This parameter can be naturally generalized
to a vector of measurements of a time-varying node, i.e., the collection of nodes Yd(t)
sharing the same name, but indexed by distinct time points t that represents a sequence
of repeated measurements of the same attribute (e.g., a CD4 count or the indicator of
past occurrence of a given failure event):

E(Yd) or (E(Yd(t)))t=0,1,....

• The difference between two expectations of an outcome node under two interventions,
d1 and d0. This parameter can also be naturally generalized to a vector of measurements
of a time-varying node:

E(Yd1
) − E(Yd0

) or (E(Yd1
(t)) − E(Yd0

(t)))t=0,1,....

• The ratio of two expectations of an outcome node under two interventions. This pa-
rameter can also be naturally generalized to a vector of measurements of a time-varying
node:

E(Yd1
)

E(Yd0
)

or

E(Yd1
(t))

E(Yd0
(t))

t=0,1,...

.

Note that if the DAG object contains nodes of type EFU = TRUE other than the outcome nodes
of interest Yd(t), the target parameter must be defined by intervention regimens that set all
such nodes that precede all outcomes of interest Yd(t) to 0. Also note that with such inter-
vention regimens, if the outcome node is time-varying of type EFU = TRUE then the nodes

10 simcausal: Causal Simulation Package

Yd(t) remain well defined (equal to 1) even after the time point when the simulated value
for the outcome jumps to 1 for the first time. The nodes Yd(t) can then be interpreted as
indicators of past failures in the absence of right-censoring events. The specification of these
target parameters is covered with examples in Sections 3.5.1 and 4.7.1.

When the definition of the target parameter is based on a working marginal structural model,
the vector of coefficients (denoted by α) of the working model defines the target parameter.
The definition of these coefficients relies on the specification of a particular weighting function
when the working model is not a correct model (see Neugebauer and van der Laan (2007) for
details). This weighting function is set to the constant function of 1 in this package. The
corresponding true value of the coefficients α can then be approximated by running a stan-
dard (unweighted) regression routines applied to simulated counterfactual data observations.
The following types of working models, denoted by m(), can be defined with the function
set.targetMSM:

• The working linear or logistic model for the expectation of one outcome node under
intervention d, possibly conditional on baseline node(s) V , where a baseline node is any
node preceding the earliest node that is intervened upon, i.e., E(Yd | V):

m(d, V | α).

Such a working model can, for example, be used to evaluate the effects of HIV treatment
regimens on the mean CD4 count measured at one point in time.

• The working linear or logistic model for the expectation vector of measurements of a
time-varying outcome node, possibly conditional on baseline node(s) V , i.e., E(Yd(t) |
V):

m(t, d, V | α), for t = 0, 1,

Such a working model can, for example, be used to evaluate the effects of HIV treatment
regimens on survival probabilities over time.

• The logistic working model for discrete-time hazards, i.e., for the probabilities that a
measurement of a time-varying outcome node of type EFU=TRUE is equal to 1 under
intervention d, given that the previous measurement of the time-varying outcome node
under intervention d is equal to 0, possibly conditional on baseline node(s) V , i.e.,
E(Yd(t) | Yd(t− 1) = 0, V):

m(t, d, V), for t = 0, 1,

Such a working model can, for example, be used to evaluate the effects of HIV treatment
regimens on discrete-time hazards of death over time.

Examples of the specification of the above target parameters are provided in Sections 3.5.2
and 4.7.2. As shown above, the working MSM formula m() can be a function of t, V and
d, where d is a unique identifier of each intervention regimen. In Sections 3.5.2 and 4.7.2 we
describe in detail how to specify such identifiers for d as part of the action function call. Also
note that the working MSM formula, m, may reference time-varying nodes using the square-
bracket syntax introduced in Section 2.2, as long as all such instances are embedded within the

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 11

syntax S(...). This formula syntax can be used to define V , where V is defined by a baseline
measurement of a time-varying node. Example uses of this syntax are provided in Section
4.7.2 (Example 6 of set.targetMSM) and Section 4.7.2 (Example 7 of set.targetMSM).

2.5. Simulating data and evaluating the target causal parameter

The simcausal package can simulate two types of data: 1) observed data, sampled from the
(pre-intervention) distribution specified by the structural equation model and 2) counterfac-
tual data, sampled from one or more post-intervention distributions defined by actions on the
structural equation model. Both types of data are simulated by invoking the sim function and
the user can set the seed for the random number generator using the argument rndseed. The
examples showing how to simulate observed data are provided in Sections 3.2 and 4.2, whereas
the examples showing how to simulate counterfactual data are provided in Sections 3.4 and 4.4.

We note that two types of structural equation models can be encoded with the DAG object:
1) models where some or all nodes are defined by specifying the “time” argument t to the
node function, or 2) models where the argument t is not used for any of the nodes. For
the first type of structural equation models, the simulated data can be structured in either
long or wide formats. A dataset is considered to be in wide format when each simulated
observation of the complete sequence of nodes is represented by only one row of data, with
each time-varying node represented by columns spanning distinct values of t. In contrast,
for a dataset in long format, each simulated observation is typically represented by multiple
rows of data indexed by distinct values of t and each time-varying node represented by a
single column. The format of the output data is controlled by setting the argument wide of
the sim function to TRUE or FALSE. The default setting for sim is to simulate data in wide
format, i.e., wide = TRUE. An example describing these two formats is provided in Section 4.5.

In addition, as previously described, for nodes representing the occurrence of end of follow-up
events (i.e., censoring or outcome nodes declared with EFU = TRUE), the value of 1 indicates
that, during data simulation, by default, all values of subsequent nodes (including the out-
come nodes) are set to missing (NA). To instead impute these missing values after a particular
end of follow-up event occurs (typically the outcome event) with the last time point value
carried forward (LTCF) method, the user must set the argument LTCF of the sim function to
the name of the EFU-type node that represents the end of follow-up event of interest. This will
result in carrying forward the last observed measurement value for all time-varying nodes,
after the value of the EFU node whose name is specified by the LTCF argument is observed to
be 1. For additional details see the package documentation for the function sim. Examples
demonstrating the use of the LTCF argument for data simulation are provided in Sections 4.6
and 4.7.1 (Example 1 of set.targetMSM).

In the last step of a typical workflow, the function eval.target is generally invoked for
estimation of the true value of a previously defined target causal parameter. The true value
is estimated using counterfactual data simulated from post-intervention distributions. The
function eval.target can be called with either previously simulated counterfactual data,
specified by the argument data or a sample size value, specified by the argument n. In the
latter case, counterfactual data with the user-specified sample size will be simulated first.

12 simcausal: Causal Simulation Package

3. Simulation study with single time point interventions

This example describes a typical workflow for specifying a simple structural equation model,
defining various interventions, simulating observed and counterfactual data, and calculating
various causal target parameters. The structural equation model chosen here illustrates a
common point treatment problem in which one is interested in evaluating the effect of an
intervention on one treatment node on a single outcome node using observational data with
confounding by baseline covariates. This example also demonstrates the use of a plotting
functionality of the simcausal package that builds upon the igraph R package (Csardi and
Nepusz 2006) to visualize the Directed Acyclic Graph (DAG) (Pearl 1995, 2009, 2010) implied
by the structural equation model encoded in the DAG object.

3.1. Specifying the structural equation model

The example below shows how to specify a structural equation model with six nodes to repre-
sent a single time point intervention study: one categorical baseline covariate with 3 categories
(race), one normally distributed baseline confounder (W1), one uniformly distributed baseline
confounder (W2), one binary baseline confounder (W3), one binary exposure (Anode), and one
binary outcome (Y). This example uses pre-defined R functions rcat.b1, rbern, rnorm and
runif for sampling from the categorical, Bernoulli, normal, and uniform distributions, re-
spectively. For details and examples on writing sampling functions for arbitrary distributions
see Section 3.6. We also refer to Section 3.6 for a description on how to specify node formulas
(distributional parameters), such as with the use of R expressions specified by the probs,
mean and prob arguments in the example below.

library("simcausal")

D <- DAG.empty()

D <- D +

node("race",

distr = "rcat.b1",

probs = c(0.5, 0.25, 0.25)) +

node("W1",

distr = "rnorm",

mean = ifelse(race == 1, 0, ifelse(race == 2, 3, 10)),

sd = 1) +

node("W2",

distr = "runif",

min = 0, max = 1) +

node("W3",

distr = "rbern",

prob = plogis(-0.5 + 0.7 * W1 + 0.3 * W2)) +

node("Anode",

distr = "rbern",

prob = plogis(-0.5 - 0.3 * W1 - 0.3 * W2 - 0.2 * W3)) +

node("Y",

distr = "rbern",

prob = plogis(-0.1 + 1.2 * Anode + 0.1 * W1 + 0.3 * W2 + 0.2 * W3))

Dset <- set.DAG(D)

Running the code above results in implicitly assigning a sampling order (temporal order) to
each node - based on the order in which the nodes were added to the DAG object D. Alterna-
tively, one can use the optional node() argument order to explicitly specify the integer value

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 13

of the sampling order of each node, as described in more detail in the documentation for the
node function.

The resulting internal representation of the structural equation model encoded by the DAG

object Dset can be examined as follows (output showing only the first node of Dset).

str(Dset[1])

List of 1

$ race:List of 8

..$ name : chr "race"

..$ mv.names : chr "race"

..$ t : NULL

..$ distr : chr "rcat.b1"

..$ dist_params:List of 1

.. ..$ probs: chr "c(0.5, 0.25, 0.25)"

.. ..- attr(*, "asis.flags")=List of 1

..$ probs: logi FALSE

..$ EFU : NULL

..$ order : num 1

..$ node.env :<environment: R_GlobalEnv>

..- attr(*, "class")= chr "DAG.node"

Figure 1 shows the plot of the DAG that is generated by calling function plotDAG. This
DAG is implied by the structural equation model specified above and the plotting is accom-
plished by using the visualization functionality from the igraph package (Csardi and Nepusz
2006). The directional arrows represent the functional dependencies in the structural equa-
tion model. More specifically, the node of origin of each arrow is an extracted node name from
the node formula(s). Note that the appearance of the resulting diagram can be customized
with additional arguments, as shown in the example below and in the plotDAG example in
Section 4.1.

plotDAG(Dset, xjitter = 0.3, yjitter = 0.04,

edge_attrs = list(width = 0.5, arrow.width = 0.4, arrow.size = 0.8),

vertex_attrs = list(size = 12, label.cex = 0.8))

14 simcausal: Causal Simulation Package

race

W1

W2

W3

Anode

Y

Figure 1: Graphical representation of the structural equation model using a DAG.

3.2. Simulating observed data (sim)

Simulating observed data is accomplished by calling the function sim and specifying its ar-
guments DAG and n that indicate the causal model and sample size of interest. Below is an
example of how to simulate an observed dataset with 10,000 observations using the causal
model defined in the previous section. The output is a data.frame object.

Odat <- sim(DAG = Dset, n = 100, rndseed = 123)

The format of the output dataset is easily understood by examining the first row of the
data.frame object:

Odat[1,]

ID race W1 W2 W3 Anode Y

1 1 1 0.2533185 0.7845753 1 0 1

3.3. Specifying interventions (+ action)

The example below defines two actions on the treatment node. The first action named
"A1" consists in replacing the distribution of the treatment node Anode with the degenerate
distribution at value 1. The second action named "A0" consists in replacing the distribution

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 15

of the treatment node Anode with the degenerate distribution at value 0. As shown below,
these interventions are defined by invoking the + action syntax on the existing DAG object.
This syntax automatically adds and saves the new intervention object within the original DAG

object, without overwriting it.

A1 <- node("Anode", distr = "rbern", prob = 1)

Dset <- Dset + action("A1", nodes = A1)

A0 <- node("Anode", distr = "rbern", prob = 0)

Dset <- Dset + action("A0", nodes = A0)

The added actions can be examined by looking at the result of the call A(Dset). Note that
A(Dset) returns a list of DAG.action objects, with each DAG.action encoding a particular
post-intervention distribution, i.e., it is a modified copy of the original DAG object, where the
original distribution of the node Anode is replaced with the degenerate distribution at value
0 or 1, for actions "A0" and "A1", respectively.

names(A(Dset))

[1] "A1" "A0"

class(A(Dset)[["A0"]])

[1] "DAG.action"

The following example shows how to display the modified distribution of the intervention
node Anode under action "A0":

A(Dset)[["A0"]]$Anode

List of 8

$ name : chr "Anode"

$ mv.names : chr "Anode"

$ t : NULL

$ distr : chr "rbern"

$ dist_params:List of 1

..$ prob: chr "0"

..- attr(*, "asis.flags")=List of 1

.. ..$ prob: logi FALSE

$ EFU : NULL

$ order : num 5

$ node.env :<environment: R_GlobalEnv>

- attr(*, "class")= chr "DAG.node"

To examine the complete internal representation of the DAG.action object for action "A0",
invoke the str() function as follows (output not shown):

str(A(Dset)[["A0"]])

3.4. Simulating counterfactual data (sim)

16 simcausal: Causal Simulation Package

Simulating counterfactual data is accomplished by calling the function sim and specifying its
arguments DAG, actions and n to indicate the causal model, interventions, and sample size
of interest. Counterfactual data can be simulated for all actions stored in the DAG object or
a subset by setting the actions argument to the vector of the desired action names.

The example below shows how to use the sim function to simulate 100,000 observations for
each of the two actions, "A1" and "A0". These actions were defined as part of the DAG object
Dset above. The call to sim below produces a list of two named data.frame objects, where
each data.frame object contains observations simulated from the same post-intervention
distribution defined by one particular action only.

Xdat1 <- sim(DAG = Dset, actions = c("A1", "A0"), n = 1000, rndseed = 123)

names(Xdat1)

[1] "A1" "A0"

nrow(Xdat1[["A1"]])

[1] 1000

nrow(Xdat1[["A0"]])

[1] 1000

The format of the output list is easily understood by examining the first row of each data.frame

object:

Xdat1[["A1"]][1,]

ID race W1 W2 W3 Anode Y

1 1 1 -0.6018928 0.2058269 0 1 1

Xdat1[["A0"]][1,]

ID race W1 W2 W3 Anode Y

1 1 1 -0.6018928 0.2058269 0 0 0

3.5. Defining and evaluating various causal target parameters

Causal parameters defined with set.targetE

The first example below defines the causal quantity of interest as the expectation of node Y

under action "A1":

Dset <- set.targetE(Dset, outcome = "Y", param = "A1")

The true value of the above causal parameter is now evaluated by calling the function
eval.target and passing the previously simulated counterfactual data object Xdat1.

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 17

eval.target(Dset, data = Xdat1)$res

Mean_Y

0.827

Alternatively, eval.target can be called without the simulated counterfactual data, spec-
ifying the sample size argument n instead. In this case a counterfactual dataset with the
user-specified sample size is simulated first.

eval.target(Dset, n = 1000, rndseed = 123)$res

Mean_Y

0.827

The example below defines the causal target parameter as the ATE on the additive scale, i.e.
the expectation of Y under action "A1" minus its expectation under action "A0".

Dset <- set.targetE(Dset, outcome = "Y", param = "A1-A0")

eval.target(Dset, data = Xdat1)$res

Diff_Y

0.212

Similarly, the ATE on the multiplicative scale can be evaluated as follows:

Dset <- set.targetE(Dset, outcome = "Y", param = "A1/A0")

eval.target(Dset, data = Xdat1)$res

Ratio_Y

1.344715

Causal parameters defined with set.targetMSM

To specify MSM target causal parameter, the user must provide the following arguments to
set.targetMSM: (1) the DAG object that contains all and only the actions of interest; (2)
outcome, the name of the outcome node (possibly time-varying); (3) for a time-varying out-
come node, the vector of time points t that index the outcome measurements of interest;
(4) form, the regression formula defining the working MSM; (5) family, the working model
family that is passed on to glm, e.g., family = "binomial" or family = "gaussian" for a
logistic or a linear working model; and (6) for time-to-event outcomes, the logical flag hazard

that indicates whether the working MSM describes discrete-time hazards (hazard = TRUE)
or survival probabilities (hazard = FALSE).

In the examples above, the two actions "A1" and "A0" are defined as deterministic static
interventions on the node Anode, setting it to either constant 0 or 1. Thus, each of these two
interventions is uniquely indexed by the post-intervention value of the node Anode itself. In
the following example, we instead introduce the variable d ∈ {0, 1} to explicitly index each
of the two post-intervention distributions when defining the two actions of interest. We then

18 simcausal: Causal Simulation Package

define the target causal parameter as the coefficients of the following linear marginal struc-
tural model m(d |α) = α0 +α1d. As expected, the estimated true value for α1 obtained below
corresponds exactly with the estimated value for the ATE on the additive scale obtained
above by running set.targetE with the parameter param = "A1-A0".

As just described, we now redefine the actions "A1" and "A0" by indexing the intervention
node formula (the distributional parameter prob) with parameter d before setting its values
to 0 or 1 by introducing an additional new argument named d into the action function call.
This creates an action- specific attribute variable d whose value uniquely identifies each of
the two actions and that will be included as an additional column variable to the simulating
counterfactual data sets.

A1 <- node("Anode", distr = "rbern", prob = d)

Dset <- Dset + action("A1", nodes = A1, d = 1)

A0 <- node("Anode",distr = "rbern", prob = d)

Dset <- Dset + action("A0", nodes = A0, d = 0)

Creating such an action-specific attribute d allows it to be referenced in the MSM regression
formula as shown below:

msm.form <- "Y ~ d"

Dset <- set.targetMSM(Dset, outcome = "Y", form = msm.form, family = "gaussian")

msm.res <- eval.target(Dset, n = 1000, rndseed = 123)

msm.res$coef

(Intercept) d

0.615 0.212

3.6. Defining node distributions and vectorizing node formula functions

To facilitate the comprehension of the following two subsections, we note that, in the simcausal

package, simulation of observed or counterfactual data follows the temporal ordering of the
nodes that define the DAG object and is vectorized. More specifically, the simulation of a
dataset with sample size n is carried out by first sampling the vector of all n observations of
the first node, before sampling the vector of all n observations of the second node and so on,
where the node ranking is defined by the temporal ordering that was explicitly or implicitly
specified by the user during the creation of the DAG object (see Section 2.2 for a discussion
of temporal ordering).

Defining node distributions

The distribution of a particular node is specified by passing the name of an evaluable R

function to the distr argument of the function node. Such a distribution function must
implement the mapping of n independent realizations of the parent nodes into n independent
realizations of this node. In general, any node with a lower temporal ordering can be defined
as a parent. Thus, such a distribution function requires an argument n, but will also typically
rely on additional input arguments referred to as distributional parameters. In addition, the
output of the distribution function must also be a vector of length n. Distributional param-
eters must be either scalars or vectors of n realizations of summary measures of the parent

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 19

nodes. The latter types of distributional arguments are referred to as the node formula(s)
because they are specified by evaluable R expressions. Distributional parameters are passed
as named arguments to the node function so they can be mapped uniquely to the relevant
argument of the function that is user-specified by the distr argument of the node function
call. The node formula(s) of any given node may invoke the name(s) of any other node(s)
with a lower temporal order value. The parents of a particular node are thus defined as the
collection of nodes that are referenced by its node formula(s). Note that unlike the values
of distributional parameters, the value of the argument n of the distr function is internally
determined during data simulation and is set to the sample size value passed to the sim func-
tion by the user.

For example, as shown below, the pre-written wrapper function for the Bernoulli distribu-
tion rbern is defined with two arguments, n and prob. When defining a node with the
distr argument set to "rbern", only the second argument must be explicitly user-specified
by a distributional parameter named prob in the call to the node function, e.g., node("N1",

distr="rbern", prob = 0.5). The argument prob can be either a numeric constant as in
the previous example or an evaluable R expression. When prob is a numeric constant, the
distribution function rbern returns n iid realizations of the Bernoulli random variable with
probability prob. When prob is an R expression (e.g., see the definition of node W3 in Sec-
tion 3.1) that involves parent nodes, the prob argument passed to the rbern function becomes
a vector of length n. The value of each of its component is determined by the R expression
evaluated using one of the n iid realizations of the parent nodes simulated previously. Thus,
the resulting simulated independent observations of the child node (e.g., W3 in Section 3.1)
are not necessarily identically distributed if the vector prob contains distinct values. We note
that the R expression in the prob argument is evaluated in the environment containing the
simulated observations of all previous nodes (i.e., nodes with a lower temporal order value).

To see the names of all pre-written distribution wrapper functions that are specifically opti-
mized for use as distr functions in the simcausal package, invoke distr.list(), as shown
below:

distr.list()

[1] "rbern" "rcat.b0" "rcat.b1" "rcat.factor"

[5] "rcategor" "rcategor.int" "rconst" "rdistr.template"

For a template on how to write a custom distribution function, see the documentation
?rdistr.template and rdistr.template, as well as any of the pre-written distribution
functions above. For example, the rbern function below simply wraps around the standard
R function rbinom to define the Bernoulli random variable generator:

rbern

function (n, prob)

{

rbinom(n = n, prob = prob, size = 1)

}

<bytecode: 0x556b932a9dd8>

<environment: namespace:simcausal>

20 simcausal: Causal Simulation Package

Another example on how to write a custom distribution function to define a custom left-
truncated normal distribution function based on the standard R function rnorm with argu-
ments mean and sd is demonstrated below. The truncation level is specified by an additional
distributional parameter minval, with default value set to 0.

rnorm_trunc <- function(n, mean, sd, minval = 0) {

out <- rnorm(n = n, mean = mean, sd = sd)

minval <- minval[1]

out[out < minval] <- minval

out

}

The example below makes use of this function to define the outcome node Y with positive
values only:

Dmin0 <- DAG.empty()

Dmin0 <- Dmin0 +

node("W", distr = "rbern",

prob = plogis(-0.5)) +

node("Anode", distr = "rbern",

prob = plogis(-0.5 - 0.3 * W)) +

node("Y", distr = "rnorm_trunc",

mean = -0.1 + 1.2 * Anode + 0.3 * W,

sd = 10)

Dmin0set <- set.DAG(Dmin0)

In the next example, we overwrite the previous definition of node Y to demonstrate how
alternative values for the truncation parameter minval may be passed by the user as part of
the node function call:

Dmin0 <- Dmin0 +

node("Y", distr = "rnorm_trunc",

mean = -0.1 + 1.2 * Anode + 0.3 * W,

sd = 10,

minval = 10)

Dmin10set <- set.DAG(Dmin0)

Finally, we illustrate how the minval argument can also be defined as a function of parent
node realizations:

Dmin0 <- Dmin0 +

node("Y", distr = "rnorm_trunc",

mean = -0.1 + 1.2 * Anode + 0.3 * W,

sd = 10,

minval = ifelse(Anode == 0, 5, 10))

Dminset <- set.DAG(Dmin0)

Vectorizing node formula functions (vecfun.add)

As just described, the distributional parameters defining a particular node distribution can
be evaluable R expressions referred to as node formulas. These expressions can contain any

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 21

build-in or user-defined R functions. By default any function inside such an R expression is
assumed non-vectorized, except for functions on the simcausal built-in list of known vectorized
functions. To see this list, call the vecfun.all.print function:

vecfun.all.print()

[1] "build-in vectorized functions:"

[1] "ifelse" "+" "-" "*" "^" "/"

[7] "==" "!=" "!" "<" ">" "<="

[13] ">=" "|" "&" "I" "abs" "sign"

[19] "sqrt" "round" "signif" "floor" "ceil" "ceiling"

[25] "trunc" "sin" "tan" "cos" "acos" "asin"

[31] "atan" "cosh" "sinh" "tanh" "log" "log10"

[37] "log1p" "exp" "expm1" "plogis" "beta" "lbeta"

[43] "gamma" "lgamma" "psigamma" "digamma" "trigamma" "choose"

[49] "lchoose" "factorial" "lfactorial"

[1] "user-defined vectorized functions: "

When parsing node formulas, the default behavior implemented in simcausal is to replace
each call to any function not on this list (i.e., a function not recognized as vectorized) with
a call to the apply function to loop over the rows of the dataset containing the simulated
realizations of the parents nodes stored in wide format and to call the unrecognized function
individually on every row of the data. For example, with the user-defined function power2

below, the simulation of observations of the node W3 first involves automatic replacement of
the calls power2(W1) and power2(W2) in the node formulas mean and sd with the apply

function calls apply(W1, 1, power2) and apply(W2, 1, power2), respectively:

power2 <- function(arg) arg^2

D <- DAG.empty()

D <- D +

node("W1", distr = "rnorm",

mean = 0, sd = 1) +

node("W2", distr = "rnorm",

mean = 0, sd = 1) +

node("W3", distr = "rnorm",

mean = power2(W1), sd = power2(W2))

This behavior results in increased computing time that can be avoided as described here. The
list of known vectorized functions can be easily expanded to include any function funname,
by simply invoking the call vecfun.add(funname) prior to data simulation with the sim

function. Doing this avoids the often unnecessary calls to the apply loops shown above and
typically results in a significant performance boost for data simulation.

The performance gain from vectorization is demonstrated with the power2 function in the
example below. We first examine the simulation time when power2 is not added to the list
of recognized vectorized functions as follows:

D1 <- set.DAG(D)

power2(W1)

power2(W2)

22 simcausal: Causal Simulation Package

(tnonvec <- system.time(sim1nonvec <- simobs(D1, n = 1000000, rndseed = 123)))

power2(W1)

power2(W2)

user system elapsed

2.161 0.020 2.182

Second, we examine the simulation time after adding power2 to the list of recognized vector-
ized functions as follows:

vecfun.add(c("power2"))

[1] "current list of user-defined vectorized functions: power2"

D1vec <- set.DAG(D)

(tvec <- system.time(sim1vec <- simobs(D1vec, n = 1000000, rndseed = 123)))

user system elapsed

0.092 0.000 0.092

all.equal(sim1nonvec,sim1vec)

[1] TRUE

We note that data simulation is approximately 24 times faster with the second approach above.

To see the names of user-added recognized vectorized functions, call vecfun.print. To reset
this list, call vecfun.reset. Note that the built-in list of known vectorized functions cannot
be modified/reset.

vecfun.print()

[1] "current list of user-defined vectorized functions: power2"

vecfun.reset()

vecfun.print()

[1] "current list of user-defined vectorized functions: "

It is important to note that all non-vectorized (or unrecognized vectorized) functions refer-
enced in a node formula, such as ifelse1 in the example below, must be declared with at
most one argument. Trying to declare such a function with more than one argument will
result in an error. Indeed, the default behavior when parsing node formulas in simcausal is to
aggregate the arguments of a node formula function not on the list of recognized vectorized
functions into a matrix using a call to the cbind function. This matrix is then passed as
a single argument to the apply loop that replaces the call to the user-specified node for-
mula. For example with the custom version of the ifelse function defined below, the call to
ifelse1(c(W1, 0.5, 0.1)) is automatically replaced with a call to apply(cbind(W1, 0.5,

0.1), 1, ifelse1):

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 23

vecfun.reset()

ifelse1 <- function(arg) {

ifelse(arg[1], arg[2], arg[3])

}

D <- DAG.empty()

D <- D +

node("W1", distr = "rbern",

prob = 0.05) +

node("W2", distr = "rbern",

prob = ifelse1(c(W1, 0.5, 0.1)))

D2nonvec <- set.DAG(D)

ifelse1(c(W1, 0.5, 0.1))

The restriction in the number of arguments for the node formula functions is easily avoided by
adding functions such as ifelse1 above to the list of recognized vectorized functions. Doing
so allows the function to be declared with an arbitrary number of arguments. The example
below demonstrates the use of the second custom version of ifelse, called ifelse2, which
is declared with 3 arguments, added to the list of recognized vectorized functions and then
called as part of the node formula of W2:

ifelse2 <- function(arg, val1, val2) {

ifelse(arg, val1, val2)

}

vecfun.add(c("ifelse2"))

[1] "current list of user-defined vectorized functions: ifelse2"

D <- DAG.empty()

D <- D +

node("W1", distr = "rbern",

prob = 0.05) +

node("W2", distr = "rbern",

prob = ifelse2(W1, 0.5, 0.1))

D2vec <- set.DAG(D)

The performance gain from vectorization is demonstrated below for the previous two custom
versions of the ifelse function:

(t2nonvec <- system.time(sim2nonvec <- simobs(D2nonvec, n = 100000, rndseed = 123)))

ifelse1(c(W1, 0.5, 0.1))

user system elapsed

0.507 0.000 0.507

(t2vec <- system.time(sim2vec <- simobs(D2vec, n = 100000, rndseed = 123)))

user system elapsed

0.007 0.000 0.006

24 simcausal: Causal Simulation Package

all(unlist(lapply(seq(ncol(sim2nonvec)),

function(coli) all.equal(sim2nonvec[, coli], sim2vec[, coli]))))

[1] TRUE

We note that the above data simulation is approximately 85 times faster with the ifelse2

function compared to the ifelse1 function. We also note that the above performance gain
of vectorization will be larger if the sample size n is increased.

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 25

4. Simulation study with multiple time point interventions

In this example we replicate results from the longitudinal data simulation protocol used in
two published manuscripts Neugebauer et al. (2014, 2015). We first describe the structural
equation model that implies the data generating distribution of the observed data, with time-
to-event outcome, as reported in Section 5.1 of Neugebauer et al. (2015). We then show how
to specify this model using the simcausal R interface, simulate observed data, define static and
time-varying intervention, simulate counterfactual data, and calculate various causal parame-
ters based on these interventions. In particular, we replicate estimates of true counterfactual
risk differences under the dynamic interventions reported in Neugebauer et al. (2014).

4.1. Specifying the structural equation model

In this section, we demonstrate how to specify the structural equation model described by
the following longitudinal data simulation protocol (Section 5.1 of Neugebauer et al. (2015)):

1. L2(0) ∼ B(0.05) where B denotes the Bernoulli distribution (e.g., L2(0) represents a
baseline value of a time-dependent variable such as low versus high A1c)

2. If L2(0) = 1 then L1(0) ∼ B(0.5), else L1(0) ∼ B(0.1) (e.g., L1(0) represents a time-
independent variable such as history of cardiovascular disease at baseline)

3. If (L1(0), L2(0)) = (1, 0) then A1(0) ∼ B(0.5), else if (L1(0), L2(0)) = (0, 0) then
A1(0) ∼ B(0.1), else if (L1(0), L2(0)) = (1, 1) thenA1(0) ∼ B(0.9), else if (L1(0), L2(0)) =
(0, 1) then A1(0) ∼ B(0.5) (e.g., A1(0) represents the binary exposure to an intensified
type 2 diabetes pharmacotherapy)

4. A2(0) ∼ B(0) (e.g., A2(0) represents occurrence of a right-censoring event)

5. for t = 1, . . . , 16 and as long as Y (t− 1) = 0 (by convention, Y (0) = 0):

(a) Y (t) ∼ B(1

1+exp (−(−6.5+L1(0)+4L2(t−1)+0.05∗

∑t−1

j=0
I(L2(j)=0)))

) (e.g., Y(t) represents

the indicator of failure such as onset or progression of albuminuria)

(b) If A1(t− 1) = 1 then L2(t) ∼ B(0.1), else if L2(t− 1) = 1 then L2(t) ∼ B(0.9), else
L2(t) ∼ B(min(1, 0.1 + t/16))

(c) If A1(t− 1) = 1 then A1(t) = 1, else if (L1(0), L2(t)) = (1, 0) then A1(t) ∼ B(0.3),
else if (L1(0), L2(t)) = (0, 0) then A1(t) ∼ B(0.1), else if (L1(0), L2(t)) = (1, 1)
then A1(t) ∼ B(0.7), else if (L1(0), L2(t)) = (0, 1) then A1(t) ∼ B(0.5)

(d) If t = 16 then A2(t) ∼ B(1) (e.g., administrative end of study), else A2(t) ∼ B(0)
(e.g., no right-censoring).

26 simcausal: Causal Simulation Package

First, the example below shows how to define the nodes L2, L1, A1 and A2 at time point t =

0 as Bernoulli random variables, using the distribution function "rbern":

library("simcausal")

options(simcausal.verbose=FALSE)

D <- DAG.empty()

D <- D +

node("L2", t = 0, distr = "rbern",

prob = 0.05) +

node("L1", t = 0, distr = "rbern",

prob = ifelse(L2[0] == 1, 0.5, 0.1)) +

node("A1", t = 0, distr = "rbern",

prob = ifelse(L1[0] == 1 & L2[0] == 0, 0.5,

ifelse(L1[0] == 0 & L2[0] == 0, 0.1,

ifelse(L1[0] == 1 & L2[0] == 1, 0.9, 0.5)))) +

node("A2", t = 0, distr = "rbern",

prob = 0, EFU = TRUE)

Second, the example below shows how one may use the node function with node formulas
based on the square bracket function ’[’ to easily define the time-varying nodes Y, L1, A1

and A2 simultaneously for all subsequent time points t ranging from 1 to 16:

t.end <- 16

D <- D +

node("Y", t = 1:t.end, distr = "rbern",

prob =

plogis(-6.5 + L1[0] + 4 * L2[t-1] + 0.05 * sum(I(L2[0:(t-1)] == rep(0, t)))),

EFU = TRUE) +

node("L2", t = 1:t.end, distr = "rbern",

prob =

ifelse(A1[t-1] == 1, 0.1,

ifelse(L2[t-1] == 1, 0.9, min(1, 0.1 + t / 16)))) +

node("A1", t = 1:t.end, distr = "rbern",

prob = ifelse(A1[t-1] == 1, 1,

ifelse(L1[0] == 1 & L2[t] == 0, 0.3,

ifelse(L1[0] == 0 & L2[t] == 0, 0.1,

ifelse(L1[0] == 1 & L2[t] == 1, 0.7, 0.5))))) +

node("A2", t = 1:t.end, distr = "rbern",

prob = {if(t == 16) {1} else {0}},

EFU = TRUE)

lDAG <- set.DAG(D)

Note that the node formulas specified with the prob argument above use the generic time
variable t both outside and inside the square-bracket vector syntax. For example, the condi-
tional distribution of the time-varying node Y is defined by an R expression that contains the
syntax sum(I(L2[0:(t - 1)] == rep(0, t))), which evaluates to different R expressions,
as t ranges from 0 to 16:

1. sum(I(L2[0] == 0)), for t = 1; and

2. sum(I(L2[0:1] == c(0, 0))), for t = 2, . . . , sum(I(L2[0:16] == c(0, ..., 0))),
for t = 16.

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 27

For more details on the specification of node formulas, see Section 3.6.

One can visualize the observed data generating distribution defined in the lDAG object as
shown in Figures 2 and 3 by calling plotDAG. The directional arrows represent the functional
dependencies in the structural equation model. More specifically, the node of origin of each
arrow is an extracted node name from the node formula(s). Note that the appearance of the
resulting diagram can be customized with additional arguments, as shown in the following
examples. The argument tmax can be used to restrict the plotting of the DAG object to only
the nodes indexed by time points below the user-specified tmax value, as shown in Figure 3.

Figure 2 is created by running the following code:

plotDAG(lDAG, xjitter = 0.3, yjitter = 0.01)

Figure 3 is created by running the following code:

plotDAG(lDAG, tmax = 3, xjitter = 0.3, yjitter = 0.03,

edge_attrs = list(width = 0.5, arrow.width = 0.4, arrow.size = 0.8),

vertex_attrs = list(size = 12, label.cex = 0.8))

L2_0

L1_0

A1_0

A2_0

Y_1

L2_1

A1_1

A2_1

Y_2

L2_2

A1_2

A2_2

Y_3

L2_3

A1_3

A2_3

Y_4

L2_4

A1_4

A2_4

Y_5

L2_5

A1_5

A2_5

Y_6

L2_6

A1_6

A2_6

Y_7

L2_7

A1_7

A2_7

Y_8

L2_8

A1_8

A2_8

Y_9

L2_9

A1_9

A2_9

Y_10

L2_10

A1_10

A2_10

Y_11

L2_11

A1_11

A2_11

Y_12

L2_12

A1_12

A2_12

Y_13

L2_13

A1_13

A2_13

Y_14

L2_14

A1_14

A2_14

Y_15

L2_15

A1_15

A2_15

Y_16

L2_16

A1_16

A2_16

Figure 2: Graphical representation of the structural equation model using a DAG

28 simcausal: Causal Simulation Package

L2_0

L1_0

A1_0

A2_0

Y_1

L2_1

A1_1

A2_1

Y_2

L2_2

A1_2

A2_2

Y_3

L2_3

A1_3

A2_3

Figure 3: Graphical representation of a portion of the structural equation model using a
DAG. Only the nodes indexed by time points lower than or equal to 3 are represented.

4.2. Simulating observed data (sim)

Simulating observed data is accomplished by calling the function sim and specifying its ar-
guments DAG and n that indicate the causal model and sample size of interest. Below is an
example of how to simulate an observed dataset with 10, 000 observations using the causal
model defined previously. The output is a data.frame object.

Odat <- sim(DAG = lDAG, n = 100, rndseed = 123)

The format of the output dataset is easily understood by examining the first 10 columns of
the first row of the data.frame object:

Odat[1,1:10]

ID L2_0 L1_0 A1_0 A2_0 Y_1 L2_1 A1_1 A2_1 Y_2

1 1 0 0 0 0 0 1 1 0 0

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 29

4.3. Specifying interventions (+ action)

Dynamic interventions

The following two dynamic interventions on the time-varying node A1 of the structural equa-
tion model encoded by the previously defined lDAG object were studied in Neugebauer et al.
(2014): ‘Initiate treatment A1 the first time t that the covariate L2 is greater than or equal
to θ and continue treatment thereafter (i.e., Ā1(t − 1) = 0 and A(t) = 1, A(t + 1) = 1, . . .)’,
for θ = 0, 1. The example below demonstrates how to specify these two dynamic interventions.

First, we define the list of intervention nodes and their post-intervention distributions. Note
that these distributions are indexed by the attribute theta, whose value is not yet defined:

act_theta <-c(node("A1", t = 0, distr = "rbern",

prob = ifelse(L2[0] >= theta , 1, 0)),

node("A1", t = 1:(t.end), distr = "rbern",

prob = ifelse(A1[t-1] == 1, 1, ifelse(L2[t] >= theta, 1, 0))))

Second, we add the two dynamic interventions to the lDAG object while defining the value of
theta for each intervention:

Ddyn <- lDAG

Ddyn <- Ddyn + action("A1_th0", nodes = act_theta, theta = 0)

Ddyn <- Ddyn + action("A1_th1", nodes = act_theta, theta = 1)

We refer to the argument theta passed to the +action function as an action attribute.

One can select and inspect particular actions saved in a DAG object by invoking the function
A():

class(A(Ddyn)[["A1_th0"]])

[1] "DAG.action"

A(Ddyn)[["A1_th0"]]

[1] "Action: A1_th0"

[1] "ActionNodes: A1_0, A1_1, ... , A1_15, A1_16"

[1] "ActionAttributes: "

$theta

[1] 0

Figure 4 shows the plot of the DAG.action object associated with the dynamic intervention
named "A1_th0" (with plotting restricted to nodes indexed by time points lower than or
equal to 3). Note that the intervention nodes are marked in red and that the action attribute
theta is represented as a separate node. The following code is used to generate Figure 4:

plotDAG(A(Ddyn)[["A1_th0"]], tmax = 3, xjitter = 0.3, yjitter = 0.03,

edge_attrs = list(width = 0.5, arrow.width = 0.4, arrow.size = 0.8),

vertex_attrs = list(size = 15, label.cex = 0.7))

30 simcausal: Causal Simulation Package

theta L2_0

L1_0

A1_0

A2_0

Y_1

L2_1

A1_1

A2_1

Y_2

L2_2

A1_2

A2_2

Y_3

L2_3

A1_3

A2_3

Figure 4: Graphical representation of the modified structural equation model resulting from
a dynamic intervention. Only the nodes indexed by time points lower than or equal to 3 are
represented.

The distribution of some or all of the the intervention nodes that define an action saved within
a DAG object can be modified by adding a new intervention object with the same action name
to the DAG object. The new intervention object can involve actions on only a subset of the
original intervention nodes for a partial modification of the original action definition. For
example, the code below demonstrates how the existing action "A1_th0" with the previously
defined dynamic and deterministic intervention on the node A1[0] is partially modified by
replacing the intervention distribution for the node A1[0] with a deterministic and static
intervention defined by a degenerate distribution at value 1. Note that the other intervention
nodes previously defined as part of the action "A1_th0" remain unchanged.

A(Ddyn)[["A1_th0"]]$A1_0

List of 8

$ name : chr "A1_0"

$ mv.names : chr "A1_0"

$ t : num 0

$ distr : chr "rbern"

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 31

$ dist_params:List of 1

..$ prob: chr "ifelse(L2[0] >= theta, 1, 0)"

..- attr(*, "asis.flags")=List of 1

.. ..$ prob: logi FALSE

$ EFU : NULL

$ order : num 3

$ node.env :<environment: R_GlobalEnv>

- attr(*, "class")= chr "DAG.node"

Ddyntry <- Ddyn +

action("A1_th0", nodes = node("A1", t = 0, distr = "rbern", prob = 0))

A(Ddyntry)[["A1_th0"]]$A1_0

List of 8

$ name : chr "A1_0"

$ mv.names : chr "A1_0"

$ t : num 0

$ distr : chr "rbern"

$ dist_params:List of 1

..$ prob: chr "0"

..- attr(*, "asis.flags")=List of 1

.. ..$ prob: logi FALSE

$ EFU : NULL

$ order : num 3

$ node.env :<environment: R_GlobalEnv>

- attr(*, "class")= chr "DAG.node"

Similarly, some or all of the action attributes that define an action saved within a DAG object
can be modified by adding a new intervention object with the same action name but a different
attribute value to the DAG object. This functionality is demonstrated with the example below
in which the previous value 0 of the action attribute theta that defines the action named
"A1_th0" is replaced with the value 1 and in which a new attribute newparam is simultaneously
added to the previously defined action "A1_th0":

A(Ddyntry)[["A1_th0"]]

[1] "Action: A1_th0"

[1] "ActionNodes: A1_0, A1_1, ... , A1_15, A1_16"

[1] "ActionAttributes: "

$theta

[1] 0

Ddyntry <- Ddyntry +

action("A1_th0", nodes = act_theta, theta = 1, newparam = 100)

A(Ddyntry)[["A1_th0"]]

[1] "Action: A1_th0"

[1] "ActionNodes: A1_0, A1_1, ... , A1_15, A1_16"

[1] "ActionAttributes: "

$theta

[1] 1

##

$newparam

[1] 100

32 simcausal: Causal Simulation Package

Finally, we note that an action attribute can also be defined as a time-varying vector, rather
than a scalar, i.e., a vector of scalars that are each indexed by a time point. This functionality
is demonstrated in the example below to define interventions that are indexed by a scalar
theta whose value changes over time. Note that in this example the square-bracket syntax
theta[t] is used for referencing the time-varying values of the action attribute theta. More
details on the use of time-varying action attributes are provided in the next section.

act_theta_t <-c(node("A1",t = 0, distr = "rbern",

prob = ifelse(L2[0] >= theta[t], 1, 0)),

node("A1",t = 1:t.end, distr = "rbern",

prob = ifelse(A1[t-1]==1, 1, ifelse(L2[t] >= theta[t], 1, 0)))

)

Ddyntry <- Ddyntry + action("A1_th0", nodes = act_theta_t, theta = rep(0,(t.end)+1))

A(Ddyntry)[["A1_th0"]]

[1] "Action: A1_th0"

[1] "ActionNodes: A1_0, A1_1, ... , A1_15, A1_16"

[1] "ActionAttributes: "

$theta

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

##

$newparam

[1] 100

Static interventions

Here we diverge from the replication of simulation results presented in Neugebauer et al.
(2014). Instead, we build on the structural equation model introduced in that paper to il-
lustrate the specification of static interventions on the treatment nodes A1. These static
interventions are defined by more or less early treatment initiation during follow-up followed
by subsequent treatment continuation. Each of these static interventions is thus uniquely
identified by the time when the measurements of the time-varying node A1 switch from value
0 to 1. The time of this value switch is represented by the parameter tswitch in the code
below. Note that the value tswitch = 16 identifies the static intervention corresponding
with no treatment initiation during follow-up in our example while the values 0 through 15
represent 16 distinct interventions representing increasingly delayed treatment initiation dur-
ing follow-up.

First, we define the list of intervention nodes and their post-intervention distributions. Note
that these distributions are indexed by the attribute tswitch, whose value is not yet defined:

`%+%` <- function(a, b) paste0(a, b)

Dstat <- lDAG

act_A1_tswitch <- node("A1",t = 0:(t.end), distr = "rbern",

prob = ifelse(t >= tswitch, 1, 0))

Second, we add the 17 static interventions to the lDAG object while defining the value of
tswitch for each intervention:

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 33

tswitch_vec <- (0:t.end)

for (tswitch_i in tswitch_vec) {

abar <- rep(0, length(tswitch_vec))

abar[which(tswitch_vec >= tswitch_i)] <- 1

Dstat <- Dstat + action("A1_ts"%+%tswitch_i,

nodes = act_A1_tswitch,

tswitch = tswitch_i,

abar = abar)

}

Note that in addition to the action attribute tswitch, each intervention is also indexed
by an additional action attribute abar that also uniquely identifies the intervention and
that represents the actual sequence of treatment decisions that defines the intervention, i.e.,
ā(tswitch− 1) = 0, a(tswitch) = 1, . . .:

A(Dstat)[["A1_ts3"]]

[1] "Action: A1_ts3"

[1] "ActionNodes: A1_0, A1_1, ... , A1_15, A1_16"

[1] "ActionAttributes: "

$tswitch

[1] 3

##

$abar

[1] 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The purpose of this additional action attribute abar will become clear when we illustrate the
definition of target parameters defined by working MSMs based on these 17 static interven-
tions in Section 4.7.2 (Example 7 of set.targetMSM).

Figure 5 shows the plot of the DAG.action object associated with the action named "A1_ts3"

(with plotting restricted to nodes indexed by time points lower than or equal to 3 and with
exclusion of the action attribute "abar" from the plot). Note that the intervention nodes are
marked in red by default. The following code is used to generate Figure 5:

plotDAG(A(Dstat)[["A1_ts3"]], tmax = 3, xjitter = 0.3, yjitter = 0.03,

edge_attrs = list(width = 0.5, arrow.width = 0.4, arrow.size = 0.8),

vertex_attrs = list(size = 15, label.cex = 0.7), excludeattrs = "abar")

34 simcausal: Causal Simulation Package

tswitch L2_0

L1_0

A1_0

A2_0

Y_1

L2_1

A1_1

A2_1

Y_2

L2_2

A1_2

A2_2

Y_3

L2_3

A1_3

A2_3

Figure 5: Graphical representation of the modified structural equation model resulting from
a static intervention. Only the nodes indexed by time points lower than or equal to 3 are
represented. The action attribute abar is also not represented.

4.4. Simulating counterfactual data (sim)

Simulating counterfactual data is accomplished by calling the function sim and specifying its
arguments DAG, actions and n to indicate the causal model, interventions, and sample size
of interest. The counterfactual data can be simulated for all actions stored in the DAG object
or a subset by setting the actions argument to the vector of the desired-action names.

Dynamic interventions

The example below shows how to use the sim function to simulate 100,000 observations for
each of the two dynamic actions, "A1_th0" and "A1_th1", defined in Section 4.3.1. The
call to sim below produces a list of two named data.frame objects, where each data.frame

object contains observations simulated from the same post-intervention distribution defined
by one particular action only.

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 35

Xdyn <- sim(Ddyn, actions = c("A1_th0", "A1_th1"), n = 100, rndseed = 123)

nrow(Xdyn[["A1_th0"]])

[1] 100

nrow(Xdyn[["A1_th1"]])

[1] 100

names(Xdyn)

[1] "A1_th0" "A1_th1"

The default format of the output list generated by the sim function is easily understood by
examining the first 15 columns of the first row of each data.frame object:

Xdyn[["A1_th0"]][1, 1:15]

ID theta L2_0 L1_0 A1_0 A2_0 Y_1 L2_1 A1_1 A2_1 Y_2 L2_2 A1_2 A2_2 Y_3

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

Xdyn[["A1_th1"]][1, 1:15]

ID theta L2_0 L1_0 A1_0 A2_0 Y_1 L2_1 A1_1 A2_1 Y_2 L2_2 A1_2 A2_2 Y_3

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Static interventions

This example shows how to use the sim function to simulate 1,000 observations for each of the
17 static actions defined in Section 4.3.2. The call to the sim function below produces a list of
named data.frame objects, where each data.frame object contains observations simulated
from the same post-intervention distribution defined by one particular action only.

Xstat <- sim(Dstat, actions = names(A(Dstat)), n = 100, rndseed = 123)

length(Xstat)

[1] 17

nrow(Xstat[["A1_ts3"]])

[1] 100

The default format of the output list generated by the sim function is easily understood by
examining the first row of the data.frame object associated with the action "A1_ts3":

Xstat[["A1_ts3"]][1,]

ID abar_0 abar_1 abar_2 abar_3 abar_4 abar_5 abar_6 abar_7 abar_8 abar_9 abar_10

36 simcausal: Causal Simulation Package

1 1 0 0 0 1 1 1 1 1 1 1 1

abar_11 abar_12 abar_13 abar_14 abar_15 abar_16 tswitch L2_0 L1_0 A1_0 A2_0 Y_1 L2_1

1 1 1 1 1 1 1 3 0 0 0 0 0 0

A1_1 A2_1 Y_2 L2_2 A1_2 A2_2 Y_3 L2_3 A1_3 A2_3 Y_4 L2_4 A1_4 A2_4 Y_5 L2_5 A1_5 A2_5

1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

Y_6 L2_6 A1_6 A2_6 Y_7 L2_7 A1_7 A2_7 Y_8 L2_8 A1_8 A2_8 Y_9 L2_9 A1_9 A2_9 Y_10 L2_10

1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

A1_10 A2_10 Y_11 L2_11 A1_11 A2_11 Y_12 L2_12 A1_12 A2_12 Y_13 L2_13 A1_13 A2_13 Y_14

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

L2_14 A1_14 A2_14 Y_15 L2_15 A1_15 A2_15 Y_16 L2_16 A1_16 A2_16

1 0 1 0 0 0 1 0 0 0 1 1

4.5. Converting a dataset from wide to long format (DF.to.long)

The specification of structural equation models based on time-varying nodes such as the one
described in Section 4.1 allows for simulated (observed or counterfactual) data to be struc-
tured in either long or wide formats. Below, we illustrate these two alternatives. We note
that, by default, simulated (observed or counterfactual) data from the sim function are stored
in wide format. The data output format from the sim function can, however, be changed to
the long format by setting the wide argument of the sim function to FALSE or, equivalently,
by applying the function DF.to.long to an existing simulated dataset in wide format.

The following code demonstrates the default data formatting behavior of the sim function
and how this behavior can be modified to generate data in the long format:

Odat.wide <- sim(DAG = lDAG, n = 100, wide = TRUE, rndseed = 123)

Odat.wide[1:2, 1:18]

ID L2_0 L1_0 A1_0 A2_0 Y_1 L2_1 A1_1 A2_1 Y_2 L2_2 A1_2 A2_2 Y_3 L2_3 A1_3 A2_3 Y_4

1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0

2 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

Odat.long <- sim(DAG = lDAG, n = 100, wide = FALSE, rndseed = 123)

Odat.long[1:5,]

ID L1 t L2 A1 A2 Y

1 1 0 0 0 0 0 NA

2 1 0 1 1 1 0 0

3 1 0 2 0 1 0 0

4 1 0 3 1 1 0 0

5 1 0 4 0 1 0 0

As with observed data, the default behavior of the sim function can be changed so that
simulated counterfactual data are instead structured in long format:

lXdyn <- sim(Ddyn, actions = c("A1_th0", "A1_th1"), n = 1000, wide = FALSE, rndseed = 123)

head(lXdyn[["A1_th0"]], 5)

ID theta L1 t L2 A1 A2 Y

1 1 0 0 0 0 1 0 NA

2 1 0 0 1 0 1 0 0

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 37

3 1 0 0 2 0 1 0 0

4 1 0 0 3 0 1 0 0

5 1 0 0 4 0 1 0 0

The following example demonstrates how the function DF.to.longDT can be used to convert
simulated (counterfactual or observed) data stored in wide format to long format (note that
DF.to.longDT internally uses the data.table package, but returns a data.frame by default):

Odat.long2 <- DF.to.longDT(Odat.wide)

Odat.long2[1:5,]

ID L1 t L2 A1 A2 Y

1 1 0 0 0 0 0 NA

2 1 0 1 1 1 0 0

3 1 0 2 0 1 0 0

4 1 0 3 1 1 0 0

5 1 0 4 0 1 0 0

4.6. Implementing imputation by last time point value carried forward

(doLTCF)

As described in Sections 2.2 and 2.5, the default behavior of the sim function consists in
setting all nodes that temporally follow an EFU node whose simulated value is 1 to missing
(i.e., NA). The argument LTCF of the sim function can however be used to change this default
behavior and impute some of these missing values with last time point value carried forward
(LTCF). More specifically, only the missing values of time-varying nodes (i.e., those with non-
missing t argument) that follow the end of follow-up event encoded by the EFU node specified
by the LTCF argument will be imputed. Equivalently, one can use the function doLTCF to
apply the same last time point value carried forward imputation to an existing simulated
dataset obtained from the function sim that was called with its default imputation setting
(i.e., with no LTCF argument). Illustration of the use of this LTCF imputation functionality
is given in Section 4.7.2 (Example 1 of set.targetMSM).

The following code demonstrates the default data format of the sim function after an end of
follow-up event and how this behavior can be modified to generate data with LTCF imputation
by either using the LTCF argument of the sim function or by calling the doLTCF function.

Odat.wide <- sim(DAG = lDAG, n = 1000, rndseed = 123)

Odat.wide[c(11,76), 1:18]

ID L2_0 L1_0 A1_0 A2_0 Y_1 L2_1 A1_1 A2_1 Y_2 L2_2 A1_2 A2_2 Y_3 L2_3 A1_3 A2_3 Y_4

11 11 1 0 1 0 1 NA NA NA NA NA NA NA NA NA NA NA NA

76 76 0 0 0 0 0 1 0 0 1 NA NA NA NA NA NA NA NA

Odat.wideLTCF <- sim(DAG = lDAG, n = 1000, LTCF = "Y", rndseed = 123)

Odat.wideLTCF[c(11,76), 1:18]

ID L2_0 L1_0 A1_0 A2_0 Y_1 L2_1 A1_1 A2_1 Y_2 L2_2 A1_2 A2_2 Y_3 L2_3 A1_3 A2_3 Y_4

11 11 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

76 76 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1

38 simcausal: Causal Simulation Package

The code below demonstrates how to use the doLTCF function to perform LTCF imputation
on already existing data simulated with the sim function based on its default non-imputation
behavior:

Odat.wideLTCF2 <- doLTCF(data = Odat.wide, LTCF = "Y")

Odat.wideLTCF2[c(11,76), 1:18]

ID L2_0 L1_0 A1_0 A2_0 Y_1 L2_1 A1_1 A2_1 Y_2 L2_2 A1_2 A2_2 Y_3 L2_3 A1_3 A2_3 Y_4

11 11 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

76 76 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1

4.7. Defining and evaluating various causal target parameters

Causal parameters defined with set.targetE

Example 1. In the example below, we first define two causal target parameters as two
vectors, each containing the expectations of the node Y[t], for time points t=1, . . ., 16, under
the post-intervention distribution defined by one of the two dynamic interventions "A1_th0"

and "A1_th1" defined in Section 4.3.1. Second, we evaluate these target parameters using the
counterfactual data simulated previously in Section 4.4.1 and we map the resulting estimates
of cumulative risks into estimates of survival probabilities. We also plot the corresponding two
counterfactual survival curves using the simcausal routine plotSurvEst as shown in Figure 6.
Finally, we note that Figure 6 replicates the simulation study results reported in Figure 4 of
Neugebauer et al. (2014).

Ddyn <- set.targetE(Ddyn, outcome = "Y", t = 1:16, param = "A1_th1")

surv_th1 <- 1 - eval.target(Ddyn, data = Xdyn)$res

Ddyn <- set.targetE(Ddyn, outcome = "Y", t = 1:16, param = "A1_th0");

surv_th0 <- 1 - eval.target(Ddyn, data = Xdyn)$res

plotSurvEst(surv = list(d_theta1 = surv_th1, d_theta0 = surv_th0),

xindx = 1:17,

ylab = "Counterfactual survival for each intervention",

ylim = c(0.75,1.0))

Example 2. In the example below, we first define the causal target parameters as the ATE
on the additive scale (cumulative risk differences) and the ATE on the multiplicative scale
(cumulative risk ratios), for the two dynamic interventions ("A1_th1" and "A1_th0") defined
in Section 4.3.1 at time point t = 12. Second, we evaluate these target parameters using the
previously simulated counterfactual data from Section 4.4.1.

ATE on the additive scale:

Ddyn <- set.targetE(Ddyn, outcome = "Y", t = 12, param = "A1_th1-A1_th0")

(psi <- eval.target(Ddyn, data = Xdyn)$res)

Diff_Y_12

0.05

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 39

5 10 15

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

t

C
o

u
n

te
rf

a
c
tu

a
l
s
u

rv
iv

a
l
fo

r
e

a
c
h

 i
n

te
rv

e
n

ti
o

n

5 10 15

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

t

C
o

u
n

te
rf

a
c
tu

a
l
s
u

rv
iv

a
l
fo

r
e

a
c
h

 i
n

te
rv

e
n

ti
o

n

d_theta1

d_theta0

Figure 6: Estimates of the true survival curves under the two dynamic interventions

ATE on the multiplicative scale:

Ddyn <- set.targetE(Ddyn, outcome = "Y", t = 12, param = "A1_th0/A1_th1")

eval.target(Ddyn, data = Xdyn)$res

Ratio_Y_12

0.7222222

We also note that the above result for the ATE on the additive scale (psi=0.05) replicates
the simulation result reported for ψ in Section 5.1 and Figure 4 of Neugebauer et al. (2014),
where ψ was defined as the difference between the cumulative risks of failure at t0 = 12 for
the two dynamic interventions d1 and d0.

Causal parameters defined with set.targetMSM

In Section 3.5.2, we described the arguments of the function set.targetMSM that the user
must specify to define MSM target causal parameters. They include the specification of the
argument form which encodes the working MSM formula. This formula can only be a function
of the time index t, action attributes that uniquely identify each intervention of interest, and
baseline nodes (defined as nodes that precede the earliest intervention node). Both baseline
nodes that are measurements of time-varying nodes and time-varying action attributes must
be referenced in the R expression passed to the form argument within the wrapping syntax
S(...) as illustrated in several examples below.

Example 1. Working dynamic MSM for survival probabilities over time. Here,
we illustrate the evaluation of the counterfactual survival curves E(Ydθ

(t)) for t = 1, . . . , 16
under the dynamic interventions dθ for θ = 0, 1 introduced in Section 4.3.1 using the following

40 simcausal: Causal Simulation Package

pooled working logistic MSM:

expit (α0 + α1θ + α2t+ α3tθ) ,

where the true values of the coefficients (αi, i = 0, . . . , 3) define the target parameters of
interest. First, we define these target parameters:

msm.form <- "Y ~ theta + t + I(theta*t)"

Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = 1:16, form = msm.form,

family = "binomial", hazard = FALSE)

Note that when the outcome is a time-varying node of type EFU, the argument hazard =

FALSE indicates that the working MSM of interest is a model for survival probabilities. The
argument family = "binomial" indicates that the working model is a logistic model. Second,
we evaluate the coefficients of the working model:

MSMres <- eval.target(Ddyn, n = 1000, rndseed = 123)

MSMres$coef

(Intercept) theta t I(theta * t)

-3.92657656 0.75030028 0.16432626 -0.02948507

We also note that no previously simulated counterfactual data were passed as argument to
the function eval.target above. Instead, the sample size argument n was specified and the
routine will thus first sample n = 10,000 observations from each of the two post-intervention
distributions before fitting the working MSM with these counterfactual data to derive esti-
mates of the true coefficient values. Alternatively, the user could have passed the previously
simulated counterfactual data. Note however that in this case, the user must either simulate
counterfactual data by calling the sim function with the argument LTCF = "Y" or convert
the previously simulated counterfactual data with the last time point value carried forward
imputation function doLTCF. Both approaches are described in Section 4.6 and the latter ap-
proach is demonstrated in the example below, where we first impute the EFU outcome Y in
the previously simulated counterfactual data Xdyn.

XdynLTCF <- lapply(Xdyn, doLTCF, LTCF = "Y")

eval.target(Ddyn, data = XdynLTCF)$coef

(Intercept) theta t I(theta * t)

-5.2256968 1.3534592 0.2563118 -0.0784575

The resulting coefficient estimates can be mapped into estimates of the two counterfactual
survival curves and plotted as shown in Figure 7 using the plotSurvEst function:

surv_th0 <- 1 - predict(MSMres$m, newdata = data.frame(theta = rep(0, 16), t = 1:16),

type = "response")

surv_th1 <- 1 - predict(MSMres$m, newdata = data.frame(theta = rep(1, 16), t = 1:16),

type = "response")

plotSurvEst(surv = list(MSM_theta1 = surv_th1, MSM_theta0 = surv_th0),

xindx = 1:16,

ylab = "MSM Survival, P(T>t)",

ylim = c(0.75, 1.0))

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 41

5 10 15

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

t

M
S

M
 S

u
rv

iv
a

l,
 P

(T
>

t)

5 10 15

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

t

M
S

M
 S

u
rv

iv
a

l,
 P

(T
>

t)

MSM_theta1

MSM_theta0

Figure 7: Survival curve estimates evaluated based on working MSM 1

Example 2. More complex working dynamic MSM for survival probabilities over

time. The previous example can be modified to illustrate the evaluation of the survival
curves of interest with a more flexible (i.e., more non-parametric) working MSM as follows:

msm.form <- "Y ~ theta + t + I(t^2) + I(t^3) + I(t^4) + I(t^5) + I(t*theta) + I(t^2*theta) +

I(t^3*theta) + I(t^4*theta) + I(t^5*theta)"

Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = 1:16, formula = msm.form,

family = "binomial", hazard = FALSE)

MSMres2 <- eval.target(Ddyn, n = 1000, rndseed = 123)

MSMres2$coef

(Intercept) theta t I(t^2) I(t^3) I(t^4)

-5.457017e+00 -3.065267e-01 9.849194e-01 -1.541119e-01 1.375016e-02 -5.919003e-04

I(t^5) I(t * theta) I(t^2 * theta) I(t^3 * theta) I(t^4 * theta) I(t^5 * theta)

9.752861e-06 3.497807e-01 -3.692049e-02 1.200958e-03 -2.315770e-05 9.200108e-07

surv_th0 <- 1 - predict(MSMres2$m, newdata = data.frame(theta = rep(0, 16), t = 1:16),

type = "response")

surv_th1 <- 1 - predict(MSMres2$m, newdata = data.frame(theta = rep(1, 16), t = 1:16),

type = "response")

plotSurvEst(surv = list(MSM_theta1 = surv_th1, MSM_theta0 = surv_th0),

xindx = 1:16,

ylab = "MSM Survival, P(T>t)",

ylim = c(0.75, 1.0))

The resulting estimates of the survival curves shown in Figure 8 are indeed visually closer to
the true survival curves reported in Figure 4 of Neugebauer et al. (2014).

42 simcausal: Causal Simulation Package

5 10 15

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

t

M
S

M
 S

u
rv

iv
a

l,
 P

(T
>

t)

5 10 15

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

t

M
S

M
 S

u
rv

iv
a

l,
 P

(T
>

t)

MSM_theta1

MSM_theta0

Figure 8: Survival curve estimates evaluated based on working MSM 2

Example 3. Saturated dynamic MSM for survival probabilities over time. Here,
we further modify the working model formula by specifying a saturated MSM to directly
replicate the results reported in Figure 4 of Neugebauer et al. (2014) that are based on a
non-parametric MSM approach:

msm.form <- "Y ~ theta + as.factor(t) + as.factor(t):theta "

Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = 1:16, formula = msm.form,

family = "binomial", hazard = FALSE)

MSMres3 <- eval.target(Ddyn, n = 1000, rndseed = 123)

MSMres3$coef

(Intercept) theta as.factor(t)2 as.factor(t)3

-4.701490e+00 2.285248e-13 7.573565e-01 1.154339e+00

as.factor(t)4 as.factor(t)5 as.factor(t)6 as.factor(t)7

1.523436e+00 1.598887e+00 1.838231e+00 2.067777e+00

as.factor(t)8 as.factor(t)9 as.factor(t)10 as.factor(t)11

2.231654e+00 2.363187e+00 2.493105e+00 2.620923e+00

as.factor(t)12 as.factor(t)13 as.factor(t)14 as.factor(t)15

2.764691e+00 2.919033e+00 3.087244e+00 3.191903e+00

as.factor(t)16 theta:as.factor(t)2 theta:as.factor(t)3 theta:as.factor(t)4

3.302648e+00 2.387247e-01 4.445480e-01 5.602287e-01

theta:as.factor(t)5 theta:as.factor(t)6 theta:as.factor(t)7 theta:as.factor(t)8

6.737663e-01 7.309918e-01 6.878024e-01 6.792431e-01

theta:as.factor(t)9 theta:as.factor(t)10 theta:as.factor(t)11 theta:as.factor(t)12

6.193031e-01 5.501573e-01 4.878360e-01 3.999920e-01

theta:as.factor(t)13 theta:as.factor(t)14 theta:as.factor(t)15 theta:as.factor(t)16

3.389316e-01 2.279513e-01 2.263517e-01 2.017892e-01

surv_th0 <- 1 - predict(MSMres3$m, newdata = data.frame(theta = rep(0, 16), t = 1:16),

type = "response")

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 43

surv_th1 <- 1 - predict(MSMres3$m, newdata = data.frame(theta = rep(1, 16), t = 1:16),

type = "response")

plotSurvEst(surv = list(MSM_theta1 = surv_th1, MSM_theta0 = surv_th0),

xindx = 1:16,

ylab = "MSM Survival, P(T>t)",

ylim = c(0.75, 1.0))

5 10 15

0
.7

5
0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

t

M
S

M
 S

u
rv

iv
a

l,
 P

(T
>

t)

5 10 15

0
.7

5
0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

t

M
S

M
 S

u
rv

iv
a

l,
 P

(T
>

t)

MSM_theta1

MSM_theta0

Figure 9: Survival curve estimates evaluated based on working MSM 3

The resulting estimates of the survival curves shown in Figure 9 approximate that reported
in Figure 4 of Neugebauer et al. (2014). Differences can be explained by the relative small
sample size of the counterfactual data based on which the following plot is based (n=10,000

here vs. n=1,000,000 in the simulation study from Neugebauer et al. (2014)).

Example 4. Working dynamic MSM for discrete-time hazards over time. Here,
we illustrate the evaluation of discrete-time hazards E(Ydθ

(t))|Ydθ
(t−1) = 0), for t = 1, . . . , 16

under the dynamic interventions dθ, for θ = 0, 1 introduced in Section 4.3.1 using the following
pooled working logistic MSM:

expit (α0 + α1θ + α2t+ α3tθ) ,

where the true values of coefficients (αi, i = 0, . . . , 3) define the target parameters of interest.
First, we define these target parameters:

msm.form <- "Y ~ theta + t + I(theta*t)"

Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = 1:16, form = msm.form,

family = "binomial", hazard = TRUE)

Note that when the outcome is a time-varying node of type EFU, the argument hazard =

TRUE indicates that the working MSM of interest is now a model for hazards.

44 simcausal: Causal Simulation Package

Second, we evaluate the coefficients of the working model:

MSMres <- eval.target(Ddyn, n = 1000, rndseed = 123)

MSMres$coef

(Intercept) theta t I(theta * t)

-4.92365264 0.90128094 0.07004155 -0.07882556

Note that no previously simulated counterfactual data were passed as argument to the call to
eval.target above. Instead, the sample size argument n was specified and the routine will
thus first sample n=10,000 observations from each of the two post-intervention distributions
before fitting the working MSM with these counterfactual data to derive estimates of the
true coefficient values. Alternatively, the user could have passed the previously simulated
counterfactual data using the argument data = Xdyn.

The resulting coefficient estimates can be mapped into estimates of the two counterfactual
hazard curves and plotted as shown in Figure 10 using the plotSurvEst function:

h_th0 <- predict(MSMres$m, newdata = data.frame(theta = rep(0, 16), t = 1:16),

type = "response")

h_th1 <- predict(MSMres$m, newdata = data.frame(theta = rep(1, 16), t = 1:16),

type = "response")

plotSurvEst(surv = list(MSM_theta1 = h_th1, MSM_theta0 = h_th0),

xindx = 1:16,

ylab = "MSM hazard function",

ylim = c(0.0, 0.03))

5 10 15

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

t

M
S

M
 h

a
z
a
rd

 f
u
n
c
ti
o
n

5 10 15

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

t

M
S

M
 h

a
z
a
rd

 f
u
n
c
ti
o
n

MSM_theta1

MSM_theta0

Figure 10: Hazard estimates evaluated based on working MSM 4

Alternatively, the resulting coefficient estimates can also be mapped into estimates of the
two counterfactual survival curves and plotted as shown in Figure 11 using the plotSurvEst

function:

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 45

Surv_h_th0 <- cumprod(1 - h_th0)

Surv_h_th1 <- cumprod(1 - h_th1)

plotSurvEst(surv = list(MSM_theta1 = Surv_h_th1, MSM_theta0 = Surv_h_th0),

xindx = 1:16,

ylab = "Survival P(T>t) derived from MSM hazard",

ylim = c(0.75, 1.0))

5 10 15

0
.7

5
0
.8

0
0
.8

5
0

.9
0

0
.9

5
1

.0
0

t

S
u
rv

iv
a
l
P

(T
>

t)
 d

e
ri

ve
d

 f
ro

m
 M

S
M

 h
a

z
a

rd

5 10 15

0
.7

5
0
.8

0
0
.8

5
0

.9
0

0
.9

5
1

.0
0

t

S
u
rv

iv
a
l
P

(T
>

t)
 d

e
ri

ve
d

 f
ro

m
 M

S
M

 h
a

z
a

rd

MSM_theta1

MSM_theta0

Figure 11: Survival curve estimates evaluated based on working MSM 4

Example 5. Working dynamic MSM to evaluate effect modification by a time-

independent covariate. The previous example can be modified to illustrate the evaluation
of effect modification by a baseline covariate through the inclusion of an interaction term
between θ and L1 in the working logistic MSM for E(Ydθ

(t))|Ydθ
(t− 1) = 0, L1):

expit (α0 + α1θ + α2t+ α3tθ + α4θL1) , for t = 1, . . . , 16 and θ = 0, 1,

where the true values of coefficients αi, for i = 0, . . . , 4 define the target parameters of interest.
First, we define and estimate these target parameters:

msm.form_sum <- "Y ~ theta + t + I(theta*t) + I(theta*L1)"

Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = 1:16, form = msm.form_sum,

family = "binomial", hazard = TRUE)

MSMres <- eval.target(Ddyn, n = 1000, rndseed = 123)

MSMres$coef

(Intercept) theta t I(theta * t) I(theta * L1)

-4.92365264 0.74737701 0.07004155 -0.07629662 0.99747518

Second, we map the coefficient estimates into counterfactual survival curves within subgroups
defined by the baseline covariate L1 levels:

46 simcausal: Causal Simulation Package

get_haz <- function(thetaval, L1val) {

predict(MSMres$m, newdata = data.frame(theta = rep(thetaval, 16), t = 1:16, L1 = L1val),

type = "response")

}

Sth0L1_0 <- cumprod(1 - get_haz(thetaval = 0, L1val = 0))

Sth1L1_0 <- cumprod(1 - get_haz(thetaval = 1, L1val = 0))

Sth0L1_1 <- cumprod(1 - get_haz(thetaval = 0, L1val = 1))

Sth1L1_1 <- cumprod(1 - get_haz(thetaval = 1, L1val = 1))

Third, we plot the resulting survival curves for each subgroup of interest as shown in Figure 12:

par(mfrow = c(1,2))

plotSurvEst(surv = list(MSM_theta1 = Sth1L1_0, MSM_theta0 = Sth0L1_0),

xindx = 1:16,

ylab = "Survival P(T>t), for L1=0",

ylim = c(0.5, 1.0))

plotSurvEst(surv = list(MSM_theta1 = Sth1L1_1, MSM_theta0 = Sth0L1_1),

xindx = 1:16,

ylab = "Survival P(T>t), for L1=1",

ylim = c(0.5, 1.0))

5 10 15

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

t

S
u

rv
iv

a
l
P

(T
>

t)
,

fo
r

L
1

=
0

5 10 15

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

t

S
u

rv
iv

a
l
P

(T
>

t)
,

fo
r

L
1

=
0

MSM_theta1

MSM_theta0

5 10 15

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

t

S
u

rv
iv

a
l
P

(T
>

t)
,

fo
r

L
1

=
1

5 10 15

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

t

S
u

rv
iv

a
l
P

(T
>

t)
,

fo
r

L
1

=
1

MSM_theta1

MSM_theta0

Figure 12: Survival curve estimates evaluated based on working MSM 5

Example 6. Working dynamic MSM to evaluate effect modification by the base-

line measurement of a time-dependent covariate. Here, the previous example is mod-
ified to illustrate the evaluation of effect modification by the baseline measurement of the
time-varying node L2 using the following working logistic MSM:

expit (α0 + α1θ + α2t+ α3tθ + α4θL2(0)) ,

where the true values of coefficients αi for i = 0, . . . , 4 define the target parameters of interest.
First, we define and estimate these target parameters:

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 47

msm.form.correct <- "Y ~ theta + t + I(theta*t) + I(theta * S(L2[0]))"

Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = 1:16, form = msm.form.correct,

family = "binomial", hazard = TRUE)

MSMres.correct <- eval.target(Ddyn, n = 1000, rndseed = 123)

MSMres.correct$coef

(Intercept) theta t I(theta * t)

-4.92365264 0.86598683 0.07004155 -0.07862965

I(theta * S(L2[0]))

0.55781689

Note that the baseline measurement of the time-varying node L2 must be referenced within
the S(...) in the working MSM formula.

Example 7. Working static MSM for survival probabilities over time. Here, we
illustrate the evaluation of discrete-time hazards E(Yā(t))|Yā(t−1) = 0), for t = 1, ..., 16 under
the 17 static interventions introduced in Section 4.3.2 using the following pooled working
logistic MSM:

expit
(

α0 + α1t+ α2
1

t

t−1
∑

j=0

a(j) + α3

t−1
∑

j=0

a(j)
)

,

where we use the notation ā = (a(0), a(1), ..., a(16)) to denote the 17 static intervention reg-
imens on the time- varying treatment node A1. Note that the time-varying action attribute
abar introduced in Section 4.3.2 directly encodes the 17 treatment regimens values ā refer-
enced in the MSM working model above. To evaluate the target parameters αj above, for
j = 0, ..., 3, we first simulate counterfactual data for the 17 static interventions of interest as
follows:

Xts <- sim(Dstat, actions = names(A(Dstat)), n = 1000, rndseed = 123)

Second, we define the target parameters and estimate them using the counterfactual data just
simulated as follows:

msm.form_1 <- "Y ~ t + S(mean(abar[0:(t-1)])) + I(t*S(mean(abar[0:(t-1)])))"

Dstat <- set.targetMSM(Dstat, outcome = "Y", t = 1:16, form = msm.form_1,

family = "binomial", hazard = TRUE)

MSMres <- eval.target(Dstat, data = Xts)

MSMres$coef

(Intercept) t

-3.6345057 0.1001448

S(mean(abar[0:(t - 1)])) I(t * S(mean(abar[0:(t - 1)])))

-1.2086860 -0.1165954

Note that the working MSM formulas can reference arbitrary summary measures (functions)
of time-varying action attributes such as abar. The square-bracket ’[’ syntax can then be
used to identify specific elements of the time-varying action attributes in the same way it
can be used in node formulas to reference particular measurements of time-varying nodes.
For example, the term sum(abar[0:t]) indicates a summation over the elements of the ac-
tion attribute abar indexed by time points lower than or equal to value t and the syntax

48 simcausal: Causal Simulation Package

S(abar[max(0, t - 2)]) creates a summary measure representing time-lagged values of
abar that are equal to abar[0] if t< 2 and to abar[t-2] if t≥ 2. Note also that references
to time-varying action attributes in the working MSM formula must be wrapped within a call
to the S(...) function, e.g., Y∼t + S(mean(abar[0:t])).

The eval.target function returns a list with the following named attributes: the working
MSM fit returned by a glm function call (msm), the coefficient estimates (coef), the mapping
(S.msm.map) of the formula terms defined by expressions enclosed within the S(...) function
into the corresponding variable names in the design matrix that was used to implement the
regression, and the design matrix (df_long) stored as a list of data.table objects from
the R package data.table (Dowle et al. 2014). Each of these data.table objects contains
counterfactual data indexed by a particular intervention. These counterfactual data are stored
in long format with possibly additional new columns representing terms in the working MSM
formula defined by expressions enclosed with the S() function. The design matrix can be
derived by row binding these data.table objects.

names(MSMres)

[1] "msm" "coef" "S.msm.map" "hazard" "call" "df_long"

MSMres$S.msm.map

S_exprs_vec XMSMterms

1 mean(abar[0:(t - 1)]) XMSMterm.1

names(MSMres$df_long)

[1] "A1_ts0" "A1_ts1" "A1_ts2" "A1_ts3" "A1_ts4" "A1_ts5" "A1_ts6" "A1_ts7"

[9] "A1_ts8" "A1_ts9" "A1_ts10" "A1_ts11" "A1_ts12" "A1_ts13" "A1_ts14" "A1_ts15"

[17] "A1_ts16"

MSMres$df_long[["A1_ts2"]]

ID tswitch L1 t abar L2 A1 A2 Y XMSMterm.1

1: 1 2 0 1 0 0 0 0 0 0.0000000

2: 1 2 0 2 1 0 1 0 0 0.0000000

3: 1 2 0 3 1 1 1 0 0 0.3333333

4: 1 2 0 4 1 0 1 0 0 0.5000000

5: 1 2 0 5 1 NA NA NA 1 0.6000000

14351: 1000 2 0 12 1 0 1 0 0 0.8333333

14352: 1000 2 0 13 1 0 1 0 0 0.8461538

14353: 1000 2 0 14 1 0 1 0 0 0.8571429

14354: 1000 2 0 15 1 0 1 0 0 0.8666667

14355: 1000 2 0 16 1 0 1 1 0 0.8750000

Finally, we plot the resulting counterfactual survival curve estimates using the function
survbyMSMterm (source code provided in the appendix) as shown in Figure 13.

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 49

survMSMh_wS <- survbyMSMterm(MSMres = MSMres, t_vec = 1:16,

MSMtermName = "mean(abar[0:(t - 1)])")

[1] "MSMtermName used"

[1] "XMSMterm.1"

print(plotsurvbyMSMterm(survMSMh_wS))

Warning: Using ‘size‘ aesthetic for lines was deprecated in ggplot2 3.4.0.

i Please use ‘linewidth‘ instead.

This warning is displayed once every 8 hours.

Call ‘lifecycle::last_lifecycle_warnings()‘ to see where this warning was generated.

0.4

0.6

0.8

1.0

4 8 12 16

t

s
u

rv

action

A1_ts0

A1_ts1

A1_ts2

A1_ts3

A1_ts4

A1_ts5

A1_ts6

A1_ts7

A1_ts8

A1_ts9

A1_ts10

A1_ts11

A1_ts12

A1_ts13

A1_ts14

A1_ts15

A1_ts16

Figure 13: Survival curve estimates evaluated based on working MSM 7

50 simcausal: Causal Simulation Package

5.
Replication study of the comparative performances of two

estimators

In this section, we demonstrate how the simcausal package can be used to conduct a complex
but transparent and reproducible simulation study to compare the finite sample properties
(bias an relative efficiency) of two causal effect estimators. Specifically, we aim to replicate
the results of the simulation study described by Neugebauer et al. (2014) that compared
targeted minimum loss based estimation (TMLE) and inverse probability weighting (IPW)
estimation of a causal risk difference defined by two dynamic treatment regimens (see ATE
in Example 2 of set.targetE in Section 4.7.1). We carried out this replication study using
simulation protocol 3 described in Section 5.3. of Neugebauer et al. (2014) and compared
the bias and relative efficiency of TMLE and IPW estimation using the same performance
metrics as that reported in Table 6 of Neugebauer et al. (2014). The observed data were
thus generated using the following slightly modified version of the structural equation model
from Section 4.1 to match the data generating distribution described in protocol 3 of Section

5.3. of Neugebauer et al. (2014):

t.end <- 12

D <- DAG.empty()

D <- D +

node("L2", t = 0, distr = "rbern",

prob = 0.05) +

node("m1L2", t = 0, distr = "rconst",

const = 1 - L2[0]) +

node("L1", t = 0, distr = "rbern",

prob = ifelse(L2[0] == 1, 0.8, 0.3)) +

node("A1", t = 0, distr = "rbern",

prob = ifelse(L1[0] == 1 & L2[0] == 0, 0.5,

ifelse(L1[0] == 0 & L2[0] == 0, 0.2,

ifelse(L1[0] == 1 & L2[0] == 1, 0.8, 0.5)))) +

node("A2", t = 0, distr = "rbern", prob = 0, EFU = TRUE)

D <- D +

node("Y", t = 1:t.end, distr = "rbern",

prob = plogis(-7 + 3 * L1[0] + 5 * L2[t-1] +

0.1 * sum(I(L2[0:(t-1)] == rep(0, t)))),

EFU = TRUE) +

node("L2", t = 1:t.end, distr = "rbern",

prob = ifelse(A1[t-1] == 1, 0.1,

ifelse(L2[t-1] == 1, 0.9, min(1,0.1 + t/16)))) +

node("m1L2", t = 1:t.end, distr = "rconst", const = 1-L2[t]) +

node("A1", t = 1:t.end, distr = "rbern",

prob = ifelse(A1[t-1] == 1, 1,

ifelse(L1[0] == 1 & L2[t] == 0, 0.4,

ifelse(L1[0] == 0 & L2[t] == 0, 0.2,

ifelse(L1[0] == 1 & L2[t] == 1, 0.8, 0.6))))) +

node("A2", t = 1:t.end, distr = "rbern",

prob = {if(t == t.end) {1} else {0}},

EFU = TRUE)

lDAG <- set.DAG(D)

Ddyn <- lDAG

The target causal parameter ψ0 in this replication study is defined as the difference between

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 51

the cumulative risks of failure at t0 = 11 under the two dynamic regimes d0 and d1 introduced
in Section 4.3.1, i.e., ψ0 = P (Yd1

(t0 + 1) = 1) − P (Yd0
(t0 + 1) = 1):

t0 <- 12

Ddyn <- set.targetE(Ddyn, outcome = "Y", t = (1:t0), param = "A1_th1-A1_th0")

getNP.truetarget <- function() {

resNP <- eval.target(Ddyn, n = 150000, rndseed = 123)$res

return(as.vector(resNP[paste0("Diff_Y_", t0)]))

}

f1name <- "vignette_dat/repstudy1_psi0.t0.NP.Rdata"

if (file.exists(f1name)) {

load(f1name)

} else {

psi0.t0.NP <- getNP.truetarget()

save(list = "psi0.t0.NP", file = f1name)

}

psi0.t0.NP

[1] 0.1079467

The above estimate of the true value of ψ0 closely matches the value reported in Figure 10 of
Neugebauer et al. (2014).

We note that the target parameter ψ0 can also be defined and thus evaluated with the following
saturated MSM:

logit(P (Ydθ
(t+ 1) = 1)) = α0 + α1

0θ +
t0

∑

k=1

α0
kI(t = k) +

t0
∑

k=1

α1
kθI(t = k),

for t = 0, 1, . . . , t0 and θ ∈ {0, 1}. Indeed, the risk difference ψ0 can then be derived from the
coefficients of this MSM as follows:

ψ0 = expit(α0 + α1
0 + α0

t0
+ α1

t0
) − expit(α0 + α0

t0
). (1)

Evaluation of the target parameter ψ0 can thus be implemented through fitting of a saturated
MSM as shown below:

MSM_RD_t <- function(resMSM, t) {

invlogit <- function(x) 1 / (1 + exp(-x))

Riskth0 <- invlogit(resMSM["(Intercept)"] + resMSM[paste0("as.factor(t)",t)])

Riskth1 <- invlogit(resMSM["(Intercept)"] + resMSM[paste0("as.factor(t)",t)] +

resMSM["theta"] + resMSM[paste0("theta:as.factor(t)",t)])

return(as.vector(Riskth1-Riskth0))

}

msm.form <- "Y ~ theta + as.factor(t) + as.factor(t):theta "

Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = (1:t0), formula = msm.form,

family = "binomial", hazard = FALSE)

getMSM.truetarget <- function() {

resMSM <- eval.target(Ddyn, n = 150000, rndseed = 123)$coef

52 simcausal: Causal Simulation Package

return(as.vector(MSM_RD_t(resMSM = resMSM, t = t0)))

}

f2name <- "vignette_dat/repstudy1_psi0.t0.MSM.Rdata"

if (file.exists(f2name)) {

load(f2name)

} else {

psi0.t0.MSM <- getMSM.truetarget()

save(list = "psi0.t0.MSM", file = f2name)

}

psi0.t0.MSM

[1] 0.1079467

all.equal(psi0.t0.NP, psi0.t0.MSM)

[1] TRUE

To evaluate the bias and relative efficiency of TMLE and IPW estimation of the risk difference
ψ0 with observed data, we generated 1, 000 observed datasets, each with sample size 50, 000.
With each simulated observed data set, the coefficients of the saturated MSM were then esti-
mated by TMLE and IPW estimation using the ltmeMSM function from the ltmle R package
(Schwab et al. 2014) as shown in the appendix. For an in-depth description of TMLE, we
refer to Petersen et al. (2014) and the ltmle package manual. The IPW and TMLE estimates
of ψ0 were then derived from the estimated MSM coefficients α using formula (1). As in
Neugebauer et al. (2014), both TMLE and IPW estimators of ψ0 were derived using a cor-
rectly specified model for the treatment mechanism but also a misspecified model (covariate
L2[0] missing from the logistic model for the propensity scores).

We report our simulation results in Table 1. For each estimator, we report the empirical mean
of the 1, 000 estimates (ψn), corresponding bias and the empirical standard deviation of the
1, 000 estimates (σemp). We also report the relative efficiency for IPW vs. TMLE, evaluated as
the ratio of their respective empirical standard deviations. The function simrun_ltmleMSM()

(source code provided in the appendix) can be used to generate the results presented in Ta-
ble 1.

Our TMLE results match those reported in Table 6 by Neugebauer et al. (2014), while our
IPW results differ from those reported in Neugebauer et al. (2014). Specifically, in our sim-
ulations the IPW was shown to have a smaller empirical standard deviation, compared to
Neugebauer et al. (2014), resulting in a smaller reported relative efficiency of 12%, compared
to 39% relative efficiency reported by Neugebauer et al. (2014). We note though that the
IPW estimator implemented by Neugebauer et al. (2014) is different from the IPW estima-
tor implemented in the ltmle package. The latter IPW estimator is defined based on the
fitting of a separate treatment mechanism model for each time point. Additionally, the IPW
estimator for ψ0 implemented with the ltmle package is based on a saturated MSM for the
counterfactual survival functions, whereas the IPW estimator implemented in Neugebauer
et al. (2014) was constructed using the survival probability estimates derived from a satu-

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 53

rated MSM for the counterfactual hazard functions. To our knowledge, such an approach is
not automated currently in an existing R package. Therefore, the IPW estimation perfor-
mance in this simulation study should not be expected to match that reported in Neugebauer
et al. (2014).

Estimator ψn Bias σemp σIP T W
emp /σT MLE

emp

Results from this replication study
TMLE (correct model) 0.108 -0.0002 0.0055 1.12
IPTW (correct model) 0.108 -0.0001 0.0061
Results reported by Neugebauer et al. (2014)
TMLE (correct model) 0.108 0.0010 0.0060 1.392
IPTW (correct model) 0.108 0.0011 0.0078
Results from this replication study
TMLE (incorrect model 1) 0.112 0.0041 0.0067 1.91
IPTW (incorrect model 1) 0.094 -0.0144 0.0128
Results reported by Neugebauer et al. (2014)
TMLE (incorrect model 1) 0.109 0.0019 0.0074
IPTW (incorrect model 1) 0.182 0.0750 0.0107

Table 1: Replication of the results from simulation protocol 3 reported in Table 6 of Neuge-
bauer et al. (2014) based on two models for estimating the treatment mechanism: 1) a cor-
rectly specified model and 2) a misspecified model missing a term for the time-dependent
variable. ψn - mean point estimates over 1,000 simulated data sets; σemp - empirical standard
deviation (SD) of point estimates over 1,000 simulated data sets; σIP T W

emp /σT MLE
emp - the relative

efficiency measured by the ratio of the empirical SDs associated with the IPW and TMLE
point estimates.

54 simcausal: Causal Simulation Package

6.
Replication study of the impact of misspecification of

propensity score models

In this section, we demonstrate how the simcausal package can be used to replicate a simu-
lation study from Lefebvre et al. (2008). Specifically, we replicate the results first reported
in Tables II and IV of that paper. We first specify the observed data generating distribution
using the two structural equation models corresponding with Scenarios 1 and 3 described
in Lefebvre et al. (2008). Second, for each scenario, we evaluate the true values of the co-
efficients of the MSM using counterfactual data and compare them to those reported by
Lefebvre et al. (2008). Finally for each scenario, we implement the same IPW estimators of
these MSM coefficients and evaluate their performances using the same two metrics (bias and
mean squared error) as in Lefebvre et al. (2008). Each IPW estimator is defined by a distinct
model for the propensity scores. Our replication results are reported in Tables 2 and 4, and we
show the simulations results as they were reported by Lefebvre et al. (2008) in Tables 3 and 5.

To carry out the simulation study, we first define a new distribution function rbivNorm for
simulating observations from a bivariate normal distribution with a user-specified mean vec-
tor (specified by the argument mu) and a user-specified covariance matrix (specified by the
arguments var1, var2, and rho to represent the diagonal and off-diagonal scalars, respec-
tively). This new distribution function is based on Cholesky decomposition of the covariance
matrix and independent observations simulated from the standard normal distribution which
are provided by the input argument norms. The argument whichbiv indicates whether the
function should return independent observations from the first or second element of the bi-
variate normal vector.

rbivNorm <- function(n, whichbiv, norms, mu, var1 = 1, var2 = 1, rho = 0.7) {

whichbiv <- whichbiv[1]; var1 <- var1[1]; var2 <- var2[1]; rho <- rho[1]

sigma <- matrix(c(var1, rho, rho, var2), nrow = 2)

Scol <- chol(sigma)[, whichbiv]

bivX <- (Scol[1] * norms[, 1] + Scol[2] * norms[, 2]) + mu

bivX

}

Second, using this distribution function, we define the structural equation model specified for
data simulation according to Scenario 1 in Lefebvre et al. (2008).

`%+%` <- function(a, b) paste0(a, b)

Lnames <- c("LO1", "LO2", "LO3", "LC1")

D <- DAG.empty()

for (Lname in Lnames) {

D <- D +

node(Lname%+%".norm1", distr = "rnorm", mean = 0, sd = 1) +

node(Lname%+%".norm2", distr = "rnorm", mean = 0, sd = 1)

}

D <- D +

node("LO1", t = 0:1, distr = "rbivNorm", whichbiv = t + 1,

norms = c(LO1.norm1, LO1.norm2),

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 55

mu = 0) +

node("LO2", t = 0:1, distr = "rbivNorm", whichbiv = t + 1,

norms = c(LO2.norm1, LO2.norm2),

mu = 0) +

node("LO3", t = 0:1, distr = "rbivNorm", whichbiv = t + 1,

norms = c(LO3.norm1, LO3.norm2),

mu = 0) +

node("LC1", t = 0:1, distr = "rbivNorm", whichbiv = t + 1,

norms = c(LC1.norm1, LC1.norm2),

mu = {if (t == 0) {0} else {-0.30 * A[t-1]}}) +

node("alpha", t = 0:1, distr = "rconst",

const = {if(t == 0) {log(0.6)} else {log(1.0)}}) +

node("A", t = 0:1, distr = "rbern",

prob = plogis(alpha[t] +

log(5)*LC1[t] + {if(t == 0) {0} else {log(5)*A[t-1]}})) +

node("Y", t = 1, distr = "rnorm",

mean = (0.98 * LO1[t] + 0.58 * LO2[t] + 0.33 * LO3[t] +

0.98 * LC1[t] - 0.37 * A[t]),

sd = 1)

DAGO.sc1 <- set.DAG(D)

Third, we define the target parameter as the coefficients β1 and β2 of the following correctly
specified marginal structural model:

E[Ya(0),a(1)] = β0 + β1a(0) + β2a(1),

defined by the following four possible static and deterministic interventions (a(0), a(1)) on
the treatment process (A(0), A(1)): (0, 0), (1, 0), (0, 1), and (1, 1).

defAct <- function (Dact) {

act.At <- node("A", t = 0:1, distr = "rbern", prob = abar[t])

Dact <- Dact +

action("A00", nodes = act.At, abar = c(0, 0)) +

action("A10", nodes = act.At, abar = c(1, 0)) +

action("A01", nodes = act.At, abar = c(0, 1)) +

action("A11", nodes = act.At, abar = c(1, 1))

return(Dact)

}

Dact.sc1 <- defAct(DAGO.sc1)

msm.form <- "Y ~ S(abar[0]) + S(abar[1])"

Dact.sc1 <- set.targetMSM(Dact.sc1, outcome = "Y", t = 1,

form = msm.form, family = "gaussian")

Fourth, we evaluate the true values of these MSM coefficients using the eval.target function
and note that our results closely match the true value of the MSM coefficients reported in
Table II of Lefebvre et al. (2008):

repstudy2.sc1.truetarget <- function() {

trueMSMreps.sc1 <- NULL

reptrue <- 50

for (i in (1:reptrue)) {

res.sc1.i <- eval.target(Dact.sc1, n = 500000)$coef

56 simcausal: Causal Simulation Package

trueMSMreps.sc1 <- rbind(trueMSMreps.sc1, res.sc1.i)

}

return(trueMSMreps.sc1)

}

f1name <- "vignette_dat/trueMSMreps.sc1.Rdata"

if (file.exists(f1name)) {

load(f1name)

} else {

trueMSMreps.sc1 <- repstudy2.sc3.truetarget()

save(list = "trueMSMreps.sc1", file = f1name)

}

(trueMSM.sc1 <- apply(trueMSMreps.sc1, 2, mean))

(Intercept) S(abar[0]) S(abar[1])

0.0001540635 -0.2941187264 -0.3700397969

Note that the true values of the MSM coefficients above were obtained from the averages of
coefficient estimates obtained from several simulated counterfactual data sets. This approach
was implemented to avoid the memory limitation that can be encountered when trying to
simulate a single very large counterfactual data set.

Finally, we replicate the IPW estimation results for Scenario 1 presented originally in Table
II of Lefebvre et al. (2008) using the source R code provided in the appendix. To estimate
the propensity scores P (A(0)|L(0)) and P (A(1)|A(0), L(1)) that define each of the three IPW
estimators considered, we used the same three models presented in Table I of Lefebvre et al.
(2008). For the three sample sizes N = 300; 1, 000; and 10, 000, we report the bias of each
IPW estimator, multiplied by 10 (Bias*10) and the mean-squared error, also multiplied by
10 (MSE*10) in Table 2. We note that our results closely match those in Table 3 which were
originally reported in Lefebvre et al. (2008).

Covariates in P (A|L) N A(0)
Bias*10

A(0)
MSE*10

A(1)
Bias*10

A(1)
MSE*10

Confounder(s) only 300 0.576 1.803 0.752 1.690
1000 0.278 0.725 0.374 0.688

10000 0.062 0.139 0.069 0.147
Confounder(s) & 300 0.572 1.714 0.785 1.489
risk factors 1000 0.250 0.764 0.304 0.665

10000 0.071 0.121 0.077 0.120

Table 2: Replication of the simulation results from Lefebvre et al. (2008) for Scenario 1.

Next, using the same approach described above, we replicate the simulation results for Sce-
nario 3 reported in Table IV of Lefebvre et al. (2008). We start by defining the structural
equation model specified for data simulation according to Scenario 3 in Lefebvre et al. (2008)
as follows:

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 57

Covariates in P (A|L) N A(0)
Bias*10

A(0)
MSE*10

A(1)
Bias*10

A(1)
MSE*10

Lefebvre et al.: Confounder(s) only 300 0.768 1.761 0.889 1.728
1000 0.265 0.761 0.312 0.723

10000 0.057 0.146 0.086 0.120
Lefebvre et al.: Confounder(s) & 300 0.757 1.642 0.836 1.505
risk factors 1000 0.283 0.718 0.330 0.638

10000 0.056 0.139 0.081 0.114

Table 3: Simulation results for Scenario 1 as reported in Table II of Lefebvre et al. (2008).

`%+%` <- function(a, b) paste0(a, b)

Lnames <- c("LO1", "LO2", "LO3", "LE1", "LE2", "LE3", "LC1", "LC2", "LC3")

D <- DAG.empty()

for (Lname in Lnames) {

D <- D +

node(Lname%+%".norm1", distr = "rnorm") +

node(Lname%+%".norm2", distr = "rnorm")

}

coefAi <- c(-0.10, -0.20, -0.30)

sdLNi <- c(sqrt(1), sqrt(5), sqrt(10))

for (i in (1:3)) {

D <- D +

node("LO"%+%i, t = 0:1, distr = "rbivNorm", whichbiv = t + 1,

mu = 0,

params = list(norms = "c(LO"%+%i%+%".norm1, LO"%+%i%+%".norm2)")) +

node("LE"%+%i, t = 0:1, distr = "rbivNorm", whichbiv = t + 1,

mu = 0, var1 = 1, var2 = 1, rho = 0.7,

params = list(norms = "c(LE"%+%i%+%".norm1, LE"%+%i%+%".norm2)")) +

node("LC"%+%i, t = 0:1, distr = "rbivNorm", whichbiv = t + 1,

mu = {if (t == 0) {0} else {.(coefAi[i]) * A[t-1]}},

params = list(norms = "c(LC"%+%i%+%".norm1, LC"%+%i%+%".norm2)")) +

node("LN"%+%i, t = 0:1, distr = "rnorm",

mean = 0, sd = .(sdLNi[i]))

}

D <- D +

node("alpha", t = 0:1, distr = "rconst",

const = {if(t == 0) {log(0.6)} else {log(1.0)}}) +

node("A", t = 0:1, distr = "rbern",

prob = plogis(alpha[t] +

log(5) * LC1[t] + log(2) * LC2[t] + log(1.5) * LC3[t] +

log(5) * LE1[t] + log(2) * LE2[t] + log(1.5) * LE3[t] +

{if (t == 0) {0} else {log(5) * A[t-1]}})) +

node("Y", t = 1, distr = "rnorm",

mean = 0.98 * LO1[t] + 0.58 * LO2[t] + 0.33 * LO3[t] +

0.98 * LC1[t] + 0.58 * LC2[t] + 0.33 * LC3[t] - 0.39 * A[t],

sd = 1)

58 simcausal: Causal Simulation Package

DAGO.sc3 <- set.DAG(D)

Similar to Scenario 1, we then define the same four actions on the new DAG object before
defining and evaluating the causal target parameter of interest. We note that our results
match the true value of the MSM coefficients reported in Table IV of Lefebvre et al. (2008):

Dact.sc3 <- defAct(DAGO.sc3)

msm.form <- "Y ~ S(abar[0]) + S(abar[1])"

Dact.sc3 <- set.targetMSM(Dact.sc3, outcome = "Y", t = 1,

form = msm.form, family = "gaussian")

repstudy2.sc3.truetarget <- function() {

trueMSMreps.sc3 <- NULL

reptrue <- 50

for (i in (1:reptrue)) {

res.sc3.i <- eval.target(Dact.sc3, n = 500000)$coef

trueMSMreps.sc3 <- rbind(trueMSMreps.sc3, res.sc3.i)

}

return(trueMSMreps.sc3)

}

f2name <- "vignette_dat/trueMSMreps.sc3.Rdata"

if (file.exists(f2name)) {

load(f2name)

} else {

trueMSMreps.sc3 <- repstudy2.sc3.truetarget()

save(list = "trueMSMreps.sc3", file = f2name)

}

(trueMSM.sc3 <- apply(trueMSMreps.sc3, 2, mean))

(Intercept) S(abar[0]) S(abar[1])

-0.0004548424 -0.3125245583 -0.3897569393

Finally, using the R code provided in the appendix, we replicate in Table 4 the IPW estima-
tion results for Scenario 3 presented originally in Table IV of Lefebvre et al. (2008). We note
that our simulation results closely match those in Table 5 which were originally reported by
Lefebvre et al. (2008).

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 59

Covariates in P (A|L) N A(0)
Bias*10

A(0)
MSE*10

A(1)
Bias*10

A(1)
MSE*10

Confounder(s) only 300 -0.179 1.238 0.157 1.102
1000 -0.341 0.413 -0.137 0.363

10000 -0.347 0.054 -0.177 0.046
Confounder(s) & 300 -0.151 1.156 0.110 0.890
risk factors 1000 -0.266 0.348 -0.093 0.271

10000 -0.354 0.050 -0.190 0.034
Confounder(s) & 300 1.397 3.966 2.014 3.854
IVs 1000 0.919 2.016 1.200 1.989

10000 0.438 0.605 0.457 0.595
Confounder(s), 300 1.304 4.010 1.966 3.841
IVs & risk factors 1000 0.936 2.082 1.208 2.027

10000 0.375 0.644 0.422 0.626
Mis-specified 300 2.742 3.203 5.542 5.437

1000 2.598 1.737 5.188 3.739
10000 2.407 0.809 5.009 2.730

Full Model 300 1.383 4.028 2.109 3.924
1000 0.934 2.020 1.285 1.926

10000 0.417 0.607 0.435 0.609

Table 4: Replication of the simulation results from Lefebvre et al. (2008) for Scenario 3.

Covariates in P (A|L) N A(0)
Bias*10

A(0)
MSE*10

A(1)
Bias*10

A(1)
MSE*10

Lefebvre et al.: Confounder(s) only 300 -0.080 1.170 0.099 1.155
1000 -0.371 0.385 -0.035 0.331

10000 -0.368 0.056 -0.203 0.043
Lefebvre et al.: Confounder(s) & 300 -0.110 1.092 0.112 0.865
risk factors 1000 -0.330 0.340 -0.108 0.245

10000 -0.378 0.051 -0.207 0.037
Lefebvre et al.: Confounder(s) & 300 1.611 3.538 2.069 3.841
IVs 1000 0.824 2.063 1.245 2.188

10000 0.241 0.684 0.379 0.622
Lefebvre et al.: Confounder(s), 300 1.600 3.477 2.143 3.598
IVs & risk factors 1000 0.867 2.053 1.170 2.043

10000 0.235 0.676 0.372 0.625
Lefebvre et al.: Mis-specified 300 3.146 3.326 5.591 5.494

1000 2.460 1.700 5.258 3.851
10000 2.364 0.832 4.943 2.705

Lefebvre et al.: Full Model 300 1.524 3.648 2.221 3.907
1000 0.878 2.099 1.185 2.099

10000 0.240 0.679 0.377 0.630

Table 5: Simulation results for Scenario 3 as reported in Table IV of Lefebvre et al. (2008).

60 simcausal: Causal Simulation Package

7. Discussion

We demonstrated that the simcausal R package is a flexible tool that facilitates the conduct of
transparent and reproducible simulation studies to evaluate causal inference methodologies.
The package allows the user to simulate complex longitudinal data structures based on struc-
tural equation models using a novel interface which allows concise and intuitive expression of
complex functional dependencies for a large number of nodes. The package allows the user to
specify and simulate counterfactual data under various interventions (e.g., static, dynamic,
deterministic, or stochastic). These interventions may represent exposures to treatment reg-
imens, the occurrence or non- occurrence of right-censoring events, or of specific monitoring
events. The package also enables the computation of a selected set of user-specified features of
the distribution of the counterfactual data that represent common causal target parameters,
such as, treatment-specific means, average treatment effects and coefficients from working
marginal structural models. In addition, the package provides a flexible graphical component
that produces plots of directed acyclic graphs for observed or post-intervention data generat-
ing distributions.

We demonstrated the functionality of the package with a single time point intervention sim-
ulation study in Section 3 and a complex multiple time point simulation study in Section 4.
We also showed two real-world applications of the simcausal package in Sections 5 and 6, first,
by replicating results of the simulation study by Neugebauer et al. (2014, 2015) that evalu-
ated the comparative performance of two estimation procedures, and second, by replicating
results of the simulation study by Lefebvre et al. (2008) that evaluated the impact of model
misspecification of the treatment mechanism on IPW inferences about MSM coefficients.

Finally, we acknowledge that the simcausal package is in the early stages of its develop-
ment and that implementation of additional functionalities in future releases of the package
should further expand its utility for methods research. Among such possible improvements
is the evaluation of additional causal parameters, e.g., the average treatment effect on the
treated (Holland 1986; Imbens 2004; Shpitser and Pearl 2009), survivorship causal effects
(Joffe et al. 2007; Greene et al. 2013) and direct/indirect effects (Pearl 2001; Petersen et al.
2006; VanderWeele 2009; VanderWeele and Vansteelandt 2014; Hafeman and VanderWeele
2011). Additionally, future versions of the simcausal package may allow simulation of non-iid
observations, to study causal inference methodologies to analyze data resulting from experi-
ments with more complex sampling methodologies, e.g., survey-based sampled data (Särndal
et al. 2003) or network-based sampled (dependent) data (Eckles et al. 2014).

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 61

Acknowledgments

FUNDING ACKNOWLEDGEMENT: This study was partially funded through internal
operational funds provided by the Kaiser Permanente Center for Effectiveness & Safety Re-
search (CESR). This work was also partially supported through a Patient-Centered Outcomes
Research Institute (PCORI) Award (ME-1403-12506) and an NIH grant (R01 AI074345-07).

DISCLAIMER: All statements in this report, including its findings and conclusions, are
solely those of the authors and do not necessarily represent the views of the Patient-Centered
Outcomes Research Institute (PCORI), its Board of Governors or Methodology Committee.

62 simcausal: Causal Simulation Package

References

Blaser N, Salazar Vizcaya L, Estill J, Zahnd C, Kalesan B, Egger M, Keiser O, Gsponer T
(2015). “gems: An R Package for Simulating from Disease Progression Models.” Journal
of Statistical Software, 64(10), 1–22. URL http://www.jstatsoft.org/v64/i10/.

Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny
S, Bates T, Others (2011). “OpenMx: An Open Source Extended Structural Equation
Modeling Framework.” Psychometrika, 76(2), 306–317.

Boker SM, Neale MC, Maes HH, Spiegel M, Brick TR, Estabrook R, Bates TC, Gore RJ,
Hunter MD, Pritikin JN, Zahery M, Kirkpatrick RM (2014). OpenMx: Multipurpose
Software for Statistical Modeling. R package version 2.0.1, URL http://openmx.psyc.

virginia.edu.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695. doi:10.1109/ICCSN.2010.34. URL http://

igraph.org.

Dowle M, Short T, Lianoglou S, with contributions from R Saporta AS, Antonyan E
(2014). data.table: Extension of data.frame. R package version 1.9.4, URL http:

//CRAN.R-project.org/package=data.table.

Eckles D, Karrer B, Ugander J (2014). “Design and Analysis of Experiments in Networks:
Reducing Bias from Interference.” arXiv preprint arXiv:1404.7530.

Fox J (2006). “Teacher’s Corner: Structural Equation Modeling with the sem Package in R.”
Structural equation modeling, 13(3), 465–486.

Fox J, Nie Z, Byrnes J (2014). sem: Structural Equation Models. R package version 3.1, URL
http://CRAN.R-project.org/package=sem.

Greene T, Joffe M, Hu B, Li L, Boucher K (2013). “The Balanced Survivor Average Causal
Effect.” The International Journal of Biostatistics, 9(2), 291–306.

Hafeman DM, VanderWeele TJ (2011). “Alternative Assumptions for the Identification of
Direct and Indirect Effects.” Epidemiology, 22(6), 753–764.

Holland PW (1986). “Statistics and Causal Inference.” Journal of the American Statistical
Association, 81(396), 945–960. doi:10.1080/01621459.1986.10478354.

Imbens GW (2004). “Nonparametric Estimation of Average Treatment Effects under Exo-
geneity: A Review.” Review of Economics and Statistics, 86(1), 4–29.

Joffe MM, Small D, Hsu CY, Others (2007). “Defining and Estimating Intervention Effects
for Groups That Will Develop an Auxiliary Outcome.” Statistical Science, 22(1), 74–97.

Lefebvre G, Delaney JA, Platt RW (2008). “Impact of Mis-Specification of the Treatment
Model on Estimates from a Marginal Structural Model.” Statistics in Medicine, 27(18),
3629–3642. ISSN 1097-0258. doi:10.1002/sim.3200. URL http://dx.doi.org/10.1002/

sim.3200.

http://www.jstatsoft.org/v64/i10/
http://openmx.psyc.virginia.edu
http://openmx.psyc.virginia.edu
https://doi.org/10.1109/ICCSN.2010.34
http://igraph.org
http://igraph.org
http://CRAN.R-project.org/package=data.table
http://CRAN.R-project.org/package=data.table
http://CRAN.R-project.org/package=sem
https://doi.org/10.1080/01621459.1986.10478354
https://doi.org/10.1002/sim.3200
http://dx.doi.org/10.1002/sim.3200
http://dx.doi.org/10.1002/sim.3200

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 63

Monecke A, Leisch F (2012). “semPLS: Structural Equation Modeling Using Partial Least
Squares.” Journal of Statistical Software, 48(3), 1–32. URL http://www.jstatsoft.org/

v48/i03/.

Moriña D, Navarro A (2014). “The R Package survsim for the Simulation of Simple and
Complex Survival Data.” Journal of Statistical Software, 59(1), 1–20. ISSN 1548-7660. doi:

10.18637/jss.v059.i02. URL http://www.jstatsoft.org/index.php/jss/article/

view/v059i02.

Neugebauer R, Schmittdiel JA, van der Laan MJ (2014). “Targeted Learning in Real-
World Comparative Effectiveness Research with Time-Varying Interventions.” Statis-
tics in Medicine, 33(14), 2480–2520. ISSN 1097-0258. doi:10.1002/sim.6099. URL
http://dx.doi.org/10.1002/sim.6099.

Neugebauer R, Schmittdiel JA, Zhu Z, Rassen JA, Seeger JD, Schneeweiss S (2015). “High-
Dimensional Propensity Score Algorithm in Comparative Effectiveness Research with Time-
Varying Interventions.” Statistics in Medicine, 34(5), 753–781. ISSN 1097-0258. doi:

10.1002/sim.6377. URL http://dx.doi.org/10.1002/sim.6377.

Neugebauer R, van der Laan M (2007). “Nonparametric Causal Effects Based on Marginal
Structural Models.” Journal of Statistical Planning and Inference, 137(2), 419–434.

Oberski D (2014). “lavaan.survey: An R Package for Complex Survey Analysis of Struc-
tural Equation Models.” Journal of Statistical Software, 57(1), 1–27. URL http:

//www.jstatsoft.org/v57/i01/.

Pearl J (1995). “Causal Diagrams for Empirical Research.” Biometrika, 82(4), 669–688.

Pearl J (2001). “Direct and Indirect Effects.” In Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, UAI’01, pp. 411–420. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA. ISBN 1-55860-800-1. URL http://dl.acm.org/citation.

cfm?id=2074022.2074073.

Pearl J (2009). Causality: Models, Reasoning and Inference. 2nd edition. Cambridge Univer-
sity Press, New York, NY, USA. ISBN 052189560X, 9780521895606.

Pearl J (2010). “An Introduction to Causal Inference.” The International Journal of Bio-
statistics, 6(2).

Petersen M, Schwab J, van der Laan M, Gruber S, Blaser N, Schomaker M (2014). “Targeted
Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural
Working Models.” Journal of Causal Inference, 2(2), 39. URL http://ideas.repec.org/

a/bpj/causin/v2y2014i2p39n1.html.

Petersen ML, Sinisi SE, van der Laan MJ (2006). “Estimation of Direct Causal Effects.”
Epidemiology, 17(3), 276–284.

Pornprasertmanit S, Miller P, Schoemann A (2015). simsem: SIMulated Structural Equation
Modeling. R package version 0.5, URL http://CRAN.R-project.org/package=simsem.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

http://www.jstatsoft.org/v48/i03/
http://www.jstatsoft.org/v48/i03/
https://doi.org/10.18637/jss.v059.i02
https://doi.org/10.18637/jss.v059.i02
http://www.jstatsoft.org/index.php/jss/article/view/v059i02
http://www.jstatsoft.org/index.php/jss/article/view/v059i02
https://doi.org/10.1002/sim.6099
http://dx.doi.org/10.1002/sim.6099
https://doi.org/10.1002/sim.6377
https://doi.org/10.1002/sim.6377
http://dx.doi.org/10.1002/sim.6377
http://www.jstatsoft.org/v57/i01/
http://www.jstatsoft.org/v57/i01/
http://dl.acm.org/citation.cfm?id=2074022.2074073
http://dl.acm.org/citation.cfm?id=2074022.2074073
http://ideas.repec.org/a/bpj/causin/v2y2014i2p39n1.html
http://ideas.repec.org/a/bpj/causin/v2y2014i2p39n1.html
http://CRAN.R-project.org/package=simsem
http://www.R-project.org/

64 simcausal: Causal Simulation Package

Robins JM (1998). “Marginal Structural Models.” 1997 proceedings of the American Statistical
Association, section on Bayesian statistical science, pp. 1–10. URL http://www.biostat.

harvard.edu/~robins/research.html.

Rosseel Y (2012). “lavaan: An R Package for Structural Equation Modeling.” Journal of
Statistical Software, 48(2), 1–36. URL http://www.jstatsoft.org/v48/i02/.

Särndal CE, Swensson B, Wretman J (2003). Model Assisted Survey Sampling. Springer
Science & Business Media.

Schwab J, Lendle S, Petersen M, van der Laan M (2014). ltmle: Longitudinal Targeted
Maximum Likelihood Estimation. R package version 0.9.3, URL http://CRAN.R-project.

org/package=ltmle.

Shpitser I, Pearl J (2009). “Effects of Treatment on the Treated: Identification and Gen-
eralization.” In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pp. 514–521. AUAI Press, Montreal, Quebec.

Sofrygin O, van der Laan MJ, Neugebauer R (2015). simcausal: Simulating Longitudinal Data
with Causal Inference Applications. R package version 0.4, URL http://CRAN.R-project.

org/package=simcausal.

VanderWeele TJ (2009). “Marginal Structural Models for the Estimation of Direct and Indi-
rect Effects.” Epidemiology, 20(1), 18–26.

VanderWeele TJ, Vansteelandt S (2014). “Mediation Analysis with Multiple Mediators.”
Epidemiologic methods, 2(1), 95–115. doi:10.1515/em-2012-0010. URL http://www.

ncbi.nlm.nih.gov/pmc/articles/PMC4287269/.

http://www.biostat.harvard.edu/~robins/research.html
http://www.biostat.harvard.edu/~robins/research.html
http://www.jstatsoft.org/v48/i02/
http://CRAN.R-project.org/package=ltmle
http://CRAN.R-project.org/package=ltmle
http://CRAN.R-project.org/package=simcausal
http://CRAN.R-project.org/package=simcausal
https://doi.org/10.1515/em-2012-0010
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287269/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287269/

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 65

Source code

.1. Source code for obtaining and plotting MSM survival curves

get MSM survival predictions from the full data.table in long format (melted) by time (t_vec), and by the MSM term (MSMtermName)

predictions from the estimated msm model (based on observational data) can be obtained by passing estimated msm model, est.msm

given vector of t (t_vec), results of MSM target.eval and an MSM term get survival table by action

survbyMSMterm <- function(MSMres, t_vec, MSMtermName, use_actions=NULL, est.msm=NULL) {

library("data.table")

look up MSMtermName in MSMterm map, if exists -> use the new name, if doesn't exist use MSMtermName

if (!is.null(MSMres$S.msm.map)) {

mapS_exprs <- as.character(MSMres$S.msm.map[,"S_exprs_vec"])

XMSMterms <- as.character(MSMres$S.msm.map[,"XMSMterms"])

map_idx <- which(mapS_exprs%in%MSMtermName)

XMSMtermName <- XMSMterms[map_idx]

if (!is.null(XMSMtermName)&&length(XMSMtermName)>0) {

MSMtermName <- XMSMtermName

}

}

print("MSMtermName used"); print(MSMtermName)

t_dt <- data.table(t=as.integer(t_vec)); setkey(t_dt, t)

get_predict <- function(actname) {

setkey(MSMres$df_long[[actname]], t)

setkeyv(MSMres$df_long[[actname]], c("t", MSMtermName))

MSMterm_vals <- as.numeric(MSMres$df_long[[actname]][t_dt, mult="first"][[MSMtermName]])

print("MSMterm_vals"); print(MSMterm_vals)

MSMterm_vals <- as.numeric(MSMres$df_long[[actname]][t_dt, mult="last"][[MSMtermName]])

print("MSMterm_vals last"); print(MSMterm_vals)

newdata=data.frame(t=t_vec, MSMterm_vals=MSMterm_vals)

colnames(newdata) <- c("t", MSMtermName)

print("newdata"); print(newdata)

if (!is.null(est.msm)) {

pred <- predict(est.msm, newdata=newdata, type="response")

} else {

pred <- predict(MSMres$m, newdata=newdata, type="response")

}

return(data.frame(t=t_vec, pred=pred))

}

action_names <- names(MSMres$df_long)

if (!is.null(use_actions)) {

action_names <- action_names[action_names%in%use_actions]

}

surv <- lapply(action_names, function(actname) {

res <- get_predict(actname)

if (MSMres$hazard) {

res$surv <- cumprod(1-res$pred)

} else {

res$surv <- 1-res$pred

}

res$pred <- NULL

res$action <- actname

res

})

names(surv) <- names(MSMres$df_long)

surv_melt <- do.call('rbind', surv)

surv_melt$action <- factor(surv_melt$action, levels=unique(surv_melt$action), ordered=TRUE)

surv_melt

}

plotsurvbyMSMterm <- function(surv_melt_dat) {

library("ggplot2")

f_ggplot_surv_wS <- ggplot(data= surv_melt_dat, aes(x=t, y=surv)) +

geom_line(aes(group = action, color = action), size=.4, linetype="dashed") +

theme_bw()

}

plotsurvbyMSMterm_facet <- function(surv_melt_dat1, surv_melt_dat2, msm_names=NULL) {

library("ggplot2")

if (is.null(msm_names)) {

msm_names <- c("MSM1", "MSM2")

}

surv_melt_dat1$MSM <- msm_names[1]

surv_melt_dat2$MSM <- msm_names[2]

surv_melt_dat <- rbind(surv_melt_dat1,surv_melt_dat2)

f_ggplot_surv_wS <- ggplot(data= surv_melt_dat, aes(x=t, y=surv)) +

geom_line(aes(group = action, color = action), size=.4, linetype="dashed") +

theme_bw() +

facet_wrap(~ MSM)

}

66 simcausal: Causal Simulation Package

.2. Source code for replicating the simulation study in Neugebauer et al.,
2014

Source code for the function that creates inputs for the ltmleMSM function of the ltmle package
(Schwab et al. 2014).

@param DAG Object specifying the directed acyclic graph for the observed data,

must have a well-defined MSM target parameter (\code{set.target.MSM()})

@param obs_df Simulated observational data

@param Aname Generic names of the treatment nodes (can be time-varying)

@param Cname Generic names of the censoring nodes (can be time-varying)

@param Lnames Generic names of the time-varying covariates (can be time-varying)

@param tvec Vector of time points for Y nodes

@param actions Which actions (regimens) should be used in estimation from the observed simulated data.

If NULL then all actions that were defined in DAG will be considered.

@param package Character vector for R package name to use for estimation. Currently only "ltmle" is implemented.

@param fun Character name for R function name to employ for estimation. Currently only "ltmleMSM" is implemented.

@param ... Additional named arguments that will be passed on to ltmleMSM function

est.targetMSM <- function(DAG, obs_df, Aname="A", Cname="C", Lnames, Ytvec, ACLtvec, actions=NULL, package="ltmle", fun="ltmleMSM", ...) {

outnodes <- attr(DAG, "target")$outnodes

param_name <- attr(DAG, "target")$param_name

if (is.null(outnodes$t)) stop("estimation is only implemented for longitudinal data with t defined")

if (!param_name%in%"MSM") stop("estimation is only implemented for MSM target parameters")

if (is.null(actions)) {

message("actions argument underfined, using all available actions")

actions <- A(DAG)

}

all time points actually used in the observed data

t_all <- attr(obs_df, "tvals")

tvec <- outnodes$t

t_sel <- ACLtvec

ltmle allows for pooling Y's over smaller subset of t's (for example t=(2:8))

in this case summary measures HAVE TO MATCH the dimension of finYnodes, not t_sel

currently this is not supported, thus, if tvec is a subset of t_sel this will cause an error

finYnodes <- outnodes$gen_name%+%"_"%+%Ytvec

Ynodes <- outnodes$gen_name%+%"_"%+%Ytvec

Anodes <- Aname%+%"_"%+%ACLtvec

Cnodes <- Cname%+%"_"%+%ACLtvec

Lnodes <- t(sapply(Lnames, function(Lname) Lname%+%"_"%+%ACLtvec[-1]))

Lnodes <- as.vector(matrix(Lnodes, nrow=1, ncol=ncol(Lnodes)*length(Lnames), byrow=FALSE))

Nobs <- nrow(obs_df)

#--

getting MSM params

#--

params.MSM <- attr(DAG, "target")$params.MSM

working.msm <- params.MSM$form

msm.family <- params.MSM$family

if (params.MSM$hazard) stop("ltmleMSM cannot estimate hazard MSMs...")

the number of attributes and their dimensionality have to match between different actions

n_attrs <- length(attr(actions[[1]], "attnames"))

#--

define the final ltmle arrays

regimens_arr <- array(dim = c(Nobs, length(ACLtvec), length(actions)))

summeas_arr <- array(dim = c(length(actions), (n_attrs+1), length(Ytvec)))

loop over actions (regimes) creating counterfactual mtx of A's for each action:

for (action_idx in seq(actions)) {

I) CREATE COUNTERFACTUAL TREATMENTS &

II) CREATE summary.measure that describes each attribute by time + regimen

#--

needs to assign observed treatments and replace the action timepoints with counterfactuals

A_mtx_act <- as.matrix(obs_df[,Anodes])

#--

action <- actions[[action_idx]]

action-spec. time-points

t_act <- as.integer(attr(action, "acttimes"))

action-spec. attribute names

attnames <- attr(action, "attnames")

list of action-spec. attributes

attrs <- attr(action, "attrs")

time points for which we need to evaluate the counterfactual treatment assignment as determined by action:

#--

Action t's need always be the same subset of t_sel (outcome-based times), otherwise we are in big trouble

t_act_idx <- which(t_sel%in%t_act)

t_chg <- t_sel[t_act_idx]

modify only A's which are defined in this action out of all Anodes

As_chg <- Anodes[t_act_idx]

#--

creates summary measure array that is of dimension (length(t_chg)) - time-points only defined for this action

which t's are in the final pooled MSM => need to save the summary measures only for these ts

t_vec_idx <- which(t_act%in%tvec)

summeas_attr <- matrix(nrow=length(attnames), ncol=length(tvec))

#--

extract values of terms in MSM formula: get all attribute values from +action(...,attrs)

#--

obs_df_attr <- obs_df # add all action attributes to the observed data

for (attr_idx in seq(attnames)) { # self-contained loop # grab values of the attributes, # loop over all attributes

if (length(attrs[[attnames[attr_idx]]])>1) {

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 67

attr_i <- attnames[attr_idx]%+%"_"%+%t_chg

val_attr_i <- attrs[[attnames[attr_idx]]][t_act_idx]

} else {

attr_i <- attnames[attr_idx]

val_attr_i <- attrs[[attnames[attr_idx]]]

}

summary measures, for each action/measure

summeas_attr[attr_idx,] <- matrix(val_attr_i, nrow=1, ncol=length(t_chg))[,t_vec_idx]

observed data values of the attribute

df_attr_i <- matrix(val_attr_i, nrow=Nobs, ncol=length(val_attr_i), byrow=TRUE)

create the combined data.frame (attrs + O.dat)

colnames(df_attr_i) <- attr_i; obs_df_attr <- cbind(data.frame(df_attr_i), obs_df_attr)

} # end of loop

summeas_attr <- rbind(summeas_attr, t_chg[t_vec_idx])

rownames(summeas_attr) <- c(attnames, "t")

#--

add action specific summary measures to the full array

summeas_arr[action_idx, ,] <- summeas_attr

dimnames(summeas_arr)[[2]] <- rownames(summeas_attr)

#--

GENERATING A MATRIX OF COUNTERFACTUAL TREATMENTS:

for (Achange in As_chg) { # for each A defined in the action, evaluate its value applied to the observed data

cur.node <- action[As_chg][[Achange]]

t <- cur.node$t

newAval <- with(obs_df_attr, { # for static no need to sample from a distr

ANCHOR_VARS_OBSDF <- TRUE

simcausal:::eval_nodeform(as.character(cur.node$dist_params$prob), cur.node)$evaled_expr

})

if (length(newAval)==1) {

newA <- rep(newAval, Nobs)

} else {

newA <- newAval

}

A_mtx_act[,which(Anodes%in%Achange)] <- newA

}

Result matrix A_mtx_act has all treatments that were defined in that action replaced with

their counterfactual values

#--

add action specific summary measures to the full array

regimens_arr[, , action_idx] <- A_mtx_act

#--

}

list(regimens_arr=regimens_arr, summeas_arr=summeas_arr)

}

Source code for setting up some of the parameters of the ltmleMSM function of the ltmle
package (Schwab et al. 2014).

times <- c(0:(t.end-1))

gforms <- c("A1_0 ~ L1_0 + L2_0","A2_0 ~ L1_0")

timesm0 <- times[which(times > 0)]

correctly specified g:

gforms <- c("A1_0 ~ L1_0 + L2_0","A2_0 ~ L1_0")

gformm0 <- as.vector(sapply(timesm0, function(t)

c("A1_"%+%t%+%" ~ A1_"%+%(t-1)%+%" + L1_0"%+%" + L2_"%+%t%+%" + I(L2_"%+%t%+%"*A1_"%+%(t-1)%+%")+ I(L1_0*A1_"%+%(t-1)%+%")",

"A2_"%+%t%+%" ~ L1_0")))

gforms <- c(gforms, gformm0)

mis-specified g (no TV covar L2):

gforms_miss <- c("A1_0 ~ L1_0","A2_0 ~ L1_0")

gformm0_miss <- as.vector(sapply(timesm0, function(t)

c("A1_"%+%t%+%" ~ L1_0*A1_"%+%(t-1),

"A2_"%+%t%+%" ~ L1_0")))

gforms_miss <- c(gforms_miss, gformm0_miss)

Qformallt <- "Q.kplus1 ~ L1_0"

Lterms <- function(var, tlast){

tstr <- c(0:tlast)

strout <- paste(var%+%"_"%+%tstr, collapse = " + ")

return(strout)

}

tY <- (0:11)

Ynames <- paste("Y_"%+%c(tY+1))

Qforms <- unlist(lapply(tY, function(t) {

a <- Qformallt%+%" + I("%+%Lterms("m1L2",t)%+%") + "%+%Lterms("L2",t)

return(a)

}))

names(Qforms) <- Ynames

survivalOutcome <- TRUE

stratify_Qg <- TRUE

mhte.iptw <- TRUE

Anodesnew <- "A1_"%+%(0:(t.end-1))

Cnodesnew <- "A2_"%+%(0:(t.end-1))

L2nodesnew <- "L2_"%+%(1:(t.end-1))

mL2nodesnew <- "m1L2_"%+%(1:(t.end-1))

Lnodesnew <- as.vector(rbind(L2nodesnew, mL2nodesnew))

Ynodesnew <- "Y_"%+%(1:t.end)

finYnodesnew <- Ynodesnew

68 simcausal: Causal Simulation Package

dropnms <- c("ID","L2_"%+%t.end,"m1L2_"%+%t.end, "A1_"%+%t.end, "A2_"%+%t.end)

pooledMSM <- FALSE

weight.msm <- FALSE

Source code for running the data simulation and estimation with the ltmleMSM function of
the ltmle package (Schwab et al. 2014).

simrun_ltmleMSM <- function(sim, DAG, N, t0,gbounds, gforms) {

library("ltmle")

O_datnew <- sim(DAG = DAG, n = N)

ltmleMSMparams <- est.targetMSM(DAG, O_datnew, Aname = "A1", Cname = "A2", Lnames = "L2",

Ytvec = (1:t.end), ACLtvec = (0:t.end), package = "ltmle")

summeas_arr <- ltmleMSMparams$summeas_arr

regimens_arr <- ltmleMSMparams$regimens_arr[,c(1:t.end),]

O_datnewLTCF <- doLTCF(data = O_datnew, LTCF = "Y")

O_dat_selCnew <- O_datnewLTCF[,-which(names(O_datnewLTCF)%in%dropnms)]

O_dat_selCnew[,Cnodesnew] <- 1-O_dat_selCnew[,Cnodesnew]

reslTMLE.MSM <- ltmleMSM(data = O_dat_selCnew, Anodes = Anodesnew, Cnodes = Cnodesnew,

Lnodes = Lnodesnew, Ynodes = Ynodesnew,

survivalOutcome = survivalOutcome,

gform = gforms, Qform = Qforms,

stratify = stratify_Qg, mhte.iptw = mhte.iptw,

iptw.only = FALSE,

working.msm = msm.form, pooledMSM = pooledMSM,

final.Ynodes = finYnodesnew, regimes = regimens_arr,

summary.measures = summeas_arr, weight.msm=weight.msm,

estimate.time = FALSE, gbounds = gbounds)

iptwMSMcoef <- summary(reslTMLE.MSM, estimator = "iptw")$cmat[,1]

iptwRD <- MSM_RD_t(resMSM = iptwMSMcoef, t = t0)

tmleMSMcoef <- summary(reslTMLE.MSM, estimator = "tmle")$cmat[,1]

tmleRD <- MSM_RD_t(resMSM = tmleMSMcoef, t = t0)

return(c(simN = sim, iptwRD = iptwRD, tmleRD = tmleRD))

}

t0 <- 12

Nltmle <- 50000

Nsims <- 1000

source("./determineParallelBackend.R")

sim50K.stratQg.notrunc.g <- foreach(sim = seq(Nsims), .combine = 'rbind')%dopar%{

simrun_ltmleMSM(sim = sim,DAG = Ddyn, N = Nltmle, t0 = t0,

gbounds = c(0.0000001, 1), gforms = gforms)

}

save(list = "sim50K.stratQg.notrunc.g", file = "vignette_dat/sim50K.stratQg.notrunc.g.Rdata")

sim50K.stratQg.notrunc.missg <- foreach(sim = seq(Nsims), .combine = 'rbind')%dopar%{

simrun_ltmleMSM(sim = sim,DAG = Ddyn, N = Nltmle, t0 = t0,

gbounds = c(0.0000001, 1), gforms = gforms_miss)

}

save(list = "sim50K.stratQg.notrunc.missg", file = "vignette_dat/sim50K.stratQg.notrunc.missg.Rdata")

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 69

.3. Source code for replicating the simulation study in Lefebvre et al., 2008

Source code for replicating the IPW estimator used by Lefebvre et al. (2008).

runMSMsw <- function(DAGO, Lnames, trueA, nsamp, nsims) {

Lnames_0 <- Lnames%+%"_0"

Lnames_1 <- Lnames%+%"_1"

gforms <- c("A_0 ~ "%+%paste(Lnames_0, collapse = " + "), "A_1 ~ A_0 + "%+%paste(Lnames_1, collapse = " + "))

res_sw <- NULL

for (sims in (1:nsims)) {

datO <- sim(DAGO, n = nsamp)

glmA_0 <- glm(datO[,c("A_0",Lnames_0)], formula = gforms[1], family = "binomial")

glmA_1 <- glm(datO[,c("A_1","A_0",Lnames_0,Lnames_1)], formula = gforms[2], family = "binomial")

probA0_1 <- predict(glmA_0, type = "response")

weight_t0 <- 1 / (probA0_1^(datO$A_0) * (1-probA0_1)^(1-datO$A_0))

probA1_1 <- predict(glmA_1, type = "response")

weight_t1 <- 1 / (probA1_1^(datO$A_1) * (1-probA1_1)^(1-datO$A_1))

sw1 <- weight_t0*weight_t1

emp.pA1cA0 <- table(datO$A_1,datO$A_0)/nrow(datO)

empPA1 <- data.frame(A_0 = c(0,0,1,1),A_1 = c(0,1,1,0))

empPA1$empPA_1_cA_0 <- apply(empPA1, 1, function(rowA) emp.pA1cA0[as.character(rowA["A_1"]), as.character(rowA["A_0"])])

empPA1 <- merge(datO[, c("ID","A_0","A_1")],empPA1, sort = FALSE)

empPA1 <- empPA1[order(empPA1$ID),]

swts <- empPA1$empPA_1_cA_0*(weight_t0*weight_t1)

datO$swts <- swts

MSMres_sw <- glm(datO, formula = "Y_1 ~ A_0 + A_1", weights = swts, family = "gaussian")

res_sw <- rbind(res_sw, coef(MSMres_sw))

}

meanres <- apply(res_sw, 2, mean)

Varres <- apply(res_sw, 2, var)

bias <- c(meanres["A_0"]-trueA["A_0"], meanres["A_1"]-trueA["A_1"])

MSE <- c(bias^2+Varres[c("A_0","A_1")])

bias10 <- sprintf("%.3f",bias*10)

MSE10 <- sprintf("%.3f",MSE*10)

resrow <- c(bias10[1], MSE10[1], bias10[2], MSE10[2])

col36names <- c("\\specialcell[t]{A(0)\\\\ Bias*10}",

"\\specialcell[t]{A(0)\\\\ MSE*10}",

"\\specialcell[t]{A(1)\\\\ Bias*10}",

"\\specialcell[t]{A(1)\\\\ MSE*10}")

names(resrow) <- col36names

return(resrow)

}

Source code for recreating Tables II and IV from Lefebvre et al. (2008).

recreating Tables 2 & 4 reported in Lefebvre et al.

nsamp <- c(300,1000,10000)

Lefebvre et al. Tab 2:

covnmT2 <- c(c("\\emph{Lefebvre et al.}: Confounder(s) only", rep("",2)),

c("\\emph{Lefebvre et al.}: Confounder(s) &", "risk factors", rep("",1)))

lefebvreT2 <- data.frame(

covnm = covnmT2,

N = rep(nsamp,2),

A0Bias10 = sprintf("%.3f",c(0.768, 0.265, 0.057, 0.757, 0.283, 0.056)),

A0MSE10 = sprintf("%.3f",c(1.761, 0.761, 0.146, 1.642, 0.718, 0.139)),

A1Bias10 = sprintf("%.3f",c(0.889, 0.312, 0.086, 0.836, 0.330, 0.081)),

A1MSE10 = sprintf("%.3f",c(1.728, 0.723, 0.120, 1.505, 0.638, 0.114)),stringsAsFactors = FALSE)

Lefebvre et al. Tab 4:

covnmT4 <- c(c("\\emph{Lefebvre et al.}: Confounder(s) only", rep("",2)),

c("\\emph{Lefebvre et al.}: Confounder(s) &", "risk factors", ""),

c("\\emph{Lefebvre et al.}: Confounder(s) &", "IVs", ""),

c("\\emph{Lefebvre et al.}: Confounder(s),", "IVs & risk factors",""),

c("\\emph{Lefebvre et al.}: Mis-specified", rep("",2)),

c("\\emph{Lefebvre et al.}: Full Model", rep("",2)))

lefebvreT4 <- data.frame(

covnm = covnmT4,

N = rep(nsamp,6),

A0Bias10 = sprintf("%.3f",c(-0.080, -0.371, -0.368, -0.110, -0.330, -0.378, 1.611,

0.824, 0.241, 1.600, 0.867, 0.235, 3.146, 2.460, 2.364,

1.524, 0.878, 0.240)),

A0MSE10 = sprintf("%.3f",c(1.170, 0.385, 0.056, 1.092, 0.340, 0.051, 3.538, 2.063,

0.684, 3.477, 2.053, 0.676, 3.326, 1.700, 0.832, 3.648,

2.099, 0.679)),

A1Bias10 = sprintf("%.3f",c(0.099, -0.035, -0.203, 0.112, -0.108, -0.207, 2.069, 1.245,

0.379, 2.143, 1.170, 0.372, 5.591, 5.258, 4.943, 2.221, 1.185,

0.377)),

A1MSE10 = sprintf("%.3f",c(1.155, 0.331, 0.043, 0.865, 0.245, 0.037, 3.841, 2.188, 0.622,

3.598, 2.043, 0.625, 5.494, 3.851, 2.705, 3.907, 2.099, 0.630)),

stringsAsFactors = FALSE)

col1name <- "Covariates in $P(A|L)$"

colnames(lefebvreT2)[1] <- colnames(lefebvreT4)[1] <- col1name

col36names <- c("\\specialcell[t]{A(0)\\\\ Bias*10}",

"\\specialcell[t]{A(0)\\\\ MSE*10}",

"\\specialcell[t]{A(1)\\\\ Bias*10}",

"\\specialcell[t]{A(1)\\\\ MSE*10}")

colnames(lefebvreT2)[3:6] <- colnames(lefebvreT4)[3:6] <- col36names

70 simcausal: Causal Simulation Package

Source code for replicating the simulation results for Scenario 1 in Lefebvre et al. (2008).

trueA <- c(A_0 = -0.294, A_1 = -0.370)

nsims <- 10000; restab <- NULL

runsim <- function(Lnames, DAGO) {

for (nsamp in c(300,1000,10000)) {

resSc <- runMSMsw(DAGO = DAGO, Lnames = Lnames, trueA = trueA, nsamp = nsamp, nsims = nsims)

restab <- rbind(restab, c(N = nsamp, resSc))

}

restab

}

Lnames <- c("LC1")

covnm <- c("Confounder(s) only", rep("",2))

restab_1 <- cbind(covnm, runsim(Lnames, DAGO.sc1))

restab_1 <- rbind(restab_1, as.matrix(lefebvreT2[1:3,]))

Lnames <- c("LC1", "LO1", "LO2", "LO3")

covnm <- c("Confounder(s) &", "risk factors", rep("",1))

restab_2 <- cbind(covnm, runsim(Lnames, DAGO.sc1))

restab_2 <- rbind(restab_2, as.matrix(lefebvreT2[4:6,]))

restab <- rbind(restab_1, restab_2)

col1name <- "Covariates in $P(A|L)$"

colnames(restab)[1] <- col1name

restabwLef <- restab

save(list = "restabwLef", file = "vignette_dat/restabwLefSc1_all_1Ksims.Rdata");

restab <- restab[c(1:3, 7:9),]

save(list = "restab", file = "vignette_dat/restabSc1_all_1Ksims.Rdata");

library("Hmisc")

load(file = "vignette_dat/restabSc1_all_1Ksims.Rdata");

cat("\n")

latex(restab, file = "", where = "!htpb", caption.loc = 'bottom',

caption = "Replication of the simulation results from \\citet{lefebvre2008} for Scenario 1.",

label = 'tab2Lefebvre',booktabs = TRUE,rowname = NULL,landscape = FALSE,

col.just = c("l", rep("r", 5)), size = "small")

cat("\n")

latex(lefebvreT2, file = "", where = "!htpb", caption.loc = 'bottom',

caption = "Simulation results for Scenario 1 as reported in Table II of \\citet{lefebvre2008}.",

label = 'origtab2Lefebvre', booktabs = TRUE, rowname = NULL, landscape = FALSE,

col.just = c("l", rep("r", 5)), size = "small")

Source code for replicating the simulation results for Scenario 3 in Lefebvre et al. (2008).

trueA <- c(A_0 = -0.316, A_1 = -0.390)

nsims <- 10000; restab <- NULL

runsim <- function(Lnames, DAGO) {

for (nsamp in c(300,1000,10000)) {

resSc <- runMSMsw(DAGO = DAGO, Lnames = Lnames, trueA = trueA, nsamp = nsamp, nsims = nsims)

restab <- rbind(restab, c(N = nsamp, resSc))

}

restab

}

Lnames <- c("LC1", "LC2", "LC3")

covnm <- c("Confounder(s) only", rep("",2))

restab_1 <- cbind(covnm, runsim(Lnames, DAGO.sc3))

restab_1 <- rbind(restab_1, as.matrix(lefebvreT4[1:3,]))

Lnames <- c("LO1", "LO2", "LO3", "LC1", "LC2", "LC3")

covnm <- c("Confounder(s) &", "risk factors", "")

restab_2 <- cbind(covnm, runsim(Lnames, DAGO.sc3))

restab_2 <- rbind(restab_2, as.matrix(lefebvreT4[4:6,]))

Lnames <- c("LE1", "LE2", "LE3", "LC1", "LC2", "LC3")

covnm <- c("Confounder(s) &", "IVs", "")

restab_3 <- cbind(covnm, runsim(Lnames, DAGO.sc3))

restab_3 <- rbind(restab_3, as.matrix(lefebvreT4[7:9,]))

Lnames <- c("LO1", "LO2", "LO3", "LE1", "LE2", "LE3", "LC1", "LC2", "LC3")

covnm <- c("Confounder(s),", "IVs & risk factors","")

restab_4 <- cbind(covnm, runsim(Lnames, DAGO.sc3))

restab_4 <- rbind(restab_4, as.matrix(lefebvreT4[10:12,]))

Lnames <- c("LE1", "LE2", "LE3", "LC1")

covnm <- c("Mis-specified", rep("",2))

restab_5 <- cbind(covnm, runsim(Lnames, DAGO.sc3))

restab_5 <- rbind(restab_5, as.matrix(lefebvreT4[13:15,]))

Lnames <- c("LO1", "LO2", "LO3", "LE1", "LE2", "LE3", "LC1", "LC2", "LC3", "LN1", "LN2", "LN3")

covnm <- c("Full Model", rep("",2))

restab_6 <- cbind(covnm, runsim(Lnames, DAGO.sc3))

restab_6 <- rbind(restab_6, as.matrix(lefebvreT4[16:18,]))

restab <- rbind(restab_1, restab_2, restab_3, restab_4, restab_5, restab_6)

col1name <- "Covariates in $P(A|L)$"

colnames(restab)[1] <- col1name

restabwLef <- restab

save(list = "restabwLef", file = "vignette_dat/restabwLefSc3_all_1Ksims.Rdata");

restab <- restab[c(1:3, 7:9, 13:15, 19:21, 25:27, 31:33),]

save(list = "restab", file = "vignette_dat/restabSc3_all_1Ksims.Rdata");

Oleg Sofrygin, Mark J. van der Laan, Romain Neugebauer 71

library("Hmisc")

load(file = "vignette_dat/restabSc3_all_1Ksims.Rdata");

cat("\n")

latex(restab,file = "",where = "!htpb", caption.loc = 'bottom',

caption = "Replication of the simulation results from \\citet{lefebvre2008} for Scenario 3.",

label = 'tab4Lefebvre',booktabs = TRUE,rowname = NULL,landscape = FALSE,

col.just = c("l", rep("r", 5)), size = "small")

cat("\n")

latex(lefebvreT4,file = "",where = "!htpb", caption.loc = 'bottom',

caption = "Simulation results for Scenario 3 as reported in Table IV of \\citet{lefebvre2008}.",

label = 'origtab4Lefebvre',booktabs = TRUE,rowname = NULL,landscape = FALSE,

col.just = c("l", rep("r", 5)), size = "small")

Affiliation:

Givenname Familyname
Affiliation
Address, Country
E-mail: name@address

URL: https://link/to/webpage/

mailto:name@address
https://link/to/webpage/

	Introduction
	Introduction
	Technical details
	Technical details
	The workflow
	The workflow
	Specifying a structural equation model
	Specifying a structural equation model
	Specifying interventions
	Specifying interventions
	Specifying a target causal parameter
	Specifying a target causal parameter
	Simulating data and evaluating the target causal parameter
	Simulating data and evaluating the target causal parameter

	Simulation study with single time point interventions
	Simulation study with single time point interventions
	Specifying the structural equation model
	Specifying the structural equation model
	Simulating observed data (sim)
	Simulating observed data (sim)
	Specifying interventions (+ action)
	Specifying interventions (+ action)
	Simulating counterfactual data (sim)
	Simulating counterfactual data (sim)
	Defining and evaluating various causal target parameters
	Defining and evaluating various causal target parameters
	Causal parameters defined with set.targetE
	Causal parameters defined with set.targetMSM

	Defining node distributions and vectorizing node formula functions
	Defining node distributions and vectorizing node formula functions
	Defining node distributions
	Vectorizing node formula functions vecfun.add

	Simulation study with multiple time point interventions
	Simulation study with multiple time point interventions
	Specifying the structural equation model
	Specifying the structural equation model
	Simulating observed data (sim)
	Simulating observed data (sim)
	Specifying interventions (+ action)
	Specifying interventions (+ action)
	Dynamic interventions
	Static interventions

	Simulating counterfactual data (sim)
	Simulating counterfactual data (sim)
	Dynamic interventions
	Static interventions

	Converting datasets from wide to long format (DF.to.long)
	Converting datasets from wide to long format (DF.to.long)
	Implementing imputation by last time point value carried forward (doLTCF)
	Implementing imputation by last time point value carried forward (doLTCF)
	Defining and evaluating various causal target parameters
	Defining and evaluating various causal target parameters
	Causal parameters defined with set.targetE
	Causal parameters defined with set.targetMSM

	Replication study of the comparative performances of two estimators
	Replication study of the comparative performances of two estimators
	Replication study of the impact of misspecification of propensity score models
	Replication study of the impact of misspecification of propensity score models
	Discussion
	Discussion
	Source code for obtaining and plotting MSM survival curves
	Source code for replicating the simulation study in Neugebauer et al., 2014
	Source code for replicating the simulation study in Lefebvre et al., 2008

