The methodological details are pending peer review and will be made available thereafter.
Load the spEDM package and columbus OH spatial analysis
dataset:
if (!requireNamespace("spEDM")) install.packages("spEDM")
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
columbus
## Simple feature collection with 49 features and 6 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 5.874907 ymin: 10.78863 xmax: 11.28742 ymax: 14.74245
## Projected CRS: Undefined Cartesian SRS with unknown unit
## # A tibble: 49 × 7
## hoval inc crime open plumb discbd geom
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <POLYGON>
## 1 80.5 19.5 15.7 2.85 0.217 5.03 ((8.624129 14.23698, 8.5597 14.74245, 8…
## 2 44.6 21.2 18.8 5.30 0.321 4.27 ((8.25279 14.23694, 8.282758 14.22994, …
## 3 26.4 16.0 30.6 4.53 0.374 3.89 ((8.653305 14.00809, 8.81814 14.00205, …
## 4 33.2 4.48 32.4 0.394 1.19 3.7 ((8.459499 13.82035, 8.473408 13.83227,…
## 5 23.2 11.3 50.7 0.406 0.625 2.83 ((8.685274 13.63952, 8.677577 13.72221,…
## 6 28.8 16.0 26.1 0.563 0.254 3.78 ((9.401384 13.5504, 9.434411 13.69427, …
## 7 75 8.44 0.178 0 2.40 2.74 ((8.037741 13.60752, 8.062716 13.60452,…
## 8 37.1 11.3 38.4 3.48 2.74 2.89 ((8.247527 13.58651, 8.2795 13.5965, 8.…
## 9 52.6 17.6 30.5 0.527 0.891 3.17 ((9.333297 13.27242, 9.671007 13.27361,…
## 10 96.4 13.6 34.0 1.55 0.558 4.33 ((10.08251 13.03377, 10.0925 13.05275, …
## # ℹ 39 more rowsWe demonstrate how spatial vector data can be used in SCPCM analysis through a causal example examining the influences of the level of burglary incidents in a neighbourhood on house values, with neighbourhood household income included as a conditioning variable.
Determine minimum embedding dimensions:
spEDM::fnn(columbus,"crime",E = 1:10)
## E:1 E:2 E:3 E:4 E:5 E:6 E:7
## 0.79591837 0.53061224 0.63265306 0.51020408 0.12244898 0.04081633 0.00000000
## E:8
## 0.00000000
spEDM::fnn(columbus,"hoval",E = 1:10)
## E:1 E:2 E:3 E:4 E:5 E:6 E:7
## 0.85714286 0.77551020 0.51020408 0.61224490 0.22448980 0.08163265 0.00000000
## E:8
## 0.00000000
spEDM::fnn(columbus,"inc",E = 1:10)
## E:1 E:2 E:3 E:4 E:5 E:6 E:7
## 0.73469388 0.24489796 0.30612245 0.38775510 0.24489796 0.04081633 0.00000000
## E:8
## 0.00000000Self prediction for parameter turning:
spEDM::simplex(columbus,"crime","crime",E = 7:10,k=12)
## The suggested E,k,tau for variable crime is 8, 12 and 1
spEDM::simplex(columbus,"hoval","hoval",E = 7:10,k=12)
## The suggested E,k,tau for variable hoval is 7, 12 and 1
spEDM::simplex(columbus,"inc","inc",E = 7:10,k=12)
## The suggested E,k,tau for variable inc is 8, 12 and 1Conduct SCPCM:
crime_hoval = spEDM::scpcm(data = columbus,
cause = "crime",
effect = "hoval",
conds = "inc",
libsizes = seq(5, 45, by = 5),
E = c(8,7,8),
k = 12,
progressbar = FALSE)
crime_hoval
## --------------------------------------
## ***partial cross mapping prediction***
## --------------------------------------
## libsizes crime->hoval hoval->crime
## 1 5 0.08948688 0.022401607
## 2 10 0.14511673 0.062986079
## 3 15 0.16849249 0.080653365
## 4 20 0.20940427 0.040974217
## 5 25 0.23160147 0.026613757
## 6 30 0.24709326 0.001942294
## 7 35 0.29707812 -0.014879976
## 8 40 0.33591810 -0.028758126
## 9 45 0.36337200 -0.040204136
##
## ------------------------------
## ***cross mapping prediction***
## ------------------------------
## libsizes crime->hoval hoval->crime
## 1 5 0.2224861 0.1378071
## 2 10 0.3023880 0.1880328
## 3 15 0.4005255 0.2085278
## 4 20 0.4681692 0.2203727
## 5 25 0.5098130 0.2293076
## 6 30 0.5467173 0.2326005
## 7 35 0.5732757 0.2331852
## 8 40 0.5822545 0.2361204
## 9 45 0.5883504 0.2364234Visualize the result:
if (!requireNamespace("cowplot")) install.packages("cowplot")
## Loading required namespace: cowplot
fig1a = plot(crime_hoval,partial = FALSE,ylimits = c(0.1,0.75))
fig1b = plot(crime_hoval,partial = TRUE,ylimits = c(-0.05,0.55))
fig1 = cowplot::plot_grid(fig1a,fig1b,ncol = 2,label_fontfamily = 'serif',
labels = paste0('(',letters[1:2],')'))
fig1Load the spEDM package and simulate raster data with a
cyclic interaction structure \(x \rightarrow y
\rightarrow z \rightarrow x\):
if (!requireNamespace("fields")) install.packages("fields")
## Loading required namespace: fields
if (!requireNamespace("MASS")) install.packages("MASS")
sim_trispecies = \(nx,ny,seed = 123){
grid = expand.grid(seq(0, 10, length.out = nx),
seq(0, 10, length.out = ny))
cov.fun = \(d, range = 1.5, sill=1) sill * exp(-d/range)
dist.mat = fields::rdist(grid)
cov.mat = cov.fun(dist.mat, range=1.5, sill=1)
set.seed(seed)
res = replicate(3, {
MASS::mvrnorm(1, rep(0, nrow(grid)), cov.mat) |>
pmax(0) |>
sdsfun::normalize_vector(0,1) |>
matrix(nrow = nx, ncol = ny) |>
terra::rast()
}, simplify = FALSE)
terra::rast(res)
}
species = sim_trispecies(20,20, seed = 42)
names(species) = c("x","y","z")
sim = spEDM::slm(species, x = "x", y = "y", z = "z", k = 4,
step = 15, transient = 1, threshold = Inf,
aggregate_fn = \(.x) mean(.x, na.rm = TRUE),
alpha_x = 0.05, alpha_y = 0.05, alpha_z = 0.05,
beta_xy = 1, beta_xz = 0, beta_yx = 0, beta_yz = 1,
beta_zx = 1, beta_zy = 0)
terra::values(species[["x"]]) = sim$x
terra::values(species[["y"]]) = sim$y
terra::values(species[["z"]]) = sim$z
species
## class : SpatRaster
## size : 20, 20, 3 (nrow, ncol, nlyr)
## resolution : 1, 1 (x, y)
## extent : 0, 20, 0, 20 (xmin, xmax, ymin, ymax)
## coord. ref. :
## source(s) : memory
## names : x, y, z
## min values : 0.9984091, 0.9983558, 0.998285
## max values : 1.0009110, 1.0011445, 1.001050Determine minimum embedding dimensions:
spEDM::fnn(species, "x")
## E:1 E:2 E:3 E:4 E:5 E:6 E:7 E:8
## 0.8937824 0.3125000 0.0100000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## E:9
## 0.0000000
spEDM::fnn(species, "y")
## E:1 E:2 E:3 E:4 E:5 E:6 E:7 E:8
## 0.9333333 0.2525000 0.0425000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## E:9
## 0.0000000
spEDM::fnn(species, "z")
## E:1 E:2 E:3 E:4 E:5 E:6 E:7 E:8
## 0.9238845 0.3375000 0.0625000 0.0200000 0.0000000 0.0000000 0.0000000 0.0000000
## E:9
## 0.0000000Self prediction for parameter turning:
s1 = spEDM::simplex(species, "x", "x", E = 5:10, k = 15, tau = 1)
s2 = spEDM::simplex(species, "y", "y", E = 5:10, k = 15, tau = 1)
s3 = spEDM::simplex(species, "z", "z", E = 5:10, k = 15, tau = 1)
list(s1,s2,s3)
## [[1]]
## The suggested E,k,tau for variable x is 7, 15 and 1
##
## [[2]]
## The suggested E,k,tau for variable y is 9, 15 and 1
##
## [[3]]
## The suggested E,k,tau for variable z is 5, 15 and 1Due to the statistical aggregation performed after simulating with the spatial logistic map, we adopt a uniform embedding dimension for x, y, and z to reduce inference bias:
if (!requireNamespace("purrr")) install.packages("purrr")
## Loading required namespace: purrr
simplex_res = purrr::map2_dfr(list(s1,s2,s3), c("x","y","z"),
\(.list,.name) dplyr::mutate(.list$xmap,variable = .name))
ggplot2::ggplot(data = simplex_res) +
ggplot2::geom_line(ggplot2::aes(x = E, y = rho, color = variable)) +
ggplot2::theme_classic()Since the self-prediction performance of the y variable is relatively weaker than that of x and z, we select the embedding dimension that yields the strongest predictive performance for y as the final dimension, that is \(E = 9\).
Investigate the causation between x and z, with y as control variables:
xz = spEDM::scpcm(species, "x", "z", "y", E = 9, k = 15,
libsizes = matrix(seq(50,400,50), ncol = 1),
progressbar = FALSE)
xz
## --------------------------------------
## ***partial cross mapping prediction***
## --------------------------------------
## libsizes x->z z->x
## 1 50 0.07977338 0.1020714
## 2 100 0.10473775 0.1762694
## 3 150 0.14175015 0.1959109
## 4 200 0.20562278 0.2543825
## 5 250 0.25500417 0.3300376
## 6 300 0.27904324 0.3956866
## 7 350 0.31249554 0.4597477
## 8 400 0.28091955 0.4843444
##
## ------------------------------
## ***cross mapping prediction***
## ------------------------------
## libsizes x->z z->x
## 1 50 0.1542880 0.1368370
## 2 100 0.1827606 0.2217753
## 3 150 0.2426258 0.2781118
## 4 200 0.3239733 0.3487456
## 5 250 0.4035323 0.4185710
## 6 300 0.4653763 0.4835619
## 7 350 0.5190529 0.5553776
## 8 400 0.5658039 0.5938894Visualize the result:
fig2a = plot(xz,partial = FALSE,ylimits = c(0.05,0.65))
fig2b = plot(xz,partial = TRUE,ylimits = c(0.05,0.65))
fig2 = cowplot::plot_grid(fig2a,fig2b,ncol = 2,label_fontfamily = 'serif',
labels = paste0('(',letters[1:2],')'))
fig2