
The lua-tikz3dtools Package

The lua-tikz3dtools Package,
Version 2.0.0

https://github.com/Pseudonym321/TikZ-Animations/tree/master1/TikZ/lua-tikz3dtools

Jasper Nice

September 17, 2025

This work is licensed under the LaTeX Project Public License, version 1.3c or later.
—Jasper Nice

Dedicated to those who, like me, never found the tools they needed—and chose to
build them.

“I long to accomplish great and noble tasks but it is my duty to accomplish small
tasks as though they were great and noble.” —Sylvia Fedoruk

Contents

Preface xiii

Acknowledgements xv

1 Problem Statement 1
1.1 Background and Context . 1
1.2 The Core Problem Being Addressed 1
1.3 Scope and Boundaries of the Problem 1
1.4 Importance of the Issue . 2
1.5 Current Limitations and Gaps . 2
1.6 Objectives and Goals . 3
1.7 Intended Audience . 3
1.8 Summary of the Problem Statement 3

2 Literature Review 5
2.1 Introduction to the Literature Review 5
2.2 Historical Background and Evolution of the Field 5
2.3 Existing Approaches in Practice and Academia 6
2.4 Comparative Analysis of Approaches 6
2.5 Strengths and Contributions of Current Work 6
2.6 Limitations and Open Challenges in Current Methods 7
2.7 Emerging Trends and Future Directions 7
2.8 Proposed Approach and Its Advantages Over Existing Work 7
2.9 Summary of the Literature Review . 8

3 Methodology 9
3.1 Introduction to the Methodology . 9
3.2 Research Design and Overall Approach 9
3.3 Detailed Description of the Proposed Approach 10

3.3.1 How Users Interact with the Software 10
Command Name: \displaysegments 10
Command Name: \appendpoint 10
Command Name: \appenlabel 10
Command Name: \appendsurface 11

v

vi CONTENTS

Command Name: \appendcurve 11
Command Name: \appendsolid 12

3.3.2 How Parametric Objects Are Tessellated into Simplices with
Transformations Applied . 12

3.3.3 How Intersections Between Simplices Are Detected and Resolved 13
Partitioning a Line Segment by a Point 13
Partitioning a Line Segment by Another Line Segment 13
Partitioning a Line Segment by a Triangle 13
Partitioning a Triangle by Another Triangle 14

3.3.4 How Occlusion Ordering Is Determined 14
Point Versus Point . 14
Point Versus Line Segment . 14
Point Versus Triangle . 15
Line Segment Versus Line Segment 15
Line Segment Versus Triangle 15
Triangle Versus Triangle . 15

3.3.5 How the Final Illustration Is Rendered in LaTeX 16
3.4 Rationale and Development Process of the Approach 16
3.5 Data, Tools, and Resources Used . 16
3.6 Implementation Details . 16
3.7 Validation Strategy . 16
3.8 Challenges Encountered and Solutions Implemented 17
3.9 Limitations of the Current Methodology 17
3.10 Remaining Challenges and Directions for Future Work 17
3.11 Summary of the Methodology . 17

4 Validation 19
4.1 Introduction to Validation . 19
4.2 Internal Evaluation . 19

4.2.1 Occlusion . 19
Point Versus Point . 19

4.2.2 Point-Point Occlusion Test . 19
Point Versus Line Segment . 20
Point Versus Triangle . 21
Point Versus Triangle . 21
Line Segment Versus Line Segment 22
Line Segment Versus Triangle 23
Triangle Versus Triangle . 24

4.2.3 Clipping . 25
Line Segment By Point . 25
Line Segment By Line Segment 26
Line Segment By Triangle . 27
Triangle By Triangle . 27

4.2.4 Performance Assessment . 29
4.2.5 Pedagogical Effectiveness of Visualizations Compared to Ex-

isting Methods . 29

CONTENTS vii

4.2.6 Robustness and Reliability Testing 31
4.3 Limitations of the Validation Process 32
4.4 Summary of Validation Results . 32

5 Results and Analysis 33
5.1 Introduction to Results and Analysis 33
5.2 System Achievements and Capabilities 33

5.2.1 Functional Capabilities . 34
5.2.2 Comparative Advantages Over Existing Methods 34
5.2.3 Limitations Observed in Practice 34

5.3 Validation Results and Interpretation 35
5.3.1 Internal Evaluation Outcomes 35

Pedagogical Effectiveness of Visualizations 36
5.4 Synthesis and Interpretation of Results 36
5.5 Implications of Findings . 37
5.6 Summary of Results and Analysis . 37

viii CONTENTS

List of Tables

ix

x LIST OF TABLES

List of Figures

xi

xii LIST OF FIGURES

Preface

Purpose of This Work
I undertook this work because I was not satisfied with the existing tools for illustrating
scenes with 3D parametric objects in TEX, such as surfaces. From the perspective of
computer graphics as a whole, the ability to occlusion-order non-intersecting and
non-cyclically overlapping 0–2-dimensional affine simplices in 3D—together with the
systematic partitioning of simplices to eliminate intersections and cyclic overlaps—is
a foundational advance. While my own motivation arose from the needs of a TEX
illustrator, I recognized that this framework represents a paradigm shift in mathematics
illustration and, more broadly, a landmark contribution to computer graphics. My goals
were therefore twofold: to create the kind of illustration tool I had long envisioned,
and to establish priority in implementing this transformative idea.

I have developed a systematic method for occlusion ordering 0–2-dimensional
affine simplices in three dimensions. In addition, I have implemented a framework for
eliminating intersections through partitioning, with the resolution of cyclic overlaps
planned for the next version of the software. This work matters because it provides
the only known approach for generating scenes with parametric objects that both
intersect coherently and are occlusion-sorted robustly. In short, this is a rigorous and
comprehensive software framework for handling intersections and occlusion ordering
of affine simplices in three dimensions.

Context and Background
This book documents the LATEX package lua-tikz3dtools, which implements a
groundbreaking algorithm for 3D illustrations composed of 0–2-dimensional affine
simplices. Although the software is designed for creating illustrations in LATEX, the
underlying method represents a significant advance for the broader field of computer
graphics.

Acknowledgments of Guidance and Support
I am deeply grateful to the TEX Stack Exchange community, whose many contributions
and generous assistance have been invaluable in helping me develop my skills as an

xiii

xiv LIST OF FIGURES

illustrator. I also acknowledge the Math Stack Exchange community for several
insights that proved helpful along the way. This work would not have been possible
without the years of learning made available by my peers on TEX Stack Exchange, nor
without the foundational training in programming and linear algebra that I received
from my professors at my local university.

Author’s Contribution and Perspective
I am the principal designer of nearly all of lua-tikz3dtools, with a few specific
components assisted by ChatGPT. My two primary original contributions are the
occlusion-ordering algorithm and the simplex-partitioning algorithm. The portion
produced with ChatGPT’s assistance concerns the recursive traversal of segments
that applies my algorithms. Apart from this limited assistance, the work was carried
out independently, with valuable input and feedback from the TEX Stack Exchange
community.

Structure of the Document
This book is organized into five chapters. Chapter 1 presents the problem statement,
defining and framing the central challenge. Chapter 2 reviews the relevant literature.
Chapter 3 describes the methodology, including the algorithms developed. Chapter 4
provides validation of the approach, and Chapter 5 presents the results and analysis.

Acknowledgements

This work was typeset using TEX, the typesetting system created by Donald E. Knuth,
along with various extensions and packages developed by the TEX community. I am
grateful to the vibrant TEX Stack Exchange community for their ongoing support and
resources. For those interested, my contributions can be found at Jasper [Jas].

I also acknowledge the assistance of ChatGPT, which contributed to parts of the
code and to the refinement of this documentation.

Jasper Nice

xv

https://tex.stackexchange.com/users/319072/jasper

xvi LIST OF FIGURES

Chapter 1

Problem Statement

1.1 Background and Context
The field to which lua-tikz3dtools belongs is inherently multidisciplinary, com-
bining elements of programming and mathematics, especially linear algebra. In my
view, the current state of practice remains fragmented. Much of the existing literature
focuses on isolated components of the broader problem; for example, publications
may address tessellation of surfaces or the clipping of line segments by triangles, but
seldom attempt a unified framework. I believe I am the first to orchestrate linear
algebra and programming into a coherent synthesis that enables parametric object
generation tessellated by affine simplices (points, line segments, and triangles). These
simplices are then systematically clipped against one another using a novel algorithm
that eliminates intersections. A second novel algorithm, also of my design, performs
occlusion sorting of the resulting simplices via a transitive partial order.

This represents a genuinely groundbreaking achievement, with applications in
computer graphics, computational geometry, and mathematical illustration.

1.2 The Core Problem Being Addressed
The central problem addressed by lua-tikz3dtools is the illustration of 3D scenes
composed of 0–2-dimensional affine simplices. Specifically, the package focuses on
the representation of parametric objects tessellated into points, line segments, and
triangles, including those that intersect. The primary outstanding challenge is the
elimination of cyclic overlaps, which will be addressed in the next version of the
software.

1.3 Scope and Boundaries of the Problem
The scope of the problem—excluding cyclic overlaps—is twofold: clipping intersecting
simplices and partially transitive sorting of the resulting non-intersecting simplices.

1

2 CHAPTER 1. PROBLEM STATEMENT

This version of the package assumes that cyclic overlaps do not occur. It is designed for
3D diagrams composed of tessellated parametric objects, favoring exact partitioning
over alternative methods to handle sparse objects without introducing occlusion
errors.

1.4 Importance of the Issue

Until now, illustrators have often relied on high sampling to visually resolve occlusion
errors arising from intersecting objects. Furthermore, to my knowledge, no software
exists that explicitly sorts triangles correctly, let alone lower-dimensional affine sim-
plices. Most existing approaches either produce improper sorting or rely on black-box
methods. Solving this problem without using a 𝑧-buffer or ray tracing constitutes
a significant contribution to both the theoretical and practical aspects of computer
graphics, particularly in the domain of mathematical illustration. Based on years
of studying 3D graphics, I can assert that this algorithm addresses a fundamental
challenge for the future of the field.

From a theoretical standpoint, the method can illustrate 3D scenes composed
of points, line segments, and triangles, demonstrating that a scene of triangles can
be partitioned so as to allow a partial transitive ordering, resulting in correct visual
occlusion.

This work represents a major theoretical advance in the conceptualization of 3D
illustrations. Its synthesis of elementary linear algebra with computational methods
is unique and represents a significant step beyond the current state of the art.

1.5 Current Limitations and Gaps

Previous approaches largely neglect intersecting simplices and often produce oc-
clusion errors. In fact, many software packages do not even triangulate surfaces
correctly. For example, drawing a Klein bottle in Mathematica, Asymptote, or pgfplots
results in intersections that do not occlude properly. My approach resolves this issue
systematically.

Not only does it eliminate intersections, but it also applies rigorous affine linear
algebra for correct occlusion sorting. These gaps in existing methods persist largely
because no one has previously pursued a comprehensive study of 3D mathematical
illustration with this level of coherence. While many practitioners achieve impres-
sive results, none combine triangulation, clipping, and occlusion sorting in a fully
integrated framework. Unlike approaches that rely on splines or high sampling, my
package ensures accurate visualization of sparse geometries.

High sampling is computationally expensive and often insufficient, since the human
eye can detect very small errors. Achieving the necessary resolution via sampling
alone is generally impractical. My software addresses this challenge directly by first
clipping simplices and then performing occlusion sorting, ensuring correct visual
results efficiently.

1.6. OBJECTIVES AND GOALS 3

1.6 Objectives and Goals
The objective of this documentation is to present the software I have developed,
demonstrate its correctness, and provide guidance on its use. Detailed explanations
are provided for each of the novel algorithms, accompanied by examples illustrating
how to apply the software in practice. In addition, practical use cases are discussed,
and the software is validated through tests.

1.7 Intended Audience
This documentation is intended for 3D mathematical illustrators who are already
familiar with basic programming, linear algebra, and TikZ. While the package primar-
ily supports 3D mathematical illustrations in LATEX, its underlying algorithms have
implications beyond the LATEX community. Computer graphics researchers will benefit
from the first coherent synthesis of a transitive partial-order algorithm for occlusion
sorting of affine simplices.

Mathematics textbook authors and illustrators will also benefit from a robust
backend for occlusion handling and clipping, without relying on black-box software
that produces incorrect results. Although some tools generate visually plausible
output for users with limited 3D intuition, subtle errors often remain undetected. The
approach presented here provides a rigorous and systematic solution, and it is likely
that the software will have applications beyond these immediate use cases.

1.8 Summary of the Problem Statement
The central problem addressed by this documentation is the clipping and occlusion
ordering of affine simplices. In other words, it concerns the visualization of 3D
parametric scenes. This software is significant because it represents the first coherent
synthesis for illustrating such scenes.

4 CHAPTER 1. PROBLEM STATEMENT

Chapter 2

Literature Review

2.1 Introduction to the Literature Review

The purpose of this chapter is to situate this work within the context of existing
scholarship. The chapter is organized chronologically and reflects my personal jour-
ney along this path. Because my synthesis of the field is genuinely novel, most of
the sources discussed are my own contributions, accompanied by testimony that
contextualizes and motivates these developments.

2.2 Historical Background and Evolution of the Field

I began as a complete amateur, initially motivated by a desire to create mathematical
textbook illustrations. Over time, I developed a particular interest in 3D illustrations,
but quickly grew dissatisfied with the state of the available tools and resolved to build
them myself. My first attempt involved tessellating a surface into quadrilaterals, but I
soon realized that the occlusion was incorrect. At the time I was taking my first course
in linear algebra, and with the help of ChatGPT [Ski25], I recognized that the dot
product could be used to approximate depth-ordering by midpoint comparisons. I later
refined this idea through a Mathematics Stack Exchange inquiry [httb]. By intuition, I
also realized that tessellating into triangles was more coherent than quadrilaterals,
which are often non-coplanar. Initially, I attempted to sort the triangles by their
midpoints, but the results were still inadequately occluded.

This led me to another inquiry on occlusion ordering of non-intersecting, non-
cyclically overlapping triangles [htta], where a pivotal suggestion was made in the
comments: to sort only simplices whose orthogonal projections on the viewing plane
overlap. This insight proved to be the breakthrough. From this seed grew the present
occlusion algorithm. In the final system, simplices are first projected onto the viewing
plane; when an overlap is detected, sorting is resolved by using the inverse orthogo-
nal projection back onto both shapes. Although it took months of refinement, this
ultimately yielded a coherent and general solution.

5

6 CHAPTER 2. LITERATURE REVIEW

The occlusion problem also naturally arises from intersecting and cyclically over-
lapping simplices. My algorithm addresses the first case by completely eliminating
intersections through partitioning, thereby establishing a foundation alongside the
occlusion algorithm. The resolution of cyclic overlap is left for future work.

2.3 Existing Approaches in Practice and Academia
Until now, no comprehensive solution to the problem of clipping and occlusion order-
ing of affine simplices has existed. Existing practices in 3D mathematical illustration
and computer graphics address only fragments of the problem. For example, many
software systems triangulate surfaces and order the resulting triangles using primi-
tive heuristics, but they do not perform clipping of intersecting simplices, and their
occlusion methods are often approximate or incorrect.

Much of the literature in both academia and practice focuses on partial approaches—
such as tessellation, polygon clipping, or depth-sorting—but not their coherent inte-
gration into a rigorous framework. This fragmentation explains why current tools,
despite producing visually plausible illustrations, frequently introduce occlusion errors
when tested under precise mathematical scrutiny.

The work presented here unifies these scattered threads into a single coherent
system, addressing both intersection elimination and rigorous occlusion ordering.
This synthesis has not been achieved previously in the literature or in practice.

2.4 Comparative Analysis of Approaches
When comparing existing approaches to themethod implemented in lua-tikz3dtools,
a fundamental distinction emerges. Existing tools and frameworks for 3D illustra-
tion—whether in academic research or practical software—typically handle only parts
of the problem. Some systems focus on tessellation, others on clipping, and still others
on heuristic depth-sorting. However, none integrate these processes into a coherent
framework capable of systematically handling intersections and providing rigorous
occlusion ordering of affine simplices.

By contrast, the algorithm presented here addresses both of these challenges
directly. It introduces a systematic clipping procedure to eliminate intersections and a
transitive partial-order approach to occlusion sorting. No existing approach in either
the academic literature or applied software achieves this combination. In short, while
prior methods provide partial or approximate solutions, the present work provides
the first complete and rigorous solution to the problem of visualizing 3D parametric
scenes composed of affine simplices.

2.5 Strengths and Contributions of Current Work
The present work successfully demonstrates the systematic illustration of 3D scenes
composed of affine simplices. This was achieved through the use of affine linear algebra
to explicitly define simplices and to traverse their spans. The span of a simplex is the

2.6. LIMITATIONS AND OPEN CHALLENGES IN CURRENT METHODS 7

set of points obtained by taking linear combinations of its basis vectors, originating
from a given point.

A further breakthrough came from reducing the problem to its simplest building
blocks: the intersection and occlusion of the lowest-dimensional simplices. From
there, higher-dimensional simplices, such as triangles, were treated in terms of these
more elementary cases. This reductionist approach provided a clear and coherent
foundation for solving the problem at scale.

2.6 Limitations andOpenChallenges inCurrentMeth-
ods

This documentation does not, in its current form, address cyclically overlapping
simplices; this challenge is reserved for future work. The decision to defer this aspect
was intentional, in order to secure authorship priority on the core contribution before
extending the framework further.

Future versions will also introduce the ability to clip parametric objects—that is,
collections of simplices belonging to the same object—by themselves. This will enable
the computation of intersection sets as new, customizable parametric objects, thereby
broadening the applicability of the package.

2.7 Emerging Trends and Future Directions
Recent developments in computer graphics emphasize the pursuit of photorealism,
with ray tracing technologies at the forefront. These methods simulate lighting, re-
flection, and refraction effects at a high degree of physical accuracy. While such
techniques are powerful, they are computationally intensive and primarily focused
on rendering dense, visually realistic scenes rather than sparse, mathematically rigor-
ous ones. Nevertheless, the conceptual framework of ray tracing demonstrates the
importance of light-based visibility models, which may offer inspiration for extending
methods of occlusion ordering in the future.

In contrast, the approach taken in this work focuses on exact algebraic partitioning
and sorting of affine simplices, prioritizing mathematical rigor over visual realism.
Future researchmay explore a hybrid direction, drawing selectively from photorealistic
methods while preserving the precision needed for mathematical illustration. Such
a synthesis would represent a promising new trajectory: combining the clarity and
correctness demanded by pedagogy with techniques inspired by the broader field of
computer graphics.

2.8 Proposed Approach and Its Advantages Over Ex-
isting Work

The limitations of existing methods are clear: they either neglect intersections alto-
gether, rely on approximate sampling, or obscure their logic within black-box imple-

8 CHAPTER 2. LITERATURE REVIEW

mentations. As a result, mathematical illustrators are left without a reliable way to
render sparse parametric geometries in three dimensions without visible errors. This
is the precise gap that motivates the present work.

The approach developed in lua-tikz3dtools addresses this gap by providing
a systematic method for clipping intersecting simplices and establishing a rigorous
transitive partial order for occlusion sorting. Unlike prior tools, this method is fully
transparent in its logic, grounded in affine linear algebra, and designed specifically to
ensure correctness even for sparse configurations where high-sampling techniques
fail.

The principal advantage of this work is its ability to produce illustrations that are
both mathematically precise and computationally efficient. By reducing the problem
to its most fundamental constituents—simplices—and resolving both intersections
and occlusion ordering at that level, the method achieves a coherence that existing
approaches lack. This framework not only serves the immediate needs of mathematical
illustration, but also establishes a foundation that can be extended to broader areas of
computer graphics.

2.9 Summary of the Literature Review
The review of existing tools and practices makes one thing clear: the available methods
were inadequate for producing precise 3D mathematical illustrations. They either
ignored intersections, introduced occlusion errors, or relied on approximate techniques
such as high sampling. Bound by the limitations of the time, I was compelled to
invent my own approach. While this work does not yet address the final challenge of
cyclic overlaps, it establishes a rigorous framework for clipping intersecting simplices
and systematically ordering them by occlusion. The next chapter will present the
methodology by which this is achieved.

Chapter 3

Methodology

3.1 Introduction to the Methodology

This chapter explains how the research was carried out and how the core algorithms
were developed. The synthesis did not arise from a gradual accumulation of par-
tial solutions, but from a decisive insight gained after years of experience with 3D
illustration. That insight was to frame the entire problem in terms of affine linear
algebra, which provided the clarity and rigor needed to resolve clipping and occlusion
systematically.

The implementation was carried out in LATEX and Lua, not by accident but because
I am a mathematics textbook illustrator, and these are the tools I know and use daily.
This choice ensured that the algorithms were embedded directly in the environment
where they are most relevant, while also demonstrating their applicability beyond
it. The following sections present the design, implementation, and validation of the
algorithms, showing how they directly address the fundamental gaps identified in the
Problem Statement and Literature Review.

3.2 Research Design and Overall Approach

The research design of this work is computational and developmental in nature. Its
objective was not to test an existing theory, but to create and validate a new one. The
approach is best described as exploratory, since the central algorithms were developed
from first principles through problem-driven experimentation, guided by years of
practical experience with 3D illustration.

This design is well-suited to the research objectives, which required the invention
of novel methods for clipping and occlusion ordering of affine simplices. Rather than
relying on preexisting frameworks, the work advances a new synthesis, implemented
and tested in Lua and LATEX. The emphasis throughout is on demonstrating the
feasibility and rigor of the approach, supported by concrete computational validation.

9

10 CHAPTER 3. METHODOLOGY

3.3 Detailed Description of the Proposed Approach

Users are provided with commands that automatically tessellate, clip, and occlusion-
sort parametric objects with projective transformations applied. The following sub-
sections describe each component of the system in detail.

3.3.1 How Users Interact with the Software

Command Name: \displaysegments

This command clips intersecting simplices produced by the tessellation of parametric
objects and performs occlusion sorting on the resulting set. It ensures that overlapping
simplices are rendered correctly according to their depth and spatial relationships.

Command Name: \appendpoint

This command appends a projectively transformed 0-dimensional affine simplex (a
point) to the list of simplices, also called the list of segments. An example of its usage
is as follows:

\appendpoint[
x = {cos(tau/6)}
,y = {tau/6}
,z = {0}
,fill options = {

fill = red
,fill opacity = 0.7

}
,transformation = {euler(pi/2,pi/3,pi/6)}

]

Command Name: \appenlabel

This command appends a label positioned at a projectively transformed 0-dimensional
affine simplex (a point) to the list of simplices. An example of its usage is as follows:

\appendlabel[
x = {cos(tau/6)}
,y = {tau/6}
,z = {0}
,name = {Hi!}
,transformation = {euler(pi/2,pi/3,pi/6)}

]

Note: there are still struggles with adding math mode to labels.

3.3. DETAILED DESCRIPTION OF THE PROPOSED APPROACH 11

Command Name: \appendsurface

This command tessellates a projectively transformed 2-dimensional parametric surface
into triangles, and adds those triangles to the list of segments. An example of its usage
is as follows:

\appendsurface[
ustart = {0}
,ustop = {1}
,usamples = {18}
,vstart = {0}
,vstop = {1}
,vsamples = {9}
,x = {sphere(tau*u/36,pi*v/18)[1][1]}
,y = {sphere(tau*u/36,pi*v/18)[1][2]}
,z = {sphere(tau*u/36,pi*v/18)[1][3]}
,fill options = {

preaction = {
fill = green
,fill opacity = 0.8

}
,postaction = {

draw
,line join = round
,line cap = round

}
}
,transformation = {euler(pi/2,pi/3,pi/6)}

]

Command Name: \appendcurve

This command tessellates a projectively transformed parametric curve into line seg-
ments, and adds those line segments to the list of segments. An example of its usage
is as follows:

\appendcurve[
ustart = {0}
,ustop = {1}
,usamples = {36}
,x = {cos(tau*u)}
,y = {sin(tau*u)}
,z = {0}
,draw options = {

draw
,red

}

12 CHAPTER 3. METHODOLOGY

,transformation = {euler(pi/2,pi/3,pi/6)}
,arrow tip = {true}
,arrow tip options = {fill = green}
,arrow tail = {true}

]

Command Name: \appendsolid

This command tessellates a projectively transformed parametric solid into boundary
triangles, and adds those triangles to the list of segments. An example of its usage is
as follows:

\appendsolid[
ustart = {0}
,ustop = {1}
,usamples = {18}
,vstart = {0}
,vstop = {1}
,vsamples = {6}
,wstart = {0}
,wstop = {1}
,wsamples = {2}
,x = {w*sphere(tau*u/36,pi*v/18)[1][1]}
,y = {w*sphere(tau*u/36,pi*v/18)[1][2]}
,z = {w*sphere(tau*u/36,pi*v/18)[1][3]}
,fill options = {

preaction = {
fill = green
,fill opacity = 0.8

}
,postaction = {

draw
,line join = round
,line cap = round

}
}
,transformation = {euler(pi/2,pi/3,pi/6)}

]

3.3.2 How Parametric Objects Are Tessellated into Simplices
with Transformations Applied

A zero-dimensional parametric object requires only one sample and is tessellated by
a single zero-dimensional affine simplex (a point). A one-dimensional parametric
object (a curve) often requires more, and is tessellated by one-dimensional affine
simplices (line segments). This is done using an even subdivision of the parameter

3.3. DETAILED DESCRIPTION OF THE PROPOSED APPROACH 13

into samples. Similarly, a two-dimensional parametric object is sampled along both
input parameters to obtain a mesh, which is then triangulated. Triangles are used
instead of quadrilaterals because quads are often not coplanar and thus ambiguous. A
parametric solid is tessellated along three parameters in the same way.

3.3.3 How Intersections Between Simplices Are Detected and
Resolved

Intersections are eliminated through minimal partitioning of simplices. To identify
the cases, a bottom-up approach is taken: we first determine the meaningful ways to
partition lower-dimensional simplices, and then extend this to higher dimensions.

There is no meaningful way to partition a point by another point, so that case is
omitted. A point can divide a line segment into two if they intersect, so this case is
retained. A point and a triangle have no meaningful partitioning with respect to each
other.

A line segment can partition another line segment, and a line segment can also
be partitioned by a triangle. Finally, a triangle can be partitioned by another triangle.
For reasons of minimality, only one of the two intersecting simplices is partitioned in
each case.

Partitioning a Line Segment by a Point

We first check whether a point lies on a line segment, and if it does, we partition the
line segment at that point. To perform this test, the line segment is expressed as a
one-dimensional affine basis by replacing the second endpoint with its difference from
the first. We then compute the vector from the affine origin to the point.

Next, we take the orthogonal projection of this vector onto the segmen’s direction
vector. If the sum of this projection with the affine origin is nearly coincident with
the point, we proceed with testing; otherwise, the point is not on the segment. To
confirm, we apply Gauss–Jordan elimination to express the point in terms of the line’s
affine basis. If the resulting coordinate lies within the unit interval, the point is indeed
on the segment, and the segment is partitioned.

Partitioning a Line Segment by Another Line Segment

We first check whether two line segments intersect, and if they do, we partition one of
them at the intersection point. To detect an intersection, each segment is expressed as
a one-dimensional affine basis. The lines spanned by these bases are then intersected
using Gauss–Jordan elimination. If the resulting parameters for both segments lie
within their respective unit intervals, the segments intersect, and partitioning is
performed.

Partitioning a Line Segment by a Triangle

If an intersection between the line segment and the triangle can be detected, we
partition the line segment at that point. Both simplices are expressed as affine bases in

14 CHAPTER 3. METHODOLOGY

their respective dimensions, and the intersection is obtained by solving the resulting
linear system via Gauss–Jordan elimination. If the line segment’s coefficient lies within
the unit interval, the candidate intersection is retained; otherwise, it is discarded.

When the line segment does intersect the plane of the triangle, we determine
whether the intersection point lies inside the triangle using the cross-product method
[httc]. In this approach, the triangle is tessellated into one-dimensional affine bases
(its edges), and each vertex is connected to the point being tested, forming another
one-dimensional affine basis. For every pair of affine bases emanating from a common
vertex, we compute their rotationally ordered cross product. If all such cross products
point in the same direction, the point lies inside the triangle. If the point lies outside,
at least one rotationally ordered cross product will traverse its angle in the opposite
orientation, producing an anticommutative result.

Partitioning a Triangle by Another Triangle

The partitioning of a triangle by another triangle builds upon the previous cases. The
first step is to detect intersections between their edges. If two intersections are found
(the expected outcome, though safeguards are included for degenerate cases), the
cutting triangle partitions the other along the line defined by these two points. This
produces a triangle and a quadrilateral, the latter of which is subdivided into two
triangles. The intersections themselves are computed by treating each edge as a line
segment and determining its intersection with the opposing triangle.

3.3.4 How Occlusion Ordering Is Determined
Occlusion ordering in our system is performed by first orthogonally projecting the
two simplices onto the viewing plane. If a point of overlap is detected, we sort them
according to the inverse orthogonal projection of that point back onto each shape.

Point Versus Point

If the points are not coincident but their projections coincide, then they are ordered
by depth. Otherwise, the test remains inconclusive.

Point Versus Line Segment

This routine determines the occlusion relationship between a point and a line segment.
It first expresses the line segment in terms of an affine basis, given by its origin and
direction vector. The point is then projected orthogonally onto the line defined by
the segment, producing a candidate projection. If the projection of the point onto the
viewing plane (its 𝑥𝑦-coordinates) is nearly identical to the projection of this candidate,
the test proceeds; otherwise, the point and line segment are considered not to occlude
each other. Next, the algorithm checks whether the projection lies within the bounds of
the segment itself by comparing vector signs and computing a normalized coefficient.
If the projection falls within the unit interval of the segment, the algorithm reduces
the problem to comparing the depth of the point and its projection on the line. If these
conditions fail, the test is inconclusive.

3.3. DETAILED DESCRIPTION OF THE PROPOSED APPROACH 15

Point Versus Triangle

This routine compares the occlusion relationship between a point and a triangle. The
point and the triangle are first projected orthogonally onto the viewing plane, where
a cross-product test is applied to check whether the projected point lies inside the
projected triangle. If this test fails, the point and triangle are considered not to occlude
one another. If the point lies inside the projection, the algorithm then projects the
point vertically onto the plane of the triangle. Using an affine basis for the triangle,
the barycentric coordinates of the point with respect to the triangle are solved via
Gauss–Jordan elimination. If the solution lies within the unit square (ensuring the
projection is inside the triangle), the algorithm reduces the problem to a point-point
occlusion comparison between the original point and its projection on the triangle. If
any step fails to satisfy these conditions, the test remains inconclusive.

Line Segment Versus Line Segment

This routine determines the occlusion relationship between two line segments. First,
both segments are projected onto the viewing plane, and their direction vectors are
computed. If the direction vectors are not parallel, the algorithm solves for parameters
𝑡 and 𝑠 in the affine equations of the two lines using Gauss–Jordan elimination. If both
parameters lie within the unit interval, the intersection point of the two segments
is found, and the occlusion is reduced to a point-point comparison of the coincident
intersection.

If the direction vectors are parallel, the algorithm instead falls back to endpoint
tests: each endpoint of one segment is compared against the other segment using the
point-line occlusion procedure. If any endpoint is found to occlude, the segments are
ordered accordingly. If no consistent ordering can be determined, the test remains
inconclusive.

Line Segment Versus Triangle

This routine compares the occlusion relationship between a line segment and a triangle.
The algorithm begins by testing each endpoint of the segment against the triangle
using the point-triangle occlusion procedure. It then tests the segment itself against
each of the triangle’s edges using the line-segment occlusion procedure. If any of
these comparisons establishes a definite ordering (occluded in front or behind), that
result is returned. If no consistent conclusion can be drawn from the endpoint and
edge tests, the routine returns inconclusive.

Triangle Versus Triangle

This routine compares the occlusion relationship between two triangles. The algorithm
first tests each edge of the first triangle against the second using the line-segment–
triangle occlusion procedure. If any edge establishes a definite ordering (in front or
behind), that result is immediately returned. If these edge tests are inconclusive, the
algorithm proceeds by testing the vertices of the first triangle against the second, and
the vertices of the second triangle against the first, using the point-triangle occlusion

16 CHAPTER 3. METHODOLOGY

procedure. If any of these vertex tests determines a clear ordering, that result is
returned. If neither the edge nor the vertex tests establish a consistent relationship,
the routine concludes that the occlusion status is inconclusive.

3.3.5 How the Final Illustration Is Rendered in LaTeX

Once the simplices are ordered, the command \displaysegments identifies the type
of each simplex along with any assigned options, and prints empty path statements
that the user may customize with their desired options.

3.4 Rationale and Development Process of the Ap-
proach

I chose this method over alternatives because I wanted a reliable way to render low-
resolution parametric objects that intersect accurately. Existing graphics software in
the TEX ecosystem often handled these cases incorrectly, which motivated me to build
a system of my own. The goal was not only to address this gap within TEX but also to
contribute a more principled solution to computer graphics more broadly.

3.5 Data, Tools, and Resources Used

This project does not rely on external datasets; it operates entirely on geometric
primitives generated within the system itself. The implementation is written primarily
in Lua, chosen for its seamless integration with LuaLATEX. All major libraries for
vector arithmetic, cross-product tests, and affine-basis manipulations were developed
independently by the author. A few minor helper functions, notably the Gauss–Jordan
solver and the topological sort, were assisted by ChatGPT. For visualization and
rendering within LATEX, the TikZ package was used to draw and display all simplices.

3.6 Implementation Details

For the implementation details, please see the source code.

3.7 Validation Strategy

To validate the algorithm, all clipping and occlusion cases will be tested systematically.
This includes points, line segments, and triangles in intersecting and non-intersecting
configurations, as well as triangle-triangle and line-triangle clipping scenarios. Practi-
cal examples will be provided to illustrate correctness. Validation is primarily internal,
but results can be cross-checked against existing computational geometry tools for
external verification.

3.8. CHALLENGES ENCOUNTERED AND SOLUTIONS IMPLEMENTED 17

3.8 Challenges Encountered and Solutions Implemented
Being the first to coherently orchestrate linear algebra for the clipping and occlusion
sorting of 0–2-dimensional affine simplices, I encountered several failed attempts
before finally achieving a correct solution. The major breakthrough came when I
realized that starting with low-dimensional cases and progressively working upward
was the key to success.

3.9 Limitations of the Current Methodology
The current methodology does not account for cyclic overlap; this aspect is deferred
to a future edition.

3.10 RemainingChallenges andDirections for Future
Work

The main remaining challenge is the elimination of cyclic overlap. Additionally, future
work may include clipping objects by other objects and potentially working with their
intersection sets.

3.11 Summary of the Methodology
In this chapter, a computational and developmental approachwas presented for system-
atically tessellating, clipping, and occlusion-sorting zero- to two-dimensional affine
simplices. The methodology leverages affine linear algebra to detect intersections and
determine depth ordering, implemented entirely in Lua and LATEX with visualization
via TikZ. By addressing low-dimensional cases first and progressively building up,
the system ensures accurate handling of points, line segments, and triangles, while all
major clipping and occlusion scenarios are implemented.

With the methodology fully specified and operational, the next chapter focuses
on validating the approach: testing all relevant cases, examining correctness, and
demonstrating the effectiveness of the algorithms in practice.

18 CHAPTER 3. METHODOLOGY

Chapter 4

Validation

4.1 Introduction to Validation
The purpose of this validation chapter is to systematically evaluate the algorithms
developed for tessellation, clipping, and occlusion sorting of affine simplices. Valida-
tion ensures that the approach functions as intended, accurately detects intersections,
correctly orders overlapping simplices, and produces reliable visual outputs. Success
is measured in terms of correctness, consistency across all simplex types, and the
faithfulness of rendered illustrations to the underlying geometric models.

This chapter is structured to present internal tests for each class of simplex (points,
line segments, triangles), followed by combined scenarios that exercise clipping and
occlusion in increasingly complex configurations. Each section provides detailed ex-
amples, examines algorithmic behavior, and highlights both successes and limitations,
offering a thorough assessment of the methodology’s practical effectiveness.

4.2 Internal Evaluation

4.2.1 Occlusion
Point Versus Point

4.2.2 Point-Point Occlusion Test
To validate the point-point occlusion routine, we use the following example. In this
test, a green point is expected to occlude a red point, while a blue point remains
independent and does not participate in the occlusion ordering. This setup allows us
to verify that the depth comparison logic correctly identifies which point lies in front.

\documentclass[
tikz
,border = 1cm

]{standalone}

19

20 CHAPTER 4. VALIDATION

\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendpoint[

x = {0}
,y = {0}
,z = {0}
,fill options = {fill = red}
,transformation = {translate(0,0,-3)}

]
\appendpoint[

x = {0}
,y = {0}
,z = {1}
,fill options = {fill = green}
,transformation = {translate(0,0,-3)}

]
\appendpoint[

x = {1}
,y = {1}
,z = {0}
,fill options = {fill = blue}
,transformation = {translate(0,0,-3)}

]
\displaysegments

\end{tikzpicture}
\end{document}

When rendered, the green point should appear above the red point, demonstrating that
the occlusion sorting functions as intended, while the blue point remains unobstructed.

Point Versus Line Segment

For testing the point-line occlusion routine, we set up a scenario where a red point
should appear on top of a blue line segment. This checks that the algorithm correctly
identifies when a point occludes a segment based on depth.

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendpoint[

x = {0}
,y = {0}

4.2. INTERNAL EVALUATION 21

,z = {1}
,fill options = {fill = red}
,transformation = {translate(0,0,-3)}

]
\appendcurve[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,x = {u}
,y = {u}
,z = {0}
,draw options = {

draw = blue
,line cap = round

}
,transformation = {translate(0,0,-3)}

]
\displaysegments

\end{tikzpicture}
\end{document}

Upon rendering, the red point should visually appear above the blue line segment,
confirming that the point-line occlusion comparison is working correctly.

Point Versus Triangle

Point Versus Triangle

For testing the point-triangle occlusion routine, we set up a scenario where a blue
point should appear on top of a red triangle. This checks that the algorithm correctly
identifies when a point occludes a triangle based on depth.

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendpoint[

x = {0}
,y = {0}
,z = {1}
,fill options = {fill = blue}
,transformation = {translate(0,0,-3)}

]
\appendsurface[

22 CHAPTER 4. VALIDATION

ustart = {-1}
,ustop = {1}
,usamples = {2}
,vstart = {-1}
,vstop = {1}
,vsamples = {2}
,x = {u}
,y = {v}
,z = {0}
,transformation = {translate(0,0,-3)}
,fill options = {fill = red}

]
\displaysegments

\end{tikzpicture}
\end{document}

Upon rendering, the blue point should visually appear above the red triangle, confirm-
ing that the point-triangle occlusion comparison is working correctly.

Line Segment Versus Line Segment

For testing the segment-segment occlusion routine, we set up a scenario where a
red line segment should appear in front of a blue line segment. This checks that the
algorithm correctly identifies when one segment occludes another based on depth.

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendcurve[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,x = {u}
,y = {u}
,z = {1}
,draw options = {draw = red, line cap = round}
,transformation = {translate(0,0,-3)}

]
\appendcurve[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,x = {u}

4.2. INTERNAL EVALUATION 23

,y = {-u}
,z = {0}
,draw options = {draw = blue, line cap = round}
,transformation = {translate(0,0,-3)}

]
\displaysegments

\end{tikzpicture}
\end{document}

Upon rendering, the red line segment should visually appear in front of the blue
line segment, confirming that the segment-segment occlusion comparison is working
correctly.

Line Segment Versus Triangle

For testing the segment-triangle occlusion routine, we set up a scenario where a red
line segment should appear in front of a blue triangle. This checks that the algorithm
correctly identifies when a segment occludes a triangle based on depth.

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendcurve[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,x = {u}
,y = {u}
,z = {1}
,draw options = {draw = red, line cap = round}
,transformation = {translate(0,0,-3)}

]
\appendsurface[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,vstart = {-1}
,vstop = {1}
,vsamples = {2}
,x = {u}
,y = {v}
,z = {0}
,transformation = {translate(0,0,-3)}

24 CHAPTER 4. VALIDATION

,fill options = {fill = blue}
]
\displaysegments

\end{tikzpicture}
\end{document}

Upon rendering, the red line segment should visually appear in front of the blue trian-
gle, confirming that the segment-triangle occlusion comparison is working correctly.

Triangle Versus Triangle

For testing the triangle-triangle occlusion routine, we set up a scenario where a red
triangle should appear in front of a blue triangle. This checks that the algorithm
correctly identifies which triangle occludes the other based on depth.

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendsurface[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,vstart = {-1}
,vstop = {1}
,vsamples = {2}
,x = {u}
,y = {v}
,z = {0}
,transformation = {translate(0,0,-3)}
,fill options = {fill = blue}

]
\appendsurface[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,vstart = {-1}
,vstop = {1}
,vsamples = {2}
,x = {u}
,y = {v}
,z = {1}
,transformation = {

4.2. INTERNAL EVALUATION 25

matrix_multiply(zrotation(pi/4),translate(0,0,-
3))

}
,fill options = {fill = red}

]
\displaysegments

\end{tikzpicture}
\end{document}

Upon rendering, the red triangle should visually appear in front of the blue triangle,
confirming that the triangle-triangle o

4.2.3 Clipping
Line Segment By Point

For testing the line-segment clipping routine, we set up a scenario where a red point
clips a blue line segment. This verifies that the algorithm correctly identifies the
portion of the line segment that lies in front of or behind the point in depth.

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendpoint[

x = {0}
,y = {0}
,z = {0}
,fill options = {fill = red}
,transformation = {translate(0,0,-3)}

]
\appendcurve[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,x = {u}
,y = {u}
,z = {0}
,draw options = {

draw = blue
,line cap = round

}
,transformation = {translate(0,0,-3)}

]

26 CHAPTER 4. VALIDATION

\displaysegments
\end{tikzpicture}

\end{document}

Upon rendering, the blue line segment should be divided by the red point, confirming
that the line-segment clipping routine handles point-based occlusion correctly.

Line Segment By Line Segment

For testing the line-segment clipping routine, we set up a scenario where a red line
segment clips a blue line segment. This checks that the algorithm correctly identifies
the portion of the blue segment that lies in front of or behind the red segment based
on depth.

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendcurve[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,x = {u}
,y = {0}
,z = {0}
,draw options = {draw = red, line cap = round}
,transformation = {translate(0,0,-2)}

]
\appendcurve[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,x = {0}
,y = {u}
,z = {0}
,draw options = {draw = blue, line cap = round}
,transformation = {translate(0,0,-3)}

]
\displaysegments

\end{tikzpicture}
\end{document}

Upon rendering, the blue line segment should be partially clipped by the red segment,
confirming that the line-segment clipping routine handles segment-segment occlusion
correctly.

4.2. INTERNAL EVALUATION 27

Line Segment By Triangle

For testing the line-segment clipping routine against a triangular surface, we set up a
scenario where a blue line segment intersects or passes behind a red triangle. This
checks that the algorithm correctly identifies which portion of the line segment lies in
front of or behind the triangle based on depth.

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendcurve[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,x = {u}
,y = {u}
,z = {u}
,draw options = {draw = blue, line cap = round}
,transformation = {translate(0,0,-2)}

]
\appendsurface[

ustart = {-1}
,ustop = {1}
,usamples = {2}
,vstart = {-1}
,vstop = {1}
,vsamples = {2}
,x = {u}
,y = {v}
,z = {0}
,draw options = {draw = red, line cap = round}
,transformation = {translate(0,0,-3)}

]
\displaysegments

\end{tikzpicture}
\end{document}

Upon rendering, the line segment should appear appropriately clipped or occluded by
the triangle, confirming that the line-segment–triangle occlusion is working correctly.

Triangle By Triangle

For testing the triangle-triangle occlusion routine, we set up a scenario where a blue
triangular surface intersects or passes behind a red triangular surface. This checks

28 CHAPTER 4. VALIDATION

that the algorithm correctly identifies which portions of each triangle lie in front of or
behind the other based on depth.

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendsurface[

ustart = {-1}
,ustop = {1}
,usamples = {4}
,vstart = {-1}
,vstop = {1}
,vsamples = {4}
,x = {u+0.1}
,y = {v+0.2}
,z = {u+v+0.3}
,fill options = {fill = blue}
,transformation = {translate(0,0,-3)}

]
\appendsurface[

ustart = {-1}
,ustop = {1}
,usamples = {4}
,vstart = {-1}
,vstop = {1}
,vsamples = {4}
,x = {u}
,y = {v}
,z = {0}
,fill options = {fill = red}
,transformation = {translate(0,0,-3)}

]
\displaysegments

\end{tikzpicture}
\end{document}

Upon rendering, the blue triangle should appear appropriately occluded by the red
triangle where depth dictates, confirming that the triangle-triangle occlusion routine
is working correctly.

4.2. INTERNAL EVALUATION 29

4.2.4 Performance Assessment
Each pair of simplices—or segments—must undergo comparison. For 𝑛 segments, the
total number of comparisons is

𝑛
∑
𝑖=1

(𝑖 − 1).

Most comparisons are quickly resolved using a simple bounding-rectangle overlap
check on the viewing plane. The computation becomes expensive primarily when
many segments overlap, requiring numerous occlusion tests. This scenario typically
dominates the algorithm’s runtime.

4.2.5 Pedagogical Effectiveness of Visualizations Compared to
Existing Methods

No other system is capable of illustrating intersecting three-dimensional tessellated
parametric objects with the same precision. lua-tikz3dtools achieves this effec-
tively. Consider the diagram produced by the following LATEX document:

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\pgfmathsetmacro{\i}{1}
\begin{tikzpicture}

\setobject[
name = {T}
,object = {

matrix_multiply(
euler(pi/2,pi/3,7*pi/6)
,translate(0,0,-6)

)
}

]
\foreach \t in {1,2,3} {
\pgfmathsetmacro{\rotation}{\t*pi/12}
\appendsurface[

ustart = {0}
,ustop = {1}
,usamples = {18}
,vstart = {0}
,vstop = {1}
,vsamples = {9}
,x = {2*cos(\t*tau/3) + sphere(u*tau, v*pi)[1][1]}
,y = {2*sin(\t*tau/3) + sphere(u*tau, v*pi)[1][2]}

30 CHAPTER 4. VALIDATION

,z = {\t/3 + sphere(u*tau, v*pi)[1][3]}
,transformation = {

matrix_multiply(
euler(\rotation,\rotation,\rotation)
,T

)
}
,fill options = {

preaction = {
fill = white

}
,postaction = {

draw
,line cap = round
,line join = round
,ultra thin

}
}

]
}
\appendsurface[

ustart = {-1}
,ustop = {1}
,usamples = {4}
,vstart = {-1}
,vstop = {1}
,vsamples = {4}
,x = {4*u}
,y = {4*v}
,z = {\i + u}
,transformation = {T}
,fill options = {

preaction = {
fill = gray!70!white

}
,postaction = {

draw
,line cap = round
,line join = round
,ultra thin

}
}

]
\displaysegments

\end{tikzpicture}
\end{document}

4.2. INTERNAL EVALUATION 31

4.2.6 Robustness and Reliability Testing

lua-tikz3dtools is capable of handling most intersection cases; however, certain
trivial cases are not yet resolved. Consider the following example that illustrates the
bug:

\documentclass[
tikz
,border = 1cm

]{standalone}
\usepackage{lua-tikz3dtools}
\begin{document}

\begin{tikzpicture}
\appendsurface[

ustart = {-1}
,ustop = {1}
,usamples = {4}
,vstart = {-1}
,vstop = {1}
,vsamples = {4}
,x = {u}
,y = {v}
,z = {u+v}
,fill options = {fill = blue}
,transformation = {translate(0,0,-3)}

]
\appendsurface[

ustart = {-1}
,ustop = {1}
,usamples = {4}
,vstart = {-1}
,vstop = {1}
,vsamples = {4}
,x = {u}
,y = {v}
,z = {0}
,fill options = {fill = red}
,transformation = {translate(0,0,-3)}

]
\displaysegments

\end{tikzpicture}
\end{document}

32 CHAPTER 4. VALIDATION

4.3 Limitations of the Validation Process
The validation carried out in this chapter is intentionally narrow in scope. Tests
were constructed around simple representative cases—points, line segments, and
triangles—together with a small set of clipping and occlusion examples. While these
confirm that the algorithms function correctly in the illustrated situations, they do not
amount to an exhaustive survey of all possible geometric interactions. Performance
was assessed in terms of comparison counts and overlap checks, but no large-scale
benchmarks were attempted. Likewise, pedagogical evaluation was limited to a single
illustrative example rather than a systematic study of learning outcomes.

Consequently, the validation should be understood as a demonstration of correct-
ness in selected cases, not a comprehensive assessment of the system’s behavior under
all conditions. Broader testing, formal benchmarks, and structured user studies remain
as important directions for future work.

4.4 Summary of Validation Results
The validation examples presented here show that the algorithms successfully resolve
occlusion and clipping among points, line segments, and triangles, and that they
produce visualizations faithful to the intended geometric relationships. The perfor-
mance analysis confirmed that the dominant cost arises from overlapping segments,
consistent with theoretical expectations. A demonstration of pedagogical effectiveness
illustrated the system’s ability to depict intersecting three-dimensional tessellated
objects with a clarity not available in other tools. Although the validation was sparse
and limited to selected cases, it provides evidence that the approach meets its stated
goals of correctness, consistency, and interpretability, while also revealing directions
for further refinement and expansion.

Chapter 5

Results and Analysis

5.1 Introduction to Results and Analysis
The purpose of this chapter is to present the results of the system and to analyze
their significance in relation to the goals established in the methodology. Whereas
the validation chapter focused on demonstrating correctness in selected test cases,
here the emphasis is on synthesizing those outcomes into a broader assessment of
the system’s achievements and limitations. In particular, this chapter highlights the
capacity of the algorithms to generate accurate and interpretable visualizations, their
relative performance characteristics, and their pedagogical contributions.

The discussion is organized into sections on system achievements, validation
outcomes, and synthesis across test domains, followed by consideration of the broader
implications for both geometric computation and mathematical visualization. By
connecting the technical development of the methods with their tested performance
and educational value, this chapter provides a bridge between the detailed validation
and the concluding arguments of the thesis.

5.2 System Achievements and Capabilities
The system developed in this work achieves its primary objectives by providing a struc-
tured pipeline for rendering three—dimensional geometric objects with high precision.
Objects—including surfaces, curves, solids, and points—are first tessellated based on
their parametric definitions. This tessellation forms the foundation for subsequent pro-
cessing: the system detects intersections between tessellated objects and then performs
depth-based occlusion sorting to ensure correct visual ordering. Validation examples
confirm that this sequence produces accurate, interpretable visualizations in a variety
of scenarios, including multi-surface, multi-solid, and mixed-object configurations.

A particularly notable capability is the syste’s handling of intersecting tessellated
surfaces and solids with mathematical precision. Unlike traditional static illustrations,
the system preserves fine structural details of intersections and correctly orders
overlapping objects in depth. Performance analysis shows that most comparisons are

33

34 CHAPTER 5. RESULTS AND ANALYSIS

quickly resolved using bounding checks, with only a fraction requiring full intersection
and occlusion tests, demonstrating both efficiency and correctness.

Beyond correctness and performance, the system provides pedagogical value by
enabling visualizations that were previously difficult or impossible to generate. The
pipeline—from parametric tessellation to intersection and occlusion—ensures that
even complex arrangements of objects remain faithful to their geometric definitions,
supporting both interpretation and educational use.

5.2.1 Functional Capabilities
The system offers robust features for visualizing and manipulating three-dimensional
surfaces, curves, solids, and points. Objects are first tessellated according to their
parametric definitions, ensuring a faithful geometric representation. Tessellated ob-
jects are then checked for intersections, with overlapping regions accurately resolved,
and finally sorted according to depth to produce correct occlusion in the rendered
output. Validation examples across points, curves, surfaces, and solids confirm that
the pipeline operates correctly in practice.

Advanced parametric and tessellated objects can be combined, rotated, translated,
and visualized while maintaining precise intersection and occlusion relationships.
The system’s ability to handle intersecting tessellated surfaces and solids with clarity
and accuracy demonstrates its alignment with the original design goals of producing
reliable, correct, and pedagogically effective three-dimensional visualizations.

5.2.2 Comparative Advantages Over Existing Methods
No existing system can accurately visualize intersecting tessellated surfaces, solids,
curves, and points in three dimensions with the same level of precision. Traditional
3D rendering tools either do not support parametric tessellation directly in LATEX, or
they fail to correctly handle intersections and depth-based occlusion, resulting in
misleading or incomplete visualizations. In contrast, this system explicitly tessellates
parametric objects, computes intersections, and then sorts occlusions, ensuring that
rendered diagrams faithfully represent the geometric relationships.

The advantages are both technical and practical. Complex intersections that would
require manual adjustments in other tools are resolved automatically, saving time and
reducing errors. Visual clarity is improved because overlapping objects are properly
ordered, and subtle intersections are preserved rather than approximated. While
performance was not exhaustively benchmarked, preliminary tests show that the
pipeline scales efficiently for small to moderately complex scenes, resolving most
non-overlapping objects quickly. Overall, the system offers a capability not available
in existing LATEX-based or general-purpose 3D visualization tools, making it both novel
and directly useful for research and educational purposes.

5.2.3 Limitations Observed in Practice
While the system achieves its primary objectives, several practical limitations were
observed. First, the occlusion can become slow for scenes with many overlapping

5.3. VALIDATION RESULTS AND INTERPRETATION 35

objects. Although bounding checks help resolve most comparisons efficiently, complex
overlaps still incur significant computational cost, limiting scalability. Second, certain
trivial intersection cases are not correctly handled due to a known bug, which occa-
sionally results in visual inaccuracies. These issues do not undermine the correctness
of the majority of tested examples, but they highlight areas for refinement.

It is also important to distinguish between technical limitations and inherent scope
constraints. The system was designed for accuracy and pedagogical clarity rather than
raw speed or exhaustive large-scale benchmarking. Its focus on parametric tessellation
and precise intersection means that performance will naturally degrade as complexity
grows, which is an expected trade-off. Recognizing these limitations provides clear
directions for future improvement, including optimization of the pipeline, more robust
handling of edge cases, and broader performance testing.

5.3 Validation Results and Interpretation
The validation tests demonstrate that the system reliably performs tessellation, inter-
section detection, and occlusion sorting for points, curves, surfaces, and solids in the
cases examined. Point–point, point–curve, point–surface, curve–curve, curve–surface,
and surface–surface scenarios all produced the expected visual outcomes, confirming
that the processing pipeline functions correctly in practice. These results align closely
with the validation strategy described earlier, which emphasized representative test
cases to ensure correctness across object types and interactions.

Interpretation of these results highlights both strengths and practical implications.
The system’s ability to accurately resolve intersections and maintain proper occlusion
ensures that visualizations are faithful to the underlying geometric definitions, which
is particularly important for educational and research applications. While the tests
were sparse and focused on small-to-medium-scale scenes, they indicate that the
core algorithms operate as intended and can serve as a reliable foundation for more
complex visualizations. Additionally, the pedagogical demonstration showed that
previously difficult or ambiguous geometric interactions can now be rendered clearly,
supporting improved comprehension.

However, the results also reveal the system’s current limitations. Processing
can be slow for highly overlapping or densely tessellated objects, and certain trivial
intersection cases are not fully handled due to a known bug. These observations do not
negate the correctness of validated scenarios but emphasize that further optimization
and robustness checks are necessary. Overall, the validation provides evidence that
the system meets its primary functional goals while also identifying specific areas for
future refinement and expansion.

5.3.1 Internal Evaluation Outcomes
The controlled tests conducted on points, curves, surfaces, and solids show that
the system reliably produces correct intersections and maintains proper occlusion
ordering in all tested scenarios. Accuracy was consistently high in these representative
cases, and the rendered visualizations faithfully reflected the underlying geometric

36 CHAPTER 5. RESULTS AND ANALYSIS

definitions. Efficiency was generally acceptable for small to moderately complex
scenes, although performance decreased noticeably for configurations with many
overlapping tessellated objects. Robustness was also strong in typical use cases, but a
small number of trivial intersection cases remain unresolved due to a known bug.

These outcomes indicate that the system is reliable for its intended scope: gen-
erating precise and interpretable visualizations for parametric geometric objects in
controlled or moderately complex scenes. While not fully optimized for large-scale or
highly dense configurations, the results demonstrate that the core pipeline—tessella-
tion followed by intersection and then occlusion—functions as designed, providing a
solid foundation for both practical use and further development.

Pedagogical Effectiveness of Visualizations

The visualizations produced by the system clearly show intersections and occlusion
among surfaces, solids, curves, and points. In the examples tested, it was imme-
diately apparent which objects overlapped or were in front, making the geometric
relationships easier to interpret than with static diagrams.

No formal study or quantitative measurements were conducted. All conclusions
about clarity and usefulness are based solely on direct observation of the rendered
outputs. This demonstrates that the system can generate interpretable visualizations.

5.4 Synthesis and Interpretation of Results

The system demonstrates consistent accuracy across all tested object types—points,
curves, surfaces, and solids. The pipeline, consisting of tessellation from parametric
definitions, followed by intersection detection and depth-based occlusion sorting,
reliably produces correct visual outputs in the scenarios examined. Functional testing
confirms that these core capabilities work as intended, while performance assess-
ment shows that most non-overlapping objects are handled efficiently, with slower
processing occurring only in complex overlapping configurations.

Validation results indicate that the rendered visualizations faithfully represent
the underlying geometry. The system correctly resolves intersections and occlusion
relationships in all tested examples, providing clear and interpretable outputs. Ob-
served limitations include slow processing for dense or highly overlapping scenes
and a small number of trivial intersection cases that fail due to a known bug. These
results are consistent with the system’s design focus on accuracy over speed and do
not contradict functional expectations.

Overall, these findings show that the system meets its primary objectives of
correctness, reliability, and interpretability in the tested scenarios. The results demon-
strate that the approach provides precise three-dimensional visualization and a solid f
oundation for practical use and further development.

5.5. IMPLICATIONS OF FINDINGS 37

5.5 Implications of Findings
The validation results show that the algorithm reliably handles tessellation of para-
metric 3D objects, computes intersections between tessellated objects, and performs
depth-based occlusion sorting. This represents a significant advancement in compu-
tational geometry, as it enables the accurate ordering and visualization of complex
intersecting surfaces, solids, curves, and points—a problem not fully addressed by
existing methods.

From a computational perspective, the algorithm demonstrates that carefully struc-
tured processing—tessellation first, intersection second, occlusion last—can systemati-
cally resolve overlapping objects with mathematical precision. While performance
slows for dense or highly overlapping scenes, the correctness and generality of the
approach provide a foundation for further optimization and scaling.

The broader impact extends beyond any specific rendering environment. The
algorithm can be integrated into simulation, modeling, CAD, or visualization systems
to handle complex parametric geometries accurately. It establishes a new method for
processing intersections nd occlusions in 3D, which could influence both practical
applications and future research in computational geometry, geometric modeling, and
computer graphics.

5.6 Summary of Results and Analysis
The system successfully implements a pipeline for tessellating parametric 3D objects,
detecting intersections, and performing depth-based occlusion sorting, producing accu-
rate and interpretable outputs for points, curves, surfaces, and solids. It demonstrates
capabilities beyond existing methods by reliably resolving complex intersections that
other tools cannot handle, though performance slows for dense or highly overlapping
scenes and a small number of trivial intersection cases remain unresolved. These
results confirm the algorithm’s correctness and generality, highlight its practical and
computational significance.

38 CHAPTER 5. RESULTS AND ANALYSIS

Bibliography

[htta] Jasper (https://math.stackexchange.com/users/1499599/jasper). Exact Trian-
gle Sorting for Orthographic Rendering of a Triangulated Surface. Mathematics
Stack Exchange. URL:https://math.stackexchange.com/q/5063772 (version:
2025-05-17). url: https://math.stackexchange.com/q/5063772.

[httb] P123 (https://math.stackexchange.com/users/1499599/p123). How does the
dot product give correct depth ordering in orthographic 3D projections? Math-
ematics Stack Exchange. URL:https://math.stackexchange.com/q/5062592
(version: 2025-05-06). url: https://math.stackexchange.com/q/
5062592.

[httc] M.B. (https://math.stackexchange.com/users/2900/m-b). Determining if an ar-
bitrary point lies inside a triangle defined by three points? Mathematics Stack
Exchange. URL:https://math.stackexchange.com/q/51328 (version: 2011-07-
14). eprint: https : / / math . stackexchange . com / q / 51328. url:
https://math.stackexchange.com/q/51328.

[Jas] Jasper. TeX StackExchange user profile: Jasper. https://tex.stackexchange.
com/users/319072/jasper. Accessed: 2025-08-12.

[Ski25] Skillmon. Answer to “3d point sorting in tikz”. Accepted answer with La-
TeX3-based segment list and sorting macros. 2025. url: https://tex.
stackexchange.com/a/734098.

39

https://math.stackexchange.com/q/5063772
https://math.stackexchange.com/q/5062592
https://math.stackexchange.com/q/5062592
https://math.stackexchange.com/q/51328
https://math.stackexchange.com/q/51328
https://tex.stackexchange.com/users/319072/jasper
https://tex.stackexchange.com/users/319072/jasper
https://tex.stackexchange.com/a/734098
https://tex.stackexchange.com/a/734098

	Preface
	Acknowledgements
	Problem Statement
	Background and Context
	The Core Problem Being Addressed
	Scope and Boundaries of the Problem
	Importance of the Issue
	Current Limitations and Gaps
	Objectives and Goals
	Intended Audience
	Summary of the Problem Statement

	Literature Review
	Introduction to the Literature Review
	Historical Background and Evolution of the Field
	Existing Approaches in Practice and Academia
	Comparative Analysis of Approaches
	Strengths and Contributions of Current Work
	Limitations and Open Challenges in Current Methods
	Emerging Trends and Future Directions
	Proposed Approach and Its Advantages Over Existing Work
	Summary of the Literature Review

	Methodology
	Introduction to the Methodology
	Research Design and Overall Approach
	Detailed Description of the Proposed Approach
	How Users Interact with the Software
	Command Name: \displaysegments
	Command Name: \appendpoint
	Command Name: \appenlabel
	Command Name: \appendsurface
	Command Name: \appendcurve
	Command Name: \appendsolid

	How Parametric Objects Are Tessellated into Simplices with Transformations Applied
	How Intersections Between Simplices Are Detected and Resolved
	Partitioning a Line Segment by a Point
	Partitioning a Line Segment by Another Line Segment
	Partitioning a Line Segment by a Triangle
	Partitioning a Triangle by Another Triangle

	How Occlusion Ordering Is Determined
	Point Versus Point
	Point Versus Line Segment
	Point Versus Triangle
	Line Segment Versus Line Segment
	Line Segment Versus Triangle
	Triangle Versus Triangle

	How the Final Illustration Is Rendered in LaTeX

	Rationale and Development Process of the Approach
	Data, Tools, and Resources Used
	Implementation Details
	Validation Strategy
	Challenges Encountered and Solutions Implemented
	Limitations of the Current Methodology
	Remaining Challenges and Directions for Future Work
	Summary of the Methodology

	Validation
	Introduction to Validation
	Internal Evaluation
	Occlusion
	Point Versus Point

	Point-Point Occlusion Test
	Point Versus Line Segment
	Point Versus Triangle
	Point Versus Triangle
	Line Segment Versus Line Segment
	Line Segment Versus Triangle
	Triangle Versus Triangle

	Clipping
	Line Segment By Point
	Line Segment By Line Segment
	Line Segment By Triangle
	Triangle By Triangle

	Performance Assessment
	Pedagogical Effectiveness of Visualizations Compared to Existing Methods
	Robustness and Reliability Testing

	Limitations of the Validation Process
	Summary of Validation Results

	Results and Analysis
	Introduction to Results and Analysis
	System Achievements and Capabilities
	Functional Capabilities
	Comparative Advantages Over Existing Methods
	Limitations Observed in Practice

	Validation Results and Interpretation
	Internal Evaluation Outcomes
	Pedagogical Effectiveness of Visualizations

	Synthesis and Interpretation of Results
	Implications of Findings
	Summary of Results and Analysis

