Typesetting multilingual documents with

ANTOMEGA *

Alexej Kryukov
March 20, 2003

Abstract

Antomega is language support package for Lambda, based on the original
omega.sty file. However, it provides some additional functionality.

1 Introduction

Moving from ETEX to 2 is always difficult for an average user, since the €2 dis-
tribution doesn’t include any language support package which could be used as
a Babel replacement. The omega.sty file, version of 1999/06/01, was released
by the developers as a first attempt to make something like ‘Omega-Babel’,
but, unfortunately, this work was not finished. Moreover, more recent versions of
omega.sty are suitable only for testing some right-to-left languages, but not for
regular work. So I prepared my own package, based on the original omega.sty,
which fixes some bugs and provides some additional functionality.

2 Installation instructions

First, download and install the 2 binaries or ensure that your TEX installation
already includes them. Unpack the archive file with ANTOMEGA and move all
files to the appropriate directories (for example, everything in /omega/lambda to
$$texmf/omega/lambda, everything in /omega/ocp to $$texmf/omega/ocp, and

so on. If you already have a file named language .dat in $$texmf/omega/lambda/base,
replace it with the provided file in case you want to get correct hyphenation for
Russian and/or Greek.

Note that ANTOMEGA still needs some files from the original Q distribution.
The most important files are utlenc.def and utlomlgc.fd. Unfortunately, these
files were not included to the most recent €2 distribution. I can’t neither include
them to my package as is (this might cause name clashes) nor rename them (since
I can’t rename the default font and the default encoding vector used in). So in
case you haven’t these files already installed you have to install them separately.
Either take them from an older TEX distribution or from the 2 CVS tree.

There are also some additional translation processes (useful mainly for type-
setting polytonic (classical) Greek), which you may want to take from old €.

*This file has version number 0.5, last revised on 18 Mar 2003.

Of course, after installing new files you have to update the TgX file names
database. Don’t forget also to rebuild the lambda format file (on teTeX or fpTeX
systems you have to run

fmtutil --byfmt lambda
Now you should be able to typeset you documents with ANTOMEGA.

3 Loading ANTOMEGA

One of the main advantages of omega.sty was using different commands for set-
ting the main language of the document and for loading additional languages.
ANTOMEGA preserves this feature, using the same \background and \load com-
mands. So if you want to prepare an English document including some Greek text,
you can do it by the same way as with omega.sty, for example:

\usepackage{antomega}
\background{english}
\load{greek}

However, omega.sty needs two different files for each language: first of them
(with the *.bgd extension) is used by the \background command, and second (with
the *lay extension) by the \load command. Of course, these two files usually
have very similar code. ANTOMEGA fixes this problem: both \background and
\load commands load the same language definition file with the .ldf extension,
but process it in a different way.

4 Typesetting in different languages

omega.sty supported only a limited set of languages, which included usenglish,
french and greek. ANTOMEGA supports the same languages, but a separate
support for usenglish is no longer available. Instead you can load english with
options dialect=british or dialect=american, for example:

\background[dialect=american]{english}

I also added the support file for Russian. Generally speaking, it is not difficult
to provide support for a new language, since language definition files are quite
independent from the core package, and so you can write a file with definitions
for your language without changing anything in antomega. sty, using the existing
df files as an example.

In the original omega package we could use for switching to another language
either an environment with the same name as a name of your language, or (for
small pieces of text) the \local<$language> macro, there <$language> is your
language name. These commands had to be defined in the language definition
file. For example, usenglish.bgd defined the usenglish environment and the
\localusenglish command.

These commands are still supported in ANTOMEGA. However, beginning
from the version 0.6 ANTOMEGA provides new language switching commands,
compatible with the Babel package. So you can use the \selectlanguage and
\foreignlanguage macros and the otherlanguage environment exactly as you
did with Babel. This means that your old documents may be transferred to 2
with minimal changes.

5 Loading languages with options

As well as the original omega.sty file, ANTOMEGA requires the keyval pack-
age. So all commands used for loading languages may be executed with different
parameters, which may take different values. Each language has its own set of
such parameters. However, some options are suitable for all supported languages.
The most important of them are input and output parameters, which replace the
inputenc and fontenc packages, used in standard IATEX.

5.1 The “input” parameter

Of course, this parameter is language-specific. However, there are two values,
which are always supported: utf-8 and ucs-2. The later really means “no con-
version”, since ucs-2 is the native format for €2. For example, if you want to type
an English document with some international symbols encoded in utf-8, you need
the following line in your A TEX preamble:

\background [input=utf-8]{english}

5.2 The “output” parameter

For this parameter you can use one of the following values: unicode, omega and
tex. unicode is used by default. Note that the omlgc font, distributed with €, is
not fully compatible with Unicode. For example, it has a specific encoding for the
Latin ligatures and the general punctuation. So you have to set output=omega if
you want to use this font, and output=unicode if you have another font, more
strictly conforming to the Unicode standard. You my want also set output=tex if
you prefer using 8-bit fonts in a standard TEX encoding (T1 for Western languages,
T2A for Russian, LGR for Greek).

For example, if you want to typeset your English text with the standard EC
fonts, but haven’t any corresponding font for Greek, you may use the following
preamble:

\documentclass{article}
\usepackage{antomega}
\background [output=tex]{english}
\load [output=omegal {greek}

6 Translation processes

Since the last €2 versions are suitable only for testing purposes, they don’t include
many useful files, originally provided by J. Plaice ang Y. Haralambous. Partic-

\LoadOCPByName

ularly some Q) translation processes were removed, and some are incorrect (e. g.
don’t correspond to the omlgc font. That’s why antomega provides its own set of
ocp and otp files, which makes it rather independent from 2’s texmf part.

For conversion to different encodings I added some new .otp and .ocp files,
which (I hope) work correctly. Version 0.6 includes also some improved transla-
tion processes for conversion from commonly used Cyrillic codepages to Unicode.
However, some original .ocp files are still necessary for antomega to work. There
also some rarely used (but still supported in antomega) files, not present neither
in antomega nor in the most recent {2 distributions. If you need them, obtain an
older 2 and take from there.

7 Selecting fonts with ANTOMEGA

Of course, it is not enough to set an input encoding for your language. You
will need also a correct font matching your encoding. With ANTOMEGA you
can select a font separately for each script you use. For example, it defines new
commands \westernrm, \westernsf and \westerntt. So, if you want to use
Computer Modern for English but prefer to keep standard omlgc for Greek, simply
put the following line in your preamble:

\renewcommand{\westernrm}{cmr}

Of course, you can write your own special packages to make selecting a new
font a bit more easy. You can even use standard font selecting packages, but, in
this case, you must load them after ANTOMEGA itself and before any language-
specific commands. For example:

\usepackage{antomega}
\usepackage{palatino}
\background{english}

8 The ANTOMEGA code

8.1 Beginning of package
1 \makeatletter

8.2 Handling QCP files

The macro \LoadOCPByName takes two arguments: an OCP file name (without
extension) and an 2 command which will be used for loading this file. If the
referenced .ocp file doesn’t exist in user’s system, id.ocp will be used instead. So
it is possible to proceed with document processing, even if some .ocp files were
not found.

2 \def\LoadOCPByName#1#2{\IfFileExists{#2.ocp}{\ocp#1=#2}{
3 \PackageWarning{antomega}{#2.ocp not found.

4 Identity will be used instead.}{}

5 \ocp#1=id}}

\NilOCP

\BasicLatinOCP

\BasicLatinUtf0OCP

\LatinUniQutOCP

Now we load some commonly used translation processes, using the macro
\LoadOCPByName.

6 \ocp\IdOCP=id

7 \LoadOCPByName{\BasicUtfUni}{uniutf2uni}
8 \LoadOCPByName{\BasicTexUni}{lat2punct}
9 \LoadOCPByName{\UniToOmega}{uni2omega}
10 \LoadOCPByName{\Uppercase}{uppercase}

11 \LoadOCPByName{\0Oldstyle}{oldstyle}

12 \LoadOCPByName{\LatinUniToTex}{uni2t1}

uni2lig.ocp is used for setting up Latin ligatures. However, the standard TEX
ligature mechanism should be a better choice, since using OCP for this purpose
may break hyphenation. So I provide an option for turning this translation process
off. Note that uni2lig.ocp is designed for pure Unicode fonts and it is never used,
if output is set to ‘omega’. In this case you can’t turn off processing ligatures via
OCP, since the omlgc font doesn’t contain ligatures at all.

13 \DeclareOption{ffi}{\Load0OCPByName{\LatinUniToLig}{uni2lig}}
14 \DeclareOption{noffi}{\LoadOCPByName{\LatinUniToLig}{id}}
15 \ExecuteOptions{ffi}

Now we can define some standard OCP lists, useful generally for languages
with Latin-based scripts.
An OCP list filled with empty translation processes.

16 \ocplist\NilOCP=

17 \addbeforeocplist 500 \IdOCP
18 \addbeforeocplist 1750 \IdOCP
19 \addbeforeocplist 2000 \IdOCP
20 \addbeforeocplist 3500 \IdOCP
21 \nullocplist

This is ANTOMEGA’s default OCP list. It doesn’t translate text to any other
character set.

22 \ocplist\BasicLatin0CP=

23 \addbeforeocplist 500 \IdOCP

24 \addbeforeocplist 1750 \BasicTexUni
25 \addbeforeocplist 2000 \IdOCP

26 \nullocplist

This OCP list should be used for utf-8 encoded texts.

27 \ocplist\BasicLatinUtf0CP=

28 \addbeforeocplist 500 \BasicUtfUni
29 \addbeforeocplist 1750 \BasicTexUni
30 \addbeforeocplist 2000 \IdOCP

31 \nullocplist

The following OCP lists are used to convert a text to an {) output.
Conversion to a Unicode font. The only operation which may be performed
here is setting up the Latin ligatures.

32 \ocplist\LatinUniOutOCP=
33 \addbeforeocplist 3500 \LatinUniToLig
34 \nullocplist

\LatinOmegaOutOCP

\LatinTex0OutOCP

\UppercaseOCP

\0ldstyleOCP

\uniencoding

\uniencodingfile

Conversion to the default omlgc font. Its encoding differs from Unicode, and
so a special conversion routine is required.

35 \ocplist\LatinOmegaOutOCP=
36 \addbeforeocplist 3500 \UniToOmega
37 \nullocplist
Conversion from Unicode to the T1 encoding.

38 \ocplist\LatinTexOutOCP=
39 \addbeforeocplist 3500 \LatinUniToTex
40 \nullocplist

Conversion to uppercase.

41 \ocplist\UppercaseOCP=
42 \addbeforeocplist 3000 \Uppercase
43 \nullocplist

This OCP list converts ASCII digits to their oldstyle equivalents. Note that it
is not compatible with the omlgc font.

44 \ocplist\0ldstyleOCP=
45 \addbeforeocplist 4000 \Oldstyle
46 \nullocplist

8.3 Setting up the default encoding

It is necessary to declare a special encoding for Omega-specific 2-byte fonts. (2
developers called it UT1.

47 \def\uniencoding{UT1}
Now we make a file name from the encoding name.

48 \edef\uniencodingfile{%
49 \lowercase{\def\noexpand\uniencodingfile{\uniencoding enc.def}}}’
50 \uniencodingfile

Unfortunately, the utlenc.def file was not included in some releases of 2. So
we check if this file exists, and either load it, or simply declare the encoding.

51 \InputIfFileExists{\uniencodingfile}{}{%
52 \DeclareFontEncoding{\uniencoding}{}{}

53 \PackageWarning{antomega}{\uniencodingfile\ not found.
54 The \uniencoding\ encoding was defined by antomega.}{}
55

56 \def\encodingdefault{\uniencoding}

8.4 Font issues

The omlgc font is not perfect, but it is included to all standard TEX distributions.
So, it will be used by default.

57 \def\rmdefault{omlgc}
Antomega stores its default font names in the \westernrm, \westernsf and

\westerntt variables, since \rmdefault, \sfdefault and \ttdefault will be
redefined each time we switch to a new language.
58 \ifx\westernrm\undefined\let\westernrm=\rmdefault\fi

59 \ifx\westernsf\undefined\let\westernsf=\sfdefault\fi
60 \ifx\westerntt\undefined\let\westerntt=\ttdefault\fi

\makeletter

The omlgc font repeats some TEXnical symbols in the range 0x80-0x0F, not
used in Unicode, to make them easy accessible. Of course, it’s a sort of hack, and
so you may prefer using these symbols in their standard positions, especially if
you don’t like the omlge font. However, the following lines, taken from original
omega.sty, may be optionally executed.

61 \DeclareOption{omlgcspecials}{

62 \def\textasciitilde{~~"~"0080}
63 \def\#{"~~~0083}

64 \def\${""""0084}

65 \def\%{""""0085}

66 \def\&{"~~"0086}

67 \def\textbraceleft{"~~"008b}
68 \def\textbackslash{~~"~"~008c}
69 \def\textbraceright{~~~"008d}
70 \def\textasciicircum{~~~"008e}
71 \def\textunderscore{"~"~"008f}}

The following \catcode settings are optional, since they are necessary only for
using 8-bit fonts. However, they are safe anyway.

72 \DeclareOption{texspecials}{
73 \catcode"15=12
74 \catcode"16=12
75 \catcode"17=12
76 \catcode"18=12
7 \catcode"19=12
78 \catcode"1A=12}

The following commands are redefined according to the real character place-
ment in the Unicode.

79 \def\S{~~""00a7}

80 \def\P{~"""00b6}

81 \def\dag{~~""2020}
82 \def\ddag{~~~"2021}
83 \def\i{"~~~0131}

Generally speaking, with € we should use translation processes rather than
active characters. So I made textasciitilde an ‘other symbol’.

84 \catcode‘\"=12

8.5 Handling character codes

We can’t get correct hyphenation for our 2-byte characters without setting
\catcode, \lccode and \uccode for each of them. The following commands
simplify making such definitions.

This command takes two arguments, the first being an uppercase character and
the second a corresponding lowercase character, and sets \lccode and \uccode
for both characters.

85 \def\makeletter#1#2{%

86 \ifnum\catcode#2=11\else\catcode#2=12 \fi
87 \ifnum\catcode#1=11\else\catcode#1=12 \fi
88 \uccode#1=#1 \uccode#2=#19,

89 \lccode#1=#2 \lccode#2=#2}

\makelcletter

\makeucletter

\makesameletter

\ant@nocodes

\ant@nopatterns

This command takes two arguments, the first being an uppercase character and
the second a corresponding lowercase character, and sets \1lccode and \uccode
for the lowercase character.

90 \def\makelcletter#1#2{%

91 \ifnum\catcode#2=11\else\catcode#2=12 \fi
92 \uccode#2=#1Y,

93 \lccode#2=#2}

This command takes two arguments, the first being an uppercase character and
the second a corresponding lowercase character, and sets \1lccode and \uccode
for the uppercase characters.

94 \def\makeucletter#1#2{/,

95 \ifnum\catcode#1=11\else\catcode#1=12 \fi
96 \uccode#1=#1Y

97 \lccode#1=#2}

This command takes two arguments, both of them being uppercase or lowercase
characters, and sets \1ccode and \uccode for character 1 equal to character 2.

98 \def\makesameletter#1#2{J

99 \ifnum\catcode#1=11\else\catcode#1=12 \fi
100 \uccode#1=\uccode#2%

101 \lccode#1=\1lccode#2}

8.6 Warnings and error messages
This command is used to show a warning message if (2 can’t find a file with
lccodes/uccodes for the specified Unicode range.

102 \ifx\PackageWarningNoLine\@undefined
103 \def\ant@nocodes#1#2#3{/,

104 \message{No file was found with symbol codes}

105 \message{for the #2 range #3.}

106 \message{You may proceed, but your #1 textsl}}

107 \message{probably will not be correctly hyphenated.}}
108 \else

109 \providecommand*{\ant@nocodes} [3]{/

110 \PackageWarningNoLine{antomegal,

111 {No file was found with symbol codes\MessageBreak
112 for the #2 range #3.\MessageBreak

113 You may proceed, but your #1 texts\MessageBreak
114 probably will not be correctly hyphenated.l}}
115 \fi

This macro is based on Babel’s \@nopatterns command. I've just changed its
name in order to avoid conflicts.

116 \ifx\PackageWarningNoLine\@undefined
117 \def\ant@nopatterns#1{J,

118 \message{No hyphenation patterns were loaded for}

119 \message{the language ‘#1°}

120 \message{I will use the patterns loaded for \string\language=0
121 instead}}

122 \else

123 \providecommand*{\ant@nopatterns}[1]{/

124 \PackageWarningNoLine{antomegal},

\ant@nolang

\local@marks

125 {No hyphenation patterns were loaded for\MessageBreak

126 the language ‘#1’\MessageBreak

127 I will use the patterns loaded for \string\language=0
128 instead}}

129 \fi

This macro defines the error message which will be displayed if the requested
language definition file was not found.

130 \ifx\PackageWarningNoLine\@undefined
131 \def\ant@nolang#1{%

132 \message{Couldn’t find file omega-#1.1df!!}}
133 \else

134 \providecommand*{\ant@nolang}[1]{%

135 \PackageWarningNoLine{antomega}

136 {Couldn’t find file omega-#1.1df!!}}

137 \fi

8.7 Different corrections for standard BETEX commands

With ©Q we usually have to control all commands which print some strings (for
example, to headers/footers or to the table of contents), so that they always apply
correct translation processes and correct font to the text they produce. However,
modifying these commands may be inconvenient if we have to use some packages
which also try to redefine them (such as hyperref). If you want to prevent
antomega from modifying these commands, load it with the nolocalmarks and
nolocaltoc options.

This command is executed every time we are switching to a new language. It
applies all rules specific for this language to the text, which is written to head-
ers/footers.

138 \DeclareOption{localmarks}{%
139 \def\local@marks#1{%
140 \def\markboth##1##2{%

141 \begingroup’%

142 \let\label\relax \let\index\relax \let\glossary\relaxy,
143 \unrestored@protected@xdef\@themarky,

144 {{\foreignlanguage{#1}{##1}}{\foreignlanguage{#1}{##2}}}%
145 \@temptokena \expandafter{\@themark}/,

146 \mark{\the\@temptokenaly,

147 \endgroup’,

148 \if@nobreak\ifvmode\nobreak\fi\fi}J

149 \def\markright##1{J,

150 \begingroup%

151 \let\label\relax \let\index\relax \let\glossary\relaxy,
152 \expandafter\@markright\@themark{\foreignlanguage{#13}}%
153 \@temptokena \expandafter{\@themark}y,

154 \mark{\the\@temptokenaly,

155 \endgroup%

156 \if@nobreak\ifvmode\nobreak\fi\fil}},

157 \def\@markright##1##2##3{\@temptokena{##11}/,

158 \unrestored@protected@xdef\@themark{{\the\@temptokenal}y
159 {{##3}}}}}

160 }

161 \DeclareOption{nolocalmarks}{\def\local@marks#1{}}

\local@contents

\oldstylenums

\oaddto

\background

The same as the \local@marks command, but for the table of contents.
162 \DeclareOption{localtoc}{\def\local@contents#1{}%
163 \def\addcontentsline##1##2##3{/,
164 \addtocontents{##1}{\protect\contentsline{##2}{%
165 \foreignlanguage{#1}{##3}}{\thepage}}}}
166 }
167 \DeclareOption{nolocaltoc}{\def\local@contents#1{}}
168 \ExecuteOptions{localmarks,localtoc}

Now we must modify \local@marks to prevent () from using incorrect trans-
lation processes.

We can use .ocp files for making letters uppercase.

169 \def\uppercase#1{{\pushocplist\UppercaseOCP#1}}
170 \let\MakeUppercase\uppercase

This command supposes that our text font contains old style numerals and
that they are mapped to their places in the Unicode Private Use area as defined
in AGL. Don’t use it with the omlgc font.

171 \def\oldstylenums#1{{\pushocplist\OldstyleOCP#1}}

This command was taken from the Babel package and renamed in order to
avoid conflicts. It is useful for modifying some language-specific commands, pre-
defined in *.1fd files.

172 \def\oaddto#1#2{%
173 \ifx#1\@undefined
174 \def#1{#2}/,

175 \else

176 \ifx#1\relax

177 \def#1{#2}%

178 \else

179 {\toks@\expandafter{#1#21}/,
180 \xdef#1{\the\toks@}}%

181 \fi

182 \fi

183 }

8.8 Loading languages

Standard commands for loading languages (the core of the antomega package).
This command requires one arguments which must be a language name and
loads it as the first language for our document.
The optional argument is a set of parameters and their values for the given
language.
184 \def\backgroung@language#1{\csname background@#1\endcsnamel}’
185 \newcommand{\background} [2] [1{%
186 \IfFileExists{omega-#2.1df}}
187 {\input{omega-#2.1df}\setkeys{#2}{#1}/

188 \AtBeginDocument{\backgroung@language{#2}1}/

189 \newenvironment{#2}[1] [1{\begin{otherlanguage} [####1]{#2}}%
190 {\end{otherlanguage}{#2}1}7

191 \expandafter\newcommand\csname local#2\endcsname[2] [1{/

192 \foreignlanguage [####1] {#23{####2}}1},

193 {\ant@nolang{#2}}}

10

\load

\common@font

\common®@language

\noextrascurrent
\originalOmega

This command takes one argument which must be a language name and loads
it in addition to the first language.

The optional argument is a set of parameters and their values for the given
language.

Both \background and \load commands are used to define a \1local<$language>
command and a <$language> environment. Commands and environments with
these names were standard way to switch languages in the original omega package,
as well as in antomega until the version 0.6. Now they are defined in terms of
standard babel-like commands.

194 \newcommand{\load} [2] [J{\IfFileExists{omega-#2.1df}
195 {\input{omega-#2.1df}\setkeys{#2}{#11}7,
196 \newenvironment{#2} [1] [1{\begin{otherlanguage} [####1]{#2}}%

197 {\end{otherlanguage}{#2}}
198 \expandafter\newcommand\csname local#2\endcsname[2] []J{%
199 \foreignlanguage [####1] {#2}{####2}}}

200 {\ant@nolang{#2}}}

8.9 Default values for language-specific settings

First we define some standard values for the punctuation commands, used by
lat2punct.otp. The command names are self-explanative.

201 \def\common@punctuation{y

202 \def\LeftDoubleQuotationMark{~~"~"201c}%

203 \def\RightDoubleQuotationMark{~"~""201d}%

204 \def\LeftPointingDoubleAngleQuotationMark{~""~"00abl}/,
205 \def\RightPointingDoubleAngleQuotationMark{""~""00bb}%
206 \def\GermanLeftDoubleQuotationMark{~~"~"201e}’

207 \def\GermanRightDoubleQuotationMark{~~~"201c}%

208 \def\QuestionMark{?}%

209 \def\ExclamationMark{!}/,

210 \def\InvertedQuestionMark{"~"~"00bf}}

211 \def\InvertedExclamationMark{~~"~"00a1}},

212 \def\Semicolon{;}%

213 \def\Colon{:3}%

214 \def\NonBreakingSpace{\leavevmode\nobreak\ }}

The \common@font macro will be used at the beginning of the document and
also each time we should return to the default fonts (e. g. before switching to
another language).

215 \def \common@f ont{\normalfont\fontfamily{\westernrm}y,

216 \fontencoding{\uniencoding}\selectfont,

217 \let\rmdefault=\westernrm\let\sfdefault=\westernsf

218 \let\ttdefault=\westerntt\let\encodingdefault=\uniencoding}

This macro is used for enabling default hyphenation patterns.

219 \def \common@language{%
220 \protect\language=0%
221 \lefthyphenmin=2\righthyphenmin=3}

The \originalOmega macro is used to switch all settings, which could be
modified by the language switching commands, to their default values.

222 \def\noextrascurrent#1{\Q@ifundefined{noextras@#1}{1}%

11

\foreignlanguage

\selectlanguage

otherlanguage

223 {\csname noextras@#1\endcsname}}
224 \def\originalOmega{\@ifundefined{languagename}{}%

225 {\noextrascurrent{\languagenamel}}/
226 \common@language?,
227 \common@punctuationy,

228 \common@fonty

229 \clearocplists}

230 }

231 \AtBeginDocument{\originalOmega}

8.10 Language switching commands

\foreignlanguage have to be redefined, so we have to unset it first, if necessary.

232 \@ifundefined{foreignlanguage}{}%
233 {\let\foreignlanguage\@undefined}

This macro works exactly as Babel’s \foreignlanguage command, but it takes
3 arguments. The first (optional) argument allows to set any options, defined in
the support file for the given language. The second argument is languages’s name
itself, and the third — the piece of text, which should be typeset in this language.

234 \newcommand{\foreignlanguage}[3] []1{%

235 \@ifundefined{inlineextras@#2}{\ant@nolang{#2}}
236 {{\def\languagename{#2}\setkeys{#2}{#1}%

237 \csname inlineextras@#2\endcsname#3}}}

\selectlanguage have to be redefined too.

238 \@ifundefined{selectlanguage}{}/
239 {\let\selectlanguage\@undefined}

This macro works exactly as Babel’s \selectlanguage command, but it takes
2 arguments. The second argument is languages’s name itself, and the first (op-
tional) allows to set any options, defined in the support file for the given language.

240 \newcommand{\selectlanguage} [2] [1{/

241 \originalOmega

242 \@ifundefined{blockextras@#2}{\ant@nolang{#2}}/
243 {\def\languagename{#2}\setkeys{#2}{#11}J

244 \csname blockextras@#2\endcsname}}

We have to redefine the otherlanguage environment as well.

245 \@ifundefined{otherlanguage}{}%

246 {\let\otherlanguage\@undefined}
247 \@ifundefined{endotherlanguage}{}%
248 {\let\endotherlanguage\@undefined}

This environment works exactly as Babel’s otherlanguage environment. The
only difference is that is has an optional argument allowing to set any options,
defined in the .1df file.

249 \newenvironment{otherlanguage} [2] [1{/
250 \@ifundefined{blockextras@#2}{\ant@nolang{#2}}
251 {\setkeys{#2}{#1}\csname blockextras@#2\endcsname}}{}

12

8.11 Processing options

252 \ProcessOptions

8.12 End of package

253 \makeatother

13

