
Kapteyn Package Documentation
Release 2.2

Hans Terlouw
Martin Vogelaar

April 28, 2012

Contents

I Obtaining and using the package 1

1 Introduction 3
1.1 Overview . 3
1.2 Prerequisites . 4
1.3 Download . 4
1.4 Installing . 4
1.5 Contact . 5

2 How to start 7
2.1 Introduction . 7
2.2 Which module and documents to use? . 7
2.3 Functionality of the modules in the Kapteyn Package . 8

3 License 11
3.1 Kapteyn Package . 11
3.2 SciPy modules . 12
3.3 WCSLIB . 12
3.4 MPFIT . 13

4 Release notes 15
4.1 Version 2.2.1 (being developed) . 15
4.2 Version 2.2 (Apr 19, 2012) . 15
4.3 Version 2.1 (Feb 14, 2011) . 15
4.4 Version 2.0.2 (Sep 16, 2010) . 17
4.5 Version 2.0.1 (Aug 11, 2010) . 17
4.6 Version 2.0 (Jul 16, 2010) . 17
4.7 Version 1.9.2 (Jul 12, 2010) . 17
4.8 Version 1.9.1 (Feb 25, 2010) . 18
4.9 Version 1.9 (Jan 16, 2010) . 18

II Module reference 19

5 Module wcs 21
5.1 Introduction . 21
5.2 Coordinates . 21
5.3 Class Projection . 21
5.4 Class Transformation . 26
5.5 Functions . 27
5.6 Constants . 28
5.7 Error handling . 29

i

6 Module Celestial 31
6.1 Sky definitions . 31
6.2 Module level data . 34
6.3 Classes . 34
6.4 Core Functions . 36
6.5 Utility functions . 40
6.6 Rotation matrices . 45
6.7 Functions related to E-terms . 50

7 Module wcsgrat 53
7.1 Module level data . 53
7.2 Functions . 54
7.3 Class Graticule . 55
7.4 Class Insidelabels . 69

8 Module maputils 71
8.1 Introduction . 71
8.2 Module level data . 73
8.3 Prompt functions . 74
8.4 Utility functions . 77
8.5 Class FITSimage . 77
8.6 Class Annotatedimage . 93
8.7 Class Image . 113
8.8 Class Contours . 113
8.9 Class Colorbar . 114
8.10 Class Beam . 115
8.11 Class Skypolygon . 115
8.12 Class Marker . 115
8.13 Class Pixellabels . 115
8.14 Class Colmaplist . 116
8.15 Class FITSaxis . 117
8.16 Class Positionmessage . 118
8.17 Class MovieContainer . 118

9 Module positions 121
9.1 Introduction . 122
9.2 How to use this module . 123
9.3 Position syntax . 124
9.4 Functions . 134

10 Module rulers 137

11 Module shapes 141
11.1 Utility functions . 143

12 Module tabarray 145
12.1 Class tabarray . 145
12.2 Functions . 147
12.3 Example . 147

13 Module mplutil 149
13.1 Class AxesCallback . 149
13.2 Class CanvasCallback . 150
13.3 Class TimeCallback . 151
13.4 Class VariableColormap . 152
13.5 Key press filter . 154
13.6 GIPSY keyword event connection . 154
13.7 Matplotlib backends work-arounds . 154

ii

14 Module kmpfit 155
14.1 Introduction . 155
14.2 Class Fitter . 155
14.3 Function simplefit . 160

15 Module profiles 161
15.1 Function . 161
15.2 Reference . 161

16 SciPy modules 163

III Tutorials 165

17 Tutorial wcs module 167
17.1 Introduction . 167
17.2 Coordinate representations . 167
17.3 NumPy arrays and matrices . 175
17.4 Attributes . 177
17.5 Invalid coordinates . 179
17.6 Reading data from a FITS file . 180
17.7 Celestial transformations with wcs . 182
17.8 Spectral transformations . 189
17.9 References . 197

18 Tutorial maputils module 199
18.1 Introduction . 199
18.2 Maputils basics . 200
18.3 FITS files . 200
18.4 Prompt functions . 204
18.5 Image objects . 205
18.6 Graticules . 209
18.7 Rulers . 238
18.8 Contours . 243
18.9 Colorbar . 247
18.10 Adding pixel coordinate labels . 253
18.11 Adding a beam . 254
18.12 Markers . 255
18.13 Sky polygons . 256
18.14 Combining different plot objects . 264
18.15 External headers and/or data . 265
18.16 Re-projections and image overlays . 271
18.17 Plotting markers from file . 279
18.18 Mosaics of plots . 283
18.19 Interaction with the display . 288
18.20 Glossary . 299

19 Least squares fitting with kmpfit 301
19.1 Introduction . 301
19.2 A Basic example . 308
19.3 Function simplefit() . 311
19.4 Standard errors of best-fit values . 313
19.5 Goodness of fit . 327
19.6 Profile fitting . 330
19.7 Fitting data when both variables have uncertainties . 341
19.8 Confidence- and prediction intervals . 351
19.9 Special topics . 354
19.10 Glossary . 363
19.11 References . 365

iii

20 Tutorial tabarray module 367
20.1 Introduction . 367
20.2 Simple interface functions . 367
20.3 Tabarray objects and methods . 369
20.4 Glossary . 370

IV Examples 371

21 All sky plots and graticules 373
21.1 All Sky plots . 373
21.2 All sky plot gallery . 375
21.3 Source code of the service module . 437

V Background information 441

22 Background information module celestial 443
22.1 Rotation matrices . 443
22.2 FK4 . 444
22.3 FK4 and the elliptic terms of aberration . 444
22.4 Transformations between the reference systems FK4 and FK5 448
22.5 Radio maps . 450
22.6 Galactic Coordinates . 452
22.7 Supergalactic coordinates . 453
22.8 Ecliptic coordinates . 454
22.9 ICRS, Dynamical J2000 and FK5 . 454
22.10 Composing other transformations . 456
22.11 Defaults in relation to FITS . 458
22.12 Glossary . 458
22.13 References . 459

23 Background information spectral translations 461
23.1 Introduction . 461
23.2 Alternate headers for a spectral line example . 461
23.3 Alternative conversions . 475
23.4 Legacy headers . 476
23.5 WCSLIB in a GIPSY task . 497

Bibliography 499

Index 503

iv

Part I

Obtaining and using the package

1

CHAPTER 1

Introduction

The Kapteyn Package is a collection of Python modules and applications developed by the computer group of
the Kapteyn Astronomical Institute, University of Groningen, The Netherlands. The purpose of the package is to
provide tools for the development of astronomical applications with Python.

The package is suitable for both inexperienced and experienced users and developers and documentation is pro-
vided for both groups. The documentation also provides in-depth chapters about celestial transformations and
spectral translations.

Some of the package’s features:

• The handling of spatial and spectral coordinates, WCS projections and transformations between different
sky systems. Spectral translations (e.g., between frequencies and velocities) are supported and also mixed
coordinates. (Modules wcs and celestial)

• Versatile tools for writing small and dedicated applications for the inspection of FITS headers, the extraction
and display of (FITS) data, interactive inspection of this data (color editing) and for the creation of plots with
world coordinate information. (Module maputils) As one example, a gallery of all-sky plots is provided.

• A class for the efficient reading, writing and manipulating simple table-like structures in text files. (Module
tabarray)

• Utilities for use with matplotlib such as obtaining coordinate information from plots, interactively modifi-
able colormaps and timer events (module mplutil); tools for parsing and interpreting coordinate information
entered by the user (module positions).

1.1 Overview

The following modules are included:

• wcs, a binary module which handles spatial and spectral coordinates and provides WCS projections and
transformations between different sky systems. Spectral translations (e.g., between frequencies and veloci-
ties) are supported and also mixed coordinates.

• celestial, containing NumPy-based functions for creating matrices for transformation between different
celestial systems. Also a number of other utility functions are included.

• wcsgrat, for calculating parameters for WCS graticules. It does not require a plot package.

• maputils. Provides methods for reading FITS files. It can extract 2-dim image data from data sets with
three or more axes. A class is added which prepares FITS data to plot itself as an image with Matplotlib.

• positions, enabling a user/programmer to specify positions in either pixel- or world coordinates.

• rulers, defining a class for drawing rulers.

• shapes, defining a class for interactively drawing shapes that define an area in an image. For each area a
number of properties of the data is calculated. This module can duplicate a shape in different images using
transformations to world coordinates. This enables one for instance to compare flux in two images with
different WCS systems.

3

http://www.astro.rug.nl

Kapteyn Package Documentation, Release 2.2

• mplutil, utilities for use with matplotlib. Classes AxesCallback, providing a more powerful mechanism
for handling events from LocationEvent and derived classes than matplotlib provides itself; TimeCallback
for handling timer events and VariableColormap which implements a matplotlib Colormap subclass with
special methods that allow the colormap to be modified.

• kmpfit, providing a class and a function for non-linear least-squares fitting, using the Levenberg-
Marquardt technique. It is based on the implementation in C of Craig Markwardt’s MPFIT.

• tabarray, providing a class for the efficient reading, writing and manipulating simple table-like structures
in text files.

1.2 Prerequisites

To install the Kapteyn Package, at least Python 1 2.4 and NumPy 2 (both with header files) are required. For using
it, the availability of PyFITS 3 and matplotlib 4 is recommended. Windows users may also need to install Readline
5 or an equivalent package.

Mark Calabretta’s WCSLIB 6 does not need to be installed separately anymore. Its code is now included in the
Kapteyn Package under the GNU Lesser General Public License.

1.3 Download

The Kapteyn Package and the example scripts can be downloaded via links on the package’s homepage:
http://www.astro.rug.nl/software/kapteyn/

1.4 Installing

First unpack the downloaded .tar.gz or .zip file and go to the resulting directory. Then one of the following options
can be chosen:

1. Install into your Python system (you usually need root permission for this):

python setup.py install

2. If you prefer not to modify your Python installation, you can create a directory under which to install the
module e.g., mydir. Then install as follows:

python setup.py install --install-lib mydir

To use the package you then need to include mydir in your PYTHONPATH.

3. If you want to use this package only for GIPSY, you can install it as follows:

python setup.py install --install-lib $gip_exe

The GIPSY installation procedure normally does this automatically, so usually this will not be necessary.

1 http://www.python.org/
2 http://numpy.scipy.org/
3 http://www.stsci.edu/resources/software_hardware/pyfits
4 http://matplotlib.sourceforge.net/
5 http://newcenturycomputers.net/projects/readline.html
6 http://www.atnf.csiro.au/people/mcalabre/WCS/

4 Chapter 1. Introduction

http://www.python.org/
http://numpy.scipy.org/
http://www.stsci.edu/resources/software_hardware/pyfits
http://matplotlib.sourceforge.net/
http://newcenturycomputers.net/projects/readline.html
http://www.atnf.csiro.au/people/mcalabre/WCS/
http://www.astro.rug.nl/software/kapteyn/
http://www.python.org/
http://numpy.scipy.org/
http://www.stsci.edu/resources/software_hardware/pyfits
http://matplotlib.sourceforge.net/
http://newcenturycomputers.net/projects/readline.html
http://www.atnf.csiro.au/people/mcalabre/WCS/

Kapteyn Package Documentation, Release 2.2

1.4.1 Windows installer

An experimental installer for Microsoft Windows (together with other packages that the Kapteyn
Package depends on) is also available. Currently only for Python 2.6 on 32-bit systems.
http://www.astro.rug.nl/software/kapteyn_windows/

1.4.2 Scisoft problem

If you have Scisoft installed on your computer, it may interfere with the installation of the Kapteyn Package. To
install it properly, disable the setup of Scisoft in your startup file (e.g. ~/.cshrc, .profile) by commenting it out.

1.4.3 Mac OS X Compiler problem

There is a known problem with Apple’s llvm-gcc-4.2 compiler. This compiler is known to crash with an internal
compiler error (Segmentation fault: 11) when WCSLIB routine wcserr.c is compiled. For this reason, setup.py
tries to detect this compiler and use the clang compiler instead. If compilation still fails, one could try to prefix a
shell variable definition to the install command like this:

export CC=CLANG; python setup.py install ...

1.5 Contact

The authors can be reached at:

Kapteyn Astronomical Institute
Postbus 800
NL-9700 AV Groningen
The Netherlands
Telephone: +31 50 363 4073
E-mail: gipsy@astro.rug.nl

1.5. Contact 5

http://www.astro.rug.nl/software/kapteyn_windows/
mailto:gipsy@astro.rug.nl

Kapteyn Package Documentation, Release 2.2

6 Chapter 1. Introduction

CHAPTER 2

How to start

2.1 Introduction

This chapter is intended to be a guide on how to use the modules from the Kapteyn Package for your own astro-
nomical software. The Kapteyn Package provides building blocks for software that has a focus on the use of world
coordinates and/or plotting image data.

To get an overview of what is possible, have a look at Tutorial maputils module which contains many examples of
world coordinate annotations and plots of astronomical data. It can be a good starting point to use the source code
in the example scripts to process your own data by making only small changes to the code.

If you are only interested in coordinate transformations, then the Tutorial wcs module is a good starting point.

2.2 Which module and documents to use?

You want: You need:
For a set of world coordinates, I want to transform these to another
projection system. I have a FITS header.

wcs, Tutorial wcs module

I want to transform world coordinates between sky- and reference sys-
tems

wcs, Tutorial wcs module

I want a parser to convert a string with position information to pixel-
and/or world coordinates.

positions

I want to transform image data in a FITS file from one projection system
to another

maputils, Tutorial maputils
module

I want to build a utility that converts a header with a PC or CD matrix
to a ‘classic’ header with CRPIX, CRVAL, CDELT and CROTA

maputils, Tutorial maputils
module

I want to create a utility that can display a mosaic of image data maputils, Tutorial maputils
module

I want to plot an all sky map with graticules maputils, Tutorial maputils
module

I want to calculate flux in a set of images maputils, shapes, Tutorial
maputils module

I want to create a simple FITS file viewer with user interaction for the
colors etc.

maputils, Tutorial maputils
module

I want to read a large data file very fast tabarray, Tutorial tabarray
module

Given a year, month and day number, I want the corresponding Julian
date

celestial, Tutorial wcs module

I want to know the obliquity of the ecliptic at a Julian date? celestial, Tutorial wcs mod-
ule, Background information mod-
ule celestial

I want to convert my spectral axis from frequency to relativistic velocity wcs, Tutorial maputils module,
Background information spectral
translations

7

Kapteyn Package Documentation, Release 2.2

2.3 Functionality of the modules in the Kapteyn Package

2.3.1 Wcs

• Given a FITS header or a Python dictionary with header information about a World Coordinate System
(WCS), transform between pixel- and world coordinates.

• Different coordinate representations are possible (tuple of scalars, NumPy array etc.)

• Transformations between sky and reference systems.

• Epoch transformations

• Support for ‘alternate’ headers (a header can have more than one description of a WCS)

• Support for mixed coordinate transformations (i.e. pixel- and world coordinates at input are mixed).

• Spectral coordinate translations, e.g. convert a frequency axis to an optical velocity axis.

2.3.2 Celestial

• Coordinate transformations between sky and reference systems. Also available via module wcs

• Epoch transformations. Also available via module wcs

• Many utility functions e.g. to convert epochs, to parse strings that define sky- and reference systems,
calculate Julian dates, precession angles etc.

2.3.3 Wcsgrat

• Most of the functionality in this module is provided via user friendly methods in module maputils.

• Calculate grid lines showing constant latitude as function of varying longitude or vice versa.

• Methods to set the properties of various plot elements like tick marks, tick labels and axis labels.

• Methods to calculate positions of labels inside a plot (e.g. for all sky plots).

2.3.4 Maputils

• Easy to combine with Matplotlib

• Convenience methods for methods of modules wcs, celestial, wcsgrat

• Overlays of different graticules (each representing a different sky system),

• Plots of data slices from a data set with more than two axes (e.g. a FITS file with channel maps from a radio
interferometer observation)

• Plots with a spectral axis with a ‘spectral translation’ (e.g. Frequency to Radio velocity)

• Rulers with distances in world coordinates, corrected for projections.

• Plots for data that cover the entire sky (allsky plot)

• Mosaics of multiple images (e.g. HI channel maps)

• A simple movie loop program to view ‘channel’ maps.

• Interactive colormap selection and modification.

2.3.5 Positions

• Convert strings to positions in pixel- and world coordinates

8 Chapter 2. How to start

Kapteyn Package Documentation, Release 2.2

2.3.6 Rulers

• Plot a straight line with markers at constant distance in world coordinates. Its functionality is available in
module maputils

2.3.7 Shapes

• Advanced plotting with user interaction. A user defines a shape (polygon, ellipse, circle, rectangle, spline)
in an image and the shape propagates (in world coordinates) to other images. A shape object keeps track of
its area (in pixels) and the sum of the pixels within the shape. From these a flux can be calculated.

2.3.8 Tabarray

• Fast I/O for data in ASCII files on disk.

2.3.9 Mplutil

• Various advanced utilities for event handling in Matplotlib. Most of its functionality is used in module
maputils.

2.3. Functionality of the modules in the Kapteyn Package 9

Kapteyn Package Documentation, Release 2.2

10 Chapter 2. How to start

CHAPTER 3

License

3.1 Kapteyn Package

The Kapteyn Package is provided under the following license:

Copyright (c) 2010-2012, Kapteyn Astronomical Institute, University
of Groningen. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the Kapteyn Astronomical Institute nor the names
of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3.1.1 How to cite the package

If you have used the Kapteyn Package in the preparation of a publication, you may cite it as follows (BibTeX
format):

@MANUAL{KapteynPackage,
organization = "{Kapteyn Astronomical Institute}",
author = {{Terlouw}, J.~P. and {Vogelaar}, M.~G.~R.},
title = "{Kapteyn Package, version 2.2}",
year = 2012,
month = apr,

11

Kapteyn Package Documentation, Release 2.2

address = "Groningen",
note = "Available from \url{http://www.astro.rug.nl/software/kapteyn/}"

}

3.2 SciPy modules

To the modules included from the SciPy package, the following license applies:

Copyright (c) 2001, 2002 Enthought, Inc.
All rights reserved.

Copyright (c) 2003-2009 SciPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

a. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

c. Neither the name of the Enthought nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

3.3 WCSLIB

WCSLIB, which is included in the Kapteyn Package’s distribution, is provided under the following license:

WCSLIB 4.13 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2012, Mark Calabretta

WCSLIB is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see <http://www.gnu.org/licenses/>.

12 Chapter 3. License

Kapteyn Package Documentation, Release 2.2

Correspondence concerning WCSLIB may be directed to:
Internet email: mcalabre@atnf.csiro.au
Postal address: Dr. Mark Calabretta

Australia Telescope National Facility, CSIRO
PO Box 76
Epping NSW 1710
AUSTRALIA

3.4 MPFIT

MPFIT’s implementation in C, of which a modified version is included, is provided under the following license:

MPFIT: A MINPACK-1 Least Squares Fitting Library in C

Original public domain version by B. Garbow, K. Hillstrom, J. More’
(Argonne National Laboratory, MINPACK project, March 1980)
Copyright (1999) University of Chicago
(see below)

Tranlation to C Language by S. Moshier (moshier.net)
(no restrictions placed on distribution)

Enhancements and packaging by C. Markwardt
(comparable to IDL fitting routine MPFIT
see http://cow.physics.wisc.edu/~craigm/idl/idl.html)
Copyright (C) 2003, 2004, 2006, 2007 Craig B. Markwardt

This software is provided as is without any warranty whatsoever.
Permission to use, copy, modify, and distribute modified or
unmodified copies is granted, provided this copyright and disclaimer
are included unchanged.

Source code derived from MINPACK must have the following disclaimer
text provided.

===
Minpack Copyright Notice (1999) University of Chicago. All rights reserved

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

3. The end-user documentation included with the
redistribution, if any, must include the following
acknowledgment:

"This product includes software developed by the
University of Chicago, as Operator of Argonne National
Laboratory.

3.4. MPFIT 13

Kapteyn Package Documentation, Release 2.2

Alternately, this acknowledgment may appear in the software
itself, if and wherever such third-party acknowledgments
normally appear.

4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
BE CORRECTED.

5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGES.

14 Chapter 3. License

CHAPTER 4

Release notes

4.1 Version 2.2.1 (being developed)

4.2 Version 2.2 (Apr 19, 2012)

• Class maputils.FITSimage:

– Method header2classic() returns a tuple with three elements. The last one used to be a boolean but it
is now a list with FITS keywords that have been changed.

• Class rulers.Ruler:

– now supports rulers specified by a start position, a size and an angle w.r.t. the North.

– new method set_title() for labeling a ruler.

• Module mplutil:

– new class CanvasCallback.

– work-around to add support for resize events to matplotlib’s Qt4Agg backend.

– work-around for matplotlib’s (>=1.1.0) changed callback registry.

• WCSLIB:

– changed to version 4.13.4

– use WCSLIB’s new error diagnostics system

• New module kmpfit:

– provides new class Fitter for solving least-squares problem using the Levenberg-Marquardt technique.
It is based on the implementation in C of Craig Markwardt’s MPFIT routines.

• Documentation:

– several improvements.

4.3 Version 2.1 (Feb 14, 2011)

• Class wcs.Projection:

– added attribute category

– fixed ZPN projection related problem in method mixed()

– minimal FITS headers are now accepted

– added support for grid coordinates, i.e., CRPIX-relative pixel coordinates. Methods pixel2grid() and
grid2pixel().

15

Kapteyn Package Documentation, Release 2.2

– added method str2pos() for converting positions represented as strings to world- and pixel coordinates.

• Module maputils:

– added new class Skypolygon for plotting shapes like ellipses, rectangles and regular polygons. For
these shapes angles and distances along a great circle are preserved. This class can be used for example
to draw footprints on all-sky plots or a beam to show the resolution of an instrument.

– improved position information in toolbar. Message format can be changed by user/programmer.

– support for RGB images. RGB values are displayed in message toolbar.

– class FITSimage: improved versions of header2classic() and reproject_to() methods; new
slice2world() method prints information about slice positions (annotate 2d maps from a 3d data cube).

– catch error if event.key is None for Caps Lock keys

– get rid of ‘new’ keyword in histogram

– blur defaults improved

– str_header() method was unable to print dictionary (external) headers. Fixed.

• Module mplutil:

– work-around for special keys which are defined in matplotlib’s GTKAgg backend but ‘missing’ from
the Qt4Agg backend. The following keys are made available: ‘pageup’, ‘pagedown’, ‘left’, ‘right’,
‘up’, ‘down’, ‘home’, ‘end’.

• Module positions:

– units 1/... and /... also recognized. Can be used for spectral translations that transform to e.g. AWAV.

– introduced ‘?’ character as wildcard for units.

– introduced case insensitive minimal match for ‘UNITS’ as a replacement for header units.

– all column, row and line numbers now start with 1.

• Module shapes:

– messages for toolbar improved.

– changed conversion routine to support shapes on maps with only one spatial axis (e.g. position-velocity
maps).

– GUI improved.

– improved writing shape data to file.

– catch error if event.key is None for Caps Lock keys

– improved moving objects (from within any point within the ellipse)

– improved rotation ellipse

– improved sampling on ellipse

– added rotation to rectangles

– changed writing position to terminal with left mouse button to combination of left mouse button and
shift key. This prevents interference with module shapes where one drags a shape with the left mouse
button.

• Module wcsgrat:

– fixed bug with precision in seconds.

– use positions module to evaluate expressions for startx and starty parameter in Graticule class.

– use positions module to evaluate expressions for deltax and deltay parameter in Graticule class.

– introduced a syntax to set labels in LaTeX in exponential format.

– sexagesimal labeling with h, m, s characters or with superscripts with Boolean parameter texsexa.

16 Chapter 4. Release notes

Kapteyn Package Documentation, Release 2.2

– allow Graticule parameter unitsx and unitsy also to be applied to non-offset axes. (Examples in ma-
putils tutorial).

– minutes and seconds labeling for negative declinations get ‘-‘ sign

– center of offset axis can be changed with parameter startx, starty and a string as argument.

– Right Ascension labels in TeX (hms) now have better alignment.

• New module profiles:

– added function gauest() for estimating gaussian components in a profile. These estimates can e.g.
subsequently be used as initial estimates for a least squares fit.

• WCSLIB: changed to version 4.7 (from 4.5)

4.4 Version 2.0.2 (Sep 16, 2010)

• Class wcs.Projection:

– allow for FITS headers that incorrectly represent EQUINOX as a string

– added support for AIPS keyword VELREF

• Function mplutil.gipsy_connect() connects GIPSY keyword events to Matplotlib event loop.

• Added Microsoft Windows support.

4.5 Version 2.0.1 (Aug 11, 2010)

• WCSLIB 4.5 included in distribution so it does not need to be separately installed anymore.

4.6 Version 2.0 (Jul 16, 2010)

• Class wcs.Projection:

– added method inside().

4.7 Version 1.9.2 (Jul 12, 2010)

• Function wcs.coordmap(): added arguments dst_shape, dst_offset and src_offset.

• Class wcs.Projection:

– fixed bug in class WrappedHeader.

– allow for WSRT files with topocentric frequencies (via class WrappedHeader)

– added attribute altspecarg.

• Added modules rulers and shapes.

• Included SciPy modules filters and interpolation. The latter was slightly modified.

4.4. Version 2.0.2 (Sep 16, 2010) 17

Kapteyn Package Documentation, Release 2.2

4.8 Version 1.9.1 (Feb 25, 2010)

• Class wcs.Projection:

– added attribute euler.

– fixed bug in method mixed()

• Class mplutil.VariableColormap:

– added NumPy array as possible source.

– added method set_length()

4.9 Version 1.9 (Jan 16, 2010)

• First public release.

18 Chapter 4. Release notes

Part II

Module reference

19

CHAPTER 5

Module wcs

Author: Hans Terlouw <gipsy@astro.rug.nl>

5.1 Introduction

This Python module interfaces to Mark Calabretta’s WCSLIB and also provides a self-contained suite of celestial
transformations. The WCSLIB routines “implement the FITS World Coordinate System (WCS) standard which
defines methods to be used for computing world coordinates from image pixel coordinates, and vice versa.” The
celestial transformations have been implemented in Python, using NumPy, and support equatorial and ecliptic
coordinates of any epoch and reference systems FK4, FK4-NO-E, FK5, ICRS and dynamic J2000, and galactic
and supergalactic coordinates.

5.2 Coordinates

Coordinates can be represented in a number of different ways:

• as a tuple of scalars, e.g. (ra, dec).

• as a tuple of lists or NumPy arrays, e.g. ([ra_1, ra_2, ...], [dec_1, dec_2, ...], [vel_1, vel_2, ...]).

• as a NumPy matrix. The standard representation is a matrix with column vectors, but row vectors are also
supported.

• as a NumPy array. This array can have any shape. The individual coordinate components are stored con-
tiguously along the last axis.

• as a list of tuples. Every tuple represents one position, e.g. [(ra_1, dec_1), (ra_2, dec_2), ...].

Results delivered by the transformations done by the classes described below will have the same representation as
their inputs. NumPy arrays and matrices will always be returned as type ‘f8’ (64 bit).

5.3 Class Projection

class wcs.Projection(source[, rowvec=False, skyout=None, usedate=False, gridmode=False, al-
ter=’‘])

Parameters

• source – a Python dictionary or dictionary-like object containing FITS-style keys and
values, e.g. a header object from PyFITS.

• rowvec – indicates whether input and output coordinates, when given as NumPy matri-
ces, will be row vectors instead of the standard column vectors. True or False.

21

mailto:gipsy@astro.rug.nl
http://www.atnf.csiro.au/people/mcalabre/WCS/

Kapteyn Package Documentation, Release 2.2

• skyout – can be used to specify a system different from the sky system specified
by the projection. This can be given as a string e.g., "equatorial fk4_no_e
B1950.0" or as a tuple: (equatorial fk4_no_e ’B1950.0’). For a com-
plete description see: Sky definitions.

• usedate – indicates whether the date of observation is to be used for the appropriate
celestial transformations. True or False.

• gridmode – True or False. If True, the object will use grid coordinates instead of pixel
coordinates. Grid coordinates are CRPIX-relative pixel coordinates, e.g. used in GIPSY.
If CRPIX is not integer, the nearest integer is used as reference.

• alter – an optional letter from ‘A’ through ‘Z’, indicating an alternative WCS axis de-
scription.

Methods:

toworld(pixel)
Pixel-to-world transformation. pixel is an object containing one or more pixel coordinates and a similar
object with the corresponding world coordinates will be returned. Note that FITS images are indexed
from (1,1), not from (0,0) like Python arrays. Coordinates can be specified in a number of different
ways. See section Coordinates. When an exception due to invalid coordinates has occurred, this
method can be called again without arguments to retrieve the result in which the invalid positions will
have the value numpy.NaN (“not a number”).

topixel(world)
World-to-pixel transformation. Similar to toworld(), this method can also be called without argu-
ments.

toworld1d(pixel)
Simplified method for one-dimensional projection objects. Its argument can be a list, a tuple, an array
or a scalar. An object of the same class will be returned.

topixel1d(world)
Simplified method for one-dimensional projection objects. Its argument can be a list, a tuple, an array
or a scalar. An object of the same class will be returned.

mixed(world, pixel[, span=None, step=0.0, iter=7])
Hybrid transformation.

When either the celestial longitude or latitude plus an element of the pixel coordinate is given, the
remaining elements are solved by iteration on the unknown celestial coordinate. Which elements are
to be solved, is indicated by assigning NaN to those elements. In case of multiple coordinates, the same
elements must be indicated for every coordinate. This operation is only possible for the projection’s
“native” sky system. When a different sky system has been specified, an exception will be raised.
When either both celestial coordinates or both pixel coordinates are given, an operation equivalent to
topixel() or toworld() is performed. For non-celestial coordinate elements any NaN value will
be replaced by a value derived from the corresponding element in the other coordinate.

•span – a sequence containing the solution interval for the celestial coordinate, in degrees. The
ordering of the two limits is irrelevant. Longitude ranges may be specified with any convenient
normalization, for example [-120,+120] is the same as [240,480], except that the solution will
be returned with the same normalization, i.e. lie within the interval specified. The default is the
appropriate CRVAL value ±15°.

•step – step size for solution search, in degrees. If zero, a sensible, although perhaps non-optimal
default will be used.

•iter – if a solution is not found then the step size will be halved and the search recommenced. iter
controls how many times the step size is halved. The allowed range is 5 - 10.

Returns a tuple (world, pixel) containing the resulting coordinates.

sub([axes=None, nsub=None])
Extract a new Projection object for a subimage from an existing one.

22 Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.2

•axes is a sequence of image axis numbers to extract. Order is significant; axes[0] is the axis
number of the input image that corresponds to the first axis in the subimage, etc. If not specified,
the first nsub axes are extracted.

•nsub is the number of axes to extract when axes is not specified.

Returns a new Projection object.

spectra(ctype[, axindex=None])
Create a new Projection object in which the spectral axis is translated. For example, a ‘FREQ’ axis
may be translated into ‘ZOPT-F2W’ and vice versa. For non-standard frequency types, e.g. FREQ-
OHEL as used by GIPSY, corrections are applied first to obtain barycentric frequencies. For more
information, see chapter Background information spectral translations.

•ctype – Required spectral CTYPEi. Wildcarding may be used, i.e. if the final three characters
are specified as ‘???’, or if just the eighth character is specified as ‘?’, the correct algorithm code
will be substituted and returned. The attribute altspec provides a list of acceptable spectral
types. For later reference, the value of ctype is stored in the attribute altspecarg of the new
Projection object.

•axindex – Index of the spectral axis (0-relative). If not specified, the first spectral axis identified
by the CTYPE values of the object is assumed.

Returns a new Projection object.

inside(coords, mode)
Test whether one or more coordinates are inside the area defined by the attribute naxis. This is a
convenience method not directly related to WCS. coords is an object containing one or more coordi-
nates which depending on mode can be either world- or pixel coordinates. The argument mode must
be ‘world’ or ‘pixel’. The method returns a value True or False or, in the case of multiple coordinates,
a list with these values.

pixel2grid(pixel)
Pixel-to-grid conversion. pixel is an object containing one or more pixel coordinates and a similar
object with the corresponding grid coordinates will be returned. Grid coordinates are CRPIX-relative
pixel coordinates, e.g. used in GIPSY. If CRPIX is not integer, the nearest integer is used as reference.

grid2pixel(grid)
Grid-to-pixel conversion. grid is an object containing one or more grid coordinates and a similar object
with the corresponding pixel coordinates will be returned. Grid coordinates are CRPIX-relative pixel
coordinates, e.g. used in GIPSY. If CRPIX is not integer, the nearest integer is used as reference.

str2pos(postxt[, mixpix=None])
This method accepts a string that represents one or more positions in the projection object’s coordinate
system. If the string contains a valid position, the method returns the arrays with the corresponding
world- and pixel coordinates. If a position could not be converted, then an error message is returned.

Parameters

• postxt (string) – one or more positions to be parsed.

• mixpix (integer or None) – for a world coordinate system with one spatial axis, a pixel
coordinate for the missing spatial axis is required to be able to convert between world-
and pixel coordinates.

Returns

This method returns a tuple with four elements:

•a NumPy array with the parsed positions in world coordinates

•a NumPy array with the parsed positions in pixel coordinates

•A tuple with the units that correspond to the axes in your world coordinate system.

•An error message when a position could not be parsed

5.3. Class Projection 23

Kapteyn Package Documentation, Release 2.2

Each position in the input string is returned in the output as an element of a numpy array with parsed
positions. A position has the same number of coordinates as there are axes in the data defined by the
projection object.

For its implementation, this method uses the function positions.str2pos() from module
positions. Please refer to that module’s documentation for a detailed explanation.

WCSLIB-related attributes:

The following attributes contain values which are parameters to WCSLIB, after interpretation. So they can
differ from the values in the source object. These attributes should not be modified.

category
The projection category: one of the strings undefined, zenithal, cylindrical,
pseudocylindrical, conventional, conic, polyconic, quadcube, HEALPix.

ctype
A tuple with the axes’ types in the axis order of the object.

cunit
A tuple with the axes’ physical units in the axis order of the object.

crval
A tuple with the axes’ reference values in the axis order of the object.

cdelt
A tuple with the axes’ coordinate increments in the axis order of the object.

crpix
A tuple with the axes’ reference points in the axis order of the object.

crota
A tuple with the axes’ coordinate rotations, or None if no rotations have been specified.

pc
A NumPy matrix for the linear transformation between pixel axes and intermediate coordinate axes,
or None if not specified.

cd
A NumPy matrix for the linear transformation (with scale) between pixel axes and intermediate coor-
dinate axes, or None if not specified.

pv
A list with numeric coordinate parameters. Each list element is a tuple consisting of the world coordi-
nate axis number i, the parameter number m and the parameter value.

ps
A list with character-valued coordinate parameters. Each list element is a tuple consisting of the world
coordinate axis number i, the parameter number m and the parameter value.

lonpole
The native longitude of the celestial pole.

latpole
The native latitude of the celestial pole.

euler
A five-element list: Euler angles and associated intermediaries derived from the coordinate reference
values. The first three values are the Z-, X-, and Z’-Euler angles, and the remaining two are the cosine
and sine of the X-Euler angle.

equinox
The equinox (formerly ‘epoch’) of the projection.

restfrq
Rest frequency in Hz.

24 Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.2

restwav
Vacuum rest wavelength in m.

Other Attributes:

The attributes skyout, allow_invalid, rowvec, epobs, gridmode and usedate can be modified at any time. The
others are read-only.

skysys
The projection’s ‘native’ sky system. E.g., (equatorial, fk5, ’J2000.0’).

skyout
Alternative sky system. Can be specified according to the rules of the module celestial. See:
Sky definitions. For pixel-to-world transformations, the result in the projection’s ‘native’ system is
transformed to the specified one and for world-to-pixel transformations, the given coordinates are first
transformed to the native system, then to pixels.

radesys
Reference frame of equatorial or ecliptic coordinates: one of the (symbolic) values as defined in
module celestial. E.g. icrs, fk5 or fk4.

epoch
The projection’s epoch string as derived from the attributes equinox and radesys. E.g., “B1950.0”
or “J2000.0”.

dateobs
The date of observation (string) as specified by the ‘DATE-OBS’ key in the source object or None if
not present.

mjdobs
The date of observation (floating point number) as specified by the ‘MJD-OBS’ key in the source
object or None if not present.

epobs
The date of observation as specified by either the ‘MJD-OBS’ or the ‘DATE-OBS’ key in the source
object or None if both are absent. This attribute is a string with the prefix ‘MJD’ or ‘F’ which can be
parsed by the function epochs() in the module ‘celestial’ and consequently be part of the arguments
sky_in and sky_out when creating a Transformation object.

gridmode
True or False. If True, the object will use grid coordinates instead of pixel coordinates. Grid coordi-
nates are CRPIX-relative pixel coordinates, e.g. used in GIPSY. If CRPIX is not integer, the nearest
integer is used as reference.

allow_invalid
If set to True, no exception will be raised for invalid coordinates. Invalid coordinates will be indicated
by numpy.NaN (‘not a number’) values.

invalid
True or False, indicating whether invalid coordinates were detected in the last transformation. In the
output, invalid coordinates are indicated by numpy.NaN (‘not a number’) values.

rowvec
If set to True, input and output coordinates, when given as NumPy matrices, will be row vectors instead
of the standard column vectors.

usedate
Indicates whether the date of observation is to be used for the appropriate celestial transformations.
True or False.

types
A tuple with the axes’ coordinate types (‘longitude’, ‘latitude’, ‘spectral’ or None) in the axis order of
the object.

5.3. Class Projection 25

Kapteyn Package Documentation, Release 2.2

naxis
A tuple with the axes’ lengths in the axis order of the object. (Convenience attribute not directly related
to WCS.)

lonaxnum
Longitude axis number (1-relative). None if not defined.

lataxnum
Latitude axis number (1-relative). None if not defined.

specaxnum
Spectral axis number (1-relative). None if not defined.

source
Convenience attribute. The object from which the Projection object was created.

altspec
A list of tuples with alternative spectral types and units. The first element of such a tuple is a string
with an allowed alternative spectral type which can be used as the argument of method spectra()
and the second element is a string with the corresponding units. Example: [(’FREQ’, ’Hz’),
(’ENER’, ’J’), (’VOPT-F2W’, ’m/s’), ..., (’BETA-F2V’, ”)]. If there is no
spectral axis, the attribute will have the value None.

altspecarg
If the object was created with a call to spectra(), the argument ctype as specified in that call.
Otherwise None.

Example:

1 #!/bin/env python
2 from kapteyn import wcs
3 import pyfits
4

5 hdulist = pyfits.open(’aurora.fits’) # open 3-dimensional FITS file
6

7 proj3 = wcs.Projection(hdulist[0].header) # create Projection object
8

9 pixel = ([51, 32], [17, 60], [11, 12]) # two 3-dimensional pixel coordinates
10 world = proj3.toworld(pixel) # transform pixel to world coordinates
11 print world
12 print proj3.topixel(world) # back from world to pixel coordinates
13

14 proj2 = proj3.sub([2,1]) # subimage projection, axes 2 and 1
15

16 pixel = ([1, 2, 4, 3], [7, 6, 8, 2]) # four 2-dimensional pixel coordinates
17 world = proj2.toworld(pixel) # transform pixel to world coordinates
18 print world
19

20 proj2.skyout = (wcs.equatorial, wcs.fk5,
21 ’J2008’) # specify alternative sky system
22

23 world = proj2.toworld(pixel) # transform to that sky system
24 print world
25 print proj2.topixel(world) # back to pixel coordinates

5.4 Class Transformation

Celestial transformations are handled by objects of the class Transformation. These objects are callable. Currently
supported sky systems are equatorial and ecliptic of any epoch and galactic and supergalactic.

class wcs.Transformation(sky_in, sky_out[, rowvec=False])
Parameters

26 Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.2

• sky_out (sky_in,) – the input- and output sky system. Can be specified as e.g., “(equa-
torial, fk4, ‘B1950.0’)” or “galactic”.

• rowvec – if set to True, input and output coordinates, when given as NumPy matrices,
will be row vectors instead of the standard column vectors.

Method:

transform(in[, reverse=False])
Parameters

• in – an object containing one or more coordinates to be transformed and out will
receive a similar object with the transformed coordinates. Coordinates can be specified
in a number of different ways. See section Coordinates.

• reverse – if True, the inverse transformation will be performed.

Instead of calling this method, the object itself can also be called in the same way.

Attribute:

rowvec
If set to True, input and output coordinates, when given as NumPy matrices, will be row vectors instead
of the standard column vectors.

Example:

1 #!/bin/env python
2 from kapteyn import wcs
3 import numpy
4

5 tran = wcs.Transformation((wcs.equatorial, wcs.fk4, ’B1950.0’), wcs.galactic)
6

7 radec = numpy.matrix(([33.3, 177.2, 230.1],
8 [66.2, -11.5, 13.0]))
9

10 lbgal = tran(radec)
11 print lbgal
12 print tran(lbgal, reverse=True)

5.5 Functions

5.5.1 Function coordmap

wcs.coordmap(proj_src, proj_dst[, dst_shape=None, dst_offset=None, src_offset=None])
•proj_src, proj_dst – the source- and destination projection objects.

•dst_shape – the destination image’s shape. Must be compatible with the projections’ dimensionality.
The elements are in Python order, i.e., the first element corresponds to the last FITS axis. If dst_shape
is None (the default), the shape is derived from the proj_dst.naxis attribute.

•dst_offset – the destination image’s offset. If None, the offset for all axes will be zero. Otherwise it
must be compatible with the projections’ dimensionality. The elements are in Python order, i.e., the
first element corresponds to the last FITS axis.

•src_offset – the source image’s offset. If None, the offset for all axes will be zero. Otherwise it must
be compatible with the projections’ dimensionality. The elements are in Python order, i.e., the first
element corresponds to the last FITS axis.

5.5. Functions 27

Kapteyn Package Documentation, Release 2.2

This function returns a coordinate map which can be used as the argument coordinates in calls to the func-
tion map_coordinates() from the scipy.ndimage.interpolation module. 1 The resulting
coordinate map can be used for reprojecting an image into another image with a different coordinate system.

Example:

1 #!/bin/env python
2 from kapteyn import wcs
3 import numpy, pyfits
4 from kapteyn.interpolation import map_coordinates
5

6 hdulist = pyfits.open(’ngc6946.fits’)
7 header = hdulist[0].header
8

9 proj1 = wcs.Projection(header) # source projection
10 trans = wcs.Transformation(proj1.skysys, skyout=wcs.galactic)
11

12 header[’CTYPE1’], header[’CTYPE2’] = ’GLON-TAN’, ’GLAT-TAN’
13 # new axis types
14 header[’CRVAL1’], header[’CRVAL2’] = trans((header[’CRVAL1’],header[’CRVAL2’]))
15 # new reference point
16

17 proj2 = wcs.Projection(header) # destination projection
18

19 coords = wcs.coordmap(proj1, proj2)
20

21 image_in = hdulist[0].data
22 image_out = map_coordinates(image_in, coords, order=1, cval=numpy.NaN)
23

24 hdulist[0].data = image_out
25 hdulist.writeto(’ngc6946-gal.fits’)

This example is a complete program and illustrates how a FITS file containing an image with arbitrary
coordinates can be reprojected into an image with galactic coordinates. The image can have two or more
dimensions.

5.5.2 Utility functions

The following are functions from the module celestial which have been made available within the namespace
of this wcs module: For detailed information, refer to celestial’s documentation.

wcs.epochs(spec)
Flexible epoch parser.

wcs.lat2dms(a[, prec=1])
Convert an angle in degrees into the degrees, minutes, seconds format assuming it was a latitude of which
the value should be in the range -90 to 90 degrees.

wcs.lon2dms(a[, prec=1])
Convert an angle in degrees to degrees, minutes, seconds.

wcs.lon2hms(a[, prec=1])
Convert an angle in degrees to hours, minutes, seconds format.

5.6 Constants

Sky systems (imported from celestial)

wcs.equatorial

1 For convenience, a slightly modified version of this module is also available in the Kapteyn Package as kapteyn.interpolation.
The modification replaces NaN values in the array to a finite value in case order>1, preventing the result becoming all NaN.

28 Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.2

wcs.eq

wcs.ecliptic

wcs.ecl

wcs.galactic

wcs.gal

wcs.supergalactic

wcs.sgal

Reference systems (imported from celestial)

wcs.fk4

wcs.fk4_no_e

wcs.fk5

wcs.icrs

wcs.dynj2000

wcs.j2000

Physical

wcs.c
Velocity of light

5.7 Error handling

Errors are reported through the exception mechanism. Two exception classes have been defined: WCSerror for
unrecoverable errors and WCSinvalid for situations where a partial result may be available.

5.7. Error handling 29

Kapteyn Package Documentation, Release 2.2

30 Chapter 5. Module wcs

CHAPTER 6

Module Celestial

This document describes functions from the Python module celestial (celestial.py) which provides a programmer
with a basic set of routines to transform a world coordinate in a given sky system into a world coordinate of
another system assuming zero proper motion, parallax, and recessional velocity.

The most important function builds a matrix for conversions of positions between sky systems, celestial reference
systems and epochs of the equinox. This function is called skymatrix() and it can be used in the following
contexts:

• Implicit, in module wcs, using the Transformation class as in:

world_eq = (192.25, 27.4) # FK4 coordinates of galactic pole
tran = wcs.Transformation("equatorial fk4_no_e B1950.0", "galactic")
print tran(world_eq)

• As stand alone utility in scripts or in an interactive Python session. Usually one uses function sky2sky()
to transform longitudes and latitudes:

M = celestial.sky2sky((celestial.eq, celestial.fk5), celestial.gal,
(0,0,1.0), (10,20,20))

• Hidden in the topixel() and toworld() methods in module wcs. There the sky system is read from a (FITS)
header and the sky system for which we want the transformed coordinates is set with attribute skyout of the
projection object.

See Also:

Tutorial material:

• Background Celestial Transformations which contains many examples with source code.

6.1 Sky definitions

A sky definition can consist of a sky system, a reference system, an equinox and an epoch of observation. It is
either a string or it is a tuple with one or more elements. It can also be a single element. The elements in a tuple
representing a sky- or reference system are symbols from the table below. For a string, the parts of the string
representing a sky- or reference system are minimal matched against the strings in the table below. The match is
case insensitive.

6.1.1 Sky systems

Symbol String Description
eq, equatorial EQUATORIAL Equatorial coordinates (α, δ), See also next table with reference systems
ecl, ecliptic ECLIPTIC Ecliptic coordinates (λ, β) referred to the ecliptic and mean equinox
gal, galactic GALACTIC Galactic coordinates (lII, bII)
sgal, supergalactic SUPERGALACTIC De Vaucouleurs Supergalactic coordinates (sgl, sgb)

31

http://www.astro.rug.nl/software/kapteyn/celestial.php

Kapteyn Package Documentation, Release 2.2

6.1.2 Reference systems

Symbol String Description
fk4 FK4 Mean place pre-IAU 1976 system. FK4 is the old barycentric (i.e. w.r.t. the

common center of mass) equatorial coordinate system, which should be qual-
ified by an Equinox value. For accurate work FK4 coordinate systems should
also be qualified by an Epoch value. This is the epoch of observation.

fk4_no_e FK4_NO_E,
FK4-NO-E

The old FK4 (barycentric) equatorial system but without the E-terms of aber-
ration. This coordinate system should also be qualified by both an Equinox
and an Epoch value.

fk5 FK5 Mean place post IAU 1976 system. Also a barycentric equatorial coordinate
system. This should be qualified by an Equinox value (only).

icrs ICRS The International Celestial Reference System, for optical data realized through
the Hipparcos catalog. By definition, ICRS is not an equatorial system, but it
is very close to the FK5 (J2000) system. No Equinox value is required.

j2000,
dynj2000

DYNJ2000 This is an equatorial coordinate system based on the mean dynamical equator
and equinox at epoch J2000. The dynamical equator and equinox differ slightly
compared to the equator and equinox of FK5 at J2000 and the ICRS system.
This system need not be qualified by an Equinox value

Note: Reference systems are stored in FITS headers under keyword RADESYS=.

Note: Standard in FITS: RADESYS defaults to IRCS unless EQUINOX is given alone, in which case it defaults
to FK4 prior to 1984 and FK5 after 1984.

EQUINOX defaults to 2000 unless RADESYS is FK4, in which case it defaults to 1950.

Note: In routines dealing with sky definitions tne names are minimal matched against a list with full names.

6.1.3 Epochs for the equinox and epoch of observation

An epoch can be set in various ways. The options are distinguished by a prefix. Only the ‘B’ and ‘J’ epochs can
be negative.

Prefix Epoch
B Besselian epoch. Example: ’B 1950’, ’b1950’, ’B1983.5’, ’-B1100’
J Julian epoch. Example: ’j2000.7’, ’J 2000’, ’-j100.0’
JD Julian date. This number of days (with decimals) that have elapsed since the initial epoch defined

as noon Universal Time (UT) Monday, January 1, 4713 BC in the proleptic Julian calendar
Example: ’JD2450123.7’

MJD The Modified Julian Day (MJD) is the number of days that have elapsed since midnight at the
beginning of Wednesday November 17, 1858. In terms of the Julian day: MJD = JD - 2400000.5
Example: ’mJD 24034’, ’MJD50123.2’

RJD The Reduced Julian Day (RJD): Julian date counted from nearly the same day as the MJD, but
lacks the additional offset of 12 hours that MJD has. It therefore starts from the previous noon
UT or TT, on Tuesday November 16, 1858. It is defined as: RJD = JD - 2400000 Example:
’rJD50123.2’, ’Rjd 23433’

F Various FITS formats:
• DD/MM/YY Old FITS format. Example: ’F29/11/57’
• YYYY-MM-DD FITS format. Example: ’F2000-01-01’
• YYYY-MM-DDTHH:MM:SS FITS format with date and time. Example:
’F2002-04-04T09:42:42.1’

Epoch of observation.

32 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2

Reference system FK4 is not an inertial system. It is slowly rotating and positions are further away from the true
mean places if the date of observation is greater than B1950. FK5 is an inertial system. If we convert coordinates
from FK4 to FK5, the accuracy of the FK5 position can be improved if we know the date of the observation. So
in all transformations where a conversion between FK4 and FK5 is involved, an epoch of observation can be part
of the sky definition. Note that this also involves a conversion between galactic coordinates and equatorial, FK5
coordinates because that conversion is done in steps and one step involves FK4.

To be able to distinguish an equinox from an epoch of observation, an epoch of observation is followed by an
underscore character and some arbitrary characters to indicate that it is a special epoch (e.q. “B1960_OBS”).
Only the underscore is obligatory.

Note: If a sky definition is entered as a string, there cannot be a space between the prefix and the epoch, because
a space is a separator for the parser in celestial.skyparser().

Note: An epoch of observation is either the second epoch in your input or or the epoch string has a suffix ‘_’
which may be followed by arbitrary characters (e.g. “B1963.5_OBS”).

6.1.4 Input Examples

Input string Description Remarks
“eq” Equatorial, ICRS ICRS because no reference system and no equinox is given.
“Eclip” Ecliptic, ICRS Ecliptic coordinates
“ecl fk5” Ecliptic, FK5 Ecliptic coordinates with a non default reference system
“GALACtic” Galactic II Minimal match is case insensitive
“s” Supergalactic Shortest string to identify system.
“fk4” Equatorial, FK4 Only a reference system is entered. Sky system is assumed to be

equatorial
“B1960” Equatorial, FK4 Only an equinox is given. This is a date before 1984 so FK4 is

assumed. Therefore the sky system is equatorial
“EQ, fk4_no_e, B1960” Equatorial, FK4

no e-terms
Sky system, reference system, and an equinox

“EQ, fk4-no-e, B1960” Equatorial, FK4
no e-terms

Same as above but underscores replaced by hyphens.

“fk4,J1983.5_OBS” Equatorial, FK4
+ epobs

FK4 with an epoch of observation. Note that only the underscore
is important.

“J1983.5_OBS” Equatorial, FK4
+ epobs

Only a date of observation. Then reference system FK4 is as-
sumed.

“EQ,fk4,B1960,
B1983.5_O”

Equatorial, FK4
+ epobs

A complete description of an equatorial system.

“B1983.5_O fk4
B1960,eq”

Equatorial, FK4
+ epobs

The same as above, showing that the order of the elements are
unimportant.

6.1.5 Code examples

To show that one can use both the tuple and the string representation of a system, we use both for the same system
and compare a transformed position. The result should be 0 for both coordinates.

>>> world_eq = numpy.array([192.25, 27.4]) # FK4 coordinates of galactic pole
>>> tran1 = wcs.Transformation("equatorial fk4_no_e B1950.0", "galactic")
>>> tran2 = wcs.Transformation((wcs.equatorial, wcs.fk4_no_e, ’B1950.0’), wcs.galactic)
>>> print tran1(world_eq)-tran2(world_eq)
[0. 0.]

6.1. Sky definitions 33

Kapteyn Package Documentation, Release 2.2

6.2 Module level data

skyrefsystems An object from class skyrefset which is a container with a list with systems and two
dictionaries with systems.

>>> for s in skyrefsystems.skyrefs_list:
>>> print s.fullname, s.description, s.idnum

For programmers who need to access the id’s of the sky and reference systems: External modules can set their
own variables. Here are some examples how one can do this.

Example with copy of celestial’s variables:

• eq = celestial.eq

• ec = celestial.ecl

• ga = celestial.gal etc.

Example with minimal match:

• eq = celestial.skyrefsystems.minmatch2skyref(’EQUA’)[0].idnum

• ec = celestial.skyrefsystems.minmatch2skyref(’ecli’)[0].idnum

Read this as: get the object for which a minimal match is found. Item [0] is the object (the other is the number of
times a match is found). The ‘idnum’ is the integer for which we can identify a system.

Or use the equivalent with method skyrefset.minmatch2id():

• eq = celestial.skyrefsystems.minmatch2id(’EQUA’)

• ec = celestial.skyrefsystems.minmatch2id(’ecli’)

Example with full name (case sensitive!):

• eq = celestial.skyrefsystems.fullname2id(’EQUATORIAL’)

• ec = celestial.skyrefsystems.fullname2id(’ECLIPTIC’)

6.3 Classes

class celestial.skyrefsys(fullname, idnum, description, refsystem)
Class creates an object that describes a sky- or reference system. This module initializes a set of systems.
They are accessible through methods in class celestial.skyrefset

Parameters

• fullname (String) – Complete name to identify the system, e.g. “EQUATORIAL”

• idnum (Integer) – A unique integer to identify the system

• description (String) – A short description of the system

• refsystem (Boolean) – Is this system a reference system?

Attributes:

fullname
A string to identify a system, e.g. “EQUATORIAL”.

idnum
A unique integer to identify the system.

description
A string to describe the system.

34 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2

refsystem
If True then this system is a reference system. Else it is a sky system.

class celestial.skyrefset
A container with sky- and reference system objects from class celestial.skyrefsys. It is used to
initialize variables that can be used as identifiers for sky- or reference systems. Applications can use its
methods to retrieve information given an integer identifier or (part of) a string.

For example when we want a list with all the supported systems then type:

>>> for s in skyrefsystems.skyrefs_list:
>>> print s.fullname, s.description, s.idnum

append(skyrefsys)

Parameters skyrefsys (Instance of class skyrefsys) – Append this system to the list with
supported systems

Returns A unique integer id which can be used to identify a system.

minmatch2skyref(s)
Return the relevant skyrefsys object with the number of times it is matched or return None if nothing
was found.

Parameters s (String) – Part of the string name of a system

Returns Instance of class skyrefsys and the number of times that the input string gives
a match.

minmatch2id(s)
From the found skyrefsys object corresponding to string s, return the idnum attribute. Case insensitive
minimal match is used to find the sky- or reference system. Return None if there was no match or
more than one match.

Parameters s (String) – Part of the string name of a system

Returns Instance of class skyrefsys or None if there was not a match or more than one
match.

fullname2id(fullname)
This is the fastest method to get an integer id from a string which represents a sky system or a reference
system. Note that the routine is case sensitive because it uses the full names as keys in a dictionary.
The parameter fullname therefore must be in in capitals!

Parameters fullname (String) – The full descriptive name of a system e.g. “EQUATO-
RIAL”

Returns Integer id of the found system or None if nothing was found.

id2skyref(idnum)
Given an integer id of a system, return the corresponding system as an instance of class skyrefsys.
Usually the calling environment will deal with the attributes of this object, for instance to write a short
description of the system.

Parameters idnum (Integer) – Integer id of a system

Returns Instance of class skyrefsys or None if there was not a corresponding system.

id2fullname(idnum)
Given an integer id of a system, return the full name of the corresponding system.

Parameters idnum (Integer) – Integer id of a system

Returns Full name (e.g. “EQUATORIAL”) of the corresponding system or an empty string
if nothing was found.

id2description(idnum)
Given an integer id of a system, return the description of the corresponding system.

6.3. Classes 35

Kapteyn Package Documentation, Release 2.2

Parameters idnum (Integer) – Integer id of a system

Returns A short description of the corresponding system or an empty string if nothing was
found.

Attributes:

skyrefs_list
The list with systems

skyrefs_id
A dictionary with the systems and with id’s as keys

skyrefs_fullname
A dictionary with the systems and with full names as keys

Examples Next short script shows how to get a list with sky systems and how to use methods
of this class to get data for a system if an (integer) id is found:

from kapteyn.celestial import skyrefsystems

for s in skyrefsystems.skyrefs_list:
print s.fullname, s.description, s.idnum
i = s.idnum
print "Full name using id2fullname:", skyrefsystems.id2fullname(i)
print "Description using id2description:", skyrefsystems.id2description(i)
print "id of %s with minimal match: %d" % \

(s.fullname[:3], skyrefsystems.minmatch2skyref(s.fullname[:3])[0].idnum)
print "id of %s with minimal match, alternative: %d" % \

(s.fullname[:3], skyrefsystems.minmatch2id(s.fullname[:3]))
print "id of %s with full name: %d" % \

(s.fullname[:3], skyrefsystems.fullname2id(s.fullname))

6.4 Core Functions

celestial.skyparser(skyin)
Parse a string, tuple or single integer that represents a sky definition. A sky definition can consist of a
sky system, a reference system, an equinox and an epoch of observation. See also the description at Sky
definitions. The elements in the string are separated by a comma or a space. The order of the elements is
not important. The string is converted to a tuple by celestial.parseskydefs().

The parser is used in function celestial.skymatrix() and celestial.sky2sky(). External
applications can use this function to check whether user input is valid.

Definitions in strings are usually used to define output sky definitions in prompts or on command lines.
Applications can use integer id’s for the sky- and reference systems. These integer id’s are global constants
See also Sky systems and Reference systems.

The sky system and reference system strings are minimal matched (case INsensitive) with the strings in the
table in the documentation at Sky systems and Reference systems.

For the epoch syntax read the documentation at Epochs for the equinox and epoch of observation. Note that
an epoch of observation is either a second epoch in the string (the first is always the equinox) or the epoch
string has a suffix ‘_’ which may be follwed by arbitrary characters.

Parameters skyin (String, tuple or integer) – Represents a sky definition. See examples.

Returns A tuple with the ‘coded’ system where strings for sky- and reference systems are
replaced by integer id’s. Missing values are filled in with defaults.

If an error occurred then an exception will be raised.

Raises

36 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2

ValueError From celestial.parseskydefs():

• Empty string!

• Too many items for sky definition!

• ... is ambiguous sky or reference system!

• ... is not a valid epoch or sky/ref system!

From this function:

• Sky definition is not a string nor a tuple!

• Too many elements in sky definition (max. 4)!

• Two sky systems given!

• Two reference systems given!

• Invalid number for sky- or reference system!

• Cannot determine the sky system!

• Input contains an element that is not an integer or a string!

Examples

>>> print celestial.skyparser("B1983.5_O fk4 B1960,eq")
(0, 4, 1960.0, 1983.5)

>>> print celestial.skyparser("su")
(3, None, None, None)

>>> print celestial.skyparser("supergal")
(3, None, None, None)

Notes This is the parser for a sky definition. In this definition one can specify the sky system,
the reference system, an equinox and an epoch of observation if the reference system is fk4.
The order of these elements is not important.

The rules for the defaults are:

• What if the sky system is not defined? If there is a reference system then we assume it
is equatorial (could have been ecliptic).

• If there no sky system and no reference system but there is an equinox, assume sky
system is equatorial (could have been ecliptic).

• If there no sky system and no reference system and no equinox but there is an epoch of
observation, assume sky system is equatorial.

• Assume we have a sky system. What if there is no reference system? Standard in FITS:
RADESYS (i.e our reference system) defaults to IRCS unless EQUINOX is given alone,
in which case it defaults to FK4 prior to 1984 and FK5 after 1984.

• Assume we have a sky system and a reference system and the sky system was ecliptic or
equatorial. What if we don’t have an equinox? Standard in FITS: EQUINOX defaults
to 2000 unless RADESYS is FK4, in which case it defaults to 1950.

• We have one item to address and that is the epoch of observation. This epoch of observa-
tion only applies to the reference systems FK4 and FK4_NO_E. In ‘Representations of
celestial coordinates in FITS’ (Calabretta & Greisen) we read that all reference systems
are allowed for both equatorial- and ecliptic coordinates, except FK4-NO-E, which is
only allowed for equatorial coordinates. If FK4-NO-E is given in combination with an
ecliptic sky system then silently FK4 is assumed.

6.4. Core Functions 37

Kapteyn Package Documentation, Release 2.2

celestial.skymatrix(skyin, skyout)
Create a transformation matrix to be used to transform a position from one sky system to another (including
epoch transformations). For a description of the sky definitions see Sky definitions.

Parameters

• skyin (Integer or tuple with one to four elements) – One of the supported sky systems or
a tuple for equatorial systems which are identified with an equinox an reference system.
This is the sky system from which you want to transform to another sky system (skyout).

• skyout – The destination sky system

Returns Three elements:

• The transformation matrix M for the transformation of positions in (x,y,z) as in XYZsky-
out = M * XYZskyin

• followed by ‘None’ or a tuple with the e-term vector belonging input epoch.

• followed by None or a tuple with the e-term vector belonging to the output epoch.

See also notes below.

Notes The reference systems FK4 and FK4_NO_E are special. We consider FK4 as a catalog
position where the e-terms are included. So besides a transformation matrix, this function
should also return a flag for the addition or removal of e-terms. This flag is either None or
the e-term vector which depends on the epoch.

The structure of the output then is as follows: M, (A1,A2,A3), (A4,A5,A6) where:

• M: The 3x3 transformation matrix

• (A1,A2,A3) or None: for adding or removing e-terms in the input sky system using this
e-term vector (A1,A2,A3).

• (A4,A5,A6) or None: for adding or removing e-terms in the output sky system using this
e-term vector (A4,A5,A6).

This function is the main function of this module. It calls function skyparser() for the pars-
ing of the input and rotmatrix() to get the rotation matrix. There utility function sky2sky()
transforms a sequence of longitudes and latitudes from one sky system to another. It is a
valuable tool for experiments in an interactive Python session.

Examples Some examples of transformations between sky systems using either strings or tu-
ples. We advise to use strings which is more safe then using variables from celestial (which
can be accidentally replaced by other values). Note that for transformations where FK4 is
involved, the matrix is followed by a vector with e-terms.

>>> from kapteyn import celestial
>>> print skymatrix(celestial.gal,(celestial.eq,"j2000",celestial.fk5))
(matrix([[-0.05487554, 0.49410945, -0.86766614],

[-0.8734371 , -0.44482959, -0.19807639],
[-0.48383499, 0.74698225, 0.45598379]]),

None,
None)

>>> print skymatrix(celestial.fk4, celestial.fk5)
(matrix([[9.99925679e-01, -1.11814832e-02, -4.85900382e-03],

[1.11814832e-02, 9.99937485e-01, -2.71625947e-05],
[4.85900377e-03, -2.71702937e-05, 9.99988195e-01]]),

(-1.6255503575995309e-06,
-3.1918587795578522e-07,
-1.3842701121066153e-07), None)

38 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2

>>> print skymatrix("eq,B1950.0,fk4_no_e","eq,B1950.0,fk4")
(matrix([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]]),

None,
(-1.6255503575995309e-06,

-3.1918587795578522e-07,
-1.3842701121066153e-07))

>>> print skymatrix("eq b1950 fk4 j1983.5", "eq J2000 fk5")
(matrix([[9.99925679e-01, -1.11818698e-02, -4.85829658e-03],

[1.11818699e-02, 9.99937481e-01, -2.71546879e-05],
[4.85829648e-03, -2.71721706e-05, 9.99988198e-01]]),

(-1.6255503575995309e-06,
-3.1918587795578522e-07,
-1.3842701121066153e-07),

None)

>>> print skymatrix("eq J2000 fk4 F1984-1-1T0:30", "eq J2000 fk5")
(matrix([[1.00000000e+00, -5.45185721e-06, -3.39404820e-07],

[5.45185723e-06, 1.00000000e+00, 2.24950276e-08],
[3.39404701e-07, -2.24971595e-08, 1.00000000e+00]]),

(-1.6181121582090453e-06,
-3.4112123324131958e-07,
-1.4789407828956555e-07),

None)

See Epochs for the equinox and epoch of observation for the possible epoch formats.

celestial.sky2sky(skyin, skyout, lons, lats)
Utility function to facilitate command line use of skymatrix.

Parameters

• skyin (See function skymatrix()) – The input sky definition

• skyout (See function skymatrix()) – The output sky definition

• lons (Floating point number(s), scalar, list or tuple) – Input longitude(s)

• lats (Floating point number(s), scalar, list or tuple) – Input latitude(s)

Returns Matrix. One position per row. See example below how to extract rows, columns and
elements from this matrix.

Example Interactive Python session:

>>> from kapteyn import celestial
>>> M = celestial.sky2sky((celestial.eq, celestial.fk5), celestial.gal,

(0,0,1.0), (10,20,20))
>>> M
matrix([[102.6262244 , -50.83256452],

[106.78021643, -41.25289649],
[107.9914125 , -41.49143448]])

>>> M[2,0]
107.99141249678289
>>> M[0] # Extract first transformed long, lat
matrix([[102.6262244 , -50.83256452]])
>>> M[:,1] # Extract second column with latitudes
matrix([[-50.83256452],

[-41.25289649],
[-41.49143448]])

6.4. Core Functions 39

Kapteyn Package Documentation, Release 2.2

Notes This function illustrates the core use of module celestial. First it converts the input of
world coordinates into a matrix. This matrix is converted to spatial positions (X,Y,Z) with
function longlat2xyz(). The function dotrans() transforms these positions (X,Y,Z) to posi-
tions (X2,Y2,Z2) in the output sky system. Then the function xyz2longlat() converts these
positions into longitudes and latitudes and finally a matrix with these values is returned:

lonlat = n.array([(lons,lats)])
xyz = longlat2xyz(lonlat)
xyz2 = dotrans(skymatrix(skyin, skyout), xyz)
newlonlats = xyz2longlat(xyz2)
return newlonlats

celestial.epochs(spec)
Flexible epoch parser. The functions in this module have different input parameters (Julian epoch, Besselian
epochs, Julian dates) because the algorithms came from different sources. What we needed was a routine
that could convert a string which represents a date in various formats, to values for a Julian epoch, Besselian
epochs and a Julian date. This function returns these value for any valid input date.

For the epoch syntax read the documentation at Epochs for the equinox and epoch of observation. Note that
an epoch of observation is either a second epoch in the string (the first is always the equinox) or the epoch
string has a suffix ‘_’ which may be follwed by arbitrary characters.

Parameters spec (String) – An epoch specification (see below)

Returns Calculated corresponding Besselian epoch, Julian epoch and Julian date. Return in
order: B, J, JD

Reference Various sources listing Julian dates.

Notes

Examples Some checks:

>>> celestial.epochs(’F2008-03-31T8:09’) # should return:
(2008.2474210134737, 2008.2459673739454, 2454556.8395833336)

>>> celestial.epochs(’F2007-01-14T13:18:59.9’)
(2007.0378545262108, 2007.0364267212976, 2454115.0548599539)

>>> celestial.epochs("j2007.0364267212976")
(2007.0378545262108, 2007.0364267212976, 2454115.0548599539)

>>> celestial.epochs("b2007.0378545262108")
(2007.0378545262108, 2007.0364267212976, 2454115.0548599539)

6.5 Utility functions

celestial.JD(year, month, day)
Calculate Julian day number (Julian date)

Parameters

• year (Integer) – Year (nnnn)

• month (Integer) – Month (nn)

• day (Floating point number) – Day (nn.n...)

Returns Julian day number jd.

Reference Meeus, Astronomical formula for Calculators, 2nd ed, 1982

Notes Months start at 1. Days start at 1. The Julian day begins at Greenwich mean noon, i.e.
at 12h. So Jan 1, 1984 at 0h is entered as JD(1984,1,1) and Jan 1, 1984 at 12h is entered as
JD(1984,1,1.5)

40 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2

There is a jump at JD(1582,10,15) caused by a change of calendars. For dates after 1582-
10-15 one enters a date from the Julian calendar and before this date you enter a date from
the Gregorian calendar.

Examples

• Julian date of JD reference: print celestial.JD(-4712,1,1.5) ==> 0.0

• The first day of 1 B.C.: print celestial.JD(0,1,1) ==> 1721057.5

• Last day before Gregorian reform: print celestial.JD(1582,10,4) ==>
2299159.5

• First day of Gregorian reform: print celestial.JD(1582,10,15) ==>
2299170.5

• Half a day later: print celestial.JD(1582,10,15.5) ==> 2299161.0

• Unix reference: print celestial.JD(1970,1,1) ==> 2440587.5

celestial.lon2hms(a, prec=1, delta=None, tex=False)
Convert an angle in degrees to hours, minutes, seconds format.

Parameters

• a (Floating point number) – Angle (in degrees) for which we want to create a formatted
text label.

• prec (Integer) – The required number of decimals in the seconds part of output. If a
value is omitted, then the default is 1.

• delta (None or a floating point number) – If one labels world coordinates along an axis
then the default labels are in hours, minutes and seconds with some decimal number.
This is probably not want you want if the step size between subsequent positions is for
example an integer number of degrees or minutes. Then you want labels showing only
hours or hours and minutes. This function tries to find out whether this is the case (given
a value for delta) or not. If so, a minimum length label is returned.

• tex (Boolean) – The default is False. If set to True, the string is formatted in LaTeX.
Such labels can be plotted in, for example, Matplotlib.

Returns Formatted string representing the input angle.

Notes Longitudes are forced into the range, 360 deg. and then converted to hours, minutes and
seconds.

Examples Format a position in hms and dms:

>>> ra = 359.9999
>>> dec = 0.0000123
>>> print celestial.lon2hms(ra), celestial.lat2dms(dec)

00h 00m 0.0s +00d 00m 0.0s
>>> print celestial.lon2hms(ra, 2), celestial.lat2dms(dec, 2)

23h 59m 59.98s +00d 00m 0.04s
>>> print celestial.lon2hms(ra, 4), celestial.lat2dms(dec, 4)

23h 59m 59.9760s +00d 00m 0.0443s

celestial.lat2dms(a, prec=1, delta=None, tex=False)
Convert an angle in degrees into the degrees, minutes, seconds format assuming it was a latitude. Its value
should be in the range -90 to 90 degrees

Parameters

• a (Floating point number) – Angle (in degrees) for which we want to create a formatted
text label.

• prec (Integer) – The required number of decimals in the seconds part of output. If a
value is omitted, then the default is 1.

6.5. Utility functions 41

Kapteyn Package Documentation, Release 2.2

• delta (None or a floating point number) – If one labels world coordinates along an axis
then the default labels are in degrees, minutes and seconds with some decimal number.
This is probably not want you want if the step size between subsequent positions is for
example an integer number of degrees or minutes. Then you want labels showing only
degrees or degrees and minutes. This function tries to find out whether this is the case
(given a value for delta) or not. If so, a minimum length label is returned.

• tex (Boolean) – The default is False. If set to True, the string is formatted in LaTeX.
Such labels can be plotted in, for example, Matplotlib.

Returns Formatted string representing the input angle or a string with ‘#’ characters indicating
that the input was out of range.

Notes The HMS and DMS format should be treated differently because their ranges in world
coordinates are different. Longitudes should be in range of (0,360) degrees. So -10 deg is
in fact 350 deg. and 370 deg is in fact 10 deg. Latitudes range from -90 to 90 degrees. Then
91 degrees is in fact 89 degrees but at a longitude that is separated 180 deg. from the stated
longitude. But we don’t have control over the longitudes here so the only thing we can do is
reject the value and return a dummy string.

celestial.lon2dms(a, prec=1, delta=None, tex=False)
Convert an angle in degrees to degrees, minutes, seconds format, assuming the input is a longitude but not
associated with an equatorial system.

Parameters

• a (Floating point number) – Angle (in degrees) for which we want to create a formatted
text label

• prec (Integer) – The required number of decimals in the seconds part of output If a
value is omitted, then the default is 1.

• delta (None or a floating point number) – If one labels world coordinates along an axis
then the default labels are in hours, minutes and seconds with some decimal number.
This is probably not want you want if the step size between subsequent positions is for
example an integer number of degrees or minutes. Then you want labels showing only
degrees or degrees and minutes. This function tries to find out whether this is the case
(given a value for delta) or not. If so, a minimum length label is returned.

• tex (Boolean) – The default is False. If set to True, the string is formatted in LaTeX.
Such labels can be plotted in, for example, Matplotlib.

Returns Formatted string representing the input angle.

Notes Longitudes are forced into the range 0, 360 deg. and then converted to hours, minutes
and seconds.

Examples Format a longitude to dms:

>>> print celestial.lon2dms(167.342, 4)
167d 20m 31.2000s

>>> print celestial.lon2dms(-10, 4)
350d 0m 0.0000s

celestial.JD2epochBessel(JD)
Convert a Julian date to a Besselian epoch.

Parameters JD (Floating point number) – Julian date (e.g. 2445700.5)

Returns Besselian epoch (e.g. 1983.9)

Reference Standards Of Fundamental Astronomy,

http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epb.html

Notes e.g. 2445700.5 -> 1983.99956681

42 Chapter 6. Module Celestial

http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epb.html

Kapteyn Package Documentation, Release 2.2

One Tropical Year is 365.242198781 days and JD(1900) = 2415020.31352

If we know the JD then the Besselian epoch can be calculated with:

BE = B[1900 + (JD - 2415020.31352)/365.242198781]

Expression corresponds to the IAU SOFA expression in the reference with:
2451545-36524.68648 = 2415020.31352

celestial.epochBessel2JD(Bepoch)
Convert a Besselian epoch to a Julian date

Parameters Bepoch (Floating point number) – Besselian epoch in format nnnn.nn

Returns Julian date

Reference See: JD2epochBessel()

Notes e.g. 1983.99956681 converts into 2445700.5 It’s the inverse of JD2epochBessel()

celestial.JD2epochJulian(JD)
Convert a Julian date to a Julian epoch

Parameters JD (Floating point number) – Julian date

Returns Julian epoch

Reference Standards Of Fundamental Astronomy,

http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epj.html

Notes e.g. 2445700.5 converts into 1983.99863107 Assuming years of exactly
365.25 days, we can calculate a Julian epoch from a Julian date. Expression corresponds to
IAU SOFA routine ‘epj’

celestial.epochJulian2JD(Jepoch)
Convert a Julian epoch to a Julian date

Parameters Jepoch (Floating point number) – Julian epoch (in format nnnn.nn)

Returns Julian date

Reference See JD2epochJulian()

Notes e.g. 1983.99863107 converts into 2445700.5 It’s the inverse of function
JD2epochJulian

celestial.obliquity1980(jd)
What is the obliquity of the ecliptic at this Julian date? (IAU 1980 model)

Parameters jd (Floating point number) – Julian date

Returns Mean obliquity in degrees

Reference Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed),
University Science Books (1992), Expression 3.222-1 (p114).

Notes The epoch is entered in Julian date and the time is calculated w.r.t. J2000.

The obliquity is the angle between the mean equator and ecliptic, or, between the ecliptic
pole and mean celestial pole of date

celestial.obliquity2000(jd)
What is the obliquity of the ecliptic at this Julian date? (IAU model 2000)

Parameters jd (Floating point number) – Julian date

Returns Mean obliquity in degrees

Reference Fukushima, T. 2003, AJ, 126,1 Kaplan, H., 2005, The IAU Resolutions on Astro-
nomical Reference Systems, Time Scales, and Earth Rotation Models, United States Naval
Observatory circular no. 179, http://aa.usno.navy.mil/publications/docs/Circular_179.pdf
(page 44)

6.5. Utility functions 43

http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epj.html
http://aa.usno.navy.mil/publications/docs/Circular_179.pdf

Kapteyn Package Documentation, Release 2.2

Notes The epoch is entered in Julian date and the time is calculated w.r.t. J2000.

The obliquity is the angle between the mean equator and ecliptic, or, between the ecliptic
pole and mean celestial pole of date.

celestial.IAU2006precangles(epoch)
Calculate IAU 2000 precession angles for precession from input epoch to J2000.

Parameters epoch (Floating point number) – Julian epoch of observation.

Returns Angles ζ (zeta), z, θ (theta) in degrees to setup a rotation matrix to transform from
J2000 to input epoch.

Reference Capitaine N. et al., IAU 2000 precession A&A 412, 567-586 (2003)

Notes Input are Julian epochs! T = (jd-2451545.0)/36525.0 Combined with jd
= Jepoch-2000.0)*365.25 + 2451545.0 gives: (see module code at function
epochJulian2JD(epoch)) T = (epoch-2000.0)/100.0

This function should be updated as soon as there are IAU2006 adopted angles to replace the
angles used in this function.

celestial.Lieskeprecangles(jd1, jd2)
Calculate IAU 1976 precession angles for a precession of epoch corresponding to Julian date jd1 to epoch
corresponds to Julian date jd2.

Parameters

• jd1 (Floating point number) – Julian date for start epoch

• jd2 (Floating point number) – Julian date for end epoch

Returns Angles ζ (zeta), z, θ (theta) degrees

Reference Lieske,J.H., 1979. Astron.Astrophys.,73,282. equations (6) & (7), p283.

Notes The ES (Explanatory Supplement to the Astronomical Almanac) lists for a IAU1976
precession from 1984, January 1d0h to J2000 the angles in arcsec: xi_a=368.9985,
ze_a=369.0188 and th_a=320.7279 Using the functions in this module, this can
be calculated by applying:

>>> jd1 = celestial.JD(1984,1,1)
>>> jd2 = celestial.JD(2000,1,1.5)
>>> print celestial.Lieskeprecangles(jd1, jd2)

(0.10249958598931658, 0.10250522534285664, 0.089091092843880629)
>>> print [a*3600 for a in angles]

[368.99850956153966, 369.01881123428387, 320.72793423797026]

The function returns values in degrees, while literature values often are listed in seconds of
arc.

Lieske’s fit belongs to the so called Quasi-Linear Types Below a table with the precision
(according to IAU SOFA):

• 1960AD to 2040AD: < 0.1”

• 1640AD to 2360AD: < 1”

• 500BC to 3000AD: < 3”

• 1200BC to 3900AD: > 10”

• < 4200BC or > 5600AD: > 100”

• < 6800BC or > 8200AD: > 1000”

celestial.Newcombprecangles(epoch1, epoch2)
Calculate precession angles for a precession in FK4, using Newcomb’s method (Woolard and Clemence
angles)

44 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2

Parameters

• epoch1 (Floating point number) – Besselian start epoch

• epoch2 (Floating point number) – Besselian end epoch

Returns Angles ζ (zeta), z, θ (theta) degrees

Reference ES 3.214 p.106

Notes Newcomb’s precession angles for old catalogs (FK4), see ES 3.214 p.106. In-
put are Besselian epochs! Adopted accumulated precession angles from equator and
equinox at B1950 to 1984 January 1d 0h according to ES (table 3.214.1, p 107)
are: zeta=783.7092, z=783.8009 and theta=681.3883 The Woolard and
Clemence angles (derived in this routine) are: zeta=783.70925, z=783.80093
and theta=681.38830 (see same ES table as above).

This routine found (in seconds of arc): zeta,z,theta = 783.709246271
783.800934641 681.388298284 for t1 = 0.1 and t2 = 0.133999566814
using the lines in the next example.

Examples From an interactive Python session:

>>> b1 = 1950.0
>>> b2 = celestial.epochs("F1984-01-01")[0]
>>> print [x*3600 for x in celestial.Newcombprecangles(be1, be2)]

[783.70924627097793, 783.80093464073127, 681.38829828393466]

6.6 Rotation matrices

celestial.MatrixEqB19502Gal()
Create matrix to convert equatorial fk4 coordinates (without e-terms) to IAU 1958 lII,bII system of galactic
coordinates.

Parameters None

Results 3x3 Matrix M as in XYZgal = M * XYZb1950

Reference

1. Blaauw, A., Gum C.S., Pawsey, J.L., Westerhout, G.: 1958,

2. Monthly Notices Roy. Astron. Soc. 121, 123,

3. Blaauw, A., 2007. Private communications.

Notes Original definitions from 1.:

• The new north galactic pole lies in the direction alpha = 12h49m (192.25 deg),
delta=27.4 deg (equinox 1950.0).

• The new zero of longitude is the great semicircle originating at the new north galactic
pole at the position angle theta = 123 deg with respect to the equatorial pole for 1950.0.

• Longitude increases from 0 to 360 deg. The sense is such that, on the galactic equa-
tor increasing galactic longitude corresponds to increasing Right Ascension. Latitude
increases from -90 deg through 0 deg to 90 deg at the new galactic pole.

Given the RA and Dec of the galactic pole, and using the Euler angles scheme:

M = rotZ(a3).rotY(a2).rotZ(a1)

We first rotate the spin vector of the XY plane about an angle a1 = ra_pole and then rotate
the spin vector in the XZ plane (i.e. around the Y axis) with an angle a2=90-dec_pole to
point it in the right declination.

6.6. Rotation matrices 45

Kapteyn Package Documentation, Release 2.2

Now think of a circle with the galactic pole as its center. The radius is equal to the distance
between this center and the equatorial pole. The zero point now is on the circle and opposite
to this pole.

We need to rotate along this circle (i.e. a rotation around the new Z-axis) in a way that the
angle between the zero point and the equatorial pole is equal to 123 deg. So first we need to
compensate for the 180 deg of the current zero longitude, opposite to the pole. Then we need
to rotate about an angle 123 deg but in a way that increasing galactic longitude corresponds
to increasing Right Ascension which is opposite to the standard rotation of this circle (note
that we rotated the original X axis about 192.25 deg). The last rotation angle therefore is
a3=+180-123:

M = rotZ(180-123.0)*rotY(90-27.4)*rotZ(192.25)

The composed rotation matrix is the same as in Slalib’s ‘ge50.f’ and the matrix in eq. (32)
of Murray (1989).

celestial.MatrixGal2Sgal()
Transform galactic to supergalactic coordinates

Parameters None

Returns Matrix M as in XYZsgal = M * XYZgal

Reference Lahav, O., The supergalactic plane revisited with the Optical Redshift Survey Mon.
Not. R. Astron. Soc. 312, 166-176 (2000)

Notes The Supergalactic equator is conceptually defined by the plane of the local (Virgo-Hydra-
Centaurus) supercluster, and the origin of supergalactic longitude is at the intersection of the
supergalactic and galactic planes. (de Vaucouleurs)

North SG pole at l=47.37 deg, b=6.32 deg. Node at l=137.37, sgl=0 (inclination 83.68 deg).

Older references give for he position of the SG node 137.29 which differs from 137.37 deg
in the official definition.

For the rotation matrix we chose the scheme Rz.Ry.Rz Then first we rotate about 47.37
degrees along the Z-axis followed by a rotation about 90-6.32 degrees is needed to set the
pole to the right declination. The new plane intersects the old one at two positions. One
of them is l=137.37, b=0 (in galactic coordinates). If we want this to be sgl=0 we have
to rotate this plane along the new Z-axis about an angle of 90 degrees. So the composed
rotation matrix is:

M = Rotz(90)*Roty(90-6.32)*Rotz(47.37)

celestial.MatrixEq2Ecl(epoch, S1)
Calculate a rotation matrix to convert equatorial coordinates to ecliptical coordinates

Parameters

• epoch (Floating point number) – Epoch of the equator and equinox of date

• S1 (Integer) – equatorial system to determine if one entered epoch in B or J coordinates.

Returns 3x3 Matrix M as in XYZecl = M * XYZeq

Reference Representations of celestial coordinates in FITS, Calabretta. M.R.,
& Greisen, E.W., (2002) Astronomy & Astrophysics, 395, 1077-1122.
http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf

Notes

1. The origin for ecliptic longitude is the vernal equinox. Therefore the coordinates of a
fixed object is subject to shifts due to precession. The rotation matrix uses the obliquity
to do the conversion to the wanted ecliptic coordinates. So we always need to enter

46 Chapter 6. Module Celestial

http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf

Kapteyn Package Documentation, Release 2.2

an epoch. Usually this is J2000, but it can also be the epoch of date. The additional
reference system indicates whether we need a Besselian or a Julian epoch.

2. In the FITS paper of Calabretta and Greisen (2002), one observes the following relations
to FITS:

-Keyword RADESYSa sets the catalog system FK4, FK4-NO-E or FK5 This applies to
equatorial and ecliptical coordinates with the exception of FK4-NO-E.

-FK4 coordinates are not strictly spherical since they include a contribution from the
elliptic terms of aberration, the so-called e-terms which amount to max. 343 milliarcsec.
FITS paper: ‘Strictly speaking, therefore, a map obtained from, say, a radio synthesis
telescope, should be regarded as FK4-NO-E unless it has been appropriately re-sampled
or a distortion correction provided. In common usage, however, CRVALia for such maps
is usually given in FK4 coordinates. In doing so, the e-terms are effectively corrected
to first order only.’. (See also ES, eq. 3.531-1 page 170.

-Keyword EQUINOX sets the epoch of the mean equator and equinox.

-Keyword EPOCH is often used in older FITS files. It is a deprecated keyword and
should be replaced by EQUINOX. It does not require keyword RADESYS. From its
value we derive whether the reference system is FK4 or FK5 (the marker value is
1984.0)

-Ecliptic coordinates require the epoch of the equator and equinox of date. This will be
taken as the time of observation rather than EQUINOX.

FITS paper: ‘The time of observation may also be required for other astrometric pur-
poses in addition to the usual astrophysical uses, for example, to specify when the mean
place was correct in accounting for proper motion, including “fictitious” proper mo-
tions in the conversion between the FK4 and FK5 systems. The old *DATE-OBS key-
word may be used for this purpose. However, to provide a more convenient specification
we here introduce the new keyword MJD-OBS’.*

So MJD-OBS is the modified Julian Date (JD - 2400000.5) of the start of the observa-
tion.

3. Equatorial to ecliptic transformations use the time dependent obliquity of the equator
(also known as the obliquity of the ecliptic). Again, start with:

M = rotZ(0).rotX(eps).rotZ(0) = E.rotX(eps).E = rotX(eps)

In fact this is only a rotation around the X axis

celestial.FK42FK5Matrix(t=None)
Create a matrix to precess from B1950 in FK4 to J2000 in FK5 following to Murray’s (1989) procedure.

Parameters t (Floating point number) – Besselian epoch as epoch of observation.

Returns 3x3 matrix M as in XYZfk5 = M * XYZfk4

Reference

• Murray, C.A. The Transformation of coordinates between the systems B1950.0 and
J2000.0, and the principal galactic axis referred to J2000.0, Astronomy and Astro-
physics (ISSN 0004-6361), vol. 218, no. 1-2, July 1989, p. 325-329.

• Poppe P.C.R.„ Martin, V.A.F., Sobre as Bases de Referencia Celeste SitientibusSerie
Ciencias Fisicas

Notes Murray precesses from B1950 to J2000 using a precession matrix by Lieske. Then ap-
plies the equinox correction and ends up with a transformation matrix X(0) as given in this
function.

In Murray’s article it is proven that using the procedure as described in the article, r_fk5 =
X(0).r_fk4 for extra galactic sources where we assumed that the proper motion in FK5

6.6. Rotation matrices 47

Kapteyn Package Documentation, Release 2.2

is zero. This procedure is independent of the epoch of observation. Note that the matrix is
not a rotation matrix.

FK4 is not an inertial coordinate frame (because of the error in precession and the motion of
the equinox. This has consequences for the proper motions. e.g. a source with zero proper
motion in FK5 has a fictitious proper motion in FK4. This affects the actual positions in
a way that the correction is bigger if the epoch of observation is further away from 1950.0
The focus of this library is on data of which we do not have information about the proper
motions. So for positions of which we allow non zero proper motion in FK5 one needs to
supply the epoch of observation.

Examples Print the difference between the rotation matrix for 1970 and 1980:

>>> M1 = celestial.FK42FK5Matrix(1970)
>>> M2 = celestial.FK42FK5Matrix(1980)
>>> M2 - M1
matrix([[-2.64546940e-10, -1.15396722e-07, 2.11108953e-07],

[1.15403817e-07, -1.29040234e-09, 2.36016437e-09],
[-2.11125281e-07, -5.60232514e-10, 1.02585540e-09]])

celestial.ICRS2FK5Matrix()
Create a rotation matrix to convert a position from ICRS to fk5, J2000

Parameters None

Returns 3x3 rotation matrix M as in XYZfk5 = M * XYZicrs

Reference Kaplan G.H., The IAU Resolutions on Astronomical Reference systems, Time
scales, and Earth Rotation Models, US Naval Observatory, Circular No. 179

Notes Return a matrix that converts a position vector in ICRS to FK5, J2000. We do not use
the first or second order approximations given in the reference, but use the three rotation
matrices from the same paper to obtain the exact result:

M = rotX(-eta0)*rotY(xi0)*rotZ(da0)

eta0 = -19.9 mas, xi0 = 9.1 mas and da0 = -22.9 mas

celestial.ICRS2J2000Matrix()
Return a rotation matrix for conversion of a position in the ICRS to the dynamical reference system based
on the dynamical mean equator and equinox of J2000.0 (called the dynamical J2000 system)

Parameters None

Returns Rotation matrix to transform positions from ICRS to dyn J2000

Reference

• Hilton and Hohenkerk (2004), Astronomy and Astrophysics 413, 765-770

• Kaplan G.H., The IAU Resolutions on Astronomical Reference systems, Time scales,
and Earth Rotation Models, US Naval Observatory, Circular No. 179

Notes Return a matrix that converts a position vector in ICRS to Dyn. J2000. We do not use
the first or second order approximations given in the reference, but use the three rotation
matrices to obtain the exact result:

M = rotX(-eta0)*rotY(xi0)*rotZ(da0)

eta0 = -6.8192 mas, xi0 = -16.617 mas and da0 = -14.6 mas

celestial.JMatrixEpoch12Epoch2(Jepoch1, Jepoch2)
Precession from one epoch to another in the fk5 system. It uses Lieskeprecangles() to calculate the
precession angles.

Parameters

48 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2

• Jepoch1 (Floating point number) – Julian start epoch

• Jepoch2 (Floating point number) – Julian epoch to precess to.

Returns 3x3 rotation matrix M as in XYZepoch2 = M * XYZepoch1

Reference Seidelman, P.K., 1992. Explanatory Supplement to the Astronomical Almanac. Uni-
versity Science Books, Mill Valley. 3.214 p 106

Notes The precession matrix is:

M = rotZ(-z).rotY(+theta).rotZ(-zeta)

celestial.BMatrixEpoch12Epoch2(Bepoch1, Bepoch2)
Precession from one epoch to another in the fk4 system. It uses Newcombprecangles() to calculate
the precession angles.

Parameters

• Bepoch1 (Floating point number) – Besselian start epoch

• Bepoch2 (Floating point number) – Besselian epoch to precess to.

Returns 3x3 rotation matrix M as in XYZepoch2 = M * XYZepoch1

Reference Seidelman, P.K., 1992. Explanatory Supplement to the Astronomical Almanac. Uni-
versity Science Books, Mill Valley. 3.214 p 106

Notes The precession matrix is:

M = rotZ(-z).rotY(+theta).rotZ(-zeta)

celestial.IAU2006MatrixEpoch12Epoch2(epoch1, epoch2)
Create a rotation matrix for a precession based on IAU 2000/2006 expressions, see function
IAU2006precangles()

Parameters

• epoch1 (Floating point number) – Julian start epoch

• epoch2 (Floating point number) – Julian epoch to precess to.

Returns Matrix to transform equatorial coordinates from epoch1 to epoch2 as in XYZepoch2
= M * XYZepoch1

Reference Capitaine N. et al.: IAU 2000 precession A&A 412, 567-586 (2003)

Notes Note that we apply this precession only to equatorial coordinates in the system of dy-
namical J2000 coordinates. When converting from ICRS coordinates this means applying
a frame bias. Therefore the angles differ from the precession Fukushima-Williams angles
(IAU 2006)

The precession matrix is:

M = rotZ(-z).rotY(+theta).rotZ(-zeta)

celestial.MatrixEpoch12Epoch2(epoch1, epoch2, S1, S2, epobs=None)
Helper function for skymatrix(). It handles precession and the transformation between equatorial
systems. This function includes also conversions between reference systems.

Parameters

• epoch1 (Floating point number) – Epoch belonging to system S1 depending on the
reference system either Besselian or Julian.

• epoch2 – Epoch belonging to system S2 depending on the reference system either
Besselian or Julian.

• S1 (Integer) – Input reference system

6.6. Rotation matrices 49

Kapteyn Package Documentation, Release 2.2

• S2 (Integer) – Output rreferencesystem

• epobs (Floating point number) – Epoch of observation. Only valid for conversions
between FK4 and FK5.

Returns Rotation matrix to transform a position in one of the reference systems S1 with epoch1
to an equatorial system with equator and equinox at epoch2 in reference system S2.

Notes Return matrix to transform equatorial coordinates from epoch1 to epoch2 in either ref-
erence system FK4 or FK5. Or transform from epoch, FK4 or FK5 to ICRS or J2000 vice
versa. Note that each transformation between FK4 and one of the other reference systems
involves a conversion to FK5 and therefore the epoch of observation will be involved.

Note that if no systems are entered and the one epoch is > 1984 and the other < 1984, then
the transformation involves both sky reference systems FK4 and FK5.

Examples Calculate rotation matrix for a conversion between FK4, epoch 1940 to FK5, epoch
1960, while the date of observation was 1950.

>>> from kapteyn import celestial
>>> celestial.MatrixEpoch12Epoch2(1940, 1960, celestial.fk4, celestial.fk5, 1950)
matrix([[9.99988107e-01, -4.47301372e-03, -1.94362889e-03],

[4.47301372e-03, 9.99989996e-01, -4.34712255e-06],
[1.94362889e-03, -4.34680782e-06, 9.99998111e-01]])

6.7 Functions related to E-terms

celestial.getEterms(epoch)
Compute the E-terms (elliptic terms of aberration) for a given epoch.

Parameters epoch (Floating point number) – A Besselian epoch

Returns A tuple containing the e-terms vector (DeltaD,DeltaC,DeltaC.tan(e0))

Reference Seidelman, P.K., 1992. Explanatory Supplement to the Astronomical Almanac. Uni-
versity Science Books, Mill Valley

Notes The method is described on page 170/171 of the ES. One needs to process the e-terms
for the appropriate epoch This routine returns the e-term vector for arbitrary epoch.

celestial.addEterms(xyz, a=None)
Add the elliptic component of annual aberration when the result must be a catalogue fk4 position.

Parameters

• xyz (NumPy (n,2) matrix) – Cartesian position(s) converted from lonlat = [
(a1,d1),(a2,d2), ..., (an,dn)] –> xyz = [(x1,y1,z1), (x2,y2,z2), ..., (xn,yn,zn)]

• a (Tuple with 3 floating point numbers) – E-terms vector (as returned by getEterms()) If
input a is omitted (i.e. a == None), the e-terms for 1950 will be substituted.

Result Apparent place, NumPy (n,2) matrix

Reference

• Seidelman, P.K., 1992. Explanatory Supplement to the Astronomical Almanac. Univer-
sity Science Books, Mill Valley.

• Yallop et al, Transformation of mean star places, AJ, 1989, vol 97, page 274

• Stumpff, On the relation between Classical and Relativistic Theory of Stellar Aberra-
tion, Astron, Astrophys, 84, 257-259 (1980)

Notes There is a so called ecliptic component in the stellar aberration. This vector depends
on the epoch at which we want to process these terms. It corresponds to the component
of the earth’s velocity perpendicular to the major axis of the ellipse in the ecliptic. The

50 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2

E-term corrections are as follows. A catalog FK4 position include corrections for elliptic
terms of aberration. These positions are apparent places. For precession and/or rotations
to other sky systems, one processes only mean places. So to get a mean place, one has to
remove the E-terms vector. The ES suggests for the removal to use a decompositions of
the E-term vector along the unit circle to get the approximate new vector, which has almost
the correct angle and has almost length 1. The advantage is that when we add the E-term
vector to this new vector, we obtain a new vector with the original angle, but with a length
unequal to 1, which makes it suitable for closure tests. However, the procedure can be made
more rigorous: For the subtraction we subtract the E-term vector from the start vector and
normalize it afterwards. Then we have an exact new angle (opposed to the approximation
in the ES). The procedure to go from a vector in the mean place system to a vector in the
system of apparent places is a bit more complicated: Find a value for lambda so that the
current vector is adjusted in length so that adding the e-term vector gives a new vector with
length 1. This is by definition the new vector with the right angle. For more information,
see the background information in Background information module celestial.

celestial.removeEterms(xyz, a=None)
Remove the elliptic component of annual aberration when this is included in a catalogue fk4 position.

Parameters

• xyz (NumPy (n,2) matrix) – Cartesian position(s) converted from lonlat = [
(a1,d1),(a2,d2), ..., (an,dn)] –> xyz = [(x1,y1,z1), (x2,y2,z2), ..., (xn,yn,zn)]

• a (Tuple with 3 floating point numbers) – E-terms vector (as returned by getEterms()) If
input a is omitted (== None), the e-terms for 1950 will be substituted.

Result Mean place, NumPy (n,2) matrix

Notes Return a new position where the elliptic terms of aberration are removed i.e. convert a
apparent position from a catalog to a mean place. The effects of ecliptic aberration were
included in the catalog positions to facilitate telescope pointing. See also notes at ‘addE-
terms’.

6.7. Functions related to E-terms 51

Kapteyn Package Documentation, Release 2.2

52 Chapter 6. Module Celestial

CHAPTER 7

Module wcsgrat

A graticule is a system of crossing lines on a map representing positions of which one coordinate is constant. For
a spatial map it consists of parallels of latitude and meridians of longitude as defined by a given projection.

This module is used to set up such graticules and labels for the selected world coordinate system. It plots the
results with plotting library Matplotlib.

Besides spatial axes, it supports also spectral axes and a mix of both (e.g. position-velocity diagrams). It deals with
data dimensions > 2 by allowing arbitrary selections of two axes. The transformations between pixel coordinates
and world coordinates are based on module wcs which is a Python binding for Mark R. Calabretta’s library
WCSLIB. From WCSLIB we use only the core transformation routines. Header parsing is done with module wcs.

Axes types that are not recognized by this software is treated as being linear. The axes types correspond with
keywords CTYPEn in a FITS file. The information from a FITS file is retrieved by module PyFITS

See Also:

Tutorial material with code examples:

• Tutorial maputils module which contains many examples with source code, see Tutorial maputils module.

• Figure gallery ‘all sky plots’ with many examples of Graticule constructors, see All Sky plots.

Module author: Martin Vogelaar <gipsy@astro.rug.nl>

7.1 Module level data

left, bottom, right, top The variables left, bottom, right and top are equivalent to the strings “left”,
“bottom”, “right” and “top” and are used as identifiers for plot axes.

native, notnative, bothticks, noticks The variables native, notnative, bothticks, noticks corre-
spond to the numbers 0, 1, 2 and 3 and represent modes to make ticks along an axis visible or invisible.
Ticks along an axis can represent both world coordinate types (e.g. when a map is rotated). Sometimes one
wants to allow this and sometimes not.

Tick mode Description
native Show only ticks that are native to the coordinate axis. Do not allow ticks that correspond

to the axis for which a constant value applies. So, for example, in a RA-DEC map which
is rotated 45 degrees we want only Right Ascensions along the x-axis.

notnative Plot the ticks that are not native to the coordinate axis. So, for example, in a RA-DEC
map which is rotated 45 degrees we want only Declinations along the x-axis.

bothticks Allow both type of ticks along a plot axis
noticks Do not allow any tick to be plotted.

53

http://matplotlib.sourceforge.net/index.html
http://www.atnf.csiro.au/people/mcalabre/WCS
http://www.stsci.edu/resources/software_hardware/pyfits
mailto:gipsy@astro.rug.nl

Kapteyn Package Documentation, Release 2.2

7.2 Functions

wcsgrat.gethmsdms(a, prec, axtype, skysys, eqlon=None)
Given a number in degrees and an axis type in axtype equal to ‘longitude’ or ‘latitude’, calculate and return
the parts of its sexagesimal representation, i.e. hours or degrees, minutes and seconds. Also return the
fractional seconds and the sign if the input was a value at negative latitude. The value for skysys sets the
formatting to hours/minutes/seconds if it represents an equatorial system.

Parameters

• a (Floating point) – The longitude or latitude in degrees.

• prec (Integer) – The number of decimals in the seconds

• axtype (String) – One of ‘longitude’ or ‘latitude’

• skysys (Integer) – The sky system

Returns tuple: (Ihours, Ideg, Imin, Isec, Fsec, sign) which represent Integer values for the
hours, degrees, minutes and seconds. Fsec is the fractional part of the seconds. Element
sign is -1 for negative latitudes and +1 for positive latitudes.

wcsgrat.makelabel(hmsdms, Hlab, Dlab, Mlab, Slab, prec, fmt, tex)
From the output of function gethmsdms and some Booleans, this function creates a label in plain text or in
TeX. The Booleans set a flag whether a field (hours, degrees, minutes or seconds) should be printed or not.
The fmt parameter is used if it does not contain the percentage character (%) but instead contains characters
from the set HDMS. A capital overules the corresponding Boolean value, so if fmt=’HMS’, the values for
Hlab, Mlab and Slab are all set to True.

Parameters

• hmsdms (Tuple with integer and floating point numbers) – The output of function
wcsgrat.gethmsdms()

• Hlab – If False, there is no need to print the hours

• Dlab – If False, there is no need to print the degrees

• Mlab – If False, there is no need to print the minutes

• Slab – If False, there is no need to print the seconds

• fmt (String) – String containing a combination of the characters [’H’, ‘D’, ‘M’, ‘S’, ‘.’,
‘h’, ‘d’, ‘m’, ‘s’] A capital sets the corresponding input Boolean (Hlab, Dlab, etc.) to
True. A dot starts to set the precision. The number of characters after the dot set the
precision itself. A character that is not a capital sets the corresponding input Boolean
(Hlab, Dlab, etc.) to False. This is a bit dangerous because with this option one can
suppress fields to be printed that contain a value unequal to zero. It is applied if you
want to suppress e.g. seconds if all the seconds in your label are 0.0. The suppression of
printing minutes is overruled if hours (or degrees) and seconds are required. Otherwise
we could end up with non standard labels (e.g. 2h30s).

• tex (Boolean) – If True, then format the labels in LaTeX.

Returns lab, a label in either hms or dms in plain text or in LaTeX format.

Examples

>>> # Set the format in Hours, minutes and seconds with a precision
>>> # of three. The suppression of minutes will not work here:
>>> grat.setp_tick(wcsaxis=0, fmt="HmS.SSS")

>>> # The same effect is obtained with:
>>> grat.setp_tick(wcsaxis=0, fmt="HmS.###")

54 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2

>>> # Let the system determine whether seconds are printed
>>> # but make sure that degrees and minutes are included:
>>> grat.setp_tick(wcsaxis=1, fmt="DM")

>>> # If we know that all minutes and seconds in our labels are 0.0
>>> # and we want only the hours to be printed, then use:
>>> grat.setp_tick(wcsaxis=0, fmt="Hms")

>>> grat.setp_tick(wcsaxis=0, fmt="Dms")
>>> # Plot labels in Degrees even if the axis is an equatorial longitude.

7.3 Class Graticule

class wcsgrat.Graticule(header=None, graticuledata=None, axnum=None, wcstypes=None,
pxlim=None, pylim=None, mixpix=None, spectrans=None, skyout=None,
alter=’‘, wxlim=None, wylim=None, boxsamples=5000, startx=None,
starty=None, deltax=None, deltay=None, skipx=False, skipy=False,
gridsamples=1000, labelsintex=True, offsetx=None, offsety=None,
unitsx=None, unitsy=None)

Creates an object that defines a graticule A (spatial) graticule consists of parallels and meridians. We extend
this to a general grid so we can cover every type of map (e.g. position velocity maps).

Parameters

• header (Python dictionary or FITS header object (pyfits.NP_pyfits.HDUList)) – Is a
Python dictionary or dictionary-like object containing FITS-style keys and values, e.g.
a header object from PyFITS. Python dictionaries are used for debugging, or plotting
experiments or when you need to define a projection system from scratch.

• graticuledata (Object with some required attributes) – This is a helper object. It can be
any object as long it has attributes:

– header

– axnum

– pxlim

– pylim

– mixpix

– spectrans

Software that interfaces with a user to get data and relevant properties could/should
produce objects which have at least values for the attributes listed above. Then these
objects could be used as a shortcut parameter.

• axnum (None, Integer or sequence of Integers) – This parameter sets which FITS axis
corresponds to the x-axis of your graticule plot rectangle and which one corresponds to
the y-axis (see also description at pxlim and pylim). The first axis in a FITS file is axis
1. If axnum set to None then the default FITS axes will be 1 and 2. With a sequence you
can set different FITS axes like axnum=(1,3) Then the input is a tuple or a list.

• wcstypes (List of strings) – List with the type of the used axes. These types are derived
from the projection object axis types (attribute wcstype) but are translated into a string:
The strings are ‘lo’ for a longitude axis, ‘la’ for a latitude axis, ‘sp; for a spectral axis
and ‘li_xxx’ for a linear axis where ‘xxx’ is the ctype for that axis.

• pxlim (None or exactly 2 Integers) – The values of this parameter together with the
values in pylim define a rectangular frame. The intersections of graticule lines with this
frame are the positions where want to plot a tick mark and write a label that gives the

7.3. Class Graticule 55

Kapteyn Package Documentation, Release 2.2

position as a formatted string. Further, the limits in pixels are used to set the step size
when a graticule line is sampled. This step size then is used to distinguish a valid step
from a jump (e.g. from 180-delta degrees to 180+delta degrees which can jump from
one side in the plot to the other side). To prevent a jump in a plot, the graticule line is
splitted into line pieces without jumps. The default of pxlim is copied from the header
value. FITS data starts to address the pixels with 1 and the last pixel is given by FITS
keyword NAXISn. Note that internally the enclosing rectangle in pixels is enlarged with
0.5 pixel in all directions. This enables a correct overlay on an image where the pixels
have a size.

• pylim (None or exactly 2 Integers) – See description at pxlim. The range is along the
y-axis.

• mixpix (None or 1 Integer) – For maps with only 1 spatial coordinate we need to define
the pixel that sets the spatial value on the matching spatial axis. If its value is None then
the value of CRPIXn of the matching axis from the header is taken as default.

• spectrans (String) – The spectral translation. For spectral axes it is usually possible
to convert to another representation. For instance one can ‘translate’ a frequency into
a velocity which is one of the types: VOPT-F2W, VRAD, VELO-F2V (for optical,
radio and radial velocities). See also the article Representations of spectral coordinates
in FITS by Greisen, Calabretta, Valdes & Allen. Module maputils from the Kapteyn
Package provides a method that creates a list with possible spectral translations given
an arbitrary header. The spectral translation should be followed by a code (e.g. as in
‘VOPT-F2W’) which sets the conversion algorithm. If you don’t know this beforehand,
you can either append the string ‘-???’ or try your translation without this coding. Then
this module tries to find the appropriate code itself.

• skyout (None, one Integer or a tuple with a sky definition) – A single number or a tuple
which specifies the celestial system. The tuple is laid out as follows: (sky system,
equinox, reference system, epoch of observation). Predefined
are the systems:

– wcs.equatorial

– wcs.ecliptic,

– wcs.galactic

– wcs.supergalactic

or the minimal matched string versions of these values.

Predefined reference systems are:

– wcs.fk4,

– wcs.fk4_no_e,

– wcs.fk5,

– wcs.icrs,

– wcs.j2000

or the minimal matched string versions of these values.

Prefixes for epoch data are:

56 Chapter 7. Module wcsgrat

http://www.atnf.csiro.au/people/mcalabre/WCS/scs.pdf
http://www.atnf.csiro.au/people/mcalabre/WCS/scs.pdf

Kapteyn Package Documentation, Release 2.2

Prefix Description Example
B Besselian epoch ‘B 1950’, ‘b1950’, ‘B1983.5’, ‘-B1100
J Julian epoch ‘j2000.7’, ‘J 2000’, ‘-j100.0’
JD Julian Date ‘JD2450123.7’
MJD Modified Julian Day ‘mJD 24034’, ‘MJD50123.2’
RJD Reduced Julian Day ‘rJD50123.2’, ‘Rjd 23433’
F DD/MM/YY (old FITS) ‘F29/11/57’
F YYYY-MM-DD ‘F2000-01-01’
F YYYY-MM-DDTHH:MM:SS ‘F2002-04-04T09:42:42.1’

See the documentation of module celestial for more details. Example of a sky
definition:

skyout = (wcs.equatorial, wcs.fk4_no_e, ’B1950’)

• alter (Character) – A character from ‘A’ through ‘Z’, indicating an alternative WCS
axis description from a FITS header.

• wxlim (None or exactly two floating point numbers) – Two numbers in units of the x-
axis. For spatial axes this is usually in degrees. The numbers are the limits of an interval
for which graticules will be calculated. If these values are omitted, defaults will be
calculated. Then random positions in pixels are converted to world coordinates and the
greatest gap in these coordinates is calculated. The end- and start point of the gap are the
start- and end point of the range(s) in world coordinates. It is not enough to transform
only the limits in pixels because a maximum or minimum in world coordinates could
be located on arbitrary pixel positions depending on the projection.

• wylim (None or exactly two floating point numbers) – See wxlim, but now applied for
the y-axis

• boxsamples (Integer) – Number of random pixel positions within a box with limits
pxlim and pylim for which world coordinates are calculated to get an estimate of the
range in world coordinates (see description at wxlim). The default is listed in the ar-
gument list of this method. If speed is essential one can try smaller numbers than the
default.

• startx (None or 1 floating point number or a sequence of floating point numbers or a
string.) – If one value is given then this is the first graticule line that has a constant
x world coordinate equal to startx. The other values will be calculated, either with
distance deltax between them or with a default distance calculated by this method. If
None is set, then a suitable value will be calculated. The input can also be a string which
is parsed by the positions module. This enables the use of units etc. Examples (see also
module positions:

– For a frequency axis: startx=”linspace(1.4240,1.4250,4) Ghz”

– For a frequency axis: startx=”arange(1.4240,1.4250,0.0005) Ghz”

– For a spectral translation to WAVE: startx=“‘0.2105, 0.2104’ m”

– Two labels on a longitude axis: startx=”3h00m20s 3h00m30s”

• starty (None or 1 floating point number or a sequence of floating point numbers or a
string.) – [None, one value, sequence] Same for the graticule line with constant y world
coordinate equal to starty.

• deltax (None or a floating point number or a string) – Step in world coordinates along
the x-axis between two subsequent graticule lines. It can also be a string with an ex-
pression and optionally a unit. Note that the expression cannot contain any spaces.
Example:

– deltax = 5*6/6 dmsmin

• deltay (None or a floating point number or a string.) – Same as deltax but now as step
in y direction. It can also be a string with an expression and optionally a unit.

7.3. Class Graticule 57

Kapteyn Package Documentation, Release 2.2

• skipx (Boolean) – Do not calculate the graticule lines with the constant world coordinate
that is associated with the x-axis.

• skipy (Boolean) – The same as skipx but now associated with the y-axis.

• gridsamples (Integer) – Number of positions on a graticule line for which a pixel posi-
tion is calculated and stored as part of the graticule line. If None is set then the default
is used (see the argument list of this method).

• labelsintex (Boolean) – The default is that all tick labels are formatted for LaTeX. These
are not the axes labels. If you want to format these in LaTeX then you need to set them
explicitly as in:

>>> grat.setp_axislabel("bottom",
label=r"$\mathrm{Right\ Ascension\ (2000)}$",
fontsize=14)‘‘

Printing your axis labels in LaTeX limits the number of Matplotlib properties that one
can set.

• offsetx (None or Boolean) – Change the default mode which sets either plotting the
labels for the given -or calculated world coordinates or plotting labels which represent
constant offsets with respect to a given starting point. The offset mode is default for
plots with mixed axes, i.e. with only one spatial axis. In spatial maps this offset mode
is not very useful to plot the graticule lines because these lines are plotted at a constant
world coordinate and do not know about offsets. The offset axes correspond to the pixel
positions of start- and endpoint of the left and bottom axes and the default start point
of the offsets (value 0) is at the centre of the axis. One can change this start point with
startx, starty.

• offsety (None or Boolean) – Same as offsetx but now for the left plot axis.

• unitsx (String) – Units for first axis. Applies both to regular and offset axes. If this
parameter sets a unit other than the default, then a conversion function will be used to
display the labels in the new units. The unit in the default axis label will be replaced by
the new units.

• unitsy (String) – Units for second axis.

Raises

ValueError Could not find enough (>1) valid world coordinates in this map! User
wanted to let the constructor estimate what the ranges in world coordinates are for this
header, but only zero or one coordinate could be found.

ValueError Need data with at least two axes The header describes zero or one axes.
For a graticule plot we need at least two axes.

ValueError Need two axis numbers to create a graticule The axnum parameter needs
exactly two values.

ValueError Need two different axis numbers A user/programmer entered two identical
axis numbers. Graticules need two different axes.

ValueError pxlim needs to be of type tuple or list Check type.

ValueError pxlim must have two elements Number must be exactly 2.

ValueError pylim needs to be of type tuple or list Check type.

ValueError pylim must have two elements Number must be exactly 2.

ValueError Could not find a grid for the missing spatial axis The specification in
axnum corresponds to a map with only one spatial axis. If parameter mixpix is omitted
then the constructor tries to find a suitable value from the (FITS) header. It reads
CRPIXn where n is the appropriate axis number. If nothing could be found in the
header then this exception will be raised.

58 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2

ValueError Could not find a matching spatial axis pair The specification in axnum
corresponds to a map with only one spatial axis. A We need the missing spatial axis
to find a matching world coordinate, but a matching axis could not be found in the
header.

ValueError wxlim needs to be of type tuple or list Check type.

ValueError wxlim must have two elements Number must be exactly 2.

ValueError wylim needs to be of type tuple or list Check type.

ValueError wylim must have two elements Number must be exactly 2.

ValueError boxsamples < 2: Need at least two samples to find limits There is a mini-
mum number of random positions we have to calculate to get an impression of the
axis limits in world coordinates.

ValueError Number of samples along graticule line must be >= 2 to avoid a step size of zero
The value of parameter gridsamples is too low. Low values give distorted graticule
lines. Hogher values (like the default) give smooth results.

Returns A graticule object. This object contains the line pieces needed to draw the graticule and
the ticks (positions, text and axis number). The basis method to reveal this data (necessary
if you want to make a plot yourself) is described in the following example:

graticule = wcsgrat.Graticule(header)
for gridline in graticule:
print "\nThis gridline belongs to axis", gridline.wcsaxis
print "Axis type: %s. Sky system %s:" % (gridline.axtype, gridline.skysys)
for t in gridline.ticks:

print "tick x,y:", t.x, t.y
print "tick label:", t.labval
print "tick on axis:", t.axisnr

for line in gridline.linepieces:
print "line piece has %d elements" % len(line[0])

Note: A Graticule object has a string representation and can therefore be easily inspected with Python’s
print statement.

Attributes:

axes
Read the PLOTaxis class documentation. Four PLOTaxis instances, one for each axis of the rectangular
frame in pixels set by xplim and pylim If your graticule object is called grat then the four axes are
accessed with:

•grat.axes[wcsgrat.left]

•grat.axes[wcsgrat.bottom]

•grat.axes[wcsgrat.right]

•grat.axes[wcsgrat.top]

Usually these attributes are set with method setp_plotaxis().

Examples:

grat.axes[wcsgrat.left].mode = 1
grat.axes[wcsgrat.bottom].label = ’Longitude / Latitude’
grat.axes[wcsgrat.bottom].mode = 2
grat.axes[wcsgrat.right].mode = 0

7.3. Class Graticule 59

Kapteyn Package Documentation, Release 2.2

PLOTaxis modes are:

0: ticks native to axis type only
1: Only the tick that is not native to axis type
2: both types of ticks (map could be rotated)
3: no ticks

The default values depend on how many ticks, native to the plot axis, are found. If this is < 2 then we
allow both native and not native ticks along all plot axes.

pxlim
The limits of the map in pixels along the x-axis. This value is either set in the constructor or calculated.
The default is [1,NAXISn]. The attribute is meant as a read-only attribute.

pylim:
Same for the y-axis.

wxlim
The limits of the map in world coordinates for the x-axis either set in the constructor or calculated (i.e.
estimated) by this method. The attribute is meant as a read-only attribute.

wylim
Same for the y-axis

xaxnum
The (FITS) axis number associated with the x-axis Note that axis numbers in FITS start with 1. If
these numbers are not given as argument for the constructor then xaxnum=1 is assumed. The attribute
is meant as a read-only attribute.

yaxnum
Same for the y-axis. Default: yaxnum=2

wcstypes
List with strings that represent the wcs axis type of the axes.

gmap
The wcs projection object for this graticule. See the wcs module document for more information.

mixpix
The pixel on the matching spatial axis for maps with only one spatial axis. This attribute is meant as a
read-only attribute.

xstarts
World coordinates associated with the x-axis which set the constant value of a graticule line as calcu-
lated when the object is initialized. This attribute is meant as a read-only attribute.

ystarts
Same for the y-axis

skyout
Unformatted copy of input parameter skyout

spectrans
Unformatted copy of input parameter spectrans

Examples Example to show how to use a custom made header to create a graticule object.
Usually one uses this option to create all sky plots. It is also a useful tool for experiments.:

#1. A minimal header for an all sky plot
header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

’CTYPE1’ : ’RA---AZP’, ’CRVAL1’ :0,
’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -5.0,
’CTYPE2’ : ’DEC--AZP’,
’CRVAL2’ : dec0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’,
’CDELT2’ : 5.0,

60 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2

’PV2_1’ : mu, ’PV2_2’ : gamma,
}

grat = wcsgrat.Graticule(header)

Use module PyFITS to read a header from a FITS file:

#2. A header from a FITS file ’test.fits’
import pyfits
hdulist = pyfits.open(’test.fits’)
header = hdulist[0].header
grat = wcsgrat.Graticule(header)

Select the axes for the graticules. Note that the order of the axes should be the same as the
order of axes in the image where you want to plot the graticule. If necessary one can swap
the graticule plot axes with input parameter axnum:

#3. Swap x and y- axis in a FITS file
grat = wcsgrat.Graticule(header, axnum= (2,1))

For data with more than two axes, one can select the axes with input parameter axnum:

#4. For a FITS file with axes (RA,DEC,FREQ)
create a graticule for the FREQ,RA axes:
grat = wcsgrat.Graticule(header, axnum=(3,1))

Use sexagesimal numbers for startx/starty:

#5. Sexagesimal input
grat = wcsgrat.Graticule(...., startx="7h59m30s", starty="-10d0m30s’)

Methods which set (plot) attributes:

setp_tick(wcsaxis=None, plotaxis=None, position=None, tol=9.9999999999999998e-13,
fmt=None, fun=None, tex=None, texsexa=None, markerdict={}, **kwargs)

Set (plot) attributes for a wcs tick label. A tick is identified by the type of grid line it belongs to, and/or
the plot axis for which it defines an intersection and/or a position which corresponds to the constant
value of the graticule line. All these parameters are valid with none, one or a sequence of values.

Warning: If no value for wcsaxis, plotaxis or position is entered then this method applies the
parameter setting on all the wcs axes.

Parameters

• wcsaxis (None, 0, 1 or tuple with both) – Values are 0 or 1, corresponding to the
first and second world coordinate types. Note that wcsaxis=0 corresponds to the first
element in the axis permutation array given in parameter axnum.

• plotaxis (One or more integers between 0 and 3.) – Accepted values are ‘None’, 0, 1,
2, 3 or a sequence of these numbers, to represent the left, bottom, right and top axis of
the enclosing rectangle that represents the limits in pixel coordinates.

• position (None or one or a sequence of floating point numbers) – Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that
each line can have its own properties. The input can also be a string that represents a
sexagesimal number.

• tol (Floating point number) – If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol’ gets updated attributes.

7.3. Class Graticule 61

http://www.stsci.edu/resources/software_hardware/pyfits

Kapteyn Package Documentation, Release 2.2

• fmt (String) – A string that formats the tick value e.g. fmt="%10.5f" in the Python
way, or a string that contains no percentage character (%) but a format to set the out-
put of sexagesimal numbers e.g. fmt=’HMs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wcsgrat.makelabel(). To create labels with an exponen-
tial, use a second format in the same format string. The syntax is %nne where nn is an
integer. This integer, which can be negative, sets the number in the exponential. The
number before the exponential is formatted in the usual way e.g. fmt=’%.3f%-3e’.

• fun (Python function or Lambda expression) – An external function which will be
used to convert the tick value e.g. to convert velocities from m/s to km/s. See also
example 2 below.

• tex (Boolean) – Interpret the format in fmt as a TeX label. The default is set to None
to indicate it has not been set (to True or False) so that it is possible to distinguish
between global and local settings of this property.

• texsexa – If False and parameter tex is True, then format the tick label without su-
perscripts for sexagesimal labels. This option can be used if superscripts result in
‘jumpy’ labels. The reason is that in Matplotlib the TeX labels at the bottom of a plot
are aligned at a baseline at the top of the characters.

• markerdict (Python dictionary) – Properties for the tick marker. Amongst others:

– markersize: Size of tick line. Use a negative number (e.g. -4) to get tick lines that
point outside the plot instead of the default which is inside.

– markeredgewidth: The width of the marker

– color: Color of the marker (not the label)

• **kwargs (Matplotlib keyword arguments) – Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Note Some projections generate labels that are very close to each other. If you want to
skip labels then you can use keyword/value visible=False. There is not a documented
keyword visible in this method because visible is a valid keyword argument in Matplotlib.

Examples 1. Set tick properties with setp_tick(). The last line makes the label at a
declination of -10 degrees (we assume a spatial map) invisible:

grat.setp_tick(wcsaxis=0, color=’g’)
grat.setp_tick(wcsaxis=1, color=’m’)
grat.setp_tick(wcsaxis=1, plotaxis=wcsgrat.bottom,

color=’c’, rotation=-30, ha=’left’)
grat.setp_tick(plotaxis=wcsgrat.right, backgroundcolor=’yellow’)
grat.setp_tick(plotaxis=wcsgrat.left, position=-10, visible=False)

2. Example of an external function to change the values of the tick labels for the hori-
zontal axis only:

def fx(x):
return x/1000.0

setp_tick(wcsaxis=0, fun=fx)

Or use the lambda operator as in: fun=lambda x: x/1000

setp_plotaxis(plotaxis, mode=None, label=None, xpos=None, ypos=None, **kwargs)
Set (plot) attributes for titles along a plot axis and set the ticks mode. The ticks mode sets the relation
between the ticks and the plot axis. For example a rotated map will show a rotated graticule, so ticks
for both axes can appear along a plot axis. With parameter mode one can influence this behaviour.

62 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2

Note: This method addresses the four axes of a plot separately. Therefore its functionality cannot be
incorporated in setp_tick()

Parameters

• plotaxis (Integer or String) – The axis number of one of the axes of the plot rectangle:

– wcsgrat.left

– wcsgrat.bottom

– wcsgrat.right

– wcsgrat.top

or (part of) a string which can be (case insensitive) matched by one from ‘left’, ‘bot-
tom’, ‘right’, ‘top’.

• mode (Integer or String) – What should this axis do with the tick marks and labels?

– 0 = ticks native to axis type only

– 1 = only the tick that is not native to axis type

– 2 = both types of ticks (map could be rotated)

– 3 = no ticks

Or use a text that can (case insensitive) match one of:

– “NATIVE_TICKS”

– “SWITCHED_TICKS”

– “ALL_TICKS”

– “NO_TICKS”

• label (String) – An annotation of the current axis

• **kwargs (Matplotlib keyword argument(s)) – Keywords for (plot) attributes

Examples Change the font size of the tick labels along the bottom axis in 11:

grat = Graticule(...)
grat.setp_plotaxis(wcsgrat.bottom, fontsize=11)

setp_lineswcs0(position=None, tol=9.9999999999999998e-13, **kwargs)
Helper method for setp_gratline(). It pre-selects the grid line that corresponds to the first world
coordinate.

Parameters See description at setp_gratline()

Examples Make lines of constant latitude magenta and lines of constant longitude green.
The line that corresponds to a latitude of 30 degrees and the line that corresponds to a
longitude of 0 degrees are plotted in red with a line width of 2:

grat.setp_lineswcs1(color=’m’)
grat.setp_lineswcs0(color=’g’)
grat.setp_lineswcs1(30, color=’r’, lw=2)
grat.setp_lineswcs0(0, color=’r’, lw=2)

setp_lineswcs1(position=None, tol=9.9999999999999998e-13, **kwargs)
Equivalent to method setp_gratline(). It pre-selects the grid line that corresponds to the second
world coordinate.

Parameters See description at setp_gratline()

Examples See example at setp_lineswcs0().

7.3. Class Graticule 63

Kapteyn Package Documentation, Release 2.2

setp_gratline(wcsaxis=None, position=None, tol=9.9999999999999998e-13, **kwargs)
Set (plot) attributes for one or more graticule lines. These graticule lines are identified by the wcs axis
number (wcsaxis=0 or wcsaxis=1) and by their constant world coordinate in position.

Parameters

• wcsaxis (None , integer or tuple with integers from set 0, 1.) – If omitted, then for
both types of graticule lines the attributes are set. If one value is given then only for
that axis the attributes will be set.

• position (None, one or a sequence of floating point numbers) – None, one value or a
sequence of values representing the constant value of a graticule line in world coordi-
nates. For the graticule line(s) that match a position in this sequence, the attributes are
updated.

• tol (Floating point number) – If a value > 0 is given, the graticule line with the constant
value closest to a given position within distance tol gets updated attributes.

• **kwargs (Matplotlib keyword argument(s)) – Keyword arguments for plot properties
like color, rotation or visible, linestyle etc.

Returns –

Notes For each value in position find the index of the graticule line that belongs to wcsaxis
so that the distance between that value and the constant value of the graticule line is the
smallest of all the graticule lines. If position=None then apply change of properties to
ALL graticule lines. The (plot) properties are stored in **kwargs Note that graticule lines
are initialized with default properties. These kwargs only update the existing kwargs i.e.
appending new keywords and update existing keywords.

setp_axislabel(plotaxis=None, label=None, xpos=None, ypos=None, **kwargs)
Utility method that calls method setp_plotaxis() but the parameters are restricted to the axis
labels. These labels belong to one of the 4 plot axes. See the documentation at setp_plotaxis for the
input of the plotaxis parameter. The kwargs are Matplotlib attributes.

Possible useful Matplotlib attributes:

•backgroundcolor

•color

•rotation

•style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]

•weight or fontweight

Parameters

• plotaxis (Integer or String) – The axis number of one of the axes of the plot rectangle:

– wcsgrat.left

– wcsgrat.bottom

– wcsgrat.right

– wcsgrat.top

or (part of) a string which can be (case insensitive) matched by one from ‘left’, ‘bot-
tom’, ‘right’, ‘top’.

• label (String) – The label text.

• xpos (Floating point number) – The x position of the label in normalized device co-
ordinates

• **kwargs (Matplotlib keyword argument(s)) – Keywords for (plot) attributes

64 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2

setp_tickmark(wcsaxis=None, plotaxis=None, position=None, tol=9.9999999999999998e-13,
**mkwargs)

Utility method for setp_tick(). It handles the properties of the tick marks, which are Line2D
objects in Matplotlib. The most useful properties are color, markeredgewidth and markersize.

setp_ticklabel(wcsaxis=None, plotaxis=None, position=None, tol=9.9999999999999998e-
13, fmt=None, fun=None, tex=None, texsexa=None, **kwargs)

Utility method for setp_tick(). It handles the properties of the tick labels, which are Text objects
in Matplotlib. The most useful properties are color, fontsize and fontstyle.

Parameters

• wcsaxis (None, 0, 1 or tuple with both) – Values are 0 or 1, corresponding to the
first and second world coordinate types. Note that wcsaxis=0 corresponds to the first
element in the axis permutation array given in parameter axnum.

• plotaxis (One or more integers between 0 and 3.) – Accepted values are ‘None’, 0, 1,
2, 3 or a combination, to represent the left, bottom, right and top axis of the enclosing
rectangle that represents the limits in pixel coordinates.

• position (None or one or a sequence of floating point numbers) – Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that
each line can have its own properties. The input can also be a string that represents a
sexagesimal number.

• tol (Floating point number) – If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol’ gets updated attributes.

• fmt (String) – A string that formats the tick value e.g. fmt="%10.5f" in the Python
way, or a string that contains no percentage character (%) but a format to set the output
of sexagesimal numbers e.g. fmt=’HMs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wcsgrat.makelabel().

• fun (Python function or Lambda expression) – An external function which will be
used to convert the tick value e.g. to convert velocities from m/s to km/s. See also
example 2 below.

• tex (Boolean) – If True then format the tick label in LaTeX. This is the default. If False
then standard text will applies. Some text properties cannot be changed if LaTeX is in
use.

• texsexa – If False and parameter tex is True, then format the tick label without su-
perscripts for sexagesimal labels. This option can be used if superscripts result in
‘jumpy’ labels. The reason is that in Matplotlib the TeX labels at the bottom of a plot
are aligned at a baseline at the top of the characters.

• **kwargs (Matplotlib keyword arguments) – Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Note Some projections generate labels that are very close to each other. If you want to
skip labels then you can use keyword/value visible=False. There is not a documented
keyword visible in this method because visible is a valid keyword argument in Matplotlib.

set_tickmode(plotaxis=None, mode=None)
Utility method that calls method setp_plotaxis() but the parameters are restricted to the tick
mode.

Each plot axis has a tick mode.

Parameters

• plotaxis (Integer or String) – The axis number of one of the axes of the plot rectangle:

– wcsgrat.left

7.3. Class Graticule 65

Kapteyn Package Documentation, Release 2.2

– wcsgrat.bottom

– wcsgrat.right

– wcsgrat.top

or (part of) a string which can be (minimal & case insensitive) matched by one from
‘left’, ‘bottom’, ‘right’, ‘top’.

• mode (Integer or String) – What should this axis do with the tick marks and labels?

– 0 = ticks native to axis type only

– 1 = only the tick that is not native to axis type

– 2 = both types of ticks (map could be rotated)

– 3 = no ticks

Or use a text that can (minimal) match one of:

– “NATIVE_TICKS”

– “SWITCHED_TICKS”

– “ALL_TICKS”

– “NO_TICKS”

Methods that deal with special curves like borders:

scanborder(xstart, ystart, deltax=None, deltay=None, nxy=1000, tol=None)
For the slanted azimuthal projections, it is not trivial to draw a border because these borders are not
graticule lines with a constant longitude or constant latitude. Nor it is easy or even possible to find
mathematical expressions for this type of projection. Also, the mathematical expressions return world
coordinates which can suffer from loss of precision. This method tracks the border from a starting
point by scanning in x- and y direction and tries to find the position of a limb with a standard bisection
technique. This method has been applied to a number of all-sky plots with slanted projections.

Parameters

• xstart (Floating point) – X-coordinate in pixels of position where to start the scan to
find a border. The parameter has no default.

• ystart (Floating point) – Y-coordinate in pixels of position where to start the scan to
find border. The parameter has no default.

• deltax (Floating point) – Set range in pixels to look for a border in scan direction. The
default value is 10 percent of the total pixel range in x- or y-direction.

• deltay (Floating point) – See deltayx.

• nxy (Integer) – Number of scan lines in x and y direction. Default is 1000.

• tol (Floating point) – See note below.

Returns Identifier to set attributes of this graticule line with method
setp_linespecial().

Note This method uses an algorithm to find positions along the border of a projection. It
scans along both x- and y-axis for a NaN (Not a Number number) transition as a result
of an invalid coordinate transformation, and repeats this for a number of scan lines along
the x-axis and y-axis.

A position on a border off an all-sky plot is the position at
which a transition occurs from a valid coordinate to a NaN.

Its accuracy depends on the the tolerance given in argument tol. The start coordinates to
find the next border position on the next scan line is the position of the previous border

66 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2

point. If you have missing line pieces, then add more borders by calling this method with
different starting points.

addgratline(x, y, pixels=False)
For any path given by a set of world coordinates of which none is a constant value (e.g. borders in
slanted projections where the positions are calculated by an external routine), one can create a line that
is processed as a graticule line, i.e. intersections and jumps are addressed. Instead of world coordi-
nates, this method can also process pixel positions. The type of input is set by the pixels parameter.

Parameters

• x (Floating point numbers) – A sequence of world coordinates or pixels that corre-
spond to the horizontal axis in a graticule plot..

• y – The same for the second axis

• pixels (Boolean) – False or True If False the coordinates in x and y are world- coordi-
nates. Else they are pixel coordinates.

Returns A Identification number id which can be used to set properties for this special path
with method setp_linespecial(). Return None if no line piece could be found
inside the pixel limits of the graticule.

Note This method can be used to plot a border around an all-sky plot e.g. for slanted
projections. See code at scanborder().

setp_linespecial(id, **kwargs)
Set (plot) attributes for a special type of graticule line made with method addgratline() or method
scanborder(). This graticule line has no constant x- or y- value. It is identified by an id returned
by method addgratline().

Parameters

• id (Integer) – id from addgratline()

• **kwargs (Matplotlib keyword argument(s)) – keywords for (plot) attributes

Examples Create a special graticule line which follows the positions in two given sequences
x and y. and set the line width for this line to 2:

id = grat.addgratline(x, y)
grat.setp_linespecial(id, lw=2)

Methods related to plotting derived elements:

Insidelabels(wcsaxis=0, world=None, constval=None, deltapx=0.0, deltapy=0.0, angle=None,
addangle=0.0, fun=None, fmt=None, tex=True, **kwargs)

Annotate positions in world coordinates within the boundaries of the plot. This method can be used
to plot positions on all-sky maps where there are usually no intersections with the enclosing axes
rectangle.

Parameters

• wcsaxis (Integer) – Values are 0 or 1, corresponding to the first and second world
coordinate types. The accepted values are 0 and 1. The default is 0.

• world (One or a sequence of floating point number(s) or None) – One or a sequence
of world coordinates on the axis given by wcsaxis. The positions are completed with
one value for constval. If world=None (the default) then the world coordinates are
copied from graticule world coordinates.

• constval (Floating point number or String) – A constant world coordinate to complete
the positions at which a label is plotted. The value can also be a string representing a
sexagesimal number.

7.3. Class Graticule 67

Kapteyn Package Documentation, Release 2.2

• deltapx (Floating point number.) – Small shift in pixels in x-direction of text. This
enables us to improve the layout of the plot by preventing that labels are intersected
by lines.

• deltapy (Floating point number.) – See description at deltapx.

• angle (Floating point number) – Use this angle (in degrees) instead of calculated
defaults. It is the angle at which then all position labels are plotted.

• addangle (Floating point number) – Add this angle (in degrees) to the calculated
default angles.

• fun – Function or lambda expression to convert the label value.

• fmt (String) – String to format the numbers. If omitted the format ‘%g’ is used.

• tex – Format these ‘inside’ labels in LaTeX if this parameter is set to True (which is
the default).

• **kwargs (Matplotlib keyword argument(s)) – Keywords for (plot) attributes.

Returns An Insidelabel object with a series of derived label objects. These label objects
have a number of attributes, see Insidelabels

Notes For a map with only one spatial axis, the value of ‘mixpix’ is used as pixel value for
the matching spatial axis. The mixed() method from module wcs is used to calculate the
right positions.

Examples Annotate a plot with labels at positions from a list with longitudes at given fixed
latitude:

grat = Graticule(...)
lon_world = [0,30,60,90,120,150,180]
lat_constval = 30
inlabs = grat.Insidelabels(wcsaxis=0,

world=lon_world,
constval=lat_constval,
color=’r’)

Insidelabels.setp_label(position=None, tol=9.9999999999999998e-13, fmt=None,
fun=None, tex=None, texsexa=None, **kwargs)

This method handles the properties of the ‘inside’ labels, which are Text objects in Matplotlib. The
most useful properties are color, fontsize and fontstyle. One can change the label values using an
external function and/or change the format of the label.

Parameters

• position (None or one or a sequence of floating point numbers) – Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that each
line can have its own properties. If no position is entered, then the changes are applied
to all the labels in the current object. The input can also be a string that represents a
sexagesimal number.

• tol (Floating point number) – If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol’ gets updated attributes.

• fmt (String) – A string that formats the tick value e.g. fmt="%10.5f" in the Python
way, or a string that contains no percentage character (%) but a format to set the output
of sexagesimal numbers e.g. fmt=’HMs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wcsgrat.makelabel().

• fun (Python function or Lambda expression) – An external function which will be
used to convert the tick value e.g. to convert velocities from m/s to km/s. See also
example 2 below.

68 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2

• tex (Boolean) – If True then format the tick label in LaTeX. This is the default. If
False then standard text will be applied. Some text properties cannot be changed if
LaTeX is in use.

• texsexa – If False and parameter tex is True, then format the tick label without su-
perscripts for sexagesimal labels. This option can be used if superscripts result in
‘jumpy’ labels. The reason is that in Matplotlib the TeX labels at the bottom of a plot
are aligned at a baseline at the top of the characters and not at the bottom, while the
height between LaTeX boxes may vary.

• **kwargs (Matplotlib keyword arguments) – Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Note Some projections generate labels that are very close to each other. If you want to skip
labels then you can use keyword/value visible=False. Note that visible is a parameter of
Matplotlib’s plot functions.

Utility methods:

get_aspectratio(xcm=None, ycm=None)
Calculate and set, the aspect ratio for the current pixels. Also set default values for figure size and axes
lengths (i.e. size of canvas depends on the size of plot window with this aspect ratio).

Parameters

• xcm (Floating point number) – Given a value for xcm or ycm (or omit both), sug-
gest a suitable figure size in and a viewport in normalized device coordinates of
a plot which has an axes rectangle that corrects the figure for an aspect ratio (i.e.
CDELTy/CDELTx) unequal to 1 while the length of the x-axis is xcm OR the length
of the y-axis is ycm. See note for non-spatial maps.

• ycm (Floating point number) – See description at xcm.

Returns The aspect ratio defined as: AR = CDELTy/CDELTx.

Note (i.e. AR > 10 or AR < 0.1), an aspect ratio of 1 is returned. This method sets the
attributes: ‘axesrect’, ‘figsize’, ‘aspectratio’. The attribute ‘figsize’ is in inches which is
compatible to the methods of Matplotlib.

class wcsgrat.WCStick(x, y, axisnr, labval, wcsaxis, offset, fun=None, fmt=None)
A WCStick object is an intersection of a parallel or meridian (or equivalent lines with one constant world
coordinate) with one of the axes of a rectangle in pixels. The position of that intersection is stored in pixel
coordinates and can be used to plot a (formatted) label showing the position of the constant world coordinate
of the graticule line. This class is only used in the context of the Graticule class.

7.4 Class Insidelabels

class wcsgrat.Insidelabels(wcsaxis)
A small utility class for wcs labels inside a plot with a graticule. Useful for all sky plots.

setp_label(position=None, tol=9.9999999999999998e-13, fmt=None, fun=None, tex=None,
texsexa=None, **kwargs)

This method handles the properties of the ‘inside’ labels, which are Text objects in Matplotlib. The
most useful properties are color, fontsize and fontstyle. One can change the label values using an
external function and/or change the format of the label.

Parameters

• position (None or one or a sequence of floating point numbers) – Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that each
line can have its own properties. If no position is entered, then the changes are applied

7.4. Class Insidelabels 69

Kapteyn Package Documentation, Release 2.2

to all the labels in the current object. The input can also be a string that represents a
sexagesimal number.

• tol (Floating point number) – If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol’ gets updated attributes.

• fmt (String) – A string that formats the tick value e.g. fmt="%10.5f" in the Python
way, or a string that contains no percentage character (%) but a format to set the output
of sexagesimal numbers e.g. fmt=’HMs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wcsgrat.makelabel().

• fun (Python function or Lambda expression) – An external function which will be
used to convert the tick value e.g. to convert velocities from m/s to km/s. See also
example 2 below.

• tex (Boolean) – If True then format the tick label in LaTeX. This is the default. If
False then standard text will be applied. Some text properties cannot be changed if
LaTeX is in use.

• texsexa – If False and parameter tex is True, then format the tick label without su-
perscripts for sexagesimal labels. This option can be used if superscripts result in
‘jumpy’ labels. The reason is that in Matplotlib the TeX labels at the bottom of a plot
are aligned at a baseline at the top of the characters and not at the bottom, while the
height between LaTeX boxes may vary.

• **kwargs (Matplotlib keyword arguments) – Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Note Some projections generate labels that are very close to each other. If you want to skip
labels then you can use keyword/value visible=False. Note that visible is a parameter of
Matplotlib’s plot functions.

70 Chapter 7. Module wcsgrat

CHAPTER 8

Module maputils

In the maputils tutorial we show many examples with Python code and figures to illustrate the functionality and
flexibility of this module. The documentation below is restricted to the module’s classes and methods.

8.1 Introduction

One of the goals of the Kapteyn Package is to provide a user/programmer basic tools to make plots (with WCS
annotation) of image data from FITS files. These tools are based on the functionality of PyFITS and Matplotlib.
The methods from these packages are modified in maputils for an optimal support of inspection and presentation
of astronomical image data with easy to write and usually very short Python scripts. To illustrate what can be done
with this module, we list some steps you need in the process to create a hard copy of an image from a FITS file:

• Open FITS file on disk or from a remote location (URL)

• Specify in which header data unit the image data is stored

• Specify the data slice for data sets with dimensions > 2

• Specify the order of the image axes

• Set the limits in pixels of both image axes

• Set the sky system in which you want to plot wcs information.

Then for the display:

• Plot the image or a mosaic of images in the correct aspect ratio

• Plot (labeled) contours

• Plot world coordinate labels along the image axes (basic routines in wcsgrat)

• Plot coordinate graticules (basic routines in wcsgrat)

• Interactively change color map and color limits

• Read the position of features in a map and write these positions in your terminal.

• Resize your plot canvas to get an optimal layout while preserving the aspect ratio.

• Write the result to png or pdf (or another format from a list)

Of course there are many programs that can do this job some way or the other. But most probably no program
does it exactly the way you want or the program does too much. Also many applications cannot be extended, at
least not as simple as with the building blocks in maputils.

Module maputils is also very useful as a tool to extract and plot data slices from data sets with more than two
axes. For example it can plot so called Position-Velocity maps from a radio interferometer data cube with channel
maps. It can annotate these plots with the correct WCS annotation using information about the ‘missing’ spatial
axis.

71

Kapteyn Package Documentation, Release 2.2

To facilitate the input of the correct data to open a FITS image, to specify the right data slice or to set the pixel
limits for the image axes, we implemented also some helper functions. These functions are primitive (terminal
based) but effective. You can replace them by enhanced versions, perhaps with a graphical user interface.

Here is an example of what you can expect. We have a three dimensional data set on disk called ngc6946.fits with
axes RA, DEC and VELO. The program prompts the user to enter image properties like data limits, axes and axes
order. The image below is a data slice in RA, DEC at VELO=50. We changed interactively the color map (keys
page-up/page-down) and the color limits (pressing right mouse button while moving the mouse) and saved a hard
copy on disk.

In the next code we use keyword parameter promptfie a number of times. Abbreviation ‘fie’ stands for Function
Interactive Environment.

1 #!/usr/bin/env python
2 from kapteyn import wcsgrat, maputils
3 from matplotlib import pylab as plt
4

5

6 # Create a maputils FITS object from a FITS file on disk
7 fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
8 fitsobject.set_imageaxes(promptfie=maputils.prompt_imageaxes)
9 fitsobject.set_limits(promptfie=maputils.prompt_box)

10 fitsobject.set_skyout(promptfie=maputils.prompt_skyout)
11 clipmin, clipmax = maputils.prompt_dataminmax(fitsobject)
12

13 # Get connected to Matplotlib
14 fig = plt.figure()
15 frame = fig.add_subplot(1,1,1)
16

17 # Create an image to be used in Matplotlib
18 annim = fitsobject.Annotatedimage(frame, clipmin=clipmin, clipmax=clipmax)
19 annim.Image()
20 annim.Graticule()
21 annim.plot()
22

23 annim.interact_toolbarinfo()
24 annim.interact_imagecolors()
25 annim.interact_writepos()
26

27 plt.show()

72 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

Image from FITS file with graticules and WCS labels

8.2 Module level data

cmlist Object from class Colmaplist which has attribute colormaps which is a sorted list with names of col-
ormaps.

colormaps The actual list of colormaps.

Example

1 >>> from kapteyn import maputils
2 >>> print maputils.colormaps
3 >>> cmap = raw_input("Enter name of a colormap: ")
4 [’Accent’, ’Blues’, ’BrBG’, ’BuGn’, ’BuPu’, ’Dark2’,
5 ’GnBu’, ’Greens’, ’Greys’, ’OrRd’, ’Oranges’, ’PRGn’,
6 ’Paired’, ’Pastel1’, ’Pastel2’, ’PiYG’, ’PuBu’, ’PuBuGn’,
7 ’PuOr’, ’PuRd’, ’Purples’, ’RdBu’, ’RdGy’, ’RdPu’,
8 ’RdYlBu’, ’RdYlGn’, ’Reds’, ’Set1’, ’Set2’, ’Set3’,
9 ’Spectral’, ’YlGn’, ’YlGnBu’, ’YlOrBr’, ’YlOrRd’,

10 ’autumn’, ’binary’, ’bone’, ’cool’, ’copper’, ’flag’,
11 ’gist_earth’, ’gist_gray’, ’gist_heat’, ’gist_ncar’,
12 ’gist_rainbow’, ’gist_stern’, ’gist_yarg’, ’gray’,
13 ’hot’, ’hsv’, ’jet’, ’pink’, ’prism’, ’spectral’,
14 ’spring’, ’summer’, ’winter’]

8.2. Module level data 73

Kapteyn Package Documentation, Release 2.2

8.3 Prompt functions

maputils.prompt_fitsfile(defaultfile=None, prompt=True, hnr=None, alter=None,
memmap=None)

An external helper function for the FITSimage class to prompt a user to open the right Header and Data Unit
(hdu) of a FITS file. A programmer can supply his/her own function of which the return value is a sequence
containing the hdu list, the header unit number, the filename and a character for the alternate header.

Parameters

• defaultfile (String) – Name of FITS file on disk or url of FITS file on the internet.
The syntax follows the standard described in the PyFITS documentation. See also the
examples.

• prompt (Boolean) – If False and a default file exists, then do not prompt for a file name.
Open file and start checking HDU’s

• hnr (Integer) – The number of the FITS header that you want to use. This function lists
the hdu information and when hnr is not given, you will be prompted.

• alter (Empty or a single character. Input is case insensitive.) – Selects an alternate
header. Default is the standard header. Keywords in alternate headers end on a character
A..Z

• memmap (Boolean) – Set PyFITS memory mapping on/off. Let PyFITS set the default.

Prompts

1. Enter name of fits file [a default]:

Enter name of file on disk of valid url.

2. Enter number of Header Data Unit [0]:

If a FITS file has more than one HDU, one must decide which HDU contains the re-
quired image data.

Returns

• hdulist - The HDU list and the user selected index of the wanted hdu from that list. The
HDU list is returned so that it can be closed in the calling environment.

• hnr - FITS header number. Usually the first header, i.e. hnr=0

• fitsname - Name of the FITS file.

• alter - A character that corresponds to an alternate header (with alternate WCS infor-
mation e.g. a spectral translation).

Notes –

Examples Besides file names of files on disk, PyFITS allows url’s and gzipped files to retrieve
FITS files e.g.:

http://www.atnf.csiro.au/people/mcalabre/data/WCS/1904-66_ZPN.fits.gz

maputils.prompt_imageaxes(fitsobj, axnum1=None, axnum2=None, slicepos=None)
Helper function for FITSimage class. It is a function that requires interaction with a user. Therefore we left
it out of any class definition. so that it can be replaced by any other function that returns the position of the
data slice in a FITS file.

It prompts the user for the names of the axes of the wanted image. For a 2D FITS data set there is nothing
to ask, but for dimensions > 2, we should prompt the user to enter two image axes. Then also a list with
pixel positions should be returned. These positions set the position of the data slice on the axes that do not
belong to the image. Only with this information the right slice can be extracted.

The user is prompted in a loop until a correct input is given. If a spectral axis is part of the selected image
then a second prompt is prepared for the input of the required spectral translation.

74 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

Parameters

• fitsobj (Instance of class FITSimage) – An object from class FITSimage. This prompt
function derives useful attributes from this object such as the allowed spectral transla-
tions.

• axnum1 (Integer [1, NAXIS]) – The axis number of the first (horizontal in terms of plot
software) axis of the selected image which should be used as the default in the prompt.
If None then the default is set to 1.

• axnum2 (Integer [1, NAXIS]) – The axis number of the first (horizontal in terms of plot
software) axis of the selected image which should be used as the default in the prompt.
If None then the default is set to 1. If both axnum1 and axnum2 are specified then the
image axis input prompt is skipped.

Prompts

Name of the image axes: Enter 2 axes from (list with allowed axis names) [default]:

e.g.: Enter 2 axes from (RA,DEC,VELO) [RA,DEC]:

The axis names can be abbreviated. A minimal match is applied.

Returns Tuple with three elements:

• axnum1: Axis number of first image axis. Default or entered by a user.

• axnum2: Axis number of second image axis. Default or entered by a user.

• slicepos: A list with pixel positions. One pixel for each axis outside the image in the
same order as the axes in the FITS header. These pixel positions are necessary to extract
the right 2D data from FITS data with dimensions > 2.

Example Interactively set the axes of an image using a prompt function:

Create a maputils FITSimage object from a FITS file on disk
fitsobject = maputils.FITSimage(’rense.fits’)
fitsobject.set_imageaxes(promptfie=maputils.prompt_imageaxes)

maputils.prompt_box(pxlim, pylim, axnameX, axnameY)
External helper function which returns the limits in pixels of the x- and y-axis. The input syntax is: xlo,xhi,
ylo,yhi. For x and y the names of the image axes are substituted. Numbers can be separated by comma’s and
or spaces. A number can also be specified with an expression e.g. 0, 10, 10/3, 100*numpy.pi.
All these numbers are converted to integers.

Parameters

• pxlim (tuple with two integers) – Sequence of two numbers representing limits in pixels
along the x axis as defined in the FITS file.

• pylim (tuple with two integers) – Sequence of two numbers representing limits in pixels
along the y axis as defined in the FITS file.

• axnameX (String) – Name of image X-axis

• axnameY (String) – Name of image Y-axis

Prompts Enter pixel limits in Xlo,Xhi, Ylo,Yhi [xlo,xhi, ylo,yhi]:

The default should be the axis limits as defined in the FITS header in keywords NAXISn. In
a real case this could look like:

Enter pixel limits in RAlo,RAhi, DEClo,DEChi [1, 100, 1, 100]:

Returns Tuple with two elements pxlim, pylim (see parameter description)

Notes This function does not check if the limits are within the index range of the (FITS)image.
This check is done in the FITSimage.set_limits() method of the FITSimage
class.

8.3. Prompt functions 75

Kapteyn Package Documentation, Release 2.2

Examples Use of this function as prompt function in the FITSimage.set_limits()
method:

fitsobject = maputils.FITSimage(’rense.fits’)
fitsobject.set_imageaxes(1,2, slicepos=30) # Define image in cube
fitsobject.set_limits(promptfie=maputils.prompt_box)

This ‘box’ prompt needs four numbers. The first is the range in x and the second is the range
in y. The input are pixel coordinates, e.g.:

>>> 0, 10 10/3, 100*numpy.pi

Note the mixed use of spaces and comma’s to separate the numbers. Note also the use of
NumPy for mathematical functions. The numbers are truncated to integers.

maputils.prompt_spectrans(fitsobj)
Ask user to enter spectral translation if one of the axes is spectral.

Parameters fitsobj (Instance of class FITSimage) – An object from class FITSimage. From this
object we derive the allowed spectral translations.

Prompts The spectral translation if one of the image axes is a spectral axis.

Enter number between 0 and N of spectral translation [native]:

N is the number of allowed translations minus 1. The default Native in this context
implies that no translation is applied. All calculations are done in the spectral type
given by FITS header item CTYPEn where n is the number of the spectral axis.

Returns

• spectrans - The selected spectral translation from a list with spectral translations that
are allowed for the input object of class FITSimage. A spectral translation translates for
example frequencies to velocities.

Example

>>> fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
>>> print fitsobject.str_spectrans() # Print a list with options first
>>> fitsobject.set_spectrans(promptfie=maputils.prompt_spectrans)

maputils.prompt_skyout(fitsobj)
Ask user to enter the output sky system if the data is a spatial map.

Parameters fitsobj (Instance of class FITSimage) – An object from class FITSimage. This
prompt function uses this object to get information about the axis numbers of the spatial
axes in a data structure.

Returns

• skyout - The sky definition to which positions in the native system will be trans-
formed.

Example

>>> fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
>>> fitsobject.set_skyout(promptfie=maputils.prompt_skyout)

maputils.prompt_dataminmax(fitsobj)

Ask user to enter one or two clip values. If one clip level is entered then in display routines the
data below this value will be clipped. If a second level is entered, then all data values above this
level will also be filtered.

Parameters fitsobj (Instance of class FITSimage) – An object from class FITSimage.

76 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

Returns

• clipmin, clipmax - Two values to set limits on the image value e.g. for color editing.

Example

>>> fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
>>> clipmin, clipmax = maputils.prompt_dataminmax(fitsobject)
>>> annim = fitsobject.Annotatedimage(frame, clipmin=clipmin, clipmax=clipmax)

8.4 Utility functions

maputils.fitsheader2dict(header, comment=True, history=True)
Transform a FITS header, read with PyFITS into a Python dictionary. This is useful if one wants to iterate
over all keys in the header. The PyFITS header is not iterable.

maputils.dist_on_sphere(l1, b1, l2, b2)
Formula for distance on sphere accurate over entire sphere (Vincenty, Thaddeus, 1975). Input and output
are in degrees.

Parameters

• l1 (float) – Longitude of first location on sphere

• b1 (float) – Latitude of first location on sphere

• l2 (float) – Longitude of second location on sphere

• b2 (float) – Latitude of second location on sphere

Examples

>>> from kapteyn.maputils import dist_on_sphere
>>> print dist_on_sphere(0,0, 20,0)

20.0

>>> print dist_on_sphere(0,30, 20,30)
17.2983302106

maputils.showall()
Usually in a script with only one object of class maputils.Annotatedimage one plots this object,
and its derived objects, with method maputils.Annotatedimage.plot(). Matplotlib must be in-
structed to do the real plotting with pyplot’s function show(). This function does this all.

Examples

>>> im1 = f1.Annotatedimage(frame1)
>>> im1.Image()
>>> im1.Graticule()
>>> im2 = f2.Annotatedimage(frame2)
>>> im2.Image()
>>> maputils.showall()

8.5 Class FITSimage

class maputils.FITSimage(filespec=None, promptfie=None, prompt=True, hdunr=None, alter=’‘,
memmap=None, externalheader=None, externaldata=None, external-
name=’artificial’, **parms)

This class extracts 2D image data from FITS files. It allows for external functions to prompt users for
relevant input like the name of the FITS file, which header in that file should be used, the axis numbers of

8.4. Utility functions 77

Kapteyn Package Documentation, Release 2.2

the image axes, the pixel limits and a spectral translation if one of the selected axes is a spectral axis. All
the methods in this class that allow these external functions for prompting can also be used without these
functions. Then one needs to know the properties of the FITS data beforehand.

Parameters

• filespec (String) – A default file either to open directly or to be used in a prompt as
default file. This variable should have a value if no external function is used to prompt
a user.

• promptfie (Python function) – A user supplied function which should prompt a user for
some data, opens the FITS file and returns the hdu list and a user selected index for the
header from this hdu list. An example of a function supplied by maputils is function
prompt_fitsfile()

• hdunr (Integer) – A preset of the index of the header from the hdu list. If this variable
is set then it should not prompted for in the user supplied function promptfie.

• alter (Empty or a single character. Input is case insensitive.) – Selects an alternate
header for the world coordinate system. Default is the standard header. Keywords in
alternate headers end on a character A..Z

• memmap (Boolean) – Set the memory mapping for PyFITS. The default is copied from
the default in your version of PyFITS. If you want to be sure it is on then specify
memmap=1

• externalheader (Python dictionary) – If defined, then it is a header from an external
source e.g. a user defined header.

• externaldata (Numpy array) – If defined, then it is data from an external source e.g.
user defined data or processed data in a numpy array. A user/programmer should check
if the shape of the numpy array fits the sizes given in FITS keywords NAXISn.

• parms (keyword arguments) – Extra parameters for PyFITS’s open() method, such as
uint16, ignore_missing_end, checksum, see PyFITS documentation for their meaning.

Attributes

filename
Name of the FITS file (read-only).

hdr
Header as read from the header (read-only).

naxis
Number of axes (read-only).

dat
The raw image data (not sliced, swapped or limited in range). The required sliced image
data is stored in attribute boxdat. This is a read-only attribute.

axperm
Axis permutation array. These are the (FITS) axis numbers of your image x & y axis.

wcstypes
Type of the axes in this data. The order is the same as of the axes. The types ara strings
and are derived from attribute wcstype of the Projection object. The types are: ‘lo’ is
longitude axis. ‘la’ is latitude axis, ‘sp’ is spectral axis. ‘li’ is a linear axis. Appended
to ‘li’ is an underscore and the ctype of that axis (e.g. ‘li_stokes’).

mixpix
The missing pixel if the image has only one spatial axis. The other world coordinate
could be calculated with a so called mixed method which allows for one world coordi-
nate and one pixel.

78 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

axisinfo
A list with FITSaxis objects. One for each axis. The index is an axis number (starting
at 1).

slicepos
A list with position on axes in the FITS file which do not belong to the required image.

pxlim
Axis limit in pixels. This is a tuple or list (xlo, xhi).

pylim
Axis limit in pixels. This is a tuple or list (xlo, xhi).

boxdat
The image data. Possibly sliced, axis swapped and limited in axis range.

imshape
Sizes of the 2D array in boxdat.

spectrans
A string that sets the spectra translation. If one uses the prompt function for the image
axes, then you will get a list of possible translations for the spectral axis in your image.

proj
An object from wcs.Projection. This object is the result of the call: proj =
wcs.Projection(self.hdr), so it is the Projection object that involves all the
axes in the FITS header.

convproj
An object from wcs.Projection. This object is needed to be able to use methods
toworld() and topixel() for the current image.

figsize
A suggested figure size (inches) in X and Y directions.

aspectratio
Plot a circle in world coordinates as a circle. That is, if the pixel size in the FITS header
differs in X and Y, then correct the (plot) size of the pixels with value aspectratio so that
features in an image have the correct sizes in longitude and latitude in degrees.

Notes The object is initialized with a default position for a data slice if the dimension of the
FITS data is > 2. This position is either the value of CRPIX from the header or 1 if CRPIX
is outside the range [1, NAXIS].

Values -inf and +inf in a dataset are replaced by NaN’s (not a number number). We know
that Matplotlib’s methods have problems with these values, but these methods can deal with
NaN’s.

Examples PyFITS allows URL’s to retrieve FITS files. It can also read gzipped files e.g.:

>>> f = ’http://www.atnf.csiro.au/people/mcalabre/data/WCS/1904-66_ZPN.fits.gz’
>>> fitsobject = maputils.FITSimage(f)
>>> print fitsobject.str_axisinfo()
Axis 1: RA---ZPN from pixel 1 to 192
{crpix=-183 crval=0 cdelt=-0.0666667 (Unknown)}
{wcs type=longitude, wcs unit=deg}

Axis 2: DEC--ZPN from pixel 1 to 192
{crpix=22 crval=-90 cdelt=0.0666667 (Unknown)}
{wcs type=latitude, wcs unit=deg}

Use Maputil’s prompt function prompt_fitsfile() to get user interaction for the FITS
file specification.

>>> fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)

8.5. Class FITSimage 79

Kapteyn Package Documentation, Release 2.2

Methods

set_imageaxes(axnr1=None, axnr2=None, slicepos=None, promptfie=None)
A FITS file can contain a data set of dimension n. If n < 2 we cannot display the data without more
information. If n == 2 the data axes are those in the FITS file, Their numbers are 1 and 2. If n > 2 then
we have to know the numbers of those axes that are part of the image. For the other axes we need to
know a pixel position so that we are able to extract a data slice.

Attribute dat is then always a 2D array.

Parameters

• axnr1 (Integer or String) – Axis number of first image axis (X-axis). If it is a string,
then the number of the first axis which matches is returned. The string match is mini-
mal and case insensitive.

• axnr2 (Integer or String) – Axis number of second image axis (Y-axis). If it is a
string, then the number of the first axis which matches is returned. The string match
is minimal and case insensitive.

• slicepos (Integer or sequence of integers) – list with pixel positions on axes outside
the image at which an image is extracted from the data set. Applies only to data sets
with dimensions > 2. The length of the list must be equal to the number of axes in the
data set that are not part of the image.

• spectrans (Integer) – The spectral translation to convert between different spectral
types if one of the image axes has spectral type.

• promptfie – A Function that for in an Interactive Environment (fie), supplied by the
user, that can prompt a user to enter the values for axnr1, axnr2 and slicepos. An
example of a function supplied by maputils is function prompt_imageaxes()

Raises

Exception One axis number is missing and no prompt function is given!

Exception Missing positions on axes outside image! – Somehow there are not
enough elements in parameter slicepos. One should supply as many pixel positions as
there are axes in the FITS data that do not belong to the selected image.

Exception Cannot find a matching axis for the spatial axis! – The matching spatial
axis for one of the image axes could not be found in the FITS header. It will not be
possible to get useful world coordinates for the spatial axis in your image.

Modifies attributes:

axisinfo
A dictionary with objects from class FITSaxis. One object for each axis. The dictionary
keys are the axis numbers. See also second example at method FITSaxis.printattr().

allowedtrans
A list with strings representing the spectral translations that are possible for the current image
axis selection.

spectrans
The selected spectral translation

slicepos
One or a list with integers that represent pixel positions on axes in the data set that do not
belong to the image. At these position, a slice with image data is extracted.

map
Image data from the selected FITS file. It is always a 2D data slice and its size can be found
in attribute imshape.

imshape
The shape of the array map.

80 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

mixpix
Images with only one spatial axis, need another spatial axis to produces useful world coordi-
nates. This attribute is extracted from the relevant axis in attribute slicepos.

convproj
An object from class Projection as defined in wcs.

axperm
The axis numbers corresponding with the X-axis and Y-axis in the image.

Note The aspect ratio is reset (to None) after each call to this method.

Examples Set the image axes explicitly:

>>> fitsobject = maputils.FITSimage(’rense.fits’)
>>> fitsobject.set_imageaxes(1,2, slicepos=30)

Set the images axes in interaction with the user using a prompt function:

>>> fitsobject = maputils.FITSimage(’rense.fits’)
>>> fitsobject.set_imageaxes(promptfie=maputils.prompt_imageaxes)

Enter (part of) the axis names. Note the minimal matching and case insensitivity.

>>> fitsobject = maputils.FITSimage(’rense.fits’)
>>> fitsobject.set_imageaxes(’ra’,’d’, slicepos=30)

set_limits(pxlim=None, pylim=None, promptfie=None)
This method sets the image box. That is, it sets the limits of the image axes in pixels. This can be a
useful feature if one knows which part of an image contains the interesting data.

Parameters

• pxlim (Tuple with two integers) – Two integer numbers which should not be smaller
than 1 and not bigger than the header value NAXISn, where n represents the x axis.

• pylim (Tuple with two integers) – Two integer numbers which should not be smaller
than 1 and not bigger than the header value NAXISn, where n represents the y axis.

• promptfie (Python function) – An external function with parameters pxlim, pylim,
axnameX, and axnameY which are used to compose a prompt. If a function is given
then there is no need to enter pxlim and pylim. The prompt function must return (new)
values for pxlim and pylim. An example of a function supplied by maputils is
function prompt_box()

Examples Ask user to enter limits with prompt function prompt_box()

>>> fitsobject = maputils.FITSimage(’rense.fits’)
>>> fitsobject.set_imageaxes(1,2, slicepos=30) # Define image in cube
>>> fitsobject.set_limits(promptfie=maputils.prompt_box)

set_spectrans(spectrans=None, promptfie=None)
Set spectral translation or ask user to enter a spectral translation if one of the axes in the current
FITSimage is spectral.

Parameters

• spectrans (String) – A spectral translation e.g. to convert frequencies to optical ve-
locities.

• promptfie (A Python function without parameters. It returns a string with the
spectral translation. An example of a function supplied by maputils is function
prompt_spectrans()) – A function, supplied by the user, that can prompt a user
to enter a sky definition.

8.5. Class FITSimage 81

Kapteyn Package Documentation, Release 2.2

Examples Set a spectral translation using 1) a prompt function, 2) a spectral translation for
which we don’t know the code for the conversion algorithm and 3) set the translation
explicitly:

>>> fitsobject.set_spectrans(promptfie=maputils.prompt_spectrans)
>>> fitsobject.set_spectrans(spectrans="VOPT-???")
>>> fitsobject.set_spectrans(spectrans="VOPT-V2W")

set_skyout(skyout=None, promptfie=None)
Set the output sky definition. Mouse positions and coordinate labels will correspond to the selected
definition. The method will only work if both axes are spatial axes.

Parameters

• skyout (A single value or tuple.) – The output sky definition for sky system, reference
system, equinox and date of observation. For the syntax of a sky definition see the
description at celestial.skymatrix()

• promptfie (A Python function without parameters. It returns the sky definition. An
example of a function supplied by maputils is function prompt_skyout()) –
A function, supplied by the user, that can prompt a user to enter a sky definition.

Notes The method sets an output system only for data with two spatial axes. For XV maps
the output sky system is always the same as the native system.

Annotatedimage(frame=None, **kwargs)
This method couples the data slice that represents an image to a Matplotlib Axes object (parameter
frame). It returns an object from class Annotatedimage which has only attributes relevant for
Matplotlib.

Parameters

• frame (A Matplotlib Axes instance) – Plot the current image in this Matplotlib Axes
object. If omitted, a default frame will be set using Matplotlib’s method add_subplot()

• kwargs (Python keyword arguments) – These parameters are keyword arguments for
the constructor of Annotatedimage. All of them get a default value in this routine.
The ones for which it can be useful to change are:

– skyout: The sky definition for graticule and world coordinates

– spectrans: The spectral translation for the spectral axis

– aspect: The aspect ratio of the pixels

– basename: A name for a file on disk e.g. to store a color lut

– cmap: A color map

– blankcolor: The color of bad pixels,

– clipmin: Scale colors between image values clipmin and clipmax

– clipmax: Scale colors between image values clipmin and clipmax

– gridmode: Set modus of str2pos() to pixels or grids

Attributes See documentation at Annotatedimage

Returns An object from class Annotatedimage

Examples

>>> f = maputils.FITSimage("ngc6946.fits")
>>> f.set_imageaxes(1, 3, slicepos=51)
>>> annim = f.Annotatedimage()

or:

82 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 f = maputils.FITSimage("m101.fits")
5 fig = plt.figure()
6 frame = fig.add_subplot(1,1,1)
7 annim = f.Annotatedimage(frame)
8 annim.Image()
9 annim.Graticule()

10 annim.plot()
11 plt.show()

get_pixelaspectratio()
Return the aspect ratio of the pixels in the current data structure defined by the two selected axes. The
aspect ratio is defined as pixel height / pixel width.

Example

>>> fitsobject = maputils.FITSimage(’m101.fits’)
>>> print fitsobject.get_pixelaspectratio()
1.0002571958

Note If a header has only a cd matrix and no values for CDELT, then these values are set to
1. This gives an aspect ratio of 1.

get_figsize(xsize=None, ysize=None, cm=False)
Usually a user will set the figure size manually with Matplotlib’s figure(figsize=...) construction. For
many plots this is a waste of white space around the plot. This can be improved by taking the aspect
ratio into account and adding some extra space for labels and titles. For aspect ratios far from 1.0 the
number of pixels in x and y are taken into account.

A handy feature is that you can enter the two values in centimeters if you set the flag cm to True.

If you have a plot which is higher than its width and you want to fit in on a A4 page then use:

>>> f = maputils.FITSimage(externalheader=header)
>>> figsize = f.get_figsize(ysize=21, cm=True)
>>> fig = plt.figure(figsize=figsize)
>>> frame = fig.add_subplot(1,1,1)

str_header()
Print the meta information from the selected header. Omit items of type HISTORY. It prints both real
FITS headers and headers given by a dictionary.

Returns A string with the header keywords

Examples If you think a user needs more information from the header than can be provided
with method str_axisinfo() it can be useful to display the contents of the selected
FITS header. This is the entire header and not a selected alternate header.

1 >>> from kapteyn import maputils
2 >>> fitsobject = maputils.FITSimage(’rense.fits’)
3 >>> print fitsobject.str_header()
4 SIMPLE = T / SIMPLE FITS FORMAT
5 BITPIX = -32 / NUMBER OF BITS PER PIXEL
6 NAXIS = 3 / NUMBER OF AXES
7 NAXIS1 = 100 / LENGTH OF AXIS
8 NAXIS2 = 100 / LENGTH OF AXIS
9 NAXIS3 = 101 / LENGTH OF AXIS

10 BLOCKED = T / TAPE MAY BE BLOCKED
11 CDELT1 = -7.165998823000E-03 / PRIMARY PIXEL SEPARATION
12 CRPIX1 = 5.100000000000E+01 / PRIMARY REFERENCE PIXEL
13 CRVAL1 = -5.128208479590E+01 / PRIMARY REFERENCE VALUE

8.5. Class FITSimage 83

Kapteyn Package Documentation, Release 2.2

14 CTYPE1 = ’RA---NCP ’ / PRIMARY AXIS NAME
15 CUNIT1 = ’DEGREE ’ / PRIMARY AXIS UNITS
16 etc. etc.

str_axisinfo(axnum=None, long=False)
For each axis in the FITS header, return a string with the data related to the World Coordinate System
(WCS).

Parameters

• axnum (None, Integer or list with Integers) – A list with axis numbers for which
one wants to print information. These axis numbers are FITS numbers i.e. in range
[1,NAXIS]. To display information about the two image axes one should use attribute
maputils.FITSimage.axperm as in the second example below.

• long (Boolean) – If True then more verbose information is printed.

Returns A string with WCS information for each axis in axnum.

Examples Print useful header information after the input of the FITS file and just before
the specification of the image axes:

1 >>> from kapteyn import maputils
2 >>> fitsobject = maputils.FITSimage(’rense.fits’)
3 >>> print fitsobject.str_axisinfo()
4 Axis 1: RA---NCP from pixel 1 to 100
5 {crpix=51 crval=-51.2821 cdelt=-0.007166 (DEGREE)}
6 {wcs type=longitude, wcs unit=deg}
7 Axis 2: DEC--NCP from pixel 1 to 100
8 {crpix=51 crval=60.1539 cdelt=0.007166 (DEGREE)}
9 {wcs type=latitude, wcs unit=deg}

10 Axis 3: VELO-HEL from pixel 1 to 101
11 {crpix=-20 crval=-243 cdelt=4200 (km/s)}
12 {wcs type=spectral, wcs unit=m/s}

Print extended information for the two image axes only:

>>> print str_axisinfo(axnum=fitsobject.axperm, long=True)

Notes For axis numbers outside the range of existing axes in the FITS file, nothing will be
printed. No exception will be raised.

str_wcsinfo()
Compose a string with information about the data related to the current World Coordinate System
(WCS) (e.g. which axes are longitude, latitude or spectral axes)

Returns String with WCS information for the current Projection object.

Examples Print information related to the world coordinate system:

1 >>> print fitsobject.str_wcsinfo()
2 Current sky system: Equatorial
3 reference system: ICRS
4 Output sky system: Equatorial
5 Output reference system: ICRS
6 projection’s epoch: J2000.0
7 Date of observation from DATE-OBS: 2002-04-04T09:42:42.1
8 Date of observation from MJD-OBS: None
9 Axis number longitude axis: 1

10 Axis number latitude axis: 2
11 Axis number spectral axis: None
12 Allowed spectral translations: None

84 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

str_spectrans()
Compose a string with the possible spectral translations for this data.

Returns String with information about the allowed spectral translations for the current Pro-
jection object.

Examples Print allowed spectral translations:

>>> print fitsobject.str_spectrans()

get_dataminmax(box=False)
Get minimum and maximum value of data in entire data structure defined by the current FITS header
or in a slice. These values can be important if you want to compare different images from the same
source (e.g. channel maps in a radio data cube).

Parameters box (Boolean) – Find min, max in data or if set to True in data slice (with
limits).

Returns min, max, two floating point numbers representing the minimum and maximum
data value in data units of the header (BUNIT).

Note We assume here that the data is read when a FITSobject was created. Then the data is
filtered and the -inf, inf values are replaced by NaN’s.

Example Note the difference between the min, max of the entire data or the min, max of
the slice (limited by a box):

fitsobj = maputils.FITSimage(’ngc6946.fits’)
vmin, vmax = fitsobj.get_dataminmax()
for i, ch in enumerate(channels):

fitsobj.set_imageaxes(lonaxnum, lataxnum, slicepos=ch)
print "Min, max in this channel: ", fitsobj.get_dataminmax(box=True)

slice2world(skyout=None, spectra=None, userunits=None)
Given the pixel coordinates of a slice, return the world coordinates of these pixel positions and their
units. For example in a 3-D radio cube with axes RA-DEC-FREQ one can have several RA-DEC
images as function of FREQ. This FREQ is given in pixels coordinates in attribute slicepos. The
world coordinates are calculated using the Projection object which is also an attribute.

Parameters

• skyout (String or tuple representing sky definition) – Set current projection object in
new output sky mode

• spectra (String) – Use this spectral translation for the output world coordinates

• userunits (String) – A sequence of units as the user wants to have it appear in the slice
info string. The order of these units must be equal to the order of the axes outside the
slice/subset. Both the world coordinates and the units are adjusted.

Returns A tuple with two elements: world and units. Element world is either an empty list
or a list with one or more world coordinates. The number of coordinates is equal to the
number of axes in a data set that do not belong to the extracted data which can be a slice.
For each world coordinate there is a unit in element units.

Note This method first calculates a complete set of world coordinates. Where it did not
define a slice position, it takes the header value CRPIXn. So if a map is defined with
only one spatial axes and the missing spatial axis is found in slicepos than we have
two matching pixel coordinates for which we can calculate world coordinates. So by
definition, if a slice is a function of a spatial coordinate, then its world coordinate is found
by using the matching pixel coordinate which, in case of a spatial map, corresponds to
the projection center.

Example

8.5. Class FITSimage 85

Kapteyn Package Documentation, Release 2.2

>>> vel, uni = fitsobj.slice2world(spectra="VOPT-???")
>>> velinfo = "ch%d = %.1f km/s" % (ch, vel[0]/1000.0)

or: >>> vel, uni = fitsobj.slice2world(spectra=”VOPT-???”, userunits=”km/s”)

header2classic()
If a header contains PC or CD elements, and not all the ‘classic’ elements for a WCS then a number
of FITS readers could have a problem if they don’t recognize a PC and CD matrix. What can be done
is to derive the missing header items, CDELTn and CROTA from these headers and add them to the
header.

What is a ‘classic’ FITS header?

(See also http://fits.gsfc.nasa.gov/fits_standard.html) For the transformation between pixel coordinates
and world coordinates, FITS supports three conventions. First some definitions:

An intermediate pixel coordinate qi is calculated from a pixel coordinates p with:

qi =
N∑
j=1

mij(pj − rj)

Rj are the pixel coordinate elements of a reference point (FITS header item CRPIXj), j is an index for
the pixel axis and i for the world axis The matrix mij must be non-singular and its dimension is NxN
where N is the number of world coordinate axes (given by FITS header item NAXIS).

The conversion of qi to intermediate world coordinate xi is a scale si:

xi = siqi

Formalism 1 (PC keywords)

Formalism 1 encodesmij in so called PCi_j keywords and scale factor si are the values of the CDELTi
keywords from the FITS header.

It is obvious that the value of CDELT should not be 0.0.

Formalism 2 (CD keywords)

If the matrix and scaling are combined we get for the intermediate WORLD COORDINATE xi:

xi =
N∑
j=1

(simij)(pj − rj)

FITS keywords CDi_j encodes the product simij . The units of xi are given by FITS keyword CTYPEi.

Formalism 3 (Classic)

This is the oldest but now deprecated formalism. It uses CDELTi for the scaling and CROTAn for a
rotation of the image plane. n is associated with the latitude axis so often one sees CROTA2 in the
header if the latitude axis is the second axis in the dataset

Following the FITS standard, a number of rules is set:

1.CDELT and CROTA may co-exist with the CDi_j keywords but must be ignored if an application
supports the CD formalism.

2.CROTAn must not occur with PCi_j keywords

3.CRPIXj defaults to 0.0

4.CDELT defaults to 1.0

5.CROTA defaults to 0.0

6.PCi_j defaults to 1 if i==j and to 0 otherwise. The matrix must not be singular

7.CDi_j defaults to 0.0. The matrix must not be singular.

86 Chapter 8. Module maputils

http://fits.gsfc.nasa.gov/fits_standard.html

Kapteyn Package Documentation, Release 2.2

8.CDi_j and PCi_j must not appear together in a header.

Alternate WCS axis descriptions

A World Coordinate System (WCS) can be described by an alternative set of keywords. For this
keywords a character in the range [A..Z] is appended. In our software we made the assumption that
the primary description contains all the necessary information to derive a ‘classic’ header and therefore
we will ignore alternate header descriptions.

Conversion to a formalism 3 (‘classic’) header

Many FITS readers from the past are not upgraded to process FITS files with headers written using
formalism 1 or 2. The purpose of this application is to convert a FITS file to a file that can be read and
interpreted by old FITS readers. For GIPSY we require FITS headers to be written using formalism 3.
If keywords are missing, they will be derived and a comment will be inserted about the keyword not
being an original keyword.

The method that converts the header, tries to process it first with WCSLIB (tools to interpret the world
coordinate system as described in a FITS header). If this fails, then we are sure that the header is
incorrect and we cannot proceed. One should use a FITS tool like ‘fv’ (the Interactive FITS File
Editor from Nasa) to repair the header.

The conversion process starts with exploring the spatial part of the header. It knows which axes are
spatial and it reads the corresponding keywords (CDELTi, CROTAn, CDi_j, PCi_j and PC00i_00j
(old format for PC elements). If there is no CD or PC matrix, then the conversion routine returns the
unaltered original header. If it finds a PC matrix and no CD matrix then the header should contain
CDELT keywords. With the values of these keywords we create a CD matrix:[

cd11 cd12

cd21 cd22

]
=
[
cdelt1 0

0 cdelt2

] [
pc11 pc12
pc21 pc22

]
Notes:

•We replaced notation i_j by ij so cd11 == CD1_1

•For the moment we restricted the problem to the 2 dim. spatial case because that is what we need
to retrieve a value for CROTA, the rotation of the image.)

•We assumed that the PC matrix did not represent transposed axes as in:

PC =

0 1 0
0 0 1
1 0 0


If cd12 == 0.0 and cd12 == 0.0 then CROTA is obviously 0. There is no rotation and CDELT1 = cd11,
CDELT2 = cd22

If one or both values of cd12, cd21 is not zero then we expect a value for CROTA unequal to zero
and/or skew.

We calculate the scaling parameters CDELT with:

CDELT1 = sqrt(cd11*cd11+cd21*cd21)
CDELT2 = sqrt(cd12*cd12+cd22*cd22)

The determinant of the matrix is:

det = cd11*cd22 - cd12*cd21

This value cannot be 0 because we required that the matrix is non-singular. Further we distinguish two
situations: a determinant < 0 and a determinant > 0 (zero was already excluded). Then we derive two
rotations. If these are equal, the image is not skewed. If they are not equal, we derive the rotation from
the average of the two calculated angles. As a measure of skew, we calculated the difference between
the two rotation angles. Here is a piece of the actual code:

8.5. Class FITSimage 87

Kapteyn Package Documentation, Release 2.2

sign = 1.0
if det < 0.0:

cdeltlon_cd = -cdeltlon_cd
sign = -1.0

rot1_cd = atan2(-cd21, sign*cd11)
rot2_cd = atan2(sign*cd12, cd22)
rot_av = (rot1_cd+rot2_cd)/2.0
crota_cd = degrees(rot_av)
skew = degrees(abs(rot1_cd-rot2_cd))

New values of CDELT and CROTA will be inserted in the new ‘classic’ header only if they were not
part of the original header.

The process continues with non spatial axes. For these axes we cannot derive a rotation. We only need
to find a CDELTi if for axis i no value could be found in the header. If this value cannot be derived
from the a CD matrix (usually with diagonal element CDi_i) then the default 1.0 is assumed. Note
that there will be a warning about this in the comment string for the corresponding keyword in the new
‘classic’ FITS header.

Finally there is some cleaning up. First all CD/PC elements are removed for all the axes in the data set.
Second, some unwanted keywords are removed. The current list is: [”XTENSION”, “EXTNAME”,
“EXTEND”]

See also: Calabretta & Greisen: ‘Representations of celestial coordinates in FITS’, section 6

Returns A tuple with three elements:

• hdr - A modified copy of the current header. The CD and PC elements are removed.

• skew - Difference between the two calculated rotation angles If this number is bigger
then say 0.001 then there is considerable skew in the data. One should reproject the
data so that it fits a non skewed version with only a CROTA in the header

• hdrchanged - A list with keywords the are changed when a ‘classic header is required.

Example

1 from kapteyn import maputils, wcs
2 import pyfits
3

4

5 Basefits = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
6 newheader, skew, hdrchanged = Basefits.header2classic()
7 if len(hdrchanged):
8 print newheader
9 if skew != 0.0:

10 print "found skew:", skew

Notes This method is tested with FITS files:

• With classic header

• With only CD matrix

• With only PC matrix

• With PC and CD matrix

• With CD matrix and NAXIS > 2

• With sample files with skew

reproject_to(reprojobj=None, pxlim_dst=None, pylim_dst=None, plimlo=None, plimhi=None,
interpol_dict=None, rotation=None, insertspatial=None, **fitskeys)

The current FITSimage object must contain a number of spatial maps. This method then reprojects
these maps so that they conform to the input header.

88 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

Imagine an image and a second image of which you want to overlay contours on the first one. Then
this method uses the current data to reproject to the input header and you will end up with a new
FITSimage object which has the spatial properties of the input header and the reprojected data of the
current FITSimage object.

Also more complicated data structures can be used. Assume you have a data cube with axes RA, Dec
and Freq. Then this method will reproject all its spatial subsets to the spatial properties of the input
header.

The current FITSimage object tries to keep as much of its original FITS keywords. Only those related
to spatial data are copied from the input header. The size of the spatial map can be limited or extended.
The axes that are not spatial are unaltered.

The spatial information for both data structures are extracted from the headers so there is no need to
specify the spatial parts of the data structures.

The image that is reprojected can be limited in size with parameters pxlim_dst and pylim_dst. If the
input is a FITSimage object, then these parameters (pxlim_dst and pylim_dst) are copied from the
axes lengths set with method set_limits() for that FITSimage object.

Parameters

• reprojobj (Python dictionary or PyFITS header. Or a maputils.FITSimage ob-
ject) –

– The header which provides the new information to reproject to. The size of the
reprojected map is either copied from the NAXIS keywords in the header or entered
with parameters pxlim_dst and pylim_dst. The reprojections are done for all spatial
maps in the current FITSimage object or for a selection entered with parameters
plimlo and plimhi (see examples).

– The FITSimage object from which relevant information is extracted like the header
and the new sizes of the spatial axes which otherwise should have been provided
in parameters pxlim_dst and pylim_dst. The reprojection is restricted to one spatial
map and its slice information is copied from the current FITSimage. This option is
selected if you want to overlay e.g. contours from the current FITSimage data onto
data from another WCS.

– If None, then the current header is used. Modifications to this header are done with
keyword arguments.

• pxlim_dst (Tuple of integers) – Limits in pixels for the reprojected box.

• plimlo (Integer or tuple of integers) – One or more pixel coordinates corresponding
to axes outside the spatial map in order as found in the header ‘reprojobj’. The values
set the lower limits of the axes. There is no need to specify all limits but the order is
important.

• plimhi (Integer or tuple of integers) – The same as plimhi, but now for the upper
limits.

• interpol_dict (Python dictionary) – This parameter is a dictionary with parameters for
the interpolation routine which is used to reproject data. The interpolation routine is
based on SciPy’s map_coordinates. The most important parameters with the maputils
defaults are:

8.5. Class FITSimage 89

Kapteyn Package Documentation, Release 2.2

order : Integer, optional
The order of the spline interpolation, default is 1. The order has to be in
the range 0-5.

mode : String, optional
Points outside the boundaries of the input are filled according to the
given mode (‘constant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘con-
stant’.

cval : scalar, optional
Value used for points outside the boundaries of the input if
mode=’constant’. Default is numpy.NaN

• rotation (Floating point number or None) – Sets a rotation angle. If this method
encounters this keyword, it will create a so called ‘classic’ header. That is a header
without CD or PC elements. Then the rotation angle of the current spatial map is only
given by FITS keyword CROTAn. The value of rotation is added to CROTAn to create
a new value which is inserted in the new header. Note that values for CROTAn in the
fitskeys parameter list overwrite this calculated value.

• insertspatial (Boolean) – If True, then replace spatial part of current header by spatial
part of new (destination) header. Assume you start with a data cube with a number
of spatial maps as function of frequency (the third axis in the data set). If you use
the header of another FITS file as the definition of a new world coordinate system,
then it could be that this header represents a two dimensional data set. This is not an
incompatible set because we only require a description of the spatial part. To keep the
description of the original three dimensional structure we insert the new spatial(only)
information into the current header. The default then is insertspatial=True. In other
cases where we use the original header as the base header, one just inserts new values
and there is no need to set insert something, so then the default is insertspatial=False.
A user can change the default. This can be useful. For example in the maputils tutorial
we have a script mu_reproj2classic.py where we use the header of a FITS file to make
some changes and use the changed header as an external header to re-project to. The
default then is insertspatial=True, but the external header is already a complete header,
so there is no need to insert something.

• fitskeys (Python keyword arguments.) – Parameters containing FITS keywords and
values which are written in the reprojection header.

Warning: Values for CROTAn in parameter fitskeys overwrite values previously set with keyword
rotation.

Warning: Changing values of CROTAn will not always result in a rotated image. If the world
coordinate system was defined using CD or PC elements, then changing CROTAn will only add the
keyword but it is never read because CD & PC transformations have precedence.

Examples -Set limits for axes outside the spatial map. Assume a data structure with axes
RA-DEC-FREQ-STOKES for which the RA-DEC part is reprojected to a set RA’-DEC’-
FREQ-STOKES. The ranges for FREQ and STOKES set the number of spatial maps in
this data structure. One can limit these ranges with plimlo and plimhi.

• plimlo=(20,2), plimhi=(40,2)

we restrict the reprojections for spatial maps at frequencies 20 to 40 at one position on
the STOKES axis (at pixel coordinate 2).

• plimlo=(None,2), plimhi=(None,2)

If one wants to reproject all the maps at all frequencies but only for STOKES=2 and
3 then use: plimlo=(None,2) and plimhi=(None,2) where None implies no limits.

• plimlo=40

No plimhi is entered. Then there are no upper limits. Only one value (40) is entered

90 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

so this must represent the FREQ axis at pixel coordinate 40. It represents all spatial
maps from FREQ pixel coordinate 40 to the end of the FREQ range, repeated for all
pixels on the STOKES axis.

• plimlo=(55,1), plimhi=(55,1)

This reprojects just one map at FREQ pixel coordinate 55 and STOKES pixel co-
ordinate 1. This enables a user/programmer to extract one spatial map, reproject it
and write it as a single map to a FITS file while no information about the FREQ and
STOKES axes is lost. The dimensionality of the new data remains 4 but the length of
the ‘repeat axes’ is 1.

Note that if the data structure was represented by axes FREQ-RA-STOKES-DEC then
the examples above are still valid because these set the limits on the repeat axes FREQ
and POL whatever the position of these axes in the data structure.

-Use and modify the current header to change the data. The example shows how to rotate
an image and display the result.

1 Basefits = maputils.FITSimage("m101.fits")
2 Rotfits = Basefits.reproject_to(rotation=40.0,
3 naxis1=800, naxis2=800,
4 crpix1=400, crpix2=400)
5

6 # If copy on disk required:
7 # Rotfits.writetofits("m10rot.fits", clobber=True, append=False)
8

9 annim = Rotfits.Annotatedimage()
10 annim.Image()
11 annim.Graticule()
12 annim.interact_toolbarinfo()
13 maputils.showall()

-Use an external header and change keywords in that header before the re-projection:

>>> Rotfits = Basefits.reproject_to(externalheader,
naxis1=800, naxis2=800,
crpix1=400, crpix2=400)

-Use the FITS files own header. Change it and use it as an external header

1 from kapteyn import maputils, wcs
2

3 Basefits = maputils.FITSimage("m101.fits")
4 classicheader, skew, hdrchanged = Basefits.header2classic()
5

6 lat = Basefits.proj.lataxnum
7 key = "CROTA%d"%lat
8 classicheader[key] = 0.0 # New value for CROTA
9 fnew = Basefits.reproject_to(classicheader, insertspatial=False)

10 fnew = maputils.FITSimage(externalheader=classicheader,
11 externaldata=Basefits.dat)
12 fnew.writetofits("classic.fits", clobber=True, append=False)

Note: If you want to align an image with the direction of the north, then the value of CROTAn (e.g.
CROTA2) should be set to zero. To ensure that the data will be rotated, use parameter rotation with a
dummy value so that the header used for the re-projection is a ‘classic’ header:

e.g.:

>>> Rotfits = Basefits.reproject_to(rotation=0.0, crota2=0.0)

8.5. Class FITSimage 91

Kapteyn Package Documentation, Release 2.2

Todo: If CTYPE’s change, then also LONPOLE and LATPOLE should change

Tests

1. The first test was a reprojection of data of map1 to the spatial header of map2. One
should observe that the result of the reprojection (reproj) has its spatial structure from
map2 and its non spatial structure (i.e. the repeat axes) from map1. Note that the order
of longitude, latitude in map1 is swapped in map2.

map1: CTYPE: RA - POL - FREQ - DEC NAXIS 35 5 16 41

map2: CTYPE: DEC - POL - FREQ - RA NAXIS 36 4 17 30

reproj = map1.reproject_to(map2)

reproj: CTYPE: RA - POL - FREQ - DEC NAXIS 36 5 16 30

2. Tested with values for the repeat axes

3. Tested with values for the output box

4. Tested with a new CTYPE (GLON-TAN, GLAT-TAN) and new CRVAL

writetofits(filename=None, comment=True, history=True, bitpix=None, bzero=None,
bscale=None, blank=None, clobber=False, append=False, extname=’‘)

This method copies current data and current header to a FITS file on disk. This is useful if either
header or data comes from an external source. If no file name is entered then a file name will be
composed using current date and time of writing. The name then start with ‘FITS’.

Parameters

• filename (String) – Name of new file on disk. If omitted the default name is ‘FITS’
followed by a date and a time (in hours, minutes seconds).

• comment (Boolean) – If you do not want to copy comments, set parameter to False

• history (Boolean) – If you do not want to copy history, set parameter to False

• bitpix (Integer) – Write FITS data in another format (8, 16, 32, -32, -64). If no bitpix
is entered then -32 is assumed. Parameters bzero, bscale and blank are ignored then.

• bzero (Float) – Offset in scaled data. If bitpix is not equal to -32 and the values
for bscale and bzero are None, then the data is scaled between the minimum and
maximum data values. For this scaling the method scale() from PyFITS is used with
option=’minmax’. However PyFITS 1.3 generates an error due to a bug.

• bscale (Float) – Scale factor for scaled data. If bitpix is not equal to -32 and the
values for bscale and bzero are None, then the data is scaled between the minimum
and maximum data values. For this scaling the method scale() from PyFITS is used
with option=’minmax’. However PyFITS 1.3 generates an error due to a bug.

• blank (Float/Integer) – Value that represents a blank. Usually only for scaled data.

• clobber (Boolean) – If a file on disk already exists then an exception is raised. With
clobber=True an existing file will be overwritten. We don’t attempt to suppres PyFITS
warnings because its warning mechanism depends on the Python version.

• append (Boolean) – Append image data in new HDU to existing FITS file

• extname (String) – Name of image extension if append=True. Default is empty string.

Raises

ValueError You will get an exception if the shape of your external data in parameter
‘boxdat’ is not equal to the current sliced data with limits.

Examples Artificial header and data:

92 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

1 # Example 1. From a Python dictionary header
2

3 header = {’NAXIS’ : 2, ’NAXIS1’: 800, ’NAXIS2’: 800,
4 ’CTYPE1’ : ’RA---TAN’,
5 ’CRVAL1’ :0.0, ’CRPIX1’ : 1, ’CUNIT1’ : ’deg’, ’CDELT1’ : -0.05,
6 ’CTYPE2’ : ’DEC--TAN’,
7 ’CRVAL2’ : 0.0, ’CRPIX2’ : 1, ’CUNIT2’ : ’deg’, ’CDELT2’ : 0.05,
8 }
9 x, y = numpy.mgrid[-sizex1:sizex2, -sizey1:sizey2]

10 edata = numpy.exp(-(x**2/float(sizex1*10)+y**2/float(sizey1*10)))
11 f = maputils.FITSimage(externalheader=header, externaldata=edata)
12 f.writetofits()
13

14 # Example 2. From an external header and dataset.
15 # In this example we try to copy the data format from the input file.
16 # PyFITS removes header items BZERO and BSCALE because it reads its
17 # data in a NumPy array that is compatible with BITPIX=-32.
18 # The original values for *bitpix*, *bzero*, *bscale* and *blank*
19 # are retrieved from the object attributes with the same name.
20

21 from kapteyn import maputils
22

23 fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
24 header = fitsobject.hdr
25 edata = fitsobject.dat
26 f = maputils.FITSimage(externalheader=header, externaldata=edata)
27

28 f.writetofits(history=True, comment=True,
29 bitpix=fitsobject.bitpix,
30 bzero=fitsobject.bzero,
31 bscale=fitsobject.bscale,
32 blank=fitsobject.blank,
33 clobber=True)
34

35 # Example 3. Write a FITS file in the default format, BITPIX=-32
36 # and don’t bother about FITS history and comment cards.
37

38 f.writetofits(history=False, comment=False)

8.6 Class Annotatedimage

class maputils.Annotatedimage(frame, header, pxlim, pylim, imdata, projection, axperm, wc-
stypes, skyout, spectrans, alter=’‘, mixpix=None, aspect=1, sli-
cepos=None, sliceaxnames=None, basename=None, cmap=’jet’,
blankcolor=’w’, clipmin=None, clipmax=None, boxdat=None,
sourcename=’unknownsource’, gridmode=False, externalmes-
senger=None)

This is one of the core classes of this module. It sets the connection between the FITS data (created or read
from file) and the routines that do the actual plotting with Matplotlib. The class is usually used in the context
of class FITSimage which has a method that prepares the parameters for the constructor of this class.

Parameters

• frame (Matplotlib Axes instance) – This is the frame where image and or contours will
be plotted. If omitted then a default frame will be set

• header (Python dictionary or pyfits.NP_pyfits.Header instance) – The header data for
this file. Either from a FITS header or a dictionary with header data.

• pxlim (Tuple with two integers) – Two integer numbers which should not be smaller
than 1 and not bigger than the header value NAXISn, where n represents the x axis.

8.6. Class Annotatedimage 93

Kapteyn Package Documentation, Release 2.2

• pylim (Tuple with two integers) – Two integer numbers which should not be smaller
than 1 and not bigger than the header value NAXISn, where n represents the y axis.

• imdata (2D NumPy array) – Image data. This data must represent the area defined by
pxlim and pylim.

• projection (Instance of Projection class from module wcs) – The current pro-
jection object which provides this class with conversion methods from wcs like
wcs.Projection.toworld() and wcs.Projection.topixel() needed
for conversions between pixel- and world coordinates.

• axperm (Tuple with two integers) – Tuple or list with the FITS axis number of the two
image axes, e.g. axperm=(1,2)

• wcstypes (List of strings.) – In some modules we need to know what the type of an axis
in the image is so that for example we can find out whether two different images have
swapped axes. The order of this list is the same as the order in the original FITS file. ‘lo’
is longitude axis, ‘la’ is latitude axis, ‘sp’ is spectral axis, ‘li’ is a linear axis. Appended
to ‘li’ is an underscore and the ctype of that axis (e.g. ‘li_stokes’). If the original
data has axes (RA, DEC, FREQ, STOKES), then FITSimage.wcstypes = [’lo’,’la’, ‘sp’,
‘li_STOKES’] and when we have an Annotatedimage object with axes (FREQ, DEC)
then the axis permutation array is (3, 2) and the wcsypes list is [’sp’, ‘la’].

• skyout (String) – A so called sky definition (sky system, reference system, equinox)
which is used to annotate the world coordinates and to draw graticule lines.

• spectrans (String) – The spectral translation. It sets the output system for spectral axes.
E.g. a frequency axis can be labeled with velocities.

• alter (Character (case insensitive)) – The alternative description of a world coordinate
system. In a FITS header there is an alternative description of the world coordinate
system if for each wcs related keyword, there is an alternative keyword which has a
character appended to it (e.g. CRVAL1a, CDELT1a). The character that is appended is
the one that need to be entered if one wants to use the alternate system. Note that this is
only relevant to axis labeling and the plotting of graticules.

• mixpix (None or an integer) – The axis number (FITS standard i.e. starts with 1) of the
missing spatial axis for images with only one spatial axis (e.q. Position-Velocity plots).

• aspect – The aspect ratio. This value is used to correct the scale of the plot so that equal
sizes in world coordinates (degrees) represent equal sizes in a plot. This aspect ratio
is only useful for spatial maps. Its default value is 1.0. The aspect ratio is defined as:
abs(cdelty/cdeltx). This value is automatically set in objects from FITSimage

• slicepos (Single value or tuple with integers) – Pixel coordinates used to slice the data
in a data set with more than two axes. The pixel coordinates represent positions on the
axes that do not belong to the image.

• sliceaxnames (List with strings) – List with names of the axes outside the map. Assume
we have a map of a RA-DEC map from a RA-DEC-FREQ cube, then sliceaxnames =
[’FREQ’]. Currently these names are not used.

• basename (string) – Base name for new files on disk, for example to store a color map
on disk. The default is supplied by method FITSimage.Annotatedimage().

• cmap (mplutil.VariableColormap instance or string) – A colormap from class
mplutil.VariableColormap or a string that represents a colormap (e.g. ‘jet’,
‘spectral’ etc.).

• blankcolor (Matplotlib color (e.g. ‘c’, ‘#aabb12’)) – Color of the undefined pixels
(NaN’s, blanks). It is a matplotlib color e.g. blankcolor=’g’. In the display the color
of the blanks can be changed with key ‘B’. It loops throug a small set with predefined
colors. Changing the colors of bad pixels helps to make them more visible.

94 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

• clipmin (Float) – A value which sets the lower value of the interval between which
the colors in the colormap are distributed. If omitted, the minimum data value will be
clipmin.

• clipmax (Float) – A value which sets the upper value of the interval between which
the colors in the colormap are distributed. If omitted, the maximum data value will be
clipmin.

• boxdat (NumPy array) – An 2dim. array with the same shape as the boxdat attribute of
the input FITSimage object.

• sourcename (String) – Name of origin of data. By default set to ‘unknownsource’

• gridmode (Boolean) – By default this value is set to False. Positions are written as pixel
coordinates and input of coordinates as strings will parse numbers as pixel coordinates.
If one sets this to True, then a system of grids is used. The relation between a pixel and
a grid for axis n is:

grid = pixel - NINT(CRPIXn)

Some (legacy) astronomy software packages use this system. Toolbar position infor-
mation is written in grid coordinates and also numbers in the (string) input of positions
are processed as grids. This option is useful when an interface is needed between the
Kapteyn Package and another software package (e.g. GIPSY). Note that with positions
as strings, we mean positions parsed with method positions.str2pos(). These
are not the positions which are described as pixel positions.

Attributes

alter
Character that sets an alternate world coordinate system.

aspect
Aspect ratio of a pixel according to the FITS header. For spatial maps this value is used
to set and keep an image in the correct aspect ratio.

axperm
Axis numbers of the two axis in this map. Axis numbers start with 1.

basename
Name of data origin.

blankcolor
Color of ‘bad’ pixels as a Matplotlib color.

box
Coordinates of the plot box. In order to keep the entire pixel in the corners in the plot,
one has to extend the values of pxlim and pylim with 0.5 pixel.

clipmin
Value either entered or calculated, which scales the image data to the available colors.
Clipmin is the minimum value.

clipmax
Value either entered or calculated, which scales the image data to the available colors.
Clipmax is the maximum value.

cmap
The color map. This is an object from class mplutil.VariableColormap. which
is inherited from the Matplotlib color map class.

cmapinverse
Boolean which store the status of the current colormap, standard or inverted.

data
Image data. Other data containers are attibutes ‘data_blur’, ‘data_hist’, and ‘data_orig’.

8.6. Class Annotatedimage 95

Kapteyn Package Documentation, Release 2.2

fluxfie
Function or Lambda expression which can be used to scale the flux found with method
getflux(). There must be two parameters in this function or expression: a for the area and
s for the sum of the pixel values. E.g. Annotatedimage.fluxfie = lambda
s, a: s/a Note that there is no method to set this attribute. The attribute is used in
the shapes module.

frame
Matplotlib Axes instance where image and contours are plotted

gridmode
Boolean that indicates when we work in pixel- or in grid coordinates.

hdr
Header which is used to derive the world coordinate system for axis labels and graticule
lines. The header is either a Python dictionary or a PyFITS header.

mixpix
The pixel of the missing spatial axis in a Position-Velocity image.

objlist
List with all plot objects for the current Annotatedimage object derived from classes:
‘Beam’, ‘Colorbar’, ‘Contours’, ‘Graticule’, ‘Image’, ‘Marker’, ‘Minortickmarks’,
‘Pixellabels’, ‘RGBimage’, ‘Ruler’, ‘Skypolygon’

pixelstep
The step size in pixels or fraction of pixels. This size is used to sample the area of an
object. Used in the context of the shapes module. E.g. annim.pixelstep = 0.5;

pixoffset
Tuple with two offsets in pixels used to distinguish a pixel coordinate system from a
grid coordinate system.

projection
An object from the Projection class as defined in module wcs

ptype
Each object in the object list has an attribute which describes the (plot) type of the
object. The ptype of an Annotatedimage is Annotatedimage.

pxlim
Pixel limits in x = (xlo, xhi)

pylim
Pixel limits in y = (ylo, yhi)

rgbs
Boolean which is set to True if the current image is composed of three images each
representing one color.

sliceaxnames
A list with axis names that are not part of the current image, but are part of the data
structure from which the current Annotated image data is extracted.

skyout
The sky definition for which graticule lines are plotted and axis annotation is made (e.g.
“Equatorial FK4”)

spectrans
The translation code to transform native spectral coordinates to another system (e.g.
frequencies to velocities)

slicepos
Single value or tuple with more than one value representing the pixel coordinates on
axes in the original data structure that do not belong to the image. It defines how the

96 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

data slice is ectracted from the original. The order of these ‘outside’ axes is copied from
the (FITS) header.

wcstypes
Type of the axes in this data. The order is the same as of the axes. The types ara strings
and are derived from attribute wcstype of the Projection object. The types are: ‘lo’ is
longitude axis. ‘la’ is latitude axis, ‘sp’ is spectral axis. ‘li’ is a linear axis. Appended
to ‘li’ is an underscore and the ctype of that axis (e.g. ‘li_stokes’).

Methods

set_norm(clipmin, clipmax)
Matplotlib scales image values between 0 and 1 for its distribution of colors from the color map. With
this method we set the image values which we want to scale between 0 and 1. The default image
values are the minimum and maximum of the data in Annotatedimage.data. If you want to
inspect a certain range of data values you need more colors in a smaller intensity range, then use
different clipmin and clipmax in the constructor of Annotatedimage or in this method.

Parameters

• clipmin (Float) – Image data below this threshold will get the same color

• clipmax (Float) – Image data above this threshold will get the same color

Examples

>>> fitsobj = maputils.FITSimage("m101.fits")
>>> annim = fitsobj.Annotatedimage(frame, cmap="spectral")
>>> annim.Image(interpolation=’spline36’)
>>> annim.set_norm(10000, 15500)

or:

>>> fitsobj = maputils.FITSimage("m101.fits")
>>> annim = fitsobj.Annotatedimage(frame, cmap="spectral", clipmin=10000, clipmax=15500)

Notes It is also possible to change the norm after an image has been displayed. This en-
ables a programmer to setup key interaction for changing the clip levels in an image for
example when the default clip levels are not suitable to inspect a certain data range. Usu-
ally the color editing (with Annotatedimage.interact_imagecolors()) can
do this job very well so we think there is not much demand in a scripting environment.
With GUI’s it will be different.

set_colormap(cmap, blankcolor=None)
Method to set the initial color map for images, contours and colorbars. These color maps are either
strings (e.g. ‘jet’ or ‘spectral’) from a list with Matplotlib color maps or it is a path to a color map on
disk (e.g. cmap=”/home/user/luts/mousse.lut”). If the color map is not found in the list with known
color maps then it is added to the list, which is a global variable called cmlist.

The Kapteyn Package has also a list with useful color maps. See example below or example
‘mu_luttest.py’ in the Tutorial maputils module.

If you add the event handler interact_imagecolors() it is possible to change colormaps with keyboard
keys and mouse.

Parameters

• cmap (String or instance of VariableColormap) – The color map to be used for image,
contours and colorbar

• blankcolor (Matplotlib color) – Color of the bad pixels in your image.

Examples

8.6. Class Annotatedimage 97

Kapteyn Package Documentation, Release 2.2

>>> fitsobj = maputils.FITSimage("m101.fits")
>>> annim = fitsobj.Annotatedimage(frame, clipmin=10000, clipmax=15500)
>>> annim.set_colormap("spectral")

or use the constructor as in:

>>> annim = fitsobj.Annotatedimage(frame, cmap="spectral", clipmin=10000, clipmax=15500)

Get extra lookup tables from Kapteyn Package (by default, these luts are appended at
creation tome of cmlist)

>>> extralist = mplutil.VariableColormap.luts()
>>> maputils.cmlist.add(extralist)

write_colormap(filename)
Method to write current colormap rgb values to file on disk. If you add the event handler inter-
act_imagecolors(), this method is automatically invoked if you press key ‘m’.

This method is only useful if the colormap changes i.e. in an interactive environment.

set_blankcolor(blankcolor, alpha=1.0)
Set the color of bad pixels. If you add the event handler interact_imagecolors(), this method steps
through a list of colors for the bad pixels in an image.

Parameters

• blankcolor (Matplotlib color) – The color of the bad pixels (blanks) in your map

• alpha (Float in interval [0,1]) – Make the color of bad pixels transparent with alpha
< 1

Example

>>> annim.set_blankcolor(’c’)

set_aspectratio(aspect)
Set the aspect ratio. Overrule the default aspect ratio which corrects pixels that are not square in world
coordinates. Can be useful if you want to stretch images for which the aspect ratio doesn’t matter (e.g.
XV maps).

Parameters aspect (Float) – The aspect ratio is defined as pixel height / pixel width. With
this value one can stretch an image in x- or y direction. The default is such that 1 arcmin
in x has the same length in cm as 1 arcmin in y.

Example

>>> annim = fitsobj.Annotatedimage(frame)
>>> annim.set_aspectratio(1.2)

get_colornavigation_info()
This method compiles and returns a help text for color map interaction.

Image(**kwargs)
Setup of an image. This method is a call to the constructor of class Image with a default value
for most of the keyword parameters. This created object has an attribute im which is an instance of
Matplotlib’s imshow() method. This object has a plot method. This method is used by the more general
Annotatedimage.plot() method.

Parameters kwargs (Python keyword parameters) – From the documentation of Matplotlib
we learn that for method imshow() (used in the plot method if an Image) a few interesting
keyword arguments remain:

98 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

• interpolation - From Matplotlib’s documentation: Acceptable values are None, ‘near-
est’, ‘bilinear’, ‘bicubic’, ‘spline16’, ‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’,
‘kaiser’, ‘quadric’, ‘catrom’, ‘gaussian’, ‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’

• visible - Switch the visibility of the image

• alpha - Value between 0 and 1 which sets the transparency of the image.

Attributes

im

The object generated after a call to Matplotlib’s imshow().

Examples

>>> fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
>>> annim = fitsobject.Annotatedimage()
>>> annim.Image(interpolation="spline36")

or create an image but make it invisible:

>>> annim.Image(visible=False)

RGBimage(f_red, f_green, f_blue, fun=None, **kwargs)
Matplotlib’s method imshow() is able to produce RGB images. To create a real RGB image, we need
three arrays with identical shape representing the red, green and blue components. Method imshow()
requires data scaled between 0 and 1.

This utility method prepares a composed and scaled data array derived from three FITSimage objects.
It scales the composed array and not the individual image arrays. The method allows for a function
or lambda expression to be entered to process the scaled data. The world coordinate system (e.g. to
plot graticules) is copied from the current Annotatedimage object. Note that for the three images
only the shape of the array must be equal to the shape of the data of the current Annotatedimage
object.

Parameters

• f_red (Object from class FITSimage) – This object describes a two dimensional
data structure which represents the red part of the composed image.

• f_green (Object from class FITSimage) – This object describes a two dimensional
data structure which represents the green part of the composed image.

• f_blue (Object from class FITSimage) – This object describes a two dimensional
data structure which represents the blue part of the composed image.

• fun (Function or Lambda expression) – A function or a Lambda expression to process
the scaled data.

• kwargs (Python keyword parameters) – See description method
Annotatedimage.Image().

Note A RGB image does not interact with a colormap. Interacting with a colormap (e.g.
after adding annim.interact_imagecolors() in the example below) is not forbidden but it
gives weird results. To rescale the data, for instance for a better view of interesting data,
you need to enter a function or Lambda expression with parameter fun.

Example

1 from kapteyn import maputils
2 from numpy import sqrt
3 from matplotlib import pyplot as plt
4

5 f_red = maputils.FITSimage(’m101_red.fits’)
6 f_green = maputils.FITSimage(’m101_green.fits’)

8.6. Class Annotatedimage 99

Kapteyn Package Documentation, Release 2.2

7 f_blue = maputils.FITSimage(’m101_blue.fits’)
8

9 fig = plt.figure()
10 frame = fig.add_subplot(1,1,1)
11 annim = f_red.Annotatedimage(frame)
12 annim.RGBimage(f_red, f_green, f_blue, fun=lambda x:sqrt(x), alpha=0.5)
13

14 grat = annim.Graticule()
15 annim.interact_toolbarinfo()
16

17 maputils.showall()

Contours(levels=None, **kwargs)
Setup of contour lines. This method is a call to the constructor of class Contours with a number
of default parameters. Either it plots single contour lines or a combination of contour lines and filled
regions between the contours. The colors are taken from the current colormap.

Parameters

• levels (None or a list with floating point numbers) – Image values for which contours
must be plotted. The default is None which results in a list with values calculated by
the Contour constructor.

• kwargs (Python keyword parameters) – There are a number of keyword arguments
that are useful:

– filled - if set to True the area between two contours will get a color (close to the
color of the contour.

– negative - one of Matplotlib’s line styles ‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’ in
which contours are plotted which represent negative image values.

– colors - If None, the current colormap will be used. If a character or string, all levels
will be plotted in this color. If a tuple of matplotlib colors then different levels will
be plotted in different colors in the order specified.

– linewidths - If a number, all levels will be plotted with this linewidth. If a tuple,
different levels will be plotted with different linewidths in the order specified

– linestyles - One of ‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’, which sets the style of the
contour. It can also be given in a list. See the Matplotlib documentation for its
behaviour.

Methods

• Contours.setp_contour() - Set properties for individual contours

• Contours.setp_label() - Plot labels for individual contours

Examples

>>> fitsobj = maputils.FITSimage("m101.fits")
>>> annim = fitsobj.Annotatedimage()
>>> annim.Image(alpha=0.5)
>>> cont = annim.Contours()
>>> print "Levels=", cont.clevels
Levels= [4000. 6000. 8000. 10000. 12000. 14000.]

>>> annim.Contours(filled=True)

In the next example note the plural form of the standard Matplotlib keywords. They
apply to all contours:

>>> annim.Contours(colors=’w’, linewidths=2)

100 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

Set levels and the line style for negative contours:

>>> annim.Contours(levels=[-500,-300, 0, 300, 500], negative="dotted")

A combination of keyword parameters with less elements than the number of contour
levels:

>>> cont = annim.Contours(linestyles=(’solid’, ’dashed’, ’dashdot’, ’dotted’),
linewidths=(2,3,4), colors=(’r’,’g’,’b’,’m’))

Example of setting of properties for all and 1 contour with setp_contour():

>>> cont = annim.Contours(levels=range(10000,16000,1000))
>>> cont.setp_contour(linewidth=1)
>>> cont.setp_contour(levels=11000, color=’g’, linewidth=3)

Plot a (formatted) label near a contour with setp_label():

>>> cont2 = annim.Contours(levels=(8000,9000,10000,11000))
>>> cont2.setp_label(11000, colors=’b’, fontsize=14, fmt="%.3f")
>>> cont2.setp_label(fontsize=10, fmt="$%g \lambda$")

Colorbar(frame=None, clines=False, **kwargs)
This method is a call to the constructor of class Colorbar with a number of default parameters. A
color bar is an image which represents the current color scheme. It annotates the colors with image
values so that it is possible to get an idea of the distribution of the values in your image.

Parameters

• frame (Matplotlib Axes object) – By default a colorbar will ‘steal’ some space from
its parent frame but this behaviour can be overruled by setting an explicit frame (Mat-
plotlib Axes object).

• clines (Boolean) – If set to true AND a contour set (an
Annotatedimage.Contours() object) is available, then lines will be plotted in
the colorbar at positions that correspond to the contour levels

• kwargs (Python keyword arguments) – Specific keyword arguments and Keyword ar-
guments for Matplotlib’s method ColorbarBase()

– label - A text that will be plotted along the long axis of the colorbar.

– linewidths - One number that sets the line width of all the contour lines in the
colorbar.

From Matplotlib:

– orientation - ‘horizontal’ or ‘vertical’

– fontsize - Size of numbers along the colorbar

– ticks - Levels which are annotated along the colorbar

– visible - Make image in colorbar invisible

Methods Colorbar.set_label() - Plot a title along the long side of the colorbar.

Examples A basic example were the font size for the ticks are set:

>>> fitsobj = maputils.FITSimage("m101.fits")
>>> annim = fitsobj.Annotatedimage(cmap="spectral")
>>> annim.Image()
>>> colbar = annim.Colorbar(fontsize=8)
>>> annim.plot()
>>> plt.show()

8.6. Class Annotatedimage 101

Kapteyn Package Documentation, Release 2.2

Set frames for Image and Colorbar:

>>> frame = fig.add_axes((0.1, 0.2, 0.8, 0.8))
>>> cbframe = fig.add_axes((0.1, 0.1, 0.8, 0.1))
>>> annim = fitsobj.Annotatedimage(cmap="Accent", clipmin=8000, frame=frame)
>>> colbar = annim.Colorbar(fontsize=8, orientation=’horizontal’, frame=cbframe)

Create a title for the colorbar and change its font size:

>>> units = r’$ergs/(sec.cm^2)$’
>>> colbar.set_label(label=units, fontsize=24)

Graticule(visible=True, **kwargs)
This method is a call to the constructor of class wcsgrat.Graticule with a number of default
parameters.

It calculates and plots graticule lines of constant longitude or constant latitude. The description of
the parameters is found in wcsgrat.Graticule. An extra parameter is visible. If visible is set
to False than we can plot objects derived from this class such as ‘Rulers’ and ‘Insidelabels’ without
plotting unwanted graticule lines and labels.

Methods

• wcsgrat.Graticule.Ruler()

• wcsgrat.Graticule.Insidelabels()

Other parameters such as hdr, axperm, pxlim, pylim, mixpix, skyout and spectrans are set to defaults
in the context of this method and should not be overwritten.

Examples

>>> fitsobj = maputils.FITSimage(’m101.fits’)
>>> annim = fitsobj.Annotatedimage()
>>> grat = annim.Graticule()
>>> annim.plot()
>>> plt.show()

Set the range in world coordinates and set the positions for the labels with (X, Y):

>>> X = arange(0,360.0,15.0)
>>> Y = [20, 30,45, 60, 75, 90]
>>> grat = annim.Graticule(wylim=(20.0,90.0), wxlim=(0,360),

startx=X, starty=Y)

Add a ruler, based on the current Annotatedimage object:

>>> ruler3 = annim.Ruler(23*15,30,22*15,15, 0.5, 1, world=True,
fmt=r"$%4.0f^\prime$",
fun=lambda x: x*60.0, addangle=0)

>>> ruler3.setp_labels(color=’r’)

Add world coordinate labels inside the plot. Note that these are derived from the current
Graticule object.

>>> grat.Insidelabels(wcsaxis=0, constval=-51, rotation=90, fontsize=10,
color=’r’, ha=’right’)

Pixellabels(**kwargs)
This method is a call to the constructor of class wcsgrat.Pixellabels with a number of default
parameters. It sets the annotation along a plot axis to pixel coordinates.

Parameters

102 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

• plotaxis (String) – The axis name of one or two of the axes of the plot rectangle: or
‘left’, ‘bottom’, ‘right’, ‘top’ Combinations are always between ‘left’ and ‘bottom’
and ‘right’ and ‘top’.

• markersize (Integer) – Set size of ticks at pixel positions. The size can be negative to
get tick marks that point outwards.

• gridlines (Boolean) – Set plotting of grid lines (connected tick marks) on or off
(True/False). The default is off.

• offset (None or floating point numbers) – The pixels can have an integer offset. If
you want the reference pixel to be pixel 0 then supply offset=(crpixX, crpixY). These
crpix values are usually read from then header (e.g. as CRPIX1 and CRPIX2). In
this routine the nearest integer of the input is calculated to ensure that the offset is an
integer value.

Other parameters are related to Matplotlib label attributes.

Examples

>>> fitsobject = maputils.FITSimage("m101.fits")
>>> annim = fitsobject.Annotatedimage()
>>> annim.Pixellabels(plotaxis=("top","right"), color="b", markersize=10)

or separate the labeling so that you can give different properties for different axes. In this case we shift
the labels along the top axis towards the axis line with va=’top’:

>>> annim.Pixellabels(plotaxis=’top’, va=’top’)
>>> annim.Pixellabels(plotaxis=’right’)

Notes

If a pixel offset is given for this Annimated object, then plot the pixel labels with this offset.

Minortickmarks(graticule, partsx=10, partsy=10, **kwargs)
Drawing minor tick marks is as easy or as difficult as finding the positions of major tick marks. There-
fore we decided that the best way to draw minor tick marks is to calculate a new (but invisible) graticule
object. Only the tick marks are visible.

Parameters

• graticule (Object from class wcsgrat.Graticule) – Graticule object from which
we change the step size between tick marks to create a new Graticule object for which
most components (graticule lines, labels, ...) are made invisible.

• partsx (Integer or None) – Divide major tick marks in this number of parts. This
method forces this number to be an integer between 2 and 20 If the input is None then
nothing is plotted. For example for maps with only one spatial axis, one can decide to
plot tick marks for only one of the axes.

• partsx – See description for parameter partsx

• kwargs (Matplotlib keyword arguments related to a Line2D object.) – Parameters
for changing the attributes of the tick mark symbols. Useful keywords are color,
markersize and markeredgewidth.

Notes Minor tick marks are also plotted at the positions of major tick marks. By default
this will not be visible. It is visible if you user a longer marker size, a different color or
a marker with increased width.

The default marker size is set to 2.

Returns This method returns a graticule object. Its properties can be
changed in the calling environment with the appropriate methods (e.g.
wcsgrat.Graticule.setp_tickmark()).

8.6. Class Annotatedimage 103

Kapteyn Package Documentation, Release 2.2

Examples

from kapteyn import maputils
from matplotlib import pyplot as plt
fitsobj = maputils.FITSimage("m101.fits")
mplim = fitsobj.Annotatedimage()
grat = mplim.Graticule()
grat2 = grat.minortickmarks()
mplim.plot()
plt.show()

Adding parameters to change attributes:

>>> grat2 = grat.minortickmarks(3, 5,
color="#aa44dd", markersize=3, markeredgewidth=2)

Minor tick marks only along x axis:

>>> grat2 = minortickmarks(grat, 3, None)

Beam(major, minor, pa=0.0, pos=None, xc=None, yc=None, units=None, **kwargs)
Objects from class Beam are graphical representations of the resolution of an instrument. The beam
is centered at a position xc, yc. The major axis of the beam is the FWHM of the longest distance
between two opposite points on the ellipse. The angle between the major axis and the North is the
position angle.

A beam is an ellipse in world coordinates. To draw a beam given the input parameters, points are
calculated in world coordinates so that angle and required distance of sample points on the ellipse are
correct on a sphere.

Parameters

• major (Float) – Full width at half maximum of major axis of beam in degrees.

• minor (Float) – Full width at half maximum of minor axis of beam in degrees.

• pa (Float) – Position angle in degrees. This is the angle between the positive y-axis
and the major axis of the beam. The default value is 0.0.

• pos (String) – A string that represents the position of the center of the beam. If two
numbers are available then one can also use parameters xc and yc. The value in pa-
rameter pos supersedes the values in xc and yc.

• xc (Float) – X value in world coordinates of the center position of the beam.

• yc (Float) – Y value in world coordinates of the center position of the beam.

Examples

1 fwhm_maj = 0.08
2 fwhm_min = 0.06
3 lat = 54.347395233845
4 lon = 210.80254413455
5 beam = annim.Beam(fwhm_maj, fwhm_min, 90, xc=lon, yc=lat,
6 fc=’g’, fill=True, alpha=0.6)
7 pos = ’210.80254413455 deg, 54.347395233845 deg’
8 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’m’, fill=True, alpha=0.6)
9 pos = ’14h03m12.6105s 54d20m50.622s’

10 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’y’, fill=True, alpha=0.6)
11 pos = ’ga 102.0354152 {} 59.7725125’
12 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’g’, fill=True, alpha=0.6)
13 pos = ’ga 102d02m07.494s {} 59.7725125’
14 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’b’, fill=True, alpha=0.6)
15 pos = ’{ecliptic,fk4, j2000} 174.3674627 {} 59.7961737’

104 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

16 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’r’, fill=True, alpha=0.6)
17 pos = ’{eq, fk4-no-e, B1950} 14h01m26.4501s {} 54d35m13.480s’
18 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’c’, fill=True, alpha=0.6)
19 pos = ’{eq, fk4-no-e, B1950, F24/04/55} 14h01m26.4482s {} 54d35m13.460s’
20 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’c’, fill=True, alpha=0.6)
21 pos = ’{ecl} 174.367764 {} 59.79623457’
22 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’c’, fill=True, alpha=0.6)
23 pos = ’53 58’ # Pixels
24 beam = annim.Beam(0.04, 0.02, pa=30, pos=pos, fc=’y’, fill=True, alpha=0.4)
25 pos = ’14h03m12.6105s 58’ # World coordinate and a pixel coordinate
26 beam = annim.Beam(0.04, 0.02, pa=-30, pos=pos, fc=’y’, fill=True, alpha=0.4)

Properties A selection of keyword arguments for the beam (which is a Matplotlib
Polygon object) are:

• alpha - float (0.0 transparent through 1.0 opaque)

• color - Matplotlib color arg or sequence of rgba tuples

• edgecolor or ec - Matplotlib color spec, or None for default, or ‘none’ for no color

• facecolor or fc - Matplotlib color spec, or None for default, or ‘none’ for no color

• linestyle or ls - [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

• linewidth or lw - float or None for default

Marker(pos=None, x=None, y=None, mode=’‘, **kwargs)
Plot marker symbols at given positions. This method creates objects from class Marker. The construc-
tor of that class needs positions in pixel coordinates. Here we allow positions to be defined in a string
which can contain either world- or pixel coordinates (or a mix of both). If x and y coordinates are
known, or read from file, one can also enter this data without parsing. The keyword arguments x and
y can be used to enter pixel coordinates or world coordinates.

Parameters

• pos (String) – A definition of one or more positions for the current image. The string
is parsed by positions.

• x (Float or a sequence of floating point numbers) – If keyword argument pos is not
used, then this method expects numbers in parameters x and y. Advantage of using
this parameter, is that it skips the position parser and therefore it is much faster.

• y (Float or a sequence of floating point numbers) – If keyword argument pos is not
used, then this method expects numbers in parameters x and y

• world – Flag to set the conversion mode. If True then the numbers in x and y are world
coordinates. Else, they are processed as pixel coordinates.

Returns Object from class Marker

Examples In the first example we show 4 markers plotted in the projection center (given by
header values CRPIX):

1 f = maputils.FITSimage("m101.fits")
2 fig = plt.figure()
3 frame = fig.add_subplot(1,1,1)
4 annim = f.Annotatedimage(frame, cmap="binary")
5 annim.Image()
6 grat = annim.Graticule()
7 annim.Marker(pos="pc", marker=’o’, markersize=10, color=’r’)
8 annim.Marker(pos="ga 102.035415152 ga 59.772512522", marker=’+’,
9 markersize=20, markeredgewidth=2, color=’m’)

10 annim.Marker(pos="{ecl,fk4,J2000} 174.367462651 {} 59.796173724",
11 marker=’x’, markersize=20, markeredgewidth=2, color=’g’)
12 annim.Marker(pos="{eq,fk4-no-e,B1950,F24/04/55} 210.360200881 {} 54.587072397",

8.6. Class Annotatedimage 105

Kapteyn Package Documentation, Release 2.2

13 marker=’o’, markersize=25, markeredgewidth=2, color=’c’,
14 alpha=0.4)

In the second example we show how to plot a sequence of markers. Note the use of the
different keyword arguments and the role of flag world to force the given values to be
processed in pixel coordinates:

1 # Use pos= keyword argument to enter sequence of
2 # positions in pixel coordinates
3 pos = "[200+20*sin(x/20) for x in range(100,200)], range(100,200)"
4 annim.Marker(pos=pos, marker=’o’, color=’r’)
5

6 # Use x= and y= keyword arguments to enter sequence of
7 # positions in pixel coordinates
8 xp = [400+20*numpy.sin(x/20.0) for x in range(100,200)]
9 yp = range(100,200)

10 annim.Marker(x=xp, y=yp, mode=’pixels’, marker=’o’, color=’g’)
11

12 # Single position in pixel coordinates
13 annim.Marker(x=150, y=150, mode=’pixels’, marker=’+’, color=’b’)

In the next example we show how to use method positionsfromfile() in com-
bination with this Marker method to read positions from a file and to plot them. The
positions in the file are world coordinates. Method positionsfromfile() returns
pixel coordinates:

fn = ’smallworld.txt’
xp, yp = annim.positionsfromfile(fn, ’s’, cols=[0,1])
annim.Marker(x=xp, y=yp, mode=’pixels’, marker=’,’, color=’b’)

Ruler(pos1=None, pos2=None, x1=None, y1=None, x2=None, y2=None, lambda0=0.5,
step=None, world=False, angle=None, addangle=0.0, fmt=None, fun=None, fliplabel-
side=False, mscale=None, labelsintex=True, **kwargs)

This method prepares arguments for a call to function rulers.Ruler() in module rulers

Note that this method sets a number of parameters which cannot be changed like projection,
mixpix, pxlim, pylim and aspectratio, which are all derived from the properties of the current
maputils.Annotatedimage object.

Skypolygon(prescription=None, xc=None, yc=None, cpos=None, major=None, minor=None,
nangles=6, pa=0.0, units=None, lons=None, lats=None, **kwargs)

Construct an object that represents an area in the sky. Usually this is an ellipse, rectangle or regular
polygon with given center and other parameters to define its size or number of angles and the position
angle. The object is plotted in a way that the sizes and angles, as defined on a sphere, are preserved.
The objects need a ‘prescription’. This is a recipe to calculate a distance to a center point (0,0) as
function of an angle in a linear and flat system. Then the object perimeter is re-calculated for a given
center (xc,yc) and for corresponding angles and distances on a sphere.

If prescription=None, then this method expects two arrays lons and lats. These are copied unaltered
as vertices for an irregular polygon.

For cylindrical projections it is possible that a polygon in a all sky plot crosses a boundary (e.g. 180
degrees longitude if the projection center is at 0 degrees). Then the object is splitted into two parts one
for the region 180-phi and one for the region 180+phi where phi is an arbitrary positive angle. This
splitting is done for objects with and without a prescription.

Parameters

• prescription (String or None) – How should the polygon be created? The prescrip-
tions are “ellipse”, “rectangle”, “npolygon” or None. This method only checks the
first character of the string.

• xc (Floating point number) – Coordinate in degrees to set the center of the shape in X

106 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

• yc (Floating point number) – Coordinate in degrees to set the center of the shape in Y

• cpos (String) – Instead of a position in world coordinates (xc, yc), supply a string
with a position. The syntax is described in the positions module. For example:
cpos=’20h30m10s -10d10m20.23s or cpos=ga 110.3 ga 33.4

• major (Floating point number) – Major axis of ellipse in degrees. This parameter is
also used as height for rectangles and as radius for regular polygons.

• minor (Floating point number) –

Minor axis of ellipse in degrees. This parameter is also used as width for rectan-
gles. If the prescription is an ellipse then a circle is defined if major*=*minor

• nangles (Integer) – The number of angles in a regular polygon. The radius of this
shape is copied from parameter major.

• pa (Floating point number) – Position angle. This is an astronomical angle i.e. with
respect to the north in the direction of the east. For an ellipse the angle is between
the north and the major axis. For a rectangle it is the angle between the north and the
parameter that represents the height. For a regular polygon, it is the angle between the
north and the line that connects the center with the first angle in the polygon.

• units (String) – A case insensitive minimal matched string that sets the units for the
values in major and minor (e.g. arcmin, arcsec).

• lons (Sequence of floating point numbers.) – Sequence with longitudes in degrees
that (together with matching latitudes) are used to define the vertices of a polygon. If
nothing is entered for prescription or prescription=None then these positions are used
unaltered.

• lats (Sequence of floating point numbers.) – See description at lons.

plot()
Plot all objects stored in the objects list for this Annotated image.

Example

>>> fitsobj = maputils.FITSimage(’m101.fits’)
>>> annim = fitsobj.Annotatedimage()
>>> grat = annim.Graticule()
>>> annim.plot()
>>> plt.show()

toworld(xp, yp, matchspatial=False)
This is a helper method for method wcs.Projection.toworld(). It converts pixel positions
from a map to world coordinates. The difference with that method is that this method has its focus on
maps, i.e. two dimensional structures. It knows about the missing spatial axis if your data slice has
only one spatial axis. Note that pixels in FITS run from 1 to NAXISn and that the pixel coordinate
equal to CRPIXn corresponds to the world coordinate in CRVALn.

Parameters

• xp (Single Floating point number or sequence) – Pixel value(s) corresponding to the
x coordinate of a position.

• yp (Single Floating point number or sequence) – A pixel value corresponding to the y
coordinate of a position.

• matchspatial (Boolean) – If True then also return the world coordinate of the match-
ing spatial axis. Usually this is an issue when the map is a slice with only one spatial
axis (XV- or Position-Velocity map)

Note If somewhere in the process an error occurs, then the return values of the world coor-
dinates are all None.

8.6. Class Annotatedimage 107

Kapteyn Package Documentation, Release 2.2

Returns Three world coordinates: xw which is the world coordinate for the x-axis, yw
which is the world coordinate for the y-axis and (if matchspatial=True) missingspatial
which is the world coordinate that belongs to the missing spatial axis. If there is not a
missing spatial axis, then the value of this output parameter is None. So you don’t need
to know the structure of the map beforehand. You can test whether the last value is None
or not None in the calling environment.

Examples We have a test set with:

• RA: crpix1=51 - crval1=-51,28208479590

• DEC: crpix2=51 - crval2=+60.15388802060

• VELO: crpix3=-20 - crval3=-243000 (m/s)

Now let us try to find the world coordinates of a RA-VELO map at (crpix1, crpix3) at
slice position DEC=51. We should get three numbers which are all equal to the value of
CRVALn

>>> from kapteyn import maputils
>>> fig = figure()
>>> fitsobject = maputils.FITSimage(’ngc6946.fits’)
>>> fitsobject.set_imageaxes(1,3, slicepos=51)
>>> annim = fitsobject.Annotatedimage()
>>> annim.toworld(51,-20)
(-51.282084795899998, -243000.0, 60.1538880206)
>>> annim.topixel(-51.282084795899998, -243000.0)
(51.0, -20.0)

Or work with a sequence of numbers (list, tuple of NumPy ndarray object) as in this
example:

1 from kapteyn import maputils
2

3 f = maputils.FITSimage("ngc6946.fits")
4 # Get an XV slice at DEC=51
5 f.set_imageaxes(1, 3, slicepos=51)
6 annim = f.Annotatedimage()
7

8 x = [10, 50, 300, 399]
9 y = [1, 44, 88, 100]

10

11 # Convert these to world coordinates
12 lon, velo, lat = annim.toworld(x, y, matchspatial=True)
13 print "lon, velo lat=", lon, velo, lat
14

15 # We are not interested in the pixel coordinate of the slice
16 # because we know it is 51. Therefore we omit ’matchspatial’
17 x, y = annim.topixel(lon, velo)
18 print "Back to pixel coordinates: x, y =", x, y
19

20 #Output:
21 #lon, velo lat= [-50.691745281033555,
22 # -51.267685761904154,
23 # -54.862775451370837,
24 # -56.280231731192607]
25 # [-154800.00401099998,
26 # 25799.987775999994,
27 # 210599.97937199997,
28 # 260999.97707999998]
29 # [60.152142940138205,
30 # 60.153886982461088,
31 # 60.089564526325667,
32 # 60.028325686860846]

108 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

33

34 #Back to pixel coordinates: x, y = [10. 50. 300. 399.]
35 # [1. 44. 88. 100.]

topixel(xw, yw, matchspatial=False)
This is a helper method for method wcs.Projection.topixel(). It knows about the missing
spatial axis if a data slice has only one spatial axis. It converts world coordinates in units (given by the
FITS header, or the spectral translation) from a map to pixel coordinates. Note that pixels in FITS run
from 1 to NAXISn.

Parameters

• xw (Floating point number) – A world coordinate corresponding to the x coordinate
of a position.

• yw (Floating point number) – A world coordinate corresponding to the y coordinate
of a position.

• matchspatial (Boolean) – If set to True then return the pixel coordinates and the value
of the pixel on the missing spatial axis.

Returns Two pixel coordinates: x which is the world coordinate for the x-axis and y which
is the world coordinate for the y-axis.

If somewhere in the proces an error occurs, then the return values of the pixel coordinates
are all None.

Notes This method knows about the pixel on the missing spatial axis (if there is one). This
pixel is usually the pixel coordinate of the slice if the dimension of the data is > 2.

Examples See example at toworld()

inside(x=None, y=None, pos=None, mode=’‘)
This convenience method belongs to class Annotatedimage which represents a two dimensional
map which could be a slice (slicepos) from a bigger data structure and/or could be limited by limits
on the pixel ranges of the image axes (pxlim, pylim). Then, for a sequence of coordinates in x and
y, return a sequence with Booleans with True for a coordinate within the boundaries of this map and
False when it is outside the boundaries of this map. This method can work with either sequences of
coordinates (parameters x and y) or a string with a position (parameter pos). If parameters x and y are
used then parameter world sets these coordinates to world- or pixel coordinates.

Parameters

• x (Floating point number or sequence of floating point numbers.) – Single number
of a sequence representing the x coordinates of your input positions. These coordi-
nates are world coordinates if mode=’world’ (or mode=’w’) and pixel coordinates if
mode=’pixels (or mode=’p’).

• y (Floating point number or sequence of floating point numbers.) – Single number of
a sequence representing the x coordinates of your input positions. See description for
parameter x

• mode – Input in x and*y* represent either pixel coordinates or world coordinates. Is
the first character is ‘p’ or ‘P’ then the mode is set to pixels. If it starts with ‘w’ or
‘W’ the input in x and y are world coordinates.

• pos (String) – A description of one or a number of positions entered as a string. The
syntax is described in module positions. The value of parameter mode is ignored.

• world (Boolean) – If parameters x and y are used then the step of coordinate inter-
pretation as with pos is skipped. These coordinates can be either pixel- or world
coordinates depending on the value of world. By default this value is True.

Raises

Exception One of the arrays is None and the other is not!

8.6. Class Annotatedimage 109

Kapteyn Package Documentation, Release 2.2

Exception You cannot enter values for both pos= and x= and/or y=

Returns

• None – there was nothing to do

• Single Boolean – Input was a single position

• NumPy array of Booleans – Input was a sequence of positions

Note For programmers: note the similarity to method Marker() with respect to the use
of method positions.str2pos().

This method is tested with script mu_insidetest.py which is part of the examples tar file.

Examples

>>> fitsobj = maputils.FITSimage("m101.fits")
>>> fitsobj.set_limits((180,344), (100,200))
>>> annim = fitsobj.Annotatedimage()

>>> pos="{} 210.870170 {} 54.269001"
>>> print annim.inside(pos=pos)
>>> pos="ga 101.973853, ga 59.816461"
>>> print annim.inside(pos=pos)

>>> x = range(180,400,40)
>>> y = range(100,330,40)
>>> print annim.inside(x=x, y=y, mode=’pixels’)

>>> print annim.inside(x=crval1, y=crval2, mode=’w’)

histeq(nbr_bins=256)
Create a histogram equalized version of the data. The histogram equalized data is stored in attribute
data_hist.

blur(nx, ny=None)
Blur the image by convolving with a gaussian kernel of typical size nx (pixels). The optional keyword
argument ny allows for a different size in the y direction. nx, ny are the sigma’s for the gaussian kernel.

interact_toolbarinfo(pixfmt=’%.1f’, wcsfmt=’%.3e’, zfmt=’%+.3e’, hmsdms=True, dm-
sprec=1)

Allow this Annotatedimage object to interact with the user. It reacts to mouse movements. A
message is prepared with position information in both pixel coordinates and world coordinates. The
world coordinates are in the units given by the (FITS) header.

Parameters

• pixfmt (String) – Python number format for pixel coordinates

• wcsfmt (String) – Python number format for wcs coordinates if the coordinates are
not spatial or if parameter hmsdms is False.

• zfmt – Python number format for image value(s)

• hmsdms (Boolean) – If True (default) then spatial coordinates will be formatted in
hours/degrees, minutes and seconds according to the current sky system. The preci-
sion in seconds is entered with parameter dmsprec.

• dmsprec (Integer) – Number of decimal digits in seconds for coordinates formatted
in in HMS/DMS

Notes If a format is set to None, its corresponding number(s) will not appear in the infor-
mative message.

If a message does not fit in the toolbar then only a part is displayed. We don’t have
control over the maximum size of that message because it depends on the backend that is
used (GTK, QT,...). If nothing appears, then a manual resize of the window will suffice.

110 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

Example Attach to an object from class Annotatedimage:

>>> annim = f.Annotatedimage(frame)
>>> annim.interact_toolbarinfo()

or:

>>> annim.interact_toolbarinfo(wcsfmt=None, zfmt="%g")

A more complete example:

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 f = maputils.FITSimage("m101.fits")
5

6 fig = plt.figure(figsize=(9,7))
7 frame = fig.add_subplot(1,1,1)
8

9 annim = f.Annotatedimage(frame)
10 ima = annim.Image()
11 annim.Pixellabels()
12 annim.plot()
13 annim.interact_toolbarinfo()
14

15 plt.show()

interact_imagecolors()
Add mouse interaction (right mouse button) and keyboard interaction to change the colors in an image.

MOUSE

If you move the mouse in the image for which you did register this callback function and press the
right mouse button at the same time, then the color limits for image and colorbar are set to a new
value.

The new color setting is calculated as follows: first the position of the mouse (x, y) is transformed
into normalized coordinates (i.e. between 0 and 1) called (xn, yn). These values are used to set the
slope and offset for a function that sets an color for an image value according to the relations: slope
= 2.0 * xn; offset = yn - 0.5. The minimum and maximum values of the image are set
by parameters clipmin and clipmax. For a mouse position exactly in the center (xn,yn) = (0.5,0.5) the
slope is 1.0 and the offset is 0.0 and the colors will be divided equally between clipmin and clipmax.

KEYBOARD

•page-down move forwards through a list with known color maps.

•page-up move backwards through a list with known color maps.

•0 resets the colors to the original colormap and scaling. The default color map is ‘jet’.

•i (or ‘I’) toggles between inverse and normal scaling.

•1 sets the colormap scaling to linear

•2 sets the colormap scaling to logarithmic

•3 sets the colormap scaling to exponential

•4 sets the colormap scaling to square root

•5 sets the colormap scaling to square

•b (or ‘B’) changes color of bad pixels.

•h (or ‘H’) replaces the current data by a histogram equalized version of this data. This key
toggles between the original data and the equalized data.

8.6. Class Annotatedimage 111

Kapteyn Package Documentation, Release 2.2

•z (or ‘Z’) replaces the current data by a smoothed version of this data. This key is a toggle
between the original data and the blurred version, smoothed with a value of sigma set by key ‘x’.
Pressing ‘x’ repeatedly increases the smoothing factor. Note that Not a Number (NaN) values are
smoothed to 0.0.

•x (or ‘X”) increases the smoothing factor. The number of steps is 10. Then is starts again with
step 1.

•m (or ‘M’) saves current colormap look up data to a file. The default name of the file is the
name of file from which the data was extracted or the name given in the constructor. The name is
appended with ‘.lut’. This data is written in the right format so that it can be be (re)used as input
colormap. This way you can fix a color setting and reproduce the same setting in another run of a
program that allows one to enter a colormap from file.

If annim is an object from class Annotatedimage then activate color editing with:

>>> fits = maputils.FITSimage("m101.fits")
>>> fig = plt.figure()
>>> frame = fig.add_subplot(1,1,1)
>>> annim = fits.Annotatedimage(frame)
>>> annim.Image()
>>> annim.interact_imagecolors()
>>> annim.plot()

interact_writepos(pixfmt=’%.1f’, wcsfmt=’%.3g’, zfmt=’%.3e’, hmsdms=True, dmsprec=1,
gipsy=False, typecli=False)

Add mouse interaction (left mouse button) to write the position of the mouse to screen. The position
is written both in pixel coordinates and world coordinates.

Parameters

• pixfmt (String) – Python number format for pixel coordinates

• wcsfmt (String) – Python number format for wcs coordinates if the coordinates are
not spatial or if parameter hmsdms is False.

• zfmt – Python number format for image value(s)

• hmsdms (Boolean) – If True (default) then spatial coordinates will be formatted in
hours/degrees, minutes and seconds according to the current sky system. The preci-
sion in seconds is entered with parameter dmsprec.

• dmsprec (Integer) – Number of decimal digits in seconds for coordinates formatted
in in HMS/DMS

• gipsy (Boolean) – If set to True, the output is written with GIPSY function anyout()
to screen and a log file.

• typecli (Boolean) – If True then write the positions on the Hermes command line
instead of the log file and screen.

Example

>>> fits = maputils.FITSimage("m101.fits")
>>> fig = plt.figure()
>>> frame = fig.add_subplot(1,1,1)
>>> annim = fits.Annotatedimage(frame)
>>> annim.Image()
>>> annim.interact_writepos()
>>> annim.plot()

For a formatted output one could add parameters to interact_writepos(). The next line writes no pixel
coordinates, writes spatial coordinates in degrees (not in HMS/DMS format) and adds a format for the
world coordinates and the image value(s).

>>> annim.interact_writepos(pixfmt=None, wcsfmt="%.12f", zfmt="%.3e",
hmsdms=False)

112 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

positionsfromfile(filename, comment, skyout=None, **kwargs)
Read positions from a file with world coordinates and convert them to pixel coordinates. The interface
is exactly the same as from method tabarray.readColumns()

It expects that the first column you specify contains the longitudes and the second column that is
specified the latitudes.

Parameters

• filename (String) – Name (and pahth if necessary) of the file which contains longi-
tudes and latitudes.

• comment (String) – Comment characters. If a line starts with a comment character, it
will be skipped.

• skyout (Sky definition) – Tell the system in what sky system your longitudes and
latitudes are.

• kwargs (Python keyword arguments) – Keywords for Tabarray’s method read-
Columns.

Examples

>>> fn = ’smallworld.txt’
>>> xp, yp = annim.positionsfromfile(fn, ’s’, cols=[0,1])
>>> frame.plot(xp, yp, ’,’, color=’#FFDAAA’)

Or: your graticule is equatorial but the coordinates in the file are galactic:

>>> xp, yp = annim.positionsfromfile(fn, ’s’, skyout=’ga’, cols=[0,1])

8.7 Class Image

class maputils.Image(imdata, box, cmap, norm, **kwargs)
Prepare the FITS- or external image data to be plotted in Matplotlib. All parameters are set by method
Annotatedimage.Image(). The keyword arguments are those for Matplotlib’s method imshow().
Two of them are useful in the context of this class. These parameters are visible, a boolean to set the
visibility of the image to on or off, and alpha, a number between 0 and 1 which sets the transparency of the
image.

See also: Annotatedimage.Image()

Methods:

plot(frame)
Plot image object. Usually this is done by method Annotatedimage.plot() but it can also be
used separately.

8.8 Class Contours

class maputils.Contours(imdata, box, levels=None, cmap=None, norm=None, filled=False, nega-
tive=’dashed’, **kwargs)

Objects from this class calculate and plot contour lines. Most of the parameters are set by method
Annotatedimage.Contours(). The others are:

Parameters

• filled (Boolean) – If True, then first create filled contours and draw the contour lines
upon these filled contours

8.7. Class Image 113

Kapteyn Package Documentation, Release 2.2

• negative (String) – Set the line style of the contours that represent negative image num-
bers. The line styles are Matplotlib line styles e.g.: [None | ‘solid’ | ‘dashed’ | ‘dashdot’
| ‘dotted’]

• kwargs – Parameters for properties of all contours (e.g. linewidths).

Notes If the line widths of contours are given in the constructor (parameter linewidths) then
these linewidths are copied to the line widths in the colorbar (if requested).

Methods:

plot(frame)
Plot contours object. Usually this is done by method Annotatedimage.plot() but it can also be
used separately.

setp_contour(levels=None, **kwargs)
Set properties for contours either for all contours if levels is omitted or for specific levels if keyword
levels is set to one or more levels.

Examples

>>> cont = annim.Contours(levels=range(10000,16000,1000))
>>> cont.setp_contour(linewidth=1)
>>> cont.setp_contour(levels=11000, color=’g’, linewidth=3)

setp_label(levels=None, tex=True, **kwargs)
Set properties for the labels along the contours. The properties are Matplotlib properties (fontsize,
colors, inline, fmt).

Parameters

• levels (None or one or a sequence of numbers) – None or one or more levels from the
set of given contour levels

• tex (Boolean) – Print the labels in TeX if a format is entered. If set to True, add ‘$’
characters so that Matplotlib knows that it has to format the label in TeX. The default
is True.

Other parameters are Matplotlib parameters for method clabel() in Matplotlib
ContourLabeler (fontsize, colors, inline, fmt).

Examples

>>> cont2 = annim.Contours(levels=(8000,9000,10000,11000))
>>> cont2.setp_label(11000, colors=’b’, fontsize=14, fmt="%.3f")
>>> cont2.setp_label(fontsize=10, fmt="%g \lambda")

8.9 Class Colorbar

class maputils.Colorbar(cmap, frame=None, norm=None, contourset=None, clines=False, font-
size=9, label=None, linewidths=None, visible=True, **kwargs)

Colorbar class. Usually the parameters will be provided by method Annotatedimage.Colorbar()

Useful keyword parameters:

Parameters frame (Matplotlib Axes instance) – If a frame is given then this frame will be the
colorbar frame. If None, the frame is calculated by taking space from its parent frame.

plot(cbframe, mappable=None)
Plot image object. Usually this is done by method Annotatedimage.plot() but it can also be
used separately.

set_label(label, **kwargs)
Set a text label along the long side of the color bar. It is a convenience routine for Matplotlib’s
set_label() but this one needs a plotted colorbar while we postpone plotting.

114 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

8.10 Class Beam

class maputils.Beam(xc, yc, fwhm_major, fwhm_minor, pa, projection=None, units=None, **kwargs)
Beam class. Usually the parameters will be provided by method Annotatedimage.Beam()

Objects from class Beam are graphical representations of the resolution of an instrument. The beam is
centered at a position xc, yc. The major axis of the beam is the FWHM of longest distance between two
opposite points on the ellipse. The angle between the major axis and the North is the position angle.

Note that it is not correct to calculate the ellipse that represents the beam by applying distance ‘r’ (see code)
as a function of angle, to get the new world coordinates. The reason is that the fwhm’s are given as sizes
on a sphere and therefore a correction for the declination is required. With method dispcoord() (see source
code of class Beam) we sample the ellipse on a sphere with a correct position angle and with the correct
sizes.

8.11 Class Skypolygon

class maputils.Skypolygon(projection, prescription=None, xc=None, yc=None, major=None, mi-
nor=None, nangles=6, pa=0.0, units=None, lons=None, lats=None,
**kwargs)

This class defines objects that can only be plotted onto spatial maps. Usually the parameters will be provided
by method Annotatedimage.Skypolygon()

8.12 Class Marker

class maputils.Marker(xp=None, yp=None, **kwargs)
Marker class. Usually the parameters will be provided by method Annotatedimage.Marker()

Mark features in your map with a marker symbol. Properties of the marker are set with Matplotlib’s keyword
arguments.

8.13 Class Pixellabels

class maputils.Pixellabels(pxlim, pylim, plotaxis=None, markersize=None, gridlines=False,
ticks=None, major=None, minor=None, offset=None, **kwargs)

Draw positions in pixels along one or more plot axes. Nice numbers and step size are calculated by Mat-
plotlib’s own plot methods.

Parameters

• plotaxis (Integer) – The axis number of one or two of the axes of the plot rectangle:

– wcsgrat.left

– wcsgrat.bottom

– wcsgrat.right

– wcsgrat.top

or ‘left’, ‘bottom’, ‘right’, ‘top’

• markersize (Integer) – Set size of ticks at pixel positions. The size can be negative to
get tick marks that point outwards.

• gridlines (Boolean) – Set plotting of grid lines (connected tick marks) on or off
(True/False). The default is off.

8.10. Class Beam 115

Kapteyn Package Documentation, Release 2.2

• major (Float or Integer (usually the input will be an integer).) – This number overrules
the default positions for the major tick marks. The tick marks and labels are plotted at a
multiple number of major.

• minor (Float or Integer (usually the input will be an integer).) – This number sets the
plotting of minor tick marks on. The markers are plotted at a multiple value of minor.

• offset (None or a floating point number) – The pixels can have an integer offset. If you
want the reference pixel to be pixel 0 then supply offset=(crpixX, crpixY). These crpix
values are usually read from then header. In this routine the nearest integer of the input
is calculated to ensure that the offset is an integer value.

• kwargs (Matplotlib keyword argument(s)) – Keyword arguments to set attributes for the
labels (e.g. color=’g’, fontsize=8)

Returns An object from class Gridframe which is added to the plot container with Plotversion’s
method Plotversion.add().

Notes Graticules and Pixellabels are plotted in their own plot frame. If you want to be able to
toggle grid lines in a frame labeled with pixel coordinates, then you have to make sure that
the Pixellabels frame is plotted last. So always define Pixellabels objects before Graticule
objects.

Examples Annotate the pixels in a plot along the right and top axis of a plot. Change the color
of the labels to red:

mplim = f.Annotatedimage(frame)
mplim.Pixellabels(plotaxis=("bottom", "right"), color="r")

or with separate axes:

mplim.Pixellabels(plotaxis="bottom", color="r")

mplim.Pixellabels(plotaxis="right", color="b", markersize=10)
mplim.Pixellabels(plotaxis="top", color="g", markersize=-10, gridlines=True)

setp_marker(**kwargs)
Set properties of the pixel label tick markers

Parameters kwargs (Python keyword arguments.) – keyword arguments to change proper-
ties of the tick marks. A tick mark is a Matploltlib Line2D object with attributes like
markeredgewidth etc.

setp_label(**kwargs)
Set properties of the pixel label tick markers

Parameters kwargs (Python keyword arguments.) – keyword arguments to change proper-
ties of (all) the tick labels. A tick mark is a Matploltlib Text object with attributes like
fontsize, fontstyle etc.

8.14 Class Colmaplist

class maputils.Colmaplist
This class provides an object which stores the names of all available colormaps. The method add() adds
external colormaps to this list. The class is used in the context of other classes but its attribute colormaps
can be useful.

colormaps
List with names of colormaps as used in combination with keyword parameter cmap in the constructor
of Annotatedimage.

116 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

8.15 Class FITSaxis

class maputils.FITSaxis(axisnr, hdr, alter)
This class defines objects which store WCS information from a FITS header. It includes axis number and
alternate header information in a FITS keyword.

Parameters

• axisnr (Integer) – FITS axis number. For this number the relevant keys in the header
are read.

• hdr (pyfits.NP_pyfits.Header instance) – FITS header

Methods

printattr()
Print formatted information for this axis.

Examples

1 >>> from kapteyn import maputils
2 >>> fitsobject = maputils.FITSimage(’rense.fits’)
3 >>> fitsobject.hdr
4 <pyfits.NP_pyfits.Header instance at 0x1cae3170>
5 >>> ax1 = maputils.FITSaxis(1, fitsobject.hdr)
6 >>> ax1.printattr()
7 axisnr - Axis number: 1
8 axlen - Length of axis in pixels (NAXIS): 100
9 ctype - Type of axis (CTYPE): RA---NCP

10 axname - Short axis name: RA
11 cdelt - Pixel size: -0.007165998823
12 crpix - Reference pixel: 51.0
13 crval - World coordinate at reference pixel: -51.2820847959
14 cunit - Unit of world coordinate: DEGREE
15 wcstype - Axis type according to WCSLIB: None
16 wcsunits - Axis units according to WCSLIB: None
17 outsidepix - A position on an axis that does not belong to an image: None

If we set the image axes in fitsobject then the WCS attributes will get a value also. This object stores
its FITSaxis objects in a list called axisinfo[]. The index is the required FITS axis number.

>>> fitsobject.set_imageaxes(1, 2, 30)
>>> fitsobject.axisinfo[1].printattr()
..........
wcstype - Axis type according to WCSLIB: longitude
wcsunits - Axis units according to WCSLIB: deg
outsidepix - A position on an axis that does not belong to an image: None

printinfo()
Print formatted information for this axis.

Examples

1 >>> from kapteyn import maputils
2 >>> fitsobject = maputils.FITSimage(’rense.fits’)
3 >>> ax1 = maputils.FITSaxis(1, fitsobject.hdr)
4 >>> ax1.printinfo()
5 Axis 1: RA---NCP from pixel 1 to 512
6 {crpix=257 crval=178.779 cdelt=-0.0012 (DEGREE)}
7 {wcs type=longitude, wcs unit=deg}
8 Axis 2: DEC--NCP from pixel 1 to 512
9 {crpix=257 crval=53.655 cdelt=0.00149716 (DEGREE)}

10 {wcs type=latitude, wcs unit=deg}

8.15. Class FITSaxis 117

Kapteyn Package Documentation, Release 2.2

Notes if attributes for a maputils.FITSimage object are changed then the relevant axis
properties are updated. So this method can return different results depending on when it
is used.

8.16 Class Positionmessage

class maputils.Positionmessage(skysys, skyout, axtype)
This class creates an object with attributes that are needed to set a proper message with information about a
position in a map and its corresponding image value. The world coordinates are calculated in the sky system
of the image. This system could have been changed by the user.

The input parameters are usually set after initialization of an object from class Annotatedimage. For
users/programmers the atributes are more important. With the attributes of objects of this class we can
change the format of the numbers in the informative message.

Note that the methods of this class return separate strings for the pixel coordinates, the world coordinates
and the image values. The final string is composed in the calling environment.

Parameters

• skysys (A single parameter or tuple with integers or string) – The sky definition of the
current image

• skyout (A single parameter or tuple with integers or string) – The sky definition of the
current image as defined by a user/programmer

• skysys – The sky definition of the current image

Attributes

pixfmt
Python number format to set formatting of pixel coordinates in position message in
toolbar.

wcsfmt
Python number format to set formatting of world coordinates in position message in
toolbar. If the map has a valid sky system then the values will be formatted in hms/dms,
unless attribute hmsdms is set to False.

zfmt
Python number format to set formatting of image value(s) in position message in toolbar.

hmsdms
If True, spatial coordinates are formatted in hms/dms.

dmsprec
Precision in (dms) seconds if coordinate is formatted in dms. The precision in seconds
of a longitude axis in an equatorial system is automatically copied from this number and
increased with 1.

8.17 Class MovieContainer

class maputils.MovieContainer(helptext=True, imagenumbers=True)
This class is a container for objects from class maputils.Annotatedimage. For this container
there are methods to alter the visibility of the stored objects to get the effect of a movie loop. The ob-
jects are appended to a list with method maputils.MovieContainer.append(). With method
MovieContainer.movie_events() the movie is started and keys ‘P’, ‘<’, ‘>’, ‘+’ and ‘-‘ are avail-
able to control the movie.

•‘P’ : Pause/resume movie loop

•‘<’ : Step 1 image back in the sequence of images. Key ‘,’ has the same effect.

118 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2

•‘>’ : Step 1 image forward in the sequence of images. Key ‘.’ has the same effect.

•‘+’ [Increase the speed of the loop. The speed is limited by the size of the image and] the hardware
in use.

•‘-‘ : Decrease the speed of the movie loop

Parameters

• helptext (Boolean) – Allow or disallow methods to set an informative text about the
keys in use.

• imagenumbers (Boolean) – Allow or disallow methods to set an informative text about
which image is displayed and, if available, it prints information about the pixel coordi-
nate(s) of the slice if the image was extracted from a data cube.

Attributes

annimagelist
List with objects from class maputils.Annotatedimage.

indx
Index in list with objects of object which represents the current image.

framespersec
A value in seconds, representing the interval of refreshing an image in the movie loop.

Examples Use of this class as a container for images in a movie loop:

1 #!/usr/bin/env python
2 from kapteyn import wcsgrat, maputils
3 from matplotlib import pylab as plt
4

5 # Get connected to Matplotlib
6 fig = plt.figure()
7 frame = fig.add_subplot(1,1,1)
8

9 #Create a container to store the annotated images
10 movieimages = maputils.MovieContainer()
11

12 # Create a maputils FITS object from a FITS file on disk
13 fitsobject = maputils.FITSimage(’ngc6946.fits’)
14

15 # Get a the range of channels in the data cube
16 n3 = fitsobject.hdr[’NAXIS3’]
17 ch = range(1,n3)
18 vmin, vmax = fitsobject.get_dataminmax()
19 print "Vmin, Vmax of data in cube:", vmin, vmax
20 cmap = None
21

22 # Start to build and store the annotated images
23 first = True
24 for i in ch:
25 fitsobject.set_imageaxes(1,2, slicepos=i)
26 # Set limits as in: fitsobject.set_limits(pxlim=(150,350), pylim=(200,350))
27 mplim = fitsobject.Annotatedimage(frame, cmap=cmap, clipmin=vmin, clipmax=vmax)
28 mplim.Image()
29 mplim.plot()
30 if first:
31 mplim.interact_imagecolors()
32 cmap = mplim.cmap
33 movieimages.append(mplim, visible=first)
34 first = False
35

36 movieimages.movie_events()

8.17. Class MovieContainer 119

Kapteyn Package Documentation, Release 2.2

37

38 # Draw the graticule lines and plot WCS labels
39 grat = mplim.Graticule()
40 grat.plot(frame)
41

42 plt.show()

Skip informative text:

>>> movieimages = maputils.MovieContainer(helptext=False, imagenumbers=False)

Methods

append(annimage, visible=True)
Append object from class Annotatedimage. First there is a check for the class of the incoming
object. If it is the first object that is appended then from this object the Matplotlib figure instance is
copied.

Parameters

• annimage (An object from class Annotatedimage.) – Add an image to the list.

• visible – Set the data in this object to visible or invisible. Usually one sets the first
image in a movie to visible and the others to invisible.

Raises ‘Container object not of class maputils.Annotatedimage!’ An object was not recog-
nized as a valid object to append.

movie_events()
Connect keys for movie control and start the movie.

Raises ‘No objects in container!’ The movie container is empty. Use method
MovieContainer.append() to fill it.

controlpanel(event)
Process the key events.

imageloop(cb)
Helper method to get movie loop

Parameters cb (Callback object based on matplotlib.backend_bases.MouseEvent instance)
– Mouse event object with pixel position information.

toggle_images(next=True)
Toggle the visible state of images either by a timed callback function or by keys. This toggle works
if one stacks multiple image in one frame with method MovieContainer.append(). Only one
image gets status visible=True. The others are set to visible=False. This toggle changes this visibility
for images and the effect, is a movie.

Parameters next (Boolean) – Step forward through list if next=True. Else step backwards.

120 Chapter 8. Module maputils

CHAPTER 9

Module positions

In module wcs we provided two methods of the Projection object for transformations between pixels and world
coordinates. These methods are wcs.Projection.topixel() and wcs.Projection.toworld() and
they allow (only) numbers as their input parameters. These transformation methods apply to the coordinate system
for which the Projection object is created and it is not possible to enter world coordinates from other sky systems
or with other units.

Often one wants more flexibility. For instance, in interaction with the user, positions can be used to plot markers
on a map or to preset the location of labels and graticule lines. But what to do if you have positions that need to
be marked and the positions are from a FK5 catalog while your current map is given in Galactic coordinates? Or
what to do if you need to know, given a radio velocity, what the optical velocity is for a spectral axis which has
frequency as its primary type? For these situations we wrote function str2pos().

This module enables a user/programmer to specify positions in either pixel- or world coordinates. Its function-
ality is provided by a parser which converts strings with position information into pixel coordinates and world
coordinates. Let’s list some options with examples how to use function str2pos() which is the most important
method in this module.

Assume we have a projection object pr and you want to know the world coordinates w and the pixels p for a given
string. Further, assume u are the units of the world coordinates and e is an error message. Both u and e are output
parameters. Here are some examples how to use str2pos(). We will give detailed descriptions of the options
in later sections.

• Expressions for the input of numbers.
Example: w,p,u,e = str2pos(’[pi**2::3], [1:3]’, pr)

• Use of physical constants.
Example: w,p,u,e = str2pos(’c_/299792458.0, G_/6.67428e-11’, pr)

• Use of units to set world coordinates
Example: w,p,u,e = str2pos(’178.7792 deg 53.655 deg’, pr)

• Mix of pixels and world coordinates.
Example: w,p,u,e = str2pos(’5.0, 53.655 deg’, pr)

• Support of sky definitions.
Example: w,p,u,e = str2pos(’{eq, B1950,fk4, J1983.5} 178.12830409 {}
53.93322241’, pr)

• Support for spectral translations.
Example: w,p,u,e = str2pos(’vopt 1050 km/s’, pr)

• Coordinates from text file on disk.
Example: w,p,u,e = str2pos(’readcol("test123.txt", col=2)’, pr)

• Support for maps with only one spatial axis (e.g. XV maps).
Example: w,p,u,e = str2pos(’{} 53.655 1.415418199417E+03 Mhz’, pr,
mixpix=6)

• Use of sexagesimal notation of spatial world coordinates.

121

Kapteyn Package Documentation, Release 2.2

Example: w,p,u,e = str2pos(’11h55m07.008s 53d39m18.0s’, pr)

• Read header items.
Example: w,p,u,e = str2pos("{} header(’crval1’) {} header(’crval2’)", pr)

• Units, sky definitions and spectral translations are case insensitive and minimal matched to the full names.

Examine next small script that uses the syntax described in this document to set marker positions:

Example: mu_markers.py - Demonstrate the use of strings for a position

from kapteyn import maputils, tabarray
from matplotlib import pyplot as plt
import numpy

f = maputils.FITSimage("m101.fits")
fig = plt.figure()
frame = fig.add_subplot(1,1,1)
annim = f.Annotatedimage(frame, cmap="binary")
annim.Image()
grat = annim.Graticule()
#annim.Marker(pos="210.80 deg 54.34 deg", marker=’o’, color=’b’)
annim.Marker(pos="pc", marker=’o’, markersize=10, color=’r’)
annim.Marker(pos="14h03m30 54d20m", marker=’o’, color=’y’)
annim.Marker(pos="ga 102.035415152 ga 59.772512522", marker=’+’,

markersize=20, markeredgewidth=2, color=’m’)
annim.Marker(pos="{ecl,fk4,J2000} 174.367462651 {} 59.796173724",

marker=’x’, markersize=20, markeredgewidth=2, color=’g’)
annim.Marker(pos="{eq,fk4-no-e,B1950,F24/04/55} 210.360200881 {} 54.587072397",

marker=’o’, markersize=25, markeredgewidth=2, color=’c’,
alpha=0.4)

Use pos= keyword argument to enter sequence of
positions in pixel coordinates. The syntax is described
in the module positions.py
pos = "200+20*sin([100:199]/20), range(100,200)"

annim.Marker(pos=pos, marker=’o’, color=’r’)

Use x= and y= keyword arguments to enter sequence of
positions in pixel coordinates. Note that this is not parsed by
module positions.py. Here we need list comprehension to
get the same effect.
xp = [400+20*numpy.sin(x/20.0) for x in range(100,200)]
yp = range(100,200)
annim.Marker(x=xp, y=yp, mode=’pixels’, marker=’o’, color=’g’)

xp = yp = 150
annim.Marker(x=xp, y=yp, mode=’pixels’, marker=’+’, color=’b’)

annim.plot()
annim.interact_imagecolors()
annim.interact_toolbarinfo()
plt.show()

9.1 Introduction

Physical quantities, in a data structure which represents a measurement of an astronomical phenomenon, are
usually measurements at fixed positions in the sky, sometimes at some spectral value such as a Doppler shift,
frequencies or velocity. These positions are examples of so called World Coordinates. To identify a world
coordinate in a measured data structure, we use a coordinate system based on the pixels in that structure. Often
the data structures are FITS files and the coordinate system is subject to a set of rules. For FITS files the first pixel

122 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.2

on an axis is labeled with coordinate 1 and it runs to the value of NAXISn which is a FITS header item that sets
the length of the n-th axis in the data structure.

Assume you have a data structure representing an optical image of a part of the sky and you need to mark a certain
feature in the image or need to retrieve the intensity of a pixel at a certain location. Then it is possible to identify
the pixel using pixel coordinates. But when you have positions from external sources like catalogs, then these are
not related to a FITS file and therefore given in world coordinates coupled to a certain coordinate system (e.g. a
sky system). Then it would be convenient if you could specify positions exactly in those coordinates.

This module uses two other modules from the Kapteyn Package: Module wcs provides methods for conversions
between pixel coordinates and world coordinates given a description of the world coordinate system as defined in
a (FITS) header). Module celestial converts world coordinates between different sky- and reference systems
and/or epochs. In this module we combine the functionality of wcs and celestial to write a coordinate parser
to convert world coordinates to pixel coordinates (and back) given a header that describes the WCS. Note that a
description of a world coordinate system can be either derived from a FITS header or a Python dictionary with
FITS keywords.

9.2 How to use this module

This module is used in several modules of the Kapteyn Package, but it can also be imported in your own scripts
so that you are able to convert positions (given as a string) to pixel- and world coordinates. It is also possible to
use this module as a test application. If you want to see the test run then type: python positions.py on the
command line. The source of the test strings with positions can be found in function dotest() in this module.

To get the idea, we list a short example starting with the definition of a header:

from kapteyn import wcs, positions

header = { ’NAXIS’ : 2,
’CDELT1’ : -1.200000000000E-03, ’CDELT2’ : 1.497160000000E-03,
’CRPIX1’ : 5, ’CRPIX2’ : 6,
’CRVAL1’ : 1.787792000000E+02, ’CRVAL2’ : 5.365500000000E+01,
’CTYPE1’ : ’RA---NCP’, ’CTYPE2’ : ’DEC--NCP’,
’CUNIT1’ : ’DEGREE’, ’CUNIT2’ : ’DEGREE’,
’NAXIS1’ : 10, ’NAXIS2’ : 10,

}

pr = wcs.Projection(header)
w,p,u,e = positions.str2pos(’5, 6’, pr)
if e == ’’:

print "pixels:", p
print "world coordinates:", w, u

Its output (which is always a NumPy array) is:

pixels: [[5. 6.]]
world coordinates: [[178.7792 53.655]] (’deg’, ’deg’)

Remember, p are the pixel coordinates, w the world coordinates and u is a tuple with units. We have valid
coordinates if the string e is empty. If it is not empty then there is an error condition and the string is an error
message. The parser does not raise exceptions but it stores a message after an exception in the error message. This
is to simplify the use of str2pos(). If you want to extract just one position then give the index in the output
array, for example W0 = w[0]. The x and y coordinates are in this case: wx = W0[0]; wy = W0[1].

Structure of output

The function str2pos() returns a tuple with four items:

• w: an array with positions in world coordinates. One position has n coordinates and n is the dimension of
your data structure which 1 for structure with one axis, 2 for a map, 3 for a cube etc.

• p: an array with positions in pixel coordinates. It has the same structure as w.

9.2. How to use this module 123

Kapteyn Package Documentation, Release 2.2

• u: an array with the units of the world coordinates These units are derived from the projection object with
an optional alternative sky system and/or an optional spectral translation. The number of units in the list is
the number of coordinates in a position.

• e: an error message. If the length of this string is not 0, then it represents an error message and the arrays w
and p are empty.

9.3 Position syntax

9.3.1 Number of coordinates

A position has the same number of coordinates as the number of axes that are defined by the Projection object. So
each position in a 2-dim map has two coordinates. One can enter 1 position or a sequence of positions as in:

>>> pos="0,1 4,5 2,3"

Numbers are separated either by a space or a comma.

So also:

>>> pos="0 1 4 5 2 3"
>>> pos="0,1,4,5,2,3"

give the same result.

9.3.2 Numbers in expressions

Numbers can be given as valid (Python) expressions. A selection of functions and operators known to module
NumPy can be used. The functions are:

• abs, arccos, arccosh, arcsin, arcsinh, arctan, arctan2, arctanh, cos, cosh, degrees, exp, log2, log10, mean,
median, min, max, pi, radians, sin, sinc, sqrt, sum, tan, tanh, rand, randn, ranf, randint, sign

• Aliases: acos = arccos, acosh = arccosh, asin = arcsin, asinh = arcsinh, atan = arctan, atan2 = arctan2, atanh
= arctanh, ln = log10(x)/log10(e), log=log10, deg=degrees, rad=radians

• arange, linspace

The functions allow a NumPy array as argument. Here its definition starts and ends with a square bracket. Its
elements are separated by a comma. But note, it is not a Python list. In addition to the selection of mathematical
functions we also include the functions arange() and linspace() from NumPy to be able to generate arrays.

Examples:

• arange(4) -> [0, 1, 2, 3]

• max(arange(4)) -> 3

• linspace(1,2,5) -> [1., 1.25, 1.5, 1.75, 2.]

• randint(0,10,3) -> [6, 4, 3]

• sin(ranf(4)) -> [0.66019925, 0.24063844, 0.28068498, 0.23582177]

• median([-1,3,5,-2,5,1]) -> 2.0

• mean(arange(4)) -> 1.5

• log(10**[1,2,3]) -> [1, 2, 3]

• log(100) log10(100) -> [2, 2]

• log2(e), ln(e) -> [1.44269504, 1.]

• log2(2**[1,2,3,4]) -> [1, 2, 3, 4]

124 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.2

Note the difference between the result of [pi]*3 when [pi] is a Python list (then a new list is created with
elements [pi,pi,pi]), and the array [pi]. The array in our context is multiplied (element-wise) by 3. This is also
true for other operators. So it is also valid to write:

• [1,2,3,4] -> [1, 2, 3, 4]

• pi*[1,2,3] -> [3.14159265, 6.28318531, 9.42477796]

• [1,2,3]**2 -> [1., 4., 9.]

• [1,2,3]-100 -> [-99., -98., -97.]

• [1,2,3]/0.3 -> [3.33333333, 6.66666667, 10.]

The array syntax also allows for the generation of ranges. A range follows the syntax start:end:step and
start may be smaller than end. Here we deviate also from Python. That is, we include always the values start and
end in the result: Some examples:

• [1:4] -> [1., 2., 3., 4.]

• [-1:-5] -> [-1., -2., -3., -4., -5.]

• [-1:-5:-2] -> [-1., -3., -5.]

• [5:1:1] -> [] # Note that increment is positive

• [1:3, 10:12, 100] -> [1., 2., 3., 10., 11., 12., 100.]

• [1*pi:2*pi] -> [3.14159265, 4.14159265, 5.14159265, 6.14159265, 7.14159265]

If one prefers the non-inclusive Python style ranges, then function arange() is available. Another function is
linspace() which generates a (given) number of equidistant samples between a start and end value.

• arange(). For example arange(1,4)**3 results in an array with elements 1, 2, 3 and all these
elements are taken to the power of 3

• linspace(). The arguments for ‘linspace’ are a start value, an end value and and the number of samples.
For example linspace(1,3,4) results in an array with elements 1, 1.66666667, 2.33333333, 3

A range with a number of identical elements is created using a syntax with two subsequent colons:

• [1::3] -> [1, 1, 1]

• [1**2::2, pi::2] -> [1, 1, 3.14159265, 3.14159265]

Note:

• Functions can have scalars, lists and arrays as arguments.

• Mathematical expressions can be applied on all array elements at the same time.

• Note that x to the power of y is written as x**y and not as x^y (which is a bitwise or).

To get information about NumPy functions you have to read the Python documentation (e.g. on the
command line in a terminal, type: ipython. On the ipython command line type: import numpy;
help(numpy.linspace)). Here are some examples how to use ranges in the input of positions:

>>> pos = "degrees(pi) e" # pixel coordinates: 180, 2.71828183
>>> pos = "degrees(atan2(1,1)) abs(-10)" # pixel coordinates: 45, 10.
>>> pos = "[pi::3]**2, [1:3]**3"
>>> pos = "[1,6/3,3,4]**3, pi*[1,2,3,4]"
>>> pos = "[1:10], [10,1]"
>>> pos = "[sin(pi):-10:-2] range(6)"
>>> pos = "linspace(0,3,200), tan(radians(linspace(0,3,200)))"

9.3. Position syntax 125

Kapteyn Package Documentation, Release 2.2

9.3.3 Grouping of numbers

Coordinates can also be grouped. Elements in a group are processed in one pass and they represent only one
coordinate in a position. A group of numbers can be prepended by a sky definition or spectral translation or be
appended by a unit. Then the unit applies to all the elements in the group. We will see examples of this in one of
the next sections. For the first example we could have grouped the coordinates as follows:

>>> pos="’0,4,2’ ’1,5,3’"

or, using the more powerful array generator, as:

>>> pos="[0,4,2] [1,5,3]"

Coordinates enclosed by single quotes or square brackets are parsed by Python’s expression evaluator eval() as
one expression. The elements in a group can also be expressions. If square brackets are part of the expression, the
expression represents a Python list and not an array! Examine the next expressions:

>>> pos = "’[pi]+[1,2]’ range(3)" # [pi, 1, 2] [0, 1, 2]
>>> pos = "’[pi]*3’ range(3)" # [pi, pi, pi] [0, 1, 2]
>>> pos = "’[sin(x) for x in range(4)]’ range(4)"

In this context the square brackets define a list. In the examples we demonstrate the list operator ‘+’ which
concatenates lists, ‘*’ which repeats the elements in a list and list comprehension. Note that Python’s eval()
function requires that the elements in an expression are separated by a comma.

It is important to remember that without quotes, the square brackets define an array. The list operators ‘+’ and ‘*’
have a different meaning for lists and arrays. For arrays they add or multiply element-wise as shown in:

>>> pos = "[0,4,2]+10 [1,5,3]*2" # is equivalent with "[10,14,12] [2,10,6]"

Other examples of grouping are listed in the section about reading data from disk with readcol() and in the
section about the eval() function.

9.3.4 Pixel coordinates

All numbers, in a string representing a position, which are not recognized as world coordinates are returned as
pixel coordinates. The first pixel on an axis has coordinate 1. Header value CRPIX sets the position of the
reference pixel. If this is an integer number, the reference is located at the center of a pixel. This reference sets
the location of of the world coordinate given in the (FITS) header in keyword CRVAL.

For the examples below you should use function str2pos() to test the conversions. However, for this function
you need a (FITS) header. In the description at str2pos() you will find an example of its use.

Examples of two pixel coordinates in a two dimensional world coordinate system (wcs):

>>> pos = "10 20" # Pixel position 10, 20
>>> pos = "10 20 10 30" # Two pixel positions
>>> pos = "(3*4)-5 1/5*(7-2)"
>>> pos = "abs(-10), sqrt(3)"
>>> pos = "sin(radians(30)), degrees(asin(0.5))"
>>> pos = "cos(radians(60)), degrees(acos(0.5))"
>>> pos = "pi, tan(radians(45))-0.5, 3*4,0" # 2 positions
>>> pos = "atan2(2,3), 192"
>>> pos = "[pi::3], [e**2::3]*3" # [pi, pi, pi], [3*e**2, 3*e**2, 3*e**2]

9.3.5 Special pixel coordinates

For the reference position in a map we can use symbol ‘PC’ (Projection center). The center of your data structure
is set with symbol ‘AC’. You can use either one symbol or the same number of symbols as there are axes in your
data structure.

126 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.2

>>> pos = "pc" # Pixel coordinates of the reference pixel
>>> pos = "PC pc" # Same as previous. Note case insensitive parsing
>>> pos = "AC" # Center of the map in pixel coordinates

9.3.6 Constants

A number of global constants are defined and these can be used in the expressions for positions. The constants are
case sensitive. These constants are:

c_ = 299792458.0 # Speed of light in m/s
h_ = 6.62606896e-34 # Planck constant in J.s
k_ = 1.3806504e-23 # Boltzmann in J.K^-1
G_ = 6.67428e-11 # Gravitation in m^3. kg^-1.s^-2
s_ = 5.6704e-8 # Stefan-Boltzmann in J.s^-1.m^-2.K^-4
M_ = 1.9891e+30 # Mass of Sun in kg
P_ = 3.08567758066631e+16 # Parsec in m

9.3.7 World coordinates

World coordinates can be distinguished from pixel coordinates. A world coordinate is:

• a coordinate followed by a (compatible) unit. Note that the units of the world coordinate are given in the
(FITS) header in keyword CUNIT. If there is no CUNIT in the header or it is an empty string or you don’t
remember the units, then use either:

– The wildcard symbol ‘?’

– A case insensitive minimal match for the string ‘UNITS’

• a coordinate prepended by a definition for a sky system or a spectral system.

• a coordinate entered in sexagesimal notation. (hms/dms)

Note: One can mix pixel- and world coordinates in a position.

Units

For a two dimensional data structure (e.g. an optical image of part of the sky) we can enter a position in world
coordinates as:

>>> pos = 178.7792 deg 53.655 deg

But we can also use compatible units:

>>> pos = "178.7792*60 arcmin 53.655 deg" # Use of a compatible unit if CUNIT is "DEGREE"
>>> pos = "10 1.41541820e+09 Hz" # Mix of pixel coordinate and world coordinate
>>> pos = "10 1.41541820 GHz" # Same position as previous using a compatible unit

Units are minimal matched against a list with known units. The parsing of units is case insensitive. The list with
known units is:

• angles: ‘DEGREE’,’ARCMIN’, ‘ARCSEC’, ‘MAS’, ‘RADIAN’ ‘CIRCLE’, ‘DMSSEC’, ‘DMSMIN’,
‘DMSDEG’, ‘HMSSEC’, ‘HMSMIN’, ‘HMSHOUR’

• distances: ‘METER’, ‘ANGSTROM’, ‘NM’, ‘MICRON’, ‘MM’, ‘CM’, ‘INCH’, ‘FOOT’, ‘YARD’, ‘M’,
‘KM’, ‘MILE’, ‘PC’, ‘KPC’, ‘MPC’, ‘AU’, ‘LYR’

• time: ‘TICK’, ‘SECOND’, ‘MINUTE’, ‘HOUR’, ‘DAY’, ‘YR’

• frequency: ‘HZ’, ‘KHZ’,’MHZ’, ‘GHZ’

9.3. Position syntax 127

Kapteyn Package Documentation, Release 2.2

• velocity: ‘M/S’, ‘MM/S’, ‘CM/S’, ‘KM/S’

• temperature: ‘K’, ‘MK’

• flux (radio astr.): ‘W/M2/HZ’, ‘JY’, ‘MJY’

• energy: ‘J’, ‘EV’, ‘ERG’, ‘RY’

It is also possible to convert between inverse units like the wave number’s 1/m which, for example, can be con-
verted to 1/cm.

For a unit, one can also substitute the wildcard symbol ‘?’. This is the same as setting the units from the header
(conversion factor is 1.0). The symbol is handy to set coordinates to world coordinates. But it is essential if there
are no units in the header like the unitless STOKES axis. One can also use the string units which has the same
role as ‘?’.

>>> pos = "[0, 3, 4] ?"
>>> pos = "7 units"
>>> pos = "[5, 6.3] U"

Sky definitions

The detailed information about sky definitions can be found in:

• Sky systems

• Reference systems

• Epochs for the equinox and epoch of observation

If a coordinate is associated with a sky definition it is parsed as a world coordinate. A sky definition is either a
case insensitive minimal match from the list:

’EQUATORIAL’,’ECLIPTIC’,’GALACTIC’,’SUPERGALACTIC’

or it is a definition between curly brackets which can contain one or more items from the following list: sky system,
reference system, equinox and epoch of observation.

An empty string between curly brackets e.g. {}, followed by a number, implies a world coordinate in the native
sky system.

Examples:

>>> pos = "{eq} 178.7792 {} 53.655"
As a sky definition between curly brackets

>>> pos = "{} 178.7792 {} 53.655"
A world coordinate in the native sky system

>>> pos = "{eq,B1950,fk4} 178.12830409 {} 53.93322241"
With sky system, reference system and equinox

>>> pos = "{fk4} 178.12830409 {} 53.93322241"
With reference system only.

>>> pos = "{eq, B1950,fk4, J1983.5} 178.1283 {} 53.933"
With epoch of observation (FK4 only)

>>> pos = "{eq B1950 fk4 J1983.5} 178.1283 {} 53.933"
With space as separator

>>> pos = "ga 140.52382927 ga 61.50745891"
Galactic coordinates

>>> pos = "ga 140.52382927 {} 61.50745891"
Second definition copies from first

>>> pos = "su 61.4767412, su 4.0520188"
Supergalactic

>>> pos = "ec 150.73844942 ec 47.22071243"
Ecliptic

>>> pos = "{} 178.7792 6.0"
Mix world- and pixel coordinate

128 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.2

>>> pos = "5.0, {} 53.655"
Mix with world coordinate in native system

Note:

• Mixing sky definitions for one position is not allowed i.e. one cannot enter pos = “ga 140.52382927 eq
53.655”

• If you mix a pixel- and a world coordinate in a spatial system then this world coordinate must be defined in
the native system, i.e. {}

We can also specify positions in data structures with only one spatial axis and a non-spatial axis (e.g. position
velocity diagrams). The conversion function str2pos() needs a pixel coordinate for the missing spatial axis. If
one of the axes is a spectral axis, then one can enter world coordinates in a compatible spectral system:

>>> pos = "{} 53.655 1.415418199417E+09 hz"
Spatial and spectral world coordinate

>>> pos = "{} 53.655 1.415418199417E+03 Mhz"
Change Hz to MHz

>>> pos = "53.655 deg 1.415418199417 Ghz"
to GHz

>>> pos = "{} 53.655 vopt 1.05000000e+06"
Use spectral translation to enter optical velocity

>>> pos = "{} 53.655 , vopt 1050 km/s"
Change units

>>> pos = "10.0 , vopt 1050000 m/s"
Combine with a pixel position

>>> pos = "{} 53.655 vrad 1.05000000e+06"
Radio velocity

>>> pos = "{} 53.655 vrad 1.05000000e+03 km/s"
Radio velocity with different unit

>>> pos = "{} 53.655 FREQ 1.41541820e+09"
A Frequency

>>> pos = "{} 53.655 wave 21.2 cm"
A wave length with alternative unit

>>> pos = "{} 53.655 vopt c_/285.51662
Use speed of light constant to get number in m/s

Note: For positions in a data structure with one spatial axis, the other (missing) spatial axis is identified by a
pixel coordinate. Usually it’s a slice). This restricts the spatial world coordinates to their native wcs. We define a
world coordinate in its native sky system with {}

Note: A sky definition needs not to be repeated. Only one definition is allowed in a position. The second
definition therefore can be empty as in {}.

Note: World coordinates followed by a unit, are supposed to be compatible with the Projection object. So
if you have a header with spectral type FREQ but with a spectral translation set to VOPT, then "{} 53.655
1.415418199417E+09 hz" is invalid, "10.0 , vopt 1050000 m/s" is ok and also "{} 53.655
FREQ 1.415418199417e+09" is correct.

Sexagesimal notation

Read the documentation at parsehmsdms() for the details. Here are some examples:

9.3. Position syntax 129

Kapteyn Package Documentation, Release 2.2

>>> pos = "11h55m07.008s 53d39m18.0s"
>>> pos = "{B1983.5} 11h55m07.008s {} -53d39m18.0s"
>>> pos = -33d 0d

9.3.8 Reading from file with function readcol(), readhms() and readdms()

Often one wants to plot markers at positions that are stored in a text file (Ascii) on disk.

In practice one can encounter many formats for coordinates in text files. Usually these coordinates are written
in columns. For example one can expect longitudes in degrees in the first column and latitudes in degrees in the
second. But what do these coordinates represent? Are they galactic or ecliptic positions? If your current plot
represents an equatorial system can we still plot the markers from the file if these are given in the galactic sky
system? And there are more questions:

• Assume you have a file with three columns with hours, minutes and seconds as longitude and three columns
with degrees, minutes and seconds as latitude. Is it possible to read these columns and combine them into
longitudes and latitudes? Assume you have a file and the Right Ascensions are given in decimal hours, is it
possible to convert those to degrees?

• Assume your file has numbers that are in a unit that is not the same unit as the axis unit in your plot. Is it
possible to change the units of the data of the column in the text file?

• Assume you have several (hundreds of) thousands marker positions. Is reading the marker positions fast?

• If a file has comment lines that start with another symbol than ‘!’ or ‘#’, can one still skip the comment
lines?

• If a file has columns separated by something else than whitespace, is it still possible then to read a column?

All these questions can be answered with yes if you use this module. We provided three functions: readcol(),
readhms() and readdms(). These functions are based on module tabarray. The routines in this module
are written in C and as a result of that, reading data from file is very fast. The arguments of these functions are
derived from those in tabarray.readColumns()with the exception that argument cols= is replaced by col=
for function readcol() because we want to read only one column per coordinate to keep the syntax easy and flexible.
In the functions readhms() and readdms(), which are also based on tabarray.readColumns(), the
cols= argument is replaced by arguments col1=, col2=, col3=. These functions read three columns at once and
combine the columns into one. Tabarray routines count with 0 as the first column, first row etc. The routines that
we describe here count with 1 as the first column or row etc.

syntax

>>> readcol(filename, col=1, fromline=None, toline=None, rows=None, comment="!#",
sepchar=’, t’, bad=999.999, fromrow=None, torow=None, rowstep=None)

>>> readhms(filename, col1=1, col2=2, col3=3,
fromline=None, toline=None, rows=None, comment="!#",
sepchar=’, t’, bad=999.999,
fromrow=None, torow=None, rowstep=None)

Function readdms() has the same syntax as readhms()

The parameters are:

• filename - a string with the name of a text file containing the table. The string must be entered with double
quotes. Single quotes have a different function in this parser (grouping).

• col - a scalar that sets the column number.

• fromline - Start line to be read from file (first is 1).

• toline - Last line to be read from file. If not specified, the end of the file is assumed.

• comment - a string with characters which are used to designate comments in the input file. The occurrence
of any of these characters on a line causes the rest of the line to be ignored. Empty lines and lines containing
only a comment are also ignored.

130 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.2

• sepchar - a string containing the column separation characters to be used. Columns are separated by any
combination of these characters.

• rows - a tuple or list containing the row numbers to be extracted.

• bad - a number to be substituted for any field which cannot be decoded as a number. The default value is
999.999

• fromrow - number of row from the set of lines with real data to start reading

• torow - number of row from the set of lines with real data to end reading. The torow line is included.

• rowstep - Step size in rows. Works also if no values are given for fromrow and torow.

There is a difference between the rows= and the fromline= , toline= keywords. The first reads the specified
rows from the parsed contents of the file((parsed contents are lines that are not comment lines), while the line
keywords specify which lines you want to read from file. Usually comment characters ‘#’ and ‘!’ are used. If you
expect another comment character then change this keyword. Keyword sepchar= sets the separation character.
The default is a comma, a space and a tab. bad= is the value that is substituted for values that could not be parsed
so that they can be easily identified.

Note:

• Numbering of columns start with 1

• Numbering of rows start with 1

• Numbering of lines start with 1

• The result is an array so it can be used in an expression

Some examples:

Assume a text file on disk with a number of rows with 2 dimensional marker positions in pixel coordinates. The
text file is called pixmarks.txt. Then the simplest line to read this data is:

>>> pos = ’readcol("pixmarks.txt") readcol("pixmarks.txt",2)’
>>> annim.Marker(pos=pos, marker=’o’, markersize=10, color=’r’)

All parameters have defaults except the filename parameter. The default column is 1, i.e. the first column. For
readability we prefer to write the positions as:

>>> pos = ’readcol("pixmarks.txt", col=1) readcol("pixmarks.txt",col=2)’

If you want all the data up to line 30 (and line 30 including) you should write:

>>> pos = ’readcol("pixmarks.txt", col=1, toline=30) readcol("pixmarks.txt",col=2, toline=30)’

If your file has relevant data from line 30 to the end of the file, one should write:

>>> pos = ’readcol("pixmarks.txt", col=1, fromline=30) readcol("pixmarks.txt",col=2, fromline=30)’

As stated earlier, we distinguish lines and rows in a file. Lines are also those which are empty or which start with
a comment. Rows are only those lines with data. So if you want to read only the first 5 rows of data, then use:

>>> pos = ’readcol("pixmarks.txt", col=1, torow=5) readcol("pixmarks.txt",col=2, torow=5)’

Note that the parameters toline and torow include the given value. You can specify a range of rows including a
step size with:

>>> pos = ’readcol("pixmarks.txt", col=1, fromrow=10, torow=44, rowstep=2),’

to get row number 10, 12, ..., 44. Note that it is not possible to set a step size if you use the fromline or toline
parameter.

In some special circumstances you want to be able to read only preselected rows from the data lines. Assume a
user needs rows 1,3,7,12,44. Then the position string should be:

9.3. Position syntax 131

Kapteyn Package Documentation, Release 2.2

>>> pos = ’readcol("pixmarks.txt", col=1, rows=[1,3,7,12,44]),’

Perhaps you wonder why you need to repeat the readcol() function for each coordinate. It is easier to use it
once and specify two columns instead of one. We did not implement this feature because usually one will read
world coordinates from file and often we want to add units or a sky- or spectral conversion. Then you must be
able to read the data for each column separately. Assume we have a file on disk called ‘lasfootprint’ which stores
two sets of 2 dimensional positions (i.e. 4 coordinates) separated by an empty line.

RA J2000 Dec l b eta lambda
8.330 -1.874 225.624 19.107 -36.250 300.000
8.663 -2.150 228.598 23.268 -36.250 305.000
8.996 -2.409 231.763 27.369 -36.250 310.000
9.329 -2.651 235.170 31.394 -36.250 315.000
9.663 -2.872 238.878 35.320 -36.250 320.000
.....
.....

It has a blank line at line 63. The first column represents Right Ascensions in decimal hours. If we want to read the
positions given by column 1 and 2 of the second segment (starting with line 66) and column 1 is given in decimal
hours, then you need the command:

>>> pos= ’readcol("lasfootprint", col=1,fromline=64)
HMShour readcol("lasfootprint", col=2,fromline=64) deg’

The first coordinate is followed by a unit, so it is a world coordinate. We have a special unit that converts from
decimal hours to degrees (HMSHOUR). The last coordinate is followed by a unit (deg) so it is a world coordinate.
It was also possible to prepend the second coordinate with {} and omit the unit as in: Between the brackets there
is nothing specified. This means that we assume the coordinates in the file (J2000) match the sky system of the
world coordinate system of your map.

>>> pos= ’readcol("lasfootprint", 1,64) HMShour {} readcol("lasfootprint", 2,64)’

Note that the third parameter is the fromline parameter. If columns 3 and 4 in the file are galactic longitudes and
latitudes, but our basemap is equatorial, then we could have read the positions with an alternative sky system as in
(now we read the first data segment):

>>> pos= ’{ga} readcol("lasfootprint", 3, toline=63) {} readcol("lasfootprint", 4, toline=63)’

The second sky definition is empty which implies a copy of the first definition (i.e. {ga}).

Note: The sky definition must describe the world coordinate system of the data on disk. It will be automatically
converted to a position in the sky system of the Projection object which is associated with your map or axis.

Some files have separate columns for hour, degrees, minutes and seconds. Assume you have an ASCII file on disk
with 6 columns representing sexagesimal coordinates. For example:

! Test file for Ascii data and the READHMS/READDMS command
11 57 .008 53 39 18.0
11 58 .008 53 39 17.0
11 59 .008 53 39 16.0
....

Assume that this file is called hmsdms.txt and it contains equatorial coordinates in ‘hours minutes seconds degrees
minutes seconds’ format, then read this data with:

>>> pos= ’{} readhms("hmsdms.txt",1,2,3) {} readdms("hmsdms.txt",4,5,6)’

Or with explicit choice of which lines to read:

>>> pos= ’{} readhms("hmsdms.txt",1,2,3,toline=63) {} readdms("hmsdms.txt",4,5,6,toline=63)’

The data is automatically converted to degrees. What if the format is ‘d m s d m s’ and the coordinates are galactic.
Then we should enter;

132 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.2

>>> pos= ’ga readdms("hmsdms.txt",1,2,3) ga readdms("hmsdms.txt",4,5,6)’

if your current sky system is galactic then it also possible to enter:

>>> pos= ’readdms("hmsdms.txt",1,2,3) deg readdms("hmsdms.txt",4,5,6) deg’

If the columns are not in the required order use the keyword names:

>>> pos= ’readdms("hmsdms.txt",col3=0,col2=1,col3=2) deg readdms("hmsdms.txt",4,5,6) deg’

The result of one of the functions described in this section is an array and therefore suitable to use in combination
with functions and operators:

>>> pos=’1.1*readhms("hmsdms.txt",1,2,3)-5 sin(readdms("hmsdms.txt",4,5,6)-10.1)’

9.3.9 Reading header items with function header()

Command header reads an item from the header that was used to create the Projection object. The header item
must represent a number.

>>> pos= ’header("crpix1") header("crpix2")’

Note:

• Header keys are case insensitive

• A key must be given with double quotes

9.3.10 Parser errors messages

The position parser is flexible but there are some rules. If the input cannot be transformed into coordinates then
an appropriate message will be returned. In some cases the error message seems not to be related to the problem
but that seems often the case with parsers. If a number is wrong, the parser tries to parse it as a sky system or a
unit. If it fails, it will complain about the sky system or the unit and not about the number.

9.3.11 Testing the parser

You can run the module’s ‘main’ (i.e. execute the module) to test pre installed expressions and to experiment with
your own positions entered at a prompt. Please copy the module positions.py to your working directory first! The
program will display a couple of examples before it prompts for user input. Then your are prompted to enter a
string (no need to enclose it with quotes because it is read as a string). Enter positions for a two dimensional data
structure with axes R.A. and Dec. Start the test with:

>>> python positions.py

9.3.12 GIPSY’s grids mode

FITS pixel coordinates start with number one and the last pixel for axis n is the value of header item NAXISn. Pixel
value CRPIXn is the pixel that corresponds to CRVALn. The value of CRPIXn can be non-integer. There are also
systems that implement a different numbering. For example the Groningen Image Processing SYstem (GIPSY)
uses an offset. There we call pixel CRPIXn grid 0, so grid 0 corresponds to CRVALn. It has the advantage that
these grid coordinates are still valid after cropping the input data. For FITS data we need to change the value for
CRPIXn after slicing the data and writing it to a new FITS file. But then your original pixel coordinates for the
same positions need to be shifted too. The Projection object can be set into GIPSY’s grid mode using attribute
gridmode (True or False).

9.3. Position syntax 133

Kapteyn Package Documentation, Release 2.2

9.4 Functions

positions.str2pos(postxt, subproj, mixpix=None, gridmode=False)
This function accepts a string that represents a position in the world coordinate system defined by subproj.
If the string contains a valid position, it returns a tuple with numbers that are the corresponding pixel
coordinates and a tuple with world coordinates in the system of subproj. One can also enter a number of
positions. If a position could not be converted then an error message is returned.

Parameters

• postxt (String) – The position(s) which must be parsed.

• subproj (wcs.Projection object) – A projection object (see wcs). Often this pro-
jection object will describe a subset of the data structure (e.g. a channel map in a radio
data cube).

• mixpix (Float) – For a world coordinate system with one spatial axis we need a pixel
coordinate for the missing spatial axis to be able to convert between world- and pixel
coordinates.

Returns

This method returns a tuple with four elements:

•a NumPy array with the parsed positions in world coordinates

•a NumPy array with the parsed positions in pixel coordinates

•A tuple with the units that correspond to the axes in your world coordinate system.

•An error message when a position could not be parsed

Each position in the input string is returned in the output as an element of a numpy array with parsed
positions. A position has the same number of coordinates are there are axes in the data defined by the
projection object.

Examples

from kapteyn import wcs, positions

header = { ’NAXIS’ : 2,
’BUNIT’ :’w.u.’,
’CDELT1’ : -1.200000000000E-03,
’CDELT2’ : 1.497160000000E-03,
’CRPIX1’ : 5,
’CRPIX2’ : 6,
’CRVAL1’ : 1.787792000000E+02,
’CRVAL2’ : 5.365500000000E+01,
’CTYPE1’ :’RA---NCP’,
’CTYPE2’ :’DEC--NCP’,
’CUNIT1’ :’DEGREE’,
’CUNIT2’ :’DEGREE’}

proj = wcs.Projection(header)

position = []
position.append("0 0")
position.append("eq 178.7792 eq 53.655")
position.append("{eq} 178.7792 {} 53.655")
position.append("{} 178.7792 {} 53.655")
position.append("178.7792 deg 53.655 deg")
position.append("11h55m07.008s 53d39m18.0s")
position.append("{eq, B1950,fk4} 178.7792 {} 53.655")
position.append("{eq, B1950,fk4} 178.12830409 {} 53.93322241")
position.append("{fk4} 178.12830409 {} 53.93322241")

134 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.2

position.append("{B1983.5} 11h55m07.008s {} 53d39m18.0s")
position.append("{eq, B1950,fk4, J1983.5} 178.12830409 {} 53.93322241")
position.append("ga 140.52382927 ga 61.50745891")
position.append("su 61.4767412, su 4.0520188")
position.append("ec 150.73844942 ec 47.22071243")
position.append("eq 178.7792 0.0")
position.append("0.0, eq 53.655")
for pos in position:

poswp = positions.str2pos(pos, proj)
if poswp[3] != "":

raise Exception, poswp[3]
world = poswp[0][0]
pixel = poswp[1][0]
units = poswp[2]

print pos, "=", pixel, ’->’, world , units

positions.parsehmsdms(hmsdms, axtyp=None)
Given a string, this routine tries to parse its contents as if it was a spatial world coordinate either in
hours/minutes/seconds format or degrees/minutes/seconds format.

Parameters

• hmsdms (String) – A string containing at least a number followed by the character ‘h’
or ‘d’ (case insensitive) followed by a number and character ‘m’. This check must be
performed in the calling environment. The number can be a negative value. The string
cannot contain any white space.

• axtype (String) – Distinguish formatted coordinates for longitude and latitude.

Returns The parsed world coordinate in degrees and an empty error message or None and an
error message that the parsing failed.

Notes A distinction has been made between longitude axes and latitude axes. The hms format
can only be used on longitude axes. However there is no check on the sky system (it should
be equatorial). The input is flexible (see examples), even expressions are allowed.

Examples

>>> hmsdms = ’20h34m52.2997s’
>>> hmsdms = ’60d9m13.996s’
>>> hmsdms = ’20h34m52.2997’ # Omit ’s’ for seconds
>>> hmsdms = ’60d9m13.996’
>>> hmsdms = ’20h34m60-7.7003’ # Expression NOT allowed
>>> hmsdms = ’-51.28208458d0m’ # Negative value for latitude

• The ‘s’ for seconds is optional

• Expressions in numbers are not allowed because we cannot use Python’s eval() function,
because this function interprets expressions like ‘08’ differently (octal).

• dms format always allowed, hms only for longitude axes. Both minutes and seconds are
optional. The numbers need not to be integer.

positions.unitfactor(unitfrom, unitto)
Return the conversion factor between two units.

Parameters

• unitfrom (String) – Units to convert from. Strings with ‘1/unit’ or ‘/unit’ are also
allowed. If this parameter is ‘?’ then the incoming unit is a wildcard character and the
conversion factor 1.0 is returned. The same holds for a case insensitive minimum match
of the string ‘UNITS’. This option is necessary for the option to use world coordinates
when there are no units given in the header of the data (i.e. there is no CUNITn keyword
or its contents is empty).

9.4. Functions 135

Kapteyn Package Documentation, Release 2.2

• unitto – Units to convert to. Strings with ‘1/unit’ or ‘/unit’ are also allowed.

Returns The conversion factor to convert a number in ‘unitsfrom’ to a number in ‘unitsto’.

Notes

Examples

>>> print unitfactor(’1/m’, ’1/km’)
(1000.0, ’’)
>>> print positions.unitfactor(’1/mile’, ’1/km’)
(0.62137119223733395, ’’)
>>> print positions.unitfactor(’mile’, ’km’)
(1.6093440000000001, ’’)

136 Chapter 9. Module positions

CHAPTER 10

Module rulers

This module defines a class for drawing rulers.

class rulers.Ruler(projection, mixpix, pxlim, pylim, aspectratio=1.0, pos1=None, pos2=None,
rulersize=None, rulerangle=None, x1=None, y1=None, x2=None, y2=None,
lambda0=0.5, step=None, world=False, angle=None, addangle=0.0, fmt=None,
fun=None, units=None, fliplabelside=False, mscale=None, labelsintex=True,
**kwargs)

Draws a line between two spatial positions from a start point (x1,y1) to an end point (x2,y2) with labels
indicating a constant offset in world coordinates. The positions are either in pixels or in world coordinates.
The start and end point can also be positions entered as a string which follows the syntax described in
method positions.str2pos(). The ruler can also be given as a start point and a size and angle.
These are distance and angle on a sphere.

The ruler is a straight line but the ticks are usually not equidistant because projection effects make the offsets
non linear (e.g. the TAN projection diverges while the CAR projection shows equidistant ticks). By default,
the zero point is exactly in the middle of the ruler but this can be changed by setting a value for lambda0.
The step size for the ruler ticks in units of the spatial axes is entered in parameter step. At least one of the
axes in the plot needs to be a spatial axis.

Size and step size can be entered in units given by a parameter units. The default unit is degrees.

Parameters

• projection (A wcs.Projection object) – The Projection object which sets the WCS
for the ruler.

• mixpix (Integer) – The pixel of the missing spatial axis in a Position-Velocity image.

• pxlim (Tuple or list with two integers.) – Limit in pixel coordinates for the x-axis.

• pylim (Tuple or list with two integers.) – Limit in pixel coordinates for the y-axis.

• aspectratio (Float) – The aspect ratio is defined as pixel height / pixel width. The value
is needed to draw tick mark perpendicular to the ruler line for images where the pixels
are not square in world coordinates. Its default is 1.0.

• pos1 (String) – Position information for the start point. This info overrules the values
in x1 and y1.

• pos2 (String) – Position information for the end point. This info overrules the values in
x2 and y2.

• rulersize (Floating point number) – Instead of entering a start- and an end point, one
can also enter a start point in pos1 or in x1, y1 and specify a size of the ruler. The size
is entered in units given by parameter units. If no units are given, the size is in degrees.
Note that with size we mean the distance on a sphere. To calculate the end point, we
need an angle. this angle is given in rulerangle. If rulersize has a value, then values in
pos2 and x2,y2 are ignored.

137

Kapteyn Package Documentation, Release 2.2

• rulerangle (Floating point number) – An angel in degrees which, together with ruler-
size, sets the end point of the ruler. The angle is defined as an angle on a sphere. The
angle is an astronomical angle (defined with respect to the direction of the North).

• x1 (None or Floating point number) – X-location of start of ruler either in pixels or
world coordinates Default is lowest pixel coordinate in x.

• y1 (None or Floating point number) – Y-location of start of ruler either in pixels or
world coordinates Default is lowest pixel coordinate in y.

• x2 (None or Floating point number) – X-location of end of ruler either in pixels or
world coordinates Default is highest pixel coordinate in x.

• y2 (None or Floating point number) – Y-location of end of ruler either in pixels or world
coordinates Default is highest pixel coordinate in y.

• lambda0 (Floating point number) – Set the position of label which represents offset 0.0.
Default is lambda=0.5 which represents the middle of the ruler. If you set lambda=0
then offset 0.0 is located at the start of the ruler. If you set lambda=1 then offset 0.0 is
located at the end of the ruler.

• step (Floating point number) – Step size of world coordinates in degrees or in units
entered in units.

• world (Boolean) – Set ruler mode to world coordinates (default is pixels)

• angle (Floating point number) – Set angle of tick marks in degrees. If omitted then a
default is calculated (perpendicular to ruler line) which applies to all labels.

• addangle – Add a constant angle in degrees to angle. Only useful if angle has its default
value. This parameter is used to improve layout.

• fmt (String) – Format of the labels. See example.

• fun (Python function or Lambda expression) – Format ruler values according to this
function (e.g. to convert degrees into arcminutes). The output is always in degrees.

• units (String) – Rulers ticks are labeled in a unit that is compatible with degrees. The
units are set by the step size used to calculate the position of the tick marks. You can set
these units explicitely with this parameter. Note that values for fun and fmt cannot be
set because these are set automatically if units has a value. Note that units needs only
a part of a complete units string because a case insensitive minimal match is applied.
Usually one will use something like units=arcmin or units=Arcsec.

Note: If a value for units is entered, then this method expects the step size is given in
the same units.

• fliplabelside (Boolean) – Choose other side of ruler to draw labels.

• mscale (Floating point number) – A scaling factor to create more or less distance be-
tween the ruler and its labels. If None then this method calculates defaults. The values
are usually less than 5.0.

• **kwargs (Matplotlib keyword argument(s)) – Set keyword arguments for the labels.
The attributes for the ruler labels are set with these keyword arguments.

Raises

Exception Rulers only suitable for maps with at least one spatial axis! These rulers are
only for plotting offsets as distances on a sphere for the current projection system. So
we need at least one spatial axis and if there is only one spatial axis in the plot, then we
need a matching spatial axis.

Exception Cannot make ruler with step size equal to zero! Either the input of the step
size is invalid or a wrong default was calculated (perhaps end point is equal to start
point).

Exception Start point of ruler not in pixel limits!

138 Chapter 10. Module rulers

Kapteyn Package Documentation, Release 2.2

Exception End point of ruler not in pixel limits!

Returns A ruler object of class ruler which is added to the plot container with Plotversion’s
method Plotversion.add(). This ruler object has two methods to change the proper-
ties of the line and the labels:

• setp_line(**kwargs) – Matplotlib keyword arguments for changing the line proper-
ties.

• setp_labels(**kwargs) – Matplotlib keyword arguments for changing the label
properties.

Notes A bisection is used to find a new marker position so that the distance to a previous posi-
tion is step.. We use a formula of Thaddeus Vincenty, 1975, for the calculation of a distance
on a sphere accurate over the entire sphere.

Examples Create a ruler object and change its properties

1 ruler2 = annim.Ruler(x1=x1, y1=y1, x2=x2, y2=y2, lambda0=0.5, step=2.0,
2 fmt=’%3d’, mscale=-1.5, fliplabelside=True)
3 ruler2.setp_labels(ha=’left’, va=’center’, color=’b’)
4

5 ruler4 = annim.Ruler(pos1="23h0m 15d0m", pos2="22h0m 30d0m", lambda0=0.0,
6 step=1, world=True,
7 fmt=r"$%4.0f^\prime$",
8 fun=lambda x: x*60.0, addangle=0)
9 ruler4.setp_line(color=’g’)

10 ruler4.setp_labels(color=’m’)
11

12 # Force step size and labeling to be in minutes of arc.
13 annim.Ruler(pos1=’0h3m30s 6d30m’, pos2=’0h3m30s 7d0m’,
14 lambda0=0.0, step=5.0,
15 units=’arcmin’, color=’c’)

setp_line(**kwargs)
Set the ruler line properties. The keyword arguments are Matplotlib keywords for Line2D objects.

Parameters kwargs (Python keyword arguments) – Keyword argument(s) for changing the
default properties of the ruler line. This line is a Line2D Matplotlib object with at-
tributes like linewidth, color etc.

setp_label(**kwargs)
Set the ruler label properties. The keyword arguments are Matplotlib keywords for Text objects.
Note that the properties apply to all labels. It is not possible to address a separate label.

Parameters kwargs (Python keyword arguments) – Keyword argument(s) for changing the
default properties of the ruler labels. This line is a TextMatplotlib object with attributes
like fontsize, color etc.

139

Kapteyn Package Documentation, Release 2.2

140 Chapter 10. Module rulers

CHAPTER 11

Module shapes

This module defines a class for drawing shapes that define an area in your image. The drawing is interactive using
mouse- and keyboard buttons. For each defined area the module maputils calculates the sum of the intensities,
the area and some other properties of the data. The shapes are one of polygon, ellipse, circle, rectangle or spline.

The strength of this module is that it duplicates a shape to other selected images using transformations to world
coordinates. This enables one to compare e.g. flux in two images with different WCS systems. It works with
spatial maps and maps with mixed axes (e.g. position-velocity maps) and maps with linear axes. The order of the
two axes in a map can be swapped.

class shapes.Shapecollection(images, ifigure, wcs=True, inputfilename=None, inputwcs=False,
gipsy=False)

Administration class for a collection of shapes. The figure

Parameters

• images (A list of objects from class maputils.Annotatedimage) – In each image
a shape can be drawn using mouse- and keyboard buttons. This shape is duplicated
either in pixel coordinates or world coordinates in the other images of the list with
images. These images have two attributes that are relevant for this module. These are
fluxfie to define how the flux should be calculated using fixed variables s for the sum of
the intensities of the pixels in an area and a which represents the area.

• ifigure (Matplotlib Figure object) – The Matplotlib figure where the images are.

• wcs (Boolean) – The default is True which implies that in case of multiple images shapes
propagate through world coordinates. If you have images with the same size and WCS,
then set wcs=False to duplicate shapes in pixel coordinates which is much faster.

• inputfilename (String) – Name of file on disk which stores shape information. The
objects are read from this file and plotted on all the images in the image list. The
coordinates in the file can be either pixel- or world coordinates. You should specify that
with parameter inputwcs

• inputwcs (Boolean) – Set the shape mode for shapes from file to either pixels coordi-
nates (inputwcs=False) or to world coordinates (inputwcs=True).

This shape interactor reacts to the following keyboard and mouse buttons:

mouse - left : Drag a polygon point to a new position or
change the radius of a circle or
change the minor axis of an ellipse or
change the major axis and position angle of an ellipse

mouse - middle: Select an existing object in any frame
key - a : Add a point to a polygon or spline
key - c : Copy current object at mouse cursor
key - d : Delete a point in a polygon or spline
key - e : Erase active object and associated objects in other images
key - i : Insert a point in a polygon or spline
key - n : Start with a new object
key - u : Toggle markers. Usually for a hardcopy

141

Kapteyn Package Documentation, Release 2.2

one does not want to show the markers of a shape.
key - w : Write object data in current image to file on disk
key - r : Read objects from file for current image
key - [: Next active object in current shape selection
key -] : Previous active object in current shape selection

Interactive navigation defined by canvas
Amongst others:
key - f : Toggle fullscreen
key - g : Toggle grid

Gui buttons:
’Quit’ : Abort program
’plot result’ : Plot calculated flux as function of shape and image
’Save result’ : Save flux information to disk

The file names are generated and contain date
and time stamp (e.g flux_24042010_212029.dat)

’Pol.’ : Select shape polygon. Start with key ’n’ for
new polygon. Add new points with key ’a’.

’Ell.’ : Select shape ellipse. Start with key ’n’ for
new ellipse. With left mouse button Drag major axis to change
size and rotation or, using a point near the
center, drag entire ellipse to a new position.

’Cir.:’ : Select shape circle. Start with key ’n’ for
new circle. The radius can be changed by dragging
an arbitrary point on the border to a new position.

’Rec.’ : Select shape rectangle. Start with key ’n’ for
new rectangle. Drag any of the four edges to resize
the rectangle.

’Spl.’ : Like the polygon but the points between two knots
follow a spline curve.

Notes All shapes are derived from a polygon class. There is one method that generates co-
ordinates for all shapes and maputils.getflux() uses the same routine to calculate
whether a pixel in an enclosing box is within or outside the shape. For circles and ellipses
the number of polygon points is 360 and this slows down the calculation significantly. Meth-
ods which assume a perfect circle or ellipse can handle the inside/outside problem much
faster, but note that due to different WCS’s, ellipses and circles don’t keep their shape in
other images. So in fact only a polygon is the common shape. A spline is a polygon with an
artificially increased number of points.

Example

1 fig = plt.figure(figsize=(12,10))
2 frame1 = fig.add_axes([0.07,0.1,0.35, 0.8])
3 frame2 = fig.add_axes([0.5,0.1,0.43, 0.8])
4 im1 = f1.Annotatedimage(frame1)
5 im2 = f2.Annotatedimage(frame2)
6 im1.Image(); im1.Graticule()
7 im2.Image(); im2.Graticule()
8 im1.interact_imagecolors(); im1.interact_toolbarinfo()
9 im2.interact_imagecolors(); im2.interact_toolbarinfo()

10 im1.plot(); im2.plot()
11 im1.fluxfie = lambda s, a: s/a
12 im2.fluxfie = lambda s, a: s/a
13 im1.pixelstep = 0.5; im2.pixelstep = 0.5
14 images = [im1, im2]
15 shapes = shapes.Shapecollection(images, fig, wcs=True, inputwcs=True)

142 Chapter 11. Module shapes

Kapteyn Package Documentation, Release 2.2

11.1 Utility functions

shapes.ellipsesamples(xc, yc, major, minor, pa, n)
Get sample positions on ellipse Algorithm from ‘Mathematical Elements for Computer Graphics’ by Rogers
and Adams, section about ‘Parametric Representation of an Ellipse’ Many methods which calculate sample
positions on an ellipse suffer from a reasonable sampling near the positions where the curvature of an ellipse
is large. The method we use, finds more sample points near the end points of an ellipse where the curvature
is large while the increment between sample points along the sides of the ellipse where the curvature is not
large, is small

For an ellipse centered at (0,0), semimajor axis a and semiminor axis b the parametric representation is
given by:

x = a * cos(th)
y = b * sin(th)

‘th’ is the parameter and it represents the angle between 0 and 2*pi One can derive a recursive relation:

x_i+1 = x_i cos(dth) - (a/b) y_i sin(dth)
y_i+1 = (b/a) x_i sin(dth) + y_i cos(dth)

dth is a step size in the angle th. It is equal to 2*pi/(n-1) n-1 is the required number or unique points on the
ellipse and therefore an input parameter. The routine returns a result which is empty when either a or b is
zero.

The shift of the origin and the rotation of the ellipse can be combined into one matrix:

| cos(a) sin (a) 0 | | 1 0 0 |
T = |-sin(a) cos (a) 0 | | 0 1 0 |

| 0 0 1 | | xc yc 1 |

Finally the result is computed with:

X, Y, dummy = (x, y, 1).T

The result is a polygon which describes the maximum inscribed area for the given ellipse parameters (Smith,
L.B., “Drawing Ellipses, Hyperbolas, or Parabolas With a Fixed Number of Points and Maximum Inscribed
Area,” Comp. J., Vol. 14, pp. 81-86, 1969

Parameters

• xc (float) – Center position of ellipse in x direction

• yc (float) – Center position of ellipse in y direction

• major (float) – Semi major axis in pixels

• minor (float) – Semi minor axis in pixels

• pa (float) – Position angle in degrees

• n (int) – Number of sample points

Notes The ‘classical’ method involves the calculation of many cosine and sine functions. This
method avoids that by using a method which calculates a new sample based on the informa-
tion of a previous sample. However, we didn’t find a way to do this properly using NumPy.
The classic method is very suitable to do implement in NumPy and is therefore faster than
the algorithm here. But the sampling is better and we can do with less samples to get the
same result.

11.1. Utility functions 143

Kapteyn Package Documentation, Release 2.2

144 Chapter 11. Module shapes

CHAPTER 12

Module tabarray

Author: Hans Terlouw <gipsy@astro.rug.nl>

Module tabarray provides a class which allows the user to read, write and manipulate simple table-like structures.
It is based on NumPy and the table-reading part has been optimized for speed. When the flexibility of SciPy’s
read_array() function is not needed, Tabarray can be considered as an alternative.

12.1 Class tabarray

class tabarray.tabarray(source[, comchar=’#!’, sepchar=’ \t’, lines=None, bad=None,
segsep=None])

Tabarray is a subclass of NumPy’s ndarray. It provides all of ndarray’s functionality as well as some extra
methods and attributes.

Parameters

• source – the object from which the tabarray object is constructed. It can be a 2-
dimensional NumPy array, a list or tuple containing the table columns as 1-dimensional
NumPy arrays, or a string with the name of a text file containing the table. Only in the
latter case the other arguments are meaningful.

• comchar – a string with characters which are used to designate comments in the input
file. The occurrence of any of these characters on a line causes the rest of the line to be
ignored. Empty lines and lines containing only a comment are also ignored.

• sepchar – a string containing the column separation characters to be used. Columns are
separated by any combination of these characters.

• lines – a two-element tuple or list specifying a range of lines to be read. Line numbers
are counted from one and the range is inclusive. So (1,10) specifies the first 10 lines of
a file. Comment lines are included in the count. If any element of the tuple or list is
zero, this limit is ignored. So (1,0) specifies the whole file, just like the default None.

• bad – is a number to be substituted for any field which cannot be decoded as a number.
The default None causes a ValueError exception to be raised in such cases.

• segsep – a string containing segment separation characters. If any of these characters
is present in a comment block, this comment block is taken as the end of the current
segment. The default None indicates that every comment block will separate segments.

Raises IOError, when the file cannot be opened.

IndexError, when a line with an inconsistent number of fields is encountered in the input
file.

ValueError: when a field cannot be decoded as a number and no alternative value was
specified.

Attributes:

145

mailto:gipsy@astro.rug.nl

Kapteyn Package Documentation, Release 2.2

nrows
the number of rows

ncols
the number of columns

segments
a list with slice objects which can be used to address the different segments from the table. Segments
are parts of the table which are separated by comment blocks which meet the conditions specified by
argument segsep. The following example illustrates how a program can iterate over all segments:

1 from kapteyn.tabarray import tabarray
2

3 coasts = tabarray(’world.txt’)
4

5 for segment in coasts.segments:
6 coast = coasts[segment]

Methods:

columns(cols=None)

Parameters cols – a tuple or list with the numbers (zero-relative) of the columns to be
extracted.

Returns a NumPy array.

Extract specified columns from a tabarray and return an array containing these columns. Cols is a
tuple or list with the column numbers. As the first index of the resulting array is the column number,
multiple assignment is possible. E.g., x,y = t.columns((2,3)) delivers columns 2 and 3 in
variables x and y. Default: return all columns.

rows(rows=None)

Parameters rows – a tuple or list containing the numbers (zero-relative) of the rows to be
extracted.

Returns a new tabarray.

This method extracts specified rows from a tabarray and returns a new tabarray. Rows is a tuple or list
containing the row numbers to be extracted. Normal Python indexing applies, so (0, -1) specifies the
first and the last row. Default: return whole tabarray.

writeto(filename, rows=None, cols=None, comment=[], format=[])
Write the contents of a tabarray to a file.

Parameters

• filename – the name of the file to be written.

• rows – a tuple or list with a selection of the rows (zero-relative) te be written. Default:
all rows.

• columns – a tuple or list with a selection of the columns (zero-relative) to be written.
Default: all columns.

• comment – a list with text strings which will be inserted as comments in the output
file. These comments will be prefixed by the hash character (#).

• format – a list with format strings for formatting the output, one element per column,
e.g., [’%5d’, ’ %10.7f’, ’ %g’].

146 Chapter 12. Module tabarray

Kapteyn Package Documentation, Release 2.2

12.2 Functions

tabarray.readColumns(filename, comment=’!#’, cols=’all’, sepchar=’, \t’, rows=None,
lines=None, bad=0.0, rowslice=(None,), colslice=(None,))

TableIO-compatible function for directly extracting table data from a file.

Parameters

• filename – a string with the name of a text file containing the table.

• comment – a string with characters which are used to designate comments in the input
file. The occurrence of any of these characters on a line causes the rest of the line to be
ignored. Empty lines and lines containing only a comment are also ignored.

• cols – a tuple or list with the column numbers or a scalar with one column number.

• sepchar – a string containing the column separation characters to be used. Columns are
separated by any combination of these characters.

• rows – a tuple or list containing the row numbers to be extracted.

• lines – a two-element tuple or list specifying a range of lines to be read. Line numbers
are counted from one and the range is inclusive. So (1,10) specifies the first 10 lines of
a file. Comment lines are included in the count. If any element of the tuple or list is
zero, this limit is ignored. So (1,0) specifies the whole file, just like the default None.

• bad – a number to be substituted for any field which cannot be decoded as a number.

• rowslice – a tuple containing a Python slice indicating which rows should be selected.
If this argument is used in combination with the argument rows, the latter should be
expressed in terms of the new row numbers after slicing. Example: rowslice=(10,
None) selects all rows, beginning with the eleventh (the first row has number 0) and
rowslice=(10, 13) selects row numbers 10, 11 and 12.

• colslice – a tuple containing a Python slice indicating which columns should be selected.
If this argument is used in combination with the argument cols, the latter should be
expressed in terms of the new column numbers after slicing. Selection is analogous to
rowslice.

tabarray.writeColumns(filename, list, comment=[])
TableIO-compatible function for directly writing table data to a file.

Parameters

• filename – the name of the file to be written;

• list – a list containing the columns to be written.

• comment – a list with text strings which will be inserted as comments in the output file.
These comments will be prefixed by the hash character (#).

12.3 Example

Suppose you have a file with catheti data from right-angled triangles and you want to compute the hypotenuses
and write the result to a second file. The input file may be as follows:

Triangle data
#
3.0 4.0 ! classic example
4.1 3.6

10.0 10.0

Then the following simple script will do the job:

12.2. Functions 147

Kapteyn Package Documentation, Release 2.2

#!/usr/bin/env python
import numpy
from kapteyn.tabarray import tabarray

x,y = tabarray(’triangles.txt’).columns()
tabarray([x,y,numpy.sqrt(x*x+y*y)]).writeto(’outfile.txt’)

leaving the following result in the output file:

3 4 5
4.1 3.6 5.45619

10 10 14.1421

148 Chapter 12. Module tabarray

CHAPTER 13

Module mplutil

Author: Hans Terlouw <gipsy@astro.rug.nl>

Utilities for use with matplotlib. Classes AxesCallback, CanvasCallback, TimeCallback and
VariableColormap and module-internal function KeyPressFilter().

13.1 Class AxesCallback

class mplutil.AxesCallback(proc, axes, eventtype, schedule=True, **attr)
AxesCallback has been built on top of matplotlib’s event handling mechanism. Objects of this class
provide a more powerful mechanism for handling events from LocationEvent and derived classes than
matplotlib provides itself. This class allows the programmer to register a callback function with an event
type combined with an Axes object. Whenever the event occurs within the specified Axes object, the
callback function is called with the AxesCallback object as its single argument. Different from matplotlib-
style event handlers, it is possible to handle overlapping Axes objects. An AxesCallback object will not be
deleted as long as it is scheduled (“active”), so it is not always necessary to keep a reference to it.

Parameters

• proc – the function to be called upon receiving an event of the specified type and occur-
ring in the specified Axes object. It is called with one argument: the current AxesCall-
back object. If it returns a value which evaluates to True, processing of the current event
stops, i.e., no further callback functions will be called for this event.

• axes – the matplotlib Axes object.

• eventtype – the matplotlib event type such as ‘motion_notify_event’ or
‘key_press_event’.

• schedule – indicates whether the object should start handling events immediately. De-
fault True.

• attr – keyword arguments each resulting in an attribute with the same name.

Attributes:

axes
The specified axes object.

canvas
The FigureCanvas object to which axes belongs.

eventtype
The specified event type.

active
True if callback is scheduled, False otherwise.

149

mailto:gipsy@astro.rug.nl

Kapteyn Package Documentation, Release 2.2

xdata, ydata
The cursor position in data coordinates within the specified Axes object. These values may be different
from the attributes with the same name of the event object.

event
The Event object delivered by matplotlib.

Methods:

schedule()
Activate the object so that it will start receiving matplotlib events and calling the callback function.
If the object is already active, it will be put in front of the list of active objects so that its callback
function will be called before others.

deschedule()
Deactivate the object so that it does not receive matplotlib events anymore and will not call its callback
function. If the object is already inactive, nothing will be done.

Example:

1 #!/usr/bin/env python
2

3 from matplotlib.pyplot import figure, show
4 from kapteyn.mplutil import AxesCallback
5

6 def draw_cb(cb):
7 if cb.event.button:
8 if cb.pos is not None:
9 cb.axes.plot((cb.pos[0], cb.xdata), (cb.pos[1], cb.ydata), cb.c)

10 cb.canvas.draw()
11 cb.pos = (cb.xdata, cb.ydata)
12 else:
13 cb.pos = None
14

15 def colour_cb(cb):
16 cb.drawer.c = cb.event.key
17

18 fig = figure()
19

20 frame = fig.add_axes((0.1, 0.1, 0.8, 0.8))
21 frame.set_autoscale_on(False)
22

23 draw = AxesCallback(draw_cb, frame, ’motion_notify_event’, pos=None, c=’r’)
24 setc = AxesCallback(colour_cb, frame, ’key_press_event’, drawer=draw)
25

26 show()

The above code implements a complete, though very simple, drawing program. It first creates a drawing
frame and then connects two AxesCallback objects to it. The first object, draw, connects to the callback
function draw_cb(), which will draw line segments as long as the mouse is moved with a button down.
The previous position is “remembered” by draw via its attribute pos. The drawing colour is determined
by draw‘s attribute c which can be modified by the callback function colour_cb() by typing one of the
letters ‘r’, ‘g’, ‘b’, ‘y’, ‘m’, ‘c’, ‘w’ or ‘k’. This callback function is called via the second AxesCallback
object setc which has the first AxesCallback object draw as an attribute.

13.2 Class CanvasCallback

class mplutil.CanvasCallback(proc, canvas, eventtype, schedule=True, **attr)
CanvasCallback has been built on top of matplotlib’s event handling mechanism. Objects of this class
provide a more powerful mechanism for handling events than matplotlib provides itself. This class allows
the programmer to register a callback function with an event type combined with an FigureCanvas object.
Whenever the event occurs within the specified FigureCanvas object, the callback function is called with

150 Chapter 13. Module mplutil

Kapteyn Package Documentation, Release 2.2

the CanvasCallback object as its single argument. A CanvasCallback object will not be deleted as long as
it is scheduled (“active”), so it is not always necessary to keep a reference to it. This class is a simplified
version of AxesCallback and is intended for situations where either no Axes object is available or the
event type is not a LocationEvent, i.e., there is no position involved.

Parameters

• proc – the function to be called upon receiving an event of the specified type and occur-
ring in the specified FigureCanvas. It is called with one argument: the current Canvas-
Callback object. If it returns a value which evaluates to True, processing of the current
event stops, i.e., no further callback functions will be called for this event.

• canvas – the matplotlib FigureCanvas object.

• eventtype – the matplotlib event type such as ‘resize_event’ or ‘motion_notify_event’.

• schedule – indicates whether the object should start handling events immediately. De-
fault True.

• attr – keyword arguments each resulting in an attribute with the same name.

Attributes:

canvas
The specified FigureCanvas object.

eventtype
The specified event type.

active
True if callback is scheduled, False otherwise.

event
The Event object delivered by matplotlib.

Methods:

schedule()
Activate the object so that it will start receiving matplotlib events and calling the callback function.
If the object is already active, it will be put in front of the list of active objects so that its callback
function will be called before others.

deschedule()
Deactivate the object so that it does not receive matplotlib events anymore and will not call its callback
function. If the object is already inactive, nothing will be done.

13.3 Class TimeCallback

class mplutil.TimeCallback(proc, interval, schedule=True, **attr)
Objects of this class are responsible for handling timer events. Timer events occur periodically whenever
a predefined period of time expires. A TimeCallback object will not be deleted as long as it is scheduled
(“active”), so it is not always necessary to keep a reference to it. This class is backend-dependent. Currently
supported backends are GTKAgg, GTK, Qt4Agg and TkAgg.

Parameters

• proc – the function to be called upon receiving an event of the specified type and occur-
ring in the specified Axes object. It is called with one argument: the current TimeCall-
back object.

• interval – the time interval in seconds.

• schedule – indicates whether the object should start handling events immediately. De-
fault True.

• attr – keyword arguments each resulting in an attribute with the same name.

13.3. Class TimeCallback 151

Kapteyn Package Documentation, Release 2.2

Attribute:

active
True if callback is scheduled, False otherwise.

Methods:

schedule()
Activate the object so that it will start calling the callback function periodically. If the object is already
active, nothing will be done.

deschedule()
Deactivate the object so that it stops calling its callback function. If the object is already inactive,
nothing will be done.

set_interval(interval)
Changes the object’s time interval in seconds.

Example:

1 #/usr/bin/env python
2

3 from matplotlib import pyplot
4 from kapteyn.mplutil import VariableColormap, TimeCallback
5 import numpy
6 from matplotlib import mlab
7

8 def colour_cb(cb):
9 slope = cb.cmap.slope

10 shift = cb.cmap.shift
11 if shift>0.5:
12 shift = -0.5
13 cb.cmap.modify(slope, shift+0.01) # change colormap
14

15 figure = pyplot.figure(figsize=(8,8))
16 frame = figure.add_axes([0.05, 0.05, 0.85, 0.85])
17

18 colormap = VariableColormap(’jet’)
19 colormap.add_frame(frame)
20 TimeCallback(colour_cb, 0.1, cmap=colormap) # change every 0.1 s
21

22 x = y = numpy.arange(-3.0, 3.0, 0.025)
23 X, Y = numpy.meshgrid(x, y)
24 Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) # Gaussian 1
25 Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) # Gaussian 2
26 Z = Z2-Z1 # difference
27

28 img = frame.imshow(Z, origin="lower", cmap=colormap)
29

30 pyplot.show()

This code displays an image composed of 2 Gaussians and continuously modifies its colormap’s shift value
between -0.5 and 0.5 in steps of 0.01. These steps take place at 0.1 second intervals.

13.4 Class VariableColormap

class mplutil.VariableColormap(source, name=’Variable’)
VariableColormap is a subclass of matplotlib.colors.Colormap with special methods that
allow the colormap to be modified. A VariableColormap can be constructed from any other matplotlib
colormap object, from a NumPy array with one RGB triplet per row or from a textfile with one RGB triplet
per line. Values should be between 0.0 and 1.0.

Parameters

152 Chapter 13. Module mplutil

Kapteyn Package Documentation, Release 2.2

• source – the object from which the VariableColormap is created. Either an other col-
ormap object or its registered name, a NumPy array or the name of a text file containing
RGB triplets. A number of colormap files is available within the package. A list of
names can be obtained with class method luts().

• name – the name of the color map.

Attributes:

auto
Indicates whether Axes objects registered with method add_frame() will be automatically updated
when the colormap changes. Default True.

slope
The colormap slope as specified with method modify().

shift
The colormap shift as specified with method modify().

scale
The colormap’s current scale as specified with method set_scale().

source
The object (string or colormap) from which the colormap is currently derived.

Methods

modify(slope, shift)
Apply a slope and a shift to the colormap. Defaults are 1.0 and 0.0. If one or more Axes objects have
been registered with method add_frame(), the images in them will be updated and the correspond-
ing canvases will be redrawn.

set_scale(scale=’LINEAR’)
Apply a scale to this colormap. scale can be one of: ‘LINEAR’, ‘LOG’, ‘EXP’, ‘SQRT’ and
‘SQUARE’.

set_source(source)
Define an alternative source for the colormap. source can be any other matplotlib colormap object or
its registered name, a NumPy array with one RGB triplet per row or the name of a textfile with one
RGB triplet per line. Values should be between 0.0 and 1.0.

set_length(length)
Change the colormap’s number of entries. The new set of entries is derived from the current set by
linear interpolation. The current length can be obtained with the function len(). For best results, the
new length should be chosen such that the original colormap entries are represented unmodified in the
new set. This can be achieved by setting nnew = knold − k + 1, where ni is the colormap’s length
and k is integer.

For normal work, the ‘standard’ length of 256 is usually sufficient, but in special cases increasing the
colormap’s length can be helpful to eliminate false contours.

add_frame(frame)
Associate matplotlib Axes object frame with this colormap. If the colormap is subsequently modified,
images in this frame will be updated and frame‘s canvas will be redrawn.

remove_frame(frame)
Disassociate matplotlib Axes object frame from this colormap.

update()
Redraw all images in the Axes objects registered with method add_frame(). update() is called
automatically when the colormap changes while auto is True.

classmethod luts()
Return a list with filenames of colormaps available within the package.

13.4. Class VariableColormap 153

Kapteyn Package Documentation, Release 2.2

13.5 Key press filter

Via its internal function KeyPressFilter() the module filters key_press events for the backend in which
the application displays its contents. By default all key_press events are discarded by the filter and do not
reach the backend. This behaviour can be changed by assigning a list of acceptable keys to KeyPressFilter’s
attribute allowed. E.g., KeyPressFilter.allowed = [’g’, ’f’] will allow characters g and f to
reach the backend so that the backend’s grid- and full-screen toggles will be available again. The filtering
can be completely switched on and off by assigning True or False to KeyPressFilter’s attribute enabled. E.g.,
KeyPressFilter.enabled = False.

13.6 GIPSY keyword event connection

mplutil.gipsy_connect()
Function only to be used by GIPSY tasks. It should be called by matplotlib programs when GIPSY’s
keyword events need to be handled, i.e., when the task uses the class KeyCallback. Here is an example:

1 #!/usr/bin/env python
2

3 import gipsy
4 from matplotlib.pyplot import figure, show
5 from kapteyn.mplutil import AxesCallback, gipsy_connect
6

7 def key_handler(cb):
8 gipsy.anyout(’Event: %s %s’ % (cb.key, gipsy.usertext(cb.key)))
9

10 gipsy.init()
11

12 fig = figure()
13

14 frame = fig.add_axes((0.1, 0.1, 0.8, 0.8))
15

16 gipsy_connect()
17

18 gipsy.KeyCallback(key_handler, ’TESTKEY=’)
19

20 show()
21

22 gipsy.finis()

13.7 Matplotlib backends work-arounds

This module provides work-arounds for limitations of the matplotlib Qt4 and Qt4Agg backends. They will become
available when mplutil is imported. No other action is required.

13.7.1 Special keys

By default, the Qt4 backend does not return a number of special key codes in key_press_event objects. This work-
around makes the following key codes available: ‘pageup’, ‘pagedown’, ‘left’, ‘right’, ‘up’, ‘down’, ‘home’ and
‘end’.

13.7.2 Resize events

By default, the Qt4Agg backend does not report resize events. This work-around takes care of this.

154 Chapter 13. Module mplutil

CHAPTER 14

Module kmpfit

Author: Hans Terlouw <gipsy@astro.rug.nl>

14.1 Introduction

This module provides the class Fitter, which uses the implementation in C of MPFIT, Craig Markwardt’s non-
linear least squares curve fitting routines for IDL. MPFIT uses the Levenberg-Marquardt technique to solve the
least-squares problem, which is a particular strategy for iteratively searching for the best fit. In its typical use,
MPFIT will be used to fit a user-supplied function (the “model”) to user-supplied data points (the “data”) by
adjusting a set of parameters. MPFIT is based upon the robust routine MINPACK-1 (LMDIF.F) by Moré and
collaborators.

For example, a researcher may think that a set of observed data points is best modelled with a Gaussian curve. A
Gaussian curve is parameterized by its mean, standard deviation and normalization. MPFIT will, within certain
constraints, find the set of parameters which best fits the data. The fit is “best” in the least-squares sense; that is,
the sum of the weighted squared differences between the model and data is minimized.

See Also:

Tutorial with background information for this module and practical examples.

14.2 Class Fitter

class kmpfit.Fitter(residuals, deriv=None, ...)

Parameters

• residuals – the residuals function, see description below.

• deriv – optional derivatives function, see description below. If a derivatives function is
given, user-computed explicit derivatives are automatically set for all parameters in the
attribute parinfo, but this can be changed by the user.

• ... – other parameters, each corresponding with one of the configuration attributes de-
scribed below. They can be defined here, when the Fitter object is created, or later. The
attributes params0 and data must be defined before the method fit() is called.

Objects of this class are callable and return the fitted parameters when called.

Residuals function

The residuals function must return a NumPy (dtype=’d’) array with weighted deviations between the model
and the data. It takes two arguments: a NumPy array containing the parameter values and a reference to the
attribute data which can be any object containing information about the data to be fitted. E.g., a tuple like
(xvalues, yvalues, errors).

155

mailto:gipsy@astro.rug.nl
http://www.physics.wisc.edu/~craigm/idl/cmpfit.html

Kapteyn Package Documentation, Release 2.2

In a typical scientific problem the residuals should be weighted so that each deviate has a Gaussian sigma
of 1.0. If x represents values of the independent variable, y represents a measurement for each value of x,
and err represents the error in the measurements, then the deviates could be calculated as follows:

deviates = (y − f(x))/err

where f is the analytical function representing the model. If err are the 1-sigma uncertainties in y, then∑
deviates2

will be the total chi-squared value. Fitter will minimize this value. As described above, the values of x, y
and err are passed through Fitter to the residuals function via the attribute data.

Derivatives function

The optional derivates function can be used to compute weighted function derivatives, which are used in
the minimization process. This can be useful to save time, or when the derivative is tricky to evaluate
numerically.

The function takes three arguments: a NumPy array containing the parameter values, a reference to the
attribute data and a list with boolean values corresponding with the parameters. If a boolean in the list
is True, the derivative with respect to the corresponding parameter should be computed, otherwise it may
be ignored. Fitter determines these flags depending on how derivatives are specified in item side of the
attribute parinfo, or whether the parameter is fixed.

The function must return a NumPy array with partial derivatives with respect to each parameter. It must
have shape (n,m), where n is the number of parameters and m the number of data points.

Configuration attributes

The following attributes can be set by the user to specify a Fitter object’s behaviour.

params0
Required attribute. A NumPy array, a tuple or a list with the initial parameters values.

data
Required attribute. Python object with information for the residuals function and the derivatives func-
tion. See above.

parinfo
A list of directories with parameter contraints, one directory per parameter, or None if not given. Each
directory can have zero or more items with the following keys and values:

’fixed’: a boolean value, whether the parameter is to be held fixed or not. Default: not
fixed.

’limits’: a two-element tuple or list with upper end lower parameter limits or None,
which indicates that the parameter is not bounded on this side. Default: no limits.

’step’: the step size to be used in calculating the numerical derivatives. Default: step size
is computed automatically.

’side’: the sidedness of the finite difference when computing numerical derivatives. This
item can take four values:

0 - one-sided derivative computed automatically (default)

1 - one-sided derivative (f(x+ h)− f(x))/h

-1 - one-sided derivative (f(x)− f(x− h))/h

2 - two-sided derivative (f(x+ h)− f(x− h))/2h

3 - user-computed explicit derivatives

where h is the value of the parameter ’step’ described above. The “automatic” one-sided
derivative method will chose a direction for the finite difference which does not violate any
constraints. The other methods do not perform this check. The two-sided method is in
principle more precise, but requires twice as many function evaluations. Default: 0.

156 Chapter 14. Module kmpfit

Kapteyn Package Documentation, Release 2.2

’deriv_debug’: boolean to specify console debug logging of user-computed derivatives.
True: enable debugging. If debugging is enabled, then ’side’ should be set to 0, 1, -1 or
2, depending on which numerical derivative you wish to compare to. Default: False.

As an example, consider a function with four parameters of which the first parameter should be
fixed and for the third parameter explicit derivatives should be used. In this case, parinfo should
have the value [{’fixed’: True}, None, {’side’: 3}, None] or [{’fixed’:
True}, {}, {’side’: 3}, {}].

ftol
Relative χ2 convergence criterium. Default: 1e-10

xtol
Relative parameter convergence criterium. Default: 1e-10

gtol
Orthogonality convergence criterium. Default: 1e-10

epsfcn
Finite derivative step size. Default: 2.2204460e-16 (MACHEP0)

stepfactor
Initial step bound. Default: 100.0

covtol
Range tolerance for covariance calculation. Default: 1e-14

maxiter
Maximum number of iterations. Default: 200

maxfev
Maximum number of function evaluations. Default: 0 (no limit)

Result attributes

After calling the method fit(), the following attributes are available to the user:

params
A NumPy array, list or tuple with the fitted parameters. This attribute has the same type as params0.

xerror
Final parameter uncertainties (1σ)

covar
Final parameter covariance (NumPy-) matrix.

chi2_min
Final χ2.

orignorm
Starting value of χ2.

rchi2_min
Minimum reduced χ2.

stderr
Standard errors.

npar
Number of parameters.

nfree
Number of free parameters.

npegged
Number of pegged parameters.

dof
Number of degrees of freedom.

14.2. Class Fitter 157

Kapteyn Package Documentation, Release 2.2

resid
Final residuals.

niter
Number of iterations.

nfev
Number of function evaluations.

version
mpfit.c’s version string.

status
Fitting status code.

message
Message string.

Methods:

fit(params0=None)
Perform a fit with the current values of parameters and other attributes.

Optional argument params0: initial fitting parameters. (Default: previous initial values are used.)

confidence_band(x, dfdp, confprob, f, abswei=False)
This method requires SciPy. After the method fit() has been called, this method calculates the
upper and lower value of the confidence interval for all elements of the NumPy array x. The model
values and the arrays with confidence limits are returned and can be used to plot confidence bands.

Parameters

• x – NumPy array with the independent values for which the confidence interval is to
be found.

• dfdp – a list with derivatives. There must be as many elements in this list as there are
parameters in the model. Each element must be a NumPy array with the same length
as x.

• confprob – confidence probability, e.g. 0.95 (=95%). From this number the confi-
dence level is derived, e.g. 0.05. The Confidence Band is a (1-alpha)*100% band.
This implies that for a given value of x the probability that the ‘true’ value of f falls
within these limits is (1-alpha)*100%.

• f – the model function returning the value y = f(p,x). p are the best-fit parameters as
found by the method fit() and x is the given NumPy array with independent values.

• abswei – True if weights are absolute. For absolute weights the unscaled covariance
matrix elements are used in the calculations. For unit weighting (i.e. unweighted)
and relative weighting, the covariance matrix elements are scaled with the value of the
reduced chi squared.

Returns

A tuple with the following elements, each one is a Numpy array:

• y: the model values at x: y = f(p,x);

• upperband: the upper confidence limits;

• lowerband: the lower confidence limits.

Note: If parameters were fixed in the fit, the corresponding error is 0 and there is no contribution to
the confidence interval.

158 Chapter 14. Module kmpfit

Kapteyn Package Documentation, Release 2.2

14.2.1 Testing derivatives

In principle, the process of computing explicit derivatives should be straightforward. In practice, the computation
can be error prone, often being wrong by a sign or a scale factor.

In order to be sure that the explicit derivatives are correct, for debugging purposes the user can set the attribute par-
info[’deriv_debug’] = True for any parameter. This will cause Fitter.fit() to print both explicit derivatives
and numerical derivatives to the console so that the user can compare the results.

When debugging derivatives, it is important to set parinfo[’side’] to the kind of numerical derivative to compare
with: it should be set to 0, 1, -1, or 2, and not set to 3. When parinfo[’deriv_debug’] is set for a parameter, then
Fitter.fit() automatically understands to request user-computed derivatives.

The console output will be sent to the standard output, and will appear as a block of ASCII text like this:

FJAC DEBUG BEGIN
IPNT FUNC DERIV_U DERIV_N DIFF_ABS DIFF_REL
FJAC PARM 1
.... derivative data for parameter 1
FJAC PARM 2
.... derivative data for parameter 2
.... and so on
FJAC DEBUG END

which is to say, debugging data will be bracketed by pairs of “FJAC DEBUG” BEGIN/END phrases. Derivative
data for individual parameter i will be labeled by “FJAC PARM i”. The columns are, in order,

IPNT - data point number j

FUNC - residuals function evaluated at xj

DERIV_U - user-calculated derivative ∂f(xj)/∂pi

DERIV_N - numerically calculated derivative according to the value of parinfo[’side’]

DIFF_ABS - difference between DERIV_U and DERIV_N: fabs(DERIV_U-DERIV_N)

DIFF_REL - relative difference: fabs(DERIV_U-DERIV_N)/DERIV_U

Since individual numerical derivative values may contain significant round-off errors, it is up to the user to criti-
cally compare DERIV_U and DERIV_N, using DIFF_ABS and DIFF_REL as a guide.

14.2.2 Example

1 #!/usr/bin/env python
2

3 import numpy
4 from kapteyn import kmpfit
5

6 def residuals(p, d):
7 a, b, c = p
8 x, y, w = d
9 return (y - (a*x*x+b*x+c))/w

10

11 x = numpy.arange(-50,50,0.2)
12 y = 2*x*x + 3*x - 3 + 2*numpy.random.standard_normal(x.shape)
13 w = numpy.ones(x.shape)
14

15 a = [x, y, w]
16 f = kmpfit.Fitter(residuals, params0=[1, 2, 0], data=a)
17

18 f.fit() # call fit method
19 print f.params
20 print f.message
21 # result:

14.2. Class Fitter 159

Kapteyn Package Documentation, Release 2.2

22 # [2.0001022845514451, 3.0014019147386, -3.0096629062273133]
23 # mpfit (potential) success: Convergence in chi-square value (1)
24

25 a[1] = 3*x*x - 2*x - 5 + 0.5*numpy.random.standard_normal(x.shape)
26 print f(params0=[2, 0, -1]) # call Fitter object
27 # result:
28 # [3.0000324686457871, -1.999896340813663, -5.0060187435412962]

14.3 Function simplefit

kmpfit.simplefit(model, p0, x, y, err=1.0, ...)
Simple interface to Fitter.

Parameters

• model – model function which must take two arguments: a sequence with initial values
and a sequence with x-values. It must return a NumPy array with function results.

• p0 – a sequence with the initial parameter values.

• x – a sequence with independent variable values.

• y – a sequence with dependent variable values.

• err – a sequence with 1σ errors.

• ... – other arguments, each corresponding with one of the configuration attributes for an
object of class Fitter.

Returns a Fitter object from which the fit results can be extracted.

160 Chapter 14. Module kmpfit

CHAPTER 15

Module profiles

Author: Hans Terlouw <gipsy@astro.rug.nl>

15.1 Function

profiles.gauest(x, y, rms, cutamp, cutsig, q[, ncomp=200, smode=0, flat=False])
Function to search for gaussian components in a profile.

Parameters

• x – a one-dimensional NumPy array (or slice) containing the profile’s x-coordinates.

• y – a one-dimensional NumPy array (or slice) containing the profile’s values.

• rms – the r.m.s. noise level of the profile.

• cutamp – critical amplitude of gaussian. Gaussians below this amplitude will be dis-
carded.

• cutsig – critical dispersion of gaussian.

• q – smoothing parameter used in calculating the second derivative of the profile. It must
be greater than zero.

• ncomp – maximum number of gaussian components to be found. It should be ≥ 1.

• smode – order in which gaussian components are delivered. 0: decreasing amplitude,
1: decreasing dispersion, 2: decreasing flux.

• flat – True if a ‘flat’ result shoud be returned. See below.

Returns a list with up to ncomp tuples of which each tuple contains the amplitude, the centre
and the dispersion of the gaussian, in that order. If the argument flat is True, a ‘flat’ list
with ncomp * 3 numbers is returned which may directly be used as initial estimates for
kmpfit.Fitter.

In this function the second derivative of the profile in the signal region is calculated by fitting a second
degree polynomal. The smoothing parameter q determines the number of points used for this (2q + 1). The
gaussians are then estimated as described by [Schwarz1968].

15.2 Reference

161

mailto:gipsy@astro.rug.nl

Kapteyn Package Documentation, Release 2.2

162 Chapter 15. Module profiles

CHAPTER 16

SciPy modules

Mainly for convenience, SciPy’s modules scipy.ndimage.filters and scipy.ndimage.interpolation have been in-
cluded in the Kapteyn Package as kapteyn.filters and kapteyn.interpolation. In this way users of
the package do not need to have all of SciPy installed, of which only a few functions are currently used. To these
modules the SciPy license applies which is compatible with the Kapteyn Package’s license.

Function map_coordinates() from module interpolation has slightly been modified. If the source
array contains one or more NaN values, and the order argument is larger than 1, the unmodified function will
return an array with all NaN values. The modification prevents this by replacing NaN values by nearby finite
values.

163

http://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage.filters
http://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage.interpolation

Kapteyn Package Documentation, Release 2.2

164 Chapter 16. SciPy modules

Part III

Tutorials

165

CHAPTER 17

Tutorial wcs module

17.1 Introduction

This tutorial aims at starters. Experienced users find relevant but compact documentation in the module documen-
tation. In this tutorial we address different practical situations where we need to convert between pixel- and world
coordinates. Many examples are working scripts, others are very useful to try in an interactive Python session.

wcs is the core of the Kapteyn Package. An important feature of that package is that it provides a world coordinate
system which is easy to incorporate in your own (Python) environment and wcs provides the basic methods to
do this. Together with module celestial it allows a user to transform between pixel coordinates and world
coordinates for a set of supported projections and sky systems. Module celestial provides a rotation matrix
for sky transformations and is more or less embedded in wcs, so (for standard work) there is no need to import it
separately.

Module wcs module has a number of important features:

• Flexible I/O of coordinates

• Support for spatial and spectral data

• Support for ‘mixed’ coordinates

• Support for conversions between different celestial systems

• Objects have useful attributes

• Easy to combine with other software written in Python

17.2 Coordinate representations

17.2.1 One coordinate axis

For experiments and debug sessions, module wcs allows for very simple and flexible input and output of coordi-
nates. This module interfaces with Mark Calabretta’s WCSLIB and is, because of the flexible I/O, a valuable tool
to test this well known library.

Main goal of module wcs is to enable transformations between pixel coordinates and world coordinates The pixel
coordinates are defined by the FITS standard. The transformation is defined by meta data which are usually found
in FITS headers. So it may be obvious that FITS files play an important role in the use of Module wcs.

However, FITS data processed by wcs can also be FITS keywords that are stored in a Python dictionary. This
invites to experiment with WCSLIB even more because one can create a (minimal) FITS header from scratch. In
an attempt to create the most simple use of wcs we started to write a minimal FITS header. It defines only one
axis. The minimal requirement for FITS keywords are CTYPE, CRVAL, CRPIX and CDELT. A description of
these keywords can be found in The FITS standard.

167

http://www.atnf.csiro.au/people/mcalabre/WCS/
http://fits.gsfc.nasa.gov/fits_standard.html

Kapteyn Package Documentation, Release 2.2

We entered an axis type in CTYPE1 that WCSLIB does not recognize as a known type. With this trick we force
the system to do a linear transformation. It shows that you have to be careful with values for CTYPE because you
will not be warned when a CTYPE is not recognized.

For the conversions between pixel coordinates and world coordinates we defined methods in a class which we
called the wcs.Projection class. An object of this class is created using the header of the FITS file for which
we want WCS transformations. It accepts also a user defined Python dictionary with FITS keywords and values.
We use this last option in this tutorial to be more flexible when we want to apply changes to the header.

The methods for single axes are called wcs.Projection.toworld1d() and
wcs.Projection.topixel1d(). FITS defines CRVAL as the world coordinate that corresponds to
the pixel value in CRPIX. Let’s check this with the most basic example we could think of:

#!/usr/bin/env python
from kapteyn import wcs
header = { ’NAXIS’ : 1,

’CTYPE1’ : ’PARAM’,
’CRVAL1’ : 5,
’CRPIX1’ : 10,
’CDELT1’ : 1

}
proj = wcs.Projection(header)
print proj.toworld1d(10)

Output:
5.0

Indeed, at pixel coordinate 10 (=CRPIX), the world coordinate is 5 (=CRVAL). If we want to know which pixel
coordinate corresponds to world coordinate 5, then we use proj.topixel1d(5) to get the answer (which is
the value of CRPIX: 10). Note that we forced the system to apply linear transformations only.

In many of the examples that we present in this tutorial we included a so called closure test. This is a test which
uses the result of a transformation to test the inverse transformation which should result into the original value.
Sometimes the result is not exactly what you expect because we work with a limited number precision. A simple
closure test is:

proj = wcs.Projection(header)
w = proj.toworld1d(10)
p = proj.topixel1d(w)
print "CRPIX: ", p

Output:
CRPIX: 10.0

Coordinate transformations are often done in bulk, so of course the transformation methods accept more than
one coordinate to convert. They can be represented as a Python list, a Python tuple or a NumPy array. The
representation of the output is the same as that of the input coordinates. The output of the next statements therefore
is not a surprise:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 import numpy
4

5 header = { ’NAXIS’ : 1,
6 ’CTYPE1’ : ’PARAM’,
7 ’CRVAL1’ : 5,
8 ’CRPIX1’ : 10,
9 ’CDELT1’ : 1

10 }
11

12 proj = wcs.Projection(header)
13

14 w1 = proj.toworld1d(range(9,12))
15 w2 = proj.toworld1d([9,10,11])

168 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

16 w3 = proj.toworld1d((9,10,11))
17 w4 = proj.toworld1d(numpy.array([9,10,11]))
18 print w1, type(w1)
19 print w2, type(w2)
20 print w3, type(w3)
21 print w4, type(w4)
22 closure = proj.topixel1d(w4) # Closure test
23 print closure, type(closure)
24

25 # Output:
26 # [4.0, 5.0, 6.0] <type ’list’>
27 # [4.0, 5.0, 6.0] <type ’list’>
28 # (4.0, 5.0, 6.0) <type ’tuple’>
29 # [4. 5. 6.] <type ’numpy.ndarray’>
30 # [9. 10. 11.] <type ’numpy.ndarray’>

The first two sequences are lists. The third is a tuple and the last is a NumPy array. The pixel coordinates 9, 10
and 11 should give values in the neighbourhood of CRVAL1 and the step size is 1 (CDELT1=1), in arbitrary units.

Note: An advantage of NumPy arrays is that you can use them in mathematical expressions to process the array
content. For example: assume you have a sequence of velocities in a numpy array V but want to express the
numbers in km/s, then change the content with expression: V /= 1000

For representation purposes we often want to print a pixel coordinate and the corresponding world coordinate on
one line. Then we often use Pythons built-in function zip to combine two sequences to avoid a call to transforma-
tion methods in the print loop:

p = range(5,15)
w = proj.toworld1d(p)
for pix,wor in zip(p,w):

print "%d: %f" % (pix,wor)

Output:
9: 4.000000
10: 5.000000
11: 6.000000

Note: Class wcs has an attribute called debug. If you set its value to True then you get debug information from
WCSLIB showing what has been correctly parsed from the given header data. Use it as follows:

wcs.debug = True
proj = wcs.Projection(header)

Next we apply the procedures described above to a real example where we created an artificial header with FITS
data. The header describes a single axis of spectral type. Units are standard FITS units and are given in keyword
CUNIT1. The example shows that we can access the keywords from the artificial header (or a real FITS header)
directly and use their values for example to find the length of the axis in pixels, or to find the units of the world
coordinates of that axis:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 header = { ’NAXIS’ : 1,
4 ’NAXIS1’ : 64,
5 ’CTYPE1’ : ’FREQ’,
6 ’CRVAL1’ : 1.37835117405e9,
7 ’CRPIX1’ : 32,
8 ’CUNIT1’ : ’Hz’,
9 ’CDELT1’ : 9.765625e4

10 }
11 proj = wcs.Projection(header)

17.2. Coordinate representations 169

Kapteyn Package Documentation, Release 2.2

12 n = header[’NAXIS1’] # Get the length of the spectral axis
13 p = range(1, n+1) # Set pixel range accordingly
14 w = proj.toworld1d(p) # Do the transformation
15 print "Pixel %s (%s)" % (header[’CTYPE1’],header[’CUNIT1’])
16 for pix,frq in zip(p,w):
17 print "%5d: %f" % (pix,frq)
18

19 # Output:
20 # Pixel FREQ (Hz)
21 # 1: 1375323830.300000
22 # 2: 1375421486.550000
23 # 3: 1375519142.800000
24 # 4: 1375616799.050000
25 # 5: 1375714455.300000

In the example we wanted to make a table with pixel coordinates and the corresponding world coordinates. Ac-
cording to the header there are 64 pixels (NAXIS1) along the axis so the first pixel coordinate is 1 and the last is
64. The axis represents frequencies. A start frequency is given by CRVAL1 and a step size is given by CDELT1.
Note that the coordinate transformation is linear.

17.2.2 Generic methods toworld() and topixel()

The methods wcs.Projection.toworld1d() and wcs.Projection.topixel1d() are special ver-
sions of the more general methods wcs.Projection.toworld() and wcs.Projection.topixel().
These methods can be used to convert pixel data for more than one axis at the same time which is necessary for
coupled axes, for example in spatial maps where longitude and latitude are not independent axes.

These general methods wcs.Projection.toworld() and wcs.Projection.topixel() accept the
same sequences as the ‘1d’ versions. The reason that we introduced the ‘1d’ versions is that for non-experienced
Python programmers it usually is confusing that in the one dimensional case the general methods only accept
tuples and not scalars and that a tuple with one element (for example 10) needs to be written as (10,).

If you want to replace method toworld1d() by topixel1d() in the first example, then the relevant lines become:

>>> p = proj.toworld((10,))
>>> (5.0,)

for one scalar and for a list of values:

>>> p = proj.toworld((range(9,12),))
>>> ([4.0, 5.0, 6.0],)

If you want to extract the scalar or the list from the tuple, use element 0 of the tuple.

>>> p = proj.toworld((range(9,12),))
>>> print p[0]
>>> [4.0, 5.0, 6.0]

17.2.3 Two coordinate axes

As described in the previous section we use wcs.Projection.toworld() and
wcs.Projection.topixel() if the number of axes in our data is more than 1. The input and out-
put tuples for projection objects with two coordinate axes consist of two elements. The first element corresponds
to the first axis in the projection object and the second element to the second axis. The following Python code
constructs an artificial header which describes the world coordinate system of two spatial axes. Then we want to
find the world coordinates of the reference pixels (CRPIX1, CRPIX2) and expect the reference values (CRVAL1,
CRVAL2) as output tuple:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 header = { ’NAXIS’ : 2,

170 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

4 ’NAXIS1’ : 5,
5 ’CTYPE1’ : ’RA---NCP’,
6 ’CRVAL1’ : 45,
7 ’CRPIX1’ : 5,
8 ’CUNIT1’ : ’deg’,
9 ’CDELT1’ : -0.01,

10 ’NAXIS2’ : 10,
11 ’CTYPE2’ : ’DEC--NCP’,
12 ’CRVAL2’ : 30,
13 ’CRPIX2’ : 5,
14 ’CUNIT2’ : ’deg’,
15 ’CDELT2’ : +0.01,
16 }
17 proj = wcs.Projection(header)
18 pixel = (5,5)
19 world = proj.toworld(pixel)
20 print world
21

22 # Output:
23 # (45.0, 30.0)

Comments about the composed header: the header is composed from scratch. but it could very well have been
copied from an existing FITS header. In either case you should verify items CUNITn and CTYPEn because they
are are important. In section 2.1.1 of [Ref1] we read that in WCSLIB:

Note: any CTYPEi not covered by convention and agreement shall be taken to be linear.

The CTYPE consists of a coordinate type (max 4 characters) followed by ‘-‘ followed by a three character code that
represents the algorithm to calculate the world coordinates (‘ABCD-XYZ’). Shorter coordinate types are padded
with the ‘-‘ character, shorter algorithm codes are padded on the right with blanks (‘RA—NCP’, ‘RA—UV_ ‘).
So if we were sloppy and wrote RA–NCP and DEC-NCP then WCSLIB assigns a linear conversion algorithm. It
does not complain, but you get unexpected results. If your CTYPEs are correct but the units are not standard and
are not recognized by WCSLIB, then you get an Python exception after you try to create the Projection object.
For example, if you specified CUNIT1=’Degree’ then the error message displayed by the exception is: “Invalid
coordinate transformation parameters”.

If you want to be sure that WCSLIB recognizes your coordinate type and unit, you can print the Projection at-
tributes wcs.Projection.types and wcs.Projection.units as in the example below. Unrecognized
types are returned as None.

>>> proj = wcs.Projection(header)
>>> print "WCS units: ",proj.units

WCS units: (’deg’, ’deg’)
>>> print "WCS type: ",proj.types

WCS type: (’longitude’, ’latitude’)

With the same variable header as in the previous script we demonstrate that each element in the coordinate tuple
can be a list of scalars. Let’s convert pixel positions (3,3), (4,4), ..., (7,7) etc. to their corresponding world
coordinates:

proj = wcs.Projection(header)
x = range(3,8)
y = range(3,8)
pixel = (x,y)
world = proj.toworld(pixel)
print world

Output:
([45.023089356221305, 45.011545841750113, 45.0, 44.988451831142257, 44.97690133535837],
[29.979985885372404, 29.989996472289789, 30.0, 30.009996474046854, 30.019985899953429])

The output is a tuple with two elements. Each element is a list. The first list contains the longitude coordinates

17.2. Coordinate representations 171

Kapteyn Package Documentation, Release 2.2

for input pixel coordinates (3,3), (4,4) etc. The second list contains the latitude coordinates for the input pixel
coordinates (3,3), (4,4) etc.

Note: Note that longitude and latitude are not independent. You need always two pixel coordinates (x,y) to get a
world coordinate pair (RA,DEC).

Here input and output coordinates for the methods wcs.Projection.toworld() and
wcs.Projection.topixel() are tuples. The dimension of the tuple corresponds to the number of
axes in the Projection object, and each element in the tuple can be a list of scalars. In some situations it is more
intuitive to start with a list of 2 dimensional positions. The wcs module allows for this type of input. You can get
the same coordinate output as the previous script if you replace the body by:

proj = wcs.Projection(header)
pixels = [(3,3), (4,4), (5,5), (6,6), (7,7)]
world = proj.toworld(pixels)
print world

Output:
[(45.023089356221305, 29.979985885372404), (45.011545841750113, 29.989996472289789), (45.0, 30.0),
(44.988451831142257, 30.009996474046854), (44.97690133535837, 30.019985899953429)]

Note that the representation of the output differs from the previous script because the representation of the input
differs, i.e.: a list with tuples. The dimension of the tuples being the number of axes in your projection object.

Note: The coordinate representation in methods wcs.Projection.toworld() and
wcs.Projection.topixel() of the output is the same as that of the input.

17.2.4 Mixed transformations (pixel- and world coordinates) using method
wcs.Projection.mixed()

We describe the mixed() method in some detail in the section about data sets with three or more axes. Here we
show how to use the method in a simple case. Suppose you want to mark data in a plot at constant declination
in pixels (i.e. parallel to the x-axis of the plot) but with equal steps in Right Ascension, then you need method
wcs.Projection.mixed():

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 import numpy
4 header = { ’NAXIS’ : 2,
5 ’NAXIS1’ : 5,
6 ’CTYPE1’ : ’RA---TAN’,
7 ’CRVAL1’ : 45,
8 ’CRPIX1’ : 5,
9 ’CUNIT1’ : ’deg’,

10 ’CDELT1’ : -0.01,
11 ’NAXIS2’ : 10,
12 ’CTYPE2’ : ’DEC--TAN’,
13 ’CRVAL2’ : 30,
14 ’CRPIX2’ : 10,
15 ’CUNIT2’ : ’deg’,
16 ’CDELT2’ : +0.01,
17 }
18 proj = wcs.Projection(header)
19 # 1 pixel and 1 world coordinate pair
20 pixel_in = (numpy.nan, 10)
21 world_in = (45.0, numpy.nan)
22 world_out, pixel_out = proj.mixed(world_in, pixel_in)
23 print world_out
24 print pixel_out

172 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

25

26 # Output:
27 # (45.0, 30.0)
28 # (5.0, 10.0)
29

30 # A loop over a number of Right Ascensions at constant Declination
31 for ra in range(44, 47):
32 world_in = (ra,numpy.nan)
33 world_out, pixel_out = proj.mixed(world_in, pixel_in)
34 print "World: ", world_out, "Pixel: ", pixel_out
35

36 # Output:
37 # World: (44.0, 29.99622120337045) Pixel: (91.61133499750801, 10.000000000096229)
38 # World: (45.0, 30.0) Pixel: (5.0, 10.0)
39 # World: (46.0, 29.99622120337045) Pixel: (-81.61133499750801, 10.000000000096248)

First we have a pixel position of which the x coordinate is set to unknown. We use a special value for this:
numpy.nan which is the representation of NumPy’s Not A Number. The y coordinate is set to 10. For the
wcs.Projection.mixed(), we need to specify the unknown values in the pixel position with a world coor-
dinate. In the example we entered 45.0 (deg). The mixed() method returns two tuples. One for the pixel position
and one for the position in world coordinates. The unknown values are calculated in an iterative process. The
second part of the example is a loop over a number of world coordinates in Right Ascension, and a constant pixel
coordinate in the y-direction (i.e. 10). The output (as listed as comment in the code) shows two things that need to
be addressed. First we notice that the output pixel is not exactly 10. This is related to finite precision of numbers
when a solution is calculated in an iterative way. The second observation is more important: the Declination varies
while the y coordinate in pixels is constant. But this is exactly what we expect for spatial data when a projection
is involved.

A note about efficiency:

Note: The transformation routines accept sequences of coordinates. Calculations with sequences are more
efficient than repetitive calls in a loop.

So in our example it is more efficient to avoid the loop over the right ascensions. This can be done by creating an
input tuple with two lists. The output is the same as in the example above, but the representation is different. As
we stated earlier, the representation of the output is the same as the representation of the input (a tuple with two
lists):

As example above but without a loop
ra = range(44, 47)
dec = [numpy.nan]*len(ra) # NumPy trick to repeat elements in a list.
world_in = (ra, dec)
x = [numpy.nan]*len(ra)
y = [10]*len(ra)
pixel_in = (x, y)
world_out, pixel_out = proj.mixed(world_in, pixel_in)
print world_out
print pixel_out

Output:
([44.0, 45.0, 46.0], [29.99622120337045, 30.0, 29.99622120337045])
([91.61133499750801, 5.0, -81.61133499750801], [10.000000000096229, 10.0, 10.000000000096248])

17.2.5 Three or more coordinate axes

In this section we discuss method wcs.Projection.sub() which allows us to define coordinate transfor-
mations for positions with less dimensions than the dimension of the data structure. In practice we encounter
many astronomical measurements based on three or more independent axes. Well known examples are of course
the data sets from radio interferometers. Usually these are spatial maps observed at different frequencies and
sometimes as function of Stokes parameters (polarization). If we are only interested in spatial maps and don’t

17.2. Coordinate representations 173

Kapteyn Package Documentation, Release 2.2

bother about the other axes, we can create a Projection object with only the relevant axes. This is done with the
wcs.Projection.sub() method from the Projection class.

map = proj.sub(axes=None, nsub=None)

The method has two parameters. You can specify parameter nsub which sets the first nsub axes from the original
Projection object to the actual axes. Or you can use the other parameter axes which is a tuple or a list with axis
numbers. Axis numbers in WCSLIB follow the FITS standard so they start with 1. The order in the sequence
is important. The axis description sequence in a FITS file is not bound to rules and luckily WCSLIB accepts
permuted axis number sequences. This can be illustrated with the next example. First we show the code and then
explain the output:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 import numpy
4 header = { ’NAXIS’ : 3,
5 # First spatial axis
6 ’NAXIS1’ : 5,
7 ’CTYPE1’ : ’RA---TAN’,
8 ’CRVAL1’ : 45,
9 ’CRPIX1’ : 5,

10 ’CUNIT1’ : ’deg’,
11 ’CDELT1’ : -0.01,
12 # A dummy axis
13 ’NAXIS2’ : 5,
14 ’CTYPE2’ : ’PARAM’,
15 ’CRVAL2’ : 444,
16 ’CRPIX2’ : 99,
17 ’CDELT2’ : 1.0,
18 ’CUNIT2’ : ’wprf’,
19 # Second spatial axis
20 ’NAXIS3’ : 0,
21 ’CTYPE3’ : ’DEC--TAN’,
22 ’CRVAL3’ : 30,
23 ’CRPIX3’ : 10,
24 ’CUNIT3’ : ’deg’,
25 ’CDELT3’ : +0.01
26 }
27 proj = wcs.Projection(header)
28 map = proj.sub([1,3])
29 pixel = (header[’CRPIX1’], header[’CRPIX3’])
30 world = map.toworld(pixel)
31 print world
32

33 # Output:
34 # (45.0, 30.0)
35

36 map = proj.sub([3,1])
37 pixel = (header[’CRPIX3’], header[’CRPIX1’])
38 world = map.toworld(pixel)
39 print world
40

41 # Output:
42 # (30.0, 45.0)
43

44 line = proj.sub(2)
45 crpix = header[’CRPIX2’]
46 pixels = range(crpix-5,crpix+6)
47 world = line.toworld1d(pixels)
48 print world
49

50 # Output:
51 # [439.0, 440.0, 441.0, 442.0, 443.0, 444.0, 445.0, 446.0, 447.0, 448.0, 449.0]

174 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

We created a header representing a spatial map as function of some parameter along the CTYPE2=’PARAM’ axis.
This axis is not recognized by WCSLIB and a linear transformation is applied. Also special is that the spatial axes
do not have conventional numbers. First we want to set up a transformation of pixel (x,y) to (R.A., Dec) for the
pixel values in (CRPIX1, CRPIX3) -which should transform to (CRVAL1, CRVAL3)-. Then we reverse the spatial
axis sequence to set up a transformation from (y,x) to (Dec, R.A.). Finally we want a transformation only for the
PARAM axis. Its axis number is 2. With the output we show that for this axis indeed the transformation between
pixels and world coordinates is a linear. transformation.

The axis sequence in the wcs.Projection.sub() method sets the axis order with parameter axes. It
sets in fact the order of the coordinates in the transformation methods wcs.Projection.toworld(),
wcs.Projection.topixel() and wcs.Projection.mixed(). Parameter axes is either a single in-
teger or a list/tuple of integers e.g. sub(2) vs. sub([3,1]).

17.3 NumPy arrays and matrices

17.3.1 NumPy matrices

In many Python applications programmers use NumPy arrays and matrices because it is easy to manipulate them.
First let’s explore what can be done with a NumPy matrix as coordinate representation. A NumPy matrix is a rank
2 array with special properties. The first list in the numpy.matrix() constructor in the next example is the first row
in the matrix and the second list is the second row. The first row contains the x coordinate of the pixels and the
second row contains the y coordinates. In the next script we want to convert pixel positions (4,5), (5,5) and (6,5)
to world coordinates. So the first list in the matrix constructor are the x coordinates [4,5,6] and the second are the
y coordinates [5,5,5]. We convert these with:

proj = wcs.Projection(header)
pixel = numpy.matrix([[4,5,6],[5,5,5]])
world = proj.toworld(pixel)
print world
Output:
[[45.01154701 45. 44.98845299]
[29.99999798 30. 29.99999798]]

pixel = proj.topixel(world)
print pixel

Output:
[[4.00000001 5. 5.99999999]
[5. 5. 5.]]

The output is what we expected. It is a NumPy matrix with two rows. The first row contains the longitudes and
the second the latitudes. The numbers seem ok (three RA’s at almost constant declination). We added a closure
test by using the output world coordinates as input for the wcs.Projection.topixel() method. As you
can see, the closure test returns the original input.

There is also a matrix representation that is equivalent to the list of coordinate tuples in the previous section. We
want an input matrix to contain the coordinates: [[4,5],[5,5],[6,5]]. For this representation you have to set an
attribute of the projection object. The name of the attribute is wcs.Projection.rowvec. Its default value is
False. When you set it to True then each row in the matrix represents a position in x and y. Here is an example:

1 proj = wcs.Projection(header)
2 proj.rowvec = True
3 pixel = numpy.matrix([[4,5],[5,5],[6,5]])
4 world = proj.toworld(pixel)
5 print world
6

7 # Output:
8 # [[45.01154701 29.99999798]
9 # [45. 30.]

10 # [44.98845299 29.99999798]]

17.3. NumPy arrays and matrices 175

Kapteyn Package Documentation, Release 2.2

11

12 pixel = proj.topixel(world)
13 print pixel
14

15 # Output:
16 # [[4.00000001 5.]
17 # [5. 5.]
18 # [5.99999999 5.]]

Note: The rowvec attribute can also be set in the constructor of the projection object as follows: proj =
wcs.Projection(header, rowvec=True)

17.3.2 NumPy arrays

It is possible to build a NumPy array with x coordinates and another for the y coordinates. You can use these
arrays in a tuple. Then the elements in the tuple are not lists, as in the previous section, but NumPy arrays. With
the same example in mind as the one with the NumPy matrix we demonstrate this option in the following script:

1 proj = wcs.Projection(header)
2 x = numpy.array([4,5,6])
3 y = numpy.array([5,5,5])
4 pixel = (x, y)
5 world = proj.toworld(pixel)
6 print world
7

8 # Output:
9 # (array([45.01154701, 45. , 44.98845299]), array([29.99999798, 30. , 29.99999798]))

10

11 pixel = proj.topixel(world)
12 print pixel
13

14 # Output:
15 # (array([4.00000001, 5. , 5.99999999]), array([5., 5., 5.]))

As you can see, the representation of the output is the same as that of the input. The result is a tuple and the
elements of the tuple are 1 dimensional (rank 1, shape N) NumPy arrays. The first array contains the RA’s and the
second the Dec’s. The closure test also gives the expected result.

17.3.3 Using NumPy arrays to convert an entire map

For applications that transform all the positions in a data set (or in a subset of the data) in one run (e.g.
for re-projections of images), it is possible to store all the positions in a NumPy array with shape (NAXIS2,
NAXIS1, 2) (note the order). The array can be handled by the wcs.Projection.toworld() and
wcs.Projection.topixel() in one step. You could say that we have a two-dimensional array of which
the elements are coordinate pairs. The example code below could be part of the body of a real application that
re-projects an image:

1 from kapteyn import wcs
2 import numpy
3

4 header = { ’NAXIS’ : 2,
5 ’NAXIS1’ : 5,
6 ’CTYPE1’ : ’RA---TAN’,
7 ’CRVAL1’ : 45,
8 ’CRPIX1’ : 5,
9 ’CUNIT1’ : ’deg’,

10 ’CDELT1’ : -0.01,
11 ’NAXIS2’ : 10,

176 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

12 ’CTYPE2’ : ’DEC--TAN’,
13 ’CRVAL2’ : 30,
14 ’CRPIX2’ : 10,
15 ’CUNIT2’ : ’deg’,
16 ’CDELT2’ : +0.01,
17 }
18

19 proj = wcs.Projection(header)
20 n1 = 10
21 n2 = 8
22 pixel = numpy.zeros(shape=(n2,n1,2))
23 for y in xrange(n2):
24 for x in xrange(n1):
25 pixel[y, x] = (x+1, y+1)
26

27 world = proj.toworld(pixel)
28 print world
29

30 # Output:
31 # [[[45.04614616 29.90999204]
32 # [45.03460962 29.90999556]
33 # [45.02307308 29.90999807]
34 # [45.01153654 29.90999957]
35 # etc.
36

37 pixel = proj.topixel(world)
38 print pixel
39

40 # Output:
41 # [[[1. 1.]
42 # [2. 1.]
43 # [3. 1.]
44 # [4. 1.]
45 # etc.

In this example we have NAXIS2=10 y values and NAXIS1=5 x values. The indices start at 0, but the FITS pixel
indices start at 1. That’s why the coordinate tuple reads as (x+1, y+1).

Note: In this module the values in the NumPy arrays and matrices are of type ‘f8’ (64 bit).

17.4 Attributes

17.4.1 Attributes lonaxnum, lataxnum and specaxnum

In the previous examples we had foreknowledge of the axis numbers that represented a spatial axis or a
spectral axis. If you read a header from a FITS file then it is not always obvious what the axes repre-
sent and in which order they are stored in the FITS header. In those circumstances the projection attributes
wcs.Projection.lonaxnum, wcs.Projection.lataxnum and wcs.Projection.specaxnum
are very useful. These attributes are axis numbers, i.e. they start with 1 and the highest number is equal to header
item ‘NAXIS’. In the source below we provide a header which shows an unexpected axis order representing a
number of spatial maps as function of frequency. For demonstration purposes we create two separate Projection
objects. The first, called line, represents the spectral axis. This is a sub projection of the parent projection object
and the axis number is that of the spectral axis. We add a spectral translation to get velocities in the output.

The second, called map, is the spatial map with axis longitude first and latitude second. We try to create these
objects in a try/except clause. For any header, this results in the requested sub projections for a spatial map and
spectral axis or an error message and an exception. The construction with the attributes and the try/except clause
saves us tedious work because without, we need to find and inspect the axis numbers ourselves.

17.4. Attributes 177

Kapteyn Package Documentation, Release 2.2

Note: If WCSLIB cannot find a value of one of the requested attributes, its value is set to None

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 header = { ’NAXIS’ : 3,
4 ’NAXIS3’ : 5,
5 ’CTYPE3’ : ’RA---NCP’,
6 ’CRVAL3’ : 45,
7 ’CRPIX3’ : 5,
8 ’CUNIT3’ : ’deg’,
9 ’CDELT3’ : -0.01,

10 ’CTYPE2’ : ’FREQ’,
11 ’CRVAL2’ : 1378471216.4292786,
12 ’CRPIX2’ : 32,
13 ’CUNIT2’ : ’Hz’,
14 ’CDELT2’ : 97647.745732,
15 ’RESTFRQ’: 1.420405752e+9,
16 ’NAXIS1’ : 10,
17 ’CTYPE1’ : ’DEC--NCP’,
18 ’CRVAL1’ : 30,
19 ’CRPIX1’ : 15,
20 ’CUNIT1’ : ’deg’,
21 ’CDELT1’ : +0.01
22 }
23 try:
24 proj = wcs.Projection(header)
25 line = proj.sub(proj.specaxnum).spectra(’VRAD’)
26 map = proj.sub((proj.lonaxnum, proj.lataxnum))
27 except:
28 print "Could not find a spatial map AND a spectral line!"
29 raise
30

31 print proj.lonaxnum, proj.lataxnum, proj.specaxnum
32

33 # Output:
34 # 3 1 2
35

36 # A transformation along the spectral axis:
37 pixels = range(30, 35)
38 Vwcs = line.toworld1d(pixels)
39 for p,v in zip(pixels, Vwcs):
40 print p, v/1000
41

42 # Output:
43 # 30 8891.97019336
44 # 31 8871.36054878
45 # 32 8850.75090419
46 # 33 8830.14125961
47 # 34 8809.53161503
48

49 # A transformation of a coordinate in a spatial map:
50 ra = header[’CRVAL’+str(proj.lonaxnum)]
51 dec = header[’CRVAL’+str(proj.lataxnum)]
52 print map.topixel((ra,dec))
53

54 # Output:
55 # (5.0, 15.0)
56

57 # Are these indeed the CRPIXn?
58 ax1 = "CRPIX"+str(proj.lonaxnum)
59 ax2 = "CRPIX"+str(proj.lataxnum)

178 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

60 print map.topixel((ra,dec)) == (header[ax1], header[ax2])
61

62 # Output:
63 # True

Note the check at the end of the code. It should return True (i.e. within some limited precision). We started with
world coordinates equal to the values of CRVALn from the header and we assert that these correspond to pixel
values equal to the corresponding CRPIXn.

17.4.2 Two dimensional data slices with only one spatial axis

Suppose we have a 3D data set with CTYPE’s: (RA—NCP, DEC–NCP, VOPT-F2W) and we want to write coor-
dinate labels in a plot that represents the data as function of one spatial axis and the spectral axis (usually called a
position-velocity plot or XV map)? It is obvious that we need extra information about the spatial axis that is left
out. Usually this is a pixel position that corresponds to the position on the missing axis along which a data slice is
taken. These data slices are fixed on pixel coordinates and not on world coordinates.

Assume the XV data we want to plot has axis types DEC–NCP and VOPT-F2W, then we need to specify at which
pixel coordinate in Right Ascension the data is extracted.

What we need is a sub-projection (i.e. a Projection object which is modified by method sub()) which represents
the WCSLIB types: (‘latitude’, ‘spectral’, ‘longitude’). Given the CTYPE’s from the header, the axis permutation
sequence that is needed for the sub projection is (2,3,1). Now we require a method that for instance calculates for
a given world coordinate in Declination (e.g. 60.1538880206 deg) and a velocity (e.g. -243000.0 m/s) and a fixed
pixel for R.A. (e.g. 51) the corresponding pixel coordinates.

The required method is called wcs.Projection.mixed(). In a previous section we discussed its use.
Method mixed() has for a Projection object p the following syntax and parameters.

world, pixel = p.mixed(world, pixel, span=None, step=0.0, iter=7)

It is a hybrid transformation suited for celestial coordinates. It uses an iterative method to find an unknown pixel-
or world coordinate. The iteration is controlled by parameters span, step and iter. They have reasonable defaults
which usually give good results. The method needs knowledge about elements that need to be solved. Unknown
values that need to be solved are initially set to NaN (i.e. numpy.nan).

With the numbers we listed, the input world coordinate tuple will be world_in = (60.1538880206, -243000.0,
numpy.nan). The input pixel tuple will be: pixel_in = (numpy.nan, numpy.nan, 51) then we find the missing
coordinates after applying the lines:

subproj = proj.sub([2,3,1])
world_in = (60.1538880206, -243000.0, numpy.nan)
pixel_in = (numpy.nan, numpy.nan, 51)
world_out, pixel_out = subproj.mixed(world_in, pixel_in)
print "world_out = ", world_out
world_out = (60.1538880206, -243000.0, -51.282084795900005)
print "pixel_out = ", pixel_out
pixel_out = (51.0, -20.0, 51.0)

The mixed() method in wcs is more powerful than its equivalent in the C-version of WCSLIB. It accepts the same
coordinate representations as for topixel() and toworld() whereas the library version accepts only one coordinate
pair per call.

17.5 Invalid coordinates

17.5.1 Suppress exceptions for invalid coordinates

We introduced matrices and arrays as coordinate representations to facilitate the input and output of many coordi-
nates in one call. This is in many practical situations the most efficient way to process those coordinates. However
if there is a pixel coordinate in a sequence that could not be converted to a world coordinate then an exception will

17.5. Invalid coordinates 179

Kapteyn Package Documentation, Release 2.2

be raised and your script will stop. One can suppress the exception and flag the unknown coordinate. You need
to set the wcs.Projection.allow_invalid attribute of the projection object. Invalid coordinates then are
flagged in the output with a NaN (i.e. numpy.nan). On the other hand, if the input contains a NaN, the correspond-
ing converted coordinate will also be a NaN. You can test whether a value is a NaN with function numpy.isnan().
NaN’s cannot be compared so a simple test as in:

>>> x = numpy.nan
>>> if x == numpy.nan: # ... fails

will fail because the result is always False The test x != x will give True if x is NaN.

In practice it will be difficult to get into problems if you convert from world coordinates to pixel coordinates, but
when you start with pixel coordinates then it is possible that a corresponding world coordinate is not available. For
a projection like Aitoff’s projection it is obvious that the rectangle in which an all sky map in this the projection
is enclosed, contains such pixels.

Here is an example how one can deal with invalid transformations:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 import numpy
4 header = { ’NAXIS’ : 2,
5 ’NAXIS1’ : 5,
6 ’CTYPE1’ : ’RA---AIT’,
7 ’CRVAL1’ : 45,
8 ’CRPIX1’ : 5,
9 ’CUNIT1’ : ’deg’,

10 ’CDELT1’ : -0.01,
11 ’NAXIS2’ : 10,
12 ’CTYPE2’ : ’DEC--AIT’,
13 ’CRVAL2’ : 30,
14 ’CRPIX2’ : 5,
15 ’CUNIT2’ : ’deg’,
16 ’CDELT2’ : +0.01,
17 }
18 proj = wcs.Projection(header)
19 proj.allow_invalid = True
20 pixel_in = numpy.matrix([[4000,5000,6000],[5000,5000,7580]])
21 world = proj.toworld(pixel_in)
22 print "World coordinates:\n",world
23 pixel_out = proj.topixel(world)
24 print "Back to pixels:\n", pixel_out
25

26 if numpy.isnan(pixel_out).any():
27 print "Some pixels could not be converted"
28

29 indices = numpy.where(numpy.isnan(pixel_out))
30 print "Index of NaNs: ", indices
31 print pixel_in[indices]

17.6 Reading data from a FITS file

17.6.1 Reading a FITS header

Until now, we created our own header as a Python dictionary. But usually our starting point is a FITS file. A
FITS file can contain more than one header. Header data is read from a FITS file with methods from module
pyfits. Select the unit you want and store it in a variable (like header) so that it can be parsed by wcs. Below
we demonstrate how to read the first header from a FITS file.

A flag is set to enter WCSLIB’s debug mode:

180 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 import pyfits
4

5 wcs.debug = True
6 f = raw_input(’Enter name of FITS file: ’)
7 hdulist = pyfits.open(f)
8 header = hdulist[0].header
9 proj = wcs.Projection(header)

10

11 # Part of the output of arbitrary FITS file:
12 # Output:
13 # flag: 137
14 # naxis: 3
15 # crpix: 0x99b53d8
16 # 51 51 -20
17 # pc: 0x99adf10
18 # pc[0][]: 1 0 0
19 # pc[1][]: 0 1 0
20 # pc[2][]: 0 0 1
21 # cdelt: 0x99b71c8
22 # -0.007166 0.007166 4200
23 # crval: 0x992bd30
24 # -51.282 60.154 -2.43e+05
25 # cunit: 0x99ad768
26 # "deg"
27 # "deg"
28 # "m/s"
29 # ctype: 0x999a7f8
30 # "RA---SIN"
31 # "DEC--SIN"
32 # "VELO"

For testing and debugging one often wants to inspect the items in a FITS header. PyFITS has a nice method to make
a list with all the FITS cards. In the next example we added a little filter, using list comprehension, to filter all items
that start with ‘HISTORY’. Also we added output for the two projection attributes wcs.Projection.types
and wcs.Projection.units. The script is a useful tool to inspect the FITS file and to check its parsing by
module wcs:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 import pyfits
4

5 f = raw_input(’Enter name of FITS file: ’)
6 hdulist = pyfits.open(f)
7 header = hdulist[0].header
8 clist = header.ascardlist()
9 c2 = [str(k) for k in header.ascardlist() if not str(k).startswith(’HISTORY’)]

10 for i in c2:
11 print i
12

13 proj = wcs.Projection(header)
14 print "WCS found types: ", proj.types
15 print "WCS found units: ", proj.units

17.6.2 Reading WCS data for a spatial map

For some world coordinate related applications we want to force the input to represent a spatial map. A spatial map
has axes of type longitude and latitude. For example if you need to re-project a map from one projection system
to another, then you need a matching axis pair, representing a spatial system. If you don’t know beforehand what
the numbers are of the axes in your FITS file that represent these types, you need a way of checking this. There

17.6. Reading data from a FITS file 181

Kapteyn Package Documentation, Release 2.2

are some rules. First, we must be able to create a Projection object according to the WCSLIB rules (i.e. the axes
must have a valid name and extension). For spatial axes, WCSLIB also requires a matching axis pair. So if you
have a FITS file with a R.A. axis and not a Dec axis then module wcs will generate an exception with the message
Inconsistent or unrecognized coordinate axis types.

Finally, if you have a valid header and made a Projection object, then you still have to find the axis numbers that
represent a ‘longitude’ axis and a ‘latitude’ axis (remember: the number of axes in your data could be more than
2) and the latitude axis could be defined earlier than the longitude axis so the order is also important.

In a previous section we discussed the attributes wcs.Projection.lonaxnum and
wcs.Projection.lataxnum. They can be used to find the requested spatial axis numbers (remem-
ber their value is None if the requested axis is not available). In the following script we try to create the Projection
and sub Projection objects with Python’s try/except mechanism.

If we have a valid projection and the right axes, then we check the axes types (and order) with attribute
wcs.Projection.types:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 import pyfits
4

5 f = raw_input(’Enter name of FITS file: ’)
6 hdulist = pyfits.open(f)
7 header = hdulist[0].header
8 try:
9 proj = wcs.Projection(header)

10 map = proj.sub((proj.lonaxnum, proj.lataxnum))
11 except:
12 print "Aborting program. Could not find (valid) spatial map."
13 raise
14

15 # Just a check:
16 print map.types

17.7 Celestial transformations with wcs

17.7.1 Celestial systems

Methods wcs.Projection.toworld() and wcs.Projection.topixel() convert between pixel co-
ordinates and world coordinates. If these world coordinates are spatial, they are calculated for the sky- and
reference system as defined in the header (FITS header, GIPSY header, header dictionary). To compare positions
one must therefore ensure that these positions are all defined in the same sky- and reference system. If such a
position is given in another system (e.g. galactic instead of equatorial), then you have to transform the position
to the other sky- and/or reference system. Sometimes you might find a so called alternate header in the header
information of a FITS file. In an alternate header the WCS related keywords end on a letter A-Z (e.g. CRVAL1A).

Usually these alternate headers describe a world coordinate system for another sky system. But because there
could also be different epochs involved, it is worthwhile to have a system that can transform world coordinates
between sky- and reference systems and that can do epoch transformations as well.

For the Kapteyn Package we wrote module celestial. This module can be used as stand alone module if
one is interested in celestial transformations of world coordinates only. But the module is well integrated in
module wcs so one can use it in the context of wcs, with the class wcs.Transformation. for conver-
sions of world coordinates between sky-/reference systems and also, if pixel coordinates are involved, meth-
ods wcs.Projection.toworld() and wcs.Projection.topixel() can interpret an alternative sky-
/reference system as the system for which a coordinate has to be calculated. The alternative sky-/reference system
is stored in attribute wcs.projection.skyout.

Note: If you need transformations of world coordinates between any of the supported input sky-/reference system
then you should use objects and methods from class wcs.Transformation.

182 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

If you need to convert pixel coordinates in a system defined by (FITS) header information, then
set the skyout attribute of a Projection object and use methods wcs.Projection.toworld() and
wcs.Projection.topixel()

The celestial definitions are described in detail in the background information of module celestial. We list
the most important features of a celestial definition:

Supported Sky systems (detailed information in Sky systems):

1. Equatorial: Equatorial coordinates (α, δ), see next list with reference systems

2. Ecliptic: Ecliptic coordinates (λ, β) referred to the ecliptic and mean equinox

3. Galactic: Galactic coordinates (lII, bII)

4. Supergalactic: De Vaucouleurs Supergalactic coordinates (sgl, sgb)

Supported Reference systems (detailed information in Reference systems):

1. FK4: Mean place pre-IAU 1976 system.

2. FK4_NO_E: The old FK4 (barycentric) equatorial system but without the “E-terms of aberration”

3. FK5: Mean place post IAU 1976 system.

4. ICRS: The International Celestial Reference System.

5. J2000: This is an equatorial coordinate system based on the mean dynamical equator and equinox at epoch
J2000.

Epochs (detailed information in Epochs for the equinox and epoch of observation):

The equinox and epoch of observations are instants of time and are of type string. These strings are parsed
by a function of module celestial called celestial.epochs(). The parser rules are described in the
documentation for that function. Each string starts with a prefix. Supported prefixes are:

1. B: Besselian epoch

2. J: Julian epoch

3. JD: Julian date

4. MJD: Modified Julian Day

5. RJD: Reduced Julian Day

6. F: Old and new FITS format (old: DD/MM/YY new: YYYY-MM-DD or YYYY-MM-DDTHH:MM:SS)

Example: Next example is a simple test program for epoch specifications. The function
celestial.epochs() returns a tuple with three elements:

• the Besselian epoch

• the Julian epoch

• the Julian date.

#!/usr/bin/env python
from kapteyn import wcs

ep = [’J2000’, ’j2000’, ’j 2000.5’, ’B 2000’, ’JD2450123.7’,
’mJD 24034’, ’MJD50123.2’, ’rJD50123.2’, ’Rjd 23433’,
’F29/11/57’, ’F2000-01-01’, ’F2002-04-04T09:42:42.1’]

for epoch in ep:
B, J, JD = wcs.epochs(epoch)
print "%24s = B%f, J%f, JD %f" % (epoch, B, J, JD)

The output is:

17.7. Celestial transformations with wcs 183

Kapteyn Package Documentation, Release 2.2

J2000 = B2000.001278, J2000.000000, JD 2451545.000000
j2000 = B2000.001278, J2000.000000, JD 2451545.000000
j 2000.5 = B2000.501288, J2000.500000, JD 2451727.625000
B 2000 = B2000.000000, J1999.998723, JD 2451544.533398
JD2450123.7 = B1996.109887, J1996.108693, JD 2450123.700000
mJD 24034 = B1924.680025, J1924.680356, JD 2424034.500000
MJD50123.2 = B1996.109887, J1996.108693, JD 2450123.700000
rJD50123.2 = B1996.108518, J1996.107324, JD 2450123.200000
Rjd 23433 = B1923.033172, J1923.033539, JD 2423433.000000
F29/11/57 = B1957.910029, J1957.909651, JD 2436171.500000
F2000-01-01 = B1999.999909, J1999.998631, JD 2451544.500000
F2002-04-04T09:42:42.1 = B2002.257054, J2002.255728, JD 2452368.904654

The strings that start with prefix ‘F’ are strings read from FITS keywords that represent the date of observation.

17.7.2 The sky definition

Given an arbitrary celestial position and a sky system specification you can transform to any of the other sky
system specifications. Module wcs recognizes the following built-in sky specifications:

wcs.equatorial - wcs.ecliptic - wcs.galactic - wcs.supergalactic

Reference systems are:

wcs.fk4 - wcs.fk4_no_e - wcs.fk5 - wcs.icrs - wcs.j2000

The syntax for an equatorial sky specification is either a tuple (order of the elements is arbitrary):

(sky system, equinox, reference system, epoch of observation)
e.g.: obj.skyout = (wcs.equatorial, "J1983.5", wcs.fk4, "B1960_OBS")

or a string with minimal match:

(equatorial, equinox, referencesystem, epoch of observation"
e.g.: obj.skyout = "equa J1983.5 FK4 B1960_OBS"

17.7.3 Celestial transformations

In this section we check some basic celestial coordinate transformations. Background information can be found
in [Ref2] or in the background information for module celestial.

Two parameters instantiate an object from class Transformation. The first is a definition of the
input celestial system and the second is a definition for the celestial output system. Method
wcs.Transformation.transform() transforms coordinates associated with the celestial input system to
coordinates connected to the celestial output system.

The galactic pole has FK4 coordinates (192.25,27.4) in degrees. If we want to verify this, we need to convert this
FK4 coordinate to the corresponding galactic coordinate, which should be (0,90) within the limits of precision of
the used numbers. The following script shows that this could be true:

1 from kapteyn import wcs
2

3 world_eq = (192.25, 27.4) # FK4 coordinates of galactic pole
4 tran = wcs.Transformation("EQ,fk4,B1950.0", "GAL")
5 world_gal = tran.transform(world_eq)
6 print world_gal
7

8 # Output:
9 # (120.8656324107187, 89.999949251695512)

10

11 # Closure test:

184 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

12 world_eq = tran.transform(world_gal, reverse=True)
13 print world_eq
14

15 # Output:
16 # (192.25, 27.400000000000002)

We added a closure test (parameter reverse=True) to give you some feeling about the accuracy. Closure tests
usually show errors < 1e-12. We expected the pole at 90 deg., but the difference is about 5e-05 deg. That is too
much so there must be another reason for the difference. The reason is described in the background information of
module celestial. The galactic pole is not a star and the so called elliptic terms of aberration (only for FK4)
are not apply to its position. So in fact the pole is given in FK4-NO-E coordinates. If we repeat the exercise with
the appropriate input celestial definition, we get:

1 from kapteyn import wcs
2

3 world_eq = (192.25, 27.4) # FK4 coordinates of galactic pole
4 tran = wcs.Transformation("EQUATORIAL, fk4_no_e, B1950.0", "galactic")
5 world_gal = tran.transform(world_eq)
6 print world_gal
7

8 # Output:
9 # (0.0, 90.0)

10

11 world_eq = tran.transform(world_gal, reverse=True)
12 print world_eq
13

14 # Output:
15 # (192.25, 27.400000000000002)

which gives the result as expected. Note that we used attribute reverse of the Transformation class. The two
previous examples show that the transformation class is very useful to check basic celestial transformations.

As another test of a standard celestial transformation, let’s check the transformation between galactic and super-
galactic coordinates. The supergalactic pole (0,90) deg. has galactic(II) world coordinates (47.37,6.32) deg. The
conversion program becomes then:

1 from kapteyn import wcs
2

3 world_gal = (47.37, 6.32) # Galactic l,b (II) of supergalactic pole
4 tran = wcs.Transformation(wcs.galactic, wcs.supergalactic)
5 world_sgal = tran.transform(world_gal)
6 print world_sgal
7

8 # Output:
9 # (0.0, 90.0)

10

11 world_eq = trans.transform(world_sgal, reverse=True)
12 print world_gal
13

14 # Output:
15 # (47.369999999999997, 6.3200000000000003)

which agrees with the theory.

The sky system specifications allow for defaults. So if one wants coordinates in the equatorial system with ref-
erence system FK5 and equinox J2000 then the specification wcs.fk5 will suffice. Below we demonstrate how to
transform a coordinate from the FK4 system to FK5. In fact we want to demonstrate that FK4 is slowly rotating
with respect to the inertial FK5 system. We do that by varying the assumed time of observation and convert the po-
sition (R.A.,Dec) = (0,0). This behaviour is explained in the background documentation of module celestial:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3

17.7. Celestial transformations with wcs 185

Kapteyn Package Documentation, Release 2.2

4 world_eq1 = (0,0)
5 s_out = wcs.fk5
6 epochs = range(1950,2010,10)
7 for ep in epochs:
8 s_in = "EQUATORIAL B1950 fk4 " + ’B’+str(ep)
9 tran = wcs.Transformation(s_in, s_out)

10 world_eq2 = tran.transform(world_eq1)
11 print ’B’+str(ep), world_eq2
12

13 # Output:
14 # B1950 (0.64069100057541584, 0.27840943507737015)
15 # B1960 (0.64069761256120361, 0.2783973383470032)
16 # B1970 (0.64070422454697784, 0.27838524161663253)
17 # B1980 (0.64071083653273853, 0.27837314488625808)
18 # B1990 (0.64071744851848544, 0.27836104815588009)
19 # B2000 (0.64072406050421915, 0.27834895142549831)

Usually FK4 catalog values are in equinox and epoch B1950.0, so this program shows an exceptional case.

Note: We are not restricted to the transformation of one coordinate. The input of positions fol-
low the rules of coordinate representations as described for methods wcs.Projection.toworld() and
wcs.Projection.topixel().

17.7.4 Combining projections and celestial transformations

In previous sections we showed examples how to use methods of an object of class Projection to convert between
pixel coordinates and world coordinates. We added the option to change the celestial definition. If your data is a
spatial map and its sky system is FK5, then we can convert pixel positions to world coordinates in for example
galactic coordinates by specifying a value for attribute wcs.Projection.skyout. In our case this would be
for a projection object called proj:

>>> proj.skyout = wcs.galactic

In the next example we test (like in one of the previous examples) a conversion between an equatorial system and
the galactic system. The FK4-NO-E coordinates of the galactic pole are the values (CRVAL1, CRVAL2) from the
header. First we calculate a couple of world coordinates in the native celestial definition. Then we verify that that
native system is indeed FK4-NO-E and the equinox is B1950. That can be verified with:

>>> proj.skyout = (wcs.equatorial, wcs.fk4_no_e, ’B1950’)

Finally we test the conversion to galactic coordinates with:

>>> proj.skyout = wcs.galactic

With the output sky set to galactic, we find the galactic pole in galactic coordinates i.e. (90,0) deg. Finally we
want to know what the values of the input pixel coordinates are if the output sky system is supergalactic. The
galactic pole is (90, 6.32) deg. in supergalactic coordinates. Within the limits of the precision of the used numbers
we find the expected output with this script:

1 from kapteyn import wcs
2 header = { ’NAXIS’ : 2,
3 ’NAXIS1’ : 5,
4 ’CTYPE1’ : ’RA---TAN’,
5 ’CRVAL1’ : 192.25,
6 ’CRPIX1’ : 5,
7 ’CUNIT1’ : ’degree’,
8 ’CDELT1’ : -0.01,
9 ’NAXIS2’ : 10,

10 ’CTYPE2’ : ’DEC--TAN’,
11 ’CRVAL2’ : 27.4,

186 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

12 ’CRPIX2’ : 5,
13 ’CUNIT2’ : ’degree’,
14 ’CDELT2’ : +0.01,
15 ’RADESYS’: ’FK4-NO-E’,
16 ’EQUINOX’: 1950.0
17 }
18

19 proj = wcs.Projection(header)
20

21 pixel = [(4,5),(5,5),(6,5)] # List with coordinate tuples
22 world = proj.toworld(pixel)
23 print world
24 # [(192.26126360281495, 27.399999547653639), (192.25, 27.399999999999999), ...
25

26 proj.skyout = "Equatorial FK4-NO-E B1950"
27 world = proj.toworld(pixel)
28 print world
29 # [(192.26126360281495, 27.399999547653639), (192.24999999999997, 27.400000000000002),...
30

31 proj.skyout = "galactic"
32 world = proj.toworld(pixel)
33 print world
34 # [(33.00000000001878, 89.990000000101531), (0.0, 90.0), ...
35

36 proj.skyout = wcs.supergalactic
37 world = proj.toworld(pixel)
38 print world
39 # [(90.002497049104363, 6.3296871263660073), (90.000000000000014, 6.319999999999995), ...

Note that the second tuple on each line of the output represents the world coordinates at CRPIX. Also important
is the observation that the longitude for galactic coordinates shows erratic behaviour. The reason is that close
to a pole, the longitudes are less well defined (and undefined on the pole) and the errors in longitudes become
important because we are calculating with numbers with a limited precision.

17.7.5 Attributes of a Projection object related to celestial systems

There are a number of attributes of an object of class wcs.Projection, related to celestial systems, that can be
used to inspect the parsed FITS header. The native system in the previous example could be derived from attribute
wcs.Projection.skysys:

1 from kapteyn import wcs
2 header = { ’NAXIS’ : 2,
3 ’NAXIS1’ : 5,
4 ’CTYPE1’ : ’RA---TAN’,
5 ’CRVAL1’ : 192.25,
6 ’CRPIX1’ : 5,
7 ’CUNIT1’ : ’degree’,
8 ’CDELT1’ : -0.01,
9 ’NAXIS2’ : 10,

10 ’CTYPE2’ : ’DEC--TAN’,
11 ’CRVAL2’ : 27.4,
12 ’CRPIX2’ : 5,
13 ’CUNIT2’ : ’degree’,
14 ’CDELT2’ : +0.01,
15 ’RADESYS’: ’FK4-NO-E’,
16 ’EQUINOX’: 1950.0,
17 ’MJD-OBS’: 36010.2
18 }
19

20 proj = wcs.Projection(header)
21 print "Attributes of ’proj’:"

17.7. Celestial transformations with wcs 187

Kapteyn Package Documentation, Release 2.2

22 print "skysys: ", proj.skysys
23 print "equinox: ", proj.equinox
24 print "epoch: ", proj.epoch
25 print "dateobs: ", proj.dateobs
26 print "mjdobs: ", proj.mjdobs
27 print "epobs: ", proj.epobs
28

29 # Attributes of ’proj’:
30 # skysys: (0, 5, ’B1950.0’)
31 # equinox: 1950.0
32 # epoch: B1950.0
33 # dateobs: None
34 # mjdobs: 36010.2
35 # epobs: MJD36010.2

Below a table with a short explanation of the attributes. More information about epochs and equinoxes can be
found in the documentation of celestial.

Attribute Explanation
skysys A single value or tuple which defines the native system. Tuples can contain the sky system, the

reference system, the equinox and the date of observation.
equinox equinox is a floating point number. It is read from the FITS header (keyword EQUINOX). The

equinox is a moment in time used for the definition of an equatorial system.
epoch This attribute is the epoch of the equinox. That is the value of the equinox with prefix ‘J’ or ‘B’.

The context (a.o. keyword RADESYS) sets the prefix.
dateobs Date of observation. Floating point number given by FITS keyword DATE-OBS
mjdobs Date of observation. Floating point number given by FITS keyword MJD-OBS
epobs Date of observation as an epoch, i.e. copied from mjdobs or dateobs and prefixed by ‘F’ or

‘MJD’

17.7.6 Available functions from celestial

Some of the functions defined in the module celestial are also available in the namespace of wcs. One
of these is celestial.epochs() for which we wrote an example in the previous section. Others are
celestial.lon2hms(), celestial.lon2dms() and celestial.lat2hms() to format degrees into
hours, minutes, seconds or degrees, minutes and seconds. Finally the function celestial.skymatrix() is
also available to wcs; it calculates the rotation matrix to convert a coordinate from one sky system to another
and it calculates the E-terms (see background documentation for celestial) if appropriate. Usually you will only
use this function to compare rotation matrices with matrices from the literature or to do some debugging. Some
examples on the Python command line:

Formatting spatial coordinates:

>>> wcs.lon2hms(45.0)
’03h 00m 0.0s’
>>> wcs.lon2hms(23.453839, 4)
’01h 33m 48.9214s’
>>> wcs.lon2dms(245.0, 4)
Out[10]: ’ 245d 0m 0.0000s’
>>> wcs.lat2dms(45.0)
’+45d 00m 0.0s’
>>> help(wcs.lon2hms)

Calculate a rotation matrix:

>>> wcs.skymatrix(wcs.galactic, wcs.supergalactic)
(matrix([[-7.35742575e-01, 6.77261296e-01, -6.08581960e-17],

[-7.45537784e-02, -8.09914713e-02, 9.93922590e-01],
[6.73145302e-01, 7.31271166e-01, 1.10081262e-01]]), None, None)

188 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

17.8 Spectral transformations

17.8.1 Introduction

The most important documentation about conversions of spectral coordinates in WCSLIB is found paper “Repre-
sentations of spectral coordinates in FITS” (paper III, [Ref3]) In the next sections we show how wcs/WCSLIB
can deal with spectral conversions with the focus on conversions between frequencies and velocities. We discuss
conversion examples shown in the paper in detail and try to illustrate how wcs deals with FITS data from (legacy)
AIPS and GIPSY sources. In many of those files the reference frequencies and reference velocities are not given
in the same reference system (e.g. topocentric vs. barycentric). It is estimated that there are many of these
FITS files and that their headers generate wrong results when they are used to create an object the constructor of
wcs.Projection class unmodified. For FITS files generated with legacy software some extra interpretation
of the FITS header is applied. This procedure is described in more detail in the background information related to
spectral coordinates.

17.8.2 Transformations between frequencies and velocities

We built applications that use WCSLIB to convert grid positions, in an image or a spectrum, to world coordinates.
For spectral axes with frequency as the primary type (e.g. in the FITS header we read CTYPE3=’FREQ’), it is
possible to convert between pixel coordinates and frequencies, but also, if the header provides the correct infor-
mation, between pixel coordinates and velocities. WCSLIB expects that in a FITS header the given frequencies
are bound to the same standard of rest (i.e. reference system) as the given reference velocity. In practice however
there are many FITS files that list the frequencies in the topocentric system and a reference velocity in an inertial
system (barycentric, lsrk). In those FITS files the inertial systems are usually abbreviated with ‘HEL’ or ‘LSR’
(Heliocentric, Local Standard of Rest) and the velocities are usually not the true velocities but are either the so
called radio or optical velocities (of which we give the definitions in the background information about spectral
coordinates).

17.8.3 Basic spectral line header example

In “Representations of spectral coordinates in FITS” ([Ref3]) section 10.1 deals with an example of a VLA
spectral line cube which is regularly sampled in frequency (CTYPE3=’FREQ’). The section describes how one
can define alternative FITS headers to deal with different velocity definitions. We want to examine this exercise
in more detail than provided in the article to illustrate how a FITS header can be modified. In the background
information you find a more elaborate discussion. Here we summarize some results.

The topocentric spectral properties in the FITS header from the paper are:

CTYPE3= ’FREQ’
CRVAL3= 1.37835117405e9
CDELT3= 9.765625e4
CRPIX3= 32
CUNIT3= ’Hz’
RESTFRQ= 1.420405752e+9
SPECSYS=’TOPOCENT’

Usually such descriptions are part of a header that describes a three dimensional data structure where the first two
axes represent a spatial map as function of the third axis which is a spectral axis. This example tells us that the
spatial data corresponding with channel 32 was observed at a topocentric frequency (SPECSYS=’TOPOCENT’)
of 1.37835117405 GHz. The step size in frequency is 97.65625 kHz. A rest frequency (1.420405752e+9 Hz) is
needed to convert frequencies to velocities. The description of standard FITS keywords can be found in [FITS]

The topocentric frequency (for the receiver) was derived from a barycentric optical velocity of 9120 km/s that was
requested by an observer.

We prepared a minimal header to simulate this FITS header and calculate world coordinates for the spectral axis.
The numbers are frequencies. The units are Hz and the central frequency is CRVAL3. The step in frequency is

17.8. Spectral transformations 189

Kapteyn Package Documentation, Release 2.2

CDELT3. Our minimal header (here presented as a Python dictionary) shows only one axis so our header items
got axis number 1 (e.g. CRVAL1, CDELT1, etc.):

from kapteyn import wcs
header = { ’NAXIS’ : 1,

’CTYPE1’ : ’FREQ’,
’CRVAL1’ : 1.37835117405e9,
’CRPIX1’ : 32,
’CUNIT1’ : ’Hz’,
’CDELT1’ : 9.765625e4

}
proj = wcs.Projection(header)
pixels = range(30,35)
Fwcs = proj.toworld1d(pixels)
for p,f in zip(pixels, Fwcs):

print p, f

Output:
30 1378155861.55
31 1378253517.8
32 1378351174.05
33 1378448830.3
34 1378546486.55

The output shows frequency as function of pixel coordinate. Pixel coordinate 32 (=*CRPIX1*) shows the value
of CRVAL1. Now we have a method to find at which frequency a spatial map in the data cube was observed.

17.8.4 WCSLIB velocities from frequency data

Usually similar FITS headers provide information about a velocity. Velocities is what we need for the analysis
of the kinematics and dynamics of the observed objects. But there are several definitions for velocities (radio,
optical, apparent radial).

For the radio interferometer, like the WSRT, an observer requesting for an observation, needs to specify:

• A rest frequency

• A velocity or Doppler shift

• A frame definition (bary or lsrk)

• A conversion type (z, radio, optical)

• A time of observation. This time is needed (together with the location of the observatory) to calculate the
topocentric frequencies needed for the receivers

The observer requests that an observation must correspond to a velocity or Doppler shift (see list below) and a
reference system. Only then topocentric frequencies for the receivers can be calculated.

To convert to another spectral type the constructor from class wcs.Projection needs to know which spectral
type we want to convert to. The translation is set then with wcs.Projection.spectra(). which stands for
spectral translation.

The parameter that we need to set the translation is ctype. Its syntax follows the FITS convention, see note below.

Note: The first four characters of a spectral CTYPE specify the new coordinate type, the fifth character is ‘-’ and
the next three characters specify a predefined algorithm for computing the world coordinates from intermediate
physical coordinates ([Ref3]).

The following spectral types are supported (from [Ref3]):

190 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

Type Name Symbol Units Associated with
FREQ Frequency ν Hz ν
ENER Energy E J ν
WAVN Wavenumber κ 1/m ν
VRAD Radio velocity V m/s ν
WAVE Vacuum wavelength λ m λ
VOPT Optical velocity Z m/s λ
ZOPT Redshift z - λ
AWAV Air wavelength λa m λa
VELO Apparent radial velocity v m/s v
BETA Beta factor (v/c) β - v

The non-linear algorithm codes are (from [Ref3]):

Code sampled in Expressed as
F2W Frequency Wavelength
F2V Frequency Apparent radial velocity
F2A Frequency Air wavelength
W2F Wavelength Frequency
W2V Wavelength Apparent radial velocity
W2A Wavelength Air wavelength
V2F Apparent radial velocity Frequency
V2W Apparent radial velocity Wavelength
V2A Apparent radial velocity Air wavelength
A2F Air wavelength Frequency
A2W Air wavelength Wavelength
A2V Air wavelength Apparent radial velocity

If we want to convert pixel coordinates to optical velocities for our example header, then module wcs needs
to create a new projection object with ctype = VOPT-F2W because VOPT represents an optical velocity and
F2W sets the non linear algorithm which converts from the domain where the step size is constant (frequency)
to a velocity associated with wavelength (see table above). The following script shows how to use the method
wcs.Projection.spectra() to create this new object and how to convert the pixel coordinates:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 header = { ’NAXIS’ : 1,
4 ’CTYPE1’ : ’FREQ’,
5 ’CRVAL1’ : 1.37835117405e9,
6 ’CRPIX1’ : 32,
7 ’CUNIT1’ : ’Hz’,
8 ’CDELT1’ : 9.765625e4,
9 ’RESTFRQ’: 1.420405752e+9

10 }
11 proj = wcs.Projection(header)
12 spec = proj.spectra(’VOPT-F2W’)
13 pixels = range(30,35)
14 Vwcs = spec.toworld1d(pixels)
15 print "Pixel, velocity (%s)" % spec.units
16 for p,v in zip(pixels, Vwcs):
17 print p, v/1000.0
18

19 # Output:
20 # Pixel, velocity (m/s)
21 # 30 9190.68652655
22 # 31 9168.7935041
23 # 32 9146.90358389
24 # 33 9125.01676527
25 # 34 9103.13304757

Some comments about this example:

• It shows how to add the spectral translation to the projection object. For a conversion from fre-

17.8. Spectral transformations 191

Kapteyn Package Documentation, Release 2.2

quency to optical velocity one can derive a new object with spec = proj.spectra(‘VOPT-F2W’) or proj =
wcs.Projection(header).spectra(‘VOPT-F2W’).

• The output is a list with pixel coordinates and topocentric velocities. This explains why we don’t see the
requested velocity (9120 km/s) at CRPIX because that velocity was barycentric.

• When we enter an invalid algorithm code for the velocity, the script will raise an exception.

Why do we need a rest frequency?

To get a velocity, the rest frequency needs to be added (RESTFRQ=) to our minimal header. What you get then is
a list of velocities according to:

Z = c(
λ− λ0

λ0
) = c (

ν0 − ν
ν

) (17.1)

We adopted variable Z for velocities following the optical definition. The frequency as (linear) function of pixel
coordinate is:

ν = νref + (N −Nνref)δν (17.2)

where:

• νref is the reference frequency (CRVAL1)

• N is the pixel coordinate (FITS definition) we are interested in,

• Nνref is the frequency reference pixel (CRPIX1)

• δν is the frequency increment (CDELT1)

Let’s check this with a small script:

1 from kapteyn import wcs
2

3 header = { ’NAXIS’ : 1,
4 ’CTYPE1’ : ’FREQ’,
5 ’CRVAL1’ : 1.37835117405e9,
6 ’CRPIX1’ : 32,
7 ’CUNIT1’ : ’Hz’,
8 ’CDELT1’ : 9.765625e4,
9 ’RESTFRQ’: 1.420405752e+9

10 }
11 proj = wcs.Projection(header)
12 spec = proj.spectra(ctype=’VOPT-F2W’)
13 pixels = range(30,35)
14 Vopt = spec.toworld1d(pixels)
15

16 print "Pixel coordinate and velocity (%s) with wcs module:" % spec.units
17 for p,Z in zip(pixels, Vopt):
18 print p, Z/1000.0
19

20 print "\nPixel coordinate and velocity (%s) with documented formulas:" % spec.units
21 for p in pixels:
22 nu = header[’CRVAL1’] + (p-header[’CRPIX1’])*header[’CDELT1’]
23 Z = wcs.c*(header[’RESTFRQ’]-nu)/nu # wcs.c is speed of light in m/s
24 print p, Z/1000.0
25

26 # Pixel coordinate and velocity (m/s) with wcs module:
27 # 30 9190.68652655
28 # 31 9168.7935041
29 # 32 9146.90358389
30 # 33 9125.01676527
31 # 34 9103.13304757
32

33 # Pixel coordinate and velocity (m/s) with documented formulas:
34 # 30 9190.68652655

192 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

35 # 31 9168.7935041
36 # 32 9146.90358389
37 # 33 9125.01676527
38 # 34 9103.13304757

More checks are documented in the background information for spectral coordinates. This one should give you
some idea how WCSLIB transforms spectral coordinates. But we still didn’t address the question about the
reference systems. In our code example, this velocity Z is topocentric (defined in the reference system of the
observatory) and is not suitable for comparisons because the Earth is moving around its axis and around the
Sun. Other reference systems are the barycenter of the Solar system and the Local Standard of Rest. During
observations one knows the location of the source, the time of observation and the location of the observatory
on Earth. Software then can calculate the (true) velocity of the Earth with respect to a selected inertial reference
system and we can transform from topocentric velocities to velocities in another system. Usually these correction
velocities (called topocentric correction) are not recorded in the FITS file of the data set. The keyword to look for
is VELOSYS=

In the background information about spectral coordinates we give a recipe how one can change the value of
the reference frequency in CRVAL1 to a barycentric value. The result is CRVAL1=1.37847121643e+9 If you
substitute this value for CRVAL1 in the previous script, the output is:

Pixel coordinate and velocity (m/s) with wcs module:
30 9163.77531673
31 9141.88610757
32 9119.99999984
33 9098.11699288
34 9076.23708605

At pixel coordinate 32 (CRPIX1) the velocity is 9120 km/s as we required. So wcs always returns velocities in
the same system as the system of reference frequency.

Warning: Reference frequencies given in FITS keyword CRVALn refer to a reference system. This system
should be given with FITS keyword SPECSYS (e.g. SPECSYS=’TOPOCENT’). Module wcs converts be-
tween frequencies and velocities in the same reference system. You should inspect your FITS header to find
what this system is.

Warning: Legacy FITS headers often define frequencies in a Topocentric system. Also a reference velocity
is given in another reference system. WCSLIB needs instructions how to convert between these systems. If
legacy headers are recognized, module wcs tries to convert the frequency system to the reference system of
the reference velocity. See also the next section and the background documentation about spectral coordinates

17.8.5 Spectral CTYPE’s with special extensions

There are many (old) FITS headers which describe a system where the reference frequency is topocentric and
the required reference velocity is given for another reference system. These velocities are given with keywords
like VELR or DRVALn and the reference system for the velocities is given as an extension in CTYPEn (e.g.:
CTYPE3=’FREQ-OHEL’). Image processing systems like AIPS and GIPSY have their own tools to deal with
this. If wcs recognizes a legacy header, it tries to convert the reference frequency to the system of the required
velocity:

1 from kapteyn import wcs
2

3 header = { ’NAXIS’ : 1,
4 ’CTYPE1’ : ’FREQ-OHEL’,
5 ’CRVAL1’ : 1.415418199417E+09,
6 ’CRPIX1’ : 32,
7 ’CUNIT1’ : ’HZ’,
8 ’CDELT1’ : -7.812500000000E+04,
9 ’VELR’ : 1.050000000000E+06,

10 ’RESTFRQ’: 0.14204057520000E+10

17.8. Spectral transformations 193

Kapteyn Package Documentation, Release 2.2

11 }
12

13 proj = wcs.Projection(header)
14 ctype = ’FREQ-???’
15 if ctype != None:
16 spec = proj.spectra(ctype)
17 print "\nSelected spectral translation with algorithm code:", spec.ctype[0]
18 else:
19 spec = proj
20

21 crpix = header[’CRPIX1’]
22 print "CRVAL from header=%f, CRVAL modified=%f" % (header[’CRVAL1’], spec.crval[0])
23 print "CDELT from header=%f, CDELT modified=%f" % (header[’CDELT1’], spec.cdelt[0])
24 for i in range(-2,+3):
25 px = crpix + i
26 world = spec.toworld1d(px)
27 print "%d %f" % (px, world)
28

29 # Output:
30 # Selected spectral translation with algorithm code: FREQ
31 # CRVAL from header=1415418199.417000, CRVAL modified=1415448253.482287
32 # CDELT from header=-78125.000000, CDELT modified=-78123.341180
33 # 30 1415604500.164647
34 # 31 1415526376.823467
35 # 32 1415448253.482287
36 # 33 1415370130.141107
37 # 34 1415292006.799927

As spectral translation we selected ‘FREQ’. If you inspect the output list with frequencies then you will see that the
list doesn’t show the topocentric frequencies (with CRVAL1 at CRPIX1) but frequencies in the reference system
of the given (helocentric) velocity. The attributes spec.crval[0] and spec.cdelt[0] show new values unequal to the
header values.

If you want a list with topocentric frequencies then just omit to apply the wcs.Projection.spectra()
method (i.e. use ctype = None in example). The output is what we expect:

Output:
CRVAL from header=1415418199.417000, CRVAL modified=1415418199.417000
CDELT from header=-78125.000000, CDELT modified=-78125.000000
30 1415574449.417000
31 1415496324.417000
32 1415418199.417000
33 1415340074.417000
34 1415261949.417000

17.8.6 A note about algorithm codes

It is not always easy to figure out what the algorithm code should be if you want to convert to another spectral
type. Therefore WCSLIB allows wildcard characters for the last or the last three characters in CTYPEn. In our
example valid entries are:

• spec = proj.spectra(ctype=’VOPT-F2W’)

• spec = proj.spectra(ctype=’VOPT-F2?’)

• spec = proj.spectra(ctype=’VOPT-???’)

The missing algorithm code is returned in wcs.Projection.ctype as in:

>>> spec = proj.spectra(ctype=’VOPT-???’)
>>> print "Spectral translation with algorithm code:", spec.ctype[0]

Spectral translation with algorithm code: VOPT-F2W

194 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

Module wcs uses this feature to build a list with all spectral translations that are allowed for a given Projection
object. For each type in the table with spectral types, the wildcards are used to find the algorithm code (assuming
that for the given Projection objects and the spectral type only one algorithm is possible). A tuple is created with
the allowed spectral translation as first element and its associated unit as second element) and the tuple is added
to the list wcs.Projection.altspec.

Note: For a given header the attribute wcs.Projection.altspec stores all possible spectral translations.

The attribute is useful if you want to write code that prompts a user to enter a spectral translation from a list of
allowed translations. It can be used as follows:

from kapteyn import wcs

header = { ’NAXIS’ : 1,
’CTYPE1’ : ’VOPT’,
’CRVAL1’ : 9120,
’CRPIX1’ : 32,
’CUNIT1’ : ’km/s’,
’CDELT1’ : -21.882651442,
’RESTFRQ’: 1.420405752e+9

}

proj = wcs.Projection(header)
print "Allowed spectral translations:"
for as in proj.altspec:

print as
spec = proj.spectra(ctype=’FREQ-???’)
print "\nSelected spectral translation with algorithm code:", spec.ctype[0]

Output:
Allowed spectral translations:
(’FREQ-W2F’, ’Hz’)
(’ENER-W2F’, ’J’)
(’VOPT’, ’m/s’)
(’VRAD-W2F’, ’m/s’)
(’VELO-W2V’, ’m/s’)
(’WAVE’, ’m’)
(’ZOPT’, ’’)
(’BETA-W2V’, ’’)

Selected spectral translation with algorithm code: FREQ-W2F

17.8.7 From velocities to frequencies

In the background information about spectral coordinates we calculated that for a barycentric system the step
size in barycentric velocity is -21.882651442 km/s. Then we are able to setup a header with velocities and use a
spectral translation that converts to frequencies, as in the next example:

1 from kapteyn import wcs
2

3 header = { ’NAXIS’ : 1,
4 ’CTYPE1’ : ’VOPT-F2W’,
5 ’CRVAL1’ : 9120,
6 ’CRPIX1’ : 32,
7 ’CUNIT1’ : ’km/s’,
8 ’CDELT1’ : -21.882651442,
9 ’RESTFRQ’: 1.420405752e+9

10 }
11

12 proj = wcs.Projection(header)

17.8. Spectral transformations 195

Kapteyn Package Documentation, Release 2.2

13 spec = proj.spectra(ctype=’FREQ-???’)
14 print "Spectral translation with algorithm code:", spec.ctype[0]
15 pixels = range(30,35)
16 Freq = spec.toworld1d(pixels)
17

18 print "Pixel coordinate and frequency (%s)" % spec.units
19 for p,f in zip(pixels, Freq):
20 print p, f
21

22 # Output:
23 # Pixel coordinate and frequency (Hz):
24 # 30 1378275920.94
25 # 31 1378373568.68
26 # 32 1378471216.43
27 # 33 1378568864.18
28 # 34 1378666511.92

The reference frequency is at pixel coordinate 32 and its value (1378471216.43) is exactly the barycentric refer-
ence frequency that we used before. What happens if we left out the algorithm code in the header? The output
differs (except for the reference frequency at pixel 32). That is because it is assumed that the increments in
wavelength are constant and not those in frequency. This is confirmed by the returned algorithm code which is
FREQ-W2F if CTYPE1=’VOPT’

17.8.8 Processing real FITS data

With the knowledge we have at this moment, it is easy to make a small utility that looks for a spectral axis in a
FITS file and if it can find one, it converts 5 pixel coordinates in the neighbourhood of CRPIX to world coordinates
for all allowed spectral translations:

1 from kapteyn import wcs
2 import pyfits
3

4 f = raw_input("Enter name of FITS file: ")
5 hdulist = pyfits.open(f)
6 header = hdulist[0].header
7 proj = wcs.Projection(header)
8 ax = proj.specaxnum
9 if ax == None:

10 print "No spectral axis available"
11 else:
12 print "Spectral type from header:", proj.ctype[ax-1]
13 crpix = header[’CRPIX’+str(ax)]
14 for alt in proj.altspec:
15 line = proj.sub((ax,)).spectra(alt[0])
16 print "Pixel, world for translation %s" % alt[0]
17 for i in range(-2,+3):
18 px = crpix + i
19 world = line.toworld1d(px) # to world coordinates
20 print "%d %.10g (%s)" % (px, world, alt[1])

The projection object reads its header data from the first hdu of the FITS file (hdulist[0].hdr) and is set to only
convert the spectral axis of the data set: proj.sub((ax,)). Remember that the argument is a Python tuple but
we have only one axis so the tuple has an extra comma. Header items can be read from the header directly
(e.g. header[’CRPIX3’]). That’s how we find the value of CRPIX for the spectral axis. The allowed spectral
translations are read from attribute wcs.Projection.altspec.

We ran the example for a fits file called mclean.fits which is a HI data cube and the third axis is the spectral axis:

Enter name of FITS file: mclean.fits
Spectral type from header: FREQ
Pixel, world for translation FREQ
28 1415604500 (Hz)

196 Chapter 17. Tutorial wcs module

Kapteyn Package Documentation, Release 2.2

29 1415526377 (Hz)
30 1415448253 (Hz)
31 1415370130 (Hz)
32 1415292007 (Hz)
Pixel, world for translation ENER
28 9.379902296e-25 (J)
29 9.379384645e-25 (J)
30 9.378866994e-25 (J)
31 9.378349343e-25 (J)
32 9.377831692e-25 (J)
Pixel, world for translation VOPT-F2W
28 1016794.655 (m/s)
29 1033396.411 (m/s)
30 1050000 (m/s)
31 1066605.422 (m/s)
32 1083212.677 (m/s)
etc. etc.

17.9 References

17.9. References 197

Kapteyn Package Documentation, Release 2.2

198 Chapter 17. Tutorial wcs module

CHAPTER 18

Tutorial maputils module

18.1 Introduction

Module maputils is your toolkit for writing small and dedicated applications for the inspection and of FITS
headers, the extraction, manipulation display and re-projection of (FITS) data, interactive inspection of this data
(color editing) and for the creation of plots with world coordinate information. Many of the examples in this
tutorial are small applications which can be used with your own data with only small modifications (like file
names etc.).

Module maputils provides methods to draw a graticule in a plot showing the world coordinates in the given
projection and sky system. One can plot spatial rulers which show offsets of constant distance whatever the
projection of the map is. We will also demonstrate how to create a so called all-sky plot

The module combines the functionality in modules wcs and celestial from the Kapteyn package, together
with Matplotlib, into a powerful module for the extraction and display of FITS image data or external data de-
scribed by a FITS header or a Python dictionary with FITS keywords (so in principle you are not bound to FITS
files).

We show examples of:

• overlays of different graticules (each representing a different sky system),

• plots of data slices from a data set with more than two axes (e.g. a FITS file with channel maps from a radio
interferometer observation)

• plots with a spectral axis with a ‘spectral translation’ (e.g. Frequency to Radio velocity)

• rulers showing offsets in spatial distance

• overlay a second image on a base image

• plot that covers the entire sky (allsky plot)

• mosaics of multiple images (e.g. HI channel maps)

• a simple movie loop program to view ‘channel’ maps.

We describe simple methods to add interaction to the Matplotlib canvas e.g. for changing color maps or color
ranges.

In this tutorial we assume a basic knowledge of FITS files. Also a basic knowledge of Matplotlib is handy but
not necessary to be able to modify the examples in this tutorial to suit your own needs. For useful references see
information below.

See Also:

FITS standard A pdf document that describes the current FITS standard.

Matplotlib Starting point for documentation about plotting with Matplotlib.

PyFITS Package for reading and writing FITS files.

199

http://fits.gsfc.nasa.gov/standard30/fits_standard30.pdf
http://matplotlib.sourceforge.net/index.html
http://www.stsci.edu/resources/software_hardware/pyfits

Kapteyn Package Documentation, Release 2.2

Module celestial Documentation of sky- and reference systems. Useful if you need to define a celestial
system.

Module wcsgrat Documentation about graticules. Useful if you want to fine tune the wcs coordinate grid.

18.2 Maputils basics

Building small display- and analysis utilities with maputils is easy. The complexity is usually in finding the
right parameters in the right methods or functions to achieve special effects. The structure of a script to create a
plot using maputils can be summarized with:

• Import maputils module

• Get data from a FITS file or another source

• Create a plot window and tell it where to plot your data

• From the object that contains your data, derive new objects

• With the methods of these new objects, plot an image, contours, graticule etc.

• Do the actual plotting and in a second step fine tune plot properties of various objects

• Inspect, print or save your plot or save your new data to file on disk.

In the example below it is easy to identify these steps:

Example: mu_basic1.py - Show image and allow for color interaction

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 f = maputils.FITSimage("m101.fits")
5 fig = plt.figure()
6 frame = fig.add_subplot(1,1,1)
7 annim = f.Annotatedimage(frame)
8 annim.Image()
9 annim.Graticule()

10 annim.plot()
11 annim.interact_imagecolors()
12 plt.show()

18.3 FITS files

18.3.1 A simple utility to analyze a FITS file

With module maputils one can extract image data from a FITS file, modify it and write it to another FITS file
on disk. The methods we use for these purposes are based on package PyFITS, but are adapted to function in the
environment of the Kapteyn Package. Note that PyFITS is not part of the Kapteyn Package.

With maputils one can also extract data slices from data described by more than two axes (e.g. images as
function of velocity or polarization). For data with only two axes, it can swap those axes (e.g. to swap R.A. and
Declination). Also the limits of the data can be set to extract part of 2-dimensional data. To be able to create plots
of unfamiliar data without any user interaction, you need to know some of the characteristics of this data before
you can extract the right slice. Module maputils provides routines that can display this relevant information.

First you need to create an object from class maputils.FITSimage. Some information is extracted from the
FITS header directly. Other information is extracted from attributes of a wcs.Projection object defined in
module wcs. Method maputils.FITSimage.str_axisinfo() gets its information from a header and its
associated Projection object. It provides information about things like the sky system and the spectral system, as
strings, so the method is suitable to get verbose information for display on terminals and in gui’s.

200 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

Next we show a simple script which prints meta information of the FITS file ngc6946.fits:

Example: mu_fitsutils.py - Print meta data from FITS header or Python dictionary

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 fitsobject = maputils.FITSimage(’ngc6946.fits’)
5

6 print("HEADER:\n")
7 print fitsobject.str_header()
8

9 print("\nAXES INFO:\n")
10 print fitsobject.str_axisinfo()
11

12 print("\nEXTENDED AXES INFO:\n")
13 print fitsobject.str_axisinfo(long=True)
14

15 print("\nAXES INFO for image axes only:\n")
16 print fitsobject.str_axisinfo(axnum=fitsobject.axperm)
17

18 print("\nAXES INFO for non existing axis:\n")
19 print fitsobject.str_axisinfo(axnum=4)
20

21 print("SPECTRAL INFO:\n")
22 fitsobject.set_imageaxes(axnr1=1, axnr2=3)
23 print fitsobject.str_spectrans()

This code generates the following output:

1 print """
2 HEADER:
3

4 SIMPLE = T / SIMPLE FITS FORMAT
5 BITPIX = -32 / NUMBER OF BITS PER PIXEL
6 NAXIS = 3 / NUMBER OF AXES
7 NAXIS1 = 100 / LENGTH OF AXIS
8 etc.
9

10 AXES INFO:
11

12 Axis 1: RA---NCP from pixel 1 to 100
13 {crpix=51 crval=-51.2821 cdelt=-0.007166 (DEGREE)}
14 {wcs type=longitude, wcs unit=deg}
15 etc.
16

17 EXTENDED AXES INFO:
18

19 axisnr - Axis number: 1
20 axlen - Length of axis in pixels (NAXIS): 100
21 ctype - Type of axis (CTYPE): RA---NCP
22 axnamelong - Long axis name: RA---NCP
23 axname - Short axis name: RA
24 etc.
25

26 WCS INFO:
27

28 Current sky system: Equatorial
29 reference system: ICRS
30 Output sky system: Equatorial
31 Output reference system: ICRS
32 etc.
33

34 SPECTRAL INFO:

18.3. FITS files 201

Kapteyn Package Documentation, Release 2.2

35

36 0 FREQ-V2F (Hz)
37 1 ENER-V2F (J)
38 2 WAVN-V2F (1/m)
39 3 VOPT-V2W (m/s)
40 etc.
41 """

The example extracts data from a FITS file on disk as given in the example code. To make the script a real utility
one should allow the user to enter a file name. This can be done with Python’s raw-input function but to make it
robust one should check the existence of a file, and if a FITS file has more than one header, one should prompt the
user to specify the header. We also have to deal with alternate headers for world coordinate systems (WCS) etc.
etc.

Note: To facilitate parameter settings we implemented so called prompt function. These are external functions
which read context in a terminal and then set reasonable defaults for the required parameters in a prompt. These
functions can serve as templates for more advanced functions which are used in gui environments.

The projection class from wcs interprests and stores the header information. It serves as the interface between
maputils and the library WCSLIB.

Example: mu_projection.py - Get data from attributes of the projection system

1 from kapteyn import maputils
2

3 print "Projection object from FITSimage:"
4 fitsobj = maputils.FITSimage("mclean.fits")
5 print "crvals:", fitsobj.convproj.crval
6 fitsobj.set_imageaxes(1,3)
7 print "crvals after axes specification:", fitsobj.convproj.crval
8 fitsobj.set_spectrans("VOPT-???")
9 print "crvals after setting spectral translation:", fitsobj.convproj.crval

10

11 print "Projection object from Annotatedimage:"
12 annim = fitsobj.Annotatedimage()
13 print "crvals:", annim.projection.crval

The output:

Projection object from FITSimage:
crvals: (178.7792, 53.655000000000001)
crvals after axes specification: (178.7792, 1415418199.4170001, 53.655000000000001)
crvals after setting spectral translation: (178.7792, 1050000.0000000042, 53.655000000000001)
Projection object from Annotatedimage:
crvals: (178.7792, 1050000.0000000042, 53.655000000000001)

Explanation:

As soon as the FITSimage object is created, it is assumed that the first two axes are the axes of the data you want
to display. After setting alternative axes, a slice is taken and the projection system is changed. Now it shows
attributes in the order of the slice and we see a third value in the tuple with term:CRVAL‘s. That’s because the last
value represents the necessary matching spatial axis which is needed to do conversions between pixels and world
coordinates.

As a next step we set a spectral translation for the second axis which is a frequency axis. Again the projection
system changes. We did set the translation to an optical velocity and the printed CRVAL is indeed the reference
optical velocity from the header of this FITS file (1050 km/s).

When an object from class maputils.Annotatedimage is created, the projection data
is copied from the maputils.FITSimage object. It can be accessed through the
maputils.Annotatedimage.projection attribute (last line of the above example).

202 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

18.3.2 Specification of a map

Class maputils.FITSimage extracts data from a FITS file so that a map can be plotted with its associated
world coordinate system. So we have to specify a number of parameters to get the required image data. This is
done with the following methods:

• Header - The constructor maputils.FITSimage needs name and path of the FITS file. It can be a file
on disk or an URL. The file can be zipped. A FITS file can contain more than one header data unit. If this is
an issue you need to enter the number of the unit that you want to use. A case insensitive name of the hdu is
also allowed. A FITS header can also contain one or more alternate headers. Usually these describe another
sky or spectral system. We list three examples. The first is a complete description of the FITS header. The
second get its parameters from an external ‘prompt’ function (see next section) and the third uses a prompt
function with a pre specfication of parameter alter which sets the alternate header.

>>> fitsobject = maputils.FITSimage(’alt2.fits’, hdunr=0, alter=’A’, memmap=1)
>>> fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
>>> fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile, alter=’A’)
>>> fitsobject = maputils.FITSimage(’NICMOSn4hk12010_mos.fits’, hdunr=’err’)

Later we will also discuss examples where we use external headers (i.e. not from a FITS file, but as a Python
dictionary) and external data (i.e. from another source or from processed data). The user/programmer is
responsible for the right shape of the data. Here is a small example of processed data:

>>> f = maputils.FITSimage("m101.fits", externaldata=log(abs(fftA)+1.0))

• Axis numbers - Method maputils.FITSimage.set_imageaxes() sets the axis numbers. These
numbers follow the FITS standard, i.e. they start with 1. If the data has only two axes then it is possible to
swap the axes. This method can be used in combination with an external prompt function. If the data has
more than two axes, then the default value for the axis numbers axnr1=1 and axnr2=2. One can also enter
the names of the axes. The input is case insensitive and a minimal match is applied to the axis names found
in the CTYPE keywords in the header. Examples are:

>>> fitsobject.set_imageaxes(promptfie=maputils.prompt_imageaxes)
>>> fitsobject.set_imageaxes(axnr1=2, axnr2=1)
>>> fitsobject.set_imageaxes(2,1) # swap
>>> fitsobject.set_imageaxes(1,3) # XV map
>>> fitsobject.set_imageaxes(’R’,’D’) # RA-DEC map
>>> fitsobject.set_imageaxes(’ra’,’freq’) # RA-FREQ map

• Data slices from data sets with more than two axes - For an artificial set called ‘manyaxes.fits’, we want
to extract one spatial map. The axes order is [frequency, declination, right ascension, stokes]. We extract a
data slice at FREQ=2 and STOKES=1. This spatial map is obtained with the following lines:

>>> fitsobject = maputils.FITSimage(’manyaxes.fits’) # FREQ-DEC-RA-STOKES
>>> fitsobject.set_imageaxes(axnr1=3, axnr2=2, slicepos=(2,1))

• Coordinate limits - If you want to extract only a part of the image then you need to set limits for the pixel
coordinates. This is set with maputils.FITSimage.set_limits(). The limits can be set manually
or with a prompt function. Here are examples of both:

>>> fitsobject.set_limits(pxlim=(20,40), pylim=(22,38))
>>> fitsobject.set_limits((20,40), (22,38))
>>> fitsobject.set_limits(promptfie=maputils.prompt_box)

• Output sky definition - For conversions between pixel- and world coordinates one can define to
which output sky definition the world coordinates are related. The sky parameters are set with
maputils.FITSimage.set_skyout(). The syntax for a sky definition (sky system, reference sys-
tem, equinox, epoch of observation) is documented in celestial.skymatrix().

>>> fitsobject = maputils.FITSimage(’m101.fits’)
>>> fitsobject.set_skyout("Equatorial, J1952, FK4_no_e, J1980")

or:
>>> fitsobject.set_skyout(promptfie=maputils.prompt_skyout)

18.3. FITS files 203

Kapteyn Package Documentation, Release 2.2

Writing data to a FITS file or to append data to a FITS file is also possible. The method written for these purposes
is called writetofits(). It has parameters to scale data and it is possible to skip writing history and comment
keywords. Have a look at the examples:

>>> # Write data with scaling
>>> fitsobject.writetofits(history=True, comment=True,

bitpix=fitsobject.bitpix,
bzero=fitsobject.bzero,
bscale=fitsobject.bscale,
blank=fitsobject.blank)

>>> # Append data to existing FITS file
>>> fitsobject.writetofits("standard.fits", append=True, history=False, comment=False)

18.4 Prompt functions

Usually one doesn’t know exactly what’s in the header of a FITS file or one has limited knowledge about the input
parameters in maputils.FITSimage.set_imageaxes() Then a helper function to get the right input is
available. It is called maputils.prompt_imageaxes() which works only in a terminal.

But a complete description of the world coordinate system implies also that it should possible to set limits for the
pixel coordinates (e.g. to extract the most interesting part of the entire image) and specify the sky system in which
we present a spatial map or the spectral translation (e.g. from frequency to velocity) for an image with a spectral
axis. It is easy to turn our basic script into an interactive application that sets all necessary parameters to extract
the required image data from a FITS file. The next script is an example how we use prompt functions to ask a user
to enter relevant information. These prompt functions are external functions. They are aware of the data context
and set reasonable defaults for the required parameters.

Example: mu_getfitsimage.py - Use prompt functions to set attributes of the FITSimage object and print infor-
mation about the world coordinate system

1 from kapteyn import maputils
2

3 fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
4 print fitsobject.str_axisinfo()
5 fitsobject.set_imageaxes(promptfie=maputils.prompt_imageaxes)
6 fitsobject.set_limits(promptfie=maputils.prompt_box)
7 print fitsobject.str_spectrans()
8 fitsobject.set_spectrans(promptfie=maputils.prompt_spectrans)
9 fitsobject.set_skyout(promptfie=maputils.prompt_skyout)

10

11 print("\nWCS INFO:")
12 print fitsobject.str_wcsinfo()

Example: fitsview - Use prompt functions to create a script that displays a FITS image

As a summary we present a small but handy utility to display a FITS image using prompt functions. The name of
the FITS file can be a command line argument e.g.: ./fitsimage m101.fits For this you need to download
the code and make the script executable (e.g. chmod u+x) and run it from the command line like:

>>> ./fitsview m101.fits

1 #!/usr/bin/env python
2 from kapteyn import wcsgrat, maputils
3 from matplotlib import pylab as plt
4 import sys
5

6 # Create a maputils FITS object from a FITS file on disk
7 if len(sys.argv) > 1:
8 filename = sys.argv[1]
9 fitsobject = maputils.FITSimage(filespec=filename,

204 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

10 promptfie=maputils.prompt_fitsfile, prompt=False)
11 else:
12 fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
13

14 fitsobject.set_imageaxes(promptfie=maputils.prompt_imageaxes)
15 fitsobject.set_limits(promptfie=maputils.prompt_box)
16 fitsobject.set_skyout(promptfie=maputils.prompt_skyout)
17 fitsobject.set_spectrans(promptfie=maputils.prompt_spectrans)
18 clipmin, clipmax = maputils.prompt_dataminmax(fitsobject)
19

20 # Get connected to Matplotlib
21 fig = plt.figure()
22 frame = fig.add_subplot(1,1,1)
23

24 # Create an image to be used in Matplotlib
25 annim = fitsobject.Annotatedimage(frame, clipmin=clipmin, clipmax=clipmax)
26 annim.Image()
27 annim.Graticule()
28 #annim.Contours()
29 frame.set_title(fitsobject.filename, y=1.03)
30 annim.plot()
31

32 annim.interact_toolbarinfo()
33 annim.interact_imagecolors()
34 annim.interact_writepos()
35

36 plt.show()

18.5 Image objects

18.5.1 Basic image

If one is interested in displaying image data only (i.e. without any wcs information) then we need very few lines
of code as we show in the next example.

Example: mu_simple.py - Minimal script to display image data

from kapteyn import maputils
from matplotlib import pyplot as plt

f = maputils.FITSimage("m101.fits")
mplim = f.Annotatedimage()
im = mplim.Image()
mplim.plot()

plt.show()

Explanation:

This is a simple script that displays an image using the defaults for the axes, the limits, the color map
and many other properties. From an object from class maputils.FITSimage an object from class
maputils.FITSimage.Annotatedimage is derived.

This object has methods to create other objects (image, contours, graticule, ruler etc.) that can be plotted with
Matplotlib. To plot these objects we need to call method maputils.Annotatedimage.plot()

If you are only interested in displaying the image and don’t want any white space around the plot then you need
to specify a Matplotlib frame as parameter for maputils.Annotatedimage(). This frame is created with
Matplotlib’s add_subplot() or add_axes(). The latter has options to specify origin and size of the frame in so called
normalized coordinates [0,1]. Note that images are displayed while preserving the pixel aspect ratio. Therefore
images are scaled to fit either the given width or the given height.

18.5. Image objects 205

Kapteyn Package Documentation, Release 2.2

In the next example we reduce whitespace and use keyword parameters cmap, clipmin and clipmax to set a color
map and the clip levels between which the color mapping is applied.

Example: mu_withimage.py - Display image data using keyword parameters

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 fitsobj = maputils.FITSimage("m101.fits")
5 fitsobj.set_limits((180,344), (180,344))
6

7 fig = plt.figure(figsize=(4,4))
8 frame = fig.add_axes([0,0,1,1])
9

10 annim = fitsobj.Annotatedimage(frame, cmap="spectral", clipmin=10000, clipmax=15500)
11 annim.Image(interpolation=’spline36’)
12 print "clip min, max:", annim.clipmin, annim.clipmax
13 annim.plot()
14

15 plt.show()

Fig.: mu_withimage.py - Image with non default plot frame and parameters for color map and clip levels.

18.5.2 RGB image

It is possible to compose an image from three separate images which represent a red, green and
blue component. In this case you need to create an maputils.Annotatedimage object first.
The data associated with this image can be used to draw e.g. contours, while the parame-
ters of the method maputils.Annotatedimage.RGBimage() compose the RGB image. The
maputils.Annotatedimage.RGBimage() method creates a new data array and inserts your R, G & B
images in the right place. Then it scales the composed data to a range between 0 and 1. For an RGB image we

206 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

don’t apply interactive color bar editing, but allow for the use of a function or lambda expression to rescale the
data to enhance features. In the example we used keyword parameter fun to square the data to enhance the image
a bit.

Example: mu_rgbdemo.py - display RGB image

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 # In the comments we show how to set a smaller box t display
5 f_red = maputils.FITSimage(’m101_red.fits’)
6 #f_red.set_limits((200,300),(200,300))
7 f_green = maputils.FITSimage(’m101_green.fits’)
8 #f_green.set_limits((200,300),(200,300))
9 f_blue = maputils.FITSimage(’m101_blue.fits’)

10 #f_blue.set_limits((200,300),(200,300))
11

12 # Show the three components R,G & B separately
13 # Show Z values when moving the mouse
14 fig = plt.figure()
15 frame = fig.add_subplot(2,2,1); frame.set_title("Red with noise")
16 a = f_red.Annotatedimage(frame); a.Image()
17 a.interact_toolbarinfo(wcsfmt=None, zfmt="%g")
18 frame = fig.add_subplot(2,2,2); frame.set_title("Greens are 1")
19 a = f_green.Annotatedimage(frame); a.Image()
20 a.interact_toolbarinfo(wcsfmt=None, zfmt="%g")
21 frame = fig.add_subplot(2,2,3); frame.set_title("Blues are 1")
22 a = f_blue.Annotatedimage(frame); a.Image()
23 a.interact_toolbarinfo(wcsfmt=None, zfmt="%g")
24

25 # Plot the composed RGB image
26 frame = fig.add_subplot(2,2,4); frame.set_title("RGB composed of previous")
27 annim = f_red.Annotatedimage(frame)
28 annim.RGBimage(f_red, f_green, f_blue, fun=lambda x:x*x, alpha=1)
29

18.5. Image objects 207

Kapteyn Package Documentation, Release 2.2

30

31 # Note: color interaction not possible (RGB is fixed)
32 annim.interact_toolbarinfo(wcsfmt=None, zfmt="%g")
33 # Write RGB values to terminal after clicking left mouse button
34 annim.interact_writepos(pixfmt=None, wcsfmt="%.12f", zfmt="%.3e", hmsdms=False)
35 maputils.showall()

Red with noise Greens are 1

Blues are 1 RGB composed of previous

Explanation:

Three FITS files contain data in rectangular shapes in different positions. If you want to use only a
part of the images you need to set limits (with method set_limits()) for each image separately.
The shapes in these example data files have values 1 (or near 1) and do overlap to illustrate the com-
position of a new color. The region where three shapes overlap is white in the composed output im-
age. For each RGB component a maputils.FITSimage is created. One of these is used to make a
maputils.FITSimage.Annotatedimage object. The three FITSimage objects are used as parameters
for method maputils.Annotatedimage.RGBimage() to set the individual components of a RGB image.
The red component is a bit special because we added some Gaussian noise to it. A second parameter used in the
method is alpha. This is an alpha factor which applies to all the pixels in the composed map.

This script also displays a message in the message tool bar with information about mouse positions and the
corresponding image value. For an RGB image, all three image values (z values) are displayed. The format of
the message is changed with parameters in maputils.Annotatedimage.interact_toolbarinfo()
as in:

>>> annim.interact_toolbarinfo(wcsfmt=None, zfmt="%g")

18.5.3 Figure size

In the previous example we specified a size in inches for the figure. We provide a method
maputils.FITSimage.get_figsize() to set the figure size in cm. Enter only the direction for which

208 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

you want to set the size. The other size is calculated using the pixel aspect ratio, but then it is not garanteed that
all labels will fit. The method is used as follows:

>>> fig = plt.figure(figsize=f.get_figsize(xsize=15, cm=True))

18.6 Graticules

18.6.1 Introduction

Module maputils can create graticule objects with method maputils.Annotatedimage.Graticule().
But in fact the method that does all the work is defined in module wcsgrat So in the next sections we often
refer to module wcsgrat.

Module wcsgrat creates a graticule for a given header with WCS information. That implies that it finds positions
on a curve in 2 dimensions in image data for which one of the world coordinates is a constant value. These
positions are stored in a graticule object. The positions at which these lines cross one of the sides of the rectangle
(made up by the limits in pixels in both x- and y-direction), are stored in a list together with a text label showing
the world coordinate of the crossing.

18.6.2 Simple example

Example: mu_axnumdemosimple.py - Simple plot using defaults

from kapteyn import maputils
from matplotlib import pyplot as plt

fitsobj = maputils.FITSimage("m101.fits")
mplim = fitsobj.Annotatedimage()
graticule = mplim.Graticule()
mplim.plot()

plt.show()

Explanation:

The script opens an existing FITS file. Its header is parsed by methods in module wcs and methods from classes
in module wcsgrat calculate the graticule data. A plot is made with Matplotlib. Note the small rotation of the
graticules.

The recipe:

• Given a FITS file on disk (m101.fits) we want to plot a graticule for the spatial axes in the FITS file.

• The necessary information is retrieved from the FITS header with PyFITS through class
maputils.FITSimage.

• To plot something we need to tell method maputils.FITSimage.Annotatedimage() in which
frame it must plot. Therefore we need a Matplotlib figure instance and a Matplotlib Axes instance (which
we call a frame in the context of maputils).

• A graticule representation is calculated by maputils.Annotatedimage.Graticule() and stored
in object grat. The maximum number of defaults are used.

• Finally we tell the Annotated image object mplim to plot itself and display the result with Matplotlib’s
function show(). This last step can be compressed to one statement: maputils.showall() which plots
all the annotated images in your script at once and then call Matplotlib’s function show().

The wcsgrat module estimates the ranges in world coordinates in the coordinate system defined in your FITS
file. The method is just brute force. This is the only way to get good estimates for large maps, rotated maps
maps with weird projections (e.g. Bonne) etc. It is also possible to enter your own world coordinates to set limits.
Methods in this module calculate ‘nice’ numbers to annotate the plot axes and to set default plot attributes.

18.6. Graticules 209

Kapteyn Package Documentation, Release 2.2

14h 03m 00s 02m 30s03m 30s04m 00s

R.A. (2000.0)

54 ◦ 20′ 00′′

15′

25′

D
e
c.

 (
2

0
0

0
.0

)

Hint: Matplotlib versions older than 0.98 use module pylab instead of pyplot. You need to change the import
statement to: from matplotlib import pylab as plt

Probably you already have many questions about what wcsgrat can do more:

• Is it possible to draw labels only and no graticule lines?

• Can I change the starting point and step size for the coordinate labels?

• Is it possible to change the default tick label format?

• Can I change the default titles along the axes?

• Is it possible to highlight (e.g. by changing color) just one graticule line?

• Can I plot graticules in maps with one spatial- and one spectral coordinate?

• Can I control the aspect ratio of the plot?

• Is it possible to set limits on pixel coordinates?

In the following sections we will give a number of examples to answer most of these questions.

18.6.3 Selecting axes for image or graticule

For data sets with more than 2 axes or data sets with swapped axes (e.g. Declination as first axis and Right
Ascension as second), we need to make a choice of the axes and axes order. To demonstrate this we created a
FITS file with four axes. The order of the axes is uncommon and should only demonstrate the flexibility of the
maputils module. We list the data for these axes in this ‘artificial’ FITS file:

Filename: manyaxes.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 44 (10, 50, 50, 4) int32
Axis 1 is FREQ runs from pixel 1 to 10 (crpix=5 crval,cdelt=1.37835, 9.76563e-05 GHZ)

210 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

Axis 2 is DEC runs from pixel 1 to 50 (crpix=30 crval,cdelt=45, -0.01 DEGREE)
Axis 3 is RA runs from pixel 1 to 50 (crpix=25 crval,cdelt=30, -0.01 DEGREE)
Axis 4 is POL runs from pixel 1 to 4 (crpix=1 crval,cdelt=1000, 10 STOKES)

You can download the file manyaxes.fits for testing. The world coordinate system is arbitrary.

Example: mu_manyaxes.py - Selecting WCS axes from a FITS file with NAXIS > 2

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 # 1. Read the header
5 fitsobj = maputils.FITSimage("manyaxes.fits")
6

7 # 2. Create a Matplotlib Figure and Axes instance
8 figsize=fitsobj.get_figsize(ysize=12, xsize=11, cm=True)
9 fig = plt.figure(figsize=figsize)

10 frame = fig.add_subplot(1,1,1)
11

12 # 3. Create a graticule
13 fitsobj.set_imageaxes(’freq’,’pol’)
14 mplim = fitsobj.Annotatedimage(frame)
15 grat = mplim.Graticule(starty=1000, deltay=10)
16

17 # 4. Show the calculated world coordinates along y-axis
18 print "The world coordinates along the y-axis:", grat.ystarts
19

20 # 5. Show header information in attributes of the Projection object
21 # The projection object of a graticule is attribute ’gmap’
22 print "CRVAL, CDELT from header:", grat.gmap.crval, grat.gmap.cdelt
23

24 # 6. Set a number of properties of the graticules and plot axes
25 grat.setp_tick(plotaxis="bottom",
26 fun=lambda x: x/1.0e9, fmt="%.4f",
27 rotation=-30)
28

29 grat.setp_axislabel("bottom", label="Frequency (GHz)")
30 grat.setp_gratline(wcsaxis=0, position=grat.gmap.crval[0],
31 tol=0.5*grat.gmap.cdelt[0], color=’r’)
32 grat.setp_ticklabel(plotaxis="left", position=1000, color=’m’, fmt="I")
33 grat.setp_ticklabel(plotaxis="left", position=1010, color=’b’, fmt="Q")
34 grat.setp_ticklabel(plotaxis="left", position=1020, color=’r’, fmt="U")
35 grat.setp_ticklabel(plotaxis="left", position=1030, color=’g’, fmt="V")
36 grat.setp_axislabel("left", label="Stokes parameters")
37

38

39 # 7. Set a title for this frame
40 title = r"""Polarization as function of frequency at:
41 $(\alpha_0,\delta_0) = (121^o,53^o)$"""
42 t = frame.set_title(title, color=’#006400’, y=1.01, linespacing=1.4)
43

44 # 8. Add labels inside plot
45 inlabs = grat.Insidelabels(wcsaxis=0, constval=1015,
46 deltapx=-0.15, rotation=90,
47 fontsize=10, color=’r’,
48 fun=lambda x: x*1e-9, fmt="%.4f.10^9")
49

50 w = grat.gmap.crval[0] + 0.2*grat.gmap.cdelt[0]
51 cv = grat.gmap.crval[1]
52 # Print without any formatting
53 inlab2 = grat.Insidelabels(wcsaxis=0, world=w, constval=cv,
54 deltapy=0.1, rotation=20,
55 fontsize=10, color=’c’)

18.6. Graticules 211

http://www.astro.rug.nl/software/kapteyn/EXAMPLES/manyaxes.fits

Kapteyn Package Documentation, Release 2.2

56

57 pixel = grat.gmap.topixel((w,grat.gmap.crval[1]))
58 frame.plot((pixel[0],), (pixel[1],), ’o’, color=’red’)
59

60 # 9. Plot the objects
61 maputils.showall()

Polarization as function of frequency at:
 (α0 ,δ0) =(121o ,53o)

1.3784
1.3782

1.3780
1.3786

1.3788

Frequency (GHz)

I

Q

U

V

S
to

ke
s

p
a
ra

m
e
te

rs

1.
37

84
.1

09

1.
37

82
.1

09

1.
37

80
.1

09

1.
37

86
.1

09

1.
37

88
.1

09

1.37
837

e+09

The plot shows a system of grid lines that correspond to non spatial axes and it will be no surprise that the graticule
is a rectangular system. The example follows the same recipe as the previous ones and it shows how one selects
the required plot axes in a FITS file. The axes are set with maputils.FITSimage.set_imageaxes()
with two numbers. The first axis of a set is axis 1, the second 2, etc. (i.e. FITS standard). The default is (1,2) i.e.
the first two axes in a FITS header.

For a R.A.-Dec. graticule one should enter for this FITS file:

>>> f.set_imageaxes(3,2)

Note: If a FITS file has data which has more than two dimensions or it has two dimensions
but you want to swap the x- and y axis then you need to specify the relevant FITS axes with
maputils.FITSimage.set_imageaxes(). The (FITS) axes numbers correspond to the number n in the
FITS keyword CTYPEn (e.g. CTYPE3=’FREQ’ then the frequency axis corresponds to number 3).

Let’s study the plot in more detail:

• The header shows a Stokes axes with an uncommon value for CRVAL and CDELT. We want to label four
graticule lines with the familiar Stokes parameters. With the knowledge we have about this CRVAL and
CDELT we tell the Graticule constructor to create 4 graticule lines (starty=1000, deltay=10).

• The four positions are stored in attribute ystarts as in grat.ystarts. We use these numbers to change the
coordinate labels into Stokes parameters with method wcsgrat.Graticule.setp_ticklabel()

212 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

>>> grat.setp_ticklabel(plotaxis="left", position=1000, color=’m’, fmt="I")

• We use wcsgrat.Insidelabels() to add coordinate labels inside the plot. We mark a position near
CRVAL and plot a label and with the same method we added a single label at that position.

This example shows an important feature of the underlying module wcsgrat and that is its possibility to change
properties of graticules, ticks and labels. We summarize:

• Graticule line properties are set with wcsgrat.Graticule.setp_gratline() or the equivalent
wcsgrat.Graticule.setp_lineswcs1() or wcsgrat.Graticule.setp_lineswcs1().
The properties are all Matplotlib properties given as keyword arguments. One can apply these to all graticule
lines, to one of the wcs types or to one graticule line (identified by its position in world coordinates).

• Graticule ticks (the intersections with the borders) are modified by method
wcsgrat.Graticule.setp_tick(). Ticks are identified by either the wcs axis (e.g. lon-
gitude or latitude) or by one of the four rectangular plot axes or by a position in world coor-
dinates. Combinations of these are also possible. Plot properties are given as Matplotlib key-
word arguments. The labels can be scaled and formatted with parameters fun and fmt. Usu-
ally one uses method wcsgrat.Graticule.setp_ticklabel() to change tick labels and
wcsgrat.Graticule.setp_tickmark() to change the tick markers.

• Ticks can be native to a plot axis (e.g. an pixel X axis which corresponds to a R.A. axis in world coordinates.
But sometimes you can have ticks from two world coordinate axes along the same pixel axis (e.g. for a
rotated plot). Then it is possible to control which ticks are plotted and which not. A tick mode for one or
more plot/pixel axes is set with wcsgrat.Graticule.set_tickmode().

• The titles along one of the rectangular plot axes can be modified with
wcsgrat.Graticule.setp_axislabel() which is a specialization of method
wcsgrat.Graticule.setp_plotaxis(). A label text is set with parameter label and the
plot properties are given as Matplotlib keyword arguments.

• Properties of labels inside a plot are set in the constructor wcsgrat.Insidelabels.setp_label().

• Properties of labels along a ruler are set with method rulers.Ruler.setp_label(). Properties of
the ruler line can be changed with rulers.Ruler.setp_line()

• For labels along the plotaxes which correspond to pixel positions one can change the properties of the labels
with maputils.Pixellabels.setp_label() while the properties of the markers can be changed
with: maputils.Pixellabels.setp_marker()

Let’s summarize these methods in a table:

Object Properties method
Graticule line piece wcsgrat.Graticule.setp_gratline()
Graticule tick marker wcsgrat.Graticule.setp_tickmark()
Graticule tick_label wcsgrat.Graticule.setp_ticklabel()
Axis label wcsgrat.Graticule.setp_axislabel()
Inside label wcsgrat.Insidelabels.setp_label()
Ruler labels rulers.Ruler.setp_label()
Ruler line rulers.Ruler.setp_line()
Pixel labels maputils.Pixellabels.setp_label()
Pixel markers maputils.Pixellabels.setp_marker()
Free graticule line wcsgrat.Graticule.setp_linespecial()

-Table- Objects related to graticules and their methods to set properties.

In the following sections we show some examples for changing the graticule properties. Note that for some
methods we can identify objects either with the graticule line type (i.e. 0 or 1), the number or name of the plot
axis ([0..4] or one of ‘left’, ‘bottom’, ‘right’, ‘top’ (or a minimal match of these strings). Some objects (e.g. tick
labels) can also be identified by a position in world coordinates. Often also a combination of these identifiers can
be used.

18.6. Graticules 213

Kapteyn Package Documentation, Release 2.2

18.6.4 Graticule axis labels

Example: mu_labeldemo.py - Properties of axis labels

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 header = {
5 ’NAXIS’: 2 ,
6 ’NAXIS1’: 100 ,
7 ’NAXIS2’: 100 ,
8 ’CDELT1’: -7.165998823000E-03 ,
9 ’CRPIX1’: 5.100000000000E+01 ,

10 ’CRVAL1’: -5.128208479590E+01 ,
11 ’CTYPE1’: ’RA---NCP ’ ,
12 ’CUNIT1’: ’DEGREE ’ ,
13 ’CDELT2’: 7.165998823000E-03 ,
14 ’CRPIX2’: 5.100000000000E+01 ,
15 ’CRVAL2’: 6.015388802060E+01 ,
16 ’CTYPE2’: ’DEC--NCP ’ ,
17 ’CUNIT2’: ’DEGREE ’ ,
18 }
19

20 fig = plt.figure(figsize=(6,5.2))
21 frame = fig.add_axes([0.15,0.15,0.8,0.8])
22 f = maputils.FITSimage(externalheader=header)
23 annim = f.Annotatedimage(frame)
24 grat = annim.Graticule()
25 grat.setp_axislabel(fontstyle=’italic’) # Apply to all
26 grat.setp_axislabel("top", visible=True, xpos=0.0, ypos=1.0, rotation=180)
27 grat.setp_axislabel("left",
28 backgroundcolor=’y’,
29 color=’b’,
30 style=’oblique’,
31 weight=’bold’,
32 ypos=0.3)
33 grat.setp_axislabel("bottom", # Label in LaTeX
34 label=r"$\mathrm{Right\ Ascension\ (2000)}$",
35 fontsize=14)
36 annim.plot()
37 plt.show()

18.6.5 Graticule lines

Example: mu_gratlinedemo.py - Properties of graticule lines

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 header = {’NAXIS’: 2 ,’NAXIS1’:100 , ’NAXIS2’: 100 ,
5 ’CDELT1’: -7.165998823000E-03, ’CRPIX1’: 5.100000000000E+01 ,
6 ’CRVAL1’: -5.128208479590E+01, ’CTYPE1’: ’RA---NCP’, ’CUNIT1’: ’DEGREE ’,
7 ’CDELT2’: 7.165998823000E-03 , ’CRPIX2’: 5.100000000000E+01,
8 ’CRVAL2’: 6.015388802060E+01 , ’CTYPE2’: ’DEC--NCP ’, ’CUNIT2’: ’DEGREE’
9 }

10

11 fig = plt.figure(figsize=(6,5.2))
12 frame = fig.add_subplot(1,1,1)
13 f = maputils.FITSimage(externalheader=header)
14 annim = f.Annotatedimage(frame)
15 grat = annim.Graticule()
16 grat.setp_gratline(lw=2)

214 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

20h 34m 00s36m

Right Ascension (2000)

60 ◦ 15′ 00′′

00′

D
e
c
.

(2
0

0
0

.0
)

R.A. (2000.0)

18.6. Graticules 215

Kapteyn Package Documentation, Release 2.2

17 grat.setp_gratline(wcsaxis=0, color=’r’)
18 grat.setp_gratline(wcsaxis=1, color=’g’)
19 grat.setp_gratline(wcsaxis=1, position=60.25, linestyle=’:’)
20 grat.setp_gratline(wcsaxis=0, position="20d34m0s", linestyle=’:’)
21 # If invisible, use: grat.setp_gratline(visible=False)
22

23 annim.plot()
24 plt.show()

20h 34m 00s36m

R.A. (2000.0)

60 ◦ 15′ 00′′

00′

D
e
c.

 (
2

0
0

0
.0

)

Note: If you don’t want to plot graticule lines, then use method wcsgrat.setp_gratline() with attribute
visible set to False.

18.6.6 Graticule tick labels

Example: mu_ticklabeldemo.py - Properties of graticule tick labels

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 header = {’NAXIS’: 2 ,’NAXIS1’:100 , ’NAXIS2’: 100 ,
5 ’CDELT1’: -7.165998823000E-03, ’CRPIX1’: 5.100000000000E+01 ,
6 ’CRVAL1’: -5.128208479590E+01, ’CTYPE1’: ’RA---NCP’, ’CUNIT1’: ’DEGREE ’,
7 ’CDELT2’: 7.165998823000E-03, ’CRPIX2’: 5.100000000000E+01,
8 ’CRVAL2’: 6.015388802060E+01, ’CTYPE2’: ’DEC--NCP ’, ’CUNIT2’: ’DEGREE’

216 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

9 }
10

11 fig = plt.figure()
12 frame = fig.add_axes([0.20,0.15,0.75,0.8])
13 f = maputils.FITSimage(externalheader=header)
14 annim = f.Annotatedimage(frame)
15 grat = annim.Graticule()
16 grat2 = annim.Graticule(skyout=’Galactic’)
17 grat.setp_ticklabel(plotaxis="bottom", position="20h34m", fmt="%g",
18 color=’r’, rotation=30)
19 grat.setp_ticklabel(plotaxis=’left’, color=’b’, rotation=20,
20 fontsize=14, fontweight=’bold’, style=’italic’)
21 grat.setp_ticklabel(plotaxis=’left’, color=’m’, position="60d0m0s",
22 fmt="DMS", tex=False)
23 grat.setp_axislabel(plotaxis=’left’, xpos=-0.25, ypos=0.5)
24 # Rotation is inherited from previous setting
25 grat2.setp_gratline(color=’g’)
26 grat2.setp_ticklabel(visible=False)
27 grat2.setp_axislabel(visible=False)
28

29 annim.plot()
30 plt.show()

308
.520h 36m 00s

R.A. (2000.0)

60
◦ 15

′ 00
′′

 60d00m00sD
e
c.

 (
2
0

0
0

.0
)

18.6.7 Graticule tick markers

Example: mu_tickmarkerdemo.py - Properties of graticule tick markers

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

18.6. Graticules 217

Kapteyn Package Documentation, Release 2.2

4

5 header = {’NAXIS’: 2 ,’NAXIS1’:100 , ’NAXIS2’: 100 ,
6 ’CDELT1’: -7.165998823000E-03, ’CRPIX1’: 5.100000000000E+01 ,
7 ’CRVAL1’: -5.128208479590E+01, ’CTYPE1’: ’RA---NCP’, ’CUNIT1’: ’DEGREE ’,
8 ’CDELT2’: 7.165998823000E-03 , ’CRPIX2’: 5.100000000000E+01,
9 ’CRVAL2’: 6.015388802060E+01 , ’CTYPE2’: ’DEC--NCP ’, ’CUNIT2’: ’DEGREE’

10 }
11

12

13 fig = plt.figure()
14 #frame = fig.add_axes([0.15,0.15,0.8,0.8])
15 frame = fig.add_subplot(1,1,1)
16 f = maputils.FITSimage(externalheader=header)
17 annim = f.Annotatedimage(frame)
18 grat = annim.Graticule()
19 grat.setp_gratline(visible=False)
20 grat.setp_ticklabel(plotaxis="bottom", position="20h34m", fmt="%6f")
21 grat.setp_tickmark(plotaxis="bottom", position="20h34m",
22 color=’b’, markeredgewidth=4, markersize=20)
23 fig.text(0.5, 0.5, "Empty", fontstyle=’italic’, fontsize=18, ha=’center’,
24 color=’r’)
25 annim.plot()
26 plt.show()

308.50000020h 36m 00s

R.A. (2000.0)

60 ◦ 15′ 00′′

00′

D
e
c.

 (
2

0
0

0
.0

)

Empty

18.6.8 Graticule tick mode

Example: mu_tickmodedemo.py - Graticule’s tick mode

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

218 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

4 header = {’NAXIS’: 2 ,’NAXIS1’:100 , ’NAXIS2’: 100 ,
5 ’CDELT1’: -7.165998823000E-03, ’CRPIX1’: 5.100000000000E+01 ,
6 ’CRVAL1’: -5.128208479590E+01, ’CTYPE1’: ’RA---NCP’, ’CUNIT1’: ’DEGREE ’,
7 ’CDELT2’: 7.165998823000E-03 , ’CRPIX2’: 5.100000000000E+01,
8 ’CRVAL2’: 6.015388802060E+01 , ’CTYPE2’: ’DEC--NCP ’, ’CUNIT2’: ’DEGREE’,
9 ’CROTA2’: 80

10 }
11

12 fig = plt.figure(figsize=(7,7))
13 fig.suptitle("Messy plot. Rotation is 80 deg.", fontsize=14, color=’r’)
14 fig.subplots_adjust(left=0.18, bottom=0.10, right=0.90,
15 top=0.90, wspace=0.95, hspace=0.20)
16 frame = fig.add_subplot(2,2,1)
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 xpos = -0.42
20 ypos = 1.2
21 grat = annim.Graticule()
22 grat.setp_axislabel(plotaxis=0, xpos=xpos)
23 frame.set_title("Default", y=ypos)
24

25 frame2 = fig.add_subplot(2,2,2)
26 annim2 = f.Annotatedimage(frame2)
27 grat2 = annim2.Graticule()
28 grat2.setp_axislabel(plotaxis=0, xpos=xpos)
29 grat2.set_tickmode(mode="sw")
30 frame2.set_title("Switched ticks", y=ypos)
31

32 frame3 = fig.add_subplot(2,2,3)
33 annim3 = f.Annotatedimage(frame3)
34 grat3 = annim3.Graticule()
35 grat3.setp_axislabel(plotaxis=0, xpos=xpos)
36 grat3.set_tickmode(mode="na")
37 frame3.set_title("Only native ticks", y=ypos)
38

39 frame4 = fig.add_subplot(2,2,4)
40 annim4 = f.Annotatedimage(frame4)
41 grat4 = annim4.Graticule()
42 grat4.setp_axislabel(plotaxis=0, xpos=xpos)
43 grat4.set_tickmode(plotaxis=[’bottom’,’left’], mode="Switch")
44 grat4.setp_ticklabel(plotaxis=[’top’,’right’], visible=False)
45 frame4.set_title("Switched and cleaned", y=ypos)
46

47 maputils.showall()

18.6.9 Graticule ‘inside’ labels

Example: mu_insidelabeldemo.py - Graticule ‘inside’ labels

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 header = {’NAXIS’: 2 ,’NAXIS1’:100 , ’NAXIS2’: 100 ,
5 ’CDELT1’: -7.165998823000E-03, ’CRPIX1’: 5.100000000000E+01 ,
6 ’CRVAL1’: -5.128208479590E+01, ’CTYPE1’: ’RA---NCP’, ’CUNIT1’: ’DEGREE ’,
7 ’CDELT2’: 7.165998823000E-03 , ’CRPIX2’: 5.100000000000E+01,
8 ’CRVAL2’: 6.015388802060E+01 , ’CTYPE2’: ’DEC--NCP ’, ’CUNIT2’: ’DEGREE’
9 }

10

11 fig = plt.figure()
12 frame = fig.add_axes([0.15,0.15,0.8,0.8])

18.6. Graticules 219

Kapteyn Package Documentation, Release 2.2

Default Switched ticks

Only native ticks Switched and cleaned

20h 38m 00s60 ◦ 00′ 00′′20′

R.A. (2000.0)

20h 34m 00s

36m

38m

D
e
c.

 (
2

0
0

0
.0

)

20h 32m 00s60 ◦ 00′ 00′′20′

20h 34m 00s

32m

36m

60 ◦ 00′ 00′′20′

R.A. (2000.0)

20h 34m 00s

36m

38m

D
e
c.

 (
2

0
0

0
.0

)

60 ◦ 00′ 00′′20′

20h 34m 00s

32m

36m

20h 38m 00s

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

20h 32m 00s

60 ◦ 00′ 00′′20′

R.A. (2000.0)

20h 34m 00s

36m

38m

D
e
c.

 (
2

0
0

0
.0

)

Messy plot. Rotation is 80 deg.

220 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

13 f = maputils.FITSimage(externalheader=header)
14 annim = f.Annotatedimage(frame)
15 grat = annim.Graticule()
16 grat2 = annim.Graticule(skyout=’Galactic’)
17 grat2.setp_gratline(color=’g’)
18 grat2.setp_ticklabel(visible=False)
19 grat2.setp_axislabel(visible=False)
20 inswcs0 = grat2.Insidelabels(wcsaxis=0, deltapx=5, deltapy=5)
21 inswcs1 = grat2.Insidelabels(wcsaxis=1, constval=’95d45m’)
22 inswcs0.setp_label(color=’r’)
23 inswcs0.setp_label(position="96d0m", color=’b’, tex=False, fontstyle=’italic’)
24 inswcs1.setp_label(position="12d0m", fontsize=14, color=’m’)
25 annim.plot()
26 annim.interact_toolbarinfo()
27 plt.show()

20h 34m 00s36m

R.A. (2000.0)

60 ◦ 15′ 00′′

00′

D
e
c.

 (
2

0
0

0
.0

)

95
◦ 40

′ 00
′′

20
′

 96d00m
11 ◦

40 ′
00 ′′

20 ′

12 ◦
00 ′

18.6.10 Graticule offset axes

Example: mu_offsetaxes.py - Graticule offset labeling

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4

5 def plotgrat(n, ax1, ax2, offsetx=None, offsety=None, unitsx=None):
6 f.set_imageaxes(ax1,ax2)
7 frame = fig.add_subplot(4,2,n)
8 annim = f.Annotatedimage(frame)
9 grat = annim.Graticule(offsetx=offsetx, offsety=offsety, unitsx=unitsx)

10 grat.setp_axislabel((0,1,2), fontsize=10)

18.6. Graticules 221

Kapteyn Package Documentation, Release 2.2

11 grat.setp_ticklabel(fontsize=7)
12

13 xmax = annim.pxlim[1]+0.5; ymax = annim.pylim[1]+0.5
14 ruler = annim.Ruler(x1=xmax, y1=0.5, x2=xmax, y2=ymax,
15 lambda0=0.5, step=10.0,
16 units=’arcmin’,
17 fliplabelside=True)
18

19 ruler.setp_line(lw=2, color=’r’)
20 ruler.setp_label(clip_on=True, color=’r’, fontsize=9)
21

22 ruler2 = annim.Ruler(x1=0.5, y1=0.5, x2=xmax, y2=ymax,
23 lambda0=0.5, step=10.0/60.0,
24 fun=lambda x: x*60.0, fmt="%4.0f^\prime",
25 mscale=6, fliplabelside=True)
26 ruler2.setp_line(lw=2, color=’b’)
27 ruler2.setp_label(color=’b’, fontsize=9)
28 grat.setp_axislabel("right", label="Offset (Arcmin.)",
29 visible=True, backgroundcolor=’y’)
30

31

32 # Main ...
33 fig = plt.figure(figsize=(7,8))
34 fig.subplots_adjust(left=0.17, bottom=0.10, right=0.92,
35 top=0.93, wspace=0.24, hspace=0.34)
36

37

38 header = { ’NAXIS’:3,’NAXIS1’:100, ’NAXIS2’:100 , ’NAXIS3’:101 ,
39 #’CDELT1’: -7.165998823000E-03,
40 ’CDELT1’: -11.165998823000E-03, ’CRPIX1’: 5.100000000000E+01 ,
41 ’CRVAL1’: -5.128208479590E+01, ’CTYPE1’: ’RA---NCP’ , ’CUNIT1’: ’DEGREE’,
42 ’CDELT2’: 7.165998823000E-03, ’CRPIX2’: 5.100000000000E+01,
43 ’CRVAL2’: 6.015388802060E+01, ’CTYPE2’: ’DEC--NCP’, ’CUNIT2’: ’DEGREE’,
44 ’CDELT3’: 4.199999809000E+00, ’CRPIX3’: -2.000000000000E+01,
45 ’CRVAL3’: -2.430000000000E+02, ’CTYPE3’: ’VELO-HEL’, ’CUNIT3’: ’km/s’,
46 ’EPOCH ’: 2.000000000000E+03,
47 ’FREQ0 ’: 1.420405758370E+09
48 }
49

50 f = maputils.FITSimage(externalheader=header)
51 plotgrat(1,3,1)
52 plotgrat(2,1,3)
53 plotgrat(3,3,2)
54 plotgrat(4,2,3, unitsx="arcsec")
55 plotgrat(5,1,2, offsetx=True)
56 plotgrat(6,2,1)
57 plotgrat(7,3,1, offsetx=True, unitsx=’km/s’)
58 plotgrat(8,1,3, offsety=True)
59

60 maputils.showall()

18.6.11 Graticule minor tick marks

Example: mu_minorticks.py - Graticule with minor tick marks

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 fitsobj = maputils.FITSimage("m101.fits")
5 fig = plt.figure()
6 fig.subplots_adjust(left=0.18, bottom=0.10, right=0.90,

222 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

0′
10′
20′
30′

−10′

−20′

−30′

0 ′

10 ′

20 ′

30 ′

−
10 ′−

20 ′−
30 ′

0′
0 ′

10 ′

20 ′

30 ′

−
10 ′−

20 ′−
30 ′

0′

10′

20′

−10′

−20′

0 ′

10 ′

20 ′

−
10 ′

−
20 ′

0′
0 ′

10 ′

20 ′

−
10 ′

−
20 ′

0′

10′

20′

−10′

−20′

0 ′

10 ′
20 ′

30 ′

−
10 ′−

20 ′−
30 ′

0′
10′
20′
30′
40′
50′
60′

−10′
−20′
−30′
−40′
−50′
−60′

0 ′
10 ′
20 ′
30 ′
40 ′
50 ′
60 ′

−10 ′−20 ′−30 ′−40 ′−50 ′−60 ′

0′
10′
20′
30′

−10′

−20′

−30′

0 ′

10 ′

20 ′

30 ′

−
10 ′−

20 ′−
30 ′

0′
0 ′

10 ′

20 ′

30 ′

−
10 ′−

20 ′−
30 ′

0−100000 100000 200000

VOPT (m/s)

0′

20′

−20′

R
a
d
ia

l
o
ff

se
t

lo
n
. O

ffse
t (A

rcm
in

.)

0′ 20′−20′

Radial offset lon.

0

−100000

100000

200000

V
O

P
T
 (

m
/s

)

O
ffse

t (A
rcm

in
.)

0−100000 100000 200000

VOPT (m/s)

0′

10′

20′

−10′

−20′

R
a
d
ia

l
o
ff

se
t

la
t. O

ffse
t (A

rcm
in

.)

0 600 1200−600−1200

Radial offset lat.(arcsec)

0

−100000

100000

200000
V

O
P
T
 (

m
/s

)

O
ffse

t (A
rcm

in
.)

0 ◦ −1 ◦1 ◦

Radial offset lon.

60 ◦ 15′ 00′′

00′

D
e
c.

 (
2
0
0
0
.0

)

O
ffse

t (A
rcm

in
.)

60 ◦ 15′ 00′′00′

Dec. (2000.0)

20h 36m 00s

32m

R
.A

.
(2

0
0
0
.0

)

O
ffse

t (A
rcm

in
.)

0−100000−200000 100000 200000

Offset VOPT (km/s)

0′

20′

−20′

R
a
d
ia

l
o
ff

se
t

lo
n
.(

km
/s

)

O
ffse

t (A
rcm

in
.)

0′ 20′−20′

Radial offset lon.

0

−100000

−200000

100000

200000

O
ff

se
t

V
O

P
T
 (

m
/s

) O
ffse

t (A
rcm

in
.)

18.6. Graticules 223

Kapteyn Package Documentation, Release 2.2

7 top=0.90, wspace=0.95, hspace=0.20)
8 for i in range(4):
9 f = fig.add_subplot(2,2,i+1)

10 mplim = fitsobj.Annotatedimage(f)
11 if i == 0:
12 majorgrat = mplim.Graticule()
13 majorgrat.setp_gratline(visible=False)
14 elif i == 1:
15 majorgrat = mplim.Graticule(offsetx=True, unitsx=’ARCMIN’)
16 majorgrat.setp_gratline(visible=False)
17 elif i == 2:
18 majorgrat = mplim.Graticule(skyout=’galactic’, unitsx=’ARCMIN’)
19 majorgrat.setp_gratline(color=’b’)
20 else:
21 majorgrat = mplim.Graticule(skyout=’galactic’,
22 offsetx=True, unitsx=’ARCMIN’)
23 majorgrat.setp_gratline(color=’b’)
24

25 majorgrat.setp_tickmark(markersize=10)
26 majorgrat.setp_ticklabel(fontsize=6)
27 majorgrat.setp_plotaxis(plotaxis=[0,1], fontsize=10)
28 minorgrat = mplim.Minortickmarks(majorgrat, 3, 5,
29 color="#aa44dd", markersize=3, markeredgewidth=2)
30

31 maputils.showall()
32 plt.show()

14h 03m 00s 02m 30s03m 30s04m 00s

R.A. (2000.0)

54 ◦ 20′ 00′′

15′

25′

D
e
c.

 (
2

0
0
0
.0

)

0 ◦ −0.125 ◦0.125 ◦

Radial offset lon.(ARCMIN)

54 ◦ 20′ 00′′

15′

25′

D
e
c.

 (
2

0
0
0
.0

)

61206105

Galactic longitude

59 ◦ 45′ 00′′

40′

G
a
la

ct
ic

 l
a
ti

tu
d
e

0 ◦−0.25 ◦

Radial offset lon.(ARCMIN)

59 ◦ 45′ 00′′

40′

G
a
la

ct
ic

 l
a
ti

tu
d
e

Explanation

Minor tick marks are created in the same way as major tick marks. They are created as
a by-product of the instantiation of an object from class wcsgrat.Graticule. The method
maputils.Annotatedimage.Minortickmarks() copies some properties of the major ticks graticule

224 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

and then creates a new graticule object. The example shows 4 plots representing the same image in the sky.

1. The default plot with minor tick marks

2. Minor tick marks can also be applied on offset axes

3. We selected another sky system for our graticule. The tick marks are now applied to the galactic coordinate
system.

4. This is the tricky plot. First of all we observe that the center of the offset axis is not in the middle of
the bottom plot axis. This is because the Galactic sky system is plotted upon an equatorial system and
therefore it is (at least for this part of the sky) rotated which causes the limits in world coordinates to be
stretched. The start of the offset axis is calculated for the common limits in world coordinates and not just
those along a plot axis. Secondly, one should observe that the graticule lines for the longitude follow the
tick mark positions on the offset axis. And third, the offset seems to have different sign when compared
to the Equatorial system. The reason for this is that we took a part of the sky where the Galactic system’s
longitude runs in an opposite direction.

18.6.12 Graticule label positions

There are many options to control the labeling along each axis in a plot. There are options in the contructor of a
Graticule object to give a start value (startx, starty, in grids or world coordinates) for the first label along an axis.
This label is the label that is written with all relevant information. Other labels are derived from this one. If a step
size is given (deltax or deltay) then this will be used as step between labels. A sequence of start values are used
to plot labels at their corresponding positions (a value of the step size is overruled). Values for the label positions
in startx, starty given as a string follow the rules described in positions. Step sizes, given as a string, can be
appended by a unit.

Example: mu_labelsspatial.py - Tricks to improve labeling of spatial axes

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 header = { ’NAXIS’ : 3,
5 ’BUNIT’ : ’w.u.’,
6 ’CDELT1’ : -1.200000000000E-03,
7 ’CDELT2’ : 1.497160000000E-03, ’CDELT3’ : 97647.745732,
8 ’CRPIX1’ : 5, ’CRPIX2’ : 6, ’CRPIX3’ : 32,
9 ’CRVAL1’ : 1.787792000000E+02, ’CRVAL2’ : 5.365500000000E+01,

10 ’CRVAL3’ : 1378471216.4292786,
11 ’CTYPE1’ : ’RA---NCP’, ’CTYPE2’ : ’DEC--NCP’, ’CTYPE3’ : ’FREQ-OHEL’,
12 ’CUNIT1’ : ’DEGREE’, ’CUNIT2’ : ’DEGREE’, ’CUNIT3’ : ’HZ’,
13 ’DRVAL3’ : 1.050000000000E+03,
14 ’DUNIT3’ : ’KM/S’,
15 ’FREQ0’ : 1.420405752e+9,
16 ’INSTRUME’ : ’WSRT’,
17 ’NAXIS1’ : 100, ’NAXIS2’ : 100, ’NAXIS3’ : 64
18 }
19

20

21 fig = plt.figure(figsize=(7,7))
22 fig.suptitle("Axis labels for spatial maps", fontsize=14, color=’r’)
23 fig.subplots_adjust(left=0.18, bottom=0.10, right=0.90,
24 top=0.90, wspace=0.95, hspace=0.20)
25 frame = fig.add_subplot(2,2,1)
26 f = maputils.FITSimage(externalheader=header)
27 f.set_imageaxes(1,2)
28 annim = f.Annotatedimage(frame)
29 # Default labeling
30 grat = annim.Graticule()
31

32 frame = fig.add_subplot(2,2,2)
33 annim = f.Annotatedimage(frame)

18.6. Graticules 225

Kapteyn Package Documentation, Release 2.2

34 # Plot labels with start position and increment
35 grat = annim.Graticule(startx=’11h55m’, deltax="15 hmssec", deltay="3 arcmin")
36

37 frame = fig.add_subplot(2,2,3)
38 annim = f.Annotatedimage(frame)
39 # Plot labels in string only
40 grat = annim.Graticule(startx=’11h55m 11h54m30s’)
41 grat.setp_tick(plotaxis="bottom", texsexa=False)
42

43 frame = fig.add_subplot(2,2,4)
44 annim = f.Annotatedimage(frame)
45 grat = annim.Graticule(startx="178.75 deg", deltax="6 arcmin", unitsx="degree")
46 grat.setp_ticklabel(plotaxis="left", fmt="s")
47

48 maputils.showall()

11h 54m 40s55m 00s

R.A. (2000.0)

53 ◦ 44′ 00′′

40′

D
e
c.

 (
2

0
0

0
.0

)

11h 55m 00s54m 45s 30s

R.A. (2000.0)

53 ◦ 42′ 00′′

39′

45′

D
e
c.

 (
2

0
0

0
.0

)

11h55m00s 54m30s

R.A. (2000.0)

53 ◦ 44′ 00′′

40′

D
e
c.

 (
2

0
0

0
.0

)

178.75 178.65

R.A. (2000.0)

53 ◦ 44′

40′

D
e
c.

 (
2

0
0

0
.0

)

Axis labels for spatial maps

Explanation

1. Default

2. Plot labels with start position and increment. Note the use of a special unit ‘hmssec’. grat =

226 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

annim.Graticule(startx=’11h55m’, deltax="15 hmssec", deltay="3 arcmin")

3. The LaTeX labeling is jumpy. Try it without superscripts (texsexa=False):

>>> grat = annim.Graticule(startx=’11h55m 11h54m30s’)
>>> grat.setp_tick(plotaxis="bottom", texsexa=False)

4. Force the y axis NOT to plot seconds. Force the x axis to plot in degrees.

>>> grat = annim.Graticule(startx="178.75 deg", deltax="6 arcmin", unitsx="degree")
>>> grat.setp_ticklabel(plotaxis="left", fmt="s")

More information about plotting in sexagesimal format is found in wcsgrat.makelabel()

Example: mu_labelsspectral.py - Tricks to improve labeling of spectral and offset axes

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 header = { ’NAXIS’ : 3,
5 ’BUNIT’ : ’w.u.’,
6 ’CDELT1’ : -1.200000000000E-03,
7 ’CDELT2’ : 1.497160000000E-03, ’CDELT3’ : 97647.745732,
8 ’CRPIX1’ : 5, ’CRPIX2’ : 6, ’CRPIX3’ : 32,
9 ’CRVAL1’ : 1.787792000000E+02, ’CRVAL2’ : 5.365500000000E+01,

10 ’CRVAL3’ : 1378471216.4292786,
11 ’CTYPE1’ : ’RA---NCP’, ’CTYPE2’ : ’DEC--NCP’, ’CTYPE3’ : ’FREQ-OHEL’,
12 ’CUNIT1’ : ’DEGREE’, ’CUNIT2’ : ’DEGREE’, ’CUNIT3’ : ’HZ’,
13 ’DRVAL3’ : 1.050000000000E+03,
14 ’DUNIT3’ : ’KM/S’,
15 ’FREQ0’ : 1.420405752e+9,
16 ’INSTRUME’ : ’WSRT’,
17 ’NAXIS1’ : 100, ’NAXIS2’ : 100, ’NAXIS3’ : 64
18 }
19

20

21 fig = plt.figure(figsize=(7,10))
22 fig.suptitle("Axis label tricks (spectral+spatial offset)", fontsize=14, color=’r’)
23 fig.subplots_adjust(left=0.18, bottom=0.10, right=0.90,
24 top=0.90, wspace=0.95, hspace=0.20)
25 frame = fig.add_subplot(3,2,1)
26 f = maputils.FITSimage(externalheader=header)
27 f.set_imageaxes(3,2, slicepos=1)
28 annim = f.Annotatedimage(frame)
29 # Default labeling
30 grat = annim.Graticule()
31 grat.setp_tick(plotaxis="bottom", rotation=90)
32

33 frame = fig.add_subplot(3,2,2)
34 annim = f.Annotatedimage(frame)
35 # Spectral axis with start and increment
36 grat = annim.Graticule(startx="1.378 Ghz", deltax="2 Mhz", starty="53d42m")
37 grat.setp_tick(plotaxis="bottom", fontsize=7, fmt=’%.3f%+9e’)
38

39 frame = fig.add_subplot(3,2,3)
40 annim = f.Annotatedimage(frame)
41 # Spectral axis with start and increment
42 grat = annim.Graticule(spectrans="WAVE", startx="21.74 cm",
43 deltax="0.04 cm", starty="0.5")
44

45 frame = fig.add_subplot(3,2,4)
46 annim = f.Annotatedimage(frame)
47 # Spectral axis with start and increment
48 grat = annim.Graticule(spectrans="VOPT", startx="9120 km/s",
49 deltax="400 km/s", unitsy="arcsec")

18.6. Graticules 227

Kapteyn Package Documentation, Release 2.2

50 grat.setp_tick(plotaxis="bottom", fontsize=7)
51

52 frame = fig.add_subplot(3,2,5)
53 annim = f.Annotatedimage(frame)
54 # Spectral axis with start and increment and unit
55 grat = annim.Graticule(spectrans="VOPT", startx="9000 km/s",
56 deltax="400 km/s", unitsx="km/s")
57

58 frame = fig.add_subplot(3,2,6)
59 annim = f.Annotatedimage(frame)
60 # Spectral axis with start and increment and formatter function
61 grat = annim.Graticule(spectrans="VOPT", startx="9000 km/s", deltax="400 km/s")
62 grat.setp_tick(plotaxis="bottom", fmt=’%g’, fun=lambda x:x/1000.0)
63 grat.setp_axislabel(plotaxis="bottom", label="Optical velocity (Km/s)")
64

65 maputils.showall()

Explanation

1. The default labeling of the frequency axis is too crowded. We apply the trick to rotate the axis labels
grat.setp_tick(plotaxis="bottom", rotation=90)

2. Here we selected a start value and a step size for the label positions: grat =
annim.Graticule(startx="1.378 Ghz", deltax="2 Mhz", starty="53d42m").
We use a special format syntax (%+9e) to tell the plot routines to format the numbers with an exponential:
grat.setp_tick(plotaxis="bottom", fontsize=7, fmt=’%.3f%+9e’)

3. The spectral axis can be translated into a wave length axis using parameter spectrans. The units
change from Hz to m. In the Graticule contructor we use strings for the start value and step
size. Then we can use compatible units enter the values. Note that the y axis in our spectral
plots is by default an offset axis. For spatial offset axes the reference (value 0) is at the middle
of an axis. One can enter a value in grids or world coordinate (enter it as a string) to change this
reference point: grat = annim.Graticule(spectrans="WAVE", startx="21.74 cm",
deltax="0.04 cm", starty="0.5")

4. In this plot we use another spectral translation (optical velocity) with a start value and
a step size. We changed the units of the offset axis to seconds of arc. grat =
annim.Graticule(spectrans="VOPT", startx="9120 km/s", deltax="400
km/s", unitsy="arcsec")

5. Again with a spectral translation. But the units along the x axis are Km/s. Note that the de-
fault units (si units) are used for label positions if there are no units entered. This implies that
the value in unitsx does not change the units for startx. It is always save to enter explicit
units for startx: grat = annim.Graticule(spectrans="VOPT", startx="9000 km/s",
deltax="400 km/s", unitsx="km/s")

6. You can get even more control if you enter a function or a lambda expression for parameter fun. You have
to change the default axis title with method wcsgrat.Graticule.setp_axislabel().

>>> grat.setp_tick(plotaxis="bottom", fmt=’%g’, fun=lambda x:x/1000.0)
>>> grat.setp_axislabel(plotaxis="bottom", label="Optical velocity (Km/s)")

18.6.13 More ‘axnum’ variations – Position Velocity diagrams

For the next example we used a FITS file with the following header information:

Axis 1: RA---NCP from pixel 1 to 100 {crpix=51 crval=-51.2821 cdelt=-0.007166 (DEGREE)}
Axis 2: DEC--NCP from pixel 1 to 100 {crpix=51 crval=60.1539 cdelt=0.007166 (DEGREE)}
Axis 3: VELO-HEL from pixel 1 to 101 {crpix=-20 crval=-243 cdelt=4.2 (km/s)}

Example: mu_axnumdemo.py - Show different axes combinations for the same FITS file

228 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

1.
3
79
e
+

09

1.
3
78
e
+

09

1.
3
77
e
+

09

1.
3
76
e
+

09

1.
38
e
+

09

1.
3
81
e
+

09

FREQ (Hz)

0′

2′

4′

−2′

−4′

R
a
d
ia

l
o
ff

se
t

la
t.

1.378 ·1091.376 ·109 1.380 ·109

FREQ (Hz)

0′

2′

4′

−2′R
a
d
ia

l
o
ff

se
t

la
t.

0.2174 0.2170.2178

WAVE (m)

0′

2′

4′

6′

8′

R
a
d
ia

l
o
ff

se
t

la
t.

9.12e+06 8.72e+069.52e+06

VOPT (m/s)

0

120

240

−120

−240

R
a
d
ia

l
o
ff

se
t

la
t.

(a
rc

se
c)

9000 86009400

VOPT (km/s)

0′

2′

4′

−2′

−4′

R
a
d
ia

l
o
ff

se
t

la
t.

9000 86009400

Optical velocity (Km/s)

0′

2′

4′

−2′

−4′

R
a
d
ia

l
o
ff

se
t

la
t.

Axis label tricks (spectral+spatial offset)

18.6. Graticules 229

Kapteyn Package Documentation, Release 2.2

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 fitsobj= maputils.FITSimage(’ngc6946.fits’)
5 newaspect = 1/5.0 # Needed for XV maps
6

7 fig = plt.figure(figsize=(20/2.54, 25/2.54))
8 fig.subplots_adjust(left=0.18)
9 labelx = -0.10 # Fix the position in x for labels along y

10

11 # fig 1. Spatial map, default axes are 1 & 2
12 frame1 = fig.add_subplot(4,1,1)
13 mplim1 = fitsobj.Annotatedimage(frame1)
14 mplim1.Image()
15 graticule1 = mplim1.Graticule()
16

17 # fig 2. Velocity - Dec
18 frame2 = fig.add_subplot(4,1,2)
19 fitsobj.set_imageaxes(’vel’, ’dec’)
20 mplim2 = fitsobj.Annotatedimage(frame2)
21 mplim2.Image()
22 graticule2 = mplim2.Graticule()
23 graticule2.setp_axislabel(plotaxis=’left’, xpos=labelx)
24

25 # fig 3. Velocity - Dec (Version without offsets)
26 frame3 = fig.add_subplot(4,1,3)
27 mplim3 = fitsobj.Annotatedimage(frame3)
28 mplim3.Image()
29 graticule3 = mplim3.Graticule(offsety=False)
30 graticule3.setp_axislabel(plotaxis=’left’, xpos=labelx)
31 graticule3.setp_ticklabel(plotaxis="left", fmt=’DMs’)
32

33 # fig 4. Velocity - R.A.
34 frame4 = fig.add_subplot(4,1,4)
35 fitsobj.set_imageaxes(’vel’,’ra’)
36 mplim4 = fitsobj.Annotatedimage(frame4)
37 mplim4.Image()
38 graticule4 = mplim4.Graticule(offsety=False)
39 graticule4.setp_axislabel(plotaxis=’left’, xpos=labelx)
40 graticule4.setp_ticklabel(plotaxis="left", fmt=’HMs’)
41 graticule4.Insidelabels(wcsaxis=0, constval=’20h34m’,
42 rotation=90, fontsize=10,
43 color=’r’, ha=’right’)
44 graticule4.Insidelabels(wcsaxis=1, fontsize=10, fmt="%.2f", color=’b’)
45 mplim4.Minortickmarks(graticule4)
46

47 #Apply new aspect ratio for the XV maps
48 mplim2.set_aspectratio(newaspect)
49 mplim3.set_aspectratio(newaspect)
50 mplim4.set_aspectratio(newaspect)
51

52 maputils.showall()

We used Matplotlib’s add_subplot() method to create 4 plots in one figure with minimum effort. The top panel
shows a plot with the default axis numbers which are 1 and 2. This corresponds to the axis types RA and DEC
and therefore the map is a spatial map. The next panel has axis numbers 3 and 2 representing a position-velocity
or XV map with DEC as the spatial axis X. The default annotation is offset in spatial distances. The next panel is
a copy but we changed the annotation from the default (i.e. offsets) to position labels. This could make sense if
the map is unrotated. The bottom panel has RA as the spatial axis X. World coordinate labels are added inside the
plot with a special method: wcsgrat.Insidelabels(). These labels are not formatted to hour/min/sec or
deg/min/sec for spatial axes.

The two calls to this method need some extra explanation:

230 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

20h 34m 00s36m

R.A. (2000.0)

60 ◦ 15′ 00′′

00′

D
e
c.

 (
2
0
0
0
.0

)

0−100000 100000 200000

VOPT (m/s)

0′

10′

20′

−10′

−20′R
a
d
ia

l
o
ff

se
t

la
t.

0−100000 100000 200000

VOPT (m/s)

60 ◦ 15′

60 ◦ 00′

D
e
c.

 (
2
0
0
0
.0

)

0−100000 100000 200000

VOPT (m/s)

20h 34m

20h 36m

R
.A

.
(2

0
0
0
.0

)

0

−
10

00
00

10
00

00

20
00

00

308.50

309.00

18.6. Graticules 231

Kapteyn Package Documentation, Release 2.2

graticule4.Insidelabels(wcsaxis=0, constval=’20h34m’, rotation=90, fontsize=10,
color=’r’, ha=’right’)

graticule4.Insidelabels(wcsaxis=1, fontsize=10, fmt="%.2f", color=’b’)

The first statement sets labels that correspond to positions in world coordinates inside a plot. It copies the positions
of the velocities, set by the initialization of the graticule object. It plots those labels at a Right Ascension equal to
20h35m which is equal to -51 (=309) degrees. It rotates these labels by an angle of 90 degrees and sets the size,
color and alignment of the font. The second statement does something similar for the Right Ascension labels, but
it adds also a format for the numbers.

Note also the line:

>>> graticule4 = mplim4.Graticule(offsety=False)
>>> graticule4.setp_ticklabel(plotaxis="left", fmt=’HMs’)

By default the module would plot labels which are offsets because we have only one spatial axis. We overruled this
behaviour with keyword parameter offsety=False. Then we get world coordinates which by default are formatted
in hour/minutes/seconds. If we want these labels to be plotted in another format, lets say decimal degrees, then
one needs parameter fun to define some transformation and with fmt we set the format for that output, e.g. as in:

>>> graticule4.setp_tick(plotaxis="left", fun=lambda x: x+360, fmt="$%.1f^\circ$")

Finally note that the alignment of the titles along the left axis (which is a Matplotlib method) works in the frame of
the graticule. It is important to realize that a maputils plot usually is a stack of matplotlib Axes objects (frames).
The graticule object sets these axis labels and therefore we must align them in that frame (which is an attribute of
the graticule object) as in:

>>> graticule3.setp_axislabel(plotaxis=’left’, xpos=labelx)

For information about the Matplotlib specific attributes you should read the documentation at the appropriate class
descriptions (http://matplotlib.sourceforge.net).

18.6.14 Changing the default aspect ratio

For images and graticules representing spatial data it is important that the aspect ratio (CDELTy/CDELTx) remains
constant if you resize the plot. A graticule object initializes itself with an aspect ratio based on the pixel sizes found
in (or derived from) the header. It also calculates an appropriate figure size and size for the actual plot window in
normalized device coordinates (i.e. in interval [0,1]). You can use these values in a script to set the relevant values
for Matplotlib as we show in the next example.

Example: mu_figuredemo.py - Plot figure in non default aspect ratio

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 fitsobj = maputils.FITSimage(’example1test.fits’)
5

6 fig = plt.figure(figsize=(5.5,5))
7 frame = fig.add_axes([0.1, 0.1, 0.8, 0.8])
8 annim = fitsobj.Annotatedimage(frame)
9 annim.set_aspectratio(1.2)

10 grat = annim.Graticule()
11

12 maputils.showall()

Note: For astronomical data we want equal steps in spatial distance in any direction correspond to equal
steps in figure size. If one changes the size of the figure interactively, the aspect ratio should not change.
To enforce this, the constructor of an object of class maputils.Annotatedimage modifies the input
frame so that the aspect ratio is the aspect ratio of the pixels. This aspect ratio is preserved when the size
of a window is changed. One can overrule this default by manually setting an aspect ratio with method
maputils.Annotatedimage.set_aspectratio() as in:

232 Chapter 18. Tutorial maputils module

http://matplotlib.sourceforge.net

Kapteyn Package Documentation, Release 2.2

13h 00m 00s 12h14h

R.A. (1950.0)

20 ◦ 00′ 00′′

40 ◦

D
e
c.

 (
1

9
5

0
.0

)

18.6. Graticules 233

Kapteyn Package Documentation, Release 2.2

>>> frame = fig.add_subplot(k,1,1)
>>> mplim = f.Annotatedimage(frame)
>>> mplim.set_aspectratio(0.02)

18.6.15 Combinations of graticules

The number of graticule objects is not restricted to one. One can easily add a second graticule for a different sky
system. The next example shows a combination of two graticules for two different sky systems. It demonstrates
also the use of attributes to change plot properties.

Example: mu_skyout.py - Combine two graticules in one frame

1 from kapteyn.wcs import galactic, equatorial, fk4_no_e, fk5
2 from kapteyn import maputils
3 from matplotlib import pylab as plt
4

5 # Open FITS file and get header
6 f = maputils.FITSimage(’example1test.fits’)
7

8 fig = plt.figure(figsize=(6,6))
9 frame = fig.add_subplot(1,1,1)

10 annim = f.Annotatedimage(frame)
11

12 # Initialize a graticule for this header and set some attributes
13 grat = annim.Graticule()
14 grat.setp_gratline(wcsaxis=[0,1],color=’g’) # Set graticule lines to green
15 grat.setp_ticklabel(plotaxis=("left","bottom"), color=’b’,
16 fontsize=14, fmt="Hms")
17 grat.setp_tickmark(plotaxis=("left","bottom"), markersize=-10)
18

19 # Select another sky system for an overlay
20 skyout = galactic # Also try: skyout = (equatorial, fk5, ’J3000’)
21 grat2 = annim.Graticule(skyout=skyout, boxsamples=20000)
22 grat2.setp_axislabel(plotaxis=("top", "right"), label="Galactic l,b",
23 visible=True)
24 grat2.set_tickmode(plotaxis=("top", "right"), mode="ALL")
25

26 grat2.setp_axislabel(plotaxis="top", color=’r’)
27 grat2.setp_axislabel(plotaxis=("left", "bottom"), visible=False)
28 grat2.setp_ticklabel(plotaxis=("left", "bottom"), visible=False)
29 grat2.setp_ticklabel(plotaxis=("top", "right"), fmt=’Dms’)
30 grat2.setp_gratline(color=’r’)
31

32 # Print coordinate labels inside the plot boundaries
33 grat2.Insidelabels(wcsaxis=0, color=’m’, constval=85, fmt=’Dms’)
34 grat2.Insidelabels(wcsaxis=1, fmt=’Dms’)
35 annim.Pixellabels(plotaxis=("right","top"), gridlines=True,
36 color=’c’, markersize=-3, fontsize=7)
37

38 annim.plot()
39 plt.show()

Explanation:

This plot shows graticules for equatorial coordinates and galactic coordinates in the same figure.
The center of the image is the position of the galactic pole. That is why the graticule for the
galactic system shows circles. The galactic graticule is also labeled inside the plot using method
wcsgrat.Insidelabels() (Note that this is a method derived from class wcsgrat.Graticule and
that it is not a method of class maputils.Annotatedimage). To get an impression of arbitrary posi-
tions expressed in pixels coordinates, we added pixel coordinate labels for the top and right axes with method
maputils.Annotatedimage.Pixellabels().

234 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

13h 12h14h

R.A. (1950.0)

20 ◦

40 ◦

D
e
c.

 (
1

9
5

0
.0

)

120 ◦60 ◦ 60 ◦
Galactic l,b

240 ◦

60 ◦

60 ◦

G
a
la

ctic l,b0
◦

120
◦

240◦
70 ◦

80 ◦

100 200 300 400 500

100

200

300

400

500

18.6. Graticules 235

Kapteyn Package Documentation, Release 2.2

Plot properties:

• Use attribute boxsamples to get a better estimation of the ranges in galactic coordinates. The default sam-
pling does not sample enough in the neighbourhood of the galactic pole causing a gap in the plot.

• Use method wcsgrat.Graticule.setp_gratline() to change the color of the longitudes and
latitudes for the equatorial system.

• Method wcsgrat.Graticule.setp_tickmark() sets for both plot axis (0 == x axis, 1 = y axis)
the tick length with markersize. The value is negative to force a tick that points outwards. Also the color
and the font size of the tick labels is set. Note that these are Matplotlib keyword arguments.

• With wcsgrat.Graticule.setp_axislabel() we allow galactic coordinate labels and ticks to be
plotted along the top and right plot axis. By default, the labels along these axes are set to be invisible, so we
need to make them visible with keyword argument visible=True. Also a title is set for these axes.

Note: There is a difference between plot axes and wcs axes. The first always represent a rectangular system
with pixels while the system of the graticule lines (wcs axes) usually is curved (sometimes they are even circular.
Therefore many plot properties are either associated with one a plot axis and/or a world coordinate axes.

18.6.16 Spectral translations

To demonstrate what is possible with spectral coordinates and module wcsgrat we use real interferometer data
from a set called mclean.fits. A summary of what can be found in its header:

Axis 1: RA---NCP from pixel 1 to 512 {crpix=257 crval=178.779 cdelt=-0.0012 (DEGREE)}
Axis 2: DEC--NCP from pixel 1 to 512 {crpix=257 crval=53.655 cdelt=0.00149716 (DEGREE)}
Axis 3: FREQ-OHEL from pixel 1 to 61 {crpix=30 crval=1.41542E+09 cdelt=-78125 (HZ)}

Its spectral axis number is 3. The type is frequency. The extension tells us that an optical velocity in the heliocen-
tric system is associated with the frequencies. In the header we found that the optical velocity is 1050 Km/s. The
header is a legacy GIPSY header and module wcs can interpret it. We require the frequencies to be expressed as
wavelengths.

Example: mu_wave.py - Plot a graticule in a position wavelength diagram.

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 # Make plot window wider if you don’t see toolbar info
5

6 # Open FITS file and get header
7 f = maputils.FITSimage(’mclean.fits’)
8 f.set_imageaxes(’freq’,’dec’)
9 f.set_limits(pxlim=(35,45))

10

11 fig = plt.figure(figsize=f.get_figsize(ysize=12, cm=True))
12 frame = fig.add_subplot(1,1,1)
13 annim = f.Annotatedimage(frame)
14

15 grat = annim.Graticule(spectrans=’WAVE’)
16 grat.setp_ticklabel(plotaxis=’bottom’, fun=lambda x: x*100, fmt="%.3f")
17 grat.setp_axislabel(plotaxis=’bottom’, label="Wavelength (cm)")
18 grat.setp_gratline(wcsaxis=(0,1), color=’g’)
19

20 annim.Pixellabels(plotaxis=("right","top"), gridlines=False)
21 annim.plot()
22 annim.interact_toolbarinfo()
23 plt.show()

Explanation:

236 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

21.19221.19021.18821.186 21.194 21.196

Wavelength (cm)

0′

10′

20′

−10′

−20′

R
a
d
ia

l
o
ff

se
t

la
t.

36 38 40 42 44

100

200

300

400

500

• With PyFITS we open the fits file on disk and read its header

• A Matplotlib Figure- and Axes instance are made

• The range in pixel coordinates in x is decreased

• A Graticule object is created and FITS axis 3 (FREQ) is associated with x and FITS axis 2 (DEC) with
y. The spectral axis is expressed in wavelengths with method wcs.Projection.spectra(). Note
that we omitted a code for the conversion algorithm and instead entered three question marks so that the
spectra() method tries to find the appropriate code.

• The tick labels along the x axis (the wavelengths) are formatted. The S.I. unit is meter, but we want it to be
plotted in cm. A function to convert the values is given with fun=lambda x: x*100. A format for the printed
numbers is given with: fmt=”%.3f”

Note: The spatial axis is expressed in offsets. By default it starts with an offset equal to zero in the middle of
the plot. Then a suitable step size is calculated and the corresponding labels are plotted. For spatial offsets we
need also a value for the missing spatial axis. If not specified with parameter mixpix in the constructor of class
Graticule, a default value is assumed equal to CRPIX corresponding to the missing spatial axis (or 1 if CRPIX is
outside interval [1,NAXIS])

For the next example we use the same FITS file (mclean.fits).

Example: mu_spectraltypes.py - Plot grid lines for different spectral translations

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 # Read header of FITS file
5 f = maputils.FITSimage(’mclean.fits’)

18.6. Graticules 237

Kapteyn Package Documentation, Release 2.2

6

7 # Matplotlib
8 fig = plt.figure(figsize=(7,10))
9 fig.subplots_adjust(left=0.12, bottom=0.05, right=0.97,

10 top=0.97, wspace=0.22, hspace=0.90)
11 fig.text(0.05,0.5,"Radial offset latitude", rotation=90,
12 fontsize=14, va=’center’)
13

14 # Get the projection object to get allowed spectral translations
15 altspec = f.proj.altspec
16 crpix = f.proj.crpix[f.proj.specaxnum-1]
17 altspec.insert(0, (None, ’’)) # Add native to list
18 k = len(altspec) + 1
19 frame = fig.add_subplot(k,1,1)
20

21 # Limit range in x to neighbourhood of CRPIX
22 xlim = (crpix-5, crpix+5)
23 f.set_imageaxes(3,2)
24 f.set_limits(pxlim=xlim)
25 mplim = f.Annotatedimage(frame)
26 mplim.set_aspectratio(0.002)
27

28 print "Native system", f.proj.ctype[f.proj.specaxnum-1], f.proj.cunit[f.proj.specaxnum-1],
29

30 print "Spectral translations"
31 for i, ast in enumerate(altspec):
32 print i, ast
33 frame = fig.add_subplot(k,1,i+1)
34 mplim = f.Annotatedimage(frame)
35 mplim.set_aspectratio(0.002)
36 grat = mplim.Graticule(spectrans=ast[0], boxsamples=3)
37 grat.setp_ticklabel(plotaxis="bottom", fmt="%g")
38 unit = ast[1]
39 ctype = ast[0]
40 if ctype == None:
41 ctype = "Frequency (Hz) without translation"
42 grat.setp_axislabel(plotaxis="bottom",
43 label=ctype+’ ’+unit, color=’b’, fontsize=10)
44 grat.setp_axislabel("left", visible=False)
45 grat.setp_ticklabel(wcsaxis=(0,1), fontsize=’8’)
46 mplim.plot()
47

48 plt.show()

Explanation:

• With PyFITS we open the FITS file on disk and read its header

• We created a wcs.Projection object for this header to get a list with allowed spectral translations
(attribute altspec). We need this list before we create the graticules

• Matplotlib Figure- and Axes instances are made

• The native FREQ axis (top figure) differs from the FREQ axis in the next plot, because a legacy header was
found and its freqencies were transformed to a barycentric/heliocentric system.

18.7 Rulers

Rulers are objects derived from an Annimatedimage object. The class description is found at rulers.Ruler.
A ruler is always plotted as a straight line, whatever the projection (so it doesn’t necessarily follow graticule
lines). A ruler plots ticks and labels and the spatial distance between any two ticks is a constant given by a user in
parameter step. This makes rulers ideal to put nearby a feature in your map to give an idea of the physical size of

238 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

1.4154e+09 1.4152e+09 1.415e+091.4156e+091.4158e+09

Frequency (Hz) without translation

0′
10′
20′

−10′
−20′

1.4154e+09 1.4152e+09 1.415e+091.4156e+091.4158e+09

FREQ Hz

0′
10′
20′

−10′
−20′

9.379e−25 9.378e−25 9.377e−25 9.376e−259.38e−259.381e−25

ENER J

0′
10′
20′

−10′
−20′

4.7215 4.721 4.7205 4.724.7224.7225

WAVN /m

0′
10′
20′

−10′
−20′

0−50000 50000

VOPT-F2W m/s

0′
10′
20′

−10′
−20′

0−50000 50000

VRAD m/s

0′
10′
20′

−10′
−20′

0−50000 50000

VELO-F2V m/s

0′
10′
20′

−10′
−20′

0.21180.211780.21176 0.21182 0.21184 0.21186

WAVE-F2W m

0′
10′
20′

−10′
−20′

0−0.0001−0.0002 0.0001 0.0002

ZOPT-F2W

0′
10′
20′

−10′
−20′

0.211740.211720.2117 0.21176 0.21178 0.2118

AWAV-F2A m

0′
10′
20′

−10′
−20′

0−0.0001−0.0002 0.0001 0.0002

BETA-F2V

0′
10′
20′

−10′
−20′

R
a
d
ia

l
o
ff

se
t

la
ti

tu
d
e

18.7. Rulers 239

Kapteyn Package Documentation, Release 2.2

that feature. Rulers can be plotted in maps with one or two spatial axes. They are either defined by a start- and an
end point (in pixel or world coordinates) or by a start point and a size and angle (w.r.t. the North). This size and
angle are defined on a sphere.

Note: Rulers, Beams and Markers can be positioned using either pixel coordinates or world coordinates in a
string. See the examples in module positions.

Example: mu_manyrulers.py - Ruler demonstration

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 header = {’NAXIS’ : 2, ’NAXIS1’: 800, ’NAXIS2’: 800,
5 ’CTYPE1’:’RA---TAN’,
6 ’CRVAL1’: 0.0, ’CRPIX1’ : 1, ’CUNIT1’ : ’deg’, ’CDELT1’ : -0.05,
7 ’CTYPE2’:’DEC--TAN’,
8 ’CRVAL2’: 0.0, ’CRPIX2’ : 1, ’CUNIT2’ : ’deg’, ’CDELT2’ : 0.05,
9 }

10

11 fitsobject = maputils.FITSimage(externalheader=header)
12

13 fig = plt.figure()
14 frame = fig.add_axes([0.1,0.1, 0.82,0.82])
15 annim = fitsobject.Annotatedimage(frame)
16 grat = annim.Graticule(header)
17 x1 = 10; y1 = 1
18 x2 = 10; y2 = annim.pylim[1]
19

20 ruler1 = annim.Ruler(x1=x1, y1=y1, x2=x2, y2=y2, lambda0=0.0, step=1.0)
21 ruler1.setp_label(color=’g’)
22 x1 = x2 = annim.pxlim[1]
23 ruler2 = annim.Ruler(x1=x1, y1=y1, x2=x2, y2=y2, lambda0=0.5, step=2.0,
24 fmt=’%3d’, mscale=-1.5, fliplabelside=True)
25 ruler2.setp_label(ha=’left’, va=’center’, color=’b’, clip_on=False)
26

27 ruler3 = annim.Ruler(x1=23*15, y1=30, x2=22*15, y2=15, lambda0=0.0,
28 step=2, world=True,
29 units=’deg’, addangle=90)
30 ruler3.setp_label(color=’r’)
31

32 ruler4 = annim.Ruler(pos1="23h0m 15d0m", pos2="22h0m 30d0m", lambda0=0.0,
33 step=1,
34 fmt="%4.0f^\prime",
35 fun=lambda x: x*60.0, addangle=0)
36 ruler4.setp_line(color=’g’)
37 ruler4.setp_label(color=’m’)
38

39 ruler5 = annim.Ruler(x1=1, y1=800, x2=800, y2=800, lambda0=0.5, step=2,
40 fmt="%4.1f", addangle=90)
41 ruler5.setp_label(color=’c’)
42

43 ruler6 = annim.Ruler(pos1="23h0m 15d0m", rulersize=15, step=2,
44 units=’deg’, lambda0=0, fliplabelside=True)
45 ruler6.setp_label(color=’b’)
46 ruler6.set_title("Size in deg", fontsize=10)
47

48 ruler7 = annim.Ruler(pos1="23h0m 30d0m", rulersize=5, rulerangle=90, step=1,
49 units=’deg’, lambda0=0)
50 ruler7.setp_label(color=’#ffbb33’)
51

52 ruler8 = annim.Ruler(pos1="23h0m 15d0m", rulersize=5, rulerangle=10, step=1.25,
53 units=’deg’, lambda0=0, fmt="%02g", fun=lambda x: x*8)

240 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

54 ruler8.setp_label(color=’#3322ff’)
55 ruler8.set_title("Size in kpc", fontsize=10)
56

57 # Increase size and lambda a bit to get all the labels
58 # from 5 to 0 and to 5 again plotted
59 # Show LaTeX in ruler label
60 ruler9 = annim.Ruler(pos1="23h0m 10d0m", rulersize=10.1, rulerangle=90, step=1,
61 units=’deg’, lambda0=0.51)
62 ruler9.setp_label(color=’#33ff22’)
63 ruler9.set_title("$\lambda = 0.5$", fontsize=10)
64

65 annim.plot()
66 annim.interact_toolbarinfo()
67 annim.interact_writepos()
68 plt.show()

0 ◦
1 ◦
2 ◦
3 ◦
4 ◦
5 ◦
6 ◦
7 ◦
8 ◦
9 ◦
10 ◦
11 ◦
12 ◦
13 ◦
14 ◦
15 ◦
16 ◦
17 ◦
18 ◦
19 ◦
20 ◦
21 ◦
22 ◦
23 ◦
24 ◦
25 ◦
26 ◦
27 ◦
28 ◦
29 ◦
30 ◦
31 ◦
32 ◦
33 ◦
34 ◦

0

2

4

6

8

10

12

2

4

6

8

10

12

14

0 ◦
2 ◦

4 ◦
6 ◦

8 ◦
10 ◦

12 ◦
14 ◦

16 ◦
18 ◦

20 ◦
0 ′
60 ′
120 ′
180 ′
240 ′
300 ′

360 ′

420 ′

480 ′

540 ′

600 ′

660 ′

720 ′

780 ′

840 ′

900 ′

960 ′

1020 ′

1080 ′

1140 ′

1200 ′
0.0 2.0 4.0 6.0 8.0 10.0 12.02.04.06.08.010.012.014.0

0
◦

2
◦

4
◦

6
◦

8
◦

10
◦

12
◦

14
◦

Size in deg

0
◦

1
◦

2
◦

3
◦

4
◦

5
◦

00
10
20
30
40

S
iz

e
 i
n
 k

p
c

0
◦

1
◦

2
◦

3
◦

4
◦

5
◦ 1
◦

2
◦

3
◦

4
◦

5
◦

λ=0.5

23h 00m 00s 22h

R.A. (2000.0)

15 ◦ 00′ 00′′

30 ◦

D
e
c.

 (
2

0
0

0
.0

)

Ruler tick labels can be formatted so that we can adjust the values near the ruler ticks with parameter fmt. With
parameter fun it is possible to convert the spatial distance to some other physical quantity. Parameter fun accepts a
function or a lambda expression. You can use method rulers.Ruler.set_title() to annotate alternative
units. Note that the keyword arguments for this method are the same as for Matplotlib’s set_title() method.

In the next plot we want offsets to be plotted in arcminutes.

Example: mu_arcminrulers.py - Rulers with non default labels

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 100,
5 ’CTYPE1’ : ’RA---TAN’,
6 ’CRVAL1’ : 80.0, ’CRPIX1’ : 1,
7 ’CUNIT1’ : ’arcmin’, ’CDELT1’ : -0.5,

18.7. Rulers 241

Kapteyn Package Documentation, Release 2.2

8 ’CTYPE2’ : ’DEC--TAN’,
9 ’CRVAL2’ : 400.0, ’CRPIX2’ : 1,

10 ’CUNIT2’ : ’arcmin’, ’CDELT2’ : 0.5,
11 ’CROTA2’ : 30.0
12 }
13

14 f = maputils.FITSimage(externalheader=header)
15

16 fig = plt.figure()
17 frame = fig.add_axes([0.1,0.15,0.8,0.75])
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule()
20 grat.setp_ticklabel(plotaxis=’bottom’, rotation=90)
21 grat.setp_ticklabel(fmt=’s’) # Suppress the seconds in all labels
22

23 # Use pixel limits attributes of the FITSimage object
24

25 xmax = annim.pxlim[1]+0.5; ymax = annim.pylim[1]+0.5
26 annim.Ruler(x1=xmax, y1=0.5, x2=xmax, y2=ymax, lambda0=0.5, step=5.0/60.0,
27 fun=lambda x: x*60.0, fmt="%4.0f^\prime",
28 fliplabelside=True, color=’r’)
29

30 # The wcs methods that convert between pixels and world
31 # coordinates expect input in degrees whatever the units in the
32 # header are (e.g. arcsec, arcmin).
33 annim.Ruler(x1=60/60.0, y1=390/60.0, x2=60/60.0, y2=420/60.0,
34 lambda0=0.0, step=5.0/60, world=True,
35 fun=lambda x: x*60.0, fmt="%4.0f^\prime", color=’g’)
36

37 annim.Ruler(pos1=’0h3m30s 6d30m’, pos2=’0h3m30s 7d0m’,
38 lambda0=0.0, step=5.0,
39 units=’arcmin’, color=’c’)
40

41 annim.plot()
42 plt.show()

It is possible to put a ruler in a map with only one spatial coordinate (as long there is a matching axis in the
header) like a Position-Velocity diagram (sometimes also called XV maps). It will take the pixel coordinate of
the slice as a constant so even for XV maps we have reliable offsets. In the next example we created two rulers.
The red ruler is in fact the same as the Y-axis offset labeling. The blue ruler show the same offsets in horizontal
direction. That is because only the horizontal direction is spatial. Such a ruler is probably not very useful but is a
nice demonstration of the flexibility of method maputils.Annotatedimage.Ruler().

Note that we set Matplotlib’s clip_on to True because if we pan the image in Matplotlib we don’t want the labels
to be visible outside the border of the frame.

Example: mu_xvruler.py - Ruler in a XV map

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 # Open FITS file and get header
5 f = maputils.FITSimage(’ngc6946.fits’)
6 f.set_imageaxes(3,2) # X axis is velocity, y axis is declination
7

8 fig = plt.figure(figsize=f.get_figsize(xsize=15, cm=True))
9 frame = fig.add_subplot(1,1,1)

10 annim = f.Annotatedimage(frame)
11

12 # Velocity - Dec
13 grat = annim.Graticule()
14 grat.setp_axislabel("right", label="Offset (Arcmin.)", visible=True)
15

242 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

0′

5′

10′

15′

20′

−5′

−10′

−15′

−20′

0
′

5
′

10
′

15
′

20
′

25
′

30
′

0
′

5
′

10
′

15
′

20
′

25
′

30
′

0h
04

m

6
◦
30
′

R.A. (2000.0)

0h 04m

7 ◦ 00′

D
e
c.

 (
2
0

0
0

.0
)

0h 02m 7 ◦ 00′

0h 02m

6 ◦ 30′

16 xmax = annim.pxlim[1]+0.5; ymax = annim.pylim[1]+0.5
17 ruler = annim.Ruler(x1=xmax, y1=0.5, x2=xmax, y2=ymax,
18 lambda0 = 0.5, step=5.0/60.0,
19 fun=lambda x: x*60.0, fmt="%4.0f^\prime",
20 fliplabelside=True)
21 ruler.setp_line(lw=2, color=’r’)
22 ruler.setp_label(color=’r’)
23

24 ruler2 = annim.Ruler(x1=0.5, y1=0.5, x2=xmax, y2=ymax, lambda0 = 0.5,
25 step=5.0/60.0,
26 fun=lambda x: x*60.0, fmt="%4.0f^\prime",
27 fliplabelside=True)
28 ruler2.setp_line(lw=2, color=’b’)
29 ruler2.setp_label(color=’b’)
30

31

32 annim.plot()
33 annim.interact_writepos()
34

35 plt.show()

18.8 Contours

Example: mu_simplecontours.py - Simple plot with contour lines only

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 fitsobj = maputils.FITSimage("m101.fits")

18.8. Contours 243

Kapteyn Package Documentation, Release 2.2

0′

5′

10′

15′

20′

−5′

−10′

−15′

−20′

0 ′

5 ′

10 ′

15 ′

20 ′

−
5 ′

−
10 ′

−
15 ′

−
20 ′

0−100000 100000 200000

VOPT (m/s)

0′

10′

20′

−10′

−20′

R
a
d
ia

l
o
ff

se
t

la
t. O

ffse
t (A

rcm
in

.)

244 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

5 fitsobj.set_limits((200,400), (200,400))
6

7 annim = fitsobj.Annotatedimage()
8 cont = annim.Contours()
9 annim.plot()

10

11 print "Levels=", cont.clevels
12

13 plt.show()

The example above shows how to plot contours without plotting an image. It also shows how one can retrieve the
contour levels that are calculated as a default because no levels were specified.

Next we demonstrate how to use the three Matplotlib keyword arguments to set some global properties of the
contours:

Example: mu_contourlinestyles.py - Setting global colors and line styles/widths

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 fitsobj = maputils.FITSimage("m101.fits")
5 fitsobj.set_limits((200,400), (200,400))
6

7 annim = fitsobj.Annotatedimage()
8 annim.Image(alpha=0.5)
9 cont = annim.Contours(linestyles=(’solid’, ’dashed’, ’dashdot’, ’dotted’),

10 linewidths=(2,3,4), colors=(’r’,’g’,’b’,’m’))
11 annim.plot()
12

13 print "Levels=", cont.clevels
14

15 plt.show()

18.8. Contours 245

Kapteyn Package Documentation, Release 2.2

Example: mu_annotatedcontours.py - Add annotation to contours

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 f = maputils.FITSimage("m101.fits")
5 f.set_limits(pxlim=(200,350), pylim=(200,350))
6

7 fig = plt.figure()
8 frame = fig.add_subplot(1,1,1)
9

10 mplim = f.Annotatedimage(frame)
11 cont = mplim.Contours(levels=range(10000,16000,1000))
12 cont.setp_contour(linewidth=1)
13 cont.setp_contour(levels=11000, color=’g’, linewidth=3)
14

15 # Second contour set only for labels
16 cont2 = mplim.Contours(levels=(8000,9000,10000,11000))
17 cont2.setp_label(11000, colors=’b’, fontsize=14, fmt="%.3f")
18 cont2.setp_label(fontsize=10, fmt="%g \lambda")
19

20 mplim.plot()
21

22 plt.show()

The plot shows two sets of contours. The first step is to plot all contours in a straightforward way. The second is
to plot contours with annotation. For this second set we don’t see any contours if a label could not be fitted that’s
why we first plot all the contours. Note that now we can use the properties methods for single contours because
we can identify these contours by their corresponding level.

Example: mu_negativecontours.py - Contours with different line styles for negative values

246 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

8000λ

8000λ

8000λ

80
00
λ

80
00
λ

8000λ
8000λ

9000λ

9000λ

100
00λ

11000λ

11000λ

11000.000

1 """ Show contour lines with different lines styles """
2 from kapteyn import maputils
3 from matplotlib import pyplot as plt
4

5 f = maputils.FITSimage("RAxDEC.fits")
6

7 fig = plt.figure(figsize=(8,6))
8 frame = fig.add_subplot(1,1,1)
9

10 mplim = f.Annotatedimage(frame)
11 cont = mplim.Contours(levels=[-500,-300, 0, 300, 500], negative="dotted")
12 cont.setp_label()
13 mplim.plot()
14 mplim.interact_toolbarinfo()
15

16 plt.show()

18.9 Colorbar

A colorbar is an image which shows colors and values which correspond to these colors. It is a tool that helps
you to inspect the values in an image. The distribution of the colors depends on the selected color map and the
selected clip levels. Next example shows how to setup a colorbar. The default position is calculated by Matplotlib.
It borrows space from the current frame depending on the orientation (‘vertical’ or ‘horizontal’).

Example: mu_colbar.py - Add colorbar to plot

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

18.9. Colorbar 247

Kapteyn Package Documentation, Release 2.2

-5
00.000

-5
00.0

00

-300.000

-3
00.000

0
.0

0
0

0
.0

0
0

300.000

300.000

500.000

500.000

4 fitsobj = maputils.FITSimage("m101.fits")
5

6 mplim = fitsobj.Annotatedimage(cmap="spectral")
7 mplim.Image()
8 units = r’$ergs/(sec.cm^2)$’
9 colbar = mplim.Colorbar(fontsize=8)

10 colbar.set_label(label=units, fontsize=24)
11 mplim.plot()
12 plt.show()

If you want more control over the position and size of the colorbar then specify a frame for the colorbar. In the next
example we prepared a frame for both the image and the colorbar. If you don’t enter a figure size, it can happen
that the figure does not provide enough space in either width or height. In the example we want the colorbar to be
as big as the width of the image. This will be a problem with the default figure size so we provided some extra
space in height with figsize=:

Example: mu_colbarframe.py - Add colorbar with user’s frame to plot

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 fitsobj = maputils.FITSimage("m101.fits")
5 fig = plt.figure(figsize=(5,7.5))
6 #fig = plt.figure()
7 frame = fig.add_axes((0.1, 0.2, 0.8, 0.8))
8 cbframe = fig.add_axes((0.1, 0.1, 0.8, 0.1))
9

10 annim = fitsobj.Annotatedimage(cmap="Accent", clipmin=8000, frame=frame)
11 annim.Image()
12 units = r’$ergs/(sec.cm^2)$’

248 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

1500

3000

4500

6000

7500

9000

10500

12000

13500

15000

er
gs
/(
se
c.
cm

2
)

13 colbar = annim.Colorbar(fontsize=8, orientation=’horizontal’, frame=cbframe)
14 colbar.set_label(label=units, fontsize=24)
15 annim.plot()
16 annim.interact_imagecolors()
17 plt.show()

Note that we entered a colormap (case sensitive names!) and a value for the lower clip value (below which all
image pixels get the same color). The clip for the maximum is not entered so the default will be taken which is
the maximum intensity in your image.

Note also that we added interaction to set other colormaps and to change the relation between colors and image
values. Interaction is a topic in a later section of this tutorial.

Usually one associates colorbars with images but it can also be used in combination with contours. We demonstrate
the use of Matplotlib’s keyword parameters visible=False to make an image invisible. However, to make the
contents of the colorbar invisible one should use alpha=0.0 but we implemented keyword visible to simulate this
effect.

Example: mu_colbarwithlines.py - Add lines representing contours in plot to dummy colorbar

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 f = maputils.FITSimage("m101.fits")
5 limy = limx=(160,360)
6 f.set_limits(limx,limy)
7 rows = 3
8 cols = 2
9

10 fig = plt.figure(figsize=(8,10))
11

12 frame = fig.add_subplot(rows,cols,1)

18.9. Colorbar 249

Kapteyn Package Documentation, Release 2.2

8000 8800 9600 10400 11200 12000 12800 13600 14400 15200

ergs/(sec.cm2)

250 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

13 mplim = f.Annotatedimage(frame, cmap="spectral")
14 cont = mplim.Contours()
15 mplim.Colorbar(clines=True, fontsize=8, linewidths=5) # show only cont. lines
16 mplim.plot()
17 # Levels only known after plotted
18 print "Proposed levels:", cont.clevels
19

20 frame = fig.add_subplot(rows,cols,2)
21 mplim = f.Annotatedimage(frame, cmap="spectral")
22 cont = mplim.Contours(filled=True)
23 mplim.Colorbar(clines=True, fontsize=8) # show only cont. lines
24 mplim.plot()
25

26 frame = fig.add_subplot(rows,cols,3)
27 mplim = f.Annotatedimage(frame, cmap="spectral")
28 mplim.Image()
29 cont = mplim.Contours(colors=’w’, linewidths=1)
30 mplim.Colorbar(clines=True, ticks=(4000,8000,12000))
31 mplim.plot()
32 mplim.interact_imagecolors()
33

34 frame = fig.add_subplot(rows,cols,4)
35 mplim = f.Annotatedimage(frame, cmap="spectral")
36 mplim.Image()
37 # Give each contour its own color, instead of borrowing from the colormap
38 cont = mplim.Contours(levels=(6000,8000,10000,12000),
39 colors=(’w’,’g’,’b’, ’c’))
40 cont.setp_contour(levels=8000, color=’m’, linewidth=2)
41 mplim.Colorbar(clines=True, ticks=(4000,8000,12000), linewidths=6)
42 mplim.plot()
43 mplim.interact_imagecolors()
44 mplim.interact_toolbarinfo()
45

46 frame = fig.add_subplot(rows,cols,5)
47 mplim = f.Annotatedimage(frame, cmap="mousse.lut")
48 mplim.Image()
49 cont = mplim.Contours()
50 mplim.Colorbar(clines=True, orientation="horizontal", ticks=(4000,8000,12000))
51 mplim.plot()
52 mplim.interact_imagecolors()
53 mplim.interact_toolbarinfo()
54

55 # With given levels
56 frame = fig.add_subplot(rows,cols,6)
57 levels = (10000,11000,12000,13000)
58 mplim = f.Annotatedimage(frame, cmap="mousse.lut",
59 clipmin=min(levels)-500,
60 clipmax=max(levels)+500)
61 mplim.Image()
62 cont = mplim.Contours(levels=levels)
63 mplim.Colorbar(clines=True, orientation="horizontal",
64 ticks=levels)
65 mplim.plot()
66 mplim.interact_imagecolors()
67 mplim.interact_toolbarinfo()
68

69 plt.show()

18.9. Colorbar 251

Kapteyn Package Documentation, Release 2.2

4000

6000

8000

10000

12000

14000

4000

6000

8000

10000

12000

14000

4000

8000

12000

4000

8000

12000

4000 8000 12000 10000 11000 12000 13000

252 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

18.10 Adding pixel coordinate labels

In Matplotlib the axes in a frame are coupled. To get uncoupled axes a we stack frames at the same location.
For each frame one can change properties of the pixel coordinate labels separately. The trick is implemented in
a number of methods, but in the methods of class maputils.Pixellabels it is easy to demonstrate that it
works. In the example we defined 4 plot axes for which we want to draw pixel coordinate labels. The constructor
uses Matplotlib defaults but these can be overruled by parameters major and minor. These are numbers for which
n*major major ticks and labels are plotted and m*minor minor ticks. Note that the default in Matplotlib is not to
plot minor tick marks.

Example: mu_pixellabels.py - Add annotation for pixel coordinates

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 fig = plt.figure(figsize=(4,4))
5 frame = fig.add_subplot(1,1,1)
6

7 fitsobject = maputils.FITSimage("m101.fits")
8 annim = fitsobject.Annotatedimage(frame)
9 annim.Pixellabels(plotaxis="bottom", major=200, minor=10, color="r")

10 pl2 = annim.Pixellabels(plotaxis="right", color="b", markersize=10,
11 gridlines=True)
12 pl2.setp_marker(markersize=+15, color=’b’, markeredgewidth=2)
13 pl3 = annim.Pixellabels(plotaxis="top", color=’g’,
14 gridlines=False)
15 pl3.setp_marker(markersize=-10)
16 pl3.setp_label(rotation=90)
17 pl4 = annim.Pixellabels(plotaxis="left", major=150, minor=25)
18 pl4.setp_label(fontsize=10)
19

20 annim.plot()
21 plt.show()

200 400

100

200

300

400

500

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

150

300

450

18.10. Adding pixel coordinate labels 253

Kapteyn Package Documentation, Release 2.2

18.11 Adding a beam

Objects from class Beam are graphical representations of the resolution of an instrument. The beam is plotted at
a center position entered as a string that represents a position or as two world coordinates. The major axis of the
beam is the FWHM of longest distance between two opposite points on the ellipse. The angle between the major
axis and the North is the position angle of the beam. See also maputils.Annotatedimage.Beam().

Note: Rulers, Beams and Markers are positioned using either pixel coordinates or world coordinates. See the
examples in module positions.

In the next example we added two rulers to prove that the sizes of plotted ellipse are indeed the correct values on
a sphere. Note also the use of parameter units to set the FWHM’s to minutes of arc.

Example: mu_beam.py - Plot an ellipse representing a beam

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 from math import cos, radians
4

5 fitsobj = maputils.FITSimage(’m101.fits’)
6 annim = fitsobj.Annotatedimage()
7 annim.Image()
8 grat = annim.Graticule()
9 grat.setp_ticklabel(wcsaxis=1, fmt=’s’) # Exclude seconds in label

10

11

12 # beam = annim.Beam(210.9619, 54.261039, 0.01, 0.01, 0, hatch=’*’)
13 # Hatching does not work in mpl 0.98.3
14

15 fwhm_maj = 5/60.0 # arcmin to degrees
16 fwhm_min = 4/60.0
17 lat = 54.347395233845
18 lon = 210.80254413455
19 beam = annim.Beam(fwhm_maj, fwhm_min, 90, xc=lon, yc=lat,
20 fc=’g’, fill=True, alpha=0.6)
21 pos = ’210.80254413455 deg, 54.347395233845 deg’
22 beam = annim.Beam(7, 4, units=’arcmin’, pos=pos, fc=’m’, fill=True,
23 alpha=0.6)
24 pos = ’14h03m12.6105s 54d20m50.622s’
25 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’y’, fill=True, alpha=0.6)
26 pos = ’ga 102.0354152 {} 59.7725125’
27 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’g’, fill=True, alpha=0.6)
28 pos = ’ga 102d02m07.494s {} 59.7725125’
29 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’b’, fill=True, alpha=0.6)
30 pos = ’{ecliptic,fk4, j2000} 174.3674627 {} 59.7961737’
31 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’r’, fill=True, alpha=0.6)
32 pos = ’{eq, fk4-no-e, B1950} 14h01m26.4501s {} 54d35m13.480s’
33 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’c’, fill=True, alpha=0.6)
34 pos = ’{eq, fk4-no-e, B1950, F24/04/55} 14h01m26.4482s {} 54d35m13.460s’
35 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’c’, fill=True, alpha=0.6)
36 pos = ’{ecl} 174.367764 {} 59.79623457’
37 beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc=’c’, fill=True, alpha=0.6)
38 pos = ’53 58’ # Pixels
39 beam = annim.Beam(0.04, 0.02, pa=30, pos=pos, fc=’y’, fill=True, alpha=0.4)
40 pos = ’14h03m12.6105s 58’
41 beam = annim.Beam(0.04, 0.02, pa=-30, pos=pos, fc=’y’, fill=True, alpha=0.4)
42

43 annim.Ruler(x1=lon, y1=lat, x2=lon+fwhm_min/1.99/cos(radians(54.20)), y2=lat,
44 world=True, step=1, lambda0=0.0, units=’arcmin’, color=’r’)
45 annim.Ruler(x1=lon, y1=lat, x2=lon, y2=lat+fwhm_maj/1.99, world=True,
46 step=1, lambda0=0.0, units=’arcmin’, color=’b’)

254 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

47

48 annim.plot()
49

50 annim.interact_toolbarinfo()
51 annim.interact_imagecolors()
52 plt.show()

0
′1
′2
′

0′

1′

2′

14h 03m 00s 02m 30s03m 30s04m 00s

R.A. (2000.0)

54 ◦ 20′

15′

25′

D
e
c.

 (
2

0
0

0
.0

)

18.12 Markers

Sometimes there are features in an image that you want to mark with a symbol. In other cases you
want to plot positions from an external source (file or database etc.). Then you use objects from class
maputils.Annotatedimage.Marker(). The use is straightforward. Positions can be entered in dif-
ferent formats: as pixel coordinates, as world coordinates or as strings with position information (see module
positions).

Note: Rulers, Beams and Markers are positioned using either pixel coordinates or world coordinates. See the
examples in module positions.

Note the use of Matplotlib keyword arguments to set the properties of the marker symbols. The most important
are:

>>> marker=
>>> markersize=
>>> markeredgewidth=
>>> markeredgecolor=
>>> markerfacecolor=

Example: mu_markers.py - Different ways to define marker positions

18.12. Markers 255

Kapteyn Package Documentation, Release 2.2

1 from kapteyn import maputils, tabarray
2 from matplotlib import pyplot as plt
3 import numpy
4

5 f = maputils.FITSimage("m101.fits")
6 fig = plt.figure()
7 frame = fig.add_subplot(1,1,1)
8 annim = f.Annotatedimage(frame, cmap="binary")
9 annim.Image()

10 grat = annim.Graticule()
11 #annim.Marker(pos="210.80 deg 54.34 deg", marker=’o’, color=’b’)
12 annim.Marker(pos="pc", marker=’o’, markersize=10, color=’r’)
13 annim.Marker(pos="14h03m30 54d20m", marker=’o’, color=’y’)
14 annim.Marker(pos="ga 102.035415152 ga 59.772512522", marker=’+’,
15 markersize=20, markeredgewidth=2, color=’m’)
16 annim.Marker(pos="{ecl,fk4,J2000} 174.367462651 {} 59.796173724",
17 marker=’x’, markersize=20, markeredgewidth=2, color=’g’)
18 annim.Marker(pos="{eq,fk4-no-e,B1950,F24/04/55} 210.360200881 {} 54.587072397",
19 marker=’o’, markersize=25, markeredgewidth=2, color=’c’,
20 alpha=0.4)
21

22 # Use pos= keyword argument to enter sequence of
23 # positions in pixel coordinates. The syntax is described
24 # in the module positions.py
25 pos = "200+20*sin([100:199]/20), range(100,200)"
26

27 annim.Marker(pos=pos, marker=’o’, color=’r’)
28

29 # Use x= and y= keyword arguments to enter sequence of
30 # positions in pixel coordinates. Note that this is not parsed by
31 # module positions.py. Here we need list comprehension to
32 # get the same effect.
33 xp = [400+20*numpy.sin(x/20.0) for x in range(100,200)]
34 yp = range(100,200)
35 annim.Marker(x=xp, y=yp, mode=’pixels’, marker=’o’, color=’g’)
36

37 xp = yp = 150
38 annim.Marker(x=xp, y=yp, mode=’pixels’, marker=’+’, color=’b’)
39

40 annim.plot()
41 annim.interact_imagecolors()
42 annim.interact_toolbarinfo()
43 plt.show()

18.13 Sky polygons

Sometimes one needs to plot a shape which represents an area in the sky. Such a shape can be a small ellipse
which represents the beam of a radio telescope or it is a rectangle representing a footprint of a survey. These
shapes (ellipse, circle, rectangle, square, regular polygon) have a prescription. For example a circle is composed
of a number of vertices with a constant distance to a center and all the vertices define a different angle. If you want
to plot such a shape onto a projection of a sphere you need to recalculate the vertices so that for a given center
(lon_c,lat_c) the set of distances and angles are preserved on the sphere. By distances we mean the distance along
a great circle and not along a parallel.

So what we do is calculate vertices of an ellipse/rectangle/regular polygon in a plane and the center of the shape
is at (0,0). For a sample of points on the shape we calculate the distance of the perimeter as function of the angle.
Then with spherical trigonometry we solve for the missing (lon,lat) in the triangle (lon_c,lat_c)-Pole-(lon,lat).
This is the position for which the distance along a great circle is the required one and also the angle is the required
one.

256 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

14h 03m 00s 02m 30s03m 30s04m 00s

R.A. (2000.0)

54 ◦ 20′ 00′′

15′

25′

D
e
c.

 (
2

0
0

0
.0

)

Assume a triangle on a sphere connecting two positions Q1 with (α1, δ1) and Q2 with (α2, δ2) and on the sphere
Q2 is situated to the left of Q1. Q1 is the new center of the polygon. P is the pole and Q2 the position we need to
find. This position has distance d along a great circle connecting Q1 and Q2 and the angle PQ1Q2 is the required
angle α. The sides of the triangle are (90− δ1) and (90− δ2)

Then the distance between Q1 and Q2 is given by:

cos(d) = cos(90− δ1) cos(90− δ2) + sin(90− δ1) sin(90− δ2) cos(α2 − α1) (18.1)

from which we calculate cos(α2 − α1)

Angle Q1PQ2 is equal to α2 − α1. For this angle we have the sine formula:

sin(d)
sin(α2 − α1)

=
sin(90− δ2)

sin(α)
(18.2)

so that:

sin(α2 − α1) =
sin(d) sin(α)

cos(δ2)
(18.3)

With cos(α2 − α1) and the value of sin(α2 − α1) we derive an unambiguous value for α2 − α1 and because we
started with α1 we derive a value for α2.

The angle PQ1Q2 is α. This is not the astronomical convention, but that doesn’t matter because we use the same
definition for an angle in the ‘flat space’ polygon. For this situation we have another cosine rule:

cos(90− δ2) = cos(d)cos(90− δ1) + sin(d) sin(90− δ1) cos(α) (18.4)

or:

sin(δ2) = cos(d) sin(δ1) + sin(d) cos(δ1) cos(α) (18.5)

which gives δ2 and we found longitude and latitude (α2, δ2) of the transformed ‘flat space’ coordinate. The set of
transformed vertices in world coordinates are then transformed to pixels which involves the projection of a map.

18.13. Sky polygons 257

Kapteyn Package Documentation, Release 2.2

The next example shows some shapes plotted in a map of a part of the sky.

Example: mu_skypolygons.py - ‘Sky polygons’ in M101

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 f = maputils.FITSimage("m101.fits")
5

6 fig = plt.figure()
7 frame = fig.add_subplot(1,1,1)
8

9 annim = f.Annotatedimage(frame, cmap=’gist_yarg’)
10 annim.Image()
11 grat = annim.Graticule()
12 grat.setp_gratline(color=’0.75’)
13

14 # Ellipse centered on crossing of two graticule lines
15 annim.Skypolygon("ellipse", cpos="14h03m 54d20m", major=100, minor=50,
16 pa=-30.0, units=’arcsec’, fill=False)
17

18 # Ellipse at given pixel coordinates
19 annim.Skypolygon("ellipse", cpos="10 10", major=100, minor=50,
20 pa=-30.0, units=’arcsec’, fc=’c’)
21

22 # Circle with radius in arc minutes
23 annim.Skypolygon("ellipse", cpos="210.938480 deg 54.269206 deg",
24 major=1.50, minor=1.50, units=’arcmin’,
25 fc=’g’, alpha=0.3, lw=3, ec=’r’)
26

27 # Rectangle at the projection center
28 annim.Skypolygon("rectangle", cpos="pc pc", major=200, minor=50,
29 pa=30.0, units=’arcsec’, ec=’g’, fc=’b’, alpha=0.3)
30

31 # Regular polygon with 6 angles at some position in galactic coordinates
32 annim.Skypolygon("npoly", cpos="ga 102d11m35.239s ga 59d50m25.734",
33 major=150, nangles=6,
34 units=’arcsec’, ec=’g’, fc=’y’, alpha=0.3)
35

36 # Regular polygon
37 annim.Skypolygon("npolygon", cpos="ga 102.0354152 ga 59.7725125",
38 major=150, nangles=3,
39 units=’arcsec’, ec=’g’, fc=’y’, alpha=0.3)
40

41 lons = [210.969423, 210.984761, 210.969841, 210.934896, 210.894589,
42 210.859949, 210.821008, 210.822413, 210.872040]
43 lats = [54.440575, 54.420249, 54.400778, 54.388611, 54.390166,
44 54.396241, 54.416029, 54.436244, 54.454230]
45

46 annim.Skypolygon(prescription=None, lons=lons, lats=lats, fc=’r’, alpha=0.3)
47

48 annim.plot()
49 annim.interact_toolbarinfo()
50 annim.interact_imagecolors()
51 annim.interact_writepos(wcsfmt="%f",zfmt=None, pixfmt=None, hmsdms=False)
52

53 plt.show()

In ‘all sky’ plots the results can be a little surprising. For the family of cylindrical projections we give a number
of examples.

Example: mu_skypolygons_allsky.py - ‘Sky polygons’ in a number of cylindrical projections

258 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

14h 03m 00s 02m 30s03m 30s04m 00s

R.A. (2000.0)

54 ◦ 20′ 00′′

15′

25′

D
e
c.

 (
2

0
0

0
.0

)

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 import numpy
4

5

6 def shapes(proj, fig, plnr, crval2=0.0, **pv):
7 naxis1 = 800; naxis2 = 800
8 header = {’NAXIS’: 2,
9 ’NAXIS1’: naxis1, ’NAXIS2’: naxis2,

10 ’CRPIX1’: naxis1/2.0, ’CRPIX2’: naxis2/2.0,
11 ’CRVAL1’: 0.0, ’CRVAL2’: crval2,
12 ’CDELT1’: -0.5, ’CDELT2’: 0.5,
13 ’CUNIT1’: ’deg’, ’CUNIT2’: ’deg’,
14 ’CTYPE1’: ’RA---%s’%proj, ’CTYPE2’: ’DEC--%s’%proj}
15 if len(pv):
16 header.update(pv)
17

18 print header
19 X = numpy.arange(0,390.0,30.0); X[-1] = 180+0.00000001
20 Y = numpy.arange(-90,91,30.0)
21 f = maputils.FITSimage(externalheader=header)
22 frame = fig.add_subplot(2,2,plnr)
23 annim = f.Annotatedimage(frame)
24 grat = annim.Graticule(axnum=(1,2),
25 wylim=(-90.0,90.0), wxlim=(-180,180),
26 startx=X, starty=Y)
27 grat.setp_gratline(color=’0.75’)
28 if plnr in [1,2]:
29 grat.setp_axislabel(plotaxis=’bottom’, visible=False)
30 print "Projection %d is %s" % (plnr, proj)
31 # Ellipse centered on crossing of two graticule lines

18.13. Sky polygons 259

Kapteyn Package Documentation, Release 2.2

32 try:
33 annim.Skypolygon("ellipse", cpos="5h00m 20d0m", major=50, minor=30,
34 pa=-30.0, fill=False)
35 except:
36 print "Failed to plot ellipse"
37 # Ellipse at given pixel coordinates
38 try:
39 cpos = "%f %f"%(naxis1/2.0+20, naxis2/2.0+10)
40 annim.Skypolygon("ellipse", cpos=cpos, major=20, minor=10,
41 pa=-30.0, fc=’m’)
42 except:
43 print "Failed to plot ellipse"
44 # Circle with radius in arc minutes
45 try:
46 annim.Skypolygon("ellipse", cpos="0 deg 60 deg",
47 major=30, minor=30,
48 fc=’g’, alpha=0.3, lw=3, ec=’r’)
49 except:
50 print "Failed to plot circle"
51 # Rectangle at the projection center
52 try:
53 annim.Skypolygon("rectangle", cpos="pc pc", major=50, minor=20,
54 pa=30.0, ec=’g’, fc=’b’, alpha=0.3)
55 except:
56 print "Failed to plot rectangle"
57 # Square centered at 315 deg -45 deg and with size equal
58 # to distance on sphere between 300,-30 and 330,-30 deg (=25.9)
59 try:
60 annim.Skypolygon("rectangle", cpos="315 deg -45 deg", major=25.9, minor=25.9,
61 pa=0.0, ec=’g’, fc=’#ff33dd’, alpha=0.8)
62 except:
63 print "Failed to plot square"
64 # Regular polygon with 6 angles at some position in galactic coordinates
65 try:
66 annim.Skypolygon("npoly", cpos="ga 102d11m35.239s ga 59d50m25.734",
67 major=20, nangles=6,
68 ec=’g’, fc=’y’, alpha=0.3)
69 except:
70 print "Failed to plot regular polygon"
71 # Regular polygon as a triangle
72 try:
73 annim.Skypolygon("npolygon", cpos="ga 0 ga 90",
74 major=70, nangles=3,
75 ec=’g’, fc=’c’, alpha=0.7)
76 except:
77 print "Failed to plot triangle"
78 # Set of (absolute) coordinates, no prescription
79 lons = [270, 240, 240, 270]
80 lats = [-60, -60, -30, -30]
81 try:
82 annim.Skypolygon(prescription=None, lons=lons, lats=lats, fc=’r’, alpha=0.9)
83 except:
84 print "Failed to plot set of coordinates as polygon"
85

86 grat.Insidelabels(wcsaxis=0,
87 world=range(0,360,30), constval=0, fmt=’Hms’,
88 color=’b’, fontsize=5)
89 grat.Insidelabels(wcsaxis=1,
90 world=[-60, -30, 30, 60], constval=0, fmt=’Dms’,
91 color=’b’, fontsize=5)
92 annim.interact_toolbarinfo()
93 annim.interact_writepos(wcsfmt="%f",zfmt=None, pixfmt=None, hmsdms=False)
94 frame.set_title(proj, y=0.8)

260 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

95 annim.plot()
96

97 fig = plt.figure()
98 fig.subplots_adjust(left=0.03, bottom=0.05, right=0.97,
99 top=0.97, wspace=0.02, hspace=0.02)

100 shapes("AIT", fig, 1)
101 shapes("CAR", fig, 2)
102 shapes("BON", fig, 3, PV2_1=45)
103 shapes("PCO", fig, 4)
104 plt.show()

AIT

D
e
c.

 (
2

0
0
0

.0
)

0h2h4h6h8h

10
h

12
h

14
h

16
h

18
h

20
h

22
h

−60 ◦

−30 ◦

30 ◦

60 ◦

CAR

D
e
c.

 (
2

0
0
0

.0
)

0h2h4h6h8h

10
h

12
h

14
h

16
h

18
h

20
h

22
h

−60 ◦

−30 ◦

30 ◦

60 ◦

BON

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0h2
h

4
h

6
h

8
h

10
h

12
h

14
h

16
h

18
h

20
h

22
h

−60 ◦

−30 ◦

30 ◦

60 ◦

PCO

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0h2h4h6h8h

10
h

12
h

14
h

16
h

18
h

20
h

22
h

−60 ◦

−30 ◦

30 ◦

60 ◦

The code shows a number of lines with try and except clauses. This is to catch problems for badly chosen
origins or polygon parameters. We also provide examples of similar polygons in a number of zenithal projections.
The scaling is unaltered so different projections fill the plot differently.

Example: mu_skypolygons_zenith.py - ‘Sky polygons’ in a number of zenithal projections

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 import numpy
4

5 # This script shows that you can plot shapes that cross the pole.
6 # A shape is plotted with respect to its center and the border points
7 # are derived in a way that distance and angle are correct for a sphere.
8 # This makes it impossible to have objects centered at the pole because at
9 # the pole, longitudes are undefined. To avoid this problem, one can shift

10 # the center of such shapes a little as we have done with pcra and
11 # pcdec below.
12 # The try excepts in this program is to catch problems with special
13 # projections (e.g. NCP where dec > 0)
14

15 delta = 0.0001

18.13. Sky polygons 261

Kapteyn Package Documentation, Release 2.2

16 pcra = delta
17 pcdec = 90. -delta
18

19 def shapes(proj, fig, plnr, crval2=0.0, **pv):
20 naxis1 = 800; naxis2 = 800
21 header = {’NAXIS’: 2,
22 ’NAXIS1’: naxis1, ’NAXIS2’: naxis2,
23 ’CRPIX1’: naxis1/2.0, ’CRPIX2’: naxis2/2.0,
24 ’CRVAL1’: 0.0, ’CRVAL2’: crval2,
25 ’CDELT1’: -0.5, ’CDELT2’: 0.5,
26 ’CUNIT1’: ’deg’, ’CUNIT2’: ’deg’,
27 ’CTYPE1’: ’RA---%s’%proj, ’CTYPE2’: ’DEC--%s’%proj}
28 if len(pv):
29 header.update(pv)
30

31 X = numpy.arange(0,390.0,30.0);
32 Y = numpy.arange(-30,91,30.0)
33 f = maputils.FITSimage(externalheader=header)
34 frame = fig.add_subplot(2, 2, plnr)
35 annim = f.Annotatedimage(frame)
36 grat = annim.Graticule(axnum=(1,2),
37 wylim=(-30.0,90.0), wxlim=(-180,180),
38 startx=X, starty=Y)
39 grat.setp_gratline(color=’0.75’)
40 if plnr in [1,2]:
41 grat.setp_axislabel(plotaxis=’bottom’, visible=False)
42 print "Projection %d is %s" % (plnr, proj)
43 # Ellipse centered on crossing of two graticule lines
44 try:
45 annim.Skypolygon("ellipse", cpos="5h00m 20d0m", major=50, minor=30,
46 pa=-30.0, fill=False)
47 print "Plotted ellipse with cpos=’5h00m 20d0m’, major=50, minor=30, pa=-30.0, fill=False"
48 except:
49 print "Failed to plot ellipse"
50 # Ellipse at given pixel coordinates
51 try:
52 cpos = "%f %f"%(naxis1/2.0+20, naxis2/2.0+10)
53 annim.Skypolygon("ellipse", cpos=cpos, major=40, minor=10,
54 pa=0.0, fc=’m’)
55 print "Plotted ellipse major=40, minor=10, pa=-30.0, fc=’m’"
56 except:
57 print "Failed to plot ellipse"
58 # Circle with radius in arc minutes
59 try:
60 annim.Skypolygon("ellipse", xc=pcra, yc = pcdec, #cpos="0 deg 60 deg",
61 major=30, minor=30,
62 fc=’g’, alpha=0.3, lw=3, ec=’r’)
63 print "Plotted red circle, green with red border transparent"
64 except:
65 print "Failed to plot circle"
66 # Rectangle at the projection center
67 try:
68 annim.Skypolygon("rectangle", xc=pcra, yc=pcdec, major=50, minor=20,
69 pa=30.0, ec=’g’, fc=’b’, alpha=0.3)
70 print "Plotted blue rectangle at projection center"
71 except:
72 print "Failed to plot blue rectangle at projection center"
73 # Square centered at 315 deg -45 deg and with size equal
74 # to distance on sphere between 300,-30 and 330,-30 deg (=25.9)
75 try:
76 annim.Skypolygon("rectangle", cpos="315 deg -45 deg", major=25.9, minor=25.9,
77 pa=0.0, ec=’g’, fc=’#ff33dd’, alpha=0.8)
78 print "Plotted square with color #ff33dd"

262 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

79 except:
80 print "Failed to plot square"
81 # Regular polygon with 6 angles at some position in galactic coordinates
82 try:
83 annim.Skypolygon("npoly", cpos="ga 102d11m35.239s ga 59d50m25.734",
84 major=20, nangles=6,
85 ec=’g’, fc=’y’, alpha=0.3)
86 print "Plotted npoly in yellow"
87 except:
88 print "Failed to plot regular polygon"
89 # Regular polygon as a triangle
90 try:
91 annim.Skypolygon("npolygon", cpos="ga 0 ga 90",
92 major=70, nangles=3,
93 ec=’g’, fc=’c’, alpha=0.7)
94 print "Plotted npoly triangle in cyan"
95 except:
96 print "Failed to plot triangle"
97 # Set of (absolute) coordinates, no prescription
98 lons = [270, 240, 240, 270]
99 lats = [-30, -30, 0, 0]

100 try:
101 annim.Skypolygon(prescription=None, lons=lons, lats=lats, fc=’r’, alpha=0.9)
102 print "Plotted polygon without prescription"
103 except:
104 print "Failed to plot set of coordinates as polygon"
105

106 grat.Insidelabels(wcsaxis=0,
107 world=range(0,360,30), constval=0, fmt=’Hms’,
108 color=’b’, fontsize=5)
109 grat.Insidelabels(wcsaxis=1,
110 world=[-60, -30, 30, 60], constval=0, fmt=’Dms’,
111 color=’b’, fontsize=5)
112 annim.interact_toolbarinfo()
113 annim.interact_writepos(wcsfmt="%f",zfmt=None, pixfmt=None, hmsdms=False)
114 frame.set_title(proj, y=0.8)
115 annim.plot()
116

117

118 fig = plt.figure()
119 fig.subplots_adjust(left=0.03, bottom=0.05, right=0.97,
120 top=0.97, wspace=0.02, hspace=0.02)
121

122 shapes("STG", fig, 1, crval2=90)
123 shapes("ARC", fig, 2, crval2=90)
124 pvkwargs = {’PV2_0’ : 0.05, ’PV2_1’ : 0.975, ’PV2_2’ : -0.807,
125 ’PV2_3’ : 0.337, ’PV2_4’ : -0.065,
126 ’PV2_5’ : 0.01, ’PV2_6’ : 0.003,’ PV2_7’ : -0.001}
127 shapes("ZPN", fig, 3, crval2=90, **pvkwargs)
128 shapes("NCP", fig, 4, crval2=90)
129 #xi = -1/numpy.sqrt(6); eta = 1/numpy.sqrt(6)
130 #shapes("SIN", fig, 4, crval2=90, PV2_1=xi, PV2_2=eta)
131 plt.show()

Note that some polygons could not be plotted for the NCP projection, simply because it is defined from declination
90 to 0 only. To avoid problems with divergence we limit the world coordinates to a declination of -30 degrees. The
sky polygons are not aware of this limit and are plotted as long conversions between pixel- and world coordinates
are possible. The ZPN example is a bit special. First, it is not possible to center a shape onto the pole (at least
with the set of PV elements defined in the code) and second, we have a non zero PV2_0 element which breaks the
relation between CRPIX and CRVAL.

For a detailed description of the input parameters of the used Skypolygon() method, read
maputils.Annotatedimage.Skypolygon().

18.13. Sky polygons 263

Kapteyn Package Documentation, Release 2.2

STG
D

e
c.

 (
2
0
0

0
.0

)

0
h

2
h

4
h

6
h

8h

10
h

12
h14

h
16

h

18h

20 h

22 h

−30◦

30◦

60◦

ARC

D
e
c.

 (
2
0
0

0
.0

) 0
h 2

h

4
h

6
h

8h

10
h

12
h14

h

16
h

18h

20 h

22 h

−30◦

30◦

60◦

ZPN

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
h 2
h 4

h

6
h

8h

10
h

12
h

14
h16

h
18h

20 h

22 h

−30◦

30◦ 60◦

NCP

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0h

2h

4h

6h

8h

10h

12h14h

16h

18h

20h

22h 30◦
60◦

18.14 Combining different plot objects

We arrived at a stage where one is challenged to apply different plot objects in one plot. Here is a practical
example:

Example: mu_graticules.py - Combining plot with contours and a colorbar

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 f = maputils.FITSimage("m101.fits")
5 f.set_limits(pxlim=(50,440), pylim=(50,450))
6

7 fig = plt.figure(figsize=(8,5.5))
8 frame = fig.add_axes((0.05, 0.1, 0.8, 0.7))
9 fig.text(0.5, 0.96, "Combination of plot objects",

10 horizontalalignment=’center’,
11 fontsize=14, color=’r’)
12

13 annim = f.Annotatedimage(frame, clipmin=3000, clipmax=15000)
14 cont = annim.Contours(levels=range(8000,14000,1000))
15 cont.setp_contour(linewidth=1)
16 cont.setp_contour(levels=11000, color=’g’, linewidth=2)
17 cb = annim.Colorbar(clines=True, orientation=’vertical’, fontsize=8, linewidths=5)
18 gr = annim.Graticule()
19 gr.setp_ticklabel(wcsaxis=0, fmt=’HMS’)
20 ilab = gr.Insidelabels(color=’b’, ha=’left’)
21 ilab.setp_label(position=’14h03m0s’, fontsize=15)
22

23 # Plot a second graticule for the galactic sky system
24 gr2 = annim.Graticule(deltax=7.5/60, deltay=5.0/60,

264 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

25 skyout="galactic",
26 visible=True)
27 gr2.setp_axislabel(plotaxis=("top","right"), label="Galactic l,b",
28 color=’g’, visible=True)
29 gr2.setp_axislabel(plotaxis=("left","bottom"), visible=False)
30 gr2.set_tickmode(plotaxis=("top","right"), mode="Native")
31 gr2.set_tickmode(plotaxis=("left","bottom"), mode="NO")
32 gr2.setp_ticklabel(wcsaxis=(0,1), color=’g’)
33 gr2.setp_ticklabel(plotaxis=’right’, fmt=’DMs’)
34 gr2.setp_tickmark(plotaxis=’right’, markersize=8, markeredgewidth=2)
35 gr2.setp_gratline(wcsaxis=(0,1), color=’g’)
36 annim.Ruler(x1=120, y1=100, x2=120, y2=330, step=1/60.0)
37 r1 = annim.Ruler(pos1=’ga 102d0m, 59d50m’, pos2=’ga 102d7m30s, 59d50m’,
38 world=True, step=1/60.0)
39 r1.setp_line(color=’#ff22ff’, lw=6)
40 r1.setp_label(color=’m’)
41 annim.Pixellabels(plotaxis=’top’, va=’top’)
42 pl = annim.Pixellabels(plotaxis=’right’)
43 pl.setp_marker(color=’c’, markersize=10)
44 pl.setp_label(color=’m’)
45

46 annim.plot()
47 plt.show()

0′

1′

2′

3′

−1′

−2′

−3′

0 ′

1 ′

−
1 ′

8000

9000

10000

11000

12000

13000

14h 03m 30s 14h 03m 00s

R.A. (2000.0)

54 ◦ 20′ 00′′

15′

25′

D
e
c.

 (
2

0
0

0
.0

)

14
h
03

m
30

s

00
s

102 ◦ 00′ 00′′ 07′ 30′′ 15′ 00′′
Galactic l,b

59 ◦ 45′

59 ◦ 50′

G
a
la

ctic l,b

50 100 150 200 250 300 350 400

100

200

300

400

Combination of plot objects

18.15 External headers and/or data

You are not restricted to FITS files to get plots of your data. The only requirement is that you must be able to get
your data into a NumPy array and you need to supply a Python dictionary with FITS keywords. For both options
we show an example.

Example: mu_externalheader.py - Header data from Python dictionary and setting a figure size

18.15. External headers and/or data 265

Kapteyn Package Documentation, Release 2.2

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3 import numpy
4

5 header = {’NAXIS’ : 2, ’NAXIS1’: 800, ’NAXIS2’: 800,
6 ’CTYPE1’ : ’RA---TAN’,
7 ’CRVAL1’ :0.0, ’CRPIX1’ : 1, ’CUNIT1’ : ’deg’, ’CDELT1’ : -0.05,
8 ’CTYPE2’ : ’DEC--TAN’,
9 ’CRVAL2’ : 0.0, ’CRPIX2’ : 1, ’CUNIT2’ : ’deg’, ’CDELT2’ : 0.05,

10 }
11

12 # Overrule the header value for pixel size in y direction
13 header[’CDELT2’] = 0.3*abs(header[’CDELT1’])
14 fitsobj = maputils.FITSimage(externalheader=header)
15 figsize = fitsobj.get_figsize(ysize=7, cm=True)
16

17 fig = plt.figure(figsize=figsize)
18 print "Figure size x, y in cm:", figsize[0]*2.54, figsize[1]*2.54
19 frame = fig.add_subplot(1,1,1)
20 mplim = fitsobj.Annotatedimage(frame)
21 gr = mplim.Graticule()
22 mplim.plot()
23

24 plt.show()

23h 00m 00s 22h

R.A. (2000.0)

5 ◦ 00′ 00′′

10 ◦

D
e
c.

 (
2

0
0

0
.0

)

Example: mu_externaldata.py - Using external FITS header and data

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3 import numpy
4

5 header = {’NAXIS’ : 2, ’NAXIS1’: 800, ’NAXIS2’: 800,
6 ’CTYPE1’ : ’RA---TAN’,
7 ’CRVAL1’ : 0.0, ’CRPIX1’ : 1, ’CUNIT1’ : ’deg’, ’CDELT1’ : -0.05,
8 ’CTYPE2’ : ’DEC--TAN’,
9 ’CRVAL2’ : 0.0, ’CRPIX2’ : 1, ’CUNIT2’ : ’deg’, ’CDELT2’ : 0.05,

10 }
11

12 nx = header[’NAXIS1’]
13 ny = header[’NAXIS2’]
14 sizex1 = nx/2.0; sizex2 = nx - sizex1
15 sizey1 = nx/2.0; sizey2 = nx - sizey1
16 x, y = numpy.mgrid[-sizex1:sizex2, -sizey1:sizey2]
17 edata = numpy.exp(-(x**2/float(sizex1*10)+y**2/float(sizey1*10)))
18

19 f = maputils.FITSimage(externalheader=header, externaldata=edata)
20 f.writetofits()
21 fig = plt.figure(figsize=(6,5))
22 frame = fig.add_axes([0.1,0.1, 0.82,0.82])
23 mplim = f.Annotatedimage(frame, cmap=’pink’)
24 mplim.Image()

266 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

25 gr = mplim.Graticule()
26 gr.setp_gratline(color=’y’)
27 mplim.plot()
28

29 mplim.interact_toolbarinfo()
30 mplim.interact_imagecolors()
31 mplim.interact_writepos()
32

33 plt.show()

23h 00m 00s 22h

R.A. (2000.0)

15 ◦ 00′ 00′′

30 ◦

D
e
c.

 (
2
0

0
0

.0
)

Note: Manipulated headers and data can be written to a FITS file with method
maputils.FITSimage.writetofits(). Its documentation shows how to manipulate the format in
which the data is written. Also have a look at this example which creates a FITSobject from an external header
and external data. It then writes the object to a FITS file. The first time in the original data format with the original
comments and history cards. The second time it writes to a file with BITPIX=-32 and it skips all comment and
history information:

1 from kapteyn import maputils
2

3 fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
4 header = fitsobject.hdr
5 edata = fitsobject.dat
6 f = maputils.FITSimage(externalheader=header, externaldata=edata)
7

8 f.writetofits(history=True, comment=True,
9 bitpix=fitsobject.bitpix,

10 bzero=fitsobject.bzero,

18.15. External headers and/or data 267

Kapteyn Package Documentation, Release 2.2

11 bscale=fitsobject.bscale,
12 blank=fitsobject.blank)
13

14 f.writetofits("standard.fits", history=False, comment=False)
15

16 # or use parameter append to append to an existing file:
17 f.writetofits("existing.fits", append=True, history=False, comment=False)

We use the method with external headers also to create all sky maps. In the next example we demonstrate how a
graticule is created for an all sky map. You will find examples about plotting data in these plots in the document
about all sky maps.

Example: mu_allsky_single.py - Using Python dictionary to define all-sky map

1 from kapteyn import maputils
2 from numpy import arange
3 from matplotlib import pyplot as plt
4

5 dec0 = 89.9999999999 # Avoid plotting on the wrong side
6 header = {’NAXIS’ : 2,
7 ’NAXIS1’ : 100, ’NAXIS2’: 80,
8 ’CTYPE1’ : ’RA---TAN’,
9 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’,

10 ’CDELT1’ : -5.0, ’CTYPE2’ : ’DEC--TAN’,
11 ’CRVAL2’ : dec0, ’CRPIX2’ : 40,
12 ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
13 }
14 X = arange(0,360.0,15.0)
15 Y = [20, 30,45, 60, 75, 90]
16

17 fig = plt.figure(figsize=(7,6))
18 frame = fig.add_axes((0.1,0.1,0.8,0.8))
19 f = maputils.FITSimage(externalheader=header)
20 annim = f.Annotatedimage(frame)
21 grat = annim.Graticule(wylim=(20.0,90.0), wxlim=(0,360), startx=X, starty=Y)
22 lon_world = range(0,360,30)
23 lat_world = [20, 30, 60, dec0]
24 grat.setp_gratline(position=20, color=’g’, linestyle=’--’)
25

26 # Plot labels inside the plot
27 lon_constval = None
28 lat_constval = 18
29 il1 = grat.Insidelabels(wcsaxis=0,
30 world=lon_world, constval=lat_constval, fmt=’Dms’)
31 il1.setp_label(color=’r’, fontsize=15)
32 il2 = grat.Insidelabels(wcsaxis=1, deltapy=2,
33 world=lat_world, constval=lon_constval, fmt=’Dms’)
34 il2.setp_label(color=’b’, fontsize=10)
35 annim.plot()
36

37 # Set title for Matplotlib
38 title = r"Gnomonic projection (TAN) diverges at $\theta=0$. (Cal. fig.8)"
39 frame.set_title(title, color=’g’, y=1.02)
40

41 plt.show()

The data from a FITS file is stored in a NumPy array. Then it is straightforward to maniplate this data. NumPy has
many methods for this. We apply a Fourier transform to an image of M101. We show how to use functions abs
and angle with a complex array as argument to get images of the amplitude and the fase of the transform. With
the transform we test the inverse procedure and show the residual. There seems to be some systematic structure in
the residual map but notice that the maximum is very small compared to the smallest image value in the original
(which is around 1500). We used NumPy’s FFT functions to calculate the transform. Have a look at the code:

268 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

Gnomonic projection (TAN) diverges at θ=0. (Cal. fig.8)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦30

◦

60
◦

90 ◦

120 ◦
150 ◦

180
◦ 210

◦

240
◦

270◦

300◦
33

0◦20 ◦

30 ◦

60 ◦

90 ◦

18.15. External headers and/or data 269

Kapteyn Package Documentation, Release 2.2

Example: mu_fft.py - Mosaic of plots showing FFT of image data and inverse transform

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 from numpy import fft, log, abs, angle
4

5 f = maputils.FITSimage("m101.fits")
6

7 yshift = -0.1
8 fig = plt.figure(figsize=(8,6))
9 fig.subplots_adjust(left=0.01, bottom=0.1, right=1.0, top=0.98,

10 wspace=0.03, hspace=0.16)
11 frame = fig.add_subplot(2,3,1)
12 frame.text(0.5, yshift, "M101", ha=’center’, va=’center’,
13 transform = frame.transAxes)
14 mplim = f.Annotatedimage(frame, cmap="spectral")
15 mplim.Image()
16

17 fftA = fft.rfft2(f.dat, f.dat.shape)
18 frame = fig.add_subplot(2,3,2)
19 frame.text(0.5, yshift, "Amplitude of FFT", ha=’center’, va=’center’,
20 transform = frame.transAxes)
21 f = maputils.FITSimage("m101.fits", externaldata=log(abs(fftA)+1.0))
22 mplim2 = f.Annotatedimage(frame, cmap="gray")
23 im = mplim2.Image()
24

25 frame = fig.add_subplot(2,3,3)
26 frame.text(0.5, yshift, "Phase of FFT", ha=’center’, va=’center’,
27 transform = frame.transAxes)
28 f = maputils.FITSimage("m101.fits", externaldata=angle(fftA))
29 mplim3 = f.Annotatedimage(frame, cmap="gray")
30 im = mplim3.Image()
31

32 frame = fig.add_subplot(2,3,4)
33 frame.text(0.5, yshift, "Inverse FFT", ha=’center’, va=’center’,
34 transform = frame.transAxes)
35 D = fft.irfft2(fftA)
36 f = maputils.FITSimage("m101.fits", externaldata=D.real)
37 mplim4 = f.Annotatedimage(frame, cmap="spectral")
38 im = mplim4.Image()
39

40 frame = fig.add_subplot(2,3,5)
41 Diff = D.real - mplim.data
42 f = maputils.FITSimage("m101.fits", externaldata=Diff)
43 mplim5 = f.Annotatedimage(frame, cmap="spectral")
44 im = mplim5.Image()
45

46 frame.text(0.5, yshift, "M101 - inv. FFT", ha=’center’, va=’center’,
47 transform = frame.transAxes)
48 s = "Residual with min=%.1g max=%.1g" % (Diff.min(), Diff.max())
49 frame.text(0.5, yshift-0.08, s, ha=’center’, va=’center’,
50 transform = frame.transAxes, fontsize=8)
51

52 mplim.interact_imagecolors()
53 mplim2.interact_imagecolors()
54 mplim3.interact_imagecolors()
55 mplim4.interact_imagecolors()
56 mplim5.interact_imagecolors()
57

58 maputils.showall()

Fig. mu_fft.py - FFT: another use of external data

The example shows that we can use external data with the correct shape in combination with the original FITS

270 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

M101 Amplitude of FFT Phase of FFT

Inverse FFT M101 - inv. FFT
Residual with min=-3e-10 max=5e-10

header. Note that we used Matplotlib’s text() method instead of xlabel(). The reason is that the primary frame has
all its axes set to invisible. We can set them to visible but besides a label, one also get numbers along the axes and
that was what we want to avoid.

18.16 Re-projections and image overlays

18.16.1 A simple example

There are several methods to compare data of the same part of the sky but from different sources. These different
sources often have different world coordinate systems. If you want to compare two or more sources in one
plot you need to define a base world coordinate system (wcs) and adjust the other sources so that their data
fits the header description of the first. In other words: you need to re-project the data of the other sources.
Module wcs provides a powerful coordinate transformation function called wcs.coordmap() which does the
necessary coordinate transformations between two wcs systems. The transformation of the data is done with an
interpolation function based Scipy’s function map_coordinates. The two functions are combined in method
maputils.FITSimage.reproject_to(). If you have a FITS data structure that contains more than one
spatial map (in the same hdu), then the method will re-project all these maps to a new spatial structure given in a
second FITSimage object. This is demonstrated in the next example

Example: mu_reproj.py - Use second FITSimage object to define re-projection

1 from kapteyn import maputils
2

3 # Read first image as base
4 Basefits = maputils.FITSimage("ra_pol_freq_dec.fits")
5

6 # Get data from a FITS file. This is the data that

18.16. Re-projections and image overlays 271

Kapteyn Package Documentation, Release 2.2

7 # should be reprojected to fit the header of Basefits.
8 Secondfits = maputils.FITSimage("dec_pol_freq_ra.fits")
9

10 # Now we want to re-project the data of the Base object onto
11 # the wcs of the second object. This is done with the
12 # reproject_to() method of the first FITSimage object
13 # (the data object) with the header of the second FITSimage
14 # object as parameter. This results in a new FITSimage object
15 Reprojfits = Basefits.reproject_to(Secondfits.hdr)
16

17 # Write the result to disk
18 Reprojfits.writetofits("reproj.fits", clobber=True)

Note that the result has the same structure for all non spatial axes, while the spatial information is copied from the
second object.

If you want only a selection of all the available spatial maps, then you can restrict the re-projection with parameters
plimlo and plimhi. These parameters are single pixel coordinates or tuples with pixel coordinates and each pixel
coordinate represents a position on a non-spatial axis (a repeat axis) similar to the definition of a slice. Also it is
possible to set the pixel limits of the output spatial structure with pxlim and pylim. Note that these correspond to
the axis order of the spatial map to which we want to re-project. With these parameters it is easy to extend a map
e.g. so that it contains a rotated map without cutting the edges. For all these procedures, the appropriate values of
CRPIX in the header are adjusted so that the output header describes a valid wcs.

Below we show how to decrease the output size for the spatial axes. Also we require two maps in the output: the
first is at POL=1 and FREQ=7 and the second is at POL=1 and FREQ=8. Note that plimlo and plimhi describe
contiguous ranges!

>>> Reprojfits = Basefits.reproject_to(Secondfits.hdr,
pxlim=(3,30), pylim=(3,20),
plimlo=(1,7), plimhi=(1,8))

You can also expand the output for the spatial maps by entering values outside the default ranges [1, NAXIS].
Negative values are allowed to expand beyond pixel coordinate 1. The next code fragment shows this for all
spatial maps at POL=1 (i.e. for all pixels coordinates on the FREQ axis).

>>> Reprojfits = Basefits.reproject_to(Secondfits.hdr,
pxlim=(-10,50), pylim=(-10,50),
plimlo=1, plimhi=1)

18.16.2 Re-projecting to an adjusted header

As an alternative to re-projecting to an existing header of a different wcs, one can also make a copy of a header
and adjust it by making changes to existing keywords or to add new keyword, value pairs. This is one of the
more common applications for re-projection purposes. For instance, one can change the header value for CROTA
(corresponding to the latitude axis of an image) to rotate a map. Or one can re-project to another projection e.g.
from a Gnomonic projection (TAN) to a Mercator projection (MER). This is what we have done in the next script.
In the familiar M101 FITS file, we increased the pixel sizes with a factor of 100 to demonstrate the effect of the
re-projection.

There are two practical problems we have to address:

• The CRVAL’s for a Mercator projection must be 0.0. If we don’t change them, the projection will be oblique.

• We don’t know how big the result must be (in terms of pixels) to fit the result.

These problems are solved by creating an intermediate FITSimage object with the new header where CRVAL is
set to 0 and where the values of CTYPE were changed. Then the corners of the original image are used to find
world coordinates in the original image and from these world coordinates we derive pixel coordinates in the new
system. Then we know what the pixel limits are which correspond to the original area in the sky. We end up with
the rectangular system that we are used to from a Mercator projection. Note that the image is subject to a small
rotation.

272 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

Example: mu_m1012mercator.py - Transforming a map to another projection

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 Basefits = maputils.FITSimage("m101big.fits")
5 hdr = Basefits.hdr.copy()
6

7 hdr[’CTYPE1’] = ’RA---MER’
8 hdr[’CTYPE2’] = ’DEC--MER’
9 hdr[’CRVAL1’] = 0.0

10 hdr[’CRVAL2’] = 0.0
11 naxis1 = Basefits.hdr[’NAXIS1’]
12 naxis2 = Basefits.hdr[’NAXIS2’]
13

14 # Get an estimate of the new corners
15 x = [0]*5; y = [0]*5
16 x[0], y[0] = Basefits.proj.toworld((1,1))
17 x[1], y[1] = Basefits.proj.toworld((naxis1,1))
18 x[2], y[2] = Basefits.proj.toworld((naxis1,naxis2))
19 x[3], y[3] = Basefits.proj.toworld((1,naxis2))
20 x[4], y[4] = Basefits.proj.toworld((naxis1/2.0,naxis2))
21

22 # Create a dummy object to calculate pixel coordinates
23 # in the new system. Then we can find the area in pixels
24 # that corresponds to the area in the sky.
25 f = maputils.FITSimage(externalheader=hdr)
26 px, py = f.proj.topixel((x,y))
27 pxlim = [int(min(px))-10, int(max(px))+10]
28 pylim = [int(min(py))-10, int(max(py))+10]
29

30 Reprojfits = Basefits.reproject_to(hdr, pxlim_dst=pxlim, pylim_dst=pylim)
31 #Reprojfits.writetofits("reproj.fits", clobber=True)
32

33 fig = plt.figure(figsize=(9,5))
34 frame1 = fig.add_axes([0.07,0.1,0.35, 0.8])
35 frame2 = fig.add_axes([0.5,0.1,0.43, 0.8])
36 im1 = Basefits.Annotatedimage(frame1)
37 im2 = Reprojfits.Annotatedimage(frame2)
38 im1.Image(); im1.Graticule()
39 im2.Image(); im2.Graticule()
40 im1.plot(); im2.plot()
41 plt.show()

18.16.3 Transforming a WCS with CD or PC elements to a classic header

To facilitate legacy FITS readers which cannot process CD and PC elements we wrote a method that converts
headers to classic headers, i.e. with the familiar header keywords CRVAL, CRPIX, CDELT, CROTA. When a CD
or PC matrix is encountered, and the non diagonal elements are not zero, then skew can be expected. One derives
then two values for the image rotation. This method averages these values as a ‘best value’ for CROTA. (see also
section 6 in paper II by Calabretta & Greisen).

Example: mu_reproj2classic.py - Create a ‘classic’ header without CD or PC elements

1 from kapteyn import maputils, wcs
2 from math import * # To support expression evaluation with ’eval()’
3

4

5

6 Basefits = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
7

8 classicheader, skew, hdrchanged = Basefits.header2classic()

18.16. Re-projections and image overlays 273

Kapteyn Package Documentation, Release 2.2

14h 00m 00s 13h15h

R.A. (2000.0)

50 ◦ 00′ 00′′

60 ◦

D
e
c.

 (
2

0
0

0
.0

)

14h 00m 00s 13h15h

R.A. (2000.0)

50 ◦ 00′ 00′′

60 ◦

D
e
c.

 (
2

0
0

0
.0

)

9 if hdrchanged:
10 print "Original header:\n", Basefits.str_header()
11 if skew != 0.0:
12 print "Found two different rotation angles. Difference is %f deg." % skew
13 else:
14 print "Header probably already ’classic’. Nothing changed"
15

16 print """You can copy the data and replace the header by the classic header
17 or you can re-project it to get rid of skew or to rotate the data
18 using a rotation angle (keyword CROTAn=)."""
19

20 ok = raw_input("Do you want to remove skew or rotate image ... [Y]/N: ")
21 if ok in [’y’, ’Y’, ’’]:
22 lat = Basefits.proj.lataxnum
23 key = "CROTA%d"%lat
24 crotaold = classicheader[key] # CROTA Is always available in this header
25 mes = "Enter value for CROTA%d ... [%g]: " %(lat, crotaold)
26 newcrota = raw_input(mes)
27 if newcrota != ’’:
28 crota = eval(newcrota)
29 classicheader[key] = crota
30 print "Classic header voor reproject:"
31 print classicheader
32 print "\n Re-projecting ..."
33 fnew = Basefits.reproject_to(classicheader, insertspatial=False)
34 else:
35 # A user wants to replace the header only. Leave data untouched.
36 fnew = maputils.FITSimage(externalheader=classicheader,
37 externaldata=Basefits.dat)
38

39 filename_out = "classic.fits"
40 # ADD (!) to ’classic.fits’
41 print "A copy of the selected hdu in the FITS file is APPENDED to [%s] on disk"%filename_out
42 fnew.writetofits(filename_out, clobber=True, append=True)

274 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

18.16.4 Change FITS keywords to change current image

Method maputils.FITSimage.reproject_to() recognizes three input types for parameter reprojobj.
We demonstrated the use of a FITSimage object and a header. It is also possible to set its value to None. Then the
header of the current object is used to define the transformation. If you don’t want to get the header and change
it in your script (as in a previous example) then one can use keyword parameters with the same name as FITS
keywords to change this current header. In the next example we show how to rotate an image using the rotation
parameter and increase the size of the image using keyword parameters. It also shows a hint how to align an image
with the direction of the north, which combines the use of parameter rotation to create a header for which CROTAn
defines the rotation of the image and keyword CROTA2 to set this header value to 0.0.

Example: mu_simplereproj.py - Rotate an image using keyword parameters

1 from kapteyn import maputils
2

3 Basefits = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
4 Rotfits = Basefits.reproject_to(rotation=40.0, naxis1=800, naxis2=800,
5 crpix1=400, crpix2=400)
6

7 # If you want alignment with direction of the north, use:
8 # Rotfits = Basefits.reproject_to(rotation=0.0, crota2=0.0)
9

10 # If copy on disk required:
11 # Rotfits.writetofits("aligned.fits", clobber=True, append=False)
12

13 annim = Rotfits.Annotatedimage()
14 annim.Image()
15 annim.Graticule()
16 annim.interact_toolbarinfo()
17 maputils.showall()

18.16.5 Re-projections for overlay

Re-projections are often used to enable the comparison of data of two different sources (i.e. with different world
coordinate systems) in one plot. Then usually contours of a second FITS image are used upon an image of a
base FITS image. The situation is a bit different compared to the examples above. We need only one spatial
map to be re-projected and this spatial map is set by a slice (i.e. pixel positions on the repeat axes). The pixel
limits (box) of the spatial axes are set by the first FITS image. Instead of a header we can use the FITSim-
age object to which we want to re-project as a parameter. Then all appropriate information is passed and the
maputils.FITSimage.reproject_to() method returns a new FITSimage object with only one spatial
map with sizes that fits the first spatial map. The attribute boxdat can be used to replace the contents of the first
image using the boxdat parameter in method maputils.FITSimage.Annotatedimage().

The example script below shows how this is implemented in a script. The situation is not very complicated because
we deal with two 2-dimensional data structures. Note the use of histogram equalization to enhance some details.

Example: mu_overlayscuba.py - Overlay image with different world coordinate system

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 file1 = "scuba850_AFGL2591.fits"
5 file2 = "13CO_3-2_integ_regrid.fits"
6

7 # Read first image as base
8 Basefits = maputils.FITSimage(file1)
9 Secondfits = maputils.FITSimage(file2)

10 Reprojfits = Secondfits.reproject_to(Basefits)
11

12 fig = plt.figure()
13 frame = fig.add_subplot(1,1,1)

18.16. Re-projections and image overlays 275

Kapteyn Package Documentation, Release 2.2

14

15 baseim = Basefits.Annotatedimage(frame)
16 baseim.Image()
17 baseim.set_histogrameq()
18 baseim.Graticule()
19

20 overlayim = Basefits.Annotatedimage(frame, boxdat=Reprojfits.boxdat)
21 levels = range(20,200,20)
22 overlayim.Contours(levels=levels, colors=’w’)
23

24 baseim.plot()
25 overlayim.plot()
26 baseim.interact_toolbarinfo()
27 baseim.interact_imagecolors()
28

29 plt.show()

20h 29m 25s 20s30s

R.A. (2000.0)

40 ◦ 11′ 00′′

10′

12′

13′

D
e
c.

 (
2

0
0

0
.0

)

It is also possible to mix two images using an alpha factor smaller than 1.0. That is what we did in the next
example. The overlay image is smaller than the base image. Then the overlay is padded with NaN’s which are
not transparent. We can change the values for pixels that could not be interpolated from NaN to another value
with parameter cval which is part of a dictionary with keywords and values to control the interpolation routine in
maputils.FITSimage.reproject_to(). We also set the interpolation order to 1 (which is the default set
by maputils). This order represents a bilinear interpolation.

Example: mu_overlayscuba_im.py - Overlay image with different world coordinate system, using
transparancy factor

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3

4 file1 = "scuba850_AFGL2591.fits"
5 file2 = "13CO_3-2_integ_regrid.fits"

276 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

6

7 # Read first image as base
8 Basefits = maputils.FITSimage(file1)
9 Secondfits = maputils.FITSimage(file2)

10

11 pars = dict(cval=0.0, order=1)
12 Reprojfits = Secondfits.reproject_to(Basefits, interpol_dict=pars)
13

14 fig = plt.figure()
15 frame = fig.add_subplot(1,1,1)
16

17 baseim = Basefits.Annotatedimage(frame)
18 baseim.Image(alpha=1.0)
19 baseim.set_histogrameq()
20 baseim.set_blankcolor(’k’)
21 baseim.Graticule()
22

23 overlayim = Basefits.Annotatedimage(frame, cmap=’OrRd’,
24 boxdat=Reprojfits.boxdat)
25 levels = range(50,200,20)
26 #overlayim.Contours(levels=levels, colors=’w’)
27 overlayim.Image(alpha=0.8)
28 baseim.set_histogrameq()
29

30 baseim.plot()
31 overlayim.plot()
32 baseim.interact_toolbarinfo()
33 baseim.interact_imagecolors()
34

35 plt.show()

20h 29m 25s 20s30s

R.A. (2000.0)

40 ◦ 11′ 00′′

10′

12′

13′

D
e
c.

 (
2

0
0

0
.0

)

The base image has scheduled a function to interactively change its colors while the second image remains fixed.

18.16. Re-projections and image overlays 277

Kapteyn Package Documentation, Release 2.2

This enables you do compare the two images.

18.16.6 Improving the quality of the re-projection

The interpolation routine in the Kapteyn Package is based on SciPy’s map_coordinates(). This function has
a parameter order which sets the interpolation mode. In the script below we create a contour overlay using a rotated
version of a base image (also the pixel size differs). This version is re-projected onto the first. The difference map
is used to calculate a mean and a standard deviation of the residual. In a table we show the calculated values as
function of the interpolation order:

order interpolation mean std sum
0 Nearest int 0.174 194 35337
1 Linear 0.067 156 13728
2 Quadratic 0.034 113 6821
3 Spline order 3 0.032 111 6430
4 order 4 0.031 108 6238
5 order 5 0.030 107 6183

So order=2 or order=3 seems a reasonable choice.

If you zoom the third figure, you will see that the red contours closely follow the green contours that were drawn
first. This is also a measure of the precision in the re-projection because the intensities in the two images are the
same.

Example: mu_overlaym101.py - Re-projection test with overlay data

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 import numpy
4

5

6 #order = input("Enter order of spline interpolation in range 0..5: ")
7 order = 1
8 if order < 0: order = 0
9 if order > 5: order = 5

10

11 file1 = "m101OPT.fits"
12 Basefits = maputils.FITSimage(file1)
13 pxlim = (50,500); pylim = (50,500)
14 Basefits.set_limits(pxlim, pylim)
15

16 file2 = "m101HI.fits"
17 Overfits = maputils.FITSimage(file2)
18 Overfits.set_imageaxes(1,2)
19 # Not necessary to set limits if an overlay is required
20

21 fig = plt.figure(figsize=(6,7))
22 frame1 = fig.add_subplot(2,2,1)
23 frame2 = fig.add_subplot(2,2,2)
24 frame3 = fig.add_subplot(2,2,3)
25 frame4 = fig.add_subplot(2,2,4)
26 fs = 10 # Font size for titles
27

28 levels = [8000, 12000]
29

30 # Plot 1: Base
31 baseim = Basefits.Annotatedimage(frame1)
32 baseim.Image()
33 frame1.set_title("WCS1", fontsize=fs)
34

35 # Plot 2: Data with different wcs
36 overlayim = Overfits.Annotatedimage(frame2)

278 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

37 overlayim.Image()
38 overlayim.set_blankcolor(’y’)
39 frame2.set_title("WCS2", fontsize=fs)
40

41 # Plot 3: Base with contours reprojected from other source
42 baseim2 = Basefits.Annotatedimage(frame3)
43 baseim2.Image()
44 baseim2.Contours(levels=levels, colors=’g’)
45

46 # Filter the NaN’s. Replace by 0.0 to be able tu use spline order > 1
47 #Overfits.boxdat[numpy.where(numpy.isnan(Overfits.boxdat))] = 0.0
48

49 # Set parameters for the interpolation routine
50 pars = dict(cval=numpy.nan, order=order)
51 Reprojfits = Overfits.reproject_to(Basefits, interpol_dict=pars)
52 overlayim2 = Basefits.Annotatedimage(frame3, boxdat=Reprojfits.boxdat)
53 overlayim2.Contours(levels=levels, colors=’r’)
54

55 frame3.set_title("Image WCS1 + \ncontours reprojected WCS2", fontsize=fs)
56 # Plot 4: Plot the difference between base and reprojection
57 x = Basefits.boxdat - overlayim2.data
58 print "Residual min, max, mean, std, sum:", x.flatten().min(), x.flatten().max(),\
59 x.flatten().mean(), x.flatten().std(), x.flatten().sum()
60 diff = Basefits.Annotatedimage(frame4, boxdat=x)
61 diff.Image()
62 diff.set_histogrameq()
63 frame4.set_title(r"Δ = WCS1 - reprojected WCS2", fontsize=fs)
64

65 # User interaction
66 diff.interact_toolbarinfo()
67 diff.interact_imagecolors()
68 overlayim.interact_imagecolors()
69

70 maputils.showall()

18.17 Plotting markers from file

There are many situations where you want to identify features using markers at positions listed in a file. These
positions are world coordinates. and assumed to be in degrees. The format of the file we used to read positions is
as follows:

segment 1 rank 4 points 169
31.270000 32.268889
31.148611 32.277500
31.104722 32.171389
31.061111 32.114444
31.120833 32.056667

The first line is an example of a comment. Therefore we use in
maputils.Annotatedimage.positionsfromfile() character ‘s’ as indentifier of a line with
comments. In this method, the numbers are read from file with a method from module tabarray and are
transformed to pixel coordinates in the projection system of the image in the FITS file. We changed the header
values of CDELT a bit to get a bigger area in world coordinates. The positions are plotted as small dots. The dots
represent coastlines in the Caribbean.

Example: mu_markersfromfile.py - Use special method to read positions from file and mark those positions

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 from kapteyn import tabarray
4 import numpy

18.17. Plotting markers from file 279

Kapteyn Package Documentation, Release 2.2

WCS1 WCS2

Image WCS1 +
contours reprojected WCS2 ∆ = WCS1 - reprojected WCS2

280 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

5

6 # Get a header and change some values
7 f = maputils.FITSimage("m101.fits")
8 header = f.hdr
9 header[’CDELT1’] = 0.1

10 header[’CDELT2’] = 0.1
11 header[’CRVAL1’] = 285
12 header[’CRVAL2’] = 20
13

14 # Use the changed header as external source for new object
15 f = maputils.FITSimage(externalheader=header)
16 fig = plt.figure()
17 frame = fig.add_subplot(1,1,1)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule()
20

21 fn = ’WDB/smallworld.txt’
22 # Note that in this file the latitudes are in the first column
23 # (column 0). And the longitudes in the second (column=1)
24 xp, yp = annim.positionsfromfile(fn, ’s’, cols=[1,0])
25 annim.Marker(x=xp, y=yp, mode=’pixels’, marker=’,’, color=’b’)
26 annim.plot()
27 frame.set_title("Markers in the Carribbean")
28

29 plt.show()

Markers in the Carribbean

19h 00m 00s18h 20h

R.A. (2000.0)

0 ◦ 00′ 00′′

20 ◦

40 ◦

D
e
c.

 (
2

0
0

0
.0

)

Method maputils.Annotatedimage.positionsfromfile() is based on method
tabarray.readColumns(). They share the same parameters which implies that you have many op-
tions to get your data from a file.

The next plot also uses tabarray.tabarray to read coast line data. But here we wanted the coast line dots to
be connected to get more realistic coast lines. For this we use the comment lines in the file as segment separator.

18.17. Plotting markers from file 281

Kapteyn Package Documentation, Release 2.2

This gives us an option to process the data in segments using tabarray’s segment attribute and avoid that distant
segments are connected with straight lines. Again we used the adapted header of the M101 FITS file to scale
things up and to set the eye of the ‘hurricane’ in the Caribbean. The example also shows the use of masked arrays
for plotting.

Example: mu_hurricane - Hurricane ‘M101’ threatens the Caribbean

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 from kapteyn import tabarray
4 import numpy
5

6 def plotcoast(fn, pxlim, pylim, col=’k’):
7

8 coasts = tabarray.tabarray(fn, comchar=’s’) # Read two columns from file
9 for segment in coasts.segments:

10 coastseg = coasts[segment].T
11 xw = coastseg[1]; yw = coastseg[0] # First one appears to be Latitude
12 xs = xw; ys = yw # Reset lists which store valid pos.
13 if 1:
14 # Mask arrays if outside plot box
15 xp, yp = annim.projection.topixel((numpy.array(xs),numpy.array(ys)))
16 xp = numpy.ma.masked_where(numpy.isnan(xp) |
17 (xp > pxlim[1]) | (xp < pxlim[0]), xp)
18 yp = numpy.ma.masked_where(numpy.isnan(yp) |
19 (yp > pylim[1]) | (yp < pylim[0]), yp)
20 # Mask array could be of type numpy.bool_ instead of numpy.ndarray
21 if numpy.isscalar(xp.mask):
22 xp.mask = numpy.array(xp.mask, ’bool’)
23 if numpy.isscalar(yp.mask):
24 yp.mask = numpy.array(yp.mask, ’bool’)
25 # Count the number of positions in these list that are inside the box
26 j = 0
27 for i in range(len(xp)):
28 if not xp.mask[i] and not yp.mask[i]:
29 j += 1
30 if j > 200: # Threshold to prevent too much detail and big pdf’s
31 frame.plot(xp.data, yp.data, color=col)
32

33

34 # Get a header and change some values
35 f = maputils.FITSimage("m101.fits")
36 header = f.hdr
37 header[’CDELT1’] = 0.1
38 header[’CDELT2’] = 0.1
39 header[’CRVAL1’] = 285
40 header[’CRVAL2’] = 20
41

42 # Use the changed header as external source for new object
43 f = maputils.FITSimage(externalheader=header, externaldata=f.dat)
44 fig = plt.figure()
45 frame = fig.add_subplot(1,1,1)
46 annim = f.Annotatedimage(frame, cmap="YlGn")
47 annim.Image()
48 grat = annim.Graticule()
49 grat.setp_ticklabel(wcsaxis=0, fmt="%g^{\circ}")
50 grat.setp_ticklabel(wcsaxis=1, fmt=’Dms’)
51 grat.setp_axislabel(plotaxis=’bottom’, label=’West - East’)
52 grat.setp_axislabel(plotaxis=’left’, label=’South - North’)
53 annim.plot()
54 annim.projection.allow_invalid = True
55

56 # Plot coastlines in black, borders in red

282 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

57 plotcoast(’WDB/namer-cil.txt’, annim.pxlim, annim.pylim, col=’k’)
58 plotcoast(’WDB/namer-bdy.txt’, annim.pxlim, annim.pylim, col=’r’)
59 plotcoast(’WDB/samer-cil.txt’, annim.pxlim, annim.pylim, col=’k’)
60 plotcoast(’WDB/samer-bdy.txt’, annim.pxlim, annim.pylim, col=’r’)
61

62 annim.interact_imagecolors()
63 plt.show()

270 ◦ 300 ◦

West - East

0 ◦

20 ◦

40 ◦

S
o
u
th

 -
 N

o
rt

h

18.18 Mosaics of plots

We have two examples of a mosaic of plots. First a mosaic is presented with an image and two position-velocity
diagrams. The second is a classic examples which shows channel maps from an HI data cube at different velocities.

The base of the image is a velocity for which we want to show data and a pixel coordinate to set the position of
the slice (slicepos=51). This code can be used as a template for a more general application, e.g. with user input
of parameters that set velocity and slice position.

Example: mu_channelmaps1.py - Adding two slices

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 # This is our function to convert velocity from m/s to km/s
5 def fx(x):
6 return x/1000.0
7

8 # Create an object from the FITSimage class:
9 fitsobj = maputils.FITSimage(’ngc6946.fits’)

10

11 # We want to plot the image that corresponds to a certain velocity,

18.18. Mosaics of plots 283

Kapteyn Package Documentation, Release 2.2

12 # let’s say a radio velocity of 100 km/s
13 # Find the axis number that corresponds to the spectral axis:
14 specaxnum = fitsobj.proj.specaxnum
15 spec = fitsobj.proj.sub(specaxnum).spectra("VRAD-???")
16 channel = spec.topixel1d(100*1000.0)
17 channel = round(channel) # We need an integer pixel coordinate
18 vel = spec.toworld1d(channel) # Velocity near 100 km/s
19

20 # Set for this 3d data set the image axes and the position
21 # for the slice, i.e. the frequency pixel
22 lonaxnum = fitsobj.proj.lonaxnum
23 lataxnum = fitsobj.proj.lataxnum
24 fitsobj.set_imageaxes(lonaxnum,lataxnum, slicepos=channel)
25

26 fig = plt.figure(figsize=(7,8))
27 frame = fig.add_axes([0.3,0.5,0.4,0.4])
28 annim = fitsobj.Annotatedimage(frame)
29 annim.Image()
30

31 # The FITSimage object contains all the relevant information
32 # to set the graticule for this image
33 grat = annim.Graticule()
34 ruler = annim.Ruler(x1=-51.1916, y1=59.9283, x2=-51.4877, y2=60.2821,
35 units=’arcmin’, step=3, mscale=5.0,
36 color=’w’, world=True, ha=’right’)
37

38 grat.setp_tick(plotaxis="right", color=’r’)
39 pixellabels = annim.Pixellabels(plotaxis=("right","top"), color=’r’, fontsize=7)
40

41 # First position-velocity plot at RA=51
42 fitsobj.set_imageaxes(lataxnum, specaxnum, slicepos=51)
43 frame2 = fig.add_axes([0.1,0.3,0.8,0.1])
44 annim2 = fitsobj.Annotatedimage(frame2)
45 annim2.set_aspectratio(0.15)
46 annim2.Image()
47 grat2 = annim2.Graticule()
48 grat2.setp_axislabel(plotaxis="right", label=’Velocity (km/s)’,
49 fontsize=9, visible=True)
50 grat2.set_tickmode(plotaxis="right", mode="native_ticks")
51 grat2.setp_ticklabel(plotaxis="right", fmt="%+5g", fun=fx)
52 grat2.setp_axislabel("bottom",
53 label=r"Offset in latitude (arcmin) at α = pixel 51",
54 fontsize=9)
55 grat2.setp_axislabel(plotaxis="left", visible=False)
56 grat2.set_tickmode(plotaxis="left", mode="no_ticks")
57 annim2.Pixellabels(plotaxis=("top", "left"))
58

59 # Second position-velocity plot at DEC=51
60 fitsobj.set_imageaxes(lonaxnum, specaxnum, slicepos=51)
61 frame3 = fig.add_axes([0.1,0.1,0.8,0.1])
62 annim3 = fitsobj.Annotatedimage(frame3)
63 annim3.set_aspectratio(0.15)
64 annim3.Image()
65 grat3 = annim3.Graticule()
66 grat3.setp_axislabel("right",
67 label=’Velocity (km/s)’, fontsize=9, visible=True)
68 grat3.set_tickmode(plotaxis=’right’, mode="native_ticks")
69 # The next line forces labels to be right aligned, but one needs a shift
70 # in x to set the labels outside the plot
71 grat3.setp_ticklabel(plotaxis="right", fmt="%8g", fun=fx, ha="right", x=1.075)
72 grat3.setp_axislabel(plotaxis="left", visible=False)
73 grat3.set_tickmode(plotaxis="left", mode="no_ticks")
74 grat3.setp_axislabel("bottom",

284 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

75 label=r"Offset in longitude (arcmin) at δ = pixel 51",
76 fontsize=9)
77 annim3.Pixellabels(plotaxis=("top", "left"))
78

79 # Set title and adjust position of title
80 frame.set_title(’NGC 6946 at %g km/s (channel %d)’ % (vel/1000.0, channel), y=1.1)
81

82 maputils.showall()

0 ′
3 ′
6 ′
9 ′

−3 ′
−6 ′
−9 ′

NGC 6946 at 101.366 km/s (channel 62)

20h 34m 00s36m

R.A. (2000.0)

60 ◦ 15′ 00′′

00′

D
e
c.

 (
2

0
0

0
.0

)

20 40 60 80 100

20

40

60

80

100

0′ 10′ 20′−10′−20′

Offset in latitude (arcmin) at α = pixel 51

+0

−100

+100

+200

V
e
lo

city
 (km

/s)

20 40 60 80 100

20

40

60

80

100

0′ 10′ 20′−10′−20′

Offset in longitude (arcmin) at δ = pixel 51

0

−100

100

200

V
e
lo

city
 (km

/s)

20 40 60 80 100

20

40

60

80

100

For a series of so called channel maps we use Matplotlib’s add_subplot() to position the plots automatically. To
set the same scale for the colors in each plot, we first calculate the minimum and maximum values in the data with
maputils.FITSimage.get_dataminmax(). The scale itself is set with parameters clipmin and clipmax
in the constructor of maputils.Annotatedimage.

Before you make a hardcopy, it is possible to fine tune the colors because for each plot both mouse and key

18.18. Mosaics of plots 285

Kapteyn Package Documentation, Release 2.2

interaction is added with maputils.Annotatedimage.interact_imagecolors(). Some channels
seem not to contain any signal but when you fine tune the colors you discover that they show features. For
inspection one can set histogram equalization on/off for each plot separately. Special attention is paid to put labels
in the plots with velocity information.

Also this example turns out to be a small but practical tool to inspect data.

Example: mu_channelmosaic.py - A mosaic of channelmaps

1 from kapteyn import maputils
2 from matplotlib import pylab as plt
3

4 # This is our function to convert velocity from m/s to km/s
5 def fx(x):
6 return x/1000.0
7

8 # Create an object from the FITSimage class:
9 fitsobj = maputils.FITSimage(’ngc6946.fits’)

10 specaxnum = fitsobj.proj.specaxnum
11 lonaxnum = fitsobj.proj.lonaxnum
12 lataxnum = fitsobj.proj.lataxnum
13 spec = fitsobj.proj.sub(specaxnum).spectra("VRAD-???")
14

15 start = 5; end = fitsobj.proj.naxis[specaxnum-1]; step = 4
16 channels = range(start,end,step)
17 nchannels = len(channels)
18

19 fig = plt.figure(figsize=(7,8))
20 fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
21

22 vmin, vmax = fitsobj.get_dataminmax()
23 print "Vmin, Vmax of data in cube:", vmin, vmax
24 cmap = ’spectral’ # Colormap
25 cols = 5
26 rows = nchannels / cols
27 if rows*cols < nchannels: rows += 1
28 for i, ch in enumerate(channels):
29 fitsobj.set_imageaxes(lonaxnum, lataxnum, slicepos=ch)
30 print "Min, max in this channel: ", fitsobj.get_dataminmax(box=True)
31 frame = fig.add_subplot(rows, cols, i+1)
32 mplim = fitsobj.Annotatedimage(frame,
33 clipmin=vmin, clipmax=vmax,
34 cmap=cmap)
35 mplim.Image()
36

37 vel = spec.toworld1d(ch)
38 velinfo = "ch%d = %.1f km/s" % (ch, vel/1000.0)
39 frame.text(0.98, 0.98, velinfo,
40 horizontalalignment=’right’,
41 verticalalignment=’top’,
42 transform = frame.transAxes,
43 fontsize=8, color=’w’,
44 bbox=dict(facecolor=’red’, alpha=0.5))
45 mplim.plot()
46 if i == 0:
47 cmap = mplim.cmap
48 mplim.interact_imagecolors()
49

50 plt.show()

286 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

ch5 = -138.1 km/s ch9 = -121.2 km/s ch13 = -104.4 km/s ch17 = -87.6 km/s ch21 = -70.8 km/s

ch25 = -54.0 km/s ch29 = -37.2 km/s ch33 = -20.4 km/s ch37 = -3.6 km/s ch41 = 13.2 km/s

ch45 = 30.0 km/s ch49 = 46.8 km/s ch53 = 63.6 km/s ch57 = 80.4 km/s ch61 = 97.2 km/s

ch65 = 114.0 km/s ch69 = 130.7 km/s ch73 = 147.5 km/s ch77 = 164.3 km/s ch81 = 181.1 km/s

ch85 = 197.9 km/s ch89 = 214.6 km/s ch93 = 231.4 km/s ch97 = 248.2 km/s

18.18. Mosaics of plots 287

Kapteyn Package Documentation, Release 2.2

18.19 Interaction with the display

Matplotlib (v 0.99) provides a number of built-in keyboard shortcuts. These are available on any Matplotlib
window. Most of these shortcuts start actions that can also be started with buttons on the canvas. Also some
keys interfere with the system and others don’t seem to work for certain combinations of Matplotlib version and
backend. Therefore a filter is applied to those shortcuts and now you need to specify the keys from the table below
for which you want to use the shortcut with a function:

>>> from kapteyn.mplutil import KeyPressFilter
>>> KeyPressFilter.allowed = [’f’, ’g’, ’l’]

Note that the interactions defined in module maputils could interfere with some of these keys. By default, the
keys ‘f’ and ‘g’ are allowed.

Some Matplotlib Navigation Keyboard Shortcuts

Command Keyboard Shortcut(s)
Toggle fullscreen f
Toggle grid g
Toggle y axis scale (log/linear) l

Three methods from maputils.Annotatedimage add mouse and keyboard interaction. These methods are
described in the next sections:

18.19.1 Changing colors in an image

Method maputils.Annotatedimage.interact_imagecolors() adds keys and mouse interaction for
color editing i.e. change color scheme and settings for image and colorbar. The active keys are:

Command Keyboard Shortcut(s)
Colormap scaling linear 1
Colormap scaling logarithmic 2
Colormap scaling exponential 3
Colormap scaling square root 4
Colormap scaling square 5
Toggle between data and histogram equalized version h
Loop forward through list with colormaps page-up
Loop backwards through list with colormaps page-down
Save current colormap to disk m
Toggle between inverse and normal scaling 9 (nine)
reset the colors to start values 0 (zero)
Change color of bad pixels (blanks) b

The right mouse button must be pressed to change slope and offset of the function that maps image values to
colors in the current color map.

Example: mu_smooth.py - Apply Gaussian filter

Smoothing of images is a technique that is often used to enhance the contrast of extended emission. Maputils
provides a method for smoothing using a gaussian kernel. The method expects values for the dispersion of the
Gauss in both directions x and y. To show how this can be used interactively, we give a small script where a
Matplotlib Slider object changes the value of sigma (which is copied for both the x and y direction).

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 from matplotlib.widgets import Slider
4

5 def func(x):
6 nx = ny = x
7 annim.set_blur(True, nx, ny, new=True)
8

9 f = maputils.FITSimage("m101.fits")

288 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

10 fig = plt.figure(figsize=(9,7))
11 frame = fig.add_subplot(1,1,1)
12 fr2 = fig.add_axes([0.3,0.01,0.4,0.03])
13 valinit = 1.0
14 sl = Slider(fr2, "Sigma: ", 0.1, 5.0, valinit=valinit)
15 sl.on_changed(func)
16

17 annim = f.Annotatedimage(frame)
18 #annim.set_colormap("mousse.lut")
19 annim.Image()
20 annim.plot()
21 func(valinit)
22 annim.interact_toolbarinfo()
23 annim.interact_imagecolors()
24 annim.interact_writepos()
25

26 plt.show()

Sigma: 1.00

18.19.2 Adding messages with position information

Method maputils.Annotatedimage.interact_toolbarinfo() connects movements of your mouse
to messages in the toolbar of your canvas. The message shows pixel position, the corresponding world coordinates,
and the image value of the pixel.

Note: There is a minimum width for the window to be able to display the message. If you see any imcomplete
text, then resize the window until it is wide enough to show the message.

18.19. Interaction with the display 289

Kapteyn Package Documentation, Release 2.2

A programmer can change the formatting of the informative string using parameters with the same name as the
attributes of an object from class maputils.Annotatedimage.Positionmessage If a format is set to
None, its corresponding number(s) will not appear in the informative message. Here is an example how to skip
the world coordinates (wcsfmt=None) and to add a format for the image values (zfmt).

>>> interact_toolbarinfo(wcsfmt=None, zfmt="%g")

18.19.3 Writing position information to the terminal

Method maputils.Annotatedimage.interact_writepos() writes the toolbar message with infor-
mation about coordinates and image values to the terminal. This is a primitive way to collect positional informa-
tion about features in a map.

>>> x,y= 196.4, 303.5 wcs=210.858423, 54.365281 Z=+8.74e+03
>>> x,y= 260.5, 378.3 wcs=210.806913, 54.400918 Z=+4.75e+03
>>> x,y= 391.1, 231.1 wcs=210.700135, 54.331856 Z=+6.08e+03

The first two numbers are the x and y pixel coordinate. Then two numbers follow which represent the pixel
position in world coordinates. The units are the S.I. versions of the units found in the header. For spatial maps
these units are degrees. The values are the real longitude and latitude even when the labels along the axes represent
offsets. For spectral axes, the units depend on the selected spectral translation.

Here is a minimalistic example how to add user interaction:

1 """Show interaction options"""
2 from kapteyn import maputils
3 from matplotlib import pyplot as plt
4 from kapteyn.mplutil import KeyPressFilter
5

6 KeyPressFilter.allowed = [’f’,’g’, ’l’]
7

8

9 f = maputils.FITSimage("m101.fits")
10 #f.set_limits((100,500),(200,400))
11

12 fig = plt.figure(figsize=(9, 7))
13 frame = fig.add_subplot(1, 1, 1)
14

15 mycmlist = ["mousse.lut", "ronekers.lut"]
16 maputils.cmlist.add(mycmlist)
17 print "Colormaps: ", maputils.cmlist.colormaps
18

19 mplim = f.Annotatedimage(frame, cmap="mousse.lut")
20 mplim.cmap.set_bad(’w’)
21 ima = mplim.Image()
22 mplim.Pixellabels()
23 mplim.Colorbar()
24 mplim.plot()
25

26 mplim.interact_toolbarinfo()
27 mplim.interact_imagecolors()
28 mplim.interact_writepos()
29

30 plt.show()

For a formatted output one could add parameters to interact_writepos(). The next line writes no pixel coordinates,
writes spatial coordinates in degrees (not in HMS/DMS format) and adds a format for the world coordinates and
the image value(s).

>>> interact_writepos(pixfmt=None, wcsfmt="%.12f", zfmt="%.3e", hmsdms=False)

Or if you need a lot of precision in the seconds of a HMS/DMS format:

290 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

>>> interact_writepos(dmsprec=3)

18.19.4 Interactive plotting of shapes for flux etc.

Another powerful tool of the maputils module is (together with module shapes) the option to propagate
geometric shapes plotted in one image to other images from a list with images. A user selects a shape from the list
Polygon, Ellipse, Circle, Rectangle and Spline, and interactively changes the geometry of a shape in an arbitray
image in a mosaic of images. Then this shape duplicates itself in pixel coordinates or world coordinates on the
other images. If we use the default setting then the duplication is in world coordinates, meaning that for different
projections the geometry is different, but both represent the same area in the sky.

Note: If we change the image for interaction with circles or ellipses then their shape will change to the best
approach of a circle or an ellipse for the new image and the deviation in geometry appears in the other image(s).
This does not apply to the situation where we duplicate shapes in pixel coordinates.

For these areas the flux can be calculated. By default the flux is given by the (lambda) expression s/a where s
represents the sum of the intensities of all the pixels enclosed by area a. One can supply a user defined function or
lambda expression using Annotatedimage attribute fluxfie. Sometimes more precision is required. Then one can
subdivide pixels using Annotatedimage attribute pixelstep.

1 from kapteyn import maputils, shapes
2 from matplotlib import pyplot as plt
3

4 Basefits = maputils.FITSimage("m101big.fits")
5 hdr = Basefits.hdr.copy()
6

7 hdr[’CTYPE1’] = ’RA---MER’
8 hdr[’CTYPE2’] = ’DEC--MER’
9 hdr[’CRVAL1’] = 0.0

10 hdr[’CRVAL2’] = 0.0
11 naxis1 = Basefits.hdr[’NAXIS1’]
12 naxis2 = Basefits.hdr[’NAXIS2’]
13

14 # Get an estimate of the new corners
15 x = [0]*5; y = [0]*5
16 x[0], y[0] = Basefits.proj.toworld((1,1))
17 x[1], y[1] = Basefits.proj.toworld((naxis1,1))
18 x[2], y[2] = Basefits.proj.toworld((naxis1,naxis2))
19 x[3], y[3] = Basefits.proj.toworld((1,naxis2))
20 x[4], y[4] = Basefits.proj.toworld((naxis1/2.0,naxis2))
21

22 # Create a dummy object to calculate pixel coordinates
23 # in the new system. Then we can find the area in pixels
24 # that corresponds to the area in the sky.
25 f = maputils.FITSimage(externalheader=hdr)
26 px, py = f.proj.topixel((x,y))
27 pxlim = [int(min(px))-10, int(max(px))+10]
28 pylim = [int(min(py))-10, int(max(py))+10]
29

30 Reprojfits = Basefits.reproject_to(hdr, pxlim_dst=pxlim, pylim_dst=pylim)
31

32 fig = plt.figure(figsize=(14,9))
33 frame1 = fig.add_axes([0.07,0.1,0.35, 0.8])
34 frame2 = fig.add_axes([0.5,0.1,0.43, 0.8])
35 im1 = Basefits.Annotatedimage(frame1)
36 im1.set_blankcolor(’k’)
37 im2 = Reprojfits.Annotatedimage(frame2)
38 im1.Image(); im1.Graticule()
39 im2.Image(); im2.Graticule()

18.19. Interaction with the display 291

Kapteyn Package Documentation, Release 2.2

40 im1.plot(); im2.plot()
41 im1.interact_imagecolors(); im1.interact_toolbarinfo()
42 im2.interact_imagecolors(); im2.interact_toolbarinfo()
43 #im1.fluxfie = lambda s, a: s/a
44 #im2.fluxfie = lambda s, a: s/a
45 im1.pixelstep = 0.2
46 im2.pixelstep = 0.5
47 images = [im1, im2]
48 shapes = shapes.Shapecollection(images, fig, wcs=True, inputwcs=True)
49

50 plt.show()

Your Matplotlib figure with one or more images gets a number of buttons at the top of your figure. You should
anticipate on this when setting the figure size. Ofcourse one can also resize the plot window to make space for
the buttons. The gui is simple. Here is an example. It corresponds to the example script above. A re-projection
(to Mercator) of M101 (with exaggerated values for the pixel sizes) is displayed together with the original image.
One ellipse is plotted to demonstrate that the same area in the re-projection looks different. If enough resolution
(pixelstep=0.2) is used, then the flux in both shapes is comparable.

Fig. – Calculate flux in user defined shapes in images with different world coordinate systems.

18.19.5 Adding and using external color maps

In the constructor of maputils.Annotatedimage one can set a color map with keyword cmap. There are
four options here:

Option Example
Matplotlib color map (string) cmap=’jet’
Path and filename of color map on disk cmap=’/home/user/myluts/rainbow4.lut’
A Color map from the Kapteyn Package cmap=’ronekers.lut’
Instance of class mplutil.VariableColormap cmap=myimage.cmap

Module maputils has a global list called cmlist which contains the colormaps provided by Matplotlib. You can
add an external colormap to this list as follows:

292 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

>>> maputils.cmlist.add(’/home/user/luts/rainbow4.lut’)

It will be prepended to the existing list. One can also prepend multiple external colormaps assembled in a list.
This list can also be compiled from the color maps available in the Kapteyn Package. If you have a number of
local color maps then use Python’s glob function to read them all (or a selection) as in the next example:

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 from kapteyn import mplutil
4 import glob
5

6 f = maputils.FITSimage("m101.fits")
7

8 fig = plt.figure(figsize=(9,7))
9 frame = fig.add_axes([0.1,0.2,0.85, 0.75])

10

11 extralist = mplutil.VariableColormap.luts()
12 print "Extra luts from Kapteyn Package", extralist
13 maputils.cmlist.add(extralist)
14

15 mycmlist = glob.glob("*.lut")
16 print "\nFound private color maps:", mycmlist
17 maputils.cmlist.add(mycmlist)
18

19 print "\nAll color maps now available: ", maputils.cmlist.colormaps
20

21 annim = f.Annotatedimage(frame) #,cmap="mousse.lut")
22 annim.set_colormap("mousse.lut")
23 annim.Image()
24 annim.Pixellabels()
25 annim.Colorbar()
26 annim.plot()
27

28 annim.interact_toolbarinfo()
29 annim.interact_imagecolors()
30 annim.interact_writepos()
31

32 units = ’unknown’
33 if f.hdr.has_key(’BUNIT’):
34 units = hdr[’BUNIT’]
35 helptext = "File: [%s] Data units: [%s]\n" % (f.filename, units)
36 helptext += annim.get_colornavigation_info()
37 tdict = dict(color=’g’, fontsize=10, va=’bottom’, ha=’left’)
38 fig.text(0.01,0.01, helptext, tdict)
39

40 plt.show()

The format of a colormap on disk (also called a color LookUp Table or lut) is simple. There should be a number
(e.g. 256) lines with three floating point numbers between 0 and 1 which represent Red, Green and Blue.

18.19.6 More color resolution

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 from numpy import mgrid,exp
4

5 f = maputils.FITSimage("m101.fits")
6 n1, n2 = f.proj.naxis
7 X,Y = mgrid[0:n1, 0:n2]
8 Z = exp(-(X**2)/1.0e5-(Y**2)/1.0e5)
9 f2 = maputils.FITSimage(externalheader=f.hdr, externaldata=Z)

18.19. Interaction with the display 293

Kapteyn Package Documentation, Release 2.2

1500

3000

4500

6000

7500

9000

10500

12000

13500

15000

100 200 300 400 500

100

200

300

400

500

File: [m101.fits] Data units: [unknown]
pgUp and pgDown: browse through colour maps -- MB right: Change slope and offset
Colour scales: 0=reset 1=linear 2=logarithmic3=exponential 4=square-root 5=square 9=inverse
h: Toggle histogram equalization & raw image -- z: Toggle smooth & raw image -- x: Increase smooth factor
m: Save current colour map to disk -- b: Change colour of bad pixels -- Shift MB left: Write pos. to term.

294 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

10

11 fig = plt.figure()
12 frame = fig.add_subplot(1,2,1)
13 annim = f2.Annotatedimage(frame)
14 annim.set_colormap("rainbow.lut")
15 annim.cmap.set_length(64)
16 annim.Image()
17 annim.Pixellabels()
18 annim.Colorbar(fontsize=7, orientation=’horizontal’)
19 annim.plot()
20 annim.interact_toolbarinfo()
21 annim.interact_imagecolors()
22 annim.interact_writepos()
23

24 frame2 = fig.add_subplot(1,2,2)
25 annim2 = f2.Annotatedimage(frame2)
26 annim2.set_colormap("rainbow.lut")
27 annim2.cmap.set_length(1021)
28 annim2.Image()
29 annim2.Pixellabels()
30 annim2.Colorbar(fontsize=7, orientation=’horizontal’)
31 annim2.plot()
32 annim2.interact_toolbarinfo()
33 annim2.interact_imagecolors()
34 annim2.interact_writepos()
35

36 plt.show()

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100 200 300 400 500

100

200

300

400

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100 200 300 400 500

100

200

300

400

500

In this plot we demonstrate the difference between a small color map (64 color entries) and a big color map (1021
entries). The plot on the left uses the small color map. What you should observe are the false contours because
that color map does not have the enough resolution to show smooth transitions between colors. The plot on the
right has a big color map and there you don’t see these transitions.

18.19. Interaction with the display 295

Kapteyn Package Documentation, Release 2.2

Note: The default length of a color map is 256. With this length the effect of steps in the color gradient is less
obvious but still there. You should only extend your color map if a high resolution is required.

18.19.7 Reuse of modified colormap

If you modify the default colors in an image and want to be able to restore the exact color scheme in a second run,
then save the modified colormap to disk with key ‘m’. Note that we assume you connected mouse and keyboard
interaction with maputils.Annotatedimage.interact_imagecolors(). The file on disk will get
the name of the FITS file that you opened (or an alternative if you used external header and image data) followed
by the extension .lut. This colormap can be used as external colormap to restore the adjusted colors.

18.19.8 Sharing the same colormap

There are at least two circumstances where one wants to share a colormap between multiple images. The first is
the movie loop of images and the second is when we have a mosaic of channel maps. A change in the colormap
settings affects all images in the movie or in the mosaic. There could be exceptions where you want each image
to have its own colormap, but usually it is more convenient to share it. The trick is to use a loop over all images
and to set the colormap for the first image and copy this colormap for the others. Have a look at the examples that
illustrate movies and mosaics:

1 cmap = ’spectral’
2 for i, ch in enumerate(channels):
3 fitsobj.set_imageaxes(lonaxnum, lataxnum, slicepos=ch)
4 frame = fig.add_subplot(rows, cols, i+1)
5 mplim = fitsobj.Annotatedimage(frame, clipmin=vmin, clipmax=vmax,
6 cmap=cmap)
7 mplim.Image()
8 mplim.plot()
9 if i == 0:

10 cmap = mplim.cmap # Copy map to set for other images
11 mplim.interact_imagecolors()

18.19.9 Blanks

An image can contain some ‘bad pixels’. A bad pixel is a location where a physical value is missing. These pixels
are represented by the value NaN. For FITS files where the data are integers (i.e. keyword BITPIX has a positive
value) one needs to set an integer value for a bad pixel with FITS keyword BLANK. For the extraction of data the
package PyFITS is used. PyFITS should take care of blanks automatically.

Some FITS writers use for BITPIX=-32 a blank value equal to -inf. To avoid problems with plotting images and
contours we replace these values in the data with NaN’s first before anything is plotted.

In the next example we inserted some blank values. They appear as a square in the middle of the
image. The color of a blank pixel is either set in the constructor of maputils.Annotatedimage
with keyword blankcolor, or it can be changed with key ‘b’ if we applied user interaction with
maputils.Annotatedimage.interact_imagecolors().

1 from kapteyn import maputils
2 from matplotlib import pyplot as plt
3 from matplotlib.colors import LogNorm
4 import glob
5

6 f = maputils.FITSimage("blanksetmin32.fits")
7 #f = maputils.FITSimage("blankset16.fits")
8 f.set_imageaxes(1,2)
9

296 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

10 fig = plt.figure(figsize=(9,7))
11 frame = fig.add_subplot(1,1,1)
12

13 mycmlist = ["mousse.lut", "ronekers.lut"]
14 maputils.cmlist.add(mycmlist)
15 print "Colormaps: ", maputils.cmlist.colormaps
16

17 mplim = f.Annotatedimage(frame, cmap="mousse.lut", blankcolor=’w’)
18 mplim.Image()
19 #mplim.Image()
20 #mplim.set_blankcolor(’c’)
21 mplim.Pixellabels()
22 mplim.Colorbar()
23 mplim.plot()
24

25 mplim.interact_toolbarinfo()
26 mplim.interact_imagecolors()
27 mplim.interact_writepos()
28

29 plt.show()

If you change the input FITS file from blanksetmin32.fits to blankset16.fits, then you get the same image and the
same blanks, which proves that the blanks can also be read from a FITS file with scaled data.

18.19.10 Movies

1 #!/usr/bin/env python
2 from kapteyn import wcsgrat, maputils
3 from matplotlib import pylab as plt
4

5 # Get connected to Matplotlib
6 fig = plt.figure()
7 frame = fig.add_subplot(1,1,1)
8

9 #Create a container to store the annotated images
10 movieimages = maputils.MovieContainer()
11

12 # Create a maputils FITS object from a FITS file on disk
13 fitsobject = maputils.FITSimage(’ngc6946.fits’)
14

15 # Get a the range of channels in the data cube
16 n3 = fitsobject.hdr[’NAXIS3’]
17 ch = range(1,n3)
18 vmin, vmax = fitsobject.get_dataminmax()
19 print "Vmin, Vmax of data in cube:", vmin, vmax
20 cmap = None
21

22 # Start to build and store the annotated images
23 first = True
24 for i in ch:
25 fitsobject.set_imageaxes(1,2, slicepos=i)
26 # Set limits as in: fitsobject.set_limits(pxlim=(150,350), pylim=(200,350))
27 mplim = fitsobject.Annotatedimage(frame, cmap=cmap, clipmin=vmin, clipmax=vmax)
28 mplim.Image()
29 mplim.plot()
30 if first:
31 mplim.interact_imagecolors()
32 cmap = mplim.cmap
33 movieimages.append(mplim, visible=first)
34 first = False
35

18.19. Interaction with the display 297

Kapteyn Package Documentation, Release 2.2

36 movieimages.movie_events()
37

38 # Draw the graticule lines and plot WCS labels
39 grat = mplim.Graticule()
40 grat.plot(frame)
41

42 plt.show()

18.19.11 Coordinate transformations

An object from class maputils.Annotatedimage has a so called wcs projection object (see mod-
ule wcs) as attribute (called projection) This projection object has methods for the transformation between
pixel- and world coordinates. In the context of module maputils there are two convenience meth-
ods with the same name and same functionality i.e. maputils.Annotatedimage.toworld() and
maputils.Annotatedimage.topixel(). But in maputils we deal with two dimensional structures only,
so these methods are easier to use. Look at the next example to find out how you can use them

1 from kapteyn import maputils
2

3 # The set is 3-dim. but default the first two axes are
4 # used to extract the image data
5 f = maputils.FITSimage("ngc6946.fits")
6

7 annim = f.Annotatedimage()
8 x = 200; y = 350
9 lon, lat = annim.toworld(x,y)

10 print "lon, lat =", lon, lat
11

12 x, y = annim.topixel(lon, lat)
13 print "x, y = ", x, y

Module maputils supports the extraction of data slices in any direction. This enables you to inspect maps with
for example one spatial axis and one spectral axis (so called position velocity map). For conversions between
pixel- and world coordinates we need a matching spatial axis to process the transformation. The methods used
in the previous example can be used to get values for the matching axis also. One only needs to set parameter
matchspatial to True:

1 from kapteyn import maputils
2

3 f = maputils.FITSimage("ngc6946.fits")
4 # Get an XV slice at DEC=51
5 f.set_imageaxes(1,3, slicepos=51)
6 annim = f.Annotatedimage()
7

8 # Which pixel coordinates correspond to CRVAL’s?
9 crpix = annim.projection.crpix

10 print "CRPIX from header", crpix
11

12 # Convert these to world coordinates
13 x = crpix[0]; y = crpix[1]
14 lon, velo, lat = annim.toworld(x, y, matchspatial=True)
15 print "lon, velo, lat =", lon, velo, lat
16 print "Should be equivalent to CRVAL:", annim.projection.crval
17

18 x, y, slicepos = annim.topixel(lon, velo, matchspatial=True)
19 print "Back to pixel coordinates: x, y =", x, y, slicepos

Note that we can modify the FITS object ‘f’ in the example so that instead of velocities we get corresponding
frequencies. Add a spectral translation with method maputils.FITSimage.set_spectrans() as in:

298 Chapter 18. Tutorial maputils module

Kapteyn Package Documentation, Release 2.2

>>> f = maputils.FITSimage("ngc6946.fits")
>>> f.set_imageaxes(1,3, slicepos=51)
>>> f.set_spectrans("FREQ-???")

18.20 Glossary

graticule The network of lines of latitude and longitude upon which a map is drawn.

all-sky plot Plot of the sky in arbitrary projection showing a range in longitudes between [-180,180) degrees and
a range in latitudes between [-90,90).

prompt function Function supplied by a user (or one of the pre defined functions in module maputils which
prompts a user to enter relevant data. The functions need to return their data in a special format. See
documentation in maputils.

CRVAL The reference world coordinate that corresponds to a reference pixel. Its value is extracted from a FITS
header or a Python dictionary.

18.20. Glossary 299

Kapteyn Package Documentation, Release 2.2

300 Chapter 18. Tutorial maputils module

CHAPTER 19

Least squares fitting with kmpfit

Author: M. Vogelaar <gipsy@astro.rug.nl>

19.1 Introduction

We like code examples in our documentation, so let’s start with an example:

1 #!/usr/bin/env python
2 # Short demo kmpfit (04-03-2012)
3

4 import numpy
5 from kapteyn import kmpfit
6

7 def residuals(p, data): # Residuals function needed by kmpfit
8 x, y = data # Data arrays is a tuple given by programmer
9 a, b = p # Parameters which are adjusted by kmpfit

10 return (y-(a+b*x))
11

12 d = numpy.array([42, 6.75, 25, 33.8, 9.36, 21.8, 5.58, 8.52, 15.1])
13 v = numpy.array([1294, 462, 2562, 2130, 750, 2228, 598, 224, 971])
14

15 paramsinitial = [0, 70.0]
16 fitobj = kmpfit.Fitter(residuals=residuals, data=(d,v))
17 fitobj.fit(params0=paramsinitial)
18

19 print "\nFit status kmpfit:"
20 print "===================="
21 print "Best-fit parameters: ", fitobj.params
22 print "Asymptotic error: ", fitobj.xerror
23 print "Error assuming red.chi^2=1: ", fitobj.stderr
24 print "Chi^2 min: ", fitobj.chi2_min
25 print "Reduced Chi^2: ", fitobj.rchi2_min
26 print "Iterations: ", fitobj.niter
27 print "Number of free pars.: ", fitobj.nfree
28 print "Degrees of freedom: ", fitobj.dof

If you run the example, you should get output similar to:

Fit status kmpfit:
====================
Best-fit parameters: [414.71769219487254, 44.586628080854609]
Asymptotic error: [0.60915502 0.02732865]
Error assuming red.chi^2=1: [413.07443146 18.53184367]
Chi^2 min: 3218837.22783
Reduced Chi^2: 459833.889689
Iterations: 2

301

mailto:gipsy@astro.rug.nl

Kapteyn Package Documentation, Release 2.2

Number of free pars.: 2
Degrees of freedom: 7

In this tutorial we try to show the flexibility of the least squares fit routine in kmpfit by showing examples and
some background theory which enhance its use. The kmpfit module is an excellent tool to demonstrate features
of the (non-linear) least squares fitting theory. The code examples are all in Python. They are not complex and
almost self explanatory.

kmpfit is the Kapteyn Package Python binding for a piece of software that provides a robust and relatively fast way
to perform non-linear least-squares curve and surface fitting. The original software called MPFIT was translated to
IDL from Fortran routines found in MINPACK-1 and later converted to a C version by Craig Markwardt [Mkw].
The routine is stable and fast and has additional features, not found in other software, such as model parameters
that can be fixed and boundary constraints that can be imposed on parameter values. We will show an example in
section Fitting Voigt profiles, where this feature is very helpful to keep the profile width parameters from becoming
negative.

kmpfit has many similar features in common with SciPy’s Fortran-based scipy.optimize.leastsq() func-
tion, but kmpfit‘s interface is more friendly and flexible and it is a bit faster. It provides also additional routines to
calculate confidence intervals. And most important: you don’t need Fortran to build it because it is based on code
written in C. Mark Rivers created a Python version from Craig’s IDL version (mpfit.py). We spent a lot of time in
debugging this pure Python code (after converting its array type from Numarray to NumPy). It it not fast and we
couldn’t get the option of using derivatives to work properly. So we focused on the C version of mpfit and used
Cython to build the C extension for Python.

A least squares fit method is an algorithm that minimizes a so-called objective function for N data points
(xi, yi), i = 0, ..., N − 1. These data points are measured and often yi has a measurement error that is much
smaller than the error in xi. Then we call x the independent and y the dependent variable. In this tutorial we will
also deal with examples where the errors in xi and yi are comparable.

19.1.1 Objective function

The method of least squares adjusts the parameters of a model function f(parameters, independent_variable) by
finding a minimum of a so-called objective function. This objective function is a sum of values:

S =
N−1∑
i=0

r2i (19.1)

Objective functions are also called merit functions. Least squares routines also predict what the range of best-fit
parameters will be if we repeat the experiment, which produces the data points, many times. But it can do that
only for objective functions if they return the (weighted) sum of squared residuals (WSSR). If the least squares
fitting procedure uses measurement errors as weights, then the objective function S can be written as a maximum-
likelihood estimator (MLE) and S is then called chi-squared (χ2).

If we define p as the set of parameters and take x for the independent data then we define a residual as the
difference between the actual dependent variable yi and the value given by the model:

r(p, [xi, yi]) = yi − f(p, xi) (19.2)

A model function f(p, xi) could be:

def model(p, x): # The model that should represent the data
a, b = p # p == (a,b)
return a + b*x # x is explanatory variable

A residual function r(p, [xi, yi]) could be:

def residuals(p, data): # Function needed by fit routine
x, y, err = data # The values for x, y and weights
a, b = p # The parameters for the model function
return (y-model(p,x))/err # An array with (weighted) residuals)

302 Chapter 19. Least squares fitting with kmpfit

http://en.wikipedia.org/wiki/IDL_(programming_language)
http://www.netlib.org/minpack/
http://cython.org/

Kapteyn Package Documentation, Release 2.2

The arguments of the residuals function are p and data. You can give them any name you want. Only the order
is important. The first parameter is a sequence of model parameters (e.g. slope and offset in a linear regression
model). These parameters are changed by the fitter routine until the best-fit values are found. The number of
model parameters is given by a sequence of initial estimates. We will explain this in more detail in the section
about initial estimates.

The second parameter of the residuals() function contains the data. Usually this is a tuple with a number of arrays
(e.g. x, y and weights), but one is not restricted to tuples to pass the data. It could also be an object with arrays
as attributes. The parameter is set in the constructor of a Fitter object. We will show some examples when we
discuss the Fitter object.

One is not restricted to one independent (explanatory) variable. For example, for a plane the dependent (response)
variable yi depends on two independent variables (x1i , x2i)

>>> x1, x2, y, err = data

kmpfit needs only a specification of the residuals function (19.2). It defines the objective function S itself by
squaring the residuals and summing them afterwards. So if you pass an array with weightswi which are calculated
from 1/σ2

i , then you need to take the square root of these numbers first as in:

def residuals(p, data): # Function needed by fit routine
x, y, w = data # The values for x, y and weights
a, b = p # The parameters for the model function
w = numpy.sqrt(w) # kmpfit does the squaring
return w*(y-model(p,x)) # An array with (weighted) residuals)

It is more efficient to store the square root of the weights beforehand so that it is not necessary to repeat this (often
many times) in the residuals function itself. This is different if your weights depend on the model parameters,
which are adjusted in the iterations to get a best-fit. An example is the residuals function for an orthogonal fit of a
straight line:

def residuals(p, data):
Residuals function for data with errors in both coordinates
a, theta = p
x, y = data
B = numpy.tan(theta)
wi = 1/numpy.sqrt(1.0 + B*B)
d = wi*(y-model(p,x))
return d

Note: For kmpfit, you need only to specify a residuals function. The least squares fit method in kmpfit does the
squaring and summing of the residuals.

19.1.2 Linearity

For many least squares fit problems we can use analytical methods to find the best-fit parameters. This is the
category of linear problems. For linear least-squares problems (LLS) the second and higher derivatives of the
fitting function with respect to the parameters are zero. If this is not true then the problem is a so-called non-linear
least-squares problem (NLLS). We use kmpfit to find best-fit parameters for both problems and use the analytical
methods of the first category to check the output of kmpfit. An example of a LLS problem is finding the best fit
parameters of the model:

f(a, x) = a sin(x) (19.3)

∂f

∂a
= sin(x) ⇒ ∂2f

∂a2
= 0

An example of a NLLS problem is finding the best fit parameters of the model:

f(a, x) = sin(a x) (19.4)

∂f

∂a
= x cos(a x) ⇒ ∂2f

∂a2
6= 0

19.1. Introduction 303

Kapteyn Package Documentation, Release 2.2

A well-known example of a model that is non-linear in its parameters, is a function that describes a Gaussian
profile as in:

def my_model(p, x):
A, mu, sigma, zerolev = p
return(A * numpy.exp(-(x-mu)*(x-mu)/(2.0*sigma*sigma)) + zerolev)

Note: In the linear case, parameter values can be determined analytically with straightforward linear algebra.
kmpfit finds best-fit parameters for models that are either linear or non-linear in their parameters. If efficiency is
an issue, one should find and apply an analytical method.

In the linear case, parameter values can be determined by comparatively simple linear algebra, in one direct step.

19.1.3 Goal

The function that we choose is based on a model which should describe the data so that kmpfit finds best-fit values
for the free parameters in this model. These values can be used for interpolation or prediction of data based on
the measurements and the best-fit parameters. kmpfit varies the values of the free parameters until it finds a set
of values which minimize the objective function. Then, either it stops and returns a result because it found these
best-fit parameters, or it stops because it met one of the stop criteria in kmpfit (see next section). Without these
criteria, a fit procedure that is not converging would never stop.

Later we will discuss a familiar example for astronomy when we find best-fit parameters for a Gaussian to find the
characteristics of a profile like the position of the maximum and the width of a peak.

19.1.4 Stop criteria

LLS and NLLS problems are solved by kmpfit by using an iterative procedure. The fit routine attempts to find
the minimum by doing a search. Each iteration gives an improved set of parameters and the sum of the squared
residuals is calculated again. kmpfit is based on the C version of mpfit which uses the Marquardt-Levenberg
algorithm to select the parameter values for the next iteration. The Levenberg-Marquardt technique is a particular
strategy for iteratively searching for the best fit. These iterations are repeated until a criterion is met. Criteria are
set with parameters for the constructor of the Fitter object in kmpfit or with the appropriate attributes:

• ftol - a nonnegative input variable. Termination occurs when both the actual and predicted relative reduc-
tions in the sum of squares are at most ftol. Therefore, ftol measures the relative error desired in the
sum of squares. The default is: 1e-10

• xtol - a nonnegative input variable. Termination occurs when the relative error between two consecutive
iterates is at most xtol. therefore, xtol measures the relative error desired in the approximate solution.
The default is: 1e-10

• gtol - a nonnegative input variable. Termination occurs when the cosine of the angle between fvec (is an
internal input array which must contain the functions evaluated at x) and any column of the Jacobian is at
most gtol in absolute value. Therefore, gtol measures the orthogonality desired between the function
vector and the columns of the Jacobian. The default is: 1e-10

• maxiter - Maximum number of iterations. The default is: 200

• maxfev - Maximum number of function evaluations. The default is: 0 (no limit)

19.1.5 A Fitter object

After we defined a residuals function, we need to create a Fitter object. A Fitter object is an object of class Fitter.
This object tells the fit procedure which data should be passed to the residuals function. So it needs the name of
the residuals function and an object which provides the data. In most of our examples we will use a tuple with
references to arrays. Assume we have a residuals function called residuals and two arrays x and y with data from
a measurement, then a Fitter object is created by:

304 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

fitobj = kmpfit.Fitter(residuals=residuals, data=(x,y))

Note that fitobj is an arbitrary name. You need to store the result to be able to retrieve the results of the fit. The
real fit is started when we call method fit. The fit procedure needs start values. Often the fit procedure is not
sensitive to these values and you can enter 1 as a value for each parameter. But there are also examples where
these initial estimates are important. Starting with values that are not close to the best-fit parameters could result
in a solution that is a local minimum and not a global minimum.

If you imagine a surface which is a function of parameter values and heights given by the the sum of the residuals
as function of these parameters and this surface shows more than one minimum, you must be sure that you start
your fit nearby the global minimum.

Example: kmpfit_chi2landscape_gauss.py - Chi-squared landscape for model that represents a
Gaussian profile

Figure 19.1: Chi-squared parameter landscape for Gaussian model. The value of chi-squared is plotted along the
z-axis.

The figure shows the chi-squared parameter landscape for a model that represents a Gaussian. The landscape axes
are model parameters: the position of the peak µ and σ which is a measure for the width of the peak (half width at
1/e of peak). The relation between σ and the the full width at half maximum (FWHM) is: FWHM = 2σ

√
2ln2 ≈

2.35σ. If you imagine this landscape as a solid surface and release a marble, then it rolls to the real minimum (red
dot in the figure) only if you are not too far from this minimum. If you start for example in the front right corner,
the marble will never end in the real minimum. Note that the parameter space is in fact 4 dimensional (4 free
parameters) and therefore more complicated than this example. In the figure we scaled the value for chi-squared
to avoid labels with big numbers.

Another representation of the parameter space is a contour plot. It is created by the same example code:

19.1. Introduction 305

Kapteyn Package Documentation, Release 2.2

306 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

These contour plots are very useful when you compare different objective functions. For instance if you want to
compare an objective function for orthogonal fitting with an an objective function for robust fitting.

Example: kmpfit_contours_objfunc.py - Comparing objective functions with contour plots

A model which represents a straight line, always shows a very simple landscape with only one minimum. Wher-
ever you release the marble, you will always end up in the real minimum. Then, the quality of the values of the
initial estimates are not important to the quality of the fit result.

The initial estimates are entered in parameter params0. You can enter this either in the constructor of the
Fitter object or in the method fit(). In most examples we use the latter because then one can repeat the
same fit with different initial estimates as in:

fitobj.fit(params0=[1,1])

The results are stored in the attributes of fitobj. For example the best-fit parameters are stored in
fitobj.params. For a list of all attributes and their meaning, see the documentation of kmpfit.

An example of an overview of the results could be:

1 print "Fit status: ", fitobj.message
2 print "Best-fit parameters: ", fitobj.params
3 print "Covariance errors: ", fitobj.xerror

19.1. Introduction 307

Kapteyn Package Documentation, Release 2.2

4 print "Standard errors ", fitobj.stderr
5 print "Chi^2 min: ", fitobj.chi2_min
6 print "Reduced Chi^2: ", fitobj.rchi2_min
7 print "Iterations: ", fitobj.niter
8 print "Number of function calls: ", fitobj.nfev
9 print "Number of free pars.: ", fitobj.nfree

10 print "Degrees of freedom: ", fitobj.dof
11 print "Number of pegged pars.: ", fitobj.npegged

There is a section about the use and interpretation of parameter errors in Standard errors of best-fit values. In the
next chapter we will put the previous information together and compile a complete example.

19.2 A Basic example

In this section we explain how to setup a residuals function for kmpfit. We use vectorized functions written with
NumPy.

19.2.1 The residual function

Assume we have data for which we know that the relation between X and Y is a straight line with offset a and
slope b, then a model f(p,x) could be written in Python as:

def model(p, x):
a,b = p
y = a + b*x
return y

Parameter x is a NumPy array and p is a NumPy array containing the model parameters a and b. This function
calculates response Y values for a given set of parameters and an array with explanatory X values.

Then it is simple to define the residuals function r(p, [xi, yi]) which calculates the residuals between data points
and model:

def residuals(p, data):
x, y = data
return y - model(p,x)

This residuals function has always two parameters. The first one p is an array with parameter values in the order as
defined in your model, and data is an object that stores the data arrays that you need in your residuals function.
The object could be anything but a list or tuple is often most practical to store the required data. We will explain a
bit more about this object when we discuss the constructor of a Fitter object. We need not worry about the sign of
the residuals because the fit routine calculates the the square of the residuals itself.

Of course we can combine both functions model and residuals in one function. This is a bit more efficient in
Python, but usually it is handy to have the model function available if you need to plot the model using different
sets of best-fit parameters.

The objective function which is often used to fit the best-fit parameters of a straight line model is for example:

χ2([a, b], x) =
N−1∑
i=0

(
yi − a− bxi

σi

)2

(19.5)

Assume that the values σi are given in array err, then this objective function translates to a residuals function:

def residuals(p, data):
x, y, err = data
ym = a + b*x # Model data
return (y-ym)/err # Squaring is done in Fitter routine

308 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

Another example is an objective function for robust (i.e. less sensitive to outliers) for a straight line model without
weights. For robust fitting one does not use the square of the residuals but the absolute value.

S =
∑
|yi − a− bxi| (19.6)

We cannot avoid that the Fitter routine squares the residuals so to undo this squaring we need to take the square-
root as in:

def residuals(p, data):
x, y = data
ym = a + b*x # Model data
r = abs(y - ym) # Absolute residuals for robust fitting
return numpy.sqrt(r) # Squaring is done in Fitter routine

Note: A residuals function should always return a NumPy double-precision floating-point number array (i.e.
dtype=’d’).

Note: It is also possible to write residual functions that represent objective functions used in orthogonal fit
procedures where both variables x and y have errors. We will give some examples in the section about orthogonal
fitting.

19.2.2 Artificial data for experiments

For experiments with least square fits, it is often convenient to start with artificial data which resembles the model
with certain parameters, and add some Gaussian distributed noise to the y values. This is what we have done in
the next couple of lines:

The number of data points and the mean and width of the normal distribution which we use to add some noise:

N = 50
mean = 0.0; sigma = 0.6

Finally we create a range of x values and use our model with arbitrary model parameters to create y values:

xstart = 2.0; xend = 10.0
x = numpy.linspace(3.0, 10.0, N)
paramsreal = [1.0, 1.0]
noise = numpy.random.normal(mean, sigma, N)
y = model(paramsreal, x) + noise

19.2.3 Initial parameter estimates

Now we have to tell the constructor of the Fitter object what the residuals function is and which arrays the residuals
function needs. To create a Fitter object we use the line:

fitobj = kmpfit.Fitter(residuals=residuals, data=(x,y))

Least squares fitters need initial estimates of the model parameters. As you probably know, our problem is an
example of ‘linear regression’ and this category of models have best fit parameters that can be calculated analyt-
ically. Then the fit results are not very sensitive to the initial values you supply. So set the values of our initial
parameters in the model (a,b) to (0,0). Use these values in the call to Fitter.fit(). The result of the fit is
stored in attributes of the Fitter object (fitobj). We show the use of attributes status, message, and params. This
last attribute stores the ‘best fit’ parameters, it has the same type as the sequence with the initial parameter (i.e.
NumPy array, list or tuple):

19.2. A Basic example 309

Kapteyn Package Documentation, Release 2.2

paramsinitial = (0.0, 0.0)
fitobj.fit(params0=paramsinitial)
if (fitobj.status <= 0):

print ’Error message = ’, fitobj.message
else:

print "Optimal parameters: ", fitobj.params

Below we show a complete example. If you run it, you should get a plot like the one below the source code. It
will not be exactly the same because we used a random number generator to add some noise to the data. The plots
are created with Matplotlib. A plot is a simple but effective tool to qualify a fit. For most of the examples in this
tutorial a plot is included.

Example: kmpfit_example_simple.py - Simple use of kmpfit

1 #!/usr/bin/env python
2 #--
3 # Purpose: Demonstrate simple use of fitter routine
4 #
5 # Vog, 12 Nov 2011
6 #--
7 import numpy
8 from matplotlib.pyplot import figure, show, rc
9 from kapteyn import kmpfit

10

11

12 # The model
13 #==========
14 def model(p, x):
15 a,b = p
16 y = a + b*x
17 return y
18

19

20 # The residual function
21 #======================
22 def residuals(p, data):
23 x, y = data # ’data’ is a tuple given by programmer
24 return y - model(p,x)
25

26

27 # Artificial data
28 #================
29 N = 50 # Number of data points
30 mean = 0.0; sigma = 0.6 # Characteristics of the noise we add
31 xstart = 2.0; xend = 10.0
32 x = numpy.linspace(3.0, 10.0, N)
33 paramsreal = [1.0, 1.0]
34 noise = numpy.random.normal(mean, sigma, N)
35 y = model(paramsreal, x) + noise
36

37

38 # Prepare a ’Fitter’ object’
39 #===========================
40 paramsinitial = (0.0, 0.0)
41 fitobj = kmpfit.Fitter(residuals=residuals, data=(x,y))
42

43 try:
44 fitobj.fit(params0=paramsinitial)
45 except Exception, mes:
46 print "Something wrong with fit: ", mes
47 raise SystemExit
48

49 print "Fit status: ", fitobj.message

310 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

50 print "Best-fit parameters: ", fitobj.params
51 print "Covariance errors: ", fitobj.xerror
52 print "Standard errors ", fitobj.stderr
53 print "Chi^2 min: ", fitobj.chi2_min
54 print "Reduced Chi^2: ", fitobj.rchi2_min
55 print "Iterations: ", fitobj.niter
56 print "Number of function calls: ", fitobj.nfev
57 print "Number of free pars.: ", fitobj.nfree
58 print "Degrees of freedom: ", fitobj.dof
59 print "Number of pegged pars.: ", fitobj.npegged
60 print "Covariance matrix:\n", fitobj.covar
61

62

63 # Plot the result
64 #================
65 rc(’font’, size=10)
66 rc(’legend’, fontsize=8)
67 fig = figure()
68 xp = numpy.linspace(xstart-1, xend+1, 200)
69 frame = fig.add_subplot(1,1,1, aspect=1.0)
70 frame.plot(x, y, ’ro’, label="Data")
71 frame.plot(xp, model(fitobj.params,xp), ’m’, lw=1, label="Fit with kmpfit")
72 frame.plot(xp, model(paramsreal,xp), ’g’, label="The model")
73 frame.set_xlabel("X")
74 frame.set_ylabel("Response data")
75 frame.set_title("Least-squares fit to noisy data using KMPFIT", fontsize=10)
76 s = "Model: Y = a + b*X real:(a,b)=(%.2g,%.2g), fit:(a,b)=(%.2g,%.2g)"%\
77 (paramsreal[0],paramsreal[1], fitobj.params[0],fitobj.params[1])
78 frame.text(0.95, 0.02, s, color=’k’, fontsize=7,
79 ha=’right’, transform=frame.transAxes)
80 frame.set_xlim(0,12)
81 frame.set_ylim(0,None)
82 frame.grid(True)
83 leg = frame.legend(loc=2)
84 show()

19.3 Function simplefit()

For simple fit problems we provide a simple interface. It is a function which is used as follows:

>>> p0 = (0,0)
>>> fitobj = kmpfit.simplefit(model, p0, x, y, err=err, xtol=1e-8)
>>> print fitobj.params

Argument model is a function, just like the model in the previous section. p0 is a sequence with initial values
with a length equal to the number of parameters that is defined in your model. Argument x and y are the arrays
or lists that represent your measurement data. Argument err is an array with 1 σ errors, one for each data point.
Then you can enter values to tune the fit routine with keyword arguments (e.g. gtol, xtol, etc.). In the next example
we demonstrate how to use lists for your data points, how to make an unweighted fit and how to print the right
parameter uncertainties. For an explanation of parameter uncertainties, see section Standard errors of best-fit
values.

The advantages of this function:

• You need only to worry about a model function

• No need to create a Fitter object first

• Direct input of relevant arrays

• As a result you get a Fitter object with all the attributes

19.3. Function simplefit() 311

Kapteyn Package Documentation, Release 2.2

0 2 4 6 8 10 12
X

0

2

4

6

8

10

12

R
e
sp

o
n
se

 d
a
ta

Model: Y = a + b*X real:(a,b)=(1,1), fit:(a,b)=(1.1,0.99)

Least-squares fit to noisy data using KMPFIT

Data

Fit with kmpfit

The model

• It is (still) possible to tune the fit routine with keyword arguments, no limitations here.

Example: kmpfit_example_easyinterface.py - Simple function

1 #!/usr/bin/env python
2 #--
3 # Purpose: Demonstrate simple use of fitter routine
4 #
5 # Vog, 24 Nov 2011
6 #--
7 import numpy
8 from matplotlib.pyplot import figure, show
9 from kapteyn import kmpfit

10

11 # The model:
12 def model(p, x):
13 a, b = p
14 y = a + b*x
15 return y
16

17

18 # Artificial data
19 N = 50 # Number of data points
20 mean = 0.0; sigma = 0.6 # Characteristics of the noise we add
21 x = numpy.linspace(2, 10, N)
22 paramsreal = [1.0, 1.0]
23 noise = numpy.random.normal(mean, sigma, N)
24 y = model(paramsreal, x) + noise
25 err = numpy.random.normal(mean, sigma, N)
26

27

28 # Simple interface

312 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

29 p0 = (0,0)
30 xl = range(10)
31 yl = [k*0.5 for k in xl]
32 fitobj = kmpfit.simplefit(model, p0, xl, yl)
33 print "Best fit parameters:", fitobj.params
34 print "Parameter errors: :", fitobj.stderr
35

36 fitobj = kmpfit.simplefit(model, p0, x, y, err=err, xtol=1e-8)
37 print "Best fit parameters:", fitobj.params
38 print "Parameter errors: :", fitobj.xerror
39

40 fitobj = kmpfit.simplefit(model, p0, x, y, maxiter=100)
41 print "Best fit parameters:", fitobj.params
42 print "Parameter errors: :", fitobj.stderr

19.4 Standard errors of best-fit values

With the estimation of errors on the best-fit parameters we get an idea how good a fit is. Usually these errors
are called standard errors, but often programs call these errors also standard deviations. For nonlinear least-
squares routines, these errors are based on mathematical simplifications and are therefore often called asymptotic
or approximate standard errors.

The standard error (often denoted by SE) is a measure of the average amount that the model over- or under-predicts.

According to [Bev] , the standard error is an uncertainty which corresponds to an increase of χ2 by 1. That implies
that if we we add the standard error σi to its corresponding parameter, fix it in a second fit and fit again, the value
of χ2 will be increased by 1.

χ2(pi + σi) = χ2(pi) + 1 (19.7)

The next example shows this behaviour. We tested it with the first parameter fixed and a second time with the
second parameter fixed. The example also shows how to set parameters to ‘fixed’ in kmpfit. The model is a straight
line. If you run the example you will see that it shows exactly the behaviour as in (19.7). This proves that the
covariance matrix (explained later) of kmpfit can be used to derive standard errors. Note the use of the parinfo
attribute of the Fitter object to fix parameters. One can use an index to set values for one parameter or one can set
the values for all parameters. These values are given as a Python dictionary. An easy way to create a dictionary is
to use Python’s dict() function.

Example: kmpfit_errors_chi2delta.py - Meaning of asymptotic errors

1 #!/usr/bin/env python
2 #--
3 # Purpose: Demonstrate, using kmpfit, that if you find best-fit
4 # parameters, the errors derived from the covariance matrix
5 # correspond to an increase in chi^2 of 1.
6 # Vog, 23 Nov 2011
7 #--
8 import numpy
9 from matplotlib.pyplot import figure, show, rc

10 from numpy.random import normal, randint
11 from kapteyn import kmpfit
12

13

14 def residuals(p, data):
15 x, y, err = data
16 a, b = p
17 model = a + b*x
18 return (y-model)/err
19

20

21 # Artificial data

19.4. Standard errors of best-fit values 313

Kapteyn Package Documentation, Release 2.2

22 #----------------
23 N = 100
24 a0 = 2; b0 = 3
25 x = numpy.linspace(0.0, 2.0, N)
26 y = a0 + b0*x + normal(0.0, 0.4, N) # Mean,sigma,N
27 derr = normal(0.0, 0.5, N)
28 err = 0.9+derr
29

30 fitobj = kmpfit.Fitter(residuals=residuals, data=(x, y, err))
31 fitobj.fit(params0=[1,1])
32

33 if (fitobj.status <= 0):
34 print ’error message =’, fitobj.errmsg
35 raise SystemExit
36

37 print "\n\n======== Results kmpfit for Y = A + B*X ========="
38 print "Params: ", fitobj.params
39 print "Errors from covariance matrix : ", fitobj.xerror
40 print "Uncertainties assuming reduced Chi^2=1: ", fitobj.stderr
41 print "Chi^2 min: ", fitobj.chi2_min
42

43 p1, p2 = fitobj.params
44 e1, e2 = fitobj.xerror
45 # Next we take one of the parameters to be fixed and change its value
46 # with the amount of one of the estimated errors (covariance, scaled or bootstrap)
47 # If we fit again, then, according to Bevington (Data Reduction and Error
48 # Analysis for the Physical Sciences Section 11-5), one should expect the
49 # Chi square value to increase with 1.0
50

51 fitobj.parinfo[0] = dict(fixed=True)
52 fitobj.fit(params0=[p1+e1,1])
53 print "\nFix first parameter and set its value to fitted value+error"
54 print "Params: ", fitobj.params
55 print "Chi^2 min: ", fitobj.chi2_min
56 print "Errors from covariance matrix : ", fitobj.xerror
57

58 fitobj.parinfo = [{’fixed’:False}, {’fixed’:True}]
59 fitobj.fit(params0=[1, p2+e2])
60 print "\nFix second parameter and set its value to fitted value+error"
61 print "Params: ", fitobj.params
62 print "Chi^2 min: ", fitobj.chi2_min
63 print "Errors from covariance matrix : ", fitobj.xerror

The results for an arbitrary run:

======== Results kmpfit for Y = A + B*X =========
Params: [2.0104270702631712, 2.94745915643011]
Errors from covariance matrix : [0.05779471 0.06337059]
Uncertainties assuming reduced Chi^2=1: [0.04398439 0.04822789]
Chi^2 min: 56.7606029739

Fix first parameter and set its value to fitted value+error
Params: [2.0682217814912143, 2.896736695408106]
Chi^2 min: 57.7606030002
Errors from covariance matrix : [0. 0.03798767]

Fix second parameter and set its value to fitted value+error
Params: [1.9641675954511788, 3.0108297500339498]
Chi^2 min: 57.760602835
Errors from covariance matrix : [0.0346452 0.]

As you can see, the value of chi-square has increased with ~1.

314 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

19.4.1 Standard errors in weighted fits

In the literature [Num] we can find analytical expressions for the standard errors of weighted fits for standard
linear regression. We want to discuss the derivation of analytical errors for weighted fits to demonstrate that these
errors are also represented by the elements of the so-called variance-covariance matrix (or just covariance matrix),
which is also a result of a fit with kmpfit (attribute Fitter.covar). How should we interpret these errors? For
instance in Numerical Recipes, [Num] we find the expressions for the best fit parameters of a model y = a + bx
Use the chi-squared objective function:

χ2([a, b], x) =
N−1∑
i=0

(
yi − a− bxi

σi

)2

(19.8)

To find analytical expressions for the best-fit values of a and b, we need to take derivatives of this objective
function:

∂χ2

∂a
= −2

N−1∑
i=0

yi − a− bxi
σ2
i

∂χ2

∂b
= −2

N−1∑
i=0

xi(yi − a− bxi)
σ2
i

(19.9)

Define:

S ≡
N−1∑
i=0

1
σ2
i

Sx ≡
N−1∑
i=0

xi
σ2
i

Sy ≡
N−1∑
i=0

yi
σ2
i

Sxx ≡
N−1∑
i=0

x2
i

σ2
i

Sxy ≡
N−1∑
i=0

xiyi
σ2
i

(19.10)

Then one can rewrite (19.9) into:

aS + bSx = Sy

aSx + bSxx = Sxy
(19.11)

which is in matrix notation: [
S Sx
Sx Sxx

](
a
b

)
=
(
Sy
Sxy

)
(19.12)

If we define:

C =
1

SSxx − (Sx)2

[
Sxx −Sx
−Sx S

]
(19.13)

which gives the solution: (
a
b

)
= C

(
Sy
Sxy

)
(19.14)

Define:

∆ ≡ SSxx − (Sx)2 (19.15)

The solutions for a and b are:

a =
SxxSy − SxSxy

∆

b =
SSxy − SxSy

∆

(19.16)

For the standard errors we will derive the error in parameter a and b. The error in a is by the law of propagation
of errors:

σ2
a =

∑
i

σ2
i

(
∂a

∂yi

)2

(19.17)

19.4. Standard errors of best-fit values 315

Kapteyn Package Documentation, Release 2.2

>From (19.16) and (19.10) we derive:

∂a

∂yi
=

Sxx
σ2
i
− Sxxi

σ2
i

∆
=
Sxx − Sxxi

σ2
i∆

(19.18)

With (19.17) we find

σ2
a =

∑
i

σ2
i

(
∂a

∂yi

)2

=
∑
i

σ2
i

(
Sxx − Sxxi

σ2
i∆

)2

=
1

∆2

{
S2
xxΣ

1
σ2
i

− 2SxSxxΣ
xi
σ2
i

+ S2
xΣ

x2
i

σ2
i

}
=

1
∆2

{
S2
xxS − 2SxSxxSx + SxxS

2
x

}
=

1
∆2

{
Sxx(SxxS − S2

x)
}

=
1

∆2
Sxx∆

=
Sxx
∆

(19.19)

Applying the same procedure to b:

∂b

∂yi
=

Sxi
σ2
i
− Sx

σ2
i

∆
=
Sxi − Sx
σ2
i∆

(19.20)

With (19.17) we find

σ2
b =

∑
i

σ2
i

(
∂b

∂yi

)2

=
∑
i

σ2
i

(
Sxi − Sx
σ2
i∆

)2

=
1

∆2

{
S2Σ

x2
i

σ2
i

− 2SxSΣ
x2
i

σ2
i

+ S2
xΣ

x2
i

σ2
i

}
=

1
∆2

{
S2S − 2SxSSx + S2

xS
}

=
1

∆2

{
S(SxxS − S2

x)
}

=
1

∆2
S∆

=
S

∆

(19.21)

To summarize:

σa =

√
Sxx
∆

(19.22)

σb =

√
S

∆

A classical implementation to find analytical best-fit parameters using NumPy is as follows:

1 def lingres(xa, ya, err):
2 w = numpy.where(err==0.0, 0.0, 1.0/(err*err))
3 Sum = w.sum()

316 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

4 sumX = (w*xa).sum()
5 sumY = (w*ya).sum()
6 sumX2 = (w*xa*xa).sum()
7 sumY2 = (w*ya*ya).sum()
8 sumXY = (w*xa*ya).sum()
9 delta = Sum * sumX2 - sumX * sumX

10 a = (sumX2*sumY - sumX*sumXY) / delta
11 b = (sumXY*Sum - sumX*sumY) / delta
12 siga = numpy.sqrt(abs(sumX2/delta))
13 sigb = numpy.sqrt(abs(Sum/delta))
14 return a, b, siga, sigb, delta, Sum, sumX2, sumX

Note that these formulas are susceptible to roundoff error and Numerical Recipes derives alternative formulas
(Section 15.2). However, our functions work with double precision numbers and we didn’t (yet) encounter a
situation where roundoff errors were obvious.

If we compare these results with the elements of the covariance matrix in (19.13), then we observe that the
expressions for the parameter variances, are the square root of the diagonal values of this matrix. The co-variance
between a and b can be calculated also and the formula turns out to be the same as the off-diagonal elements of
the covariance matrix. This value is:

Cov(a, b) = C12 = C21 =
−Sx
∆

(19.23)

It is easy to demonstrate that these errors are the same as those we find with kmpfit in attribute xerror, which
are the square-root diagonal values of the covariance matrix in attribute covar.

The covariance matrix elements Cjk for best-fit parameters p can be written as:

Cjk =
i=N∑
i=0

σ2
i

(
∂pj
∂yi

)(
∂pk
∂yi

)
(19.24)

where we used j to indicate the matrix row and k the matrix column. If j=k then:

Cjj =
i=N∑
i=0

σ2
i

(
∂pj
∂yi

)2

(19.25)

from which follows that the square root of the diagonal elements of the covariance matrix are the estimates of the
best-fit parameter uncertainties.

Note:

• Parameter variances and covariance between parameters can be read from a covariance matrix. This is true
for any model, not just a straight line. It is also true for models that are non-linear in their parameters.

• The covariance matrix C is in stored as an attribute of the ‘kmpfit.Fitter’ object The attribute is called
covar.

• Error estimates for best-fit parameter are stored as an attribute of the ‘kmpfit.Fitter’ object. The attribute is
called xerror

Example program kmpfit_linearreg.py compares the analytical covariance matrix with the kmpfit version
for linear regression, using the previously derived formulas in this section. The output of an arbitrary example run
demonstrates the similarity between the analytical and the kmpfit method:

Example: kmpfit_linearreg.py - Compare output analytical method and kmpfit

-- Results analytical solution:
Best fit parameters: [0.57857142857143595, 5.5285714285714258]
Parameter errors weighted fit: [0.84515425472851657, 0.1889822365046136]
Parameter errors un-/relative weighted fit: [1.0696652156022404, 0.2391844135253578]
Minimum chi^2: 8.00928571429
Covariance matrix:

19.4. Standard errors of best-fit values 317

Kapteyn Package Documentation, Release 2.2

0.714285714286 -0.142857142857
-0.142857142857 0.0357142857143

-- Results kmpfit:
Best-fit parameters: [0.57857145533008425, 5.5285714226701863]
Parameter errors weighted fit: [0.84515434 0.18898225]
Parameter errors un-/relative weighted fit: [1.06966532 0.23918443]
Minimum chi^2: 8.00928571429
Covariance matrix:
[[0.71428585 -0.14285717]
[-0.14285717 0.03571429]]

We observe:

• The analytical values of the best-fit parameters and those from kmpfit correspond. The same applies to the
errors for the unweighted fit/fit with relative weights.

19.4.2 When to use weights?

Sometimes there is a good reason to use a fit method that can deal with weights. Usually you assign weights
if you have additional knowledge about your measurements. Some points get more weight if they are more
reliable than others. Therefore you should expect that the best-fit parameters are different between weighted
and un-weighted fits. Also the accuracy of the results will improve, because besides the data you are using the
quality of the data. The difference in best-fit parameters and the quality of the results is shown with program
kmpfit_compare_wei_unwei.py

Example: kmpfit_compare_wei_unwei.py - Compare output for unweighted (unit weighting) and
weighted fit

Data x: [1. 2. 3. 4. 5. 6. 7.]
Data y: [6.9 11.95 16.8 22.5 26.2 33.5 41.]
Errors: [0.05 0.1 0.2 0.5 0.8 1.5 4.]

-- Results kmpfit unit weighting wi=1.0:
Best-fit parameters: [0.57857145533008425, 5.5285714226701863]
Parameter errors weighted fit: [0.84515434 0.18898225]
Minimum chi^2: 8.00928571429
Covariance matrix:
[[0.71428585 -0.14285717]
[-0.14285717 0.03571429]]

-- Results kmpfit with weights:
Best-fit parameters: [1.8705399823164173, 5.0290902421858439]
Parameter errors weighted fit: [0.09922304 0.06751229]
Minimum chi^2: 4.66545480308
Covariance matrix:
[[0.00984521 -0.00602421]
[-0.00602421 0.00455791]]

If you examine the residuals function in this program, you will observe that we use a weight of 1/erri in the resid-
uals function, which is squared by kmpfit, so in fact the weighting is 1/σ2

i . First we set all the errors to 1.0. This is
called unit weighting and effectively this fit does not weight at all. The second fit has different weights. Important
is the observation that these weights can be relative. Then they contain information about the quality of the data
but do not necessarily contain correct information about the errors on the data points and therefore give incorrect
errors on the parameter estimates. This is shown in the same program kmpfit_compare_wei_unwei.py
where we scaled the errors with a factor 10. The errors in the parameter estimates are increased by a factor 10.

Example: kmpfit_compare_wei_unwei.py - Compare output for unweighted (unit weighting) and
weighted fit

-- Results kmpfit with scaled individual errors (factor=10):
Best-fit parameters: [1.870539984453957, 5.0290902408769238]

318 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

Parameter errors weighted fit: [0.99223048 0.6751229]
Minimum chi^2: 0.0466545480308
Covariance matrix:
[[0.98452132 -0.60242076]
[-0.60242076 0.45579092]]

This demonstrates that if weights are relative or when unit weighting is applied, one cannot rely on the covariance
errors to represent real errors on the parameter estimates. The covariance errors are still based on a change in χ2

of 1.0, but the weights do not represent the variances of the data correctly.

To summarize the weighting schemes:

• Unweighted or unit weighting. Set wi = 1/σ2
i to 1.0

• Relative weighting. Set wi = 1/σ2
i but the errors on the parameter estimates in kmpfit‘s attribute xerror

cannot be used.

• Statistical weighting. Set wi = 1/σ2
i . The errors on the parameter estimates in kmpfit‘s attribute xerror

are correct. An important assumption of this method is that the error distribution of the measured data is
Gaussian and that the data errors are measured accurately (absolute uncertainties).

• Other weighting schemes like Poisson weighting wi = 1/yi

19.4.3 Reduced chi squared

>From the theory of maximum likelihood we find that for a least squares solution we need to maximize the
probability that a measurement yi with given σi is in a a small interval dyi around yi by minimizing the sum chi
squared [Ds1] :

χ2 =
N−1∑
i=0

(
∆yi
σi

)2

=
N−1∑
i=0

(yi − f(xi))
2

σ2
i

(19.26)

with:

• N is the number of data points

• yi the measured data at xi

• σi is the standard deviation of measurement i

• f is the model for which we want to find the best-fit parameters.

The sum is often called chi squared because it follows the χ2 distribution if we repeat the experiment to get new
measurements. The expectation value of χ2 is (see proof in [Ds3]):

〈χ2〉 = N − n (19.27)

where n is the number of free parameters in the fit. The reduced chi squared χ2
ν is defined as:

χ2
ν =

χ2

N − n
=
χ2

ν
(19.28)

where ν = N − n. From (19.27) we derive for the expectation value of χ2
ν :

〈χ2
ν〉 = 1 (19.29)

Fitting with (19.26) as objective function is often called chi squared fitting. The value of χ2
ν is a measure of the

goodness of fit and is returned by kmpfit in a Fitter object as attribute rchi2_min. The number of degrees of
freedom is stored in attribute dof.

Note:

• χ2
ν follows the chi square statistic. This statistic measures both the spread of the data and the accuracy of

the fit.

19.4. Standard errors of best-fit values 319

Kapteyn Package Documentation, Release 2.2

• The reduced chi squared χ2
ν is a measure of the goodness of fit. Its expectation value is 1.

• A value of χ2
ν ≈ 1 indicates that there is a match between measurements, best-fit parameters and error

variances.

• A large value of χ2
ν (e.g. > 1.5) indicates a poor model fit.

• A χ2
ν < 1 indicates that probably the error variance has been over-estimated.

• A χ2
ν > 1 indicates that probably the error variance has been under-estimated.

In the literature we find relations between the standard deviation of the sample and the true standard deviation of
the underlying distribution . For least squares analysis we replace the average value of y (i.e. ȳ) in those formulas
by the model with the best-fit parameters f(p, x).

What should we expect of the variance σi compared to the sample deviations for each sample point? Assume we
have N data points and each data point has an individual error of σi. >From (19.27) we have:〈

N−1∑
i=0

(
yi − f(xi)

)2
σ2
i

〉
= N − n (19.30)

With the observation that the expectation value of each of the N terms is the same we derive for each data point:〈(
yi − f(xi)

)2〉 = (1− n

N
)σi (19.31)

So for a good fit the true deviation of a measurement σi for large N is almost equal to the deviation between data
point and fit. The less the scatter of data about the best fit, the smaller σi should be.

The sample variance, s2y is then written as [Ds2] :

s2y =
1

N − n
∑
i

(yi − f(xi))
2

(19.32)

If we replace all σi with σy in equation (19.30), then we derive a familiar relationship:

s2y
σ2
y

= χν → 〈s2y〉 = σ2
y (19.33)

so that the value of s2y of the measurements is an unbiased estimate of the true variance σ2
y of the underlying

distribution. For an unbiased estimator, the expected value and the true value are the same.

The weighted version of the sample variance is defined as:

sw2
y =

1
N−n

∑
i

wi(yi − f(xi))2

1
N

∑
i

wi
(19.34)

If we use 1/σ2
i as weight, then:

sw2
y ×

1
N

∑
i

1
σ2
i

= χ2
ν (19.35)

Bevington [Bev] defines the weighted average of the individual variances σ̄2
i as:

σ̄2
i =

1
N

∑
i

(
1
σ2
i
σ2
i

)
1
N

∑
i

1
σ2
i

=
1

1
N

∑
i

1
σ2
i

(19.36)

Then:

sw2
y

σ̄2
i

= χ2
ν (19.37)

320 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

If we set all weights to the same value wi = 1/σ2
y then swy = sy and:

s2y
σ2
y

= χ2
ν (19.38)

which is consistent with (19.33).

For chi squared fitting it is therefore important to have correct values for σi. Over-estimated values give a χ2
ν

which is smaller than 1 and under-estimated values give a value bigger than 1 (If you get very large values, then
probably fit and data are not in agreement). If the values for σi are unreliable then also the error estimates of the
best-fit parameters are unreliable, because they are functions of σi (see e.g. the analytical expressions for these
errors in a linear regression in (19.22)). According to equations (19.37) and (19.38) it is reasonable then to scale
the values of σi in a way that we force χ2

ν to take its expectation value of 1. Then one gets values for the errors in
stderr which are insensitive to arbitrary scaling factors of the weights.

We noted earlier that scaling the weights does not change the values of the best-fit parameters but they affect the
values of the parameter error estimates because they depend on the values of σi. If for example values of σi are
all too small with a factor 2 with respect to those that make χν = 1. Then the errors in the parameter estimates
are to small with a factor 2x2=4 (see e.g. (19.19) and (19.21) for the straight line model). The value of χν will be
2x2=4. So to correct the errors on the parameter estimates, we can multiply the variances with the value of χν . If
we recall equation (19.25), then we see that this scaling can be applied to arbitrary models. This scaling is exactly
what happens in kmpfit for the values in attribute stderr.

In kmpfit we use the unit- or relative weights as given by the user and calculate the value of χν . The asymptotic
standard errors in xerror are then multiplied by the square root of the value of χν and stored in attribute
stderr. We demonstrate this with the output of a small example (kmpfit_compare_wei_unwei.py) with
data from [Wol]:

Example: kmpfit_compare_wei_unwei.py - Compare output for unweighted (unit weighting) and
weighted fit

Data x: [1. 2. 3. 4. 5. 6. 7.]
Data y: [6.9 11.95 16.8 22.5 26.2 33.5 41.]
Errors: [0.05 0.1 0.2 0.5 0.8 1.5 4.]

New array with measurement errors, scaled with factor 0.933091 to give
a reduced chi-squared of 1.0:
[0.04829832 0.09659663 0.19319327 0.48298317 0.77277307 1.4489495
3.86386534]

-- Results kmpfit with scaled individual errors to force red_chi2=1:
Best-fit parameters: [1.8705399822570359, 5.029090242191204]
Parameter errors using measurement uncertainties: [0.09584612 0.0652146]
Parameter errors unit-/relative weighted fit: [0.09584612 0.0652146]
Minimum chi^2: 5.0
Minimum reduced chi^2: 1.0
Covariance matrix:
[[0.00918648 -0.00562113]
[-0.00562113 0.00425294]]

The next code example is a small script that shows that the scaled error estimates in attribute stderr for unit-
and relative weighting are realistic if we compare them to errors found with a Monte Carlo method. We start with
values of σi that are under-estimated. This results in a value for χν which is too low. The re-scaled errors in
stderr match with those that are estimated with the Monte-Carlo method. In the example we used the Bootstrap
Method. The plot shows the fit and the bootstrap distributions of parameter A and B. We will explain the Bootstrap
Method in the next section.

Example: kmpfit_unweighted_bootstrap_plot.py - How to deal with unweighted fits

1 #!/usr/bin/env python
2 #--
3 # Purpose: Demonstrate that the scaled covariance errors for
4 # unweighted fits are comparable to errors we find with
5 # a bootstrap method.

19.4. Standard errors of best-fit values 321

Kapteyn Package Documentation, Release 2.2

6 # Vog, 24 Nov 2011
7 #--
8

9 import numpy
10 from matplotlib.pyplot import figure, show, rc
11 from numpy.random import normal, randint
12 from kapteyn import kmpfit
13

14 # Residual and model in 1 function. Model is straight line
15 def residuals(p, data):
16 x, y, err = data
17 a, b = p
18 model = a + b*x
19 return (y-model)/err
20

21 # Artificial data
22 N = 100
23 a0 = 0; b0 = 1.2
24 x = numpy.linspace(0.0, 2.0, N)
25 y = a0 + b0*x + normal(0.0, 0.4, N) # Mean,sigma,N
26 err = numpy.ones(N) # All weights equal to 1
27

28 # Prepare fit routine
29 fitobj = kmpfit.Fitter(residuals=residuals, data=(x, y, err))
30 try:
31 fitobj.fit(params0=[1,1])
32 except Exception, mes:
33 print "Something wrong with fit: ", mes
34 raise SystemExit
35

36 print "\n\n======== Results kmpfit unweighted fit ========="
37 print "Params: ", fitobj.params
38 print "Errors from covariance matrix : ", fitobj.xerror
39 print "Uncertainties assuming reduced Chi^2=1: ", fitobj.stderr
40 print "Chi^2 min: ", fitobj.chi2_min
41 print "Reduced Chi^2: ", fitobj.rchi2_min
42 print "Iterations: ", fitobj.niter
43 print "Function ev: ", fitobj.nfev
44 print "Status: ", fitobj.status
45 print "Status Message:", fitobj.message
46

47 # Bootstrap method to find uncertainties
48 A0, B0 = fitobj.params
49 xr = x.copy()
50 yr = y.copy()
51 ery = err.copy()
52 fitobj = kmpfit.Fitter(residuals=residuals, data=(xr, yr, ery))
53 slopes = []
54 offsets = []
55 trials = 10000 # Number of synthetic data sets
56 for i in range(trials): # Start loop over pseudo sample
57 indx = randint(0, N, N) # Do the resampling using an RNG
58 xr[:] = x[indx]
59 yr[:] = y[indx]
60 ery[:] = err[indx]
61

62 # Only do a regression if there are at least two different
63 # data points in the pseudo sample
64 ok = (xr != xr[0]).any()
65

66 if (not ok):
67 print "All elements are the same. Invalid sample."
68 print xr, yr

322 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

69 else:
70 fitobj.fit(params0=[1,1])
71 offs, slope = fitobj.params
72 slopes.append(slope)
73 offsets.append(offs)
74

75 slopes = numpy.array(slopes) - B0
76 offsets = numpy.array(offsets) - A0
77 sigmaA0, sigmaB0 = offsets.std(), slopes.std()
78 print "Bootstrap errors in A, B:", sigmaA0, sigmaB0
79

80 # Plot results
81 rc(’font’, size=7)
82 rc(’legend’, fontsize=6)
83 fig = figure(figsize=(7,4))
84 fig.subplots_adjust(left=0.08, wspace=0.3, right=0.94)
85 frame = fig.add_subplot(1,3,1, aspect=1.0, adjustable=’datalim’)
86 frame.plot(x, y, ’bo’, label=’Observed data’)
87 frame.plot(x, a0+b0*x, ’r’, label=’True: Y=%.1f+%.1fX’%(a0,b0))
88 frame.plot(x, A0+B0*x, ’--c’, alpha=0.5, lw=4, label=’kmpfit’)
89 frame.set_xlabel("X"); frame.set_ylabel("Y")
90 frame.set_title("Unweighted fit Y=A+B*X")
91 frame.grid(True)
92 frame.legend(loc=’upper left’)
93

94 ranges = [(offsets.min(), offsets.max()),(slopes.min(), slopes.max())]
95 nb = 40 # Number of bins in histogram
96 for i,sigma in enumerate([sigmaA0, sigmaB0]):
97 framehist = fig.add_subplot(1, 3, 2+i)
98 range = ranges[i] # (X) Range in histogram
99 framehist.hist(slopes, bins=nb, range=range, fc=’g’)

100 binwidth = (range[1]-range[0])/nb # Get width of one bin
101 area = trials * binwidth # trials is total number of counts
102 mu = 0.0
103 amplitude = area / (numpy.sqrt(2.0*numpy.pi)*sigma)
104 x = numpy.linspace(range[0], range[1], 100)
105 y = amplitude * numpy.exp(-(x-mu)*(x-mu)/(2.0*sigma*sigma))
106 framehist.plot(x, y, ’r’)
107 if i == 0:
108 lab = "A_i-A_0"
109 title = "Distribution synthetic A"
110 else:
111 lab = "B_i-B_0"
112 title = "Distribution synthetic B"
113 framehist.set_xlabel(lab)
114 framehist.set_ylabel("Counts")
115 framehist.set_title(title)
116

117 show()

19.4.4 Bootstrap Method

We need to discuss the bootstrap method, that we used in the last script, in some detail. Bootstrap is a tool
which estimates standard errors of parameter estimates by generating synthetic data sets with samples drawn with
replacement from the measured data and repeating the fit process with this synthetic data.

Your data realizes a set of best-fit parameters, say p(0). This data set is one of many different data sets that
represent the ‘true’ parameter set ptrue . Each data set will give a different set of fitted parameters p(i). These
parameter sets follow some probability distribution in the n dimensional space of all possible parameter sets. To
find the uncertainties in the fitted parameters we need to know the distribution of p(i) − ptrue [Num]. In Monte
Carlo simulations of synthetic data sets we assume that the shape of the distribution of Monte Carlo set p(i) − p0

19.4. Standard errors of best-fit values 323

Kapteyn Package Documentation, Release 2.2

0.0 0.5 1.0 1.5 2.0

X

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y
Unweighted fit Y=A+B*X

Observed data

True: Y=0.0+1.2X

kmpfit

0.4 0.3 0.2 0.10.0 0.1 0.2 0.3 0.4
Ai−A0

0

200

400

600

800

1000

1200

C
o
u
n
ts

Distribution synthetic A

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Bi−B0

0

100

200

300

400

500

600

700

800

C
o
u
n
ts

Distribution synthetic B

is equal to the shape of the real world set p(i) − ptrue
The Bootstrap Method [Num] uses the data set that you used to find the best-fit parameters. We generate different
synthetic data sets, all with N data points, by randomly drawing N data points, with replacement from the original
data. In Python we realize this as follows:

indx = randint(0, N, N) # Do the re-sampling using an RNG
xr[:] = x[indx]
yr[:] = y[indx]
ery[:] = err[indx]

We create an array with randomly selected array indices in the range 0 to N. This index array is used to create new
arrays which represent our synthetic data. Note that for the copy we used the syntax xr[:] with the colon, because
we want to be sure that we are using the same array xr, yr and ery each time, because the fit routine expects the
data in these arrays (and not copies of them with the same name). The synthetic data arrays will consist of about
37 percent duplicates. With these synthetic arrays we repeat the fit and find our p(i). If we repeat this many times
(let’s say 1000), then we get the distribution we needed. The standard deviation of this distribution (i.e. for one
parameter), gives the uncertainty.

Note: The bigger the data set, the higher the number of bootstrap trials should be to get accurate statistics. The
best way to find a minimum number is to plot the Bootstrap results as in the example.

19.4.5 Jackknife method

Another Monte Carlo method is the Jackknife method. The Jackknife method finds errors on best-fit parameters
of a model and N data points using N samples. In each sample a data point is left out, starting with the first, then
the second and so on. For each of these samples we do a fit and store the parameters. For example, for a straight
line we store the slopes and offsets. If we concentrate on one parameter and call this parameter θ then for each
run i we find the estimated slope θi. The average of all the slopes is θ̄∗). Then the Jackknife error is:

σjack =

√√√√N − 1
N

N−1∑
i=0

(θi − θ̄∗)
2 (19.39)

324 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

19.4.6 Notes about weighting

Unweighted (i.e. unit weighting) and relative weighted fits

• For unit- or relative weighting, we find errors that correspond to attribute stderr in kmpfit.

• The errors on the best-fit parameters are scaled (internally) which is equivalent to scaling the weights in a
way that the value of the reduced chi-squared becomes 1.0

• For unweighted fits, the standard errors from Fitter.stderr are comparable to errors we find with
Monte Carlo simulations.

Alper, [Alp] states that for some combinations of model, data and weights, the standard error estimates from diag-
onal elements of the covariance matrix neglect the interdependencies between parameters and lead to erroneous
results. Often the measurement errors are difficult to obtain precisely, sometimes these errors are not normally
distributed. For this category of weighting schemes, one should always inspect the covariance matrix (attribute
covar) to get an idea how big the covariances are with respect to the variances (diagonal elements of the matrix).
The off-diagonal elements of the covariance matrix should be much lower than the diagonal.

Weighted fits with weights derived from real measurement errors

• For weighted fits where the weigths are derived from measurement errors, the errors correspond to attribute
xerror in kmpfit. Only for this type of weights, we get a value of (reduced) chi-squared that can be used
as a measure of goodness of fit.

• The fit results depend on the accuracy of the measurement errors σi.

• A basic assumption of the chi-squared objective function is that the error distribution of the measured data
is Gaussian. If this assumption is violated, the value of chi squared does not make sense.

• The uncertainties given in attribute xerror and stderr are the same, only when χ2
ν = 1

>From [And] we summarize the conditions which must be met before one can safely use the values in stderr
(i.e. demanding that χν = 1): In this approach of scaling the error in the best-fit parameters, we make some
assumptions:

1. The error distribution has to be Gaussian.

2. The model has to be linear in all parameters. If the model is nonlinear, we cannot demand that χν = 1,
because the derivation of 〈χ〉2 = N − n implicitly assumes linearity in all parameters.

3. By demanding χν = 1, we explicitly claim that the model we are using is the correct model that corresponds
to the data. This is a rather optimistic claim. This claim requires justification.

4. Even if all these assumptions above are met, the method is in fact only applicable if the degrees of freedom
N-n is large. The reason is that the uncertainty in the measured data data does not only cause an uncertainty
in the model parameters, but also an uncertainty in the value of χ2 itself. If N-n is small, χ2 may deviate
substantially from N-n even though the model is linear and correct.

The conclusion is that one should be careful with the use of standard errors in stderr. A Monte Carlo method
should be applied to prove that the values in stderr can be used. For weighted fits it is advertised not to
use the Bootstrap method. In the next example we compare the Bootstrap method with and without weights.
The example plots all trial results in the Bootstrap procedure. The yellow lines represent weighted fits in the
Bootstrap procedure. The green lines represent unweighted fits in the Bootstrap procedure. One can observe that
the weighted version shows errors that are much too big.

Example: kmpfit_weighted_bootstrap.py - Compare Bootstrap with weighted and unweighted fits

======== Results kmpfit UNweighted fit =========
Params: [-0.081129823700123893, 2.9964571786959704]
Errors from covariance matrix : [0.12223491 0.0044314]
Uncertainties assuming reduced Chi^2=1: [0.21734532 0.00787946]
Chi^2 min: 626.001387167
Reduced Chi^2: 3.16162316751
Iterations: 2
Function ev: 7
Status: 1

19.4. Standard errors of best-fit values 325

Kapteyn Package Documentation, Release 2.2

======== Results kmpfit weighted fit =========
Params: [-1.3930156818836363, 3.0345053718712571]
Errors from covariance matrix : [0.01331314 0.0006909]
Uncertainties assuming reduced Chi^2=1: [0.10780843 0.00559485]
Chi^2 min: 12984.0423449
Reduced Chi^2: 65.575971439
Iterations: 3
Function ev: 7
Status: 1
Covariance matrix: [[1.77239564e-04 -6.78626129e-06]
[-6.78626129e-06 4.77344773e-07]]

===== Results kmpfit weighted fit with reduced chi^2 forced to 1.0 =====
Params: [-1.3930155828717012, 3.034505368057717]
Errors from covariance matrix : [0.10780841 0.00559485]
Uncertainties assuming reduced Chi^2=1: [0.10780841 0.00559485]
Chi^2 min: 198.0
Reduced Chi^2: 1.0
Iterations: 3
Function ev: 7
Status: 1
Bootstrap errors in A, B for procedure with weighted fits: 0.949585141866 0.0273199443168
Bootstrap errors in A, B for procedure with unweighted fits: 0.217752459166 0.00778497229684

10 0 10 20 30 40 50
X

20

0

20

40

60

80

100

120

140

160

Y

Bootstrap with weighted and unweighted fits

Observed data

True model

kmpfit

Bootstrap with weighted fits

Bootstrap with unweighted fits

The same conclusion applies to the Jackknife method. For unweighted fits, the Jackknife error estimates are very
good, but for weighted fits, the method can not be used. This can be verified with the example script below. [Sha]
proposes a modified Jackknife method to improve the error estimates.

Example: kmpfit_weighted_jackknife.py - Compare Jackknife with weighted and unweighted fits

326 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

19.5 Goodness of fit

19.5.1 Chi-squared test

As described in a previous section, the value of the reduced chi-squared is an indication for the goodness of fit. If
its value is near 1 then your fit is probably good. With the value of chi-squared we can find a threshold value for
which we can accept or reject the hypothesis that the data and the fitted model are consistent. The assumption is
that the value of chi-squared follows the χ2 distribution with ν degrees of freedom. Let’s examine chi-squared in
more detail.

In a chi-squared fit we sum the relative size of the deviation ∆i and the error bar δi. Data points that are near the
fit with the best-fit parameters have a small value ∆i/δi. Bad points have a ratio that is bigger than 1. At those
points the fitted curve does not go through the error bar. For a reasonable fit, there will be both small and big
deviations but on average the value will be near 1. Remember that chi-squared is defined as:

χ2 =
(

∆1

δ1

)2

+
(

∆2

δ2

)2

+
(

∆3

δ3

)2

+ · · ·+
(

∆N

δN

)2

(19.40)

So if we expect that on average the ratios are 1, then we expect that this sum is equal to N. You can always add
more parameters to a model. If you have as many parameters as data points, you can find a curve that hits all data
points, but usually these curves have no significance. In this case you don’t have any degrees of freedom. The
degrees of freedom for a fit with N data points and n adjustable model parameters is:

ν = N − n (19.41)

To include the degrees of freedom, we define the reduced chi squared as:

χ2
ν =

χ2

ν
(19.42)

In the literature ([Ds3]) we can find prove that the expectation value of the reduced chi squared is 1. If we repeat a
measurement many times, then the measured values of χ2 are distributed according to the chi-squared distribution
with ν degrees of freedom. See for example http://en.wikipedia.org/wiki/Chi-squared_distribution.

We reject the null hypothesis (data is consistent with the model with the best fit parameters) if the value of chi-
squared is bigger than some threshold value. The threshold value can be calculated if we set a value of the
probability that we make a wrong decision in rejecting a true null hypothesis (H0). This probability is denoted
by α and it sets the significance level of the test. Usually we want small values for α like 0.05 or 0.01. For a
given value of α we calculate 1 − α, which is the left tail area under the cumulative distribution function. This
probability is calculated with scipy.stats.chi2.cdf(). If α is given and we want to know the threshold
value for chi-squared, then we use the Percent Point Function scipy.stats.chi2.ppf() which has 1 − α
as its argument.

The recipe to obtain a threshold value for χ2 is as follows.

1. Set the hypotheses:

• H0: The data are consistent with the model with the best fit parameters

• Hα: The data are not consistent with the model with the best fit parameters

2. Make a fit and store the calculated value of χ2

3. Set a p-value (α)

4. Use the χ2 cumulative distribution function for ν degrees of freedom to find the threshold χ2 for 1 − α.
Note that α is the right tailed area in this distribution while we use the left tailed area in our calculations.

5. Compare the calculated χ2 with the threshold value.

6. If the calculated value is bigger, then reject the hypothesis that the data and the model with the best-fit
parameters are consistent.

In the next figure we show these steps graphically. Note the use of the statistical functions and methods from
SciPy.

Example: kmpfit_goodnessoffit1.py - Goodness of fit based on the value of chi-squared

19.5. Goodness of fit 327

http://en.wikipedia.org/wiki/Chi-squared_distribution

Kapteyn Package Documentation, Release 2.2

0 20 40 60 80 100 120 140
χ2

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

P
ro

b
ab

il
it
y

Accept Reject

χ2 Probability density function for ν=47

Degrees of freedom = 47

chi square (fit) = 51.5181

chi square threshold = 64.0011

0 20 40 60 80 100 120 140
χ2

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it
y

χ2 Cumulative distribution function

Degrees of freedom = 47

chi square (fit) = 51.5181

chi square threshold = 64.0011

threshold for alpha = 0.05 (=1-0.95)

6 4 2 0 2 4 6 8 10 12
x

4
2
0
2
4
6
8

10
12

y

Fit with χ2 =51.5181 and χ 2
ν =1.09613 (ν=47)

fit model: y=A exp
(
−(x−µ)2

σ2

)
+0

data

328 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

19.5.2 Kolmogorov-Smirnov test

Another goodness-of-fit test is constructed by using the critical values of the Kolmogorov distribution
(Kolmogorov-Smirnov test [Mas]).

For this test we need the normalized cumulative versions of the data and the model with the best-fit parameters.
We call the cumulative distribution function of the model F0(x) and the observed cumulative distribution function
of our data sample Sn(x) then the sampling distribution of D = max |F0(x) − Sn(x)| follows the Kolmogorov
distribution which is independent of F0(x) if F0(x) is continuous, i.e. has no jumps.

The cumulative distribution of the sample is called the empirical distribution function (ECDF). To create the
ECDF we need to order the sample values y0, y1, ..., yn from small to high values. Then the ECDF is defined as:

SN =
n(i)
N

(19.43)

The value of n(i) is the number of sample values y that are smaller than or equal to yi. So the first value would be
1/N, the second 2/N etc.

The cumulative distribution function (CDF) of the model can be calculated in the same way. First we find the
best-fit parameters for a model using kmpfit. Select a number of X values to find Y values of your model. Usually
the number of model samples is much higher than the number of data samples. With these (model) Y values we
create a CDF using the criteria (ordered Y values) of the data. If dat1 are the ordered sample Y values and dat2
are the ordered model Y values, then a function that calculates the CDF could be:

def cdf(Y_ord_data, Y_ord_model):
cdfnew = []
n = len(Y_ord_model)
for yy in Y_ord_data:

fr = len(Y_ord_model[Y_ord_model <= yy])/float(n)
cdfnew.append(fr)

return numpy.asarray(cdfnew)

which is not the most efficient procedure but it is simple and it just works.

For hypotheses testing we define:

• H0: The data are consistent with the model with the best fit parameters

• Hα: The data are not consistent with the model with the best fit parameters

Note that the ECDF is a step function and this step function could be interpreted in two ways. Therefore the
Kolmogorov-Smirnov (KS) test statistic is defined as:

Dn = max
0≤i≤N−1

(i+ 1
N
− F0(yi), F0(yi)−

i

N

)
(19.44)

where we note that F0 is a continuous distribution function (a requirement for the KS-test).

The null hypothesis is rejected at a critical probability α (confidence level) if Dn > Dα. The value Dα is a
threshold value. Given the value of α, we need to find Dα by solving:

Pr(Dn < Dα) = 1− α (19.45)

To find this probability we use the Kolmogorov-Smirnov two-sided test which can be approximated with
SciPy’s method scipy.stats.kstwobign(). This test uses Dn/

√
(N) as input and the output of

kstwobign.ppf() is Dn ∗
√

(N). Given a value for N, we find threshold values for Dn for frequently used
values of confidence level α, as follows:

N = ...
from scipy.stats import kstwobign
Good approximation for the exact distribution if N>4
dist = kstwobign()
alphas = [0.2, 0.1, 0.05, 0.025, 0.01]
for a in alphas:

Dn_crit = dist.ppf(1-a)/numpy.sqrt(N)
print "Critical value of D at alpha=%.3f(two sided): %g"%(a, Dn_crit)

19.5. Goodness of fit 329

Kapteyn Package Documentation, Release 2.2

In the next script we demonstrate that the Kolmogorov-Smirnov test is useful if we have reasonable fits, but bad
values of chi-squared due to improperly scaled errors on the data points. The χ2 test will immediately reject the
hypothesis that data and model are consistent. The Kolmogorov-Smirnov test depends on the difference between
the cumulative distributions and does not depend on the scale of these errors. The empirical and model cdf’s show
where the fit deviates most from the model. A plot with these cdf’s can be a starting point to reconsider a model
if the deviations are too large.

Example: kmpfit_goodnessoffit2.py - Kolmogorov-Smirnov goodness of fit test

19.6 Profile fitting

19.6.1 Gaussian profiles

There are many examples where an astronomer needs to know the characteristics of a Gaussian profile. Fitting
best parameters for a model that represents a Gauss function, is a way to obtain a measure for the peak value, the
position of the peak and the width of the peak. It does not reveal any skewness or kurtosis of the profile, but often
these are not important. We write the Gauss function as:

f(x) = Ae−
1
2 (x−µσ)2

+ z0 (19.46)

Here A represents the peak of the Gauss, µ the mean, i.e. the position of the peak and σ the width of the peak.
We added z0 to add a background to the profile characteristics. In the early days of fitting software, there were no
implementations that did not need partial derivatives to find the best fit parameters.

19.6.2 Partial derivatives for a Gaussian

In the documentation of the IDL version of mpfit.pro, the author states that it is often sufficient and even faster
to allow the fit routine to calculate the derivatives numerically. In contrast with this we usually gain an increase
in speed of about 20% if we use explicit partial derivatives, at least for fitting Gaussian profiles. The real danger
in using explicit partial derivatives seems to be that one easily makes small mistakes in deriving the necessary
equations. This is not always obvious in test-runs, but kmpfit is capable of providing diagnostics. For the Gauss
function in (19.46) we derived the following partial derivatives:

∂f(x)
∂A

= e−
1
2 (x−µσ)2

∂f(x)
∂µ

= Ae−
1
2 (x−µσ)2

.
(x− µ)
σ2

∂f(x)
∂σ

= Ae−
1
2 (x−µσ)2

.
(x− µ)2

σ3

∂f(x)
∂z0

= 1

(19.47)

If we want to use explicit partial derivatives in kmpfit we need the external residuals to return the derivative of
the model f(x) at x, with respect to any of the parameters. If we denote a parameter from the set of parameters
P = (A,µ, σ, z0) with index i, then one calculates the derivative with a function FGRAD(P,x,i). In fact, kmpfit
needs the derivative of the residuals and if we defined the residuals as residuals = (data-model)/err,
the residuals function should return:

∂f(x)
∂P (i)

=
−FGRAD(P, x, i)

err
(19.48)

where err is the array with weights.

Below, we show a code example of how one can implement explicit partial derivatives. We created a function,
called my_derivs which calculates the derivatives for each parameter. We tried to make the code efficient but
you should be able to recognize the equations from (19.47). The return value is equivalent with (19.48). The
function has a fixed signature because it is called by the fitter which expects that the arguments are in the right
order. This order is:

330 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

6 4 2 0 2 4 6 8 10
x

2

0

2

4

6

8

10

12

y

Fit with χ2 =130.93 and χ 2
ν =5.03578 (ν=26)

data

Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
D

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it
y

d
en

si
ty

Accept Reject

Probability density function for N=30

Two sided KS-test (kstwobign), N=30

D max (fit) = 0.166667

D max threshold = 0.247954

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
D

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it
y

Cumulative distribution function for N=30

Cdf of kstwobign(), N=30

D max (fit) = 0.166667

D max threshold = 0.247954

Threshold for alpha = 0.05 (=1-0.95)

19.6. Profile fitting 331

Kapteyn Package Documentation, Release 2.2

2 0 2 4 6 8 10 12
Y values of sample

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Empirical and model CDF's
Upper values step function

Lower values step function

data lower step

data upper step

Hypothesized distribution F0 (x)

F0 (x) where x are the Y values of sample

Dmax=0.166667 (Dcrit=0.247954)

• p -List with model parameters, generated by the fit routine

• data -A reference to the data argument in the constructor of the Fitter object.

• dflags -List with booleans. One boolean for each model parameter. If the value is True then an explicit
partial derivative is required. The list is generated by the fit routine.

There is no need to process the dflags list in your code. There is no problem if you return all the derivatives
even when they are not necessary.

Note: A function which returns derivatives should create its own work array to store the calculated values. The
shape of the array should be (parameter_array.size, x_data_array.size).

The function my_derivs is then:

1 def my_derivs(p, data, dflags):
2 #---
3 # This function is used by the fit routine to find the values for
4 # the explicit partial derivatives. Argument ’dflags’ is an array
5 # with booleans. If an element is True then an explicit partial
6 # derivative is required.
7 #---
8 x, y, err = data
9 A, mu, sigma, zerolev = p

10 pderiv = numpy.zeros([len(p), len(x)]) # You need to create the required array
11 sig2 = sigma*sigma
12 sig3 = sig2 * sigma
13 xmu = x-mu
14 xmu2 = xmu**2
15 expo = numpy.exp(-xmu2/(2.0*sig2))
16 fx = A * expo
17 for i, flag in enumerate(dflags):

332 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

18 if flag:
19 if i == 0:
20 pderiv[0] = expo
21 elif i == 1:
22 pderiv[1] = fx * xmu/(sig2)
23 elif i == 2:
24 pderiv[2] = fx * xmu2/(sig3)
25 elif i == 3:
26 pderiv[3] = 1.0
27 return pderiv/-err

Note that all the values per parameter are stored in a row. A minus sign is added to to the error array to fulfill the
requirement in equation (19.48). The constructor of the Fitter object is as follows (the function my_residuals
is not given here):

fitobj = kmpfit.Fitter(residuals=my_residuals, deriv=my_derivs, data=(x, y, err))

The next code and plot show an example of finding and plotting best fit parameters given a Gauss function as
model. If you want to compare the speed between a fit with explicit partial derivatives and a fit using numerical
derivatives, add a second Fitter object by omitting the deriv argument. In our experience, the code with the
explicit partial derivatives is about 20% faster because it needs considerably fewer function calls to the residual
function.

Example: kmpfit_example_partialdervs.py - Finding best fit parameters for a Gaussian model

1 #!/usr/bin/env python
2 #--
3 # Script compares efficiency of automatic derivatives vs
4 # analytical in mpfit.py
5 # Vog, 31 okt 2011
6 #--
7

8 import numpy
9 from matplotlib.pyplot import figure, show, rc

10 from kapteyn import kmpfit
11

12 def my_model(p, x):
13 #---
14 # This describes the model and its parameters for which we want to find
15 # the best fit. ’p’ is a sequence of parameters (array/list/tuple).
16 #---
17 A, mu, sigma, zerolev = p
18 return(A * numpy.exp(-(x-mu)*(x-mu)/(2.0*sigma*sigma)) + zerolev)
19

20

21 def my_residuals(p, data):
22 #---
23 # This function is the function called by the fit routine in kmpfit
24 # It returns a weighted residual. De fit routine calculates the
25 # square of these values.
26 #---
27 x, y, err = data
28 return (y-my_model(p,x)) / err
29

30

31 def my_derivs(p, data, dflags):
32 #---
33 # This function is used by the fit routine to find the values for
34 # the explicit partial derivatives. Argument ’dflags’ is a list
35 # with booleans. If an element is True then an explicit partial
36 # derivative is required.
37 #---
38 x, y, err = data

19.6. Profile fitting 333

Kapteyn Package Documentation, Release 2.2

39 A, mu, sigma, zerolev = p
40 pderiv = numpy.zeros([len(p), len(x)]) # You need to create the required array
41 sig2 = sigma*sigma
42 sig3 = sig2 * sigma
43 xmu = x-mu
44 xmu2 = xmu**2
45 expo = numpy.exp(-xmu2/(2.0*sig2))
46 fx = A * expo
47 for i, flag in enumerate(dflags):
48 if flag:
49 if i == 0:
50 pderiv[0] = expo
51 elif i == 1:
52 pderiv[1] = fx * xmu/(sig2)
53 elif i == 2:
54 pderiv[2] = fx * xmu2/(sig3)
55 elif i == 3:
56 pderiv[3] = 1.0
57 pderiv /= -err
58 return pderiv
59

60

61 # Artificial data
62 N = 100
63 x = numpy.linspace(-5, 10, N)
64 truepars = [10.0, 5.0, 1.0, 0.0]
65 p0 = [9, 4.5, 0.8, 0]
66 y = my_model(truepars, x) + 0.3*numpy.random.randn(len(x))
67 err = 0.3*numpy.random.randn(N)
68

69 # The fit
70 fitobj = kmpfit.Fitter(residuals=my_residuals, deriv=my_derivs, data=(x, y, err))
71 try:
72 fitobj.fit(params0=p0)
73 except Exception, mes:
74 print "Something wrong with fit: ", mes
75 raise SystemExit
76

77 print "\n\n======== Results kmpfit with explicit partial derivatives ========="
78 print "Params: ", fitobj.params
79 print "Errors from covariance matrix : ", fitobj.xerror
80 print "Uncertainties assuming reduced Chi^2=1: ", fitobj.stderr
81 print "Chi^2 min: ", fitobj.chi2_min
82 print "Reduced Chi^2: ", fitobj.rchi2_min
83 print "Iterations: ", fitobj.niter
84 print "Function ev: ", fitobj.nfev
85 print "Status: ", fitobj.status
86 print "Status Message:", fitobj.message
87 print "Covariance:\n", fitobj.covar
88

89 # Plot the result
90 rc(’font’, size=9)
91 rc(’legend’, fontsize=8)
92 fig = figure()
93 frame = fig.add_subplot(1,1,1)
94 frame.errorbar(x, y, yerr=err, fmt=’go’, alpha=0.7, label="Noisy data")
95 frame.plot(x, my_model(truepars,x), ’r’, label="True data")
96 frame.plot(x, my_model(fitobj.params,x), ’b’, lw=2, label="Fit with kmpfit")
97 frame.set_xlabel("X")
98 frame.set_ylabel("Measurement data")
99 frame.set_title("Least-squares fit to noisy Gaussian data using KMPFIT",

100 fontsize=10)
101 leg = frame.legend(loc=2)

334 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

102 show()

6 4 2 0 2 4 6 8 10
X

2

0

2

4

6

8

10

12
M

e
a
su

re
m

e
n
t

d
a
ta

Least-squares fit to noisy Gaussian data using KMPFIT

Noisy data

True data

Fit with kmpfit

19.6.3 Automatic initial estimates for profiles with multi component Gaussians

For single profiles we can obtain reasonable initial estimates by inspection of the profile. Processing many profiles,
e.g. in a data cube with two spatial axes and one spectral axis, needs another approach. If your profile has more
than 1 Gaussian component, the problem becomes even more complicated. So what we need is a method that
automates the search for reasonable initial estimates.

Gauest

Function profiles.gauest() is a function which can be used to get basic characteristics of a Gaussian
profile. The number of Gaussian components in that profile can be greater than 1. These characteristics are
amplitude, position of the maximum and dispersion. They are very useful as initial estimates for a least squares
fit of this type of multi-component Gausian profiles. For gauest(), the profile is represented by intensities yi,
expressed as a function of the independent variable x at equal intervals ∆x = h [Sch]. A second order polynomial
is fitted at each xi by using moments analysis (this differs from the method described in [Sch]), using q points
distributed symmetrically around xi, so that the total number of points in the fit is 2q + 1. The coefficient of the
second-order term is an approximation of the second derivative of the profile. For a Gaussian model, the position
of the peak and the dispersion are calculated from the main minima of the second derivative. The amplitude is
derived from the profile intensities. The function has parameters to set thresholds in minimum amplitude and
dispersion to discriminate against spurious components.

Thresholds

Function gauest() uses an automatic window method to find the signal region of a profile. If the maximum of
the entire profile is below the (user) given cutoff in amplitude (cutamp), then no signal is found and the process of

19.6. Profile fitting 335

Kapteyn Package Documentation, Release 2.2

finding Gaussian components is aborted. Otherwise, the position of the maximum is selected as the center of the
first component and from this point on, a region is increased until the difference between the total flux and the flux
in the region is smaller than or equal to the value of parameter rms, the noise in the profile. Then the method in
[Sch] is used to find the characteristics of the Gaussian. This method is based on fitting (using moments analysis)
of a second-order polynomial. The distance between the maxima of this polynomial is a measure for the width
of the peak. If this width is greater than the threshold value given by the user in parameter cutsig, then there is a
second check using the amplitude threshold (cutamp) given by the user. The reason for this is that the amplitude
is also derived from moment analysis and can give a result that is greater than the maximum value in the profile.
If both tests are passed then the Gaussian is stored as a valid component. This component is subtracted from the
profile and the procedure is repeated until ncomp components are found or a signal region could not be found
anymore.

Smoothing factor

The parameter q is a bit tricky. If q is big (e.g. 20) then the routine is less effective as with for example 5. But
if q is too small, you don’t always find the number of required components. Therefore it is important to find an
optimum. In the script below we apply an iteration, starting with a reasonable value of q and increasing it until we
found the required number of components or until q becomes too big. Parameter q is also called the smoothing
parameter. If you take more points in the moments analysis of the polynomial, the effect will be that you apply
smoothing of the data which gives better results if you have noisy data.

Note: Function gauest() requires parameters of which the optimal values depend on the profile data. You
need to estimate the noise (rms) in the profile, a critical amplitude (cutamp) and dispersion (cutdisp). Also the
smoothing factor q has an optimal value that depends on the profile data. Usually it is not difficult to obtain
reasonable values for all these parameters.

Example: kmpfit_gauest_multicomp.py - Function gauest() finds initial estimates in profiles with
multi component Gaussians

6 4 2 0 2 4 6 8 10
X

2

0

2

4

6

8

10

12

M
e
a
su

re
m

e
n
t

d
a
ta

Least-squares fit to noisy multi-component Gaussian data

Noisy data

True data

Fit with kmpfit

336 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

Messy samples

The original C version of function gauest() works with the assumption that your x values run from 0 .. N
where N is the number of data points. Many profiles have different x values. Sometimes they are not sorted
and sometimes they are not equally spaced. The current function gauest() inspects the data in argument x. If
necessary, it sorts the data and forces it to be equally spaced by linear interpolation. This could be dangerous if
your samples are distributed in a messy way, but usually gauest() will be able to find reasonable estimates.
The procedure which modifies the data to make it usable for gauest() is based on the code in the next example.

Example: kmpfit_gauest_prepare.py - Demonstrate how profile data needs to be prepared for
gauest()

19.6.4 Fitting Voigt profiles

The line-shapes of spectroscopic transitions depend on the broadening mechanisms of the initial and final states,
and include natural broadening, collisional broadening, power broadening, and Doppler broadening. Natural,
collisional, and power broadening are homogeneous mechanisms and produce Lorentzian line-shapes. Doppler
broadening is a form of inhomogeneous broadening and has a Gaussian line-shape. Combinations of Lorentzian
and Gaussian line-shapes can be approximated by a Voigt profile. In fact, the Voigt profile is a convolution of
Lorentzian and Doppler line broadening mechanisms:

φLorentz(ν) =
1
π

αL
(ν − ν0)2 + α2

L

(19.49)

φDoppler(ν) =
1
αD

√
ln 2
π
e
− ln 2

(ν−ν0)2

α2
D (19.50)

Both functions are normalized, αD and αL are half widths at half maximum [Scr]. Convolution is given by the
relation:

f(ν) ? g(ν) =

∞∫
−∞

f(ν − t)g(t)dt (19.51)

Define the ratio of Lorentz to Doppler widths as:

y ≡ αL
αD

√
ln 2 (19.52)

and the frequency scale (in units of the Doppler Line-shape half-width αD):

x ≡ ν − ν0
αD

√
ln 2 (19.53)

The convolution of both functions is:

φν(ν) = φL(ν) ? φD(ν) =
1
αD

√
ln 2
π

y

π

∞∫
−∞

e−t
2

(x− t)2 + y2
dt (19.54)

Part of the expression of the Voigt line-shape is the Voigt function K(x, y). The definition of this function is:

K(x, y) =
y

π

∞∫
−∞

e−t
2

y2 + (x− t)2
dt (19.55)

Then:

φν(ν) =
1
αD

√
ln 2
π

K(x, y) (19.56)

19.6. Profile fitting 337

Kapteyn Package Documentation, Release 2.2

Using the expressions for x and y from (19.53) and (19.52), this can be rewritten in terms of the physical parameters
as [Vog]:

φν(ν) =
αL
α2
D

ln 2
π

3
2

∞∫
−∞

e−t
2(

ν−ν0
αD

√
ln 2− t

)2

+
(
αL
αD

√
ln 2
)2 dt (19.57)

Note that αL and αD are both half-width at half maximum and not FWHM’s. In [Vog], it is proved that:

∞∫
−∞

φν(ν)dν = 1 (19.58)

so the Voigt line-shape (eq. (19.54)) is also normalized. When we want to find the best-fit parameters of the Voigt
line-shape model, we need to be able to process profiles with arbitrary area and we need a scaling factor A. The
expression for the Voigt line-shape becomes:

φν(ν) = A
1
αD

√
ln 2
π

K(x, y) (19.59)

One can prove [Vog] with the substitution of:

z = x+ iy (19.60)

that the Voigt function can be expressed as the real part of a special function:

K(x, y) = <{ω(z)} (19.61)

ω(z) is called the complex probability function, also known as the Faddeeva function. Scipy has implemented this
function under the name scipy.special.wofz().

The amplitude is found at ν = ν0. Then the relation between amplitude and area is amp = φ(ν0):

amp = φ(ν0) =
A

αD

√
ln 2
π
K(0, y) (19.62)

In [Scr] we read that the half width at half maximum can be found with:

hwhm =
1
2

(
c1 αL +

√
c2 α2

L + 4α2
D

)
(19.63)

with c1 = 1.0692 and c2 = 0.86639.

The Voigt function can be implemented using SciPy’s function wofz(). In the next code fragments, it should be
easy to find correspondence between code and boxed formulas:

1 def voigt(x, y):
2 # The Voigt function is also the real part of
3 # w(z) = exp(-z^2) erfc(iz), the complex probability function,
4 # which is also known as the Faddeeva function. Scipy has
5 # implemented this function under the name wofz()
6 z = x + 1j*y
7 I = wofz(z).real
8 return I
9

10

11 def Voigt(nu, alphaD, alphaL, nu_0, A, a=0, b=0):
12 # The Voigt line shape in terms of its physical parameters
13 f = numpy.sqrt(ln2)
14 x = (nu-nu_0)/alphaD * f

338 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

15 y = alphaL/alphaD * f
16 backg = a + b*nu
17 V = A*f/(alphaD*numpy.sqrt(numpy.pi)) * voigt(x, y) + backg
18 return V
19

20 # Half width and amplitude
21 c1 = 1.0692
22 c2 = 0.86639
23 hwhm = 0.5*(c1*alphaL+numpy.sqrt(c2*alphaL**2+4*alphaD**2))
24 f = numpy.sqrt(ln2)
25 y = alphaL/alphaD * f
26 amp = A/alphaD*numpy.sqrt(ln2/numpy.pi)*voigt(0,y)

with:

• nu: x-values, usually frequencies.

• alphaD: Half width at half maximum for Doppler profile

• alphaL: Half width at half maximum for Lorentz profile

• nu_0: Central frequency

• A: Area under profile

• a, b: Background as in a + b*x

In the example below, we compare a Gaussian model with a Voigt model. We had some knowledge about the
properties of the profile data so finding appropriate initial estimates is not difficult. If you need to automate
the process of finding initial estimates, you can use function gauest() (Gauest) from the section about initial
estimates. However, note that you need to invert the data because gauest() can only process peaks (positive
amplitudes).

Example: kmpfit_voigt.py - The Voigt line shape

854.0 854.5 855.0 855.5 856.0 856.5 857.0
ν

3.5

4.0

4.5

5.0

5.5

6.0

6.5

φ
(ν

)

Profile data with Voigt- vs. Gaussian model

data

Model with Voigt function

Model with Gaussian function

fwhm

Background

19.6. Profile fitting 339

Kapteyn Package Documentation, Release 2.2

19.6.5 Fitting Gauss-Hermite series

If your profile deviates from a Gaussian shape (e.g. asymmetric profiles) then you can use the so called {it Gauss-
Hermite} series. The series are used to derive skewness and kurtosis of your data distribution. The lowest order
term of the series is a Gaussian. The higher order terms are orthogonal to this Gaussian. The higher order that we
use in our fits are the parameters h3 and h4 measuring asymmetric and symmetric deviations of a Gaussian. The
Gauss-Hermite function and its applications are described in [Mar], but we use the (equivalent) formulas from
[Vog]

φ(x) = Ae−
1
2y

2
{

1 +
h3√

6
(2
√

2y3 − 3
√

2y) +
h4√
24

(4y4 − 12y2 + 3)
}

+ Z (19.64)

with: y ≡ x−µg
σg

.

Simplify this equation further:

φ(x) = AE
{

1 + h3(c1y + c3y
3) + h4(c0 + c2y

2 + c4y
4)
}

(19.65)

or:

φ(x) = AEQ (19.66)

with E ≡ e− 1
2y

2
and Q =

{
1 + h3(c1y + c3y

3) + h4(c0 + c2y
2 + c4y

4)
}

and its coefficients:

c0 =
1
4

√
6

c1 = −
√

3

c2 = −
√

6

c3 =
2
3

√
3

c4 =
1
3

√
6

(19.67)

To find the real maximum (which is not the maximum of the Gaussian part of the expression), solve:

∂φ(x)
∂x

= −aE 1
c

[
h3(−c1 − 3c3y2) + h4(−2c2y − 4c4y3) + y Q

]
= 0 (19.68)

We used SciPy’s function fsolve() in the neighbourhood of 0 to find the solution of this expression.

Moments of the GH series [Vog]

The integrated line strength γ:

γgh = Aσg
√

2π(1 +
1
4

√
6h4) = γg (1 +

1
4

√
6h4) (19.69)

The mean abscissa µgh:

µgh ≈ µg +
√

3h3 σg (19.70)

The dispersion σgh:

σgh ≈ σg (1 +
√

6h4) (19.71)

The Fisher coefficient of Skewness ξ1:

A set of observations that is not symmetrically distributed is said to be skewed. If the distribution has a longer tail
less than the maximum, the function has negative skewness. Otherwise, it has positive skewness.

ξ1 ≈ 4
√

3h3 (19.72)

340 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

This is what we could have expected because h3 is the parameter that measures asymmetric deviations.

The Fisher coefficient of Kurtosis ξ2:

This parameter measures both the peakedness of the distribution and the heaviness of its tail:

ξ2 ≈ 3 + 8
√

6h4 (19.73)

Or use the definition of excess kurtosis ξf :

ξf = ξ2 − 3 ≈ 8
√

6h4 (19.74)

A negative value means that distribution is flatter then a pure Gaussian. and if it is positive then the distribution is
sharper then a pure Gaussian. A Gaussian distribution has zero excess kurtosis.

It is obvious that for h3 = 0 and h4 = 0, all these parameters are the same as their Gaussian counterparts. A
line-shape model based on the Gauss-Hermite series will resemble a pure Gaussian. Therefore it is save to set the
initial guesses for the h3 and h4 parameters in the least-squares fit to zero because. If a fit is successful, the profile
parameters γgh, µgh and σgh, skewness and kurtosis are calculated from the best fit parameters A, µg , σg , h3 and
h4 using the formulas above. For the errors in these parameters we derived:

∆γgh =
1
γgh

√√√√(∆A
A

)2

+
(

∆σg
σg

)2

+

(
1

2
3

√
6 + h4

)2 (
∆h4

h4

)2

∆µgh =
√

(∆µg)
2 + 3h2

3(∆σg)
2 + 3σ2

g(∆h3)2

∆σgh =
√

(1 +
√

6h4)
2

(∆σg)
2 + 6σ2

g(∆h4)2

∆ξ1 = 4
√

3 ∆h3

∆ξ2 = 8
√

6 ∆h4

(19.75)

These formulas are used in the next example. It is a script that finds best-fit parameters of a Gaussian, Voigt and
Gauss-Hermite model. Only the last model can quantify the asymmetry of the data. The data is derived from the
GH-series and some noise is added. The Voigt line-shape has a problem with asymmetric data. It tends to find
negative values for one of the half widths (αD or αL). To avoid this we use the limits option in kmpfit‘s parinfo
dictionary as follows:

>>> fitter.parinfo = [{’limits’:(0,None)}, {’limits’:(0,None)}, {}, {}, {}]

Example: kmpfit_gausshermite.py - The Gauss-Hermite series compared to Voigt and Gauss

19.7 Fitting data when both variables have uncertainties

Sometimes your data contains errors in both the response (dependent) variable y (i.e. we have values for σy) and
in the explanatory (independent) variable x (i.e. we have values for σx). In the next sections we describe a method
to use kmpfit for this category of least squares fit problems.

19.7.1 Orthogonal Distance Regression (ODR)

Assume we have a model function f(x) and on that curve we have a data point (x̂, ŷ) = (x̂, f(x̂)) which has the
shortest distance to a data point (xi, yi). The distance between those points is:

Di(x̂) =
√

(xi − x̂)2 + (yi − f(x̂))2 (19.76)

or more general with weights in x̂, ŷ

Di(x̂) =
√
wxi(xi − x̂)2 + wyi(yi − f(x̂))2 (19.77)

19.7. Fitting data when both variables have uncertainties 341

Kapteyn Package Documentation, Release 2.2

853 854 855 856 857 858 859
ν

4.5

5.0

5.5

6.0

6.5

7.0

7.5
φ
(ν

)

Profile data with Voigt- vs. Gaussian model
GH: γgh=-3.0 x0gh

=855.7 σgh = 0.56 ξ1 =1.23 ξf=0.17

data

Model with Voigt function

Model with Gaussian function

Model with Gauss-Hermite function

fwhm

Background Voigt

Background G

Background G-H

The problem with this distance function is that it is not usable as an Objective Function because we don’t have
the model values for x̂. But there is a condition that can be used to express x̂ in known variables xi and yi Orear
[Ore] showed that for any model f(x) for which

f(x̂) = f(xi) + (x̂− xi)f ′(xi) (19.78)

is a good approximation, we can find an expression for a usable objective function. Di(x̂) has a minimum for
∂D
∂x̂ = 0. Insert (19.78) in (19.77) and take the derivative to find the condition for the minimum:

∂D

∂x̂
=

∂

∂x̂

√
wxi(xi − x̂)2 + wyi(yi − [f(xi) + (x̂− xi)f ′(xi)])2 = 0 (19.79)

Then one derives:

−2wx(xi − x̂)− 2wy (yi − [f(xi)− (xi − x̂)f ′(xi)]) f ′(xi) = 0 (19.80)

so that:

(xi − x̂) =
−wy

(
yi − f(xi)

)
f ′(xi)

wx + wyf ′
2(xi)

(19.81)

If you substitute this in (19.77), then (after a lot of re-arranging) one finds for the objective function:

D2
i (x̂) ≈ wxiwyi

wxi + wyif ′
2(xi)

(yi − f(xi))
2

(19.82)

If we use statistical weighting with weights wxi = 1/σxi2 and wyi = 1/σyi2, we can write this as:

χ2 =
N−1∑
i=0

D2
i =

(
yi − f(xi)

)2
σ2
yi + σ2

xif
′2(xi)

(19.83)

342 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

19.7.2 Effective variance

The method in the previous section can also be explained in another way: Clutton [Clu] shows that for a model
function f, the effect of a small error δxi in xi is to change the measured value yi by an amount f ′(xi)δxi and that
as a result, the effective variance of a data point i is:

var(i) = var(yi) + var(f ′(xi)) = σ2
yi + f ′

2(xi)σ2
xi

(19.84)

19.7.3 Best parameters for a straight line

Equation (19.83) can be used to create an objective function. We show this for a model which represents a straight
line f(x) = a+bx. For a straight line the Taylor approximation (19.78) is exact. This can be seen as follows: With
f ′(x) = b. The relation f(x) = f(xi)+(x−xi)f ′(xi) is equal to f(x) = f(xi)+(x−xi)b = a+bxi+bx−bxi =
a+ bx.

The objective function, chi-square, that needs to be minimized for a straight line is then:

χ2 =
N−1∑
i=0

D2
i =

N−1∑
i=0

(yi − a− bxi)2

σ2
yi + σ2

xib
2

(19.85)

This formula seems familiar. It resembles an ordinary least squares objective function but with ‘corrected’ weights
in Y. A suitable residuals function for kmpfit is the square root of this objective function:

def residuals(p, data):
a, b = p
x, y, ex, ey = data
w = ey*ey + b*b*ex*ex
wi = numpy.sqrt(numpy.where(w==0.0, 0.0, 1.0/(w)))
d = wi*(y-model(p,x))
return d

19.7.4 Pearson’s data

Another approach to find the best fit parameters for orthogonal fits of straight lines starts with the observation that
best (unweighted) fitting straight lines for given data points go through the centroid of the system. This applies to
regression of y on x, regression of x on y and also for the result of an orthogonal fit.

Note: Unweighted best fitting straight lines for given data points go through the centroid of the system.

If we express our straight line as y = b+ tan(θ)x and substitute the coordinates of the centroid (x̄, ȳ), we get the
expression for a straight line:

tan(θ)x− y + ȳ − tan(θ)x̄ = 0 (19.86)

For a line ax+ by + c = 0 we know that the distance of a data point (xi, yi) to this line is given by: (axi + byi +
c)/
√

(a2 + b2). If we use this for (19.86) then we derive an expression for the distance D:

Di = [tan(θ)xi − yi + ȳ − tan(θ)x̄] cos(θ) (19.87)

For an objective function we need to minimize:

N−1∑
i=0

D2
i =

N−1∑
i=0

[tan(θ)xi − yi + ȳ − tan(θ)x̄]2 cos(θ)2 (19.88)

To minimize this we set the first partial derivative with respect to θ to 0 and find the condition:

tan(2θ) =

N−1∑
i=0

(yi − x̄)(yi − x̄)

N−1∑
i=0

(yi − ȳ)2 −
N−1∑
i=0

(xi − x̄)2
(19.89)

19.7. Fitting data when both variables have uncertainties 343

Kapteyn Package Documentation, Release 2.2

Fitting problems like the ones we just described are not new. In 1901, Karl Pearson published an article [Pea]
in which he discussed a problem “where the Independent Variable is subject to as much deviation or error as the
Dependent Variable. He derived the same best-fit angle (19.89) in a different way (using correlation ellipsoids).
Pearson writes it as:

tan(2θ) =
2rxyσxσy
σ2
x − σ2

y
(19.90)

where rxy is called the Pearson product-moment correlation coefficient. Using the same variables he writes for
the slope b1 of a regression of y on x and the slope b2 for a regression of x on y:

b1 =
rxyσy
σx

, b2 =
rxyσx
σy

(19.91)

with:

rxy =

N−1∑
i=0

(xi − x̄)(yi − ȳ)√
N−1∑
i=0

(xi − x̄)2
√
N−1∑
i=0

(yi − ȳ)2
(19.92)

With (19.90) and (19.91) we get the well-known relation between the slopes of the two regression lines and the
correlation coefficient:

r2xy = b1 ∗ b2 (19.93)

and (19.90) can be written as:

tan(2θ) =
2b1b2
b2 − b1

(19.94)

On page 571 in this article he presented a table with data points. This table has been used many times in the
literature to compare different methods.

>>> x = numpy.array([0.0, 0.9, 1.8, 2.6, 3.3, 4.4, 5.2, 6.1, 6.5, 7.4])
>>> y = numpy.array([5.9, 5.4, 4.4, 4.6, 3.5, 3.7, 2.8, 2.8, 2.4, 1.5])

So let’s prove it works with a short program. The script in the next example calculates Pearson’s best fit slope
using the analytical formulas from this section. Then it shows how one can use kmpfit for a regression of y on x
and for a regression of x on y. In the latter case, we swap the data arrays x and y in the initialization of kmpfit.
Note that for a plot we need to transform its offset and slope in the YX plane to an offset and slope in the XY
plane. If the values are (a, b) in the YX plane, then in the XY plane, the offset and slope will be (−a/b, 1/b).

1 #!/usr/bin/env python
2

3 import numpy
4 from kapteyn import kmpfit
5

6 def model(p, x):
7 # Model: y = a + numpy.tan(theta)*x
8 a, theta = p
9 return a + numpy.tan(theta)*x

10

11 def residuals(p, data):
12 # Residuals function for data with errors in y only
13 a, b = p
14 x, y = data
15 d = (y-model(p,x))
16 return d
17

18 # Pearsons data
19 x = numpy.array([0.0, 0.9, 1.8, 2.6, 3.3, 4.4, 5.2, 6.1, 6.5, 7.4])
20 y = numpy.array([5.9, 5.4, 4.4, 4.6, 3.5, 3.7, 2.8, 2.8, 2.4, 1.5])

344 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

21 N = len(x)
22

23 fitobj2 = kmpfit.Fitter(residuals=residuals, data=(x, y))
24 fitobj2.fit(params0=[5,0])
25 a1, b1 = fitobj2.params[0], numpy.tan(fitobj2.params[1])
26 fitobj3 = kmpfit.Fitter(residuals=residuals, data=(y, x))
27 fitobj3.fit(params0=(0,5))
28 a2, b2 = fitobj3.params[0], numpy.tan(fitobj3.params[1])
29 tan2theta = 2*b1*b2/(b2-b1)
30 twotheta = numpy.arctan(tan2theta)
31 best_slope = numpy.tan(0.5*twotheta)
32 best_offs = y.mean() - best_slope*x.mean()
33 print "Best fit parameters: a=%.10f b=%.10f"%(best_offs,best_slope)

The most remarkable fact is that Pearson applied the ‘effective variance’ method, formulated at a later date, to an
unweighted orthogonal fit, as can be observed in the second plot in the figure. Pearson’s best-fit parameters are
the same as the best-fit parameters we find with the effective variance method (look in the output below). In an
extended version of the program above, we added the effective variance method and added the offset and slope
for the bisector of the two regression lines (y on x and x on y). The results are shown in the next figure. Note that
Pearson’s best-fit line is not the same as the bisector which has no relation to orthogonal fitting procedures.

Note: Pearson’s method is an example of an orthogonal fit procedure. It cannot handle weights nor does it give
you estimates of the errors on the best-fit parameters. We discussed the method because it is historically important
and we wanted to prove that kmpfit can be used for its implementation.

Note: In the example we find best-fit values for the angle θ from which we derive the slope b = tan(θ). The
advantage of this method is that it also finds fits for data points that represent vertical lines.

Example: kmpfit_Pearsonsdata.py - Pearsons data and method (1901)

2 0 2 4 6 8 10
1

2

3

4

5

6

7

Y

Pearson′ s data and model : y=a+b ∗x
kmpfit effective variance

kmpfit regression Y on X

kmpfit regression X on Y

Bisector

Pearson's values

0.9 0.8 0.7 0.6 0.5 0.4
X

6.00

6.05

6.10

6.15

6.20

6.25

6.30

6.35

Y

kmpfit effective variance

kmpfit regression Y on X

kmpfit regression X on Y

Bisector

Pearson's values

19.7. Fitting data when both variables have uncertainties 345

Kapteyn Package Documentation, Release 2.2

The output of this program is:

Analytical solution
===================
Best fit parameters: a=5.7840437745 b=-0.5455611975
Pearson’s Corr. coef: -0.976475222675
Pearson’s best tan2theta, theta, slope: -1.55350214417 -0.49942891481 -0.545561197521
b1 (Y on X), slope: -0.539577274984 -0.539577274984
b2 (X on Y), slope -1.76713124274 -0.565888925403

======== Results kmpfit: effective variance =========
Params: 5.78404377469 -0.545561197496
Covariance errors: [0.68291482 0.11704321]
Standard errors [0.18989649 0.03254593]
Chi^2 min: 0.618572759437
Reduced Chi^2: 0.0773215949296

======== Results kmpfit Y on X =========
Params: [5.7611851899974615, -0.4948059176648682]
Covariance errors: [0.59895647 0.10313386]
Standard errors [0.1894852 0.03262731]
Chi^2 min: 0.800663522236
Reduced Chi^2: 0.100082940279

======== Results kmpfit X on Y =========
Params: (10.358385598025167, 5.2273490890768901)
Covariance errors: [0.94604747 0.05845157]
Standard errors [0.54162728 0.03346446]
Chi^2 min: 2.62219628339
Reduced Chi^2: 0.327774535424

Least squares solution
======================
a1, b1 (Y on X) 5.76118519 -0.539577274869
a2, b2 (X on Y) 5.86169569507 -0.565888925412
Best fit tan2theta, Theta, slope: -1.5535021437 -0.499428914742 -0.545561197432
Best fit parameters: a=5.7840437742 b=-0.5455611974
Bisector through centroid a, b: 5.81116055121 -0.552659830161

19.7.5 Comparisons of weighted fits methods

York [Yor] added weights to Pearsons data. This data set is a standard for comparisons between fit routines for
weighted fits. Note that the weights are given as wxi which is equivalent to 1/σ2

xi .

>>> x = numpy.array([0.0, 0.9, 1.8, 2.6, 3.3, 4.4, 5.2, 6.1, 6.5, 7.4])
>>> y = numpy.array([5.9, 5.4, 4.4, 4.6, 3.5, 3.7, 2.8, 2.8, 2.4, 1.5])
>>> wx = numpy.array([1000.0,1000,500,800,200,80,60,20,1.8,1.0])
>>> wy = numpy.array([1,1.8,4,8,20,20,70,70,100,500])

This standard set is the data we used in the next example. This program compares different methods. One of the
methods is the approach of Williamson [Wil] using an implementation described in [Ogr].

Example: kmpfit_Pearsonsdata_compare - Pearson’s data with York’s weights

Part of the output of this program is summarized in the next table.

Literature results:

Reference a b
Pearson unweighted 5.7857 -0.546
Williamson 5.47991022403 -0.48053340745
Reed 5.47991022723 -0.48053340810
Lybanon 5.47991025 -0.480533415

346 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

2 0 2 4 6 8 10
X

0

2

4

6

8
Y

Pearson's data with York's weights

kmpfit effective variance

kmpfit errors in y only

kmpfit unweighted

Pearson's values

York's values

Practical results:

Method a b
kmpfit unweighted 5.76118519259 -0.53957727555
kmpfit weights in Y only 6.10010929336 -0.61081295310
kmpfit effective variance 5.47991015994 -0.48053339595
ODR 5.47991037830 -0.48053343863
Williamson 5.47991022403 -0.48053340745

>From these results we conclude that kmpfit with the effective variance residuals function, is very well suited
to perform weighted orthogonal fits for a model that represents a straight line. If you run the program, you can
observe that also the uncertainties match.

To study the effects of weights and to compare residual functions based on a combination of (19.81) and (19.77)
and on the effective variance formula in (19.83) we made a small program which produces random noise for the
model data and random weights for the measured data in both x an y. It also compares the results of these methods
with SciPy’s ODR routine. If you run the program you will observe that the three methods agree very well.

Example: kmpfit_errorsinXandYPlot - Comparing methods using random weights

19.7.6 Effective variance method for various models

Model with an x and 1/x factor

f([a,b],x) = ax− b/x

We used data from an experiment described in Orear’s article [Ore] to test the effective variance method. Orear
starts with a model f([a, b], x) = ax − b/x. He tried to minimize the objective function by an iteration using
(19.80) with the derivative f ′([a, b], x) = a + b/x2 and calls this the exact solution. He also iterates using the
effective variance method as in (19.82) and finds small differences between these methods. This must be the result
of an insufficient convergence criterion or numerical instability because we don’t find a significant difference using

19.7. Fitting data when both variables have uncertainties 347

Kapteyn Package Documentation, Release 2.2

5 0 5 10 15 20
X

0

5

10

15

20

25

Y

Weights in both coordinates. Model: y=a+bx

ODR

kmpfit

kmpfit correct

Williamson

True

these methods in a program (see example below). The corresponding residual function for the minimum distance
expression is:

1 def residuals3(p, data):
2 # Minimum distance formula with expression for x_model
3 a, b = p
4 x, y, ex, ey = data
5 wx = numpy.where(ex==0.0, 0.0, 1.0/(ex*ex))
6 wy = numpy.where(ey==0.0, 0.0, 1.0/(ey*ey))
7 df = a + b/(x*x)
8 # Calculated the approximate values for the model
9 x0 = x + (wy*(y-model(p,x))*df)/(wx+wy*df*df)

10 y0 = model(p,x0)
11 D = numpy.sqrt(wx*(x-x0)**2+wy*(y-y0)**2)
12 return D

The residual function for the effective variance is:

def residuals(p, data):
Residuals function for data with errors in both coordinates
a, b = p
x, y, ex, ey = data
w = ey*ey + ex*ex*(a+b/x**2)**2
wi = numpy.sqrt(numpy.where(w==0.0, 0.0, 1.0/(w)))
d = wi*(y-model(p,x))
return d

The conclusion, after running the example, is that kmpfit in combination with the effective variance method finds
best-fit parameters that are better than the published best-fit parameters (because a smaller value for the minimum
chi-square is obtained). The example shows that for data and model like Orear’s, the effective variance, which
includes uncertainties both in x and y, produces a better fit than an Ordinary Least-Squares (OLS) fit where we
treat errors in x as being much smaller than the errors in y.

348 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

Example: kmpfit_Oreardata - The effective variance method with Orear’s data

21000 22000 23000 24000 25000 26000 27000
X

6

4

2

0

2

4

6

8

10
Y

Orear′s data and model : y=a ∗x−b/x

kmpfit errors in x and y

kmpfit errors in y only

Model parabola

f([a,b, c],x) = ax2 + bx + c

Applying the effective variance method for a parabola we use the objective function:

χ2 =
N−1∑
i=0

(yi − a− bxi)2

σ2
yi + σ2

xi(b+ 2cx)2
(19.95)

and we write the following residuals function for kmpfit:

def residuals(p, data):
Model: Y = a + b*x + c*x*x
a, b, c = p
x, y, ex, ey = data
w = ey*ey + (b+2*c*x)**2*ex*ex
wi = numpy.sqrt(numpy.where(w==0.0, 0.0, 1.0/(w)))
d = wi*(y-model(p,x))
return d

How good is our Taylor approximation here? Using f(x) ≈ f(xi) + (x − xi)(b + 2cxi) we find that f(x) can be
approximated by: f(x) = a+ bx+ cx2 − c(x− xi)2. So this approximation works if the difference between xi
and x remains small. For kmpfit this implies that also the initial parameter estimates must be of reasonable quality.
Using the code of residuals function above, we observed that this approach works adequately. It is interesting to
compare the results of kmpfit with the results of Scipy’s ODR routine. Often the results are comparable. That is, if
we start with model parameters (a, b, c) = (-6, 1, 0.5) and initial estimates beta0 = (1,1,1),
then kmpfit (with smaller tolerance than the default) obtains a smaller value for chi square in 2 of 3 trials. With
initial estimates beta0 = (1.8,-0.5,0.1) it performs worse with really wrong fits.

19.7. Fitting data when both variables have uncertainties 349

Kapteyn Package Documentation, Release 2.2

Note: kmpfit in combination with the effective variance method is more sensitive to reasonable initial estimates
than Scipy’s ODR.

Example: kmpfit_ODRparabola - The effective variance method for a parabola

6 4 2 0 2 4
X

8

6

4

2

0

2

Y

ODR and kmpfit with weighted fit. Model: y=a+bx+cx2

ODR

kmpfit effective variance

kmpfit error in Y only

True parameters

Model with a sine function

f([a,b, c],x) = a sin(bx + c)

If your model is not linear in its parameters, then the effective variance method can still be applied. If your model
is given for example by f(x) = a sin(bx+ c), which is not linear in parameter b, then f ′(x) = ab cos(bx+ c) and
the effective variance in relation (19.84) can be implemented as:

1 def model(p, x):
2 # Model: Y = a*sin(b*x+c)
3 a,b,c = p
4 return a * numpy.sin(b*x+c)
5

6 def residuals(p, data):
7 # Merit function for data with errors in both coordinates
8 a, b, c = p
9 x, y, ex, ey = data

10 w1 = ey*ey + (a*b*numpy.cos(b*x+c))**2*ex*ex
11 w = numpy.sqrt(numpy.where(w1==0.0, 0.0, 1.0/(w1)))
12 d = w*(y-model(p,x))
13 return d

In the next script we implemented the listed model and residuals function. The results are compared with SciPy’s
ODR routine. The same conclusion applies to these results as to the results of the parabola in the previous section.

350 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

Note: kmpfit with effective variance can also be used for models that are not linear in their parameters.

Example: kmpfit_ODRsinus.py - Errors in both variables

4 2 0 2 4 6 8
X

4

2

0

2

4

Y

ODR and kmpfit with weighted fit. Model: y=a sin(bx+c)

SciPy's ODR

kmpfit (errors in X & Y

kmpfit (errors in Y only)

Model with true parameters

19.8 Confidence- and prediction intervals

Experimenters often want to find the best-fit parameters p of their model to predict a value f(p,x) at given x. To get
the predicted value ŷ is trivial: ŷ = f(p, x), but to estimate the error in ŷ (σf) is not. Wolberg [Wol] starts with
an expression for ∆f :

∆f ∼=
∂f

∂p1
∆p1 +

∂f

∂p2
∆p2 + · · ·+ ∂f

∂pn
∆pn (19.96)

which is a Taylor expansion of the error in y neglecting higher order terms. If one repeats the experiment many
times, Wolberg finds an expression for the average error ∆̄f2 = σ2

f in terms of the elements of the covariance
matrix:

σ2
f =

j=n∑
j=0

k=n∑
k=0

∂f

∂pj

∂f

∂pk
Cjk (19.97)

which implies, as already seen in (19.96) that this error includes all variances and covariances in the covariance
matrix. Note that for unit weighting or relative weighting we need to rescale the covariance matrix elements with
χ2
ν , and get:

σ2
f = χ2

ν

j=n∑
j=0

k=n∑
k=0

∂f

∂pj

∂f

∂pk
Cjk (19.98)

19.8. Confidence- and prediction intervals 351

Kapteyn Package Documentation, Release 2.2

This confidence interval is interpreted as the region in which there is a probability of 68.3% to find the true value
of f. To find a confidence region for another probability (e.g. 95%), we need to scale the error using Student-t
statistics. If we use 100(1 − α) percent to define the confidence interval on any fitted ŷi, then the scale factor
is tα/2,ν . where t is the upper α/2 critical value for the t distribution with N-n degrees of freedom. All the
information needed to construct a confidence interval can be found in kpmfit‘s Fitter object:

• Degrees of freedom ν = Fitter.dof

• Reduced chi square: χ2
ν = Fitter.rchi2_min

• Covariance matrix: C = Fitter.covar

• Best-fit parameters: p = Fitter.params

Confidence bands are often used in plots to give an impression of the quality of the predictions. To calculate
confidence bands we vectorize (19.98):

CB = ŷ ± σf (19.99)

which is the short version of:

CB = ŷ ± tα/2,ν

√√√√χ2
ν

j=n∑
j=0

k=n∑
k=0

∂f

∂pj

∂f

∂pk
Cjk (19.100)

If your model f is for example a parabola f(x) = a+ bx+ cx2, then we have derivatives:

∂f

∂p0
=
∂f

∂a
= 1,

∂f

∂p1
=
∂f

∂b
= x and

∂f

∂p2
=
∂f

∂c
= x2 (19.101)

and the confidence band is calculated using:

CB = f(p, x)± tα/2,ν
√
χ2
ν [(1× 1)C00 + (1× x)C01 + (1× x2)C02 + (x× 1)C10 + · · · (x2 × x2)C22]

(19.102)

The next code example shows a function which implements the confidence interval for a given model (variable
model is a function or a lambda expression). The list dfdp is a list with derivatives evaluated at the values of x.
The values in x need not to be the same values as the x coordinates of your data values. The code uses statistics
module stats.t from SciPy to get the critical value for t with method ppf (percent point function). Then with
the information in Fitter object fitobj, it creates a NumPy array with the lower values of the confidence interval
(lowerband) and an array with the upper values of the confidence interval (upperband).

1 def confidence_band(x, dfdp, alpha, fitobj, model, abswei):
2 from scipy.stats import t
3 # Given the confidence probability confprob = 100(1-alpha)
4 # we derive for alpha: alpha = 1 - confprob
5 alpha = 1.0 - confprob
6 prb = 1.0 - alpha/2
7 tval = t.ppf(prb, fitobj.dof)
8

9 C = fitobj.covar
10 n = len(fitobj.params) # Number of parameters from covariance matrix
11 p = fitobj.params
12 N = len(x)
13 if abswei:
14 covscale = 1.0
15 else:
16 covscale = fitobj.rchi2_min
17 df2 = numpy.zeros(N)
18 for j in range(n):
19 for k in range(n):
20 df2 += dfdp[j]*dfdp[k]*C[j,k]
21 df = numpy.sqrt(fitobj.rchi2_min*df2)
22 y = f(p, x)

352 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

23 delta = tval * df
24 upperband = y + delta
25 lowerband = y - delta
26 return y, upperband, lowerband
27

28

29 def model(p, x):
30 # Model: Y = a + b*x + c*x*x
31 a,b,c = p
32 return a + b*x + c*x*x
33

34

35 dfdp = [1, x, x**2]
36 alpha = 0.05
37 yhat, upperband, lowerband = confidence_band(x, dfdp, alpha, fitobj, model)

Confidence bands are plotted in the next program. It uses a 95% confidence probability to draw bands for a fit
with weigths in y only and for a fit with errors both in x and y using the effective variance method. We used data
and weights, so the weights should be treated as relative weights (abswei=False).

Example: kmpfit_ODRparabola_confidence - Confidence bands fit of parabola

4 2 0 2 4 6 8 10
X

1

0

1

2

3

4

5

6

7

8

Y

ODR and kmpfit with weighted fit. Model: y=a+bx+cx2

ODR

kmpfit effective variance

kmpfit error in Y only

True parameters

CI (95%) relative weighting in X & Y

CI (95%) relative weighting in Y

With a small change in the confidence routine we can also derive a prediction interval. The values for a prediction
band are derived from:

σ2
pred = σ2

f + σ2
y (19.103)

So we need the array with the data errors to derive the prediction interval. Note that this band is only smooth if we
use unit weighting. Otherwise one observes a distorted band due to fluctuations in the weighting as demonstrated
on the next example.

Example: kmpfit_example_partialdervs_confidence - Confidence bands fit of parabola

19.8. Confidence- and prediction intervals 353

Kapteyn Package Documentation, Release 2.2

5 0 5 10
X

2

0

2

4

6

8

10

12
M

e
a
su

re
m

e
n
t

d
a
ta

Confidence- and prediction bands for Gaussian model

Noisy data

True data

Fit with kmpfit

CI (0.95)

PI (0.9)

19.9 Special topics

19.9.1 Rejection of data with Chauvenet’s criterion

With measurements one often finds one or more data points that appear isolated. If you are convinced that such
data is a measurement error then of course you can throw it away or you can use a criterion based on the normal
distribution using the (im)probability of large deviations. In this section we discuss a method to remove outliers
where a data point is an outlier in the y direction only. The criterion we want discuss here is called Chauvenet’s
criterion (http://en.wikipedia.org/wiki/Chauvenet’s_criterion). Suppose you have N measurements yi from which
we first calculate the mean and standard deviation. If a normal distribution is assumed, we can determine if the
probability of a particular measurement is less than 1/2N (as proposed by the French mathematician Chauvenet).
So if P is the probability then the criterion is:

P

(
yi − ȳ
σ

)
<

1
2N

(19.104)

In the next example we implemented this criterion to find outliers in a sample. We use the error function
scipy.special.erfc() to calculate the probability P in the tails of the normal distribution. We imple-
mented a clear and simple routine and a NumPy based function chauvenet() which is fast and efficient when
we need to filter big arrays. This function returns an array of booleans. When an element in that array is False, we
reject the corresponding data element in the data arrays:

1 def chauvenet(x, y, mean=None, stdv=None):
2 #---
3 # Input: NumPy arrays x, y that represent measured data
4 # A single value of a mean can be entered or a
5 # sequence of means with the same length as
6 # the arrays x and y. In the latter case, the
7 # mean could be a model with best-fit parameters.
8 # Output: It returns a boolean array as filter.

354 Chapter 19. Least squares fitting with kmpfit

http://en.wikipedia.org/wiki/Chauvenet's_criterion

Kapteyn Package Documentation, Release 2.2

9 # The False values correspond to the array elements
10 # that should be excluded
11 #
12 # First standardize the distances to the mean value
13 # d = abs(y-mean)/stdv so that this distance is in terms
14 # of the standard deviation.
15 # Then the CDF of the normal distr. is given by
16 # phi = 1/2+1/2*erf(d/sqrt(2))
17 # Note that we want the CDF from -inf to -d and from d to +inf.
18 # Note also erf(-d) = -erf(d).
19 # Then the threshold probability = 1-erf(d/sqrt(2))
20 # Note, the complementary error function erfc(d) = 1-erf(d)
21 # So the threshold probability pt = erfc(d/sqrt(2))
22 # If d becomes bigger, this probability becomes smaller.
23 # If this probability (to obtain a deviation from the mean)
24 # becomes smaller than 1/(2N) than we reject the data point
25 # as valid. In this function we return an array with booleans
26 # to set the accepted values.
27 #
28 # use of filter:
29 # xf = x[filter]; yf = y[filter]
30 # xr = x[~filter]; yr = y[~filter]
31 # xf, yf are cleaned versions of x and y and with the valid entries
32 # xr, yr are the rejected values from array x and y
33 #---
34 if mean is None:
35 mean = y.mean() # Mean of incoming array y
36 if stdv is None:
37 stdv = y.std() # Its standard deviation
38 N = len(y) # Length of incoming arrays
39 criterion = 1.0/(2*N) # Chauvenet’s criterion
40 d = abs(y-mean)/stdv # Distance of a value to mean in stdv’s
41 d /= 2.0**0.5 # The left and right tail threshold values
42 prob = erfc(d) # Area normal dist.
43 filter = prob >= criterion # The ’accept’ filter array with booleans
44 return filter # Use boolean array outside this function

In the next example we use the model with the best fit parameters a the mean and the standard deviation of the
residuals as the standard deviation for all data points. Note that removing these type of outliers do not change the
values of the best-fit parameters much.

Example: kmpfit_chauvenet.py - Exclude bad data with criterion of Chauvenet

Another example uses data from [BRo]. A weighted fit gives a value of chi-squared which is too big to accept the
hypothesis that the data is consistent with the model. When we use the model and its best-fit parameters as mean
and the errors on the data as standard deviation in the function chauvenet(), then one data point is excluded.
When we redo the fit, we find a value for chi-squared that is small enough to accept the Null hypothesis that data
and model are consistent.

Example: kmpfit_chauvenet2.py - Apply Chauvenet for a weighted fit

For outliers in the x direction, one need different methods.

19.9.2 Variance Reduction

To value a model we use a technique called Variance Reduction [Wol]. It can be applied to both linear and
nonlinear models. Variance Reduction (VR) is defined as the percentage of the variance in the dependent variable
that is explained by the model. The variance of the sample is given by:

σs =

N−1∑
i=0

(yi − ȳ)2

N − 1
(19.105)

19.9. Special topics 355

Kapteyn Package Documentation, Release 2.2

0.0 0.5 1.0 1.5 2.0
x

0

2

4

6

8

10

12

14

y
Exclude poor data with criterion of Chauvenet

data

Fit unfilterd data

Fit filterd data

2 4 6 8 10 12
x

0

5

10

15

20

25

y

Exclude poor data with criterion of Chauvenet
data

Fit unfilterd data

Fit filterd data

356 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

The variance given by the model with its best-fit parameters is:

σm =

N−1∑
i=0

(yi − ymodel)2

N − 1
(19.106)

The Variance Reduction is defined as:

V R = 100 ∗
(

1− σ2
m

σ2
s

)
= 100 ∗

1−

N−1∑
i=0

(yi − ȳ)2

N−1∑
i=0

(yi − ymodel)2

 (19.107)

If the quality of your model is good and your data is well behaved, then the model variance is small and the VR
is close to 100%. Wrong models, or data with outliers have lower values, which even can be negative. We use
VR to identify outliers in data where one (or more) points have a significant error in x. If we calculate the VR for
samples where we exclude one data point and repeat this action for all data points, then it is possible to identify
the outlier because exclusion of this outlier will improve the VR significantly. Note that for this type of outliers,
one cannot use Chauvenet’s criterion because the initial (bad) fit is required to exclude data points.

The VR can be calculated in a script as follows:

fitter.fit(params0=params0) # Find best-fit parameters
varmod = (y-model(fitter.params,x))**2.0 # The model variance
varmod = varmod.sum()/(N-1)
vardat = y.var() # Sample variance
A vr of 100% implies that the model is perfect
A bad model gives much lower values (sometimes negative)
vr = 100.0*(1-(varmod/vardat))

Below, the script that uses the VR to identify an outlier. It removes the data point that, when omitted, improves
the VR the most.

Example: kmpfit_varreduct.py - Use Variance Reduction to identify outlier

In [Wol] an example is given of data and a fit with using a good model and a bad model. The difference between
those models should be clear if we inspect the VR of both. With kmpfit_varreduct_wol.pywe reproduced
table 3.4.1 of [Wol] for both weighted and unweighted fits. We get the same values, with only a small deviation of
the weighted fit with the straight line model ([Wol] gives -48.19, which is probably a typo). The data was derived
from a parabolic model so we know that a parabola should be the most suitable model. From the table we learn
that indeed the parabola gives the best VR. For weighted fits, the result is even more obvious because the errors
on the data increase if the distance from the bottom of the parabola increases. For a weighted fit this is a recipe to
get a bad value for the VR.

Model wi = 1 wi = 1/σ2
i

y = a+ b x +80.29 -48.29
y = a+ b x+ c x2 +99.76 +99.72

Example: kmpfit_varreduct_wol.py - Use Variance Reduction to examine model

19.9.3 Regression through the origin

In this section we address a special case of linear regression using an analytical method. It is a regression through
the origin. It is used in a practical course where students need to find the Hubble constant after they obtained a
number of galaxy velocities and distances. Hubble’s constant can be found if you find the slope of the best fit
straight line through the data points (distance in Mpc and velocity in Km/s) and the origin (assuming velocity is
zero when the distance is zero).

Hubble’s first fits allowed for an offset and he found an age of the universe that was much too small. Now we
know the theoretical base and the fit is reduced to a problem that is known as ‘regression through the origin’.

19.9. Special topics 357

Kapteyn Package Documentation, Release 2.2

0 5 10 15 20 25
x

0

5

10

15

20

25

y
Exclude poor data with variance reduction

data

Fit unfiltered data

Fit filtered data

2 4 6 8 10
x

10

0

10

20

30

40

50

60

70

y

Improve model using Variance Reduction
Model: a+bx VR=-48.29

Model: a+bx+cx2 VR=99.72

358 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

For a model y = a+ bx we defined chi squared as:

χ2 =
N−1∑
i=0

(
yi − a− bxi

σi

)2

(19.108)

For regression through the origin (leaving parameter a out of the equations) we find for the minimum chi squared:

0 =
∂χ2

∂b
= −2

N−1∑
i=0

xi(yi − bxi)
σ2
i

(19.109)

from which we derive an expression for slope b:

b =

∑ xiyi
σ2
i∑ x2
i

σ2
i

(19.110)

For the standard error in b we follow the procedure described in section Standard errors in weighted fits (19.20).
The error is defined as:

σ2
b =

∑
i

σ2
i

(
∂b

∂yi

)2

(19.111)

with:

∂b

∂yi
=

∂

P xiyi
σ2
iP x2
i
σ2
i


∂yi

(19.112)

where Sxx does not depend on yi. With the notation Sxx =
∑
x2
i /σ

2
i we write this as:

∂b

∂yi
=

1
Sxx

∂
(∑ xiyi

σ2
i

)
∂yi

(19.113)

Therefore:

∂b

∂yi
=

xi
Sxx

(19.114)

Inserting this in (19.111) gives:

σ2
b =

∑
i

σ2
i

(
xi
Sxx

)2

=
1
S2
xx

∑
i

σ2
i

x2
i

σ2
i

=
1
S2
xx

Sxx

=
1
Sxx

(19.115)

So finally:

σb =
√

1
Sxx

(19.116)

In a small program we will demonstrate that this error is the real 1 sigma error for when we exactly know what
the errors on the data points are. For weights that are unit or if weights are scaled, we should scale the error on the
fitted parameter with the square root of the reduced chi-squared (as described in Reduced chi squared).

19.9. Special topics 359

Kapteyn Package Documentation, Release 2.2

The reduced Chi-squared for a regression through the origin is (note we have one parameter less to fit compared
to a regression which is not forced to go through the origin):

χ2
ν =

1
N − 1

N−1∑
i=0

(yi − bxi)2

σ2
i

(19.117)

Then:

σb =

√
χ2
ν∑
x2
i

(19.118)

This is a two pass algorithm because first you have to find slope b to get the reduced chi-squared. Note that in many
references, the unweighted version of the χ2

ν is used to derive the error in slope b. This gives wrong results as can
be seen with equal weighting. Many references give the wrong formula, so be careful. A possible implementation
of the formulas above is given in the function lingres_origin():

1 def lingres_origin(xa, ya, err):
2 # Apply regression through origin
3 N = len(xa)
4 w = numpy.where(err==0.0, 0.0, 1.0/(err*err))
5 sumX2 = (w*xa*xa).sum()
6 sumXY = (w*xa*ya).sum()
7 sum1divX = (1/(w*xa)).sum()
8 b = sumXY/sumX2
9 sigma_b = 1.0/sumX2

10 chi2 = (w*(ya-b*xa)**2).sum()
11 red_chi2 = chi2 / (N-1)
12 sigma_b_scaled = red_chi2 / sumX2
13 return b, numpy.sqrt(sigma_b), numpy.sqrt(sigma_b_scaled)

Next we show an example of estimating the Hubble constant using data pairs (distance, velocity) found in lab
experiments. We use both the analytical method described above and kmpfit to compare the results. We included
the fast NumPy based function to filter possible outliers using Chauvenet’s criterion. This criterion was discussed
in the previous section. As a mean, we do not use the mean of the sample, but the model with the best fit
parameters. As standard deviation we use the (artificial) errors on the data as we did in the second example of
Chauvenet’s criterion.

We also included a loop which gives the variance reduction when we omit one data point. The variance reduction
for the unfiltered data is low which implies that the model is not the best model or that we have one or more
outliers:

Variance reduction unfiltered data: 37.38%

Excluded data chi^2 red.chi^2 VR
===
(42.00, 1294.00) 32.56 4.65 80.55
(6.75, 462.00) 101.76 14.54 31.44
(25.00, 2562.00) 65.93 9.42 41.20
(33.80, 2130.00) 101.49 14.50 28.46
(9.36, 750.00) 100.85 14.41 36.82
(21.80, 2228.00) 75.80 10.83 44.28
(5.58, 598.00) 99.94 14.28 35.27
(8.52, 224.00) 99.45 14.21 26.44
(15.10, 971.00) 101.73 14.53 38.26
===

Based on this table we can conclude that data point (42,1294) can be regarded as an outlier. Removing this point
decreases the variance of the data with respect to the model, significantly, which results in a big improvement of
the variance reduction. In this case, a filter based on exclusion of data based on variance reduction, improves the
fit more than a filter based on Chauvenet’s criterion.

Example: kmpfit_hubblefit.py - Find Hubble constant with fit of line through origin

360 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

0 10 20 30 40
D (Mpc)

0

500

1000

1500

2000

2500

3000

3500

4000
V

 (
K

m
/s

)
Hubble constant for filtered data

Filtered data

Excluded data

Unfiltered: H0 =60.2±10.1(km/s)/Mpc

Filtered with Chauv.: H0 =63.5±4.8(km/s)/Mpc

Filter based on VR: H0 =79.2±7.9(km/s)/Mpc

Literature: H0 =74.2±3.6(km/s)/Mpc

19.9.4 Fitting 2D data

Finding best-fit parameters of an ellipse

In many astronomical problems, the ellipse plays an important role. Examples are planetary orbits, binary star
orbits, projections of galaxies onto the sky. etc. For an overview of ellipse properties and formulas, please
visit Wolfram’s page about ellipses at http://mathworld.wolfram.com/Ellipse.html Assume we got a number of
measurements of the orbit of a binary system and all sky positions are converted to a rectangular grid positions
(i.e. x,y coordinate pairs). If one makes a plot of these positions it is usually obvious if have to deal with
an elliptical orbit. To estimate typical orbit parameters (e.g. in Kepler’s laws of planetary motion) we have to
estimate the best-fit ellipse parameters. These parameters are the position of the center of the ellipse, the length
of the major and minor axes and the position angle (its rotation). If we want to fit ellipse parameters we have to
find a suitable relation between y and x first. The equation for an unrotated ellipse with semi-major axis a and
semi-minor axis b is:

x2

a2
+
y2

b2
= 1 (19.119)

Rotation of the ellipse follows the mathematical standard, i.e. an angle is positive if it is counted anti-clockwise.
So if we want an expression for a rotated ellipse we use the rotation recipe:

x′ = x cos(φ)− y sin(φ)
y′ = x sin(φ) + y cos(φ)

(19.120)

If the origin is not centered at position (0,0) then we need a translation also:

x′′ = x′ + x0

y′′ = y′ + y0
(19.121)

Introduce a new function Z which depends on variables x and y.

Z(x, y) =
x2

a2
+
y2

b2
(19.122)

19.9. Special topics 361

http://mathworld.wolfram.com/Ellipse.html

Kapteyn Package Documentation, Release 2.2

This function is plotted in the surface plot below. The ellipse in this landscape can be found at a height 1.0. We
projected the ellipse on the xy plane to prove that the two contours correspond. You can run the example and
rotate the 3D plot to get an impression of the landscape. For a data position (x, y) which is exactly on the ellipse
Z(x, y) = 1. But if not, then Z(x, y) deviates from 1.0 and it is a measure for the deviations we are trying to
minimize with a least squares fit. Note that the values in (x, y) represents the data on the ellipse. So in fact the
should be written as (x′′, y′′). To calculate Z(x, y), we need to calculate (x′, y′) first and from those coordinates
the values of (x, y).

In the code example at the end of this section we need a list with positions that we want to use to make a fit. The
data we used can be found in ellipse.dat. It is data from an artificial ellipse with origin at (5,4) semi-major
axis is 10, semi-minor axis is 3. Its angle is 60 degrees. Noise was added to simulate real data.

But usually we don’t know about the properties of the ellipse represented by the data so we need a routine that
calculates these estimates automatically. For the ellipse there is a method based on image moments analysis
(http://en.wikipedia.org/wiki/Image_moments) that can do the job.

Mpq =

∞∫
−∞

∞∫
−∞

xpyqf(x, y) dx dy (19.123)

The zeroth and first moments for the given set data points (positions) are given by:

m00 =
∑
i

∑
j

fij

m10 =
∑
i

∑
j

x fij

m01 =
∑
i

∑
j

y fij

(19.124)

In an image the zeroth moment represents the area of an object. For our positions (x, y) it is just the number of
positions. Note that our data points are just positions and not image pixels with an intensity. So the value of f is
1 for a position from the file and 0 for others (but there are no others because we don’t have an image, just the
values in (x, y). Therefore we need only to loop over all our positions and do the necessary summing. Then the
coordinates of the centroid (center of mass) are:

x̄ =
m10

m00

ȳ =
m01

m00

(19.125)

which is an estimate of the central position of the ellipse. How can we find an estimate for the other parameters?
First we define the so called central moments of the sample:

µpq =

∞∫
−∞

∞∫
−∞

(x− x̄)p(y − ȳ)qf(x, y)dxdy (19.126)

Now define:

µ′20 =
µ20

µ00
=
M20

M00
− x̄2

µ′02 =
µ02

µ00
=
M02

M00
− ȳ2

µ′11 =
µ11

µ00
=
M11

M00
− x̄ȳ

(19.127)

With these definitions, one can derive the following relations:

θ =
1
2

arctan(
2µ′11

µ′20 − µ′02
)

λi =
µ′20 + µ′02

2
±

√
4µ′211 + (µ′20 − µ′02)2

2

(19.128)

362 Chapter 19. Least squares fitting with kmpfit

http://en.wikipedia.org/wiki/Image_moments

Kapteyn Package Documentation, Release 2.2

θ gives us estimate for the angle and λi the (squared) length of the semi-major and semi-minor axes. We imple-
mented these relations in a routine that finds initial estimates of the parameters of an ellipse based on the moments
analysis above:

1 def getestimates(x, y):
2 """
3 Method described in http://en.wikipedia.org/wiki/Image_moments
4 in section ’Raw moments’ and ’central moments’.
5 Note that we work with scalars and not with arrays. Therefore
6 we use some functions from the math module because the are
7 faster for scalars
8 """
9 m00 = len(x)

10 m10 = numpy.add.reduce(x)
11 m01 = numpy.add.reduce(y)
12 m20 = numpy.add.reduce(x*x)
13 m02 = numpy.add.reduce(y*y)
14 m11 = numpy.add.reduce(x*y)
15

16 Xav = m10/m00
17 Yav = m01/m00
18

19 mu20 = m20/m00 - Xav*Xav
20 mu02 = m02/m00 - Yav*Yav
21 mu11 = m11/m00 - Xav*Yav
22

23 theta = (180.0/numpy.pi) * (0.5 * atan(-2.0*mu11/(mu02-mu20)))
24 if (mu20 < mu02): # mu20 must be maximum
25 (mu20,mu02) = (mu02,mu20) # Swap these values
26 theta += 90.0
27

28 d1 = 0.5 * (mu20+mu02)
29 d2 = 0.5 * sqrt(4.0*mu11*mu11 + (mu20-mu02)**2.0)
30 maj = sqrt(d1+d2)
31 min = sqrt(d1-d2)
32 return (Xav, Yav, maj, min, theta)

If you study the code of the next example, you should be able to recognize the formulas we used in this section to
get initial estimates and residuals. The applied method can be used for many fit problems related to 2D data.

Example: kmpfit_ellipse.py - Find best-fit parameters of ellipse model

19.10 Glossary

Objective Function An Objective Function is a function associated with an optimization problem. It determines
how good a solution is. In Least Squares fit procedures, it is this function that needs to be minimized.

Independent Variable Usually the x in a measurement. It is also called the explanatory variable

Dependent Variable Usually the y in a measurement. It is also called the response variable

LLS Linear Least-Squares

NLLS Non-Linear Least Squares

Numpy NumPy is the fundamental package needed for scientific computing with Python. See also information
on the Internet at: numpy.scipy.org

SE Standard error

WSSR Weighted Sum of Squared Residuals (WSSR)

19.10. Glossary 363

http://numpy.scipy.org/

Kapteyn Package Documentation, Release 2.2

X

6

4

2

0

2

4
Y

6
4

2
0

2
4

Z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ellipse with major, minor axes = (5,2)

X

6

4

2

0

2

4
Y

6
4

2
0

2
4

Z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ellipse with major, minor axes = (5,2)

2 0 2 4 6 8 10 12
X

5

0

5

10

15

Y

Ellipse data and fit

data from file

364 Chapter 19. Least squares fitting with kmpfit

Kapteyn Package Documentation, Release 2.2

19.11 References

See Bibliography.

19.11. References 365

Kapteyn Package Documentation, Release 2.2

366 Chapter 19. Least squares fitting with kmpfit

CHAPTER 20

Tutorial tabarray module

20.1 Introduction

Many applications send output of numbers to plain text (ASCII) files in a rectangular form. I.e. they store human
readable numbers in one ore more columns in one or more rows. In one of our example figures to illustrate the
use of graticules we plotted coastline data from a text file with coordinates in longitude and latitude in a wcs
supported projection.

If you want to plot such data or you need data to do calculations, then you need a function or method to
read the data into for example NumPy arrays. Package SciPy provides a function read_array() in module
scipy.io.array_import. It has all necessary features to do the job but it is very slow when it needs to
read big files with many numbers.

We wrote a fast version in module tabarray which is also part of the Kapteyn Package Its speed is comparable
to a well known module that is no longer supported, called TableIO. The module interfaces with C and is written
in Cython. Such interfaces improve the speed of reading the data with a factor of 5-10 compared to Python
based solutions. Module tabarray has a simple interface and an object oriented interface. For the simple
interface functions we used the same function names as TableIO. This will simplify the migration from TableIO
to tabarray.

20.2 Simple interface functions

20.2.1 Function readColumns

A typical example of a text data file is given below. It has 3 columns and several rows of which a number of rows
represent a comment. To experiment with tabarray functions and methods you can copy this data and store it as
testdata.txt on disk.:

! ASCII file ’testdata.txt’ 12-09-2008
!
! X | Y | err
23.4 -44.12 1.0e-3
19.32 0.211 0.332
Next numbers are include as
-22.2 44.2 3.2
1.2e3 800 1

Assuming you have some knowledge of the contents and structure of the file, it is easy to read it into NumPy
arrays. We use variables x, y and err to represent the columns. The comment characters are ‘#’ and ‘!’ and are
included in the comment string which is the second parameter of the tabarray.Readcolumns() function.
The file on disk is identified by its name. There is no need to open it first. Use the commands given below to read
all the data from our test file.

1 >>> from kapteyn import tabarray
2 >>> x,y,err = tabarray.readColumns(’testtable.txt’,’#!’)

367

Kapteyn Package Documentation, Release 2.2

3 >>> print x
4 [23.4 , 19.32, -22.2 , 1200.]

All numbers are converted to floating point. Blank lines at the end of a file are ignored. Blank lines in the middle
of a file are treated as comment lines. Suppose you want to read only the second and third column, then one needs
to specify the columns. The first column has index 0.

1 >>> y,err = tabarray.readColumns(’testtable.txt’,’#!’, cols=(1,2))
2 >>> print err
3 [1.00000000e-03 3.32000000e-01 3.20000000e+00 1.00000000e+00]

Note: Column and row numbers start with 0. The last row or last column is addressed with -1.

To make a selection of rows you can specify the rows parameter. Rows are given as a sequence and the first row
in a file has index 0. Suppose you want to read the last two rows from the last two columns in the text file together
with the first row, then we could write:

1 >>> x,y = tabarray.readColumns(’testtable.txt’,’#!’, cols=(1,2), rows=(2,3,0))
2 >>> print x
3 [44.2 800. -44.12]

To read only the last row in your data you should use rows=(-1,).

If you know beforehand which lines of the data files should be read, you can set the converter to read only the
lines in parameter lines. For a big text file (called satview.txt) containing longitudes and latitudes of positions in
two columns, we are only interested in the first 1000 lines containing relevant data. Then the lines parameter saves
time. So we use the following command:

>>> lons, lats = tabarray.readColumns(’satview.txt’,’s’, lines=(0,1000))

Comment lines in this satview.txt file do not start with a common comment character, instead it starts with the
word ‘segment’ so our comment character becomes ‘s’.

20.2.2 Function writeColumns

One dimensional array data can also be written back to a file on disk. The function for writing data is called
tabarray.writeColumns(). Its first argument is the name of the file. The second is a sequence with
columns. With the columns ‘x’ and ‘y’ from the testtable.txt file in the previous section, we want to write a new
file where column ‘y’ is the first column and column ‘x’ is the second. Here is the code to do this:

1 >>> x,y,err = tabarray.readColumns(’testtable.txt’,’#!’)
2 >>> tabarray.writeColumns(’testout.txt’, (y,x))
3 # Contents on disk is:
4 -44.12 23.4
5 0.211 19.32
6 44.2 -22.2
7 800 1200

The columns are one dimensional NumPy arrays. This implies that we can do some array arithmetic on the
columns. We could have changed our columns to:

1 >>> tabarray.writeColumns(’testout.txt’, (y*y,x*y,x*x))
2 # Contents on disk is:
3 1946.57 -1032.41 547.56
4 0.044521 4.07652 373.262
5 1953.64 -981.24 492.84
6 640000 960000 1.44e+06

which makes this function very powerful.

368 Chapter 20. Tutorial tabarray module

Kapteyn Package Documentation, Release 2.2

It is common practice to start text data file with some comments. The next code shows how to write a date and the
name of the author in a new file with function tabarray.writeColumns(). The comments parameter is a
list with strings. Each string is written on a new line at the start of the text file.

1 >>> when = datetime.datetime.now().strftime("Created at: %A (%a) %d/%m/%Y")
2 >>> author = ’Created by: Kapteyn’
3 >>> tabarray.writeColumns(’testout.txt’, (y*y,x*y,x*x), comment=[when, author])

The header of the file will look similar to this:

1 # Created at: Thursday (Thu) 18/09/2008
2 # Created by: Kapteyn

20.3 Tabarray objects and methods

20.3.1 Reading data and making selections

A tabarray object is created with method tabarray.tabarray(). Again we want to read the data from file
‘testtable.txt’.

1 >>> t = tabarray.tabarray(’testtable.txt’, ’#!’)
2 >>> print t
3 [[2.34000000e+01 -4.41200000e+01 1.00000000e-03]
4 [1.93200000e+01 2.11000000e-01 3.32000000e-01]
5 [-2.22000000e+01 4.42000000e+01 3.20000000e+00]
6 [1.20000000e+03 8.00000000e+02 1.00000000e+00]]

Selections are made with methods tabarray.rows() and tabarray.columns().

Warning: The rows() method needs to be applied before the columns() method because for the latter, the
array t is transposed and its row information is changed.

With this knowledge we can combine the methods in one statement to read a selection of lines and a selection of
columns into NumPy arrays.

1 >>> x,y = t.rows((2,3)).columns((1,2))
2 >>> print x
3 [44.2 800.]
4 >>> print y
5 [3.2 1.]

If you want to select rows in a NumPy vector that is already filled with data from disk after applying the lines
and/or rows parameters you still can extract data using NumPy indexing:

1 >>> lines = [0,1,3]
2 >>> print err[lines]
3 [0.001 0.332 1.]

20.3.2 Messy files

ASCII text readers should be flexible and robust. Examine the contents of the next ASCII data file (which we
stored on disk as messyascii.txt):

! Very messy data file

23.343, 34.434, 1e-20
10, 20, xx

20.3. Tabarray objects and methods 369

Kapteyn Package Documentation, Release 2.2

2 4 600
-23.23, -0.0002, -3x7

Some comment

40, 50.0, 70.2

It contains blank lines at the end and between the data and it has three different separators (spaces, comma’s and
tabs). Also it contains data that cannot be converted to numbers. Instead of an exception we want the converter to
substitute a user given value for a string that could not be converted to a number. Assume that a user wants -999
for those bad entries, then the numbers should be read by:

1 >>> t= tabarray.tabarray(’messyascii.txt’,’#!’, sepchar=’ ,\t’, bad=-999)
2 >>> print t
3 [[2.33430000e+01 3.44340000e+01 1.00000000e-20]
4 [1.00000000e+01 2.00000000e+01 -9.99000000e+02]
5 [2.00000000e+00 4.00000000e+00 6.00000000e+02]
6 [-2.32300000e+01 -2.00000000e-04 -9.99000000e+02]
7 [4.00000000e+01 5.00000000e+01 7.02000000e+01]]
8 >>> x,y = t.rows(range(1,4)).columns((1,2)) # Extract some rows and columns
9 >>> print x

10 [2.00000000e+01 4.00000000e+00 -2.00000000e-04]
11 >>>print y # Contains the ’bad’ numbers
12 [-999. 600. -999.]

Note that we could have used function tabarray.readColumns() also to get the same results:

>>> x,y = tabarray.readColumns(’messyascii.txt’,’#!’, sepchar=’ ,/t’, bad=-999, rows(range(1,4)), cols=(1,2))

Note: Probably more useful as a bad number indicator is the ‘Not a Number’ (NaN) from NumPy. Use it as in:
bad=numpy.nan and test on these numbers with NumPy’s function: isnan().

20.4 Glossary

ASCII American Standard Code for Information Interchange is a character-encoding scheme based on the or-
dering of the English alphabet.

370 Chapter 20. Tutorial tabarray module

Part IV

Examples

371

CHAPTER 21

All sky plots and graticules

21.1 All Sky plots

An all sky plot is a plot where the range in longitude is [0,360> and the range in latitude is [-90,90>. There are
many examples in Calabretta’s article Representations of celestial coordinates in FITS We tried to reproduce these
figures both to prove that the modules in the Kapteyn Package have the functionality to do it and to facilitate
users who want to set up an all-sky plot with module maputils. For this purpose we created for each figure the
minimal required FITS headers. Header and other code is listed below the examples. In the HTML documentation,
click on the hires link to get a plot which shows more details. With the information in this document, it should be
easy to compose a Python program that creates just a single plot which then can be enhanced to fit your needs.

The first plot is a stand alone version. The others are generated with different Python scripts and the service
module service.py (see also the source code at the end of this document).

1 from kapteyn import maputils
2 from numpy import arange
3 from matplotlib import pyplot as plt
4

5 dec0 = 89.9999999999 # Avoid plotting on the wrong side
6 header = {’NAXIS’ : 2,
7 ’NAXIS1’ : 100, ’NAXIS2’: 80,
8 ’CTYPE1’ : ’RA---TAN’,
9 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’,

10 ’CDELT1’ : -5.0, ’CTYPE2’ : ’DEC--TAN’,
11 ’CRVAL2’ : dec0, ’CRPIX2’ : 40,
12 ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
13 }
14 X = arange(0,360.0,15.0)
15 Y = [20, 30,45, 60, 75]
16

17 fig = plt.figure(figsize=(7,6))
18 frame = fig.add_axes((0.1,0.1,0.8,0.8))
19 f = maputils.FITSimage(externalheader=header)
20 annim = f.Annotatedimage(frame)
21 grat = annim.Graticule(wylim=(20.0,90.0), wxlim=(0,360),
22 startx=X, starty=Y)
23 grat.setp_gratline(color=’0.75’)
24 lon_world = range(0,360,30)
25 lat_world = [20, 30, 60, 90]
26 grat.setp_lineswcs1(20, color=’g’, linestyle=’--’)
27

28 # Plot labels inside the plot
29 lon_constval = None
30 lat_constval = 20
31 lon_kwargs = {’color’:’r’, ’fontsize’:15}
32 lat_kwargs = {’color’:’b’, ’fontsize’:10}
33 grat.Insidelabels(wcsaxis=0,
34 world=lon_world, constval=lat_constval,

373

http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf

Kapteyn Package Documentation, Release 2.2

35 fmt="Dms",
36 **lon_kwargs)
37 grat.Insidelabels(wcsaxis=1,
38 world=lat_world, constval=lon_constval,
39 fmt="Dms",
40 **lat_kwargs)
41 annim.plot()
42 # Set title for Matplotlib
43 titlepos = 1.02
44 title = r"Gnomonic projection (TAN) diverges at $\theta=0^\circ$. (Cal. fig.8)"
45 t = frame.set_title(title, color=’g’)
46 t.set_y(titlepos)
47 plt.show()

Gnomonic projection (TAN) diverges at θ=0 ◦ . (Cal. fig.8)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦30

◦

60
◦

90 ◦

120 ◦
150 ◦

180
◦ 210

◦

240
◦

270◦

300◦
33

0◦

20 ◦

30 ◦

60 ◦

The recipe

The next session shows a gallery of all sky plots, all based on the same recipe.

• One starts with a self-made header which ensures a complete coverage of the sky by stretching the values
of the CDELT‘s.

• Then an object from class maputils.Annotatedimage.Graticule is created with explicit limits
for the world coordinates in both directions.

• For these plots we don’t have intersections of the graticule with an enclosing rectan-
gle so we cannot plot standard axis labels for the coordinates. Instead we use method
wcsgrat.Graticule.Insidelabels() to plot labels inside the plot. In the plots we show

374 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

different examples how one can manipulate these labeling.

21.2 All sky plot gallery

In the title of the plots we refer to the figure numbers in Calabretta’s article Representations of celestial coordinates
in FITS. These references start with the abbreviation Cal..

Note that the labels along the enclosing plot rectangle only indicate the types for the longitude and latitude axes
and their main direction.

The code which was used to produce a figure is listed just above the plot. If you want to reproduce a plot then you
need this source and the service module service.py.

For plots where it is possible to plot a marker at position (120 deg, 60 deg) we plot a small circle with:
annim.Marker(pos=markerpos, marker=’o’, color=’red’) This code is part of the service
module service.py

Note that positions in parameter pos in method maputils.Annotatedimage.Marker() can be entered in
different formats. Have a look at positions for examples.

21.2.1 Definitions

The definitions in this section are consistent with [Ref2] and [Ref2] but simplified. For the FITS keywords we
ommitted the suffix for the axis number and the alternate header description (e.g. as in CRVAL2Z).

• CTYPE : Type of celestial system and projection system

• CRPIX : Pixel coordinate of a coordinate reference point

• CRVAL : The world coordinate at the reference point

• CDELT : World coordinate increment at the reference point

• CUNIT : Units of the world coordinates. For celestial coordinates the required units are ‘deg’. However
for wcs/WCSLIB the following lines are equal, because the units are parsed and converted to degrees if
necessary:

’CRVAL1’ : 120.0*60, ’CRPIX1’ : 50, ’CUNIT1’ : ’arcmin’, ’CDELT1’ :
5.0*60

’CRVAL1’ : 120.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : 5.0

• CROTA : Usually the angle in degrees between the axis for which CROTA is given and the direction of the
North. Rotations can also be included in the FITS CD or PC matrix.

• The pixel position that corresponds to the values of CRPIX is denoted with (rx, ry).

• An arbitrary pixel coordinate is denoted with (px, py).

• If we apply an operation M involving the PC or CD matrix or CDELT and CROTA we get X = M.(p− r).
The result is a position denoted with (x, y) and its coordinates are called intermediate world coordinates
and in this context we refer to them as projection plane coordinates.

• The coordinate reference point is at (x, y) = (0, 0).

• Intermediate coordinates are in degrees.

• PV FITS cards have syntax PV i_na i.e. the keyword starts with PV, it is associated with axis i, it has a
number n and can be part of an alternate header identified by a. The PV elements are called coordinate
parameters and are used to change the default coordinate system.

• With the projection information in CTYPE one converts projection plane coordinates (x, y) to native longi-
tude and latitude, (φ, θ). Additional information for this transformation can be given in FITS PV keywords.

• Native longitude and latitude (φ, θ) are transformed to celestial coordinates (α, δ) using the world coordi-
nates (CRVAL) of the reference point.

21.2. All sky plot gallery 375

http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf
http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf

Kapteyn Package Documentation, Release 2.2

• The coordinates of the reference point given by CRVAL is denoted with (α0, δ0) If we assume that a
longitude axis is associated with axis 1 in in the FITS file and latitude with axis 2 then (α0, δ0) =
(CRV AL1, CRV AL2).

• (α0, δ0) is associated with the native longitude and latitude reference point (φ0, θ0)

• This (φ0, θ0) depends on the projection or its values are given in FITS PV keywords. With the previous
assumption of the axis order, these elements will be PV 11 and PV 12

• For the transformation from native longitude and latitude (φ, θ) to celestial coordinates we need the native
longitude and latitude of the celestial pole (φp, θp). Either defaults are taken or values are copied from FITS
keywords LONPOLE, LATPOLE or PV1_3 and PV1_4. Also we need the celestial position of the native
pole (αp, δp). (and δp = θp).

We summarize what can be varied in the FITS headers we used to plot all sky graticules.

• (α0, δ0)↔ (CRV AL1, CRV AL2)

• native longitude and latitude of reference point (φ0, θ0)↔ (PV 1_1, PV 1_2)

• native latitude of the celestial pole (φp, θp)↔ (LONPOLE,LATPOLE)↔ (PV 1_3, PV 1_4)

• In certain classes of projections (α0, δ0) is decoupled from the reference point. To restore the relation
between FITS cards CRVALn and CRPIXn one can use PVi_0 where i is the axis number of the longitude
axis. Any value unequal to 0.0 will do the job.

21.2.2 Standard versus Oblique

Fig.0: Linear equatorial coordinate system

Before the non-linear coordinate transformations, world coordinates were calculated in a linear way using the
number of pixels from the reference point in CRPIX times the increment in world coordinate and added to that
the value of CRVAL. We demonstrate this system by creating a header where we omitted the code in CTYPE that
sets the projection system.

WCSLIB does not recognize a valid projection system and defaults to linear transformations. The header is a
Python dictionary. With method maputils.Annotatedimage.Graticule() we draw the graticules. The
graticule lines that we want to draw are given by their start position startx= and starty=. The labels inside the plot
are set by lon_world and lat_world. To be consistent with fig.2 in Cal. [Ref2] , we inserted a positive CDELT for
the longitude.

Note: In most of the figures in this section we plot position (120◦, 60◦) as a small solid red circle.

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 # Fig 2 in celestial article (Calabretta et al) shows a positive cdelt1
6 fignum = 0 # id of script and plot
7 fig = plt.figure(figsize=figsize)
8 frame = fig.add_axes(plotbox)
9 title = r"""Linear equatorial coordinate system with:

10 $(\alpha_0,\delta_0) = (120^\circ,60^\circ)$ (Cal. fig.2-upper)"""
11 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
12 ’CTYPE1’ : ’RA’,
13 ’CRVAL1’ : 120.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : 5.0,
14 ’CTYPE2’ : ’DEC’,
15 ’CRVAL2’ : 60.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
16 }
17 X = numpy.arange(-60,301.0,30.0);
18 Y = numpy.arange(-90,100,30.0) # i.e. include +90 also
19 f = maputils.FITSimage(externalheader=header)

376 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

20 annim = f.Annotatedimage(frame)
21 grat = annim.Graticule(header, axnum=(1,2),
22 wylim=(-90,90.0), wxlim=(-60,300),
23 startx=X, starty=Y)
24 #print "Lonpole, latpole values: ", \
25 # annim.projection.lonpole, annim.projection.latpole,
26 lat_world = [-60, -30, 30, 60]
27 lon_world = range(-30,301,30)
28 labkwargs0 = {’color’:’r’, ’va’:’bottom’, ’ha’:’right’}
29 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
30 doplot(frame, fignum, annim, grat, title,
31 lat_world=lat_world, lon_world=lon_world,
32 lon_fmt=’Hms’,
33 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
34 markerpos=markerpos)

Fig. 0: Linear equatorial coordinate system with:
(α0 ,δ0) =(120 ◦ ,60 ◦) (Cal. fig.2-upper)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

22
h

0h 2h 4h 6h 8h 10
h

12
h

14
h

16
h

18
h

20
h

−60 ◦

−30 ◦

30 ◦

60 ◦

Fig.1: Oblique Plate Carree projection (CAR)

In [Ref2] we read that only CTYPE needs to be changed to get the next figure. For CTYPE the projection code
CAR is added. For a decent plot we need to draw a border. The trick for plotting borders for oblique versions is
to change header values to the non-oblique version and then to draw only the limiting graticule lines. In method
maputils.Annotatedimage.Graticule() we use parameters startx and starty to specify these limits as
in: startx=(180-epsilon,-180+epsilon), starty=(-90,90))

This plot shows an oblique version. A problem with oblique all sky plots is drawing a closed border. The trick

21.2. All sky plot gallery 377

Kapteyn Package Documentation, Release 2.2

that we applied a number of times is to overlay the border of the non-oblique version.

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 # Fig 2 in celestial article (Calabretta et al) shows a positive cdelt1
6 fignum = 1
7 fig = plt.figure(figsize=figsize)
8 frame = fig.add_axes(plotbox)
9 title = r"""Plate Carree projection (CAR), oblique with:

10 $(\alpha_0,\delta_0,\phi_p) = (120^\circ,0^\circ,0^\circ)$
11 and obviously cdelt1 $>$ 0. (Cal. fig. 2)"""
12 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
13 ’CTYPE1’ : ’RA---CAR’,
14 ’CRVAL1’ : 120.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : 5.0,
15 ’CTYPE2’ : ’DEC--CAR’,
16 ’CRVAL2’ : 60.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
17 ’LONPOLE’ : 0.0,
18 }
19 X = numpy.arange(0,360.0,30.0)
20 Y = numpy.arange(-60,80,30.0)
21

22 f = maputils.FITSimage(externalheader=header)
23 annim = f.Annotatedimage(frame)
24 grat = annim.Graticule(header, axnum= (1,2),
25 wylim=(-90,90.0), wxlim=(0,360),
26 startx=X, starty=Y)
27

28 # Get the non-oblique version for the border
29 header[’CRVAL1’] = 0.0
30 header[’CRVAL2’] = 0.0
31 border = annim.Graticule(header, axnum= (1,2),
32 wylim=(-90,90.0), wxlim=(-180,180),
33 startx=(180-epsilon,-180+epsilon), starty=(-90,90))
34 lat_world = [-60, -30, 30, 60]
35 doplot(frame, fignum, annim, grat, title,
36 lat_world=lat_world, deltapx1=0, deltapy1=0,
37 markerpos=markerpos)

Fig.2: Plate Carree projection non-oblique (CAR)

To get a non oblique version of the previous system we need to change the value of δ0 (as given in CRVAL2) to 0
because for this projection φp = 0. In the header we changed CRVAL2 to 0.

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 # Fig 2 in celestial article (Calabretta et al) shows a positive cdelt1
6 fignum = 2 # id of script and plot
7 fig = plt.figure(figsize=figsize)
8 frame = fig.add_axes(plotbox)
9 title = r"""Plate Carree projection (CAR), non oblique with:

10 $(\alpha_0,\delta_0,\phi_p) = (120^\circ,0^\circ,0^\circ)$. (Cal. fig.2)"""
11 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
12 ’CTYPE1’ : ’RA---CAR’,
13 ’CRVAL1’ : 120.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : 5.0,
14 ’CTYPE2’ : ’DEC--CAR’,
15 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
16 ’LONPOLE’: 0.0
17 }

378 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig. 1: Plate Carree projection (CAR), oblique with:
(α0 ,δ0 ,φp) =(120 ◦ ,0 ◦ ,0 ◦)

and obviously cdelt1 > 0. (Cal. fig. 2)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90
◦

12
0
◦ 15

0◦

18
0◦

210◦

24
0◦

27
0◦ 30

0
◦

33
0
◦

−
60 ◦

−
30 ◦

30 ◦

60
◦

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

21.2. All sky plot gallery 379

Kapteyn Package Documentation, Release 2.2

18 X = numpy.arange(0,380.0,30.0);
19 Y = numpy.arange(-90,100,30.0) # i.e. include +90 also
20 f = maputils.FITSimage(externalheader=header)
21 annim = f.Annotatedimage(frame)
22 grat = annim.Graticule(header, axnum=(1,2),
23 wylim=(-90,90.0), wxlim=(0,360),
24 startx=X, starty=Y)
25 header[’CRVAL1’] = 0.0
26 border = annim.Graticule(header, axnum=(1,2),
27 wylim=(-90,90.0), wxlim=(-180,180),
28 startx=(180-epsilon,-180+epsilon, 0),
29 starty=(-90,0,90))
30 lat_world = range(-60, 61, 30)
31 lon_world = range(-30,301,30)
32 labkwargs0 = {’color’:’r’, ’va’:’top’, ’ha’:’right’}
33 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
34 doplot(frame, fignum, annim, grat, title,
35 lat_world=lat_world, lon_world=lon_world,
36 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
37 markerpos=markerpos)

Fig. 2: Plate Carree projection (CAR), non oblique with:
(α0 ,δ0 ,φp) =(120 ◦ ,0 ◦ ,0 ◦). (Cal. fig.2)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

33
0
◦

0
◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

18
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

−60 ◦

−30 ◦

0 ◦

30 ◦

60 ◦

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

380 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

21.2.3 Zenithal projections

Fig.3: Slant zenithal (azimuthal) perspective projection (AZP)

This figure shows a projection for which we need to specify extra parameters in the so called PV header keywords
as in: ’PV2_1’ : mu, ’PV2_2’ : gamma It uses a formula given in Calabretta’s article to get a value
for the border: lowval = (180.0/numpy.pi)*numpy.arcsin(-1.0/mu) + 0.00001

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 3
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 mu = 2.0; gamma = 30.0
9 title = r"""Slant zenithal (azimuthal) perspective projection (AZP) with:

10 $\gamma=30$ and $\mu=2$ (Cal. fig.6)"""
11 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
12 ’CTYPE1’ : ’RA---AZP’,
13 ’CRVAL1’ :0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
14 ’CTYPE2’ : ’DEC--AZP’,
15 ’CRVAL2’ : dec0, ’CRPIX2’ : 30, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
16 ’PV2_1’ : mu, ’PV2_2’ : gamma,
17 }
18 lowval = (180.0/numpy.pi)*numpy.arcsin(-1.0/mu) + 0.00001 # Calabretta eq.32
19 X = numpy.arange(0,360,15.0)
20 Y = numpy.arange(-30,89,15.0);
21 Y[0] = lowval # Add lowest possible Y to array
22 f = maputils.FITSimage(externalheader=header)
23 annim = f.Annotatedimage(frame)
24 grat = annim.Graticule(axnum=(1,2),
25 wylim=(lowval,90.0), wxlim=(0,360),
26 startx=X, starty=Y)
27 grat.setp_lineswcs0((0,90,180,270), lw=2)
28 grat.setp_lineswcs1(0, lw=2)
29 grat.setp_lineswcs1(lowval, lw=2, color=’g’)
30 lat_world = [0, 30, 60, 90]
31 lon_world = range(0,360,30)
32 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
33 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
34 addangle0 = -90
35 lat_constval= -5
36 doplot(frame, fignum, annim, grat, title,
37 lon_world=lon_world, lat_world=lat_world,
38 lat_constval=lat_constval,
39 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
40 addangle0=addangle0, markerpos=markerpos)

Fig.4: Slant zenithal perspective (SZP)

The plot shows two borders. We used different colors to distinguish them. The cyan colored border is cal-
culated with a border formula given in [Ref2] and the red border is calculated with a brute force method
wcsgrat.Graticule.scanborder() which uses a bisection method in X and Y direction to find the po-
sition of a transition between a valid world coordinate and an invalid coordinate. Obviously the border that is
plotted according to the algorithm is less accurate. The brute force method gives a more accurate border but needs
the user to enter start positions for the bisection.

1 from kapteyn import maputils
2 import numpy
3 from service import *

21.2. All sky plot gallery 381

Kapteyn Package Documentation, Release 2.2

Fig. 3: Slant zenithal (azimuthal) perspective projection (AZP) with:
γ=30 and µ=2 (Cal. fig.6)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦
30 ◦

60 ◦

90
◦

120
◦

150
◦

180◦

210◦

24
0◦

27
0
◦

30
0
◦

330
◦

0 ◦

30 ◦

60 ◦

382 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

4

5 fignum = 4
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 mu = 2.0; phi = 180.0; theta = 60
9 title = r"""Slant zenithal perspective (SZP) with:

10 ($\mu,\phi,\theta)=(2,180,60)$ with special algorithm for border (Cal. fig.7)"""
11 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
12 ’CTYPE1’ : ’RA---SZP’,
13 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
14 ’CTYPE2’ : ’DEC--SZP’,
15 ’CRVAL2’ : dec0, ’CRPIX2’ : 20, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
16 ’PV2_1’ : mu, ’PV2_2’ : phi, ’PV2_3’ : theta,
17 }
18 X = numpy.arange(0,360.0,30.0)
19 Y = numpy.arange(-90,90,15.0)
20 f = maputils.FITSimage(externalheader=header)
21 annim = f.Annotatedimage(frame)
22 grat = annim.Graticule(axnum=(1,2),
23 wylim=(-90.0,90.0), wxlim=(-180,180),
24 startx=X, starty=Y)
25

26 grat.setp_lineswcs0(0, lw=2)
27 grat.setp_lineswcs1(0, lw=2)
28 # Special care for the boundary
29 # The algorithm seems to work but is not very accurate
30 xp = -mu * numpy.cos(theta*numpy.pi/180.0)* numpy.sin(phi*numpy.pi/180.0)
31 yp = mu * numpy.cos(theta*numpy.pi/180.0)* numpy.cos(phi*numpy.pi/180.0)
32 zp = mu * numpy.sin(theta*numpy.pi/180.0) + 1.0
33 a = numpy.linspace(0.0,360.0,500)
34 arad = a*numpy.pi/180.0
35 rho = zp - 1.0
36 sigma = xp*numpy.sin(arad) - yp*numpy.cos(arad)
37 sq = numpy.sqrt(rho*rho+sigma*sigma)
38 omega = numpy.arcsin(1/sq)
39 psi = numpy.arctan2(sigma,rho)
40 thetaxrad = psi - omega
41 thetax = thetaxrad * 180.0/numpy.pi + 5
42 g = grat.addgratline(a, thetax, pixels=False)
43 grat.setp_linespecial(g, lw=2, color=’c’)
44 # Select two starting points for a scan in pixel to find borders
45 g2 = grat.scanborder(68.26,13,3,3)
46 g3 = grat.scanborder(30,66.3,3,3)
47 grat.setp_linespecial(g2, color=’r’, lw=1)
48 grat.setp_linespecial(g3, color=’r’, lw=1)
49 lon_world = range(0,360,30)
50 lat_world = [-60, -30, 30, 60, 90]
51 #labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
52 #labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
53

54 doplot(frame, fignum, annim, grat, title,
55 lon_world=lon_world, lat_world=lat_world,
56 # labkwargs0=labkwargs0, labkwargs1=labkwargs1,
57 markerpos=markerpos)

Fig.5: Gnomonic projection (TAN)

In a Gnomonic projection all great circles are projected as straight lines. This is nice example of a projec-
tion which diverges at certain latitude. We chose to draw the last border at 20 deg. and plotted it with
dashes using method wcsgrat.Graticule.setp_lineswcs1() as in grat.setp_lineswcs1(20,
color=’g’, linestyle=’--’) and identified the graticule line with its position i.e. latitude 20 deg.

21.2. All sky plot gallery 383

Kapteyn Package Documentation, Release 2.2

Fig. 4: Slant zenithal perspective (SZP) with:
(µ,φ,θ) =(2,180,60) with special algorithm for border (Cal. fig.7)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

30 ◦

60 ◦

90 ◦
120 ◦

150 ◦

18
0
◦ 210

◦

240
◦

270
◦

300
◦

330
◦30 ◦

60 ◦

384 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 5
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"Gnomonic projection (TAN) diverges at $\theta=0^\circ$. (Cal. fig.8)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---TAN’,
11 ’CRVAL1’ :0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -5.0,
12 ’CTYPE2’ : ’DEC--TAN’,
13 ’CRVAL2’ : dec0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
14 }
15 X = numpy.arange(0,360.0,15.0)
16 Y = [20, 30,45, 60, 75]
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule(axnum= (1,2),
20 wylim=(20.0,90.0), wxlim=(0,360),
21 startx=X, starty=Y)
22 lat_constval = 18
23 lon_world = range(0,360,30)
24 lat_world = [20, 30, 60, dec0]
25 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
26 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’, ’fontsize’:16}
27 grat.setp_lineswcs1(20, color=’g’, linestyle=’--’)
28 addangle0 = -90
29 doplot(frame, fignum, annim, grat, title,
30 lon_world=lon_world, lat_world=lat_world, lat_constval=lat_constval,
31 addangle0=addangle0, labkwargs0=labkwargs0, labkwargs1=labkwargs1,
32 markerpos=markerpos)

Fig.6: Stereographic projection (STG)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 6
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"Stereographic projection (STG) diverges at $\theta=-90^\circ$. (Cal. fig.9)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---STG’,
11 ’CRVAL1’ :0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -12.0,
12 ’CTYPE2’ : ’DEC--STG’,
13 ’CRVAL2’ : dec0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 12.0,
14 }
15 X = numpy.arange(0,360.0,30.0)
16 Y = numpy.arange(-60,90,10.0)
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule(axnum= (1,2),
20 wylim=(-60,90.0), wxlim=(0,360),
21 startx=X, starty=Y)
22 lat_constval = -62
23 lon_world = range(0,360,30)
24 lat_world = range(-50, 10, 10)
25 addangle0 = -90
26 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}

21.2. All sky plot gallery 385

Kapteyn Package Documentation, Release 2.2

Fig. 5: Gnomonic projection (TAN) diverges at θ=0 ◦ . (Cal. fig.8)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦

30 ◦

60 ◦

90
◦

120
◦

150
◦

180◦

210◦

24
0◦

27
0
◦

30
0
◦

330
◦20 ◦

30 ◦

60 ◦
90 ◦

386 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

27 doplot(frame, fignum, annim, grat, title,
28 lon_world=lon_world, lat_world=lat_world, lat_constval=lat_constval,
29 addangle0=addangle0, labkwargs1=labkwargs1, markerpos=markerpos)

Fig. 6: Stereographic projection (STG) diverges at θ=−90 ◦ . (Cal. fig.9)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦

30 ◦

60 ◦

90
◦

120
◦

150
◦

180◦

21
0◦

24
0◦

27
0
◦

30
0
◦

33
0
◦

−50 ◦

−40 ◦
−30 ◦
−20 ◦
−10 ◦

0 ◦

Fig.7: Slant orthographic projection (SIN)

The green colored border is calculated with a border formula given in [Ref2]

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 7
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 t1 = r"""Slant orthograpic projection (SIN) with: """
9 t2 = r"""$\xi=\frac{-1}{\sqrt{6}}$ and $\eta=\frac{1}{\sqrt{6}}$

10 (Cal. fig.10b)"""
11 title = t1 + t2
12 xi = -1/numpy.sqrt(6); eta = 1/numpy.sqrt(6)
13 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
14 ’CTYPE1’ : ’RA---SIN’,
15 ’CRVAL1’ :0.0, ’CRPIX1’ : 40, ’CUNIT1’ : ’deg’, ’CDELT1’ : -2,
16 ’CTYPE2’ : ’DEC--SIN’,
17 ’CRVAL2’ : dec0, ’CRPIX2’ : 30, ’CUNIT2’ : ’deg’, ’CDELT2’ : 2,

21.2. All sky plot gallery 387

Kapteyn Package Documentation, Release 2.2

18 ’PV2_1’ : xi, ’PV2_2’ : eta
19 }
20 X = numpy.arange(0,360.0,30.0)
21 Y = numpy.arange(-90,90,10.0)
22 f = maputils.FITSimage(externalheader=header)
23 annim = f.Annotatedimage(frame)
24 grat = annim.Graticule(axnum= (1,2),
25 wylim=(-90,90.0), wxlim=(0,360),
26 startx=X, starty=Y)
27 # Special care for the boundary (algorithm from Calabretta et al)
28 a = numpy.linspace(0,360,500)
29 arad = a*numpy.pi/180.0
30 thetaxrad = -numpy.arctan(xi*numpy.sin(arad)-eta*numpy.cos(arad))
31 thetax = thetaxrad * 180.0/numpy.pi + 0.000001 # Little shift to avoid NaN’s at border
32 g = grat.addgratline(a, thetax, pixels=False)
33 grat.setp_linespecial(g, color=’g’, lw=1)
34 lat_constval = 50
35 lon_constval = 180
36 lat_world = [0,30,60,dec0]
37 lon_world = range(0,360,30)
38 addangle0 = -90
39 addangle1 = -180
40 doplot(frame, fignum, annim, grat, title,
41 lon_world=lon_world, lat_world=lat_world,
42 lon_constval=lon_constval, lat_constval=lat_constval,
43 addangle0=addangle0, addangle1=addangle1, markerpos=markerpos)

Fig. 7: Slant orthograpic projection (SIN) with: ξ=−1√
6
 and η= 1√

6
(Cal. fig.10b)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30 ◦

60 ◦
90

◦

120
◦

150
◦

180◦

21
0◦

24
0◦

27
0◦

30
0
◦

33
0
◦

0 ◦

30 ◦

60 ◦

90 ◦

388 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig.8: Zenithal equidistant projection (ARC)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 8
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"Zenithal equidistant projection (ARC). (Cal. fig.11)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---ARC’,
11 ’CRVAL1’ :0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -5.0,
12 ’CTYPE2’ : ’DEC--ARC’,
13 ’CRVAL2’ : dec0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0
14 }
15 X = numpy.arange(0,360.0,30.0)
16 Y = numpy.arange(-90,90,30.0)
17 Y[0]= -89.999999 # Graticule for -90 exactly is not plotted
18 f = maputils.FITSimage(externalheader=header)
19 annim = f.Annotatedimage(frame)
20 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
21 startx=X, starty=Y)
22

23 addangle0 = -90
24 lat_constval = -87
25 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
26 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
27 doplot(frame, fignum, annim, grat, title,
28 lat_constval=lat_constval,
29 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
30 addangle0=addangle0, markerpos=markerpos)

Fig.9: Zenithal polynomial projection (ZPN)

Diverges at some latitude depending on the selected parameters in the PV keywords. Note that the inverse of the
polynomial cannot be expressed analytically and there is no function that can transform our marker at (120◦, 60◦)
to pixel coordinates.

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 9
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8

9 title = r"""Zenithal polynomial projection (ZPN) with PV2_n parameters 0 to 7.
10 (Cal. fig.12)"""
11 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
12 ’CTYPE1’ : ’RA---ZPN’,
13 ’CRVAL1’ :0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -5.0,
14 ’CTYPE2’ : ’DEC--ZPN’,
15 ’CRVAL2’ : dec0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
16 ’PV2_0’ : 0.05, ’PV2_1’ : 0.975, ’PV2_2’ : -0.807,
17 ’PV2_3’ : 0.337, ’PV2_4’ : -0.065,
18 ’PV2_5’ : 0.01, ’PV2_6’ : 0.003,’ PV2_7’ : -0.001
19 }
20 X = numpy.arange(0,360.0,30.0)
21 # Y diverges (this depends on selected parameters). Take save range.
22 Y = [-70, -60, -45, -30, 0, 15, 30, 45, 60]

21.2. All sky plot gallery 389

Kapteyn Package Documentation, Release 2.2

Fig. 8: Zenithal equidistant projection (ARC). (Cal. fig.11)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦

30 ◦

60 ◦

90
◦

120
◦

150
◦

180◦

210◦

24
0◦

27
0
◦

30
0
◦

33
0
◦

−90 ◦

−60 ◦

−30 ◦

0 ◦

30 ◦

60 ◦

390 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

23 f = maputils.FITSimage(externalheader=header)
24 annim = f.Annotatedimage(frame)
25 grat = annim.Graticule(axnum= (1,2), wylim=(-70,90.0), wxlim=(0,360),
26 startx=X, starty=Y)
27 # Configure annotations
28 lat_constval = -72
29 lat_world = [-60, -30, 0, 60, dec0]
30 addangle0 = -90
31 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
32 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
33 # No marker position because this can not be evaluated for this projection
34 # (which has no inverse),
35 doplot(frame, fignum, annim, grat, title,
36 lat_world=lat_world,
37 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
38 lat_constval=lat_constval, addangle0=addangle0)

Fig. 9: Zenithal polynomial projection (ZPN) with PV2_n parameters 0 to 7.
(Cal. fig.12)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦

30 ◦

60 ◦

90
◦

120
◦

150
◦

180◦

210◦

24
0◦

27
0
◦

30
0
◦

330
◦

−60 ◦

−30 ◦

0 ◦
60 ◦
90 ◦

Fig.10: Zenith equal area projection (ZEA)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 10

21.2. All sky plot gallery 391

Kapteyn Package Documentation, Release 2.2

6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"Zenith equal area projection (ZEA). (Cal. fig.13)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---ZEA’,
11 ’CRVAL1’ :0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -3.0,
12 ’CTYPE2’ : ’DEC--ZEA’,
13 ’CRVAL2’ : dec0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 3.0
14 }
15 X = numpy.arange(0,360.0,30.0)
16 Y = numpy.arange(-90,90,30.0)
17 Y[0]= -dec0+0.00000001
18 f = maputils.FITSimage(externalheader=header)
19 annim = f.Annotatedimage(frame)
20 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
21 startx=X, starty=Y)
22 # Set attributes for graticule line at lat = 0
23 grat.setp_lineswcs1(position=0, color=’g’, lw=2)
24 lat_world = [-dec0, -30, 30, 60]
25 addangle0 = -90
26 lat_constval = 5.0
27 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
28 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
29 doplot(frame, fignum, annim, grat, title,
30 lat_world=lat_world, lat_constval=lat_constval,
31 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
32 addangle0=addangle0, markerpos=markerpos)

Fig.11: Airy projection (AIR)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 11
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"Airy projection (AIR) with $\theta_b = 45^\circ$. (Cal. fig.14)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---AIR’,
11 ’CRVAL1’ :0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
12 ’CTYPE2’ : ’DEC--AIR’,
13 ’CRVAL2’ : dec0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0
14 }
15 X = numpy.arange(0,360.0,30.0)
16 Y = numpy.arange(-30,90,10.0)
17 # Diverges at dec = -90, start at dec = -30
18 f = maputils.FITSimage(externalheader=header)
19 annim = f.Annotatedimage(frame)
20 grat = annim.Graticule(axnum= (1,2), wylim=(-30,90.0), wxlim=(0,360),
21 startx=X, starty=Y)
22 lat_world = [-30, -20, -10, 10, 40, 70]
23 addangle0 = -90
24 lat_constval = 4.0
25 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
26 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
27 doplot(frame, fignum, annim, grat, title,
28 lat_world=lat_world, lat_constval=lat_constval,
29 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
30 addangle0=addangle0, markerpos=markerpos)

392 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig. 10: Zenith equal area projection (ZEA). (Cal. fig.13)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦

30 ◦

60 ◦

90
◦

120
◦

150
◦

180◦

210◦

24
0◦

27
0
◦

30
0
◦

330
◦

−90 ◦

−30 ◦

30 ◦

60 ◦

21.2. All sky plot gallery 393

Kapteyn Package Documentation, Release 2.2

Fig. 11: Airy projection (AIR) with θb =45 ◦ . (Cal. fig.14)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦

30 ◦

60 ◦

90
◦

120
◦

150
◦

180◦

210◦

24
0◦

27
0
◦

30
0
◦

330
◦

−30 ◦

−20 ◦
−10 ◦

10 ◦

40 ◦

70 ◦

394 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

21.2.4 Cylindrical Projections

The native coordinate system origin of a Cylindrical projection coincides with the reference point. Therefore we
set (φ0, θ0) = (0, 0)

Fig.12: Gall’s stereographic projection (CYP)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 12
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"""Gall’s stereographic projection (CYP) with
9 $\mu = 1$ and $\theta_x = 45^\circ$. (Cal. fig.16)"""

10 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
11 ’CTYPE1’ : ’RA---CYP’,
12 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -3.5,
13 ’CTYPE2’ : ’DEC--CYP’,
14 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 3.5,
15 ’PV2_1’ : 1, ’PV2_2’ : numpy.sqrt(2.0)/2.0
16 }
17 X = cylrange()
18 Y = numpy.arange(-90,100,30.0) # i.e. include +90 also
19 f = maputils.FITSimage(externalheader=header)
20 annim = f.Annotatedimage(frame)
21 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
22 startx=X, starty=Y)
23 lat_world = [-90, -60,-30, 30, 60, dec0]
24 # Trick to get the right longs.
25 w1 = numpy.arange(0,179,30.0)
26 w2 = numpy.arange(210,360,30.0)
27 lon_world = numpy.concatenate((w1, w2))
28 labkwargs0 = {’color’:’r’, ’va’:’bottom’, ’ha’:’center’}
29 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’center’}
30 doplot(frame, fignum, annim, grat, title,
31 lon_world=lon_world, lat_world=lat_world,
32 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
33 lon_fmt=’Hms’, markerpos=markerpos)

Fig.13: Lambert’s equal area projection (CEA)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 13
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"Lambert’s equal area projection (CEA) with $\lambda = 1$. (Cal. fig.17)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---CEA’,
11 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -5.0,
12 ’CTYPE2’ : ’DEC--CEA’,
13 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
14 ’PV2_1’ : 1
15 }
16 X = cylrange()
17 Y = numpy.arange(-90,100,30.0) # i.e. include +90 also

21.2. All sky plot gallery 395

Kapteyn Package Documentation, Release 2.2

Fig. 12: Gall's stereographic projection (CYP) with
µ=1 and θx =45 ◦ . (Cal. fig.16)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0h2h4h6h8h10
h

14
h

16
h

18
h

20
h

22
h

−90 ◦

−60 ◦

−30 ◦

30 ◦

60 ◦

90 ◦

396 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

18 f = maputils.FITSimage(externalheader=header)
19 annim = f.Annotatedimage(frame)
20 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
21 startx=X, starty=Y)
22 lat_world = [-60,-30, 30, 60]
23 #lon_world = range(0,360,30)
24 #lon_world.append(180+epsilon)
25 w1 = numpy.arange(0,179,30.0)
26 w2 = numpy.arange(180,360,30.0)
27 w2[0] = 180 + epsilon
28 lon_world = numpy.concatenate((w1, w2))
29 labkwargs0 = {’color’:’r’, ’va’:’bottom’, ’ha’:’right’}
30 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’right’}
31 doplot(frame, fignum, annim, grat, title,
32 lon_world=lon_world, lat_world=lat_world,
33 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
34 deltapy1=0.5,
35 markerpos=markerpos)

Fig. 13: Lambert's equal area projection (CEA) with λ=1. (Cal. fig.17)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

18
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

33
0
◦

−60 ◦

−30 ◦

30 ◦

60 ◦

Fig.14: Plate Carree projection (CAR)

1 from kapteyn import maputils
2 import numpy
3 from service import *

21.2. All sky plot gallery 397

Kapteyn Package Documentation, Release 2.2

4

5 fignum = 14
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = "Plate Carree projection (CAR). (Cal. fig.18)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---CAR’,
11 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
12 ’CTYPE2’ : ’DEC--CAR’,
13 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
14 }
15 X = cylrange()
16 Y = numpy.arange(-90,100,30.0) # i.e. include +90 also
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
20 startx=X, starty=Y)
21 lat_world = [-90, -60,-30, 0, 30, 60, dec0]
22 # Remove the left 180 deg and print the right 180 deg instead
23 w1 = numpy.arange(0,179,30.0)
24 w2 = numpy.arange(180,360,30.0)
25 w2[0] = 180 + epsilon
26 lon_world = numpy.concatenate((w1, w2))
27 labkwargs0 = {’color’:’r’, ’va’:’top’, ’ha’:’right’}
28 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
29 doplot(frame, fignum, annim, grat, title,
30 lon_world=lon_world, lat_world=lat_world,
31 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
32 markerpos=markerpos)

Fig.15: Mercator’s projection (MER)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 15
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = "Mercator’s projection (MER). (Cal. fig.19)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---MER’,
11 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -5.0,
12 ’CTYPE2’ : ’DEC--MER’,
13 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
14 }
15 X = cylrange()
16 Y = numpy.arange(-80,90,10.0) # Diverges at +-90 so exclude these values
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule(header, axnum= (1,2), wylim=(-80,80.0), wxlim=(0,360),
20 startx=X, starty=Y)
21 grat.setp_lineswcs1((-80,80), linestyle=’--’, color=’g’)
22 grat.setp_lineswcs0(0, lw=2)
23 grat.setp_lineswcs1(0, lw=2)
24 lat_world = [-60,-30, 30, 60]
25 # Remove the left 180 deg and print the right 180 deg instead
26 w1 = numpy.arange(0,179,30.0)
27 w2 = numpy.arange(180,360,30.0)
28 w2[0] = 180 + epsilon
29 lon_world = numpy.concatenate((w1, w2))

398 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig. 14: Plate Carree projection (CAR). (Cal. fig.18)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

18
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

33
0
◦

−90 ◦

−60 ◦

−30 ◦

0 ◦

30 ◦

60 ◦

90 ◦

21.2. All sky plot gallery 399

Kapteyn Package Documentation, Release 2.2

30 labkwargs0 = {’color’:’r’, ’va’:’bottom’, ’ha’:’right’}
31 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’right’}
32 doplot(frame, fignum, annim, grat, title,
33 lon_world=lon_world, lat_world=lat_world,
34 deltapy1=0.5,
35 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
36 markerpos=markerpos)

Fig. 15: Mercator's projection (MER). (Cal. fig.19)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

18
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

33
0
◦

−60 ◦

−30 ◦

30 ◦

60 ◦

21.2.5 Pseudocylindrical projections

Fig.16: Sanson-Flamsteed projection (SFL)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 16
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = "Sanson-Flamsteed projection (SFL). (Cal. fig.20)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---SFL’,
11 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
12 ’CTYPE2’ : ’DEC--SFL’,

400 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

13 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
14 }
15 X = cylrange()
16 Y = numpy.arange(-60,90,30.0)
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
20 startx=X, starty=Y)
21 grat.setp_lineswcs0(0, lw=2)
22 grat.setp_lineswcs1(0, lw=2)
23 lat_world = [-60,-30, 0, 30, 60]
24 # Remove the left 180 deg and print the right 180 deg instead
25 w1 = numpy.arange(0,151,30.0)
26 w2 = numpy.arange(210,360,30.0)
27 lon_world = numpy.concatenate((w1, w2))
28 labkwargs0 = {’color’:’r’, ’va’:’bottom’, ’ha’:’right’}
29 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
30 doplot(frame, fignum, annim, grat, title,
31 lon_world=lon_world, lat_world=lat_world,
32 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
33 markerpos=markerpos)

Fig. 16: Sanson-Flamsteed projection (SFL). (Cal. fig.20)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

33
0
◦

−60 ◦

−30 ◦

0 ◦

30 ◦

60 ◦

21.2. All sky plot gallery 401

Kapteyn Package Documentation, Release 2.2

Fig.17: Parabolic projection (PAR)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 17
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = "Parabolic projection (PAR). (Cal. fig.21)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---PAR’,
11 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
12 ’CTYPE2’ : ’DEC--PAR’,
13 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
14 }
15 X = cylrange()
16 Y = numpy.arange(-60,90,30.0)
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
20 startx=X, starty=Y)
21 grat.setp_lineswcs0(0, lw=2)
22 grat.setp_lineswcs1(0, lw=2)
23 lat_world = [-60,-30, 0, 30, 60]
24 # Remove the left 180 deg and print the right 180 deg instead
25 w1 = numpy.arange(0,151,30.0)
26 w2 = numpy.arange(210,360,30.0)
27 lon_world = numpy.concatenate((w1, w2))
28 labkwargs0 = {’color’:’r’, ’va’:’bottom’, ’ha’:’right’}
29 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
30 doplot(frame, fignum, annim, grat, title,
31 lon_world=lon_world, lat_world=lat_world,
32 lat_constval = 0.0,
33 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
34 markerpos=markerpos)

Fig.18: Mollweide’s projection (MOL)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 18
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title= "Mollweide’s projection (MOL). (Cal. fig.22)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---MOL’,
11 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
12 ’CTYPE2’ : ’DEC--MOL’,
13 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
14 }
15 X = cylrange()
16 Y = numpy.arange(-60,90,30.0) # Diverges at +-90 so exclude these values
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
20 startx=X, starty=Y)
21 grat.setp_lineswcs0(0, lw=2)
22 grat.setp_lineswcs1(0, lw=2)

402 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig. 17: Parabolic projection (PAR). (Cal. fig.21)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

33
0
◦

−60 ◦

−30 ◦

0 ◦

30 ◦

60 ◦

21.2. All sky plot gallery 403

Kapteyn Package Documentation, Release 2.2

23 lat_world = [-60,-30, 0, 30, 60]
24 # Remove the left 180 deg and print the right 180 deg instead
25 w1 = numpy.arange(0,151,30.0)
26 w2 = numpy.arange(210,360,30.0)
27 lon_world = numpy.concatenate((w1, w2))
28 labkwargs0 = {’color’:’r’, ’va’:’bottom’, ’ha’:’right’}
29 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
30 doplot(frame, fignum, annim, grat, title,
31 lon_world=lon_world, lat_world=lat_world,
32 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
33 markerpos=markerpos)

Fig. 18: Mollweide's projection (MOL). (Cal. fig.22)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

33
0
◦

−60 ◦

−30 ◦

0 ◦

30 ◦

60 ◦

Fig.19: Hammer Aitoff projection (AIT)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 19
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = "Hammer Aitoff projection (AIT). (Cal. fig.23)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---AIT’,

404 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

11 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
12 ’CTYPE2’ : ’DEC--AIT’,
13 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
14 }
15 X = cylrange()
16 Y = numpy.arange(-60,90,30.0)
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
20 startx=X, starty=Y)
21 grat.setp_lineswcs0(0, lw=2)
22 grat.setp_lineswcs1(0, lw=2)
23 lat_world = [-60,-30, 0, 30, 60]
24 # Remove the left 180 deg and print the right 180 deg instead
25 w1 = numpy.arange(0,151,30.0)
26 w2 = numpy.arange(210,360,30.0)
27 lon_world = numpy.concatenate((w1, w2))
28 labkwargs0 = {’color’:’r’, ’va’:’bottom’, ’ha’:’right’}
29 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
30 doplot(frame, fignum, annim, grat, title,
31 lon_world=lon_world, lat_world=lat_world,
32 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
33 markerpos=markerpos)

Fig. 19: Hammer Aitoff projection (AIT). (Cal. fig.23)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

3
0
◦

6
0
◦

9
0
◦

1
20

◦

1
50

◦

2
10

◦

2
40

◦

2
70

◦

3
00

◦

3
30

◦

−60 ◦

−30 ◦

0 ◦

30 ◦

60 ◦

21.2. All sky plot gallery 405

Kapteyn Package Documentation, Release 2.2

21.2.6 Conic projections

Fig.20: Conic perspective projection (COP)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 20
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 theta_a = 45
9 t1 = 20.0; t2 = 70.0

10 eta = abs(t1-t2)/2.0
11 title = r"""Conic perspective projection (COP) with:
12 $\theta_a=45^\circ$, $\theta_1=20^\circ$ and $\theta_2=70^\circ$. (Cal. fig.24)"""
13 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
14 ’CTYPE1’ : ’RA---COP’,
15 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -5.5,
16 ’CTYPE2’ : ’DEC--COP’,
17 ’CRVAL2’ : theta_a, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.5,
18 ’PV2_1’ : theta_a, ’PV2_2’ : eta
19 }
20 X = numpy.arange(0,370.0,30.0); X[-1] = 180+epsilon
21 Y = numpy.arange(-30,90,15.0) # Diverges at theta_a +- 90.0
22 f = maputils.FITSimage(externalheader=header)
23 annim = f.Annotatedimage(frame)
24 grat = annim.Graticule(axnum= (1,2), wylim=(-30,90.0), wxlim=(0,360),
25 startx=X, starty=Y)
26 grat.setp_lineswcs1(-30, linestyle=’--’, color=’g’)
27 grat.setp_lineswcs0(0, lw=2)
28 grat.setp_lineswcs1(0, lw=2)
29 lon_world = range(0,360,30)
30 lon_world.append(180+epsilon)
31 lat_world = [-30, 0, 30, 60]
32 addangle0 = -90
33 lat_constval = -31
34 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
35 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’left’}
36 doplot(frame, fignum, annim, grat, title,
37 lon_world=lon_world, lat_world=lat_world,
38 lat_constval=lat_constval,
39 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
40 addangle0=addangle0, markerpos=markerpos)

Fig.21: Conic equal area projection (COE)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 21
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 theta_a = -45
9 t1 = -20.0; t2 = -70.0

10 eta = abs(t1-t2)/2.0
11 title = r"""Conic equal area projection (COE) with:
12 $\theta_a=-45^\circ$, $\theta_1=-20^\circ$ and $\theta_2=-70^\circ$. (Cal. fig.25)"""
13 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
14 ’CTYPE1’ : ’RA---COE’,

406 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig. 20: Conic perspective projection (COP) with:
θa =45 ◦ , θ1 =20 ◦ and θ2 =70 ◦ . (Cal. fig.24)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦
30 ◦

60 ◦

90 ◦

120
◦

150
◦

180
◦

21
0◦

24
0
◦

27
0
◦

30
0
◦

330
◦

18
0◦

−30 ◦

0 ◦

30 ◦

60 ◦

21.2. All sky plot gallery 407

Kapteyn Package Documentation, Release 2.2

15 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
16 ’CTYPE2’ : ’DEC--COE’,
17 ’CRVAL2’ : theta_a, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
18 ’PV2_1’ : theta_a, ’PV2_2’ : eta
19 }
20 X = cylrange()
21 Y = numpy.arange(-90,91,30.0); Y[-1] = dec0
22 f = maputils.FITSimage(externalheader=header)
23 annim = f.Annotatedimage(frame)
24 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
25 startx=X, starty=Y)
26 grat.setp_lineswcs0(0, lw=2)
27 grat.setp_lineswcs1(0, lw=2)
28 lon_world = range(0,360,30)
29 lon_world.append(180+epsilon)
30 lat_constval = 10
31 lat_world = [-60,-30,0,30,60]
32 addangle0 = -90.0
33 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
34 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
35 doplot(frame, fignum, annim, grat, title,
36 lon_world=lon_world, lat_world=lat_world,
37 lat_constval=lat_constval,
38 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
39 addangle0=addangle0, markerpos=markerpos)

Fig. 21: Conic equal area projection (COE) with:
θa =−45 ◦ , θ1 =−20 ◦ and θ2 =−70 ◦ . (Cal. fig.25)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

18
0◦

210
◦

240
◦

270 ◦

300 ◦

330 ◦

180
◦

−60 ◦

−30 ◦

0 ◦

30 ◦
60 ◦

408 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig.22: Conic equidistant projection (COD)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 22
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 theta_a = 45
9 t1 = 20.0; t2 = 70.0

10 eta = abs(t1-t2)/2.0
11 title = r"""Conic equidistant projection (COD) with:
12 $\theta_a=45^\circ$, $\theta_1=20^\circ$ and $\theta_2=70^\circ$. (Cal. fig.26)"""
13 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
14 ’CTYPE1’ : ’RA---COD’,
15 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -5.0,
16 ’CTYPE2’ : ’DEC--COD’,
17 ’CRVAL2’ : theta_a, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
18 ’PV2_1’ : theta_a, ’PV2_2’ : eta
19 }
20 X = cylrange()
21 Y = numpy.arange(-90,91,15)
22 f = maputils.FITSimage(externalheader=header)
23 annim = f.Annotatedimage(frame)
24 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
25 startx=X, starty=Y)
26 grat.setp_lineswcs0(0, lw=2)
27 grat.setp_lineswcs1(0, lw=2)
28 lon_world = range(0,360,30)
29 lon_world.append(180.0+epsilon)
30 addangle0 = -90.0
31 lat_constval = -86
32 lat_world = [-60, -30, 0, 30, 60]
33 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
34 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
35 doplot(frame, fignum, annim, grat, title,
36 lon_world=lon_world, lat_world=lat_world,
37 lat_constval=lat_constval,
38 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
39 addangle0=addangle0, markerpos=markerpos)

Fig.23: Conic orthomorfic projection (COO)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 23
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 theta_a = 45
9 t1 = 20.0; t2 = 70.0

10 eta = abs(t1-t2)/2.0
11 title = r"""Conic orthomorfic projection (COO) with:
12 $\theta_a=45^\circ$, $\theta_1=20^\circ$ and $\theta_2=70^\circ$. (Cal. fig.27)"""
13 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
14 ’CTYPE1’ : ’RA---COO’,
15 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
16 ’CTYPE2’ : ’DEC--COO’,
17 ’CRVAL2’ : theta_a, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,

21.2. All sky plot gallery 409

Kapteyn Package Documentation, Release 2.2

Fig. 22: Conic equidistant projection (COD) with:
θa =45 ◦ , θ1 =20 ◦ and θ2 =70 ◦ . (Cal. fig.26)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦
30 ◦

60 ◦

90 ◦

120
◦

150
◦

180
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

330
◦

18
0◦

−60 ◦

−30 ◦

0 ◦

30 ◦

60 ◦

410 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

18 ’PV2_1’ : theta_a, ’PV2_2’ : eta
19 }
20 X = cylrange()
21 Y = numpy.arange(-30,90,30.0) # Diverges at theta_a= -90.0
22 f = maputils.FITSimage(externalheader=header)
23 annim = f.Annotatedimage(frame)
24 grat = annim.Graticule(axnum= (1,2), wylim=(-30,90.0), wxlim=(0,360),
25 startx=X, starty=Y)
26 grat.setp_lineswcs1(-30, linestyle=’--’, color=’g’)
27 grat.setp_lineswcs0(0, lw=2)
28 grat.setp_lineswcs1(0, lw=2)
29 lon_world = range(0,360,30)
30 lon_world.append(180.0+epsilon)
31 lat_world = [-30, 30, 60]
32 addangle0 = -90.0
33 lat_constval = 10
34 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
35 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
36 doplot(frame, fignum, annim, grat, title,
37 lon_world=lon_world, lat_world=lat_world,
38 lat_constval=lat_constval,
39 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
40 addangle0=addangle0, markerpos=markerpos)

Fig. 23: Conic orthomorfic projection (COO) with:
θa =45 ◦ , θ1 =20 ◦ and θ2 =70 ◦ . (Cal. fig.27)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0 ◦
30 ◦

60 ◦

90 ◦

120
◦

150
◦

180
◦

21
0◦

24
0
◦

27
0
◦

30
0
◦

330
◦

18
0◦

−30 ◦

30 ◦

60 ◦

21.2. All sky plot gallery 411

Kapteyn Package Documentation, Release 2.2

21.2.7 Polyconic and pseudoconic projections

Fig.24: Bonne’s equal area projection (BON)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 24
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 theta1 = 45
9 title = r"Bonne’s equal area projection (BON) with $\theta_1=45^\circ$. (Cal. fig.28)"

10 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
11 ’CTYPE1’ : ’RA---BON’,
12 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
13 ’CTYPE2’ : ’DEC--BON’,
14 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
15 ’PV2_1’ : theta1
16 }
17 X = polrange()
18 Y = numpy.arange(-75,90,15.0)
19 f = maputils.FITSimage(externalheader=header)
20 annim = f.Annotatedimage(frame)
21 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
22 startx=X, starty=Y)
23 grat.setp_lineswcs0(0, lw=2)
24 grat.setp_lineswcs1(0, lw=2)
25 w1 = numpy.arange(0,151,30.0)
26 w2 = numpy.arange(210,360,30.0)
27 lon_world = numpy.concatenate((w1, w2))
28 lat_world = [-60, -30, 30, 60]
29 lat_constval = 10
30 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
31 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
32 doplot(frame, fignum, annim, grat, title,
33 lon_world=lon_world, lat_world=lat_world,
34 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
35 lat_constval=lat_constval, markerpos=markerpos)

Fig.25: Polyconic projection (PCO)

Near the poles we have a problem to draw graticule lines at constant latitude. With the defaults for the Graticule
constructor we would observe a horizontal line that connects longitudes -180 and 180 deg. near the poles. From
a plotting point of view the range -180 to 180 deg. means a closed shape (e.g. a circle near a pole). To prevent
horizontal jumps in such plots we defined a jump in terms of pixels. If the distance between two points is much
bigger than the pixel sampling then it must be a jump. However, in some projections (like this one), the jump near
the pole becomes so small that we cannot avoid a horizontal connection. By increasing the number of samples
in parameter gridsamples we force the size of a jump relatively to be bigger. With a value gridsamples=2000 we
avoid the unwanted connections.

The reason that sometimes line sections are connected which are not supposed to be connected has to do with the
fact that in wcsgrat the range in world coordinates is increased a little bit to be sure we cross borders so that we
are able to plot ticks. But in the gaps (see the plot below) this can result in the fact that we start to sample on the
wrong side of the gap. Then there is a gap and the sampling continues on the other side of the gap. The algorithm
thinks these points should be connected because the gap is too small to be detected as a jump.

Note that we could also have decreased the size of the range in world coordinates in longitude (e.g.
wxlim=(-179.9, 179.9)) but this results in small gaps near all borders.

412 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig. 24: Bonne's equal area projection (BON) with θ1 =45 ◦ . (Cal. fig.28)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦30
◦60

◦

90
◦

12
0
◦

15
0
◦

21
0◦

24
0◦

27
0◦

30
0
◦

33
0
◦

−60 ◦

−30 ◦

30 ◦

60 ◦

21.2. All sky plot gallery 413

Kapteyn Package Documentation, Release 2.2

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 25
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"Polyconic projection (PCO). (Cal. fig.29)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---PCO’,
11 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -5.0,
12 ’CTYPE2’ : ’DEC--PCO’,
13 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0
14 }
15 X = polrange()
16 Y = numpy.arange(-75,90,15.0)
17 # !!!!!! Let the world coordinates for constant latitude run from 180,180
18 # instead of 0,360. Then one prevents the connection between the two points
19 # 179.9999 and 180.0001 which is a jump, but smaller than the definition of
20 # a rejected jump in the wcsgrat module.
21 # Also we need to increase the value of ’gridsamples’ to
22 # increase the relative size of a jump.
23 f = maputils.FITSimage(externalheader=header)
24 annim = f.Annotatedimage(frame)
25 grat = annim.Graticule(axnum= (1,2),
26 wylim=(-90,90.0), wxlim=(-180,180),
27 startx=X, starty=Y, gridsamples=2000)
28 grat.setp_lineswcs0(0, lw=2)
29 grat.setp_lineswcs1(0, lw=2)
30 # Remove the left 180 deg and print the right 180 deg instead
31 w1 = numpy.arange(0,151,30.0)
32 w2 = numpy.arange(180,360,30.0)
33 w2[0] = 180 + epsilon
34 lon_world = numpy.concatenate((w1, w2))
35 lat_world = [-60, -30, 30, 60]
36 labkwargs0 = {’color’:’r’, ’va’:’bottom’, ’ha’:’right’}
37 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
38 doplot(frame, fignum, annim, grat, title,
39 lon_world=lon_world, lat_world=lat_world,
40 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
41 markerpos=markerpos)

21.2.8 Quad cube projections projections

Fig.26: Tangential spherical cube projection (TSC)

For all the quad cube projections we plotted a border by converting edges in world coordinates into pixel coordi-
nates and connected them in the right order.

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 26
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"Tangential spherical cube projection (TSC). (Cal. fig.30)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---TSC’,
11 ’CRVAL1’ : 0.0, ’CRPIX1’ : 85, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
12 ’CTYPE2’ : ’DEC--TSC’,

414 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig. 25: Polyconic projection (PCO). (Cal. fig.29)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

18
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

33
0
◦

−60 ◦

−30 ◦

30 ◦

60 ◦

21.2. All sky plot gallery 415

Kapteyn Package Documentation, Release 2.2

13 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0
14 }
15 X = numpy.arange(0,370.0,15.0)
16 Y = numpy.arange(-75,90,15.0)
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180),
20 startx=X, starty=Y)
21 grat.setp_lineswcs0(0, lw=2)
22 grat.setp_lineswcs1(0, lw=2)
23 # Make a polygon for the border
24 perimeter = getperimeter(grat)
25 lon_world = range(0,360,30)
26 lat_world = [-dec0, -60, -30, 0, 30, 60, dec0]
27 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
28 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
29 doplot(frame, fignum, annim, grat, title,
30 lon_world=lon_world, lat_world=lat_world,
31 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
32 perimeter=perimeter, markerpos=markerpos)

Fig. 26: Tangential spherical cube projection (TSC). (Cal. fig.30)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

3
0
◦

6
0
◦

9
0
◦

12
0
◦

15
0
◦

18
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

33
0
◦

−90 ◦

−60 ◦

−30 ◦

0 ◦

30 ◦

60 ◦

90 ◦

416 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig.27: COBE quadrilateralized spherical cube projection (CSC)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 27
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"COBE quadrilateralized spherical cube projection (CSC). (Cal. fig.31)"
9 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,

10 ’CTYPE1’ : ’RA---CSC’,
11 ’CRVAL1’ : 0.0, ’CRPIX1’ : 85, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
12 ’CTYPE2’ : ’DEC--CSC’,
13 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0
14 }
15 X = numpy.arange(0,370.0,15.0)
16 Y = numpy.arange(-75,90,15.0)
17 f = maputils.FITSimage(externalheader=header)
18 annim = f.Annotatedimage(frame)
19 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180),
20 startx=X, starty=Y)
21 grat.setp_lineswcs0(0, lw=2)
22 grat.setp_lineswcs1(0, lw=2)
23 # Make a polygon for the border
24 perimeter = getperimeter(grat)
25 lon_world = range(0,360,30)
26 lat_world = [-dec0, -60, -30, 0, 30, 60, dec0]
27 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
28 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’right’}
29 doplot(frame, fignum, annim, grat, title,
30 lon_world=lon_world, lat_world=lat_world,
31 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
32 perimeter=perimeter, markerpos=markerpos)

Fig.28: Quadrilateralized spherical cube projection (QSC)

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 28
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"""Quadrilateralized spherical cube projection (QSC).
9 (Cal. fig.32) with coastlines"""

10 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
11 ’CTYPE1’ : ’RA---QSC’,
12 ’CRVAL1’ : 0.0, ’CRPIX1’ : 85, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
13 ’CTYPE2’ : ’DEC--QSC’,
14 ’CRVAL2’ : 0.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
15 }
16 X = numpy.arange(-180,180,15)
17 Y = numpy.arange(-75,90,15.0)
18 f = maputils.FITSimage(externalheader=header)
19 annim = f.Annotatedimage(frame)
20 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
21 startx=X, starty=Y)
22 grat.setp_lineswcs0(0, lw=2)
23 grat.setp_lineswcs1(0, lw=2)
24 lon_world = range(0,360,30)

21.2. All sky plot gallery 417

Kapteyn Package Documentation, Release 2.2

Fig. 27: COBE quadrilateralized spherical cube projection (CSC). (Cal. fig.31)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

18
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

33
0
◦

−90 ◦

−60 ◦

−30 ◦

0 ◦

30 ◦

60 ◦

90 ◦

418 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

25 lat_world = [-60, -30, 30, 60]
26 perimeter = getperimeter(grat)
27 labkwargs0 = {’color’:’g’, ’va’:’center’, ’ha’:’center’}
28 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’right’}
29 doplot(frame, fignum, annim, grat, title,
30 lon_world=lon_world, lat_world=lat_world,
31 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
32 perimeter=perimeter, plotdata=True)

Fig. 28: Quadrilateralized spherical cube projection (QSC).
 (Cal. fig.32) with coastlines

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

18
0
◦

21
0
◦

24
0
◦

27
0
◦

30
0
◦

33
0
◦

−60 ◦

−30 ◦

30 ◦

60 ◦

21.2.9 Oblique projections

Fig.29: Zenith equal area projection (ZEA) oblique

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 29
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"""Zenith equal area projection (ZEA) oblique with:
9 $\alpha_p=0^\circ$, $\delta_p=30^\circ$ and $\phi_p=180^\circ$. (Cal. fig.33a)"""

10 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
11 ’CTYPE1’ : ’RA---ZEA’,

21.2. All sky plot gallery 419

Kapteyn Package Documentation, Release 2.2

12 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -3.5,
13 ’CTYPE2’ : ’DEC--ZEA’,
14 ’CRVAL2’ : 30.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 3.5,
15 }
16 X = numpy.arange(0,360,15.0)
17 Y = numpy.arange(-75,90,15.0)
18 f = maputils.FITSimage(externalheader=header)
19 annim = f.Annotatedimage(frame)
20 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
21 startx=X, starty=Y)
22 grat.setp_lineswcs0(0, lw=2)
23 grat.setp_lineswcs1(0, lw=2)
24 lon_world = range(0,360,30)
25 lat_world = [-60, -30, 30, 60]
26 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
27 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’right’}
28 doplot(frame, fignum, annim, grat, title,
29 lon_world=lon_world, lat_world=lat_world,
30 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
31 markerpos=markerpos)

Fig. 29: Zenith equal area projection (ZEA) oblique with:
αp =0 ◦ , δp =30 ◦ and φp =180 ◦ . (Cal. fig.33a)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦60

◦

90
◦

12
0
◦

15
0
◦

18
0
◦

21
0◦

24
0◦

27
0◦

30
0
◦

33
0
◦

−60 ◦

−30 ◦

30 ◦

60 ◦

420 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig.30: Zenith equal area projection (ZEA) oblique

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 30
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"""Zenith equal area projection (ZEA) oblique with:
9 $\alpha_p=45^\circ$, $\delta_p=30^\circ$ and $\phi_p=180^\circ$. (Cal. fig.33b)"""

10 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
11 ’CTYPE1’ : ’RA---ZEA’,
12 ’CRVAL1’ :45.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -3.5,
13 ’CTYPE2’ : ’DEC--ZEA’,
14 ’CRVAL2’ : 30.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 3.5
15 }
16 X = numpy.arange(0,360.0,15.0)
17 Y = numpy.arange(-75,90,15.0)
18 f = maputils.FITSimage(externalheader=header)
19 annim = f.Annotatedimage(frame)
20 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
21 startx=X, starty=Y)
22 grat.setp_lineswcs0((0,180), color=’g’, lw=2)
23 grat.setp_lineswcs1(0, lw=2)
24 lon_world = range(0,360,30)
25 lat_world = [-60, -30, 30, 60]
26 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
27 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’center’}
28 deltapy0 = 0 #2
29 doplot(frame, fignum, annim, grat, title,
30 lon_world=lon_world, lat_world=lat_world,
31 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
32 deltapy0=deltapy0, markerpos=markerpos)

Fig.31: Zenith equal area projection (ZEA) oblique with PV1_3 element

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 31
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"""Zenith equal area projection (ZEA) oblique with:
9 $\alpha_p=0^\circ$, $\theta_p=30^\circ$ and $\phi_p = 150^\circ$. (Cal. fig.33c)"""

10 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
11 ’CTYPE1’ : ’RA---ZEA’,
12 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -3.5,
13 ’CTYPE2’ : ’DEC--ZEA’,
14 ’CRVAL2’ : 30.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 3.5,
15 ’PV1_3’ : 150.0 # Works only with patched WCSLIB 4.3
16 }
17 X = numpy.arange(0,360.0,15.0)
18 Y = numpy.arange(-75,90,15.0)
19 f = maputils.FITSimage(externalheader=header)
20 annim = f.Annotatedimage(frame)
21 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
22 startx=X, starty=Y)
23 grat.setp_lineswcs0((0,180), color=’g’, lw=2)
24 grat.setp_lineswcs1(0, lw=2)

21.2. All sky plot gallery 421

Kapteyn Package Documentation, Release 2.2

Fig. 30: Zenith equal area projection (ZEA) oblique with:
αp =45 ◦ , δp =30 ◦ and φp =180 ◦ . (Cal. fig.33b)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦90
◦12

0
◦

15
0
◦

18
0
◦

210
◦ 240◦

27
0◦

30
0◦

33
0
◦

−60 ◦

−30
◦

30
◦

60
◦

422 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

25 lon_world = range(0,360,30)
26 lat_world = [-60, -30, 30, 60]
27 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
28 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’right’}
29 doplot(frame, fignum, annim, grat, title,
30 lon_world=lon_world, lat_world=lat_world,
31 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
32 markerpos=markerpos)

Fig. 31: Zenith equal area projection (ZEA) oblique with:
αp =0 ◦ , θp =30 ◦ and φp =150 ◦ . (Cal. fig.33c)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

180 ◦

210◦

24
0◦

27
0◦

30
0◦

33
0◦

−60
◦

−30
◦

30
◦

60
◦

Fig.32: Zenith equal area projection (ZEA) oblique with PV1_3 element II

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 32
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"""Zenith equal area projection (ZEA) oblique with:
9 $\alpha_p=0^\circ$, $\theta_p=30^\circ$ and $\phi_p = 75^\circ$ (Cal. fig.33d)"""

10 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
11 ’CTYPE1’ : ’RA---ZEA’,
12 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -3.5,
13 ’CTYPE2’ : ’DEC--ZEA’,

21.2. All sky plot gallery 423

Kapteyn Package Documentation, Release 2.2

14 ’CRVAL2’ : 30.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 3.5,
15 ’PV1_3’ : 75.0
16 }
17 X = numpy.arange(0,360.0,15.0)
18 Y = numpy.arange(-75,90,15.0)
19 f = maputils.FITSimage(externalheader=header)
20 annim = f.Annotatedimage(frame)
21 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
22 startx=X, starty=Y)
23 grat.setp_lineswcs0((0,180), color=’g’, lw=2)
24 grat.setp_lineswcs1(0, lw=2)
25 lon_world = range(0,360,30)
26 lat_world = [-60, -30, 30, 60]
27 addangle0 = 180
28 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
29 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’center’}
30 doplot(frame, fignum, annim, grat, title,
31 lon_world=lon_world, lat_world=lat_world,
32 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
33 addangle0=addangle0, markerpos=markerpos)

Fig. 32: Zenith equal area projection (ZEA) oblique with:
αp =0 ◦ , θp =30 ◦ and φp =75 ◦ (Cal. fig.33d)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30
◦

60
◦

90 ◦

120 ◦
150 ◦

180
◦

21
0
◦

24
0
◦

27
0
◦

300
◦

330
◦

−
60
◦

−
30
◦

30
◦

60
◦

424 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig.33: Conic equidistant projection (COD) oblique

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 33
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 theta_a = 45.0
9 t1 = 20.0; t2 = 70.0

10 eta = abs(t1-t2)/2.0
11 title = r"""Conic equidistant projection (COD) oblique with $\theta_a=45^\circ$, $\theta_1=20^\circ$
12 and $\theta_2=70^\circ$, $\alpha_p = 0^\circ$, $\delta_p = 30^\circ$, $\phi_p = 75^\circ$ also:
13 $(\phi_0,\theta_0) = (0^\circ,90^\circ)$. (Cal. fig.33d)"""
14 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
15 ’CTYPE1’ : ’RA---COD’,
16 ’CRVAL1’ : 0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -5.0,
17 ’CTYPE2’ : ’DEC--COD’,
18 ’CRVAL2’ : 30, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 5.0,
19 ’PV2_1’ : theta_a,
20 ’PV2_2’ : eta,
21 ’PV1_1’ : 0.0, ’PV1_2’ : 90.0, # IMPORTANT. This is a setting from section 7.1, p 1103
22 ’LONPOLE’ :75.0
23 }
24 X = numpy.arange(0,370.0,15.0); X[-1] = 180.000001
25 Y = numpy.arange(-75,90,15.0)
26 f = maputils.FITSimage(externalheader=header)
27 annim = f.Annotatedimage(frame)
28 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
29 startx=X, starty=Y)
30 grat.setp_lineswcs0(0, lw=2)
31 grat.setp_lineswcs1(0, lw=2)
32 # Draw border with standard graticule
33 header[’CRVAL1’] = 0.0
34 header[’CRVAL2’] = theta_a
35 header[’LONPOLE’] = 0.0
36 del header[’PV1_1’]
37 del header[’PV1_2’]
38 # Non oblique version as border
39 border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180),
40 startx=(180-epsilon, -180+epsilon), starty=(-90,90))
41 border.setp_lineswcs0(color=’g’) # Show borders in different color
42 border.setp_lineswcs1(color=’g’)
43 lon_world = range(0,360,30)
44 lat_world = [-60, -30, 30, 60]
45 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
46 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’center’}
47 doplot(frame, fignum, annim, grat, title,
48 lon_world=lon_world, lat_world=lat_world,
49 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
50 markerpos=markerpos)

Fig.34: Hammer Aitoff projection (AIT) oblique

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 34
6 fig = plt.figure(figsize=figsize)

21.2. All sky plot gallery 425

Kapteyn Package Documentation, Release 2.2

Fig. 33: Conic equidistant projection (COD) oblique with θa =45 ◦ , θ1 =20 ◦

and θ2 =70 ◦ , αp =0 ◦ , δp =30 ◦ , φp =75 ◦ also:

(φ0 ,θ0) =(0 ◦ ,90 ◦). (Cal. fig.33d)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

) 0◦

30◦

60◦

90◦

120◦

15
0◦

18
0
◦

210 ◦
240

◦

270
◦ 300◦

330◦

−
60

◦

−
30

◦30
◦

60
◦

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

426 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

7 frame = fig.add_axes(plotbox)
8 title = r"""Hammer Aitoff projection (AIT) oblique with:
9 $(\alpha_p,\delta_p) = (0^\circ,30^\circ)$, $\phi_p = 75^\circ$ also:

10 $(\phi_0,\theta_0) = (0^\circ,90^\circ)$. (Cal. fig.34d)"""
11 # Header works only with a patched wcslib 4.3
12 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
13 ’CTYPE1’ : ’RA---AIT’,
14 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
15 ’CTYPE2’ : ’DEC--AIT’,
16 ’CRVAL2’ : 30.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
17 ’LONPOLE’ :75.0,
18 ’PV1_1’ : 0.0, ’PV1_2’ : 90.0, # IMPORTANT. This is a setting from Cal.section 7.1, p 1103
19 }
20 X = numpy.arange(0,390.0,15.0);
21 Y = numpy.arange(-75,90,15.0)
22 f = maputils.FITSimage(externalheader=header)
23 annim = f.Annotatedimage(frame)
24 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
25 startx=X, starty=Y)
26 grat.setp_lineswcs0(0, lw=2)
27 grat.setp_lineswcs1(0, lw=2)
28 # Draw border with standard graticule
29 header[’CRVAL1’] = 0.0
30 header[’CRVAL2’] = 0.0
31 del header[’PV1_1’]
32 del header[’PV1_2’]
33 header[’LONPOLE’] = 0.0
34 header[’LATPOLE’] = 0.0
35 border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180),
36 startx=(180-epsilon, -180+epsilon), skipy=True)
37 border.setp_lineswcs0(color=’g’) # Show borders in different color
38 border.setp_lineswcs1(color=’g’)
39 lon_world = range(0,360,30)
40 lat_world = [-60, -30, 30, 60]
41 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
42 labkwargs1 = {’color’:’b’, ’va’:’center’, ’ha’:’center’}
43 doplot(frame, fignum, annim, grat, title,
44 lon_world=lon_world, lat_world=lat_world,
45 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
46 markerpos=markerpos)

Fig.35: COBE quadrilateralized spherical cube projection (CSC) oblique

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 35
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 title = r"""COBE quadrilateralized spherical cube projection (CSC) oblique with:
9 $(\alpha_p,\delta_p) = (0^\circ,30^\circ)$, $\phi_p = 75^\circ$ also:

10 $(\phi_0,\theta_0) = (0^\circ,90^\circ)$. (Cal. fig.34d)"""
11 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
12 ’CTYPE1’ : ’RA---CSC’,
13 ’CRVAL1’ : 0.0, ’CRPIX1’ : 85, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
14 ’CTYPE2’ : ’DEC--CSC’,
15 ’CRVAL2’ : 30.0, ’CRPIX2’ : 40, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
16 ’LONPOLE’: 75.0,
17 ’PV1_1’ : 0.0, ’PV1_2’ : 90.0,
18 }

21.2. All sky plot gallery 427

Kapteyn Package Documentation, Release 2.2

Fig. 34: Hammer Aitoff projection (AIT) oblique with:
(αp ,δp) =(0 ◦ ,30 ◦), φp =75 ◦ also:

(φ0 ,θ0) =(0 ◦ ,90 ◦). (Cal. fig.34d)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0◦

30◦

60◦

90◦

12
0◦

15
0◦

18
0◦21

0◦

24
0
◦

27
0
◦

30
0
◦

33
0◦

−60 ◦

−30
◦

30◦

60◦

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

428 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

19 X = numpy.arange(0,370.0,30.0)
20 Y = numpy.arange(-60,90,30.0)
21 f = maputils.FITSimage(externalheader=header)
22 annim = f.Annotatedimage(frame)
23 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180),
24 startx=X, starty=Y)
25 grat.setp_lineswcs0(0, lw=2)
26 grat.setp_lineswcs1(0, lw=2)
27 # Take border from non-oblique version
28 header[’CRVAL2’] = 0.0
29 del header[’PV1_1’]
30 del header[’PV1_2’]
31 del header[’LONPOLE’]
32 border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180),
33 skipx=True, skipy=True)
34 perimeter = getperimeter(border)
35 lon_world = range(0,360,30)
36 lat_world = [-60, -30, 30, 60]
37 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’left’}
38 labkwargs1 = {’color’:’b’, ’va’:’top’, ’ha’:’center’}
39 doplot(frame, fignum, annim, grat, title,
40 lon_world=lon_world, lat_world=lat_world,
41 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
42 perimeter=perimeter, markerpos=markerpos)

Fig. 35: COBE quadrilateralized spherical cube projection (CSC) oblique with:
(αp ,δp) =(0 ◦ ,30 ◦), φp =75 ◦ also:

(φ0 ,θ0) =(0 ◦ ,90 ◦). (Cal. fig.34d)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

0
◦

30◦

60◦

90◦

120◦

150◦

180◦

210◦

240
◦

27
0
◦

300
◦

330
◦

−60 ◦

−30
◦

30
◦

60
◦

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

21.2. All sky plot gallery 429

Kapteyn Package Documentation, Release 2.2

21.2.10 Miscellaneous

Fig.36: Earth in zenithal perspective (AZP)

The coastline used in this example is read from file world.txt which is composed from a plain text version of
the CIA World DataBank II map database made by Dave Pape (http://www.evl.uic.edu/pape/data/WDB/).

We used values ‘TLON’, ‘TLAT’ for the CTYPE‘s. These are recognized by WCSLIB as longitude and latitude.
Any other prefix is also valid.

Note the intensive use of methods to set label/tick- and plot properties.

• wcsgrat.Graticule.setp_lineswcs0(),

• wcsgrat.Graticule.setp_lineswcs1(),

• wcsgrat.Graticule.setp_tick() and

• wcsgrat.Graticule.setp_linespecial()

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 36
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes((0.1,0.15,0.8,0.75))
8 title = ’Earth in zenithal perspective (AZP). (Cal. fig.36)’
9 # The ctype’s are TLON, TLAT. These are recognized by WCSlib as longitude and latitude.

10 # Any other prefix is also valid.
11 header = {’NAXIS’ : 2, ’NAXIS1’: 2048, ’NAXIS2’: 2048,
12 ’PC1_1’ : 0.9422, ’PC1_2’ : -0.3350,
13 ’PC2_1’ : 0.3350, ’PC2_2’ : 0.9422,
14 ’CTYPE1’ : ’TLON-AZP’,
15 ’CRVAL1’ : 31.15, ’CRPIX1’ : 681.67, ’CUNIT1’ : ’deg’, ’CDELT1’ : 0.008542,
16 ’CTYPE2’ : ’TLAT-AZP’,
17 ’CRVAL2’ : 30.03, ’CRPIX2’ : 60.12, ’CUNIT2’ : ’deg’, ’CDELT2’ : 0.008542,
18 ’PV2_1’ : -1.350, ’PV2_2’ : 25.8458,
19 ’LONPOLE’ : 143.3748,
20 }
21 X = numpy.arange(-30,60.0,10.0)
22 Y = numpy.arange(-40,65,10.0)
23 f = maputils.FITSimage(externalheader=header)
24 annim = f.Annotatedimage(frame)
25 grat = annim.Graticule(axnum= (1,2), wylim=(-30,90.0), wxlim=(-20,60),
26 startx=X, starty=Y, gridsamples=4000)
27 grat.setp_lineswcs1(color=’#B30000’)
28 grat.setp_lineswcs0(color=’#B30000’)
29 grat.setp_lineswcs0(0, color=’r’, lw=2)
30 grat.setp_plotaxis(’bottom’, mode=’all_ticks’, label=’Latitude / Longitude’)
31 grat.setp_plotaxis(’left’, mode=’switched_ticks’, label=’Latitude’)
32 grat.setp_plotaxis(’right’, mode=’native_ticks’)
33 grat.setp_tick(wcsaxis=0, color=’g’, fmt="Dms")
34 grat.setp_tick(wcsaxis=1, color=’m’, fmt="Dms")
35 grat.setp_tick(wcsaxis=1, plotaxis=(’bottom’,’right’), color=’m’, rotation=-30, ha=’left’)
36 grat.setp_tick(plotaxis=’left’, position=-10, visible=False)
37 g = grat.scanborder(560, 1962, 2)
38 grat.setp_linespecial(g, color=’b’, lw=2)
39 lat_world = lon_world = []
40 drawgrid = True
41 markerpos = None
42 # Proof that WCSlib thinks TLON, TLAT are valid longitudes & latitudes
43 print "TLON and TLAT are recognized as:", grat.gmap.types
44 labkwargs0 = {’color’:’r’, ’va’:’center’, ’ha’:’center’}
45 labkwargs1 = {’color’:’g’, ’va’:’top’, ’ha’:’left’}

430 Chapter 21. All sky plots and graticules

http://www.evl.uic.edu/pape/data/WDB/

Kapteyn Package Documentation, Release 2.2

46 doplot(frame, fignum, annim, grat, title,
47 lon_fmt="Dms", lat_fmt="Dms",
48 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
49 plotdata=True, markerpos=markerpos)

Fig. 36: Earth in zenithal perspective (AZP). (Cal. fig.36)

30 ◦ 40 ◦30 ◦ 40 ◦

Latitude / Longitude

350 ◦

0 ◦

10 ◦

20 ◦

La
ti

tu
d
e

50 ◦

60 ◦

40 ◦ 50 ◦

60 ◦

Fig.37: WCS polyconic

Without any tuning, we would observe jumpy behaviour near the dicontinuity of the green border. The two vertical
parts would be connected by a small horizontal line. We can improve the plot by increasing the value of parameter
gridsamples in the Graticule constructor from 1000 (which is the default value) to 4000. See equivalent plot at
http://www.atnf.csiro.au/people/mcalabre/WCS/PGSBOX/index.html

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 37
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes((0.1,0.15,0.8,0.75))
8 title = ’WCS polyconic (PGSBOX fig.1)’
9 rot = 30.0 *numpy.pi/180.0

10 header = {’NAXIS’ : 2, ’NAXIS1’: 512, ’NAXIS2’: 512,
11 ’CTYPE1’ : ’RA---PCO’,
12 ’PC1_1’ : numpy.cos(rot), ’PC1_2’ : numpy.sin(rot),
13 ’PC2_1’ : -numpy.sin(rot), ’PC2_2’ : numpy.cos(rot),

21.2. All sky plot gallery 431

http://www.atnf.csiro.au/people/mcalabre/WCS/PGSBOX/index.html

Kapteyn Package Documentation, Release 2.2

14 ’CRVAL1’ : 332.0, ’CRPIX1’ : 192, ’CUNIT1’ : ’deg’, ’CDELT1’ : -1.0/5.0,
15 ’CTYPE2’ : ’DEC--PCO’,
16 ’CRVAL2’ : 40.0, ’CRPIX2’ : 640, ’CUNIT2’ : ’deg’, ’CDELT2’ : 1.0/5.0,
17 ’LONPOLE’ : -30.0
18 }
19 X = numpy.arange(-180,180.0,15.0);
20 Y = numpy.arange(-75,90,15.0)
21 # Here we demonstrate how to avoid a jump at the right corner boundary
22 # of the plot by increasing the value of ’gridsamples’.
23 f = maputils.FITSimage(externalheader=header)
24 annim = f.Annotatedimage(frame)
25 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180),
26 startx=X, starty=Y, gridsamples=4000)
27 grat.setp_lineswcs0(0, lw=2)
28 grat.setp_lineswcs1(0, lw=2)
29 grat.setp_tick(wcsaxis=0, position=15*numpy.array((18,20,22,23)), visible=False)
30 grat.setp_tick(wcsaxis=0, fmt="Hms")
31 grat.setp_tick(wcsaxis=1, fmt="Dms")
32 header[’CRVAL1’] = 0.0
33 header[’CRVAL2’] = 0.0
34 header[’LONPOLE’] = 999
35 border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180),
36 startx=(180-epsilon, -180+epsilon), starty=(-89.5,))
37 border.setp_gratline((0,1), color=’g’, lw=2)
38 border.setp_plotaxis((0,1,2,3), mode=’no_ticks’, visible=False)
39 lon_world = range(0,360,30)
40 lat_world = [-dec0, -60, -30, 30, 60, dec0]
41 labkwargs0 = {’color’:’r’, ’va’:’bottom’, ’ha’:’right’}
42 labkwargs1 = {’color’:’b’, ’va’:’bottom’, ’ha’:’right’}
43 doplot(frame, fignum, annim, grat, title,
44 lon_world=lon_world, lat_world=lat_world,
45 labkwargs0=labkwargs0, labkwargs1=labkwargs1)

Fig.38: WCS conic equal area projection

See equivalent plot at http://www.atnf.csiro.au/people/mcalabre/WCS/PGSBOX/index.html

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 38
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes((0.1,0.1,0.8,0.75))
8 theta_a = 60.0; eta = 15.0
9 title = r"""WCS conic equal area projection with

10 $\theta_a=60^\circ$ and $\eta=15^\circ$ (Cal. PGSBOX fig.2)"""
11 header = {’NAXIS’ : 2, ’NAXIS1’: 512, ’NAXIS2’: 512,
12 ’CTYPE1’ : ’RA---COE’,
13 ’CRVAL1’ : 90.0, ’CRPIX1’ : 256, ’CUNIT1’ : ’deg’, ’CDELT1’ : -1.0/3.0,
14 ’CTYPE2’ : ’DEC--COE’,
15 ’CRVAL2’ : 30.0, ’CRPIX2’ : 256, ’CUNIT2’ : ’deg’, ’CDELT2’ : 1.0/3.0,
16 ’LONPOLE’ : 150.0,
17 ’PV2_1’ : theta_a, ’PV2_2’ : eta
18 }
19 X = numpy.arange(0,390.0,30.0);
20 Y = numpy.arange(-60,90,30.0)
21 f = maputils.FITSimage(externalheader=header)
22 annim = f.Annotatedimage(frame)
23 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
24 startx=X, starty=Y)
25 grat.setp_lineswcs0(color=’r’)

432 Chapter 21. All sky plots and graticules

http://www.atnf.csiro.au/people/mcalabre/WCS/PGSBOX/index.html

Kapteyn Package Documentation, Release 2.2

Fig. 37: WCS polyconic (PGSBOX fig.1)

16h17h19h21h0h1h2h3h4h5h

R.A. (2000.0)

−60 ◦

−45 ◦

−30 ◦

−15 ◦

0 ◦

D
e
c.

 (
2

0
0

0
.0

)

0
◦

27
0
◦

30
0
◦

33
0
◦

−60
◦

−30 ◦

21.2. All sky plot gallery 433

Kapteyn Package Documentation, Release 2.2

26 grat.setp_lineswcs1(color=’b’)
27 grat.setp_lineswcs0(0, lw=2)
28 grat.setp_lineswcs1(0, lw=2)
29 grat.setp_tick(plotaxis=1, position=(150.0,210.0), visible=False)
30 grat.setp_tick(wcsaxis=0, fmt="Hms")
31 grat.setp_tick(wcsaxis=1, fmt="Dms")
32 deltapx = 10
33 # Draw border with standard graticule
34 header[’CRVAL1’] = 0.0;
35 header[’CRVAL2’] = 60.0
36 header[’LONPOLE’] = 999
37 header[’LATPOLE’] = 999
38 border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180),
39 startx=(180-epsilon, -180+epsilon), starty=(-90,90))
40 border.setp_gratline((0,1), color=’g’, lw=2)
41 border.setp_plotaxis((0,1,2,3), mode=’no_ticks’, visible=False)
42 framebgcolor = ’k’ # i.e. black
43 lon_world = range(0,360,30)
44 lat_world = [-dec0, -60, -30, 30, 60, dec0]
45 labkwargs0 = {’color’:’w’, ’va’:’bottom’, ’ha’:’right’}
46 labkwargs1 = {’color’:’w’, ’va’:’bottom’, ’ha’:’right’}
47 doplot(frame, fignum, annim, grat, title,
48 lon_world=lon_world, lat_world=lat_world,
49 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
50 framebgcolor=framebgcolor)

Fig. 38: WCS conic equal area projection with
θa =60 ◦ and η=15 ◦ (Cal. PGSBOX fig.2)

12h12h14h 16h

R.A. (2000.0)

−30 ◦

0 ◦

30 ◦

30 ◦

D
e
c.

 (
2

0
0

0
.0

)

0◦

30
◦

60
◦

90
◦

12
0
◦

15
0
◦

18
0
◦

−90
◦

30
◦

60
◦

90
◦

434 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

Fig.39: Bonne’s equal area projection (BON) II

See equivalent plot at http://www.atnf.csiro.au/people/mcalabre/WCS/

1 from kapteyn import maputils
2 import numpy
3 from service import *
4

5 fignum = 39
6 fig = plt.figure(figsize=figsize)
7 frame = fig.add_axes(plotbox)
8 theta1 = 35
9 title = r"""Bonne’s equal area projection (BON) with conformal latitude

10 $\theta_1=35^\circ$ and $\alpha_p=0^\circ$, $\theta_p=+45^\circ$ and N.C.P. at $(45^\circ,0^\circ)$.
11 (Cal. PGSBOX example)"""
12 header = {’NAXIS’ : 2, ’NAXIS1’: 100, ’NAXIS2’: 80,
13 ’CTYPE1’ : ’RA---BON’,
14 ’CRVAL1’ : 0.0, ’CRPIX1’ : 50, ’CUNIT1’ : ’deg’, ’CDELT1’ : -4.0,
15 ’CTYPE2’ : ’DEC--BON’,
16 ’CRVAL2’ : 0.0, ’CRPIX2’ : 35, ’CUNIT2’ : ’deg’, ’CDELT2’ : 4.0,
17 ’PV2_1’ : theta1
18 }
19 X = polrange()
20 Y = numpy.arange(-75.0,90,15.0)
21 f = maputils.FITSimage(externalheader=header)
22 annim = f.Annotatedimage(frame)
23 grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
24 startx=X, starty=Y)
25 grat.setp_lineswcs0(color=’#339333’) # Dark green
26 grat.setp_lineswcs1(color=’#339333’)
27 header[’LONPOLE’] = 45.0 # Or PV1_3
28 header[’CRVAL1’] = 0.0
29 header[’CRVAL2’] = 45.0
30 oblique = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360),
31 startx=X, starty=Y)
32 oblique.setp_lineswcs0(0.0, color=’y’)
33 oblique.setp_lineswcs1(0.0, color=’y’)
34 oblique.setp_lineswcs0(range(15,360,45), color=’b’)
35 oblique.setp_lineswcs1([15,-15,60, -60], color=’b’)
36 oblique.setp_lineswcs0(range(30,360,45), color=’r’)
37 oblique.setp_lineswcs1([30,-30,75, -75], color=’r’)
38 oblique.setp_lineswcs0(range(45,360,45), color=’w’)
39 oblique.setp_lineswcs1((-45,45), color=’w’)
40 framebgcolor = ’k’
41 if not smallversion:
42 txt ="""Green: Native, non-oblique graticule. Yellow: Equator and prime meridian
43 Others: Colour coded oblique graticule"""
44 plt.figtext(0.1, 0.008, txt, fontsize=6)
45 labkwargs0 = {’visible’:False} # No labels at all!
46 labkwargs1 = {’visible’:False}
47 doplot(frame, fignum, annim, grat, title,
48 labkwargs0=labkwargs0, labkwargs1=labkwargs1,
49 framebgcolor=framebgcolor)

21.2.11 Projection aliases

Table A.1. in [Ref2] lists many alternative projections. These are either one of the projections listed in previous
sections or they have special projection parameters. This table lists those parameters and in table 13 of [Ref2] one
can find the corresponding PV keyword.

For example if we want a Peter’s projection, then in table A.1. we read that this is in fact a Gall’s orthographic
projection (CEA) with λ = 1/2. In table 13 we find that for projection CEA the parameter λ corresponds to

21.2. All sky plot gallery 435

http://www.atnf.csiro.au/people/mcalabre/WCS/

Kapteyn Package Documentation, Release 2.2

Fig. 39: Bonne's equal area projection (BON) with conformal latitude
θ1 =35 ◦ and αp =0 ◦ , θp = +45 ◦ and N.C.P. at (45 ◦ ,0 ◦).

(Cal. PGSBOX example)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

R.A. (2000.0)

D
e
c.

 (
2

0
0

0
.0

)

Green: Native, non-oblique graticule. Yellow: Equator and prime meridian
Others: Colour coded oblique graticule

436 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

keyword PVi_1a. This keyword is associated with the latitude axis. If this is the second axis in a FITS header and
if we don’t use an alternate header description, then this keyword is PV1_1.

21.3 Source code of the service module

1 from kapteyn import maputils, tabarray
2 import numpy
3 import sys
4 from matplotlib import pyplot as plt
5

6

7 __version__ = ’1.91’
8

9 epsilon = 0.0000000001
10

11 def radians(a):
12 return a*numpy.pi/180.0
13

14 def degrees(a):
15 return a*180.0/numpy.pi
16

17 def cylrange():
18 X = numpy.arange(0,400.0,30.0);
19 # Replace last two (dummy) values by two values around 180 degrees
20 X[-1] = 180.0 - epsilon
21 X[-2] = 180.0 + epsilon
22 return X
23

24 def polrange():
25 X = numpy.arange(0,380.0,15);
26 # Replace last two (dummy) values by two values around 180 degrees
27 X[-1] = 180.0 - epsilon
28 X[-2] = 180.0 + epsilon
29 return X
30

31

32 def getperimeter(grat):
33 # Calculate perimeter of QUAD projection
34 xlo, y = grat.gmap.topixel((-45.0-epsilon, 0.0))
35 xhi, y = grat.gmap.topixel((315+epsilon, 0.0))
36 x, ylo = grat.gmap.topixel((180, -45))
37 x, yhi = grat.gmap.topixel((180, 45))
38 x1, y = grat.gmap.topixel((45-epsilon, 0.0))
39 x, ylolo = grat.gmap.topixel((0, -135+epsilon))
40 x, yhihi = grat.gmap.topixel((0, 135-epsilon))
41 perimeter = [(xlo,ylo), (x1,ylo), (x1,ylolo), (xhi,ylolo), (xhi,yhihi),
42 (x1,yhihi), (x1,yhi), (xlo,yhi), (xlo,ylo)]
43 return perimeter
44

45

46 def plotcoast(fn, frame, grat, col=’k’, lim=100, decim=5, plotsym=None, sign=1.0):
47 coasts = tabarray.tabarray(fn, comchar=’s’) # Read two columns from file
48 for segment in coasts.segments:
49 coastseg = coasts[segment].T
50 xw = sign * coastseg[1]; yw = coastseg[0] # First one appears to be Latitude
51 xs = xw; ys = yw # Reset lists which store valid pos.
52 if 1:
53 # Mask arrays if outside plot box
54 xp, yp = grat.gmap.topixel((numpy.array(xs),numpy.array(ys)))
55 # Be sure you understand
56 # the operator precedence: (a > 2) | (a < 5) is the proper syntax

21.3. Source code of the service module 437

Kapteyn Package Documentation, Release 2.2

57 # because a > 2 | a < 5 will result in an error due to the fact
58 # that 2 | a is evaluated first.
59 xp = numpy.ma.masked_where(numpy.isnan(xp) |
60 (xp > grat.pxlim[1]) | (xp < grat.pxlim[0]), xp)
61 yp = numpy.ma.masked_where(numpy.isnan(yp) |
62 (yp > grat.pylim[1]) | (yp < grat.pylim[0]), yp)
63 # Mask array could be of type numpy.bool_ instead of numpy.ndarray
64 if numpy.isscalar(xp.mask):
65 xp.mask = numpy.array(xp.mask, ’bool’)
66 if numpy.isscalar(yp.mask):
67 yp.mask = numpy.array(yp.mask, ’bool’)
68 # Count the number of positions in this list that are inside the box
69 xdc = []; ydc = []
70 for i in range(len(xp)):
71 if not xp.mask[i] and not yp.mask[i]:
72 if not i%decim:
73 xdc.append(xp.data[i])
74 ydc.append(yp.data[i])
75 if len(xdc) >= lim:
76 if plotsym == None:
77 frame.plot(xdc, ydc, color=col)
78 else:
79 frame.plot(xdc, ydc, ’.’, markersize=1, color=col)
80

81

82

83 # Set defaults which can be overwritten by the allskyfxx.py scripts
84 title = ’’
85 titlepos = 1.02
86 dec0 = 89.9999999999
87 fsize = 10
88 figsize = (7,6)
89 drawgrid = False
90 grat = None
91 smallversion = False
92 plotbox = (0.1,0.05,0.8,0.8)
93 markerpos = "120 deg 60 deg"
94

95

96 def doplot(frame, fignum, annim, grat, title,
97 lon_world=None, lat_world=None,
98 lon_constval=None, lat_constval=None,
99 lon_fmt=None, lat_fmt=None,

100 markerpos=None,
101 plotdata=False, perimeter=None, drawgrid=None,
102 smallversion=False, addangle0=0.0, addangle1=0.0,
103 framebgcolor=None, deltapx0=0.0, deltapy0=0.0,
104 deltapx1=0.0, deltapy1=0.0,
105 labkwargs0={’color’:’r’}, labkwargs1={’color’:’b’}):
106 # Apply some extra settings
107

108 if framebgcolor != None:
109 frame.set_axis_bgcolor(framebgcolor)
110

111 # Plot coastlines if required
112 if plotdata:
113 if fignum == 36:
114 plotcoast(’WDB/world.txt’, frame, grat, col=’k’, lim=100)
115 else:
116 plotcoast(’WDB/world.txt’, frame, grat, col=’r’, lim=50,
117 decim=20, plotsym=’,’, sign=-1)
118

119

438 Chapter 21. All sky plots and graticules

Kapteyn Package Documentation, Release 2.2

120 if lon_constval == None:
121 lon_constval = 0.0 # Reasonable for all sky plots
122 if lat_constval == None:
123 lat_constval = 0.0 # Reasonable for all sky plots
124 if lon_fmt == None:
125 lon_fmt = ’Dms’
126 if lat_fmt == None:
127 lat_fmt = ’Dms’
128 # Plot labels inside graticule if required
129 #labkwargs0.update({’fontsize’:fsize})
130 #labkwargs1.update({’fontsize’:fsize})
131 ilabs1 = grat.Insidelabels(wcsaxis=0,
132 world=lon_world, constval=lat_constval,
133 deltapx=deltapx0, deltapy=deltapy0,
134 addangle=addangle0, fmt=lon_fmt, **labkwargs0)
135 ilabs2 = grat.Insidelabels(wcsaxis=1,
136 world=lat_world, constval=lon_constval,
137 deltapx=deltapx1, deltapy=deltapy1,
138 addangle=addangle1, fmt=lat_fmt, **labkwargs1)
139

140 # Plot just 1 pixel c.q. marker
141 if markerpos != None:
142 annim.Marker(pos=markerpos, marker=’o’, color=’red’)
143

144 if drawgrid:
145 pixellabels = annim.Pixellabels(plotaxis=(2,3))
146

147 # Plot the title
148 title = "Fig. %d: "%fignum + title
149 if smallversion:
150 t = frame.set_title(title, color=’g’, fontsize=10)
151 else:
152 t = frame.set_title(title, color=’g’, fontsize=13, linespacing=1.5)
153 t.set_y(titlepos)
154 annim.plot()
155

156 # Plot alternative borders. Do this after the graticule is plotted
157 # Only then you know the frame of the graticule and plotting in that
158 # frame will overwrite graticule lines so that the borders look better
159 if perimeter != None:
160 p = plt.Polygon(perimeter, facecolor=’#d6eaef’, lw=2)
161 frame.add_patch(p) # Must be in frame specified by user
162 Xp, Yp = zip(*perimeter)
163 grat.frame.plot(Xp, Yp, color=’r’)
164

165 annim.interact_toolbarinfo()
166

167 plt.show()

21.3. Source code of the service module 439

Kapteyn Package Documentation, Release 2.2

440 Chapter 21. All sky plots and graticules

Part V

Background information

441

CHAPTER 22

Background information module
celestial

22.1 Rotation matrices

Spherical astronomy sections in older textbooks rely heavily on the reader’s knowledge of spherical trigonometry
(e.g. Smart 1977). For more complicated problems than a simple rotation, this technique becomes laborious. Ma-
trix and vector techniques come to rescue. Many of the transformations are defined in terms of rotation matrices.
A rotation matrix is a matrix whose multiplication with a vector rotates the vector while preserving its length.
There is a special group 3 x 3 rotation matrices R where

|R| = ±1 and R−1 = RT (22.1)

For transformations between sky systems we only use matrices with |R| = +1.

A coordinate rotation is a rotation about a single coordinate axis. The three coordinate rotation matrices are:

R1(α) =

1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

 (22.2)

R2(α) =

cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)

 (22.3)

R3(α) =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 (22.4)

Three coordinate rotations in sequence can describe any rotation. The result matrix is:

Rijk(φ, θ, ψ) = Ri(φ)Rj(θ)Rk(ψ) (22.5)

The angles are called Euler angles. There are 27 possible sequences of the three indices i,j,k. Not all sequences
are valid rotations. The most common choices of valid combinations are (1,2,3), (3,1,3) and (3,2,3) ([Diebel],
2006)

If ~r0 is a position vector in system 0 and ~r1 is the same position in the sky but in another sky system then, with
the appropriate rotation matrix R, we calculate ~r1 in the coordinates belonging to the rotated system with:

~r1 = R~r0 (22.6)

Note that the listed rotations represent the same position in different coordinate systems. The indices 1,2,3 cor-
respond to the rotation axes x, y, z. In this documentation we will write Rx for R1, Ry for R2 and Rz for R3:

ax2ay2
az2

 =

R11 R12 R13

R21 R22 R23

R31 R32 R33

ax1ay1
az1

 (22.7)

443

Kapteyn Package Documentation, Release 2.2

If (α, δ) is the longitude and latitude of a position in system 0, then the corresponding position vector can be
written as:

~r0 =

cos δ0 cosα0

cos δ0 sinα0

sin δ0

 (22.8)

Note that the longitude and latitude applies to the other sky systems too, but then we use other symbols, like (λ, β),
(l,b) or (sgl, sgb). From any position (x,y,z) we calculate the longitude and latitude with the expressions:

tan(lon) = y/x (22.9)

and

tan(lat) = z/
√
x2 + y2 (22.10)

where we used the arctan2 function to solve for (lon,lat) to keep the right quadrant. Longitudes range from 0◦ to
360◦ and latitudes from −90◦ to 90◦.

22.2 FK4

The impression one could get from the literature is that FK4 and FK4-NO-E are different sky systems and that
there exists a matrix to rotate a position from one system to the other. But this is not true. The systems differ
because positions in FK4 catalogs usually contain the elliptic terms of aberration (so they are almost mean places).
Others list positions that are corrected for these E-terms (like catalogs with radio sources). Also B1950 radio
interferometer data (e.g. maps from the W.S.R.T.) could be processed in a way that positions are corrected for
E-terms. It is convenient to define a system that is FK4 but without the E-terms. FITS uses the name FK4-NO-E
for this system. Catalog positions corrected for the E-terms are (real) mean places and are used for precession and
transformations from FK4 B1950 positions to FK5 J2000 positions and galactic coordinates.

In a later section we give the original definition of galactic coordinates.

22.3 FK4 and the elliptic terms of aberration

Stellar aberration is caused by the motion of the earth in its orbit. This motion is represented by a circular velocity
component and a component perpendicular to the major axis caused by the fact that the orbit is elliptical. This
velocity component is responsible for elliptical terms of aberration (E-terms) which are less than 0.35 arcseconds
(maximum is equal to the constant of aberration times the eccentricity of the earths orbit = 20”.496 x 0.01673 ~=
343 mas). The terms are independent of the position of the earth and depend only on the position of the object in
the sky.

444 Chapter 22. Background information module celestial

Kapteyn Package Documentation, Release 2.2

Fig.1 – Ecliptic from above showing e-terms.

Fig.1 shows the ecliptic from above. S is the Sun, in one of the focal points of the ellipse and P the position of the
Earth. The plot was made with Python script etermfig.py.

Smart (1977) gives an excellent description of aberration and its elliptical terms. We reproduced one of his figures
with a small program. Here are the steps.

• Given an elliptical orbit with semi major axis a and semi minor axis b, and center at (0,0), the positions of
the focal points are (-c,0) and (c,0) with c2 = a2 − b2

• Suppose the Sun is in focal point S and the Earth is on the ellipse in P

• The tangent in P is the normal of the bisector of the two lines from focal point to P

• r is the radius vector SP

• Earth has a velocity V along the tangent at P and:

V 2 = PL2 + PR2 = (
dr

dt
)2 + (r

dα

dt
)2 (22.11)

• So for given P and a velocity V, we can calculate the angle between the normal of SP (i.e. in the direction
PL) and decompose V into a linear velocity perpendicular to the radius vector and a component in the
direction of the radius vector

• Now we want to decompose V into a circular velocity component PL1 and a velocity perpendicular to the
major axis (PQ)

22.3. FK4 and the elliptic terms of aberration 445

Kapteyn Package Documentation, Release 2.2

• PQ = PR/ sin(α) and PL1 = PL− PR/ tan(α)

Smart derives two epressions:

VPQ =
eµ

h
(22.12)

VPL1 =
µ

h
(22.13)

with:

µ = G(M +m); h = r2
dα

dt
(22.14)

With M is mass of the Sun, m is mass of the Earth, G is the gravitational constant and e is the eccentricity of the
ellipse:

b2 = a2(1− e2) (22.15)

The most important observation now is that these velocities are constant! Therefore the total displacement of the
position of a star due to aberration can be decomposed into a displacement due to a constant velocity at right angle
to the radius vector and one due to a constant velocity perpendicular to the major axis.

If the position of a star is given by longitude λ and latitude β and the longitude (measured from the vernal equinox)
is ω then the displacements due to the velocity perpendicular to the major axis are:

∆λ = +eκ sec(β) cos(ω − λ)
∆β = +eκ sin(β) sin(ω − λ)

(22.16)

and κ is the constant of aberration (Smart section 108).

The constant of aberration is defined as:

κ = VPL1

csc(1′′)
c

(22.17)

and c is the speed of light.

The value of κ is 20”.496. Therefore, given the eccentricity of the Earth’s orbit (0.01673), the maximum displace-
ment in λ or β is 20”.496 * 0.01673 ~= 343 mas.

Data in FK4 catalogs are ‘almost’ mean places because the conventional correction for annual aberration in FK4
includes only terms for circular motion and not the small E-terms. Therefore all published FK4 catalog positions
are affected by elliptic aberration.

Mean places should be unaffected by aberration of any kind. Thus, for precession or transformation of FK4
positions, one should remove the E-terms first.

With a standard transformation from ecliptic coordinates to equatorial coordinates one can find expressions for the
displacements in α and δ. (e.g. see ES, section 3.531, p 170):

∆α = α− αcat = −(∆C cosαcat + ∆Dsinαcat/(15 cos δcat)
∆δ = δ − δcat = −(∆D cosαcat −∆Csinαcat)sinδcat −∆C tan ε cos δcat

(22.18)

where ε is the obliquity of the ecliptic.

Also one could write a position vector in an equatorial system:

~r0 =

cos δ0 cosα0

cos δ0 sinα0

sin δ0

 (22.19)

and a second vector:

~r1 =

cos(δ0 + ∆δ) cos(α0 + ∆α)
cos(δ0 + ∆δ) sin(α0 + ∆α)

sin(δ0 + ∆δ)

 (22.20)

446 Chapter 22. Background information module celestial

Kapteyn Package Documentation, Release 2.2

then one can define the E-term vector as:

~E = ~r1 − ~r0 (22.21)

If one works out this difference between two vectors, neglect terms that are very small and rearrange the equations
so that we can compare them to the expressions for the displacements in α and δ, then the E-term vector is equal
to:

~E =

 −∆D
+∆C

∆C tan(ε)

 (22.22)

This E-term vector can then be used to transform FK4 positions to real mean places (i.e. remove E-terms) or to
convert mean places to FK4 catalog positions (i.e. add E-terms).

Module celestial calculates the E-term vector in the equatorial system as function of epoch. Removing and
adding E-term vectors are best illustrated in a figure. In the next plot, the red circle represents the FK4 catalog
system. For each unit vector in this circle one can transform a position in RA, Dec to a new position where the
E-terms are removed. The new vector has its end point on the blue circle. So adding E-terms would be as simple
as adding the E-term vector to the new vector. However, if one converts the new position to RA and Dec, the
information about the length of the new vector will be lost. If one converts these RA and Dec back to Cartesian
coordinates, and add the E-term vector, then we would not obtain the original vector that we started with. Plot and
explanation demonstrate how we should deal with removing and adding E-terms:

Fig.2 – E-term vectors.

In the figure one starts with a FK4 catalog position represented by vector ~r0. Removing the E-terms (represented
by vector ~a) results in vector λ~r1. If vectors kept their length after converting them back to longitude and latitude
then the inverse procedure would be as easy to add vector ~a to λ~r1. Usually this is not the case, so for convenience
we normalize λ~r1 to get unit vector ~r1.

22.3. FK4 and the elliptic terms of aberration 447

Kapteyn Package Documentation, Release 2.2

However, if we add vector ~a to ~r1 we end up with a vector ~r′0 which is not aligned with the original vector. To get
it aligned, we have to stretch ~r1 again with some factor λ. We need an E-term adding procedure that applies to all
unit vectors. It is straightforward to derive an expression for the wanted scaling factor λ:

Adding the E-term vector applying the conditions described above we write:

λ~r1 + ~a = ~r0 (22.23)

And the conditions are:

||~r1|| = ||~r0|| = 1 (22.24)

If we write this out in terms of the Cartesian coordinates x, y, z then with ~r1 = (x1, y1, z1), ~r0 = (x0, y0, z0), and
~a = ax, ay, az):

λx1 + ax = x0

λy1 + ay = y0

λz1 + az = z0

(22.25)

And:

x1
2 + y1

2 + z1
2 = 1 (22.26)

x0
2 + y0

2 + z0
2 = 1 (22.27)

If we substitute the expressions for ~r0 (22.25) in this last equation (eq.27) then we obtain the simplified expression
for λ:

λ2 + wλ+ p = 0 (22.28)

with:

w = 2(axx1 + ayy1 + azz1) (22.29)

p = a2
x + a2

y + a2
z − 1 (22.30)

We know that the length of the E-term vector a is much smaller than 1 so p is always less than 0. We also observe
that only the positive solution for λ is the one we are searching for because a negative value represents a vector in
opposite direction. Then we are left with an expression for the wanted λ:

λ = (−w +
√
w2 − 4p)/2 (22.31)

We started with known ~r1 and ~a. With those we can calculate the wanted vector ~r0, which represents the catalog
position.

22.4 Transformations between the reference systems FK4 and FK5

For conversions between FK4 and FK5 we follow the procedure of Murray [Murray]. Murray precesses from
B1950 to J2000 using a precession matrix by Lieske (1979) and then applies the equinox correction and ends up
with a transformation matrix X(0) and its rate of change per Julian century X’(0).

If F is the ratio of Julian century to tropical century (1.000021359027778) and T is the time in Julian centuries
from the epoch B1950, then Murray derives a transformation equation for a position and velocity in FK4:[

r
v

]
=
[
X(0) + TẊ(0) TFX(0)

Ẋ(0) FX(0)

] [
r1
v1

]
(22.32)

Positions:

448 Chapter 22. Background information module celestial

Kapteyn Package Documentation, Release 2.2

If the epoch of observation is T in Julian centuries counted from B1950 then from the previous equation we derive:

rJ2000 = X(0)(rB1950 + vB1950FT) + TẊ(0)rB1950 (22.33)

Module celestial assumes that we have unknown or zero proper motions. We allow for fictitious proper
motion in FK5, then we get the equation:

rJ2000 = r + vJ2000t = X(0)rB1950 + TẊ(0)rB1950 (22.34)

where v is the (fictitious) proper motion in FK5 and t is the time in Julian centuries form J2000. This is how the
function celestial.FK42FK5Matrix() works for a given epoch of observation. In the output of the next
interactive session, we show the results of varying the epoch of observation for a position R.A., Dec = (0,0):

>>> from kapteyn.celestial import *
>>> print sky2sky((eq,’b1950’,fk4), (eq,’j2000’,fk5), 0,0)
[[0.640691 0.27840944]]
>>> print sky2sky((eq,’b1950’,fk4, ’J1970’), (eq,’j2000’,fk5), 0,0)
[[0.64070422 0.27838524]]
>>> print sky2sky((eq,’b1950’,fk4, ’J1980’), (eq,’j2000’,fk5), 0,0)
[[0.64071084 0.27837314]]
>>> print sky2sky((eq,’b1950’,fk4, ’J1990’), (eq,’j2000’,fk5), 0,0)
[[0.64071745 0.27836105]]

The differences are a result of the fact that FK4 is slowly rotating with respect to the inertial FK5 system.

Velocities

The relation between velocities in the two systems is given also by the transformation equations:

vJ2000 = Ẋ(0)rB1950 + FX(0)vB1950 (22.35)

Then:

vB1950 = F−1X−1(0)(vJ2000 − Ẋ(0)rB1950) (22.36)

Module celestial deals with positions from maps with objects for which we expect that the proper motion in
FK5 is zero (e.g. extra-galactic sources). Then the expression for the fictitious proper motion in FK4 is:

vB1950 = −F−1X−1(0)Ẋ(0)rB1950 (22.37)

If we substitute this in equation (22.33) then we have the simple relation:

rJ2000 = X(0)rB1950 (22.38)

To summarize the possible transformations between FK4 and FK5:

Note: If you allow non zero proper motion in FK5 you should specify an epoch for the date that the mean place
was correct and apply the formula:

rJ2000 = X(0)rB1950 + TẊ(0)rB1950 (22.39)

If you are sure that the your position corresponds to an object with zero proper motion in FK5 then the epoch of
observation is not necessary and one applies the formula:

rJ2000 = X(0)rB1950 (22.40)

Note that the matrix X(0) is not a rotation matrix because the inverse matrix is not equal to the transpose. Therefore
the transformation matrix for conversion of FK5 to FK4 is the inverse of X(0).

Murray’s method has been described as controversial (e.g. see Soma (1990), [Soma]), but Poppe (2005) [Poppe]
shows that the differences in results between the methods of Standish, Aoki and Murray are less than 5 mas.

22.4. Transformations between the reference systems FK4 and FK5 449

Kapteyn Package Documentation, Release 2.2

22.5 Radio maps

Much of the B1950 data that users at the Kapteyn Astronomical Institute transform to FK5 J2000, is data from
the Westerbork Synthesis Radio Telescope (WSRT). For this telesope we retrieved some information about the
correction program that was used to transform apparent places to mean places. Apparent coordinates change
during an observing run, due to:

• Refraction

• Precession

• Nutation

• Aberration

1. Annual aberration

2. Diurnal aberration

3. Secular aberration (unknown and not significant)

4. Planetary aberration (unknown and not significant)

• Proper motion (not significant)

• Parallax (not significant)

If Xt are the coordinates of a source at a time t, Xe are the coordinates at epoch e and:

• N is the rotation matrix describing the nutation

• P is the rotation matrix describing the precession

• A is the vector describing the annual aberration

• D is the vector describing the diurnal aberration

then the following relations apply:

Xt = N.P.Xe +A+D (22.41)

Xe = P−1.N−1.(Xt −A−D) (22.42)

The vector describing the correction for annual aberration is the vector

A =

 −D
+C

C tan(ε)

 (22.43)

C and D are the so called Besselian Day Numbers (tabulated in the Astronomical Almanac) that correct for annual
aberration. Early interferometers like the WSRT produced images with greater resolution than obtainable in the
optical at that time and in the construction of the radio maps a correction for the elliptical terms was included. So
these maps are in fact FK4-NO-E (which is FITS terminology for a FK4 map where the E-terms are removed).
For precession and transformations for these maps, no E-terms need to be removed.

Regretably many of FITS files with B1950 data do not include a value for the RADESYS keyword and one should
try to find out how the coordinate system of these radio maps were constructed to be sure whether E-terms are
included or not.

Calabretta (2002) writes:

FK4 coordinates are not strictly spherical since they include a contribution from the elliptic terms of aberration,
the so-called E-terms which amount to a maximum of 343 milliarcsec. Strictly speaking, therefore, a map obtained
from, say, a radio synthesis telescope, should be regarded as FK4-NO-E unless it has been appropriately resam-
pled or a distortion correction provided. In common usage, however, ‘CRVAL‘ for such maps is usually given in
FK4 coordinates. In doing so, the E-terms are effectively corrected to first order only.

450 Chapter 22. Background information module celestial

Kapteyn Package Documentation, Release 2.2

Contradictory to this, we understand that it depends on how a radio map is sampled whether E-terms are included
or not. Also not clear is the reason why one would resample a map in FK4-NO-E. Finally, assuming that usu-
ally CRVAL is given in FK4 coordinates seems a bit dangerous. For example for a transformation to Galactic
coordinates the E-terms in the FK4 map are removed while it possibly didn’t contain E-terms at all.

With a primary focus on maps with extragalactic objects we have to be sure that galaxy positions given in FK4
coordinates can reliably be converted to FK5 positions. Cotton (1999) [Cotton] presents a list with galaxy positions
in B1950 and J2000 coordinates from the Uppsala General catalog (UGC). For the J2000 positions they used
Digitized Sky Survey (DSS) images to measure accurate positions of all included UGC galaxies. The positions
are accurate to the arcsecond level. For a sample of these galaxies we converted the B1950 positions and compared
these to the listed J2000 positions in the article. The numbers were accurate to 10 mas, well within the positional
errors given in the listing (which are > 1 arcsecond).

For VLBI data we need another kind of test for accuracy. Aoki (1986) [Aoki2] compares the transformation results
of the B1950 position of 3C273B

α = 12h26m33.246s, δ = 2◦19′42′′.4238, epoch of observation: 1978.62) to J2000 of several authors. He
concludes that different authors use different methods and get different results. Aoki’s method differs a few tens
mas from the J2000 (VLBI radio sources based) catalog position where RA=12h29m6.6997 (no value for Dec was
given). We also noticed that the highest accuracy is obtained if one uses the epoch of observation. Aoki’s result
differs 1.6 mas from the catalog value. The results of celestial.py differ only 0.01 mas in RA compared to Aoki’s
results.

Hering (1998) [Hering] gives a short description of a procedure in which a B1950 position of a radio source is
converted to a J2000 position using the position in B1950 and J2000 of a calibrator source assuming that the
angular distance between these sources is the same in both reference systems. An example of Radio star HIP
66257 was added:

Calibrator: 1404+286 (FK4)
alpha(B1950) = 14h 04m 45.613s delta(B1950) = 28d 41’ 29.22’’
1404+286 (ICRF)
alpha(J2000) = 14h 07m 00.3944s delta(J2000) = 28d 27’ 14.690’’

Radio star: HIP 66257 = HR 5110, Julian epoch of observation: t0 = 1982.3619
alpha(B1950) = 13h 32m 32.145s delta(B1950) = 37d 26’ 16.18’’
Updated radio star position with respect to the calibrator given
in the ICRF:
alpha(J2000) = 13h 34m 45.6817s delta(J2000) = 37d 10’ 56.854’’

Celestial: FK4 to ICRS
alpha(J2000) = 13h 34m 45.6862s delta(J2000) = 37d 10’ 56.790’’

We assumed that the original article has an error in the value of alpha(J2000) of 2 seconds. This must be a typing
mistake because the procedure described in that article is based on Aoki (1986) and when we apply this method
to the data we are close to the corrected position. A difference of 2000 mas cannot be explained otherwise.
The difference between celestial and the updated radio star position using the method of constant angular
distances, is:

(∆α,∆δ) = (68 mas, 64 mas)

Hering claims a difference between the updated radio star position and that obtained by (his) formal transformation
from B1950 to J2000 of:

(∆α cos(δ),∆δ) = (20 mas, 7 mas)

It is not straightforward to draw conclusions from these comparisons because the formal transformation is not
described in detail. The results of celestial are close to Aoki’s so if Hering’s method is based on Aoki’s, we
expect comparable differences, which is, for unknown reasons, not the case.

22.5. Radio maps 451

Kapteyn Package Documentation, Release 2.2

22.6 Galactic Coordinates

According to Blaauw et al. (1959), the original definitions for the Galactic sky systems are:

• The new north galactic pole lies in the direction:

(α, δ) = (12h49m , 27◦.4) = (192◦.25, 27◦.4) (22.44)

(equinox 1950.0)

• The new zero of longitude is the great semicircle originating at the new north galactic pole at the position
angle theta = 123 degrees with respect to the equatorial pole for 1950.0.

• Longitude increases from 0 degrees to 360 degrees. The sense is such that, on the galactic equator increasing
galactic longitude corresponds to increasing Right Ascension. Latitude increases from -90 degrees through
0 degrees to +90 degrees at the new galactic pole.

Given the RA and Dec of the galactic pole, and using the Euler angles scheme Rz(a3).Ry(a2).Rz(a1), we first
rotate the spin vector of the XY plane about an angle a1 = 192.25 degrees and then rotate the spin vector in the
XZ plane (i.e. around the Y axis) with an angle a2 = 90-27.4 degrees to point it in the right declination.

Now think of a circle with the galactic pole as its center. The radius is equal to the distance between this center
and the equatorial pole. The zero point in longitude now is opposite to this pole We need to rotate along this circle
(i.e. a rotation around the new Z-axis) in a way that the angle between the zero point and the equatorial pole is
equal to 123 degrees. So first we need to compensate for the 180 degrees of the current zero longitude, opposite
to the pole. Then we need to rotate about an angle 123 degrees but in a way that increasing galactic longitude
corresponds to increasing Right Ascension which is opposite to the standard rotation of this circle (note that we
rotated the original X axis about 192.25 degrees which flips the direction of rotation when viewed from (0,0,0).
The last rotation angle therefore is a3 = 180-123 degrees. The composed rotation matrix is calculated with:

R = Rz(180− 123)Ry(90− 27.4)Rz(192.25) (22.45)

The numbers are the same as in Slalib’s ‘ge50.f’ and in the matrix of eq. (32) of Murray (1989) [Murray]. The
numbers in the composed rotation matrix to convert equatorial FK4 mean places to IAU1958 galactic coordinates,
calculated with celestial are:

>>> from kapteyn.celestial import *
>>> import numpy
>>> m = skymatrix((eq,’b1950’,fk4), gal)[0]
>>> print numpy.array2string(numpy.array(m), precision=12)
[-0.066988739415 -0.872755765852 -0.483538914632]
[0.492728466075 -0.45034695802 0.744584633283]
[-0.867600811151 -0.188374601723 0.460199784784]

Compare this to the numbers in SLALIB’s ge50.f:

[-0.066988739415D0,-0.872755765852D0,-0.483538914632D0]
[+0.492728466075D0,-0.450346958020D0,+0.744584633283D0]
[-0.867600811151D0,-0.188374601723D0,+0.460199784784D0]

And to Murray’s matrix:

[-0.066988739 -0.872755766 -0.483538915]
[0.492728466 -0.450346958 0.744584633]
[-0.867600811 -0.188374602 0.460199785]

FK4 catalog positions are not corrected for the elliptic terms of aberration. One should remove these terms first
before transforming to galactic coordinates.

Transformations from FK5 J2000 to Galactic coordinates

Galactic coordinates are defined using features in the FK4 system. If these axes could be identified with catalog
objects one should first remove the E-terms. Then the rotation to FK5 results in a new system of axes that are
non-orthogonal because the E-term correction depends on the position in the sky. Therefore we consider the
position of the galactic pole as a FK4 position corrected for E-terms (i.e. FK4-NO-E) and apply transformations

452 Chapter 22. Background information module celestial

http://koala.ir.isas.ac.jp/AKARI/iris_data/trac/iraf64/browser/trunk/src/iraf/math/slalib/ge50.f?rev=9

Kapteyn Package Documentation, Release 2.2

only to FK4 positions corrected for E-terms (i.e. we transform from and to the FK4-NO-E system). According to
Blaauw (private communication 2008) the precision in the determination of the position of the galactic pole did
not justify the effort to bother about E-terms. So if we define the position of the Galactic pole to be in FK4-NO-E
coordinates, we don’t change the original definition.

Using this definition of the galactic pole one can find the position of this pole in J2000 coordinates by direct
transformations from FK4-NO-E to FK5 and define a rotation matrix for a transformation from FK5 to Galactic
coordinates. But to preserve as accurate as possible the galactic coordinates of objects observed in the FK4 system
one should first apply the transformation from FK5 to FK4-NO-E and then apply the transformation from FK4-
NO-E to Galactic coordinates.

We identify the same problem with the conversion from FK4 to Ecliptic coordinates and using the same logic, we
only define transformation between FK4-NO-E and the Ecliptic system.

Note: Transformations involving FK4 coordinates are defined in the FK4-NO-E system. For FK4 catalog posi-
tions, this means that one needs to remove the E-terms first before any transformation is applied.

The composed rotation matrix for FK5 to Galactic coordinates from celestial is:

>>> m = skymatrix((eq,’j2000’,fk5), gal)[0]
[-0.054875539396 -0.873437104728 -0.48383499177]
[0.494109453628 -0.444829594298 0.7469822487]
[-0.867666135683 -0.198076389613 0.455983794521]

which is consistent with the transpose of the matrix in eq. 33 of Murray (1989) [Murray].

[-0.054875539 -0.873437105 -0.483834992]
[0.494109454 -0.444829594 0.746982249]
[-0.867666136 -0.198076390 0.455983795]

And to SLALIB’s galeq.f:

[-0.054875539726D0,-0.873437108010D0,-0.483834985808D0]
[+0.494109453312D0,-0.444829589425D0,+0.746982251810D0]
[-0.867666135858D0,-0.198076386122D0,+0.455983795705D0]

The SLALIB version also first applies the standard FK4 to FK5 transformation, for zero proper motion in FK5
and then applies the transformation from FK4 to galactic coordinates.

Galactic coordinates are given in (l,b) (also known as lII , bII .

22.7 Supergalactic coordinates

The Supergalactic equator is conceptually defined by the plane of the local (Virgo-Hydra-Centaurus) supercluster,
and the origin of supergalactic longitude is at the intersection of the supergalactic and galactic planes. Accord-
ing to Corwin (1994) the northern supergalactic pole is at l=47 degrees.37, b=6 degrees.32 (IAU1958 galactic
coordinates) and the supergalactic longitude (sgl) is zero at l=137 degrees.37.

For the rotation matrix we chose the scheme R = Rz.Ry.Rz

Then first we rotate about 47 degrees.37 along the Z-axis followed by a rotation about 90-6.32 degrees along the
Y-axis to set the supergalactic pole to the right declination. The new plane intersects the old one at two positions.
One of them is l=137 degrees.37, b=0 degrees (in galactic coordinates). If we want this position to be sgl=0 we
have to rotate this plane along the new Z-axis about an angle of 90 degrees. So the composed rotation matrix is:

R = Rz(90)Ry(90− 6.32)Rz(47.37) (22.46)

The numbers in the matrix that converts from galactic to supergalactic coordinates are:

[-7.357425748044e-01 6.772612964139e-01 -6.085819597056e-17]
[-7.455377836523e-02 -8.099147130698e-02 9.939225903998e-01]
[6.731453021092e-01 7.312711658170e-01 1.100812622248e-01]

22.7. Supergalactic coordinates 453

http://koala.ir.isas.ac.jp/AKARI/iris_data/trac/iraf64/browser/trunk/src/iraf/math/slalib/galeq.f?rev=9

Kapteyn Package Documentation, Release 2.2

Compare this to the numbers in SLALIB’s galsup.f

[-0.735742574804D0,+0.677261296414D0,+0.000000000000D0]
[-0.074553778365D0,-0.080991471307D0,+0.993922590400D0]
[+0.673145302109D0,+0.731271165817D0,+0.110081262225D0]

Supergalactic coordinates are given in (sgl, sgb).

22.8 Ecliptic coordinates

The ecliptic coordinate system is a celestial coordinate system that uses the ecliptic for its fundamental plane. The
coordinate system is suitable for objects with small deviations from the ecliptic (e.g. planets).

The latitude is measured positive towards the north. The longitude is measured eastwards and has an angle between
0 degrees and 360 degrees, the same direction as in the equatorial system. The intersection of the ecliptic and the
equatorial plane at Right Ascension zero (vernal equinox) is the origin of the ecliptic longitude. In converting
equatorial coordinates to ecliptic coordinates, only one angle is involved. This angle is known as the obliquity of
the ecliptic. The value for the obliquity depends on epoch. In fact, the ecliptic is the rotation of the equatorial
plane along the X-axis and the rotation angle is the obliquity:

R = Rx(ε) (22.47)

Like equatorial coordinates, ecliptic coordinates are subject to precession and a value for the equinox is required
to specify positions. Ecliptic coordinates therefore are also related to the reference systems (FK4, FK5 and ICRS)
known to the equatorial sky system. ICRS positions are defined without an equinox value so the corresponding
ecliptic coordinates should be fixed also (to J2000). However we apply a frame bias to ICRS to get a position in
the dynamical j2000 system and allow for precession of this system.

According to the IAU 1980 theory of nutation an estimation of the obliquity can be made with the expression:

ε = 23◦26′21′′.448− 46′′8150T − 0′′00059T 2 + 0′′.001813T 3 (22.48)

The expression is from Lieske (1977). T is the time, measured in Julian centuries of 36525 days, since ‘basic’
epoch J2000.

The IAU2000 expression is:

ε = ε0 − 46′′836769T − 0′′0001831T 2 + 0′′.0.00200340T 3 − 0.000000576T 4 − 0.0000000434T 5 (22.49)

and ε0 = 84381.406 arcseconds.

Ecliptic coordinates are given in (λ, β)

22.9 ICRS, Dynamical J2000 and FK5

22.9.1 ICRS

In 1991 a new celestial reference system was proposed by the IAU. It was adopted by the IAU General Assembly of
1997 as the The International Celestial Reference System (ICRS) It officially replaced the FK5 system on January
1, 1998 and is now in common use for positional astronomy. The ICRS is based on a number of extra-galactic
radio sources. The system is centered on the barycenter of the Solar System. It doesn’t depend on any rotating
pole and its origin is close to the mean equinox at J2000. This origin is called the Celestial Ephemeris Origin
(CEO). The realization of the reference frame is provided by a sample of suitable stars from the Hipparcos catalog.
Coordinates in this frame are Right Ascension and Declination. There is no associated equinox but when dealing
with proper motions one should associate an epoch of observation.

454 Chapter 22. Background information module celestial

http://koala.ir.isas.ac.jp/AKARI/iris_data/trac/iraf64/browser/trunk/src/iraf/math/slalib/galsup.f?rev=9

Kapteyn Package Documentation, Release 2.2

22.9.2 The dynamical J2000 system

The dynamical J2000 system is based on the real mean position of the equinox at J2000. We follow the inertial
definition (i.e. inertial ecliptic versus rotating ecliptic) which has an offset of 93.66 mas with respect to the
rotating definition. So the offsets of the right ascensions in the next sections are in correspondence with the
inertial definition.

Offsets

The tilt and offset of the FK5 equator with respect to the ICRS is:

• η0 = -19.9 mas (ICRS pole offset)

• ξ0 = 9.1 mas (ICRS pole offset)

• dα0 = -22.9 (the ICRS right ascension offset)

To transform vectors from ICRS to FK5 at J2000 one uses the rotation matrix:

R = Rx(−η0)Ry(ξ0)Rz(dα0) (22.50)

The rotation matrix is:

>>> print skymatrix(fk5,icrs)
[[1.00000000e+00 1.11022337e-07 4.41180343e-08]
[-1.11022333e-07 1.00000000e+00 -9.64779274e-08]
[-4.41180450e-08 9.64779225e-08 1.00000000e+00]]

Observations showed that the J2000 mean pole is not at ICRS position (0,0) but at position (-0”.016617, -
0”.0068192) and that the J2000 mean equinox was positioned 0”.0146 west of the ICRS meridian (IAU-SOFA
2007).

With the angles:

• η0 = -6.8192 mas

• ξ0 = -16.617 mas

• dα0 = -14.6 mas

we construct the rotation matrix:

>>> print skymatrix(j2000,icrs)
[[1.00000000e+00, 7.07827948e-08, -8.05614917e-08]
[-7.07827974e-08, 1.00000000e+00, -3.30604088e-08]
[8.05614894e-08, 3.30604145e-08, 1.00000000e+00]]

which is similar to the rotation matrix described in eq. 8 of Hilton (2004). In this article the rotation matrix from
J2000 to the ICRS is discussed. The authors follow the rotation scheme Rz Rx Rz , but we follow the scheme in
Kaplan (2005) which is equivalent but is a more straightforward translation of the pole offsets and the origin.

So if we define a position (x,y,z) = (0,0,1) in the J2000 system, then we expect in the ICRS system two values that
are approximately the pole offsets. Indeed this is the case as is shown in the next code fragment. Note that the
offsets in x and y can be converted to angles because these angles are very small dx ≈ R.dξ:

1 >>> import numpy as n
2 >>> from kapteyn.celestial import *
3 >>> xyz = n.asmatrix((0,0,1.0), ’d’).T
4 >>> xyz2 = dotrans(skymatrix(j2000,icrs), xyz)
5 >>> print xyz2
6 [[-8.05614894e-08],
7 [-3.30604145e-08],
8 [1.00000000e+00]]
9 >>> print xyz2[0,0]*(180/n.pi)*3600000

10 -16.6170004827
11 >>> print xyz2[1,0]*(180/n.pi)*3600000
12 -6.8191988238

22.9. ICRS, Dynamical J2000 and FK5 455

Kapteyn Package Documentation, Release 2.2

22.10 Composing other transformations

With the basic transformation described above we can compose all other transformations by composing a new
rotation matrix. In the next figure we show all the transformations that celestial supports.

456 Chapter 22. Background information module celestial

Kapteyn Package Documentation, Release 2.2

Fig.3 – Schematic overview of all possible transformations in celestial.

22.10. Composing other transformations 457

Kapteyn Package Documentation, Release 2.2

Note: The figure illustrates that for each transformation from FK4 and for each transformation to FK4, the E-
terms are processed. This has been motivated for transformations between FK4 and FK5. For galactic coordinates
we assume that the galactic pole was given in FK4-NO-E. The difference between the position in FK4 and FK4-
NO-E is much smaller than the errors in the position of the galactic pole which is the motivation to use FK4-NO-E
as the starting point (which means that we use improved mean places anyhow).

22.11 Defaults in relation to FITS

In FITS the type of world coordinate system (celestial system) is specified in keyword CTYPE For equatorial
systems, the reference system in FITS is given with keyword RADESYS

The epoch of the mean equator and equinox is given with FITS keyword EPOCH (deprecated) or EQUINOX For
ecliptic and equatorial systems, some rules are set:

• Epoch is sometimes used to refer to the time of observation so if both keywords are given, EQUINOX takes
preference

• EQUINOX also applies to ecliptic coordinates

• For RADESYS values of FK4 and FK4-NO-E any stated equinox is Besselian

• RADESYS also applies to ecliptic coordinates

• If for FK4 neither EQUINOX or EPOCH are given, a default of 1950 will be taken

• For RADESYS value of FK5 the stated equinox is Julian

• If only EQUINOX is given and not RADESYS then the reference system defaults to FK4 if EQUINOX < 1984
and it defaults to FK5 if EQUINOX > 1984

• If both RADESYS and EQUINOX are absent then RADESYS defaults to ICRS

• A date of observation is given in keywords MJD-OBS or DATE-OBS

22.12 Glossary

Most of the definitions are from the reference below or from various web sources.

Besselian to Julian epoch B = 1900.0 + (Julian date - 2415020.31352) / 365.242198781 (according to IAU).

Epoch Instant of time.

Epoch B1950 Mean orientation of the earth’s equator and ecliptic at the beginning of the year 1950 (1950,01,01,
12h). It is tied to the sky by star coordinates in the FK4 catalog.

Epoch J2000 Mean orientation of the earth’s equator and ecliptic at the beginning of the year 2000 (2000,01,01,
12h). It is tied to the sky by star coordinates in the FK5 catalog.

Equinox An equinox is a moment in time when the center of the Sun can be observed to be directly above the
Earth’s equator. At an equinox, the Sun is at one of two opposite points on the celestial sphere where the
celestial equator (i.e. declination 0) and the ecliptic intersect (Vernal and autumnal points).

Equinox of the date Means that the equinox is the same as the epoch.

Ecliptic The Ecliptic is the plane of the Earth’s orbit, projected onto the sky. Ecliptic coordinates are a spher-
ical coordinate system referred to the ecliptic and expressed in terms of “Ecliptic latitude” and “Ecliptic
longitude”. By implication, Ecliptic coordinates are also referred to a specific “Equinox”

Equator: true equator of a date Is the plane perpendicular to direction of the celestial pole.

Equator: mean equator of a date Is deduced from the true equator of the date by a transformation given by the
nutation theory.

458 Chapter 22. Background information module celestial

Kapteyn Package Documentation, Release 2.2

Fiducial point A point on a scale used for reference or comparison purposes. If the plane of the ecliptic and the
plane of the equator is used as lanes of reference, the equinox is used as fiducial point.

FK4 FundamentalKatalog 4. The 4th fundamental catalog. The FK4 is an equatorial coordinate system (co-
ordinate system linked to the Earth) based on its B1950 position. The units used for time specification is
the Besselian Year (Fricke & Kopff 1963). See also: Fricke, W., & Kopff, A. 1963, Fourth Fundamental
Katalog (FK4), Veroeff. Astron. Rechen-Inst. Heidelb. No. 10. The FK4 system is not inertial. There is
a small but significant rotation relative to distant objects. So, besides the equinox, an epoch is required to
specify when the mean place was correct.

FK5 FundamentalKatalog 5. Based on J2000 positions. The units used for time specification is the Julian year.

Galactic coordinates The galactic coordinate system is a spherical reference system on the sky where the origin
is close to the apparent center of the Milky Way, and the “equator” is aligned to the galactic plane.

ICRS Current astrometric observations and measurements should now be made in the International Celestial
Reference System (ICRS) The best optical realization of the ICRF currently available is the Hipparcos
catalogue. The Hipparcos frame is aligned to the ICRF to within about 0.5 mas For reasons of continuity
and convenience, the orientation of the new ICRS frame was set up to have a close match to FK5 J2000.
See for example: http://aa.usno.navy.mil/faq/docs/ICRS_doc.php

mas milliarcsecond (10−3 arcsec).

Obliquity (of the Ecliptic) This term refers to the angle the plane of the equator makes with the plane of the
Earth’s orbit.

Precession The orientation of the Earth’s axis is slowly but continuously changing, tracing out a conical shape
in a cycle of approximately 25,765 years This change is caused by the gravitational forces (mainly Sun and
Moon).

Reference frame A reference frame consists of a set of identifiable fiducial points on the sky along with their
coordinates, which serves as the practical realization of a reference system.

Reference system A reference system is the complete specification of how a celestial coordinate system is to be
formed. It defines the origin and fundamental planes (or axes) of the coordinate system. It also specifies
all of the constants, models, and algorithms used to transform between observable quantities and reference
data that conform to the system.

22.13 References

22.13. References 459

http://aa.usno.navy.mil/faq/docs/ICRS_doc.php

Kapteyn Package Documentation, Release 2.2

460 Chapter 22. Background information module celestial

CHAPTER 23

Background information spectral
translations

23.1 Introduction

This background information has been written for two reasons. First we wanted to get some understanding of
the conversions between spectral quantities and second, we wanted to have some knowledge about legacy FITS
headers (of which there must be a lot) where applying the conversions of WCSLIB in the context of module wcs
without modifications will give wrong results.

Warning: One needs to be aware of the fact that WCSLIB converts between frequencies and velocities in the
same reference system while in legacy FITS headers it is common to give a topocentric reference frequency
and a reference velocity in a different reference system.

23.2 Alternate headers for a spectral line example

In “Representations of spectral coordinates in FITS” ([Ref3]), section 10.1 deals with an example of a VLA
spectral line cube which is regularly sampled in frequency (CTYPE3=’FREQ’). The section describes how one
can define alternative FITS headers to deal with different velocity definitions. We want to examine this exercise in
more detail than provided in the article to illustrate how a FITS header can be modified and serve as an alternate
header.

The topocentric spectral properties in the FITS header from the paper are:

CTYPE3= ’FREQ’
CRVAL3= 1.37835117405e9
CDELT3= 9.765625e4
CRPIX3= 32
CUNIT3= ’Hz’
RESTFRQ= 1.420405752e+9
SPECSYS=’TOPOCENT’

Note: For a pixel coordinate N , reference pixel Nref with reference world coordinate Wref and a step size in
world coordinates ∆W , the world coordinate W is calculated with:

W (N) = Wref + (N −Nref)×∆W (23.1)

If CTYPE contains a code for a non linear conversion algorithm (as in CTYPE=’VOPT-F2W’) then this relation
cannot be applied.

As stated in the note above, code for a conversion algorithm is important. The statements can be verified with the
following script:

461

Kapteyn Package Documentation, Release 2.2

1 #!/usr/bin/env python
2 from kapteyn import wcs
3

4 Z0 = 9120000 # Barycentric optical reference velocity
5 dZ0 = -2.1882651e+4 # Increment in barycentric optical velocity
6 N = 32 # Pixel coordinate of reference pixel
7

8 header = { ’NAXIS’ : 1,
9 ’RESTWAV’ : 0.211061140507, # [m]

10 ’CTYPE1’ : ’VOPT’,
11 ’CRVAL1’ : Z0, # [m/s]
12 ’CDELT1’ : dZ0, # [m/s]
13 ’CRPIX1’ : N,
14 ’CUNIT1’ : ’m/s’
15 }
16 spec = wcs.Projection(header)
17 print "From VOPT: Pixel, velocity wcs, velocity linear (%s)" % spec.units
18 pixels = range(30,35)
19 Vwcs = spec.toworld1d(pixels)
20 for p,v in zip(pixels, Vwcs):
21 print p, v/1000.0, (Z0 + (p-N)*dZ0)/1000.0
22

23 header = { ’NAXIS’ : 1,
24 ’CNAME1’ : ’Barycentric optical velocity’,
25 ’RESTWAV’ : 0.211061140507, # [m]
26 ’CTYPE1’ : ’VOPT-F2W’,
27 ’CRVAL1’ : Z0, # [m/s]
28 ’CDELT1’ : dZ0, # [m/s]
29 ’CRPIX1’ : N,
30 ’CUNIT1’ : ’m/s’
31 }
32 spec = wcs.Projection(header)
33 print "From VOPT-F2W: Pixel, velocity wcs, velocity linear (%s)" % spec.units
34 pixels = range(30,35)
35 Vwcs = spec.toworld1d(pixels)
36 for p,v in zip(pixels, Vwcs):
37 print p, v/1000.0, (Z0 + (p-N)*dZ0)/1000.0
38

39 # Output:
40 #
41 # From VOPT: Pixel, velocity wcs, velocity linear (m/s)
42 # Conversion is linear; no differences
43 # 30 9163.765302 9163.765302
44 # 31 9141.882651 9141.882651
45 # 32 9120.0 9120.0
46 # 33 9098.117349 9098.117349
47 # 34 9076.234698 9076.234698
48 # From VOPT-F2W: Pixel, velocity wcs, velocity linear (m/s)
49 # Conversion is not linear
50 # 30 9163.77150335 9163.765302
51 # 31 9141.88420123 9141.882651
52 # 32 9120.0 9120.0
53 # 33 9098.11889901 9098.117349
54 # 34 9076.24089759 9076.234698

23.2.1 Relation optical velocity and barycentric/lsrk reference frequency

Let’s start to find the alternate header information for the header from article in [Ref3] . The extra information
about the velocity there is that we have an optical barycentric velocity of 9120 km/s (as required by an observer)
stored as an alternate FITS keyword CRVAL3Z.:

462 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

CTYPE3Z= ’VOPT-F2W’
CRVAL3Z= 9.120e+6 / [m/s]

The relation between frequency and optical velocity requires a rest frequency (RESTFRQ=). The relation is:

Z = c
(λ− λ0

λ0

)
= c

(ν0 − ν
ν

)
(23.2)

We adopted variable Z for velocities following the optical definition. The header tells us that equal steps in
pixel coordinates are equal steps in frequency and the formula above shows that these steps in terms of optical
velocity depends on the frequency in a non-linear way. Therefore we set the conversion algorithm to F2W which
indicates that there is a non linear conversion from frequency to wavelength (optical velocities are associated
with wavelength, see [Ref3] .). Note that we can use wildcards for the non linear conversion algorithm, so
CTYPE3Z=’VOPT-???’ is also allowed in our programs.

We can rewrite equation 1 into:

ν =
ν0

(1 + Z/c) (23.3)

If we enter the numbers we get a barycentric HI reference frequency:

νb =
1.420405752× 109

(1 + 9120000/299792458.0)
= 1378471216.43 Hz (23.4)

and we have part of a new alternate header:

CTYPE3F= ’FREQ’
CRVAL3F= 1.37847121643e+9 / [Hz]

So given an optical velocity in a reference system (in our case the barycentric system), we can calculate which
barycentric frequency we can use as a reference frequency. For a conversion between a barycentric frequency and
a barycentric velocity we also need to know what the barycentric frequency increment is.

23.2.2 Barycentric/lsrk frequency increments

fig.1 Overview of velocities and frequencies of barycenter (B) and Earth (E) w.r.t. source. The arrows represent
velocities. The object and the Earth are moving. The longest arrow represents the (relativistic) addition of two
velocities

Let’s use index b for variables bound to the barycentric system and e for the topocentric system. This frequency,
νb =1.37847121643 GHz is greater than the reference frequency νe at the observatory (FITS keyword CRVAL3=
1.37835117405 GHz).

The difference between frequencies in the topocentric and barycentric system is caused by the difference
between the velocities of reference frames B and E at the time of observation.

23.2. Alternate headers for a spectral line example 463

Kapteyn Package Documentation, Release 2.2

This velocity is a true velocity. It is called the topocentric correction.

Let’s try to find an expression for this topocentric correction in terms of frequencies. The relation between a true
velocity and a shift in frequency is given by the formula

ν = ν0

√
1− v/c
1 + v/c

= ν0

√
c− v
c+ v

= ν0
c− v√
c2 − v2

(23.5)

If we want to express the apparent radial velocity in terms of frequencies, then this can be written as:

v = c
ν2
0 − ν2

ν2
0 + ν2

(23.6)

For the apparent radial velocities vb and ve we have:

vb = c
ν2
0 − ν2

b

ν2
0 + ν2

b

= 299792458.0
1420405752.02 − 1378471216.432

1420405752.02 + 1378471216.432
= 8981342.29811 m/s (23.7)

and:

ve = c
ν2
0 − ν2

e

ν2
0 + ν2

e

= 299792458.0
1420405752.02 − 1378351174.052

1420405752.02 + 1378351174.052
= 9007426.97201 m/s (23.8)

The relativistic addition of velocities in fig. 1. requires:

ve =
vb + vt
1 + vbvt

c2
(23.9)

which gives the topocentric correction as:

vt =
ve − vb
1− vbve

c2
(23.10)

With the numbers inserted we find:

vt =
9007426.97201− 8981342.29811

1− 8981342.29811×9007426.97201
299792458.02

= 26108.1743997 m/s (23.11)

If the FITS header has keywords with the position of the source, the time of observation and the location of
the observatory then one can calculate the topocentric correction by hand. This information was needed at the
observatory to set a frequency for a given barycentric velocity. However many FITS files do not have enough
information to calculate the topocentric correction. Also it is not needed if one knows the shifted frequencies νe
and νb , then we can calculate the topocentric velocity without calculating the apparent radial velocities. This can
be shown if we insert the expressions for velocities ve and vb in the expression for vt . Then after some rearranging
one finds:

vt = c
ν2
b − ν2

e

ν2
b + ν2

e

(23.12)

and with the numbers:

vt = 299792458.0
1378471216.432 − 1378351174.052

1378471216.432 + 1378351174.052
= 26108.1743998 m/s (23.13)

which is consistent with (23.11).

VELOSYSZ=26108 / [m/s]

With a given topocentric correction and the reference frequency in the barycenter we can reconstruct the reference
frequency at the observatory with (23.12) written as:

νe = νb

√
c− vt
c+ vt

(23.14)

464 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

Note: 1) It is important to realize that the reference frequency at E is smaller than the reference frequency at B
because w.r.t. the source E moves faster than B. So if there is a change in the velocity of the source, the frequencies
in B and E will change, but the topocentric correction keeps the same value and therefore the relation between the
frequencies νe and νb remains the same (eq. (23.14)).

Note: 2) If we forget about the source and we have an event on E with a certain frequency then an observer
in barycenter B will observe a lower frequency. This is because on the line that connects the source and B, the
observatory at E moves away from B which decreases the remote frequency.

So if we change a frequency on E by tuning the receiver at the observatory at frequency νe + ∆νe , then the
observer at B would observe a smaller frequency νb+∆νb . The amount of the decrease is related to the topocentric
correction as follows:

νb + ∆νb = (νe + ∆νe)
√
c− vt
c+ vt

(23.15)

and therefore we can write for the frequency bandwidth in B:

∆νb = ∆νe

√
c− vt
c+ vt

(23.16)

At first it seems that this contradicts eq. (23.14) (where the indices seem to be swapped), but this is not true
because we changed the frame of the observer from Earth to the barycenter. The event was in E and it is observed
in B.

∆νb = 97656.25
√

299792458.0− 26108.1743998√
299792458.0 + 26108.1743998

= 97647.745732 Hz (23.17)

The increment in frequency therefore becomes 97.64775 kHz:

CDELT3F= 9.764775e+4 / [Hz]

So if we change CRVAL1 and CDELT1 in our demonstration script to the barycentric values, we get the barycentric
optical convention velocities for the pixels. As a check we listed the script and the value for pixel 32 which is
exactly 9120 (km/s):

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 header = { ’NAXIS’ : 1,
4 ’CTYPE1’ : ’FREQ’,
5 ’CRVAL1’ : 1378471216.4292786,
6 ’CRPIX1’ : 32,
7 ’CUNIT1’ : ’Hz’,
8 ’CDELT1’ : 97647.745732,
9 ’RESTFRQ’: 1.420405752e+9

10 }
11 spec = wcs.Projection(header).spectra(’VOPT-F2W’)
12 pixels = range(30,35)
13 Vwcs = spec.toworld1d(pixels)
14 print "Pixel, velocity (%s)" % spec.units
15 for p,v in zip(pixels, Vwcs):
16 print p, v/1000.0
17

18 print "Pixel at velocity 9120 km/s: ", spec.topixel1d(9120000)
19 # Output
20 # Pixel, velocity (m/s)
21 # 30 9163.77150423
22 # 31 9141.88420167
23 # 32 9120.0
24 # 33 9098.11889856
25 # 34 9076.2408967
26 # Pixel at velocity 9120 km/s: 32.0

23.2. Alternate headers for a spectral line example 465

Kapteyn Package Documentation, Release 2.2

Note: A closure test is added with method topixel1d()

Note: In the previous two sections we started with a topocentric frequency and a topocentric frequency increment
and derived values for a barycentric frequency and a barycentric frequency increment. These values can be used
to set an alternate header (barycentric frequency system ‘F’) for which we can convert between frequency and
optical velocity. For GIPSY legacy headers these steps are used to convert between topocentric frequencies and
velocities in another reference system, See A recipe for modification of Nmap/GIPSY FITS data

23.2.3 Increment in barycentric/lsrk optical velocity

The optical velocity was given by:

Z = c
(ν0 − ν

ν

)
= c

(ν0
ν
− 1
)

(23.18)

Its derivative is:

dZ

dν
=
−cν0
ν2

(23.19)

But for ν we have the expression:

ν =
ν0

(1 + Z
c) (23.20)

so we end up with:

dZ =
−c
ν0

(
1 +

Z

c

)2
dν (23.21)

With dν = ∆νb and the given barycentric velocity Zb = 9120000 m/s, this gives an increment in optical velocity
of:

dZb =
−299792458.0
1420405752.0

(
1 +

9120000.0
299792458.0

)2
97647.745732 = −21882.651 m/s (23.22)

With these values we explained some other alternate header keywords in the basic spectral-line example:

CDELT3Z= -2.1882651e+4 / [m/s]
SPECSYSZ= ’BARYCENT’ / Velocities w.r.t. barycenter
SSYSOBSZ= ’TOPOCENT’ / Observation was made from the ’TOPOCENT’ frame

23.2.4 Barycentric/lsrk radio velocity

For radio velocities one needs to apply the definition:

Vradio = V = c
(ν0 − ν

ν0

)
(23.23)

and for the shifted frequency we derive from this equation:

ν = ν0
(
1− V

c

)
(23.24)

and the spectral translation code becomes: proj.spectra(‘VRAD’)

In the next code example we demonstrate for a barycentric radio velocity V = 8850.750904 km/s how to calculate
the barycentric velocities at arbitrary pixels. This velocity is derived from the optical example in a way that shifted
frequency and topocentric correction are the same. One can use the formula

Vb
Zb

=
νb
ν0

(23.25)

to find the value of Vb = 1.37847121643∗9120/1.420405752 = 8850.750904 km/s (with the frequencies in GHz
and the velocity in km/s). In a next section we will derive this value in another way; see (23.26) and (23.27)

466 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 import numpy as n
4

5 c = 299792458.0 # Speed of light (m/s)
6 f = 1.37835117405e9 # Topocentric reference frequency (Hz)
7 df = 9.765625e4 # Topocentric frequency increment (Hz)
8 f0 = 1.420405752e+9 # Rest frequency (Hz)
9 V = 8850750.904 # Barycentric radio velocity (m/s)

10

11 fb = f0*(1-V/c)
12 print "Barycentric freq.: ", fb
13 v = c * ((fb*fb-f*f)/(fb*fb+f*f))
14 print "VELOSYSR= Topocentric correction:", v, "m/s"
15 dfb = df*(c-v)/n.sqrt(c*c-v*v)
16 print "CDELT3F= Delta in frequency in the barycentric frame eq.4): ", dfb
17

18 header = { ’NAXIS’ : 1,
19 ’CTYPE1’ : ’FREQ’,
20 ’CRVAL1’ : fb,
21 ’CRPIX1’ : 32,
22 ’CUNIT1’ : ’Hz’,
23 ’CDELT1’ : dfb,
24 ’RESTFRQ’: 1.420405752e+9
25 }
26 line = wcs.Projection(header).spectra(’VRAD’)
27 pixels = range(30,35)
28 Vwcs = line.toworld1d(pixels)
29 for p,v in zip(pixels, Vwcs):
30 print p, v/1000
31

32 # Output:
33 # Barycentric freq.: 1378471216.43
34 # VELOSYSR= Topocentric correction: 26108.1745986 m/s
35 # CDELT3F= Delta in frequency in the barycentric frame eq.4): 97647.745732
36 #
37 # Output Radio velocities (km/s)
38 # 30 8891.97019316
39 # 31 8871.36054858
40 # 32 8850.750904
41 # 33 8830.14125942
42 # 34 8809.53161484

23.2.5 Frequency to Radio velocity

From the definition of radio velocity:

V = c
(ν0 − ν

ν0

)
(23.26)

we can find a radio velocity that corresponds to the value of the optical velocity. This (barycentric) optical velocity
(9120 Km/s) caused a shift of the rest frequency. The new frequency became νb = 1.37847122 × 109Hz. If we
insert this number in the equation above we find:

Vb = c
(1420405752.0− 1378471216.43

1420405752.0
)

= 8850750.90419 m/s (23.27)

The formula for a direct conversion from optical to radio velocity can be derived by inserting the formula for the
frequency shift corresponding to optical velocity, into the expression for the radio velocity:

V = c
(
1− 1

1 + Z
c

)
(23.28)

23.2. Alternate headers for a spectral line example 467

Kapteyn Package Documentation, Release 2.2

With eq. (23.26) it is easy to find the increment of the velocity if the increment in frequency at the reference
frequency is given:

dV =
−c
ν0

dν (23.29)

Note that this increment in frequency is the increment in the barycentric system!

Inserting the numbers with dν = ∆νb we find:

dVb =
−299792458.0
1420405752.0

× 97647.7457312 = −20609.644582 m/s (23.30)

This gives us another two values for the alternate header keywords:

CTYPE3R= ’VRAD’
CRVAL3R= 8.85075090419e+6 / [m/s]
CDELT3R= -2.0609645e+4 / [m/s]

Note that CTYPE3R= ‘VRAD’ indicates that the conversion between frequency and radio velocity is linear.

The next script shows how we can use these new header values to get a list of radio velocities as function of pixel.
We commented out the rest frequency. Its value is not necessary because we can rewrite the formulas for the
velocity in terms of ν/ν0 and ∆ν/ν0

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 header = { ’NAXIS’ : 1,
4 ’CTYPE1’ : ’VRAD’,
5 ’CRVAL1’ : 8850750.904193053,
6 ’CRPIX1’ : 32,
7 ’CUNIT1’ : ’m/s’,
8 ’CDELT1’ : -20609.644582145629,
9 # ’RESTFRQ’: 1.420405752e+9

10 }
11 line = wcs.Projection(header)
12 pixels = range(30,35)
13 Vwcs = line.toworld1d(pixels)
14 for p,v in zip(pixels, Vwcs):
15 print p, v/1000
16 #
17 # Output barycentric radio velocity in km/s:
18 # 30 8891.97019336
19 # 31 8871.36054878
20 # 32 8850.75090419
21 # 33 8830.14125961
22 # 34 8809.53161503

Alternatively use the spectral translation method spectra() with the values of the barycentric frequency and fre-
quency increment as follows to get (exactly) the same output:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 header = { ’NAXIS’ : 1,
4 ’CTYPE1’ : ’FREQ’,
5 ’CRVAL1’ : 1378471216.4292786,
6 ’CRPIX1’ : 32,
7 ’CUNIT1’ : ’Hz’,
8 ’CDELT1’ : 97647.745732,
9 ’RESTFRQ’: 1.420405752e+9

10 }
11 line = wcs.Projection(header).spectra(’VRAD’)
12 pixels = range(30,35)
13 Vwcs = line.toworld1d(pixels)
14 for p,v in zip(pixels, Vwcs):

468 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

15 print p, v/1000
16 #
17 # Output barycentric radio velocity in km/s:
18 # 30 8891.97019336
19 # 31 8871.36054878
20 # 32 8850.75090419
21 # 33 8830.14125961
22 # 34 8809.53161503

23.2.6 Frequency to Apparent radial velocity

As written before, the relation between a true velocity and a shifted frequency is:

v = c
ν2
0 − ν2

ν2
0 + ν2

(23.31)

Observed from the barycenter the source has an apparent radial velocity:

vb = 299792458.0
1420405752.02 − 1378471216.429272

1420405752.02 + 1378471216.429272
= 8981342.29811 m/s (23.32)

CTYPE3V= ’VELO-F2V’
CRVAL3V= 8.98134229811e+6 / [m/s]

Note that CTYPE3V= ‘VELO-F2V’ indicates that we derived these velocities from a system in which the frequency
is linear with the pixel value.

For the increment of the apparent radial velocity we need to find the derivative of eq. (23.6)

dv

dν
= c(ν2

0 − ν2)
d

dν
(ν2

0 + ν2)
−1

+ c(ν2
0 + ν2)

−1 d

dν
(ν2

0 − ν2) (23.33)

This works out as:

dv =
−4cνν2

0

(ν2
0 + ν2)2

dν (23.34)

and with the appropriate numbers inserted for dν = ∆νb

and ν = νb:

dvb =
−4× 299792458.0× 1378471216.4292786× 1420405752.02

(1420405752.02 + 1378471216.42927862)2
97647.745732 = −21217.55136

(23.35)

which reveals the value of another keyword from the header in the article’s example:

CDELT3V= -2.1217551e+4 / [m/s]

Sometimes you might encounter an alternative formula that doesn’t list the frequency. It uses eq. (23.5) to express
the frequency in terms of the apparent radial velocity and the rest frequency.

ν = ν0

√
1− v/c
1 + v/c

(23.36)

If you insert this into:

dv =
−4cνν2

0

(ν2
0 + ν2)2

dν (23.37)

23.2. Alternate headers for a spectral line example 469

Kapteyn Package Documentation, Release 2.2

then after some rearrangements you end up with the expression:

dv =
−c
ν0

√
(1− v

c
) (1 +

v

c
)

3
2
dν (23.38)

If you insert v = 8981342.29811 (m/s) in this expression you will get exactly the same apparent radial velocity
increment (-2.1217551e+4 m/s).

We found an apparent radial velocity and calculated the increment for this radial velocity. With a short script and
a minimal header we demonstrate how to use WCSLIB to get an apparent radial velocity for an arbitrary pixel:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3

4 header = { ’NAXIS’ : 1,
5 ’CTYPE1’ : ’VELO-F2V’,
6 ’CRVAL1’ : 8981342.2981121931,
7 ’CRPIX1’ : 32,
8 ’CUNIT1’ : ’m/s’,
9 ’CDELT1’ : -21217.5513673598,

10 ’RESTFRQ’: 1.420405752e+9
11 }
12 line = wcs.Projection(header)
13 pixels = range(30,35)
14 Vwcs = line.toworld1d(pixels)
15 for p,v in zip(pixels, Vwcs):
16 print p, v/1000
17 # Output:
18 # 30 9023.78022672
19 # 31 9002.56055595
20 # 32 8981.34229811
21 # 33 8960.12545322
22 # 34 8938.9100213

How can this work? From eq. (23.36) and eq. (23.37) it is obvious that WCSLIB can calculate the reference
frequency from the reference apparent radial velocity. For this reference frequency and the increment in apparent
radial velocity it can calculate the increment in frequency at this reference frequency. Then we have all the
information to use eq. (23.36) to calculate radial velocities for different frequencies (i.e. different pixels). Note
that the step in frequency is linear and the step in radial velocity is not (which explains the extension ‘F2V’ in the
CTYPE keyword).

Next script and header is an alternative to get exactly the same results. The header lists the barycentric frequency
and frequency increment. We need a spectral translation with method spectra() to tell WCSLIB to calculate
apparent radial velocities:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 header = { ’NAXIS’ : 1,
4 ’CTYPE1’ : ’FREQ’,
5 ’CRVAL1’ : 1378471216.4292786,
6 ’CRPIX1’ : 32,
7 ’CUNIT1’ : ’Hz’,
8 ’CDELT1’ : 97647.745732,
9 ’RESTFRQ’: 1.420405752e+9

10 }
11 line = wcs.Projection(header).spectra(’VELO-F2V’)
12 pixels = range(30,35)
13 Vwcs = line.toworld1d(pixels)
14 for p,v in zip(pixels, Vwcs):
15 print p, v/1000
16 # Output:
17 # 30 9023.78022672
18 # 31 9002.56055595
19 # 32 8981.34229811

470 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

20 # 33 8960.12545322
21 # 34 8938.9100213

23.2.7 Frequency to Wavelength

The rest wavelength is given by the relation:

λ0 =
c

ν0
(23.39)

Inserting the right numbers we find:

λ0 =
299792458.0
1420405752.0

= 0.211061140507 m (23.40)

For the barycentric wavelength we need to insert the barycentric frequency.

λ =
299792458.0

1378471216.43
= 0.217481841062 m (23.41)

The increment in wavelength as function of the increment in (barycentric) frequency is:

dλ =
−c
ν2
dν (23.42)

With the right numbers:

dλ =
−299792458.0

1378471216.432
97647.745732 = −1.54059158176× 10−5 m (23.43)

This gives us the alternate header keywords:

RESTWAVZ= 0.211061140507 / [m]

CTYPE3W= ’WAVE-F2W’
CRVAL3W= 0.217481841062 / [m]
CDELT3W= -1.5405916e-05 / [m]
CUNIT3W= ’m’
RESTWAVW= 0.211061140507 / [m]

Note that CTYPE indicates that there is a non linear conversion from frequency to wavelength.

From the standard definition of optical velocity:

Z = c
λ− λ0

λ0
(23.44)

it follows that the increment in optical velocity as function of increment of wavelength is given by:

dZ =
c

λ0
dλ (23.45)

Then with the numbers we find:

dZb =
299792458.0

0.211061140507
×−1.54059158176× 10−5 = −21882.6514422 m/s (23.46)

which is the increment in optical velocity earlier given for CDELT3Z.

This is one of the possible conversions between wavelength and velocity. Others are listed in scs.pdf table 3 of
E.W. Greisen et al. page 750.

23.2. Alternate headers for a spectral line example 471

http://www.atnf.csiro.au/people/mcalabre/WCS/scs.pdf

Kapteyn Package Documentation, Release 2.2

23.2.8 Conclusions

• Note that the inertial system is set by a (FITS) header using a special keyword (e.g. VELREF=) or it is
coded in the CTYPEn keyword. It doesn’t change anything in the calculations above. Conversions between
inertial reference systems is not possible because headers do (usually) not contain the relevant information to
calculate the topocentric correction w.r.t. that system (one needs time of observation, position of observatory
and position of the observed source).

• From a header with CTYPEn=’FREQ’ we can derive optical, radio and apparent radial velocities with
method spectra():

– proj = wcs.Projection(header).spectra(‘VOPT-F2W’)

– proj = wcs.Projection(header).spectra(‘VRAD’)

– proj = wcs.Projection(header).spectra(‘VELO-F2V’)

This applies also to alternate axis descriptions. So if CTYPE1=’VRAD’ one can derive one of
the other velocity definitions by adding the spectra() method with the appropriate argument.

Here is an example:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 wcs.debug = True
4 header = { ’NAXIS’ : 1,
5 ’CTYPE1’ : ’VRAD’,
6 ’CRVAL1’ : 8850750.904193053,
7 ’CRPIX1’ : 32,
8 ’CUNIT1’ : ’m/s’,
9 ’CDELT1’ : -20609.644582145629,

10 ’RESTFRQ’: 1.420405752e+9
11 }
12 line = wcs.Projection(header).spectra(’VOPT-F2W’)
13 pixels = range(30,35)
14 Vwcs = line.toworld1d(pixels)
15 for p,v in zip(pixels, Vwcs):
16 print p, v/1000
17 # Output:
18 # Velocities in km/s converted from ’VRAD’ to ’VOPT-F2W’
19 # 30 9163.77150423
20 # 31 9141.88420167
21 # 32 9120.0
22 # 33 9098.11889856
23 # 34 9076.2408967

Note that the rest frequency is required now.

Note also that we added statement wcs.debug = True to get some debug information from WC-
SLIB.

• Axis types ‘FREQ-HEL’ and ‘FREQ-LSR’ (AIPS definitions) are recognized by WCSLIB and are treated
as ‘FREQ’. No conversions are done. Internally the keyword SPECSYS= gets a value.

23.2.9 The complete alternate axis descriptions

In this section we summarize the alternate axis descriptions and we add a small script that proves that these
descriptions are consistent:

CNAME= ’Topocentric Frequency. Basic header’
CTYPE3= ’FREQ’
CRVAL3= 1.37835117405e9
CDELT3= 9.765625e4
CRPIX3= 32

472 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

CUNIT3= ’Hz’
RESTFRQ= 1.420405752e+9
SPECSYS=’TOPOCENT’

CNAME3Z= ’Barycentric optical velocity’
RESTWAVZ= 0.211061140507 / [m]
CTYPE3Z= ’VOPT-F2W’
CRVAL3Z= 9.120e+6 / [m/s]
CDELT3Z= -2.1882651e+4 / [m/s]
CRPIX3Z= 32
CUNIT3Z= ’m/s’
SPECSYSZ=’BARYCENT’ / Velocities w.r.t. barycenter
SSYSOBSZ=’TOPOCENT’ / Observation was made from the ’TOPOCENT’ frame
VELOSYSZ= 26108 / [m/s]

CNAME3F= ’Barycentric frequency’
CTYPE3F= ’FREQ’
CRVAL3F= 1.37847121643e+9 / [Hz]
CDELT3F= 9.764775e+4 / [Hz]
CRPIX3F= 32
CUNIT3F= ’Hz’
RESTFRQF= 1.420405752e+9
SPECSYSF=’BARYCENT’
SSYSOBSF=’TOPOCENT’
VELOSYSF= 26108 / [m/s]

CNAME3R= ’Barycentric radio velocity’
CTYPE3R= ’VRAD’
CRVAL3R= 8.85075090419e+6 / [m/s]
CDELT3R= -2.0609645e+4 / [m/s]
CRPIX3R= 32
CUNIT3R= ’m/s’
RESTFRQR= 1.420405752e+9
SPECSYSR=’BARYCENT’
SSYSOBSR=’TOPOCENT’
VELOSYSR= 26108 / [m/s]

CNAME3V= ’Barycentric apparent radial velocity’
RESTFRQV= 1.420405752e+9 / [Hz]
CTYPE3V= ’VELO-F2V’
CRVAL3V= 8.98134229811e+6 / [m/s]
CDELT3V= -2.1217551e+4 / [m/s]
CRPIX3V= 32
CUNIT3V= ’m/s’
SPECSYSV=’BARYCENT’
SSYSOBSV=’TOPOCENT’
VELOSYSV= 26108 / [m/s]

CNAME3W= ’Barycentric wavelength’
CTYPE3W= ’WAVE-F2W’
CRVAL3W= 0.217481841062 / [m]
CDELT3W= -1.5405916e-05 / [m]
CRPIX3W= 32
CUNIT3W= ’m’
RESTWAVW= 0.211061140507 / [m]
SPECSYSW=’BARYCENT’
SSYSOBSW=’TOPOCENT’
VELOSYSW= 26108 / [m/s]

To check the validity and completeness of these alternate axis descriptions, we wrote a small script that loops over
all the mnemonic letter codes in a header that is composed from the header fragments above. We only changed
axisnumber 3 to 1. The output is the same within the boundaries of the given precision of the numbers. To change
the axis description in a header we use the alter parameter when we create the projection object.

23.2. Alternate headers for a spectral line example 473

Kapteyn Package Documentation, Release 2.2

Parameter alter is an optional letter from ‘A’ through ‘Z’, indicating an alternative WCS axis description:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 header = { ’NAXIS’ : 1,
4 ’CTYPE1’ : ’FREQ’,
5 ’CRVAL1’ : 1378471216.4292786,
6 ’CRPIX1’ : 32,
7 ’CUNIT1’ : ’Hz’,
8 ’CDELT1’ : 97647.745732,
9 ’RESTFRQ’ : 1.420405752e+9,

10 ’CNAME1Z’ : ’Barycentric optical velocity’,
11 ’RESTWAVZ’ : 0.211061140507, # [m]
12 ’CTYPE1Z’ : ’VOPT-F2W’,
13 ’CRVAL1Z’ : 9.120e+6, # [m/s]
14 ’CDELT1Z’ : -2.1882651e+4, # [m/s]
15 ’CRPIX1Z’ : 32,
16 ’CUNIT1Z’ : ’m/s’,
17 ’SPECSYSZ’ : ’BARYCENT’, # Velocities w.r.t. barycenter,
18 ’SSYSOBSZ’ : ’TOPOCENT’, # Observation was made from the ’TOPOCENT’ frame,
19 ’VELOSYSZ’ : 26108, # [m/s]
20 ’CNAME1F’ : ’Barycentric frequency’,
21 ’CTYPE1F’ : ’FREQ’,
22 ’CRVAL1F’ : 1.37847121643e+9, # [Hz]
23 ’CDELT1F’ : 9.764775e+4, # [Hz]
24 ’CRPIX1F’ : 32,
25 ’CUNIT1F’ : ’Hz’,
26 ’RESTFRQF’ : 1.420405752e+9,
27 ’SPECSYSF’ : ’BARYCENT’,
28 ’SSYSOBSF’ : ’TOPOCENT’,
29 ’VELOSYSF’ : 26108, # [m/s]
30 ’CNAME1W’ : ’Barycentric wavelength’,
31 ’CTYPE1W’ : ’WAVE-F2W’,
32 ’CRVAL1W’ : 0.217481841062, # [m]
33 ’CDELT1W’ : -1.5405916e-05, # [m]
34 ’CRPIX1W’ : 32,
35 ’CUNIT1W’ : ’m’,
36 ’RESTWAVW’ : 0.211061140507, # [m]
37 ’SPECSYSW’ : ’BARYCENT’,
38 ’SSYSOBSW’ : ’TOPOCENT’,
39 ’VELOSYSW’ : 26108, # [m/s]
40 ’CNAME1R’ : ’Barycentric radio velocity’,
41 ’CTYPE1R’ : ’VRAD’,
42 ’CRVAL1R’ : 8.85075090419e+6, # [m/s]
43 ’CDELT1R’ : -2.0609645e+4, # [m/s]
44 ’CRPIX1R’ : 32,
45 ’CUNIT1R’ : ’m/s’,
46 ’RESTFRQR’ : 1.420405752e+9,
47 ’SPECSYSR’ : ’BARYCENT’,
48 ’SSYSOBSR’ : ’TOPOCENT’,
49 ’VELOSYSR’ : 26108, # [m/s]
50 ’CNAME1V’ : ’Barycentric apparent radial velocity’,
51 ’CTYPE1V’ : ’VELO-F2V’,
52 ’CRVAL1V’ : 8.98134229811e+6, # [m/s]
53 ’CDELT1V’ : -2.1217551e+4, # [m/s]
54 ’CRPIX1V’ : 32,
55 ’CUNIT1V’ : ’m/s’,
56 ’RESTFRQV’ : 1.420405752e+9, # [Hz]
57 ’SPECSYSV’ : ’BARYCENT’,
58 ’SSYSOBSV’ : ’TOPOCENT’,
59 ’VELOSYSV’ : 26108 # [m/s]
60 }
61

474 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

62 # Loop over all the alternative headers
63 for alt in [’F’, ’Z’, ’W’, ’R’, ’V’]:
64 spec = wcs.Projection(header, alter=alt).spectra(’VOPT-F2W’)
65 pixels = range(30,35)
66 Vwcs = spec.toworld1d(pixels)
67 cname = header[’CNAME1’+alt] # Just a header text
68 print "VOPT-F2W from %s" % (cname,)
69 print "Pixel, velocity (%s)" % spec.units
70 for p,v in zip(pixels, Vwcs):
71 print p, v/1000.0
72 # Output
73 # VOPT-F2W from Barycentric frequency
74 # Pixel, velocity (m/s)
75 # 30 9163.77150598
76 # 31 9141.88420246
77 # 32 9119.99999984
78 # 33 9098.11889745
79 # 34 9076.24089463
80 # VOPT-F2W from Barycentric optical velocity
81 # Pixel, velocity (m/s)
82 # 30 9163.77150335
83 # 31 9141.88420123
84 # 32 9120.0
85 # 33 9098.11889901
86 # 34 9076.24089759
87 # VOPT-F2W from Barycentric wavelength
88 # Pixel, velocity (m/s)
89 # 30 9163.77150495
90 # 31 9141.88420213
91 # 32 9120.0000002
92 # 33 9098.1188985
93 # 34 9076.24089638
94 # VOPT-F2W from Barycentric radio velocity
95 # Pixel, velocity (m/s)
96 # 30 9163.77150512
97 # 31 9141.88420211
98 # 32 9120.0
99 # 33 9098.11889812

100 # 34 9076.24089581
101 # VOPT-F2W from Barycentric apparent radial velocity
102 # Pixel, velocity (m/s)
103 # 30 9163.77150347
104 # 31 9141.88420129
105 # 32 9120.0
106 # 33 9098.11889894
107 # 34 9076.24089746

23.3 Alternative conversions

23.3.1 Conversion between radio and optical velocity

In the next two sections we give some formula’s that could be handy if you want to verify numbers. They are not
used in WCSLIB.

With the definitions for radio and optical velocity it is easy to derive:

V

Z
=

ν

ν0
(23.47)

This can be verified with:

23.3. Alternative conversions 475

Kapteyn Package Documentation, Release 2.2

• Z = 9120000.00000 m/s

• V = 8850750.90419 m/s

• ν0 = 1420405752.00 Hz

• νb = 1378471216.43 Hz

Both ratios are equal to 1.030421045482.

23.3.2 Conversion between apparent radial velocity and optical/radio velocity

It is possible to find a relation between the true velocity and the optical velocity using eq. (23.3) and eq. (23.7).
The apparent radial velocity can be written as:

v

c
=

ν2
0
ν2 − 1
ν2
0
ν2 + 1

(23.48)

The frequency shift for an optical velocity is:

ν0
ν

=
(
1 +

Z

c

)
(23.49)

Then:

v

c
=

(1 + Z/c)2 − 1
(1 + Z/c)2 + 1

=
Z2 + 2cZ

Z2 + 2cZ + 2c2
(23.50)

This equation is used in AIPS memo 27 [Aipsmemo] to relate an optical velocity to an apparent radial velocity. If
we insert Zb = 9120000 (m/s) then we find vb = 8981342.29811 (m/s) as expected (eq. (23.7), (23.32))

For radio velocities we find in a similar way:

ν0
ν

=
1(

1− V
c

) (23.51)

which gives the relation between apparent radial velocity and radio velocity:

v

c
=

2cV − V 2

V 2 − 2cV + 2c2
(23.52)

If we substitute the calculated barycentric radio velocity Vb = 8850750.90419 (m/s) then one finds again: vb =
8981342.29811 (m/s) (see also (eq. (23.7), (23.32)) Note that the last formula is equation 4 in AIPS memo 27
[Aipsmemo] Non-Linear Coordinate Systems in AIPS. However that formula lacks a minus sign in the nominator
and therefore does not give a correct result.

23.4 Legacy headers

23.4.1 A recipe for modification of Nmap/GIPSY FITS data

For FITS headers produced by Nmap/GIPSY we don’t have an increment in velocity available so we cannot use
them as input for WCSLIB (otherwise we would treat them like the FELO axis recognized by AIPS). The Python
interface to WCSLIB applies a conversion for these headers before they are processed by WCSLIB. From the
previous steps we can summarize how the data in the Nmap/GIPSY FITS header is changed:

• The extension in CTYPEn is ‘-OHEL’, ‘-OLSR’, ‘-RHEL’ or ‘-RLSR’

• The velocity is retrieved from FITS keyword VELR= (always in m/s) or DRVALn= (in units of DUNITn)

• Convert reference frequency to a frequency in Hz.

• Calculate the reference frequency in the barycentric system using eq. (23.3) if the velocity is optical and eq.
(23.24) if the velocity is a radio velocity.

476 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

• Calculate the topocentric velocity using eq. (23.12)

• Convert frequency increment to an increment in Hz

• Calculate the increment in frequency in the selected reference system (HEL, LSR) using eq. (23.16).

• Change CRVALn and CDELTn to the barycentric values

• Change CTYPEn to ‘FREQ’

• Create a projection object with spectral translation, e.g. proj.spectra(‘VOPT-F2W’)

In the following script we show:

• the (invisible) conversion to the heliocentric system

• how to get the same output by applying the appropriate formulas

• the approximation that GIPSY uses

1 from kapteyn import wcs
2 from math import sqrt
3

4 header = { ’NAXIS’ : 1,
5 ’CTYPE1’ : ’FREQ-OHEL’,
6 ’CRVAL1’ : 1.415418199417E+09,
7 ’CRPIX1’ : 32,
8 ’CUNIT1’ : ’HZ’,
9 ’CDELT1’ : -7.812500000000E+04,

10 ’VELR’ : 1.050000000000E+06,
11 ’RESTFRQ’: 0.14204057520000E+10
12 }
13

14 f = crval = header[’CRVAL1’]
15 df = cdelt = header[’CDELT1’]
16 crpix = header[’CRPIX1’]
17 velr = header[’VELR’]
18 f0 = header[’RESTFRQ’]
19 c = wcs.c # Speed of light
20

21 print "VELR is the reference velocity given in the velocity frame"
22 print "coded in CTYPE (e.g. HEL, LSR)"
23 print "The velocity is either an optical or a radio velocity. This"
24 print "is also coded in CTYPE (e.g. ’O’, ’R’)"
25

26 proj = wcs.Projection(header)
27 spec = proj.spectra(ctype=’VOPT-F2W’)
28 pixrange = range(crpix-3, crpix+3)
29 V = spec.toworld1d(pixrange)
30 print "\n VOPT-F2W with spectral translation:"
31 for p, v in zip(pixrange, V):
32 print "%4d %15f" % (p, v/1000)
33

34 print "\n VOPT calculated:"
35 fb = f0/(1.0+velr/c)
36 Vtopo = c * ((fb*fb-f*f)/(fb*fb+f*f))
37 dfb = df*(c-Vtopo)/sqrt(c*c-Vtopo*Vtopo)
38 for p in pixrange:
39 f2 = fb + (p-crpix)*dfb
40 Z = c * (f0/f2-1.0)
41 print "%4d %15f" % (p, Z/1000.0)
42

43 print "\nOptical with native GIPSY formula, which is an approximation:"
44 fR = crval
45 dfR = cdelt
46 for p in pixrange:

23.4. Legacy headers 477

Kapteyn Package Documentation, Release 2.2

47 Zs = velr + c*f0*(1/(fR+(p-crpix)*dfR)-1/fR)
48 print "%4d %15f" % (p, Zs/1000.0)

Output:

VELR is the reference velocity given in the velocity frame
coded in CTYPE (e.g. HEL, LSR)
The velocity is either an optical or a radio velocity. This
is also coded in CTYPE (e.g. ’O’, ’R’)

VOPT-F2W with spectral translation:
29 1000.194731
30 1016.794655
31 1033.396411
32 1050.000000
33 1066.605422
34 1083.212677

VOPT calculated:
29 1000.194731
30 1016.794655
31 1033.396411
32 1050.000000
33 1066.605422
34 1083.212677

VOPT with native GIPSY formula, which is an approximation:
29 1000.191559
30 1016.792540
31 1033.395354
32 1050.000000
33 1066.606480
34 1083.214793

The Python interface allows for an easy implementation for these special exceptions. Here is a script that uses this
facility. The conversion here is triggered by the CTYPE extension OHEL. So as long this is unique to GIPSY
spectral axes, you are safe to use it. Note that we converted the frequencies to optical, radio and apparent radial
velocities. This is added value to the existing GIPSY implementation where these conversions are not possible.
These WCSLIB conversions are explained in previous sections:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 header = { ’NAXIS’ : 1,
4 ’CTYPE1’ : ’FREQ-OHEL’,
5 ’CRVAL1’ : 1.37835117405e9,
6 ’CRPIX1’ : 32,
7 ’CUNIT1’ : ’Hz’,
8 ’CDELT1’ : 9.765625e4,
9 ’RESTFRQ’: 1.420405752e+9,

10 ’DRVAL1’ : 9120000.0,
11 # ’VELR’ : 9120000.0
12 ’DUNIT1’ : ’m/s’
13 }
14 proj = wcs.Projection(header)
15 pixels = range(30,35)
16

17 voptical = proj.spectra(’VOPT-F2W’)
18 Vwcs = voptical.toworld1d(pixels)
19 print "\nPixel, optical velocity (%s)" % voptical.units
20 for p,v in zip(pixels, Vwcs):
21 print p, v/1000.0
22

23 vradio = proj.spectra(’VRAD’)

478 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

24 Vwcs = vradio.toworld1d(pixels)
25 print "\nPixel, radio velocity (%s)" % vradio.units
26 for p,v in zip(pixels, Vwcs):
27 print p, v/1000.0
28

29 vradial = proj.spectra(’VELO-F2V’)
30 Vwcs = vradial.toworld1d(pixels)
31 print "\nPixel, apparent radial velocity (%s)" % vradial.units
32 for p,v in zip(pixels, Vwcs):
33 print p, v/1000.0
34

35 # Output:
36 # Pixel, optical velocity (m/s)
37 # 30 9163.77150423
38 # 31 9141.88420167
39 # 32 9120.0
40 # 33 9098.11889856
41 # 34 9076.2408967
42 #
43 # Pixel, radio velocity (m/s)
44 # 30 8891.97019336
45 # 31 8871.36054878
46 # 32 8850.75090419
47 # 33 8830.14125961
48 # 34 8809.53161503
49 #
50 # Pixel, apparent radial velocity (m/s)
51 # 30 9023.78022672
52 # 31 9002.56055595
53 # 32 8981.34229811
54 # 33 8960.12545322
55 # 34 8938.9100213

Note: Note that changing DRVAL1 to VELR gives the same output. Both are recognized as keywords that store
a velocity. The value in VELR should always be in m/s. Note also how we created different sub-projections (one
for each type of velocity) from the same main projection. All these objects can coexist.

23.4.2 AIPS axis type FELO

Next script and output shows that with the optical reference velocity and the corresponding increment in velocity
(CDELT3Z), we can get velocities without spectral translation. WCSLIB recognizes the axis type ‘FELO’ which
is regularly gridded in frequency but expressed in velocity units in the optical convention. It is therefore not a
surprise that the output is the same as the list with optical velocities derived from the spectral translation ‘VOPT-
F2W’.

We can prove this if we calculate the barycentric reference frequency and its increment. If Zr is the optical
reference velocity then we find the barycentric reference frequency with:

νr =
ν0(

1 + Zr
c

) (23.53)

and from

dZ =
−c
ν0

(
1 +

Zr
c

)2
dν (23.54)

we derive:

dν =
−ν0(

1 + Zr
c

)2 dZ (23.55)

23.4. Legacy headers 479

Kapteyn Package Documentation, Release 2.2

which we rewrite in:

dν =
−ν0c

(c+ Zr)
2 dZ (23.56)

So if we have a barycentric reference velocity and a barycentric velocity increment, then according to the formu-
las above it is easy to retrieve the values for the barycentric reference frequency and the barycentric frequency
increment. The script below proves that indeed with these values the optical velocities are derived from a linear
frequency axis and not from a linear velocity axis (see the last option in this script):

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 from numpy import arange
4

5 header = { ’NAXIS’ : 1,
6 ’CTYPE1’ : ’FELO-HEL’,
7 ’CRVAL1’ : 9120,
8 ’CRPIX1’ : 32,
9 ’CUNIT1’ : ’km/s’,

10 ’CDELT1’ : -21.882651442,
11 ’RESTFRQ’: 1.420405752e+9
12 }
13 crpix = header[’CRPIX1’]
14 pixrange = arange(crpix-2, crpix+3)
15 proj = wcs.Projection(header)
16 Z = proj.toworld1d(pixrange)
17 print "Pixel, velocity (km/s) with native header with FELO-HEL"
18 for p,v in zip(pixrange, Z):
19 print p, v/1000.0
20

21 # Calculate the barycentric reference frequency and the frequency increment
22 f0 = header[’RESTFRQ’]
23 Zr = header[’CRVAL1’] * 1000.0 # m/s
24 dZ = header[’CDELT1’] * 1000.0 # m/s
25 c = wcs.c
26 fr = f0 / (1 + Zr/c)
27 print "\nCalculated a reference frequency: ", fr
28 df = -f0* dZ *c / ((c+Zr)*(c+Zr))
29 print "Calculated a frequency increment: ", df
30 Z = Zr + c*f0*(1/(fr+(pixrange-crpix)*df)-1/fr)
31 print "Pixel, velocity (km/s) with barycentric reference frequency and increment:"
32 for p,z in zip(pixrange, Z):
33 print p, z/1000.0
34

35 # FELO-HEL is equivalent to VOPT-F2W
36 header[’CTYPE1’] = ’VOPT-F2W’
37 proj = wcs.Projection(header)
38 Z = proj.toworld1d(pixrange)
39 print "\nPixel, velocity (km/s) with spectral translation VOPT-F2W"
40 for p,v in zip(pixrange, Z):
41 print p, v/1000.0
42

43 # Now as a linear axis. Note that thoe output of toworld is in km/s
44 # and not in standard units (m/s) as for the recognized axis types
45 header[’CTYPE1’] = ’FELO’
46 proj = wcs.Projection(header)
47 Z = proj.toworld1d(pixrange)
48 print "\nPixel, velocity (km/s) with CUNIT=’FELO’, which is unrecognized "
49 print "and therefore linear. This deviates from the previous output."
50 print "The second velocity is calculated manually."
51 for p,v in zip(pixrange, Z):
52 print p, v, (Zr+(p-crpix)*dZ)/1000.0

Output:

480 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

Pixel, velocity (km/s) with native header with FELO-HEL
30 9163.77150423
31 9141.88420167
32 9120.0
33 9098.11889857
34 9076.24089671

Calculated a reference frequency: 1378471216.43
Calculated a frequency increment: 97647.7457311
Pixel, velocity (km/s) with barycentric reference frequency and increment:
30 9163.77150423
31 9141.88420167
32 9120.0
33 9098.11889857
34 9076.24089671

Pixel, velocity (km/s) with spectral translation VOPT-F2W
30 9163.77150423
31 9141.88420167
32 9120.0
33 9098.11889857
34 9076.24089671

Pixel, velocity (km/s) with CUNIT=’FELO’, which is unrecognized
and therefore linear. This deviates from the previous output.
The second velocity is calculated manually.
30 9163.76530288 9163.76530288
31 9141.88265144 9141.88265144
32 9120.0 9120.0
33 9098.11734856 9098.11734856
34 9076.23469712 9076.23469712

So in this script we demonstrated the use of a special velocity axis type which originates from a classic AIPS data
FITS file. It is called ‘FELO’. WCSLIB (and not our Python interface) recognizes this type as an optical velocity
and performs the necessary internal conversions as we can see in the source code:

if (strcmp(wcs->ctype[i], "FELO") == 0) {
strcpy(wcs->ctype[i], "VOPT-F2W");

The source code also reveals that the extensions in CUNITn are translated into values for FITS keyword SPECSYS:

if (strcmp(scode, "-LSR") == 0) {
strcpy(wcs->specsys, "LSRK");

} else if (strcmp(scode, "-HEL") == 0) {
strcpy(wcs->specsys, "BARYCENT");

} else if (strcmp(scode, "-OBS") == 0) {
strcpy(wcs->specsys, "TOPOCENT");

Conclusions

• The extension HEL or LSR after FELO in CTYPE1 is not used in the calculations. But when you omit a
valid extension the axis will be treated as a linear axis.

• In the example above one can replace FELO-HEL in CTYPE1 by FITS standard VOPT-F2W showing that
for WCSLIB FELO-HEL is in fact the same as VOPT-F2W.

23.4.3 AIPS axis type VELO

In this section we want to address the question what WCSLIB does if it encounters an AIPS VELO-XXX axis
as in CTYPE1=’VELO-HEL’ or ‘VELO-LSR’. From the AIPS documentation we learn that VELO is regularly
gridded in velocity (m/s) in the optical convention, unless overridden by use of the VELREF keyword. VELREF
is an integer. From the documentation of WCSLIB we learn that for Classic Aips:

23.4. Legacy headers 481

Kapteyn Package Documentation, Release 2.2

1. LSR kinematic, originally described simply as “LSR” without distinction between the kinematic and dy-
namic definitions.

2. Barycentric, originally described as “HEL” meaning heliocentric.

3. Topocentric, originally described as “OBS” meaning geocentric but widely interpreted as topocentric.

And for AIPS++ extensions to VELREF which are also recognized:

4. LSR dynamic.

5. Geocentric.

6. Source rest frame.

7. Galactocentric.

Note: From the WCSLIB documentation:

For an AIPS ‘VELO’ axis, a radio convention velocity is denoted by adding 256 to VELREF, otherwise an optical
velocity is indicated (not applicable to ‘FELO’ axes). Unrecognized values of VELREF are simply ignored.
VELREF takes precedence over CTYPEia in defining the Doppler frame.

Note: Only WCSLIB (versions >= 4.5.1) do recognize keyword VELREF.

We show the use of VELREF with the following script:

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 from math import sqrt
4

5 V0 = -.24300000000000E+06 # Radio vel in m/s
6 dV = 5000.0 # Delta in m/s
7 f0 = 0.14204057583700e+10
8 c = wcs.c # Speed of light 299792458.0 m/s
9 crpix = 32

10 pixels = range(30,35)
11

12 header = { ’NAXIS’ : 1,
13 ’CTYPE1’ : ’VELO-HEL’,
14 ’VELREF’ : 258,
15 ’CRVAL1’ : V0,
16 ’CRPIX1’ : crpix,
17 ’CUNIT1’ : ’m/s’,
18 ’CDELT1’ : dV,
19 ’RESTFRQ’: f0
20 }
21

22 print "The velocity increment is constant and equal to %f (km/s): "\
23 % (dV/1000.0)
24

25 proj = wcs.Projection(header)
26 print "Allowed spectral translations", proj.altspec
27 p2 = proj.spectra(’VOPT-???’)
28

29 print "\nT1. Radio velocity directly from header and optical velocity"
30 print "from spectral translation. VELO is a radio velocity here because"
31 print "VELREF > 256"
32

33 V = proj.toworld1d(pixels)
34 Z = p2.toworld1d(pixels)
35 print "Pixel Vradio in (km/s) and Voptical (km/s)"
36 for p,v,z in zip(pixels, V, Z):
37 print "%4d %15f %15f" % (p, v/1000, z/1000)

482 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

38

39 print "\nT2. Now insert CTYPE1=’VRAD’ in the header and convert to VOPT-F2W"
40 print "with a spectral translation (Z1) and with a calculation (Z2)"
41 print "This should give the same results as in table T1."
42 header[’CTYPE1’] = ’VRAD’
43 proj = wcs.Projection(header)
44 p2 = proj.spectra(’VOPT-F2W’)
45 Z0 = proj.toworld1d(pixels)
46 Z1 = p2.toworld1d(pixels)
47 print "\nWith CTYPE=’RAD’ and spec.trans ’VOPT-F2W’: Pixel , Vrad, Z1 (km/s), Z2 (km/s)"
48 for p,z0,z1 in zip(pixels, Z0, Z1):
49 V = V0 + (p-crpix)*dV
50 nu_r = f0* (1-V/c)
51 Z2 = c*((f0-nu_r)/nu_r)
52 print p, z0/1000, z1/1000, Z2/1000
53

54 print "\nT3. We set CTYPE1 to VELO-HEL and VELREF to 2 (Helio) and "
55 print "derive optical and radio velocities from it. Compare these with"
56 print "the relativistic velocity in Table T4."
57 header[’CTYPE1’] = ’VELO-HEL’
58 header[’VELREF’] = 2
59 proj = wcs.Projection(header)
60 print "Allowed spectral translations for VELO as optical velocity", proj.altspec
61 p2 = proj.spectra(’VRAD-???’)
62 V = proj.toworld1d(pixels)
63 Z = p2.toworld1d(pixels)
64 print "Pixel Voptical in (km/s) and Vradio (km/s)"
65 for p,v,z in zip(pixels, V, Z):
66 print "%4d %15f %15f" % (p, v/1000, z/1000)
67

68 print "\nT4. Next a list with optical velocities calculated from relativistic"
69 print "velocity with constant increment."
70 print "If these values are different from the previous optical velocity then "
71 print "obviously the velocities derived from the header are not relativistic"
72 print "as in pre 4.5.1 versions of WCSLIB."
73 v0 = V0
74 for i in pixels:
75 v1 = v0 + (i-crpix)*dV
76 beta = v1/c
77 frac = (1-beta)/(1+beta)
78 f = f0 * sqrt(frac)
79 Z = c* (f0-f)/f
80 print "%4d %15f" % (i ,Z/1000.0)

Output:

The velocity increment is constant and equal to 5.000000 (km/s):
Allowed spectral translations [(’FREQ’, ’Hz’), (’ENER’, ’J’), (’WAVN’, ’/m’),
(’VOPT-F2W’, ’m/s’), (’VRAD’, ’m/s’), (’VELO-F2V’, ’m/s’), (’WAVE-F2W’, ’m’),
(’ZOPT-F2W’, ’’), (’AWAV-F2A’, ’m’), (’BETA-F2V’, ’’)]

T1. Radio velocity directly from header and optical velocity
from spectral translation. VELO is a radio velocity here because
VELREF > 256
Pixel Vradio in (km/s) and Voptical (km/s)
30 -253.000000 -252.786669
31 -248.000000 -247.795014
32 -243.000000 -242.803193
33 -238.000000 -237.811206
34 -233.000000 -232.819052

T2. Now insert CTYPE1=’VRAD’ in the header and convert to VOPT-F2W
with a spectral translation (Z1) and with a calculation (Z2)

23.4. Legacy headers 483

Kapteyn Package Documentation, Release 2.2

This should give the same results as in table T1.

With CTYPE=’RAD’ and spec.trans ’VOPT-F2W’: Pixel , Vrad, Z1 (km/s), Z2 (km/s)
30 -253.0 -252.786668992 -252.786668992
31 -248.0 -247.795014311 -247.795014311
32 -243.0 -242.803193261 -242.803193261
33 -238.0 -237.811205834 -237.811205834
34 -233.0 -232.819052022 -232.819052022

T3. We set CTYPE1 to VELO-HEL and VELREF to 2 (Helio) and
derive optical and radio velocities from it. Compare these with
the relativistic velocity in Table T4.
Allowed spectral translations for VELO as optical velocity [(’FREQ-W2F’, ’Hz’),

(’ENER-W2F’, ’J’), (’WAVN-W2F’, ’/m’), (’VOPT’, ’m/s’), (’VRAD-W2F’, ’m/s’),
(’VELO-W2V’, ’m/s’), (’WAVE’, ’m’), (’ZOPT’, ’’), (’AWAV-W2A’, ’m’),
(’BETA-W2V’, ’’)]
Pixel Voptical in (km/s) and Vradio (km/s)
30 -253.000000 -253.213691
31 -248.000000 -248.205325
32 -243.000000 -243.197126
33 -238.000000 -238.189094
34 -233.000000 -233.181229

T4. Next a list with optical velocities calculated from relativistic
velocity with constant increment.
If these values are different from the previous optical velocity then
obviously the velocities derived from the header are not relativistic
as in pre 4.5.1 versions of WCSLIB.
30 -252.893335
31 -247.897507
32 -242.901597
33 -237.905603
34 -232.909526

We used eq. (23.5) to calculate a frequency for a given apparent radial velocity. This frequency is used in eq.
(23.2) to calculate the optical velocity. The script proves:

• Axis VELO-HEL is processed as an optical velocity and if keyword VELREF is present and its value is
greater than 256, then VELO-HEL is processed as a radio velocity. In versions of WCSLIB < 4.5.1, the
VELO-XXX axis was processed as VELO i.e. a relativistic velocity.

Note: From the WCSLIB API documentation:

AIPS-convention celestial projection types, NCP and GLS, and spectral types, ‘{FREQ,FELO,VELO}-
{OBS,HEL,LSR}’ as in ‘FREQ-LSR’, ‘FELO-HEL’, etc., set in CTYPEia are translated on-the-fly by wcsset()
but without modifying the relevant ctype[], pv[] or specsys members of the wcsprm struct. That is, only the in-
formation extracted from ctype[] is translated when wcsset() fills in wcsprm::cel (celprm struct) or wcsprm::spc
(spcprm struct).

On the other hand, these routines do change the values of wcsprm::ctype[], wcsprm::pv[], wcsprm::specsys and
other wcsprm struct members as appropriate to produce the same result as if the FITS header itself had been
translated.

484 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

23.4.4 Definitions and formulas from AIPS and GIPSY

AIPS

A radio velocity is defined by:

V = c
(ν0 − ν′

ν0

)
(23.57)

where ν is the Doppler shifted rest frequency, given by:

ν′ = ν0

√
(
c− v
c+ v

) (23.58)

Equivalent to the relativistic addition of apparent radial velocities we can derive a relation for radio velocities if
the velocities in given in different reference systems.

The addition of apparent radial velocities is given in AIPS memo 27 [Aipsmemo] Non-Linear Coordinate Systems
in AIPS (Eric W. Greisen, NRAO) Greisen, is

v =
vs + vobs
1 + vsvobs

c2
(23.59)

To stay close to our previous examples and definitions we set vs which is the apparent radial velocity of an object
w.r.t. an inertial system, to be equal to vb (our inertial system in this case is barycentric).

The other velocity, vobs is equal to the topocentric correction: vt and the result v = ve, the apparent radial velocity
of the object as we would observe it on earth.

Then we get the familiar formula (eq. (23.9)):

ve =
vb + vt
1 + vbvt

c2
(23.60)

With the relation between V and v and the relativistic addition of velocities we find that the radio velocities in
different systems are related according to the equation:

Ve = Vb + Vt − VbVt/c (23.61)

(see also AIPS memo 27 [Aipsmemo]). The barycentric radio velocity was calculated in a previous section.
Its value was Vb = 8850750.90404 m/s. With the topocentric reference frequency 1378351174.05 Hz we find
Ve = 8876087.18567 m/s. We know from fig. 1 that the topocentric correction is positive. To calculate the
corresponding radio velocity Vt we use:

Vt = c(
νb − νe
νb

) = 299792458.0× (1378471216.43− 1378351174.05)
1378471216.43

= 26107.03781 m/s (23.62)

With these values for Vb and Vt you can verify that the expression for Ve is valid.

Ve = 8850750.90404 + 26107.03781− 8850750.90404× 26107.03781
299792458.0

= 8876087.18567 m/s (23.63)

which is the value of Ve that we found before using the topocentric reference frequency, so we can have confidence
in the relation for radio velocities as found in the AIPS memo [Aipsmemo] .

But this radio velocity Ve (w.r.t. observer on Earth) for a pixel N is also given by the relation:

Ve(N) = − c

ν0
(νe(N)− ν0) = − c

ν0
(νe + δν(N −Nν)− ν0) (23.64)

It is important to emphasize the meaning of the variables:

• νe = topocentric reference frequency).

• δν = the increment in frequency per pixel in the topocentric system

• Nν = the frequency reference pixel

23.4. Legacy headers 485

Kapteyn Package Documentation, Release 2.2

• N = the pixel

If we use the previous formulas we can also write:

Ve(NV) = V ′b + Vt − V ′bVt/c (23.65)

Ve(NV) = − c

ν0
(νe + δν(NV −Nν)− ν0) (23.66)

The velocity V
′

b is the barycentric reference velocity at velocity reference pixel NV .

From these relations we observe:

Vb(N) =
Ve(N)− Vt

1− Vt
c

(23.67)

and from eq. (23.65) with V
′

b = Vb(NV):

Vt =
Ve(NV)− Vb(NV)

1− Vb(NV)
c

(23.68)

Using also the equations with the frequencies, we can derive the following expression for Vb(N):

Vb(N) = Vb(NV)−
δν
(
c− Vb(NV)

)
(N −NV)

νe + δν(NV −Nν)
(23.69)

or in an alternative notation:

Vb(N) = Vb(NV) + δV (N −NV) (23.70)

Note that in AIPS memo 27 [Aipsmemo] the variable VR is used for Vb(NV) and VR and NV are stored in AIPS
headers as alternative reference information (if frequency is in the main axis description).

The difference between the velocity and frequency reference pixel can be expressed in terms of the radio velocities
Vb(NV) and Vb(Nν). It follows from eq. (23.69)) that for N = Nν and a little rearranging:

NV −Nν =
νe
[
Vb(Nν)− Vb(NV)

]
δν
[
c− Vb(Nν)

] (23.71)

We conclude that either one calculates (barycentric) radio velocities using the reference frequency and the fre-
quency increment from the header, or one calculates these velocities using a reference velocity and a velocity
increment from the header.

Note that we assumed that the frequency increment in the barycentric system is the same as in the the system of
the observer, which is not correct. However the differences are small (less than 0.01% for 100 pixels from the
reference pixel for typical observations as in our examples).

For optical velocities Greisen derives:

Ze = Zb + Zt + ZbZt/c (23.72)

and:

Zb(N) = Zb(NV)−
δν
(
c+ Zb(NV)

)
(N −NZ)

νe + δν(N −Nν)
(23.73)

The difference between the velocity and frequency reference pixels in terms of optical velocity is:

NZ −Nν =
νe
[
Zb(Nν)− Zb(NZ)

]
δν
[
c+ Zb(Nν)

] (23.74)

Next script demonstrates how we reconstruct the topocentric optical velocity and the reference pixel for that
velocity as it is used in the AIPS formula. Then we compare the output of the WCSLIB method and the AIPS
formula:

486 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

1 #!/usr/bin/env python
2 from kapteyn import wcs
3 import numpy
4

5 c = 299792458.0 # m/s From literature
6 f0 = 1.42040575200e+9 # Rest frequency HI (Hz)
7 fR = 1.37835117405e+9 # Topocentric reference frequency (Hz)
8 dfR = 9.765625e+4 # Increment in topocentric frequency (Hz)
9 fb = 1.3784712164292786e+9 # Barycentric reference frequency (Hz)

10 dfb = 97647.745732 # Increment in barycentric frequency (Hz)
11 Zb = 9120.0e+3 # Barycentric optical velocity in m/s
12 Nf = 32 # Reference pixel for frequency
13

14 header = { ’NAXIS’ : 1,
15 ’CTYPE1’ : ’FREQ’,
16 ’CRVAL1’ : fb,
17 ’CRPIX1’ : Nf,
18 ’CUNIT1’ : ’Hz’,
19 ’CDELT1’ : dfR,
20 ’RESTFRQ’: f0
21 }
22 line = wcs.Projection(header).spectra(’VOPT-F2W’)
23 pixels = numpy.array(range(30,35))
24 Vwcs = line.toworld1d(pixels) / 1000
25 print """Optical velocities from WCSLIB with spectral
26 translation and with barycentric ref. freq. (km/s):"""
27 for p,v in zip(pixels, Vwcs):
28 print p, v
29

30 # Select an arbitrary velocity reference pixel
31 Nz = 44.0
32 # then calculate corresponding velocity
33 Zb2 = (fR*Zb-dfR*c*(Nz-Nf))/(fR+dfR*(Nz-Nf))
34 print "Zb(Nz) =", Zb2
35 dN = fR*(Zb-Zb2)/(dfR*(c+Zb2))
36 Nz = dN + Nf
37 print "Closure test for selected reference pixel: Nz=", Nz
38

39 print "\nOptical velocities using AIPS formula (km/s):"
40 Zs = Zb2 - dfR*(c+Zb2)*(pixels-Nz)/(fR+dfR*(pixels-Nf))
41 Zs /= 1000
42 for p,z in zip(pixels, Zs):
43 print p, z
44

45 fx = fR + dfR*(Nz-Nf)
46 dZ = -dfR*(c+Zb2) / fx
47 print "Velocity increment: ", dZ
48

49 header = { ’NAXIS’ : 1,
50 ’CTYPE1’ : ’VOPT-F2W’,
51 ’CRVAL1’ : Zb2,
52 ’CRPIX1’ : Nz,
53 ’CUNIT1’ : ’m/s’,
54 ’CDELT1’ : dZ,
55 ’RESTFRQ’: f0
56 }
57 line2 = wcs.Projection(header)
58 Vwcs = line2.toworld1d(pixels) / 1000
59 print """\nOptical velocities from WCSLIB without spectral
60 translation with barycentric Z (km/s):"""
61 for p,v in zip(pixels, Vwcs):
62 print p, v
63 # Output:

23.4. Legacy headers 487

Kapteyn Package Documentation, Release 2.2

64 # Optical velocities from WCSLIB with spectral
65 # translation and with barycentric ref. freq. (km/s):
66 # 30 9163.77531689
67 # 31 9141.88610773
68 # 32 9120.0
69 # 33 9098.11699305
70 # 34 9076.23708621
71 # Zb(Nz) = 8857585.54671
72 # Closure test for selected reference pixel: Nz= 44.0
73 #
74 # Optical velocities using AIPS formula (km/s):
75 # 30 9163.77912988
76 # 31 9141.88801395
77 # 32 9120.0
78 # 33 9098.11508736
79 # 34 9076.23327538
80 # Velocity increment: -21849.2948239
81 #
82 # Optical velocities from WCSLIB without spectral
83 # translation with barycentric Z (km/s):
84 # 30 9163.77912988
85 # 31 9141.88801395
86 # 32 9120.0
87 # 33 9098.11508736
88 # 34 9076.23327538

Note that we used the topocentric frequency increment in the WCSLIB call for a better comparison with the AIPS
formula. The output of velocities with the AIPS formula is exactly the same as WCSLIB with optical velocities
using the velocity increment calculated with the AIPS method (as to be expected). And these velocities are very
close to the velocities calculates with WCSLIB using the barycentric frequency that corresponds to the given
optical velocity. The differences can be explained by the fact that the different methods are used to calculate a
velocity increment.

What did we prove with this script? We selected an arbitrary pixel as reference pixel for the velocity. This
velocity has a relation with the initial optical velocity (9120 km/s) through the difference in reference pixels. We
calculated that velocity and showed that the AIPS formula generates results that are almost equal to WCSLIB
with the barycentric reference frequency. If we use the AIPS formulas to calculate a velocity increment, we can
use the values in WCSLIB if we set CTYPE to ‘VOPT-F2W’. This generates exactly the same results as with the
AIPS formula for velocities. So in frequency mode WCSLIB calculates topocentric frequencies (and topocentric
velocities if we use a spectral translation method) and in velocity mode it calculates barycentric velocities. AIPS
axis type FELO can be used as input for WCSLIB without modification.

Conclusions

• In AIPS the reference pixel for the reference velocity differs from the frequency reference pixel. There is a
relation between this reference velocity and the barycentric velocity and these reference pixels. To us it is
not clear what this reference velocity represents and why it is not changed to a velocity at the same reference
pixel as the frequency.

• In the AIPS approach it is assumed that the increment in frequency is the same in different reference systems.
This assumption is not correct, but the deviations are usually very small.

GIPSY

The formulas used in GIPSY to convert frequencies to velocities are described in section: spectral coordinates
in the GIPSY programmers guide. There is a formula for optical velocities and one for radio velocities. Both
formulas are derived from the standard formulas for velocities but the result is split into a reference velocity and a
part that is a non linear function of the increment in frequency.

488 Chapter 23. Background information spectral translations

http://www.astro.rug.nl/~gipsy/pguide/coordinates.html

Kapteyn Package Documentation, Release 2.2

Optical

For optical velocities we use symbol Z. The conversion from frequencies to optical velocities is not linear. One can
try to approximate a constant step in velocity, and to apply the standard linear transformation Z(N) = Zr + (N −
crpix)× dZ, but this approximation can deviate significantly in certain circumstances. Therefore most reduction
and analysis packages provide functionality to calculate velocities also for the non-linear cases. Like Classic
AIPS, GIPSY provides a system for these transformations (e.g. function velpro.c), but it turns out that these
transformations are also approximations because where a barycentric or lsrk frequency should be used, GIPSY
uses values from the FITS header and for FITS files made by Newstar/Nmap for data observed before 2006-07-03,
these frequencies are topocentric. In this section we show how GIPSY transforms frequencies to optical velocities.
Also we derive formulas for a linear transformation (i.e. for a constant velocity increment) which can be used if
one wants to compose a modified header for a linear transformation Z(N) = Zr + (N − crpix)× dZ

Given a barycentric (or lsrk) frequency one calculates an optical velocity Z in that system with:

Z = −c(νb − ν0
νb

) (23.75)

Assume for channel N :

ν(N) = νbr + (N −Nref)δνb = νbr + nδνb (23.76)

For (N −Nref) we wrote n. The frequencies are related to the barycentric (or lrsk) reference system. Nref is the
reference pixel (CRPIX) given in a FITS header, νbr is the reference frequency in this barycentric system and δνb
is the barycentric frequency increment.

Inserting (23.76) into (23.75) gives:

Z(N) = −c
(νbr + nδνb − ν0

νbr + nδνb

)
= −c

(νbr − ν0
νbr

)
+ ndZ = Zr + ndZ (23.77)

Zr is the given reference velocity in the barycentric/lsrk reference system. Solve this equation for ndZ to get an
expression for the increment:

ndZ = n
−cν0δνb

(νbr + nδνb)νbr
= cν0

(1
(νbr + nδνb)

− 1
νbr

)
(23.78)

The formula to calculate optical velocities then becomes:

Z(N) = Zr + cν0
(1

(νbr + nδνb)
− 1
νbr

)
(23.79)

with:

• Z(N) is the barycentric optical velocity for pixel N

• νbr is the barycentric reference frequency

• δνb is the increment in barycentric frequency

This is the formula that GIPSY uses to calculate optical velocities. However, GIPSY uses the topocentric
reference frequency and the topocentric frequency increment.

If we want to express the optical velocity at pixel N as a function of the reference velocity and a constant velocity
increment as in Z(N) = Zr + ndZ, then we need to find an expression for dZ which does not depend on n.
Rewrite ndZ into:

ndZ = n
−cν0δνb

(νbr + nδνb)νbr
(23.80)

Then, with the observation that nδνb << νbr:

ndZ ≈ n
−cν0δνb
νbr2

(23.81)

23.4. Legacy headers 489

Kapteyn Package Documentation, Release 2.2

and thereby:

dZ ≈ −cν0δνb
νbr2

(23.82)

This is the formula that is documented in the programmers manual to get a value for GIPSY’s keyword DDELT
(one of the alternative keywords from the list DRVAL, DDELT, DRPIX, DUNIT which describe an alternative
coordinate system with a higher priority than the system described by the corresponding keywords that start with
‘C’). However the formula is never used in GIPSY to explicitly set the value of DDELT. Only when DDELT is
given in a header, it is used as an increment.

So the formula to calculate optical velocities, without the use of the rest frequency, is:

Z(N) = Zr + n
−cν0δνb
νbr2

(23.83)

In the formulas above we included the rest frequency. But it is not necessary to know its value because we can
express this rest frequency in terms of optical velocity:

Z = −c(νb − ν0
νb

)→ ν0 = νbr
(
1 +

Zr
c

)
(23.84)

Then:

Z(N) = Zr + cνbr
(
1 +

Zr
c

)(1
(νbr + nδνb)

− 1
νbr

)
(23.85)

from which we derive in a straightforward way:

Z(N) =
Zrνbr − cnδνb
νbr + nδνb

(23.86)

The formula above is the method used by GIPSY’s function velpro.c to get velocities if the rest frequency is
unknown.

And again, if we want to express the optical velocity at pixel N as a function of the reference velocity and a
constant velocity increment as in Z(N) = Zr + ndZ then we need to find an expression for dZ which does not
depend on n. Note that nδνb << νbr, then

Z(N) ≈ Zrνbr − ncδνb
νbr

= Zr + n
(
−c δνb

νbr

)
(23.87)

Next script implements these formulas and show the deviations. The first three columns show the correct result.

1 from kapteyn import wcs
2 from math import sqrt
3 from numpy import arange
4

5 header_gds = {
6 ’NAXIS’ : 1,
7 ’NAXIS1’ : 127,
8 ’CTYPE1’ : ’FREQ-OHEL’,
9 ’CRVAL1’ : 1418921567.851000,

10 ’CRPIX1’ : 63.993952051196288,
11 ’CUNIT1’ : ’HZ’,
12 ’CDELT1’ : -9765.625,
13 ’VELR’ : 304000.0,
14 ’RESTFRQ’: 1420405752.0,
15 }
16

17 f0 = header_gds[’RESTFRQ’]
18 Zr = header_gds[’VELR’]
19 fr = header_gds[’CRVAL1’]
20 df = header_gds[’CDELT1’]
21 crpix = header_gds[’CRPIX1’]

490 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

22 c = wcs.c # Speed of light
23 p = pixrange = arange(crpix-2, crpix+3) # Range of pixels for which we
24 # want world coordinates
25 # Calculate the barycentric equivalents
26 fb = f0/(1.0+Zr/c)
27 Vtopo = c * ((fb*fb-fr*fr)/(fb*fb+fr*fr))
28 dfb = df*(c-Vtopo)/sqrt(c*c-Vtopo*Vtopo)
29 print "Topocentric correction (km/s):", Vtopo/1000
30 print "Barycentric frequency and increment (Hz):", fb, dfb
31

32 # VOPT-F2W from spectral translation, assumed to give the correct velocities
33 proj = wcs.Projection(header_gds)
34 spec = proj.spectra(ctype=’VOPT-F2W’)
35 Z1 = spec.toworld1d(pixrange)
36

37 # Non linear: Optical with GIPSY formula with barycentric
38 # values (excact).
39 Z2 = Zr + c*f0*(1/(fb+(p-crpix)*dfb)-1/fb)
40

41 # Non Linear: Optical with GIPSY formula without rest frequency and
42 # with barycentric values (exact).
43 Z3 = (Zr*fb - (p-crpix)*c*dfb) / (fb+(p-crpix)*dfb)
44

45 # Non Linear: Optical with GIPSY formula using topocentric,
46 # values (approximation).
47 Z4 = Zr + c*f0*(1/(fr+(p-crpix)*df)-1/fr)
48

49 # Linear: Optical with GIPSY formula with barycentric values
50 # and dZ approximation for linear transformation
51 # Rest frequency is part of formula.
52 dZ = -c*f0*dfb/fb/fb
53 Z5 = Zr + (p-crpix) * dZ
54

55 # Linear: Optical with GIPSY formula with barycentric values
56 # and dZ approximation for linear transformation
57 # Rest frequency is not used.
58 dZ = -c *dfb/fb
59 Z6 = Zr + (p-crpix) * dZ
60

61 print "\n%10s %14s %14s %14s %14s %14s %14s" % (’pix’, ’WCSLIB’,
62 ’GIP+bary’, ’GIP+bary-f0’, ’GIP+topo’, ’Linear+f0’, ’Linear-f0’)
63 for pixel, z1,z2,z3,z4,z5, z6 in zip(pixrange, Z1, Z2, Z3, Z4, Z5, Z6):
64 print "%10.4f %14f %14f %14f %14f %14f %14f" % (pixel, z1/1000, z2/1000,
65 z3/1000, z4/1000, z5/1000, z6/1000)

Output:

Topocentric correction (km/s): 9.57140206387
Barycentric frequency and increment (Hz): 1418966870.14 -9765.3132202

pix WCSLIB GIP+bary GIP+bary-f0
61.9940 299.869536 299.869536 299.869536
62.9940 301.934754 301.934754 301.934754
63.9940 304.000000 304.000000 304.000000
64.9940 306.065274 306.065274 306.065274
65.9940 308.130577 308.130577 308.130577

GIP+topo Linear+f0 Linear-f0
299.869141 299.869479 299.873664
301.934556 301.934740 301.936832
304.000000 304.000000 304.000000
306.065472 306.065260 306.063168
308.130973 308.130521 308.126336

23.4. Legacy headers 491

Kapteyn Package Documentation, Release 2.2

The columns in the output are:

1. pix: The (non integer) pixel value at which a velocity is calculated.

2. WCSLIB: The optical velocity (km/s) as calculated by WCSLIB. The extension in CTYPE is recognized
and the frequencies are replaced by their barycentric counterparts according to the recipe in A recipe for
modification of Nmap/GIPSY FITS data.

3. GIP+bary: The optical velocity (km/s) calculated with GIPSY formula in eq. (23.79) using barycentric
reference frequency and barycentric frequency increment.

4. GIP+bary-f0: The optical velocity (km/s) calculated with GIPSY formula without the rest frequency as in
eq. (23.86) using barycentric reference frequency and barycentric frequency increment.

5. GIP+topo: The optical velocity (km/s) calculated with GIPSY formula in eq. (23.79) using topocen-
tric/geocentric reference frequency and frequency increment.

6. Linear+f0: The optical velocity (km/s) calculated with GIPSY formula in eq. (23.83) using a rest frequency.

7. Linear-f0: The optical velocity (km/s) calculated with GIPSY formula in eq. (23.87) without a rest fre-
quency.

If you do some experiments with the values in this script, you will observe that the GIPSY formula with topocentric
instead of the barycentric/lsrk values is not a bad approximation although it is sensitive to the channel number (p).
The linear approximations are worse and should be avoided if high precision is required.

What remains is the question how good GIPSY’s approximation is. With (23.79) we write:

Zνb(N)− Zνt(N) = cν0

(1
νbr + nδνb

− 1
νbr
−
(1
νtr + nδνt

− 1
νtr

))
(23.88)

With the parameters:

• Zνt(N) the optical velocity at pixel N using topocentric values

• νtr the topocentric frequency at the reference pixel

• δνt the topocentric frequency increment

Rewrite this in:

Zνb(N)− Zνt(N) = −ncν0
(δνb
νbr(νbr + nδνb)

− δνt
νtr(νtr + nδνt)

)
(23.89)

Note that nδνb << νbr and nδνt << νtr. Then write the difference in increment as function of N as:

Zνb(N)− Zνt(N) ≈ −ncν0
(δνb
ν2
br

− δνt
ν2
tr

)
(23.90)

This expression explains the different values in the output of our previous script and it shows that the differences
depend on n.

Use (23.14) to write:

νtr = νbr

√
c− vtc
c+ vtc

(23.91)

and from (23.16)

δνb = δνt

√
c− vtc
c+ vtc

(23.92)

Define q =
√

c−vtc
c+vtc

then νbr = q/νtr and δνb = q ∗ δνt

Insert this in (23.90) to obtain:

Zνb(N)− Zνt(N) ≈ −ncν0
δνt
ν2
tr

(q3 − 1) (23.93)

492 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

The topocentric correction vtc has a range between -30 Km/s and 30 Km/s. For vtc = 30000 m/s this corresponds
to a maximum of q: q = 0.99989993577786473. With this maximum for q we find for (23.93) approximately
0.62 m/s

Note that the difference is a function of n, so after 64 channels the deviation is almost 40 m/s. In our example, the
channel separation is approximately 2 km/s and the deviations are therefore small (2%).

For the example at the start of this chapter, the reference velocity was 9120 km/s. The channel separation
(CDELT3Z) is approximately 20 km/s. For the listed topocentric frequency and the calculated barycentric fre-
quency we find with (23.93) an error of approximately 6.6 m/s. After 64 channels the deviation is approximately
420 m/s (2%).

With (23.82) we get an relative error:

Zνb(N)− Zνt(N)
dZ

= n(q3 − 1)
δνt
ν2
tr

ν2
br

δνt
≈ n(q3 − 1) (23.94)

With the maximum value of q we find a maximum percentage of 0.03% for 1 channel. After 64 channels the
deviation is almost 2%. After 512 channels it is more than 15%.

Conclusions

• The GIPSY formulas assume constant frequency increments in the system of the reference system. When
these are topocentric, there are small deviations from the result with WCSLIB which assume the frequencies
in the same reference system as the given velocity.

• The formula that GIPSY routines use to calculate optical velocities is an approximation. The deviations
are small but depend on the pixel i.e. (N − Nν). This approximation is not necessary because when the
optical velocity in the barycenter is given, then one can calculate the barycentric reference frequency (see
eq. (23.3)) and use that frequency in the GIPSY formula to get the exact result.

• The deviation is more sensitive to the topocentric correction (velocity between observatory on earth and
barycenter/lsrk) than the reference frequency and the frequency increment. Also there is a maximum value
for the topocentric velocity which results in a maximum deviation of 0.03% for one channel.

For the data in the previous script, we used the code below (which should be added to the previous script) to
calculate the percentages:

1 q = sqrt((c-Vtopo)/(c+Vtopo))
2 delta = -c*f0*df/fr/fr * (q*q*q-1)
3 d = (p-crpix) * delta
4

5 # Now change the topocentric correction to its maximum.
6 Vtopo = 30000.0
7 qmax = sqrt((c-Vtopo)/(c+Vtopo))
8 deltamax = -c*f0*df/fr/fr * (qmax*qmax*qmax-1)
9 dmax = (p-crpix) * deltamax

10 perc = abs(100*deltamax/dZ)
11

12 print "dZ, deltamax:", dZ, deltamax
13 print "Percentage deviation for 1 channel: ", perc
14 print "Approximate percentage: ", abs(100 * (qmax*qmax*qmax-1))
15 print "Percentage deviation for 64 channel: ", 64*perc
16 print "Approximate percentage: ", abs(100 * 64*(qmax*qmax*qmax-1))
17 print "Percentage deviation for 64 channel: ", 512*perc
18 print "Approximate percentage: ", abs(100 * 512*(qmax*qmax*qmax-1))
19

20 print "\nThe approximate difference and the real difference"
21 print "between topocentric nd barycentric increments"
22 for pixel, d1,d2,d3 in zip(pixrange, d, Z2-Z4, dmax):
23 print "%10.4f %14f %14f %14f" % (pixel, d1/1000, d2/1000, d3/1000)

Output:

23.4. Legacy headers 493

Kapteyn Package Documentation, Release 2.2

dZ, deltamax: -21236.6115174 6.57007047211
Percentage deviation for 1 channel: 0.0309374707295
Approximate percentage: 0.0300162628862
Percentage deviation for 64 channel: 1.97999812669
Approximate percentage: 1.92104082472
Percentage deviation for 64 channel: 15.8399850135
Approximate percentage: 15.3683265977

The approximate difference and the real difference
between topocentric and barycentric increments and
the maximum deviation as function of the pixel:
61.9940 -0.011436 -0.011438 -0.013140
62.9940 -0.005718 -0.005719 -0.006570
63.9940 0.000000 0.000000 0.000000
64.9940 0.005718 0.005717 0.006570
65.9940 0.011436 0.011433 0.013140

61.9940 -0.011436 -0.011438 -0.013140
62.9940 -0.005718 -0.005719 -0.006570
63.9940 0.000000 0.000000 0.000000
64.9940 0.005718 0.005717 0.006570
65.9940 0.011436 0.011433 0.013140

Radio

Given a frequency, a radio velocity is calculated with the formula:

V = −c(ν
′ − ν0
ν0

) (23.95)

Assume for channel N :

ν(N) = νbr + (N −Nref)δνb = νbr + nδνb (23.96)

For (N −Nref) we wrote n. The frequencies are related to the barycentric (or lrsk) reference system. Nref is the
reference pixel (CRPIX) given in a FITS header, νbr is the reference frequency in this barycentric system and δνb
is the barycentric frequency increment.

Inserting (23.95) into (23.96) gives:

Vb(N) = −c
(νbr + nδνb − ν0

ν0

)
= Vr + n

−cδνb
ν0

(23.97)

with:

• Vb(N) is the barycentric radio velocity for pixel N using barycentric frequency increments

• νbr is the barycentric reference frequency

• δνb is the increment in barycentric frequency

This increment in radio velocity was also derived in eq. (23.29). The increment in radio velocity is a linear function
of the increment in frequency. The frequencies in the FITS and GIPSY headers for pre July, 2006 WSRT/Nmap
FITS files are the topocentric frequencies.

We show the difference between the velocities derived from the barycentric/lsrk values and the velocities derived
from the topocentric values.

1 from kapteyn import wcs
2 from math import sqrt
3 from numpy import arange
4

5 header_gds = {

494 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

6 ’NAXIS’ : 1,
7 ’NAXIS1’ : 127,
8 ’CTYPE1’ : ’FREQ-RHEL’,
9 ’CRVAL1’ : 1418921567.851000,

10 ’CRPIX1’ : 63.993952051196288,
11 ’CUNIT1’ : ’HZ’,
12 ’CDELT1’ : -9765.625,
13 ’VELR’ : 304000.0,
14 ’RESTFRQ’: 1420405752.0,
15 }
16

17 f0 = header_gds[’RESTFRQ’]
18 Vr = header_gds[’VELR’]
19 fr = header_gds[’CRVAL1’]
20 df = header_gds[’CDELT1’]
21 crpix = header_gds[’CRPIX1’]
22 c = wcs.c # Speed of light
23 p = pixrange = arange(crpix-2, crpix+3) # Range of pixels for which we
24 # want world coordinates
25 # Calculate the barycentric equivalents
26 fb = f0*(1.0-Vr/c)
27 Vtopo = c * ((fb*fb-fr*fr)/(fb*fb+fr*fr))
28 dfb = df*(c-Vtopo)/sqrt(c*c-Vtopo*Vtopo)
29 print "Topocentric correction (km/s):", Vtopo/1000
30 print "Barycentric frequency and increment (Hz):", fb, dfb
31

32 # VRAD from spectral translation, assumed to give the correct velocities
33 proj = wcs.Projection(header_gds)
34 spec = proj.spectra(ctype=’VRAD’)
35 V1 = spec.toworld1d(pixrange)
36

37 # Radio velocities with GIPSY formula with barycentric
38 # values (excact).
39 V2 = Vr - c*(p-crpix)*dfb/f0
40

41 # Radio velocities with GIPSY formula without rest frequency and
42 # with barycentric values (exact).
43 V3 = Vr + (p-crpix)*dfb*(Vr-c)/fb
44

45 # Radio velocities with GIPSY formula using topocentric,
46 # values (approximation).
47 V4 = Vr - c*(p-crpix)*df/f0
48

49 # Check the differences
50 # d = -c*(p-crpix)*(df-dfb)/f0
51 # print (V4-V1)/1000, d/1000
52

53 print "\n%10s %14s %14s %14s %14s" % (’pix’, ’WCSLIB’,
54 ’GIP+bary’, ’GIP+bary-f0’, ’GIP+topo’)
55 for pixel, v1,v2,v3,v4 in zip(pixrange, V1, V2, V3, V4):
56 print "%10.4f %14f %14f %14f %14f" % (pixel, v1/1000, v2/1000,
57 v3/1000, v4/1000)

Output:

Topocentric correction (km/s): 9.26313531147
Barycentric frequency and increment (Hz): 1418965411.07 -9765.32326156

pix WCSLIB GIP+bary GIP+bary-f0 GIP+topo
61.9940 299.877839 299.877839 299.877839 299.877712
62.9940 301.938920 301.938920 301.938920 301.938856
63.9940 304.000000 304.000000 304.000000 304.000000
64.9940 306.061080 306.061080 306.061080 306.061144

23.4. Legacy headers 495

Kapteyn Package Documentation, Release 2.2

65.9940 308.122161 308.122161 308.122161 308.122288

The second, third and fourth column represent Vb and the last column is Vt. The difference between the exact and
approximate velocities as function of n is given by:

Vt(N)− Vb(N) = −n
c

ν0
(δνt − δνb) (23.98)

With the parameters:

• Vt(N) the barycentric radio velocity at pixel N using topocentric frequency increments

• δνt the topocentric frequency increment

The topocentric correction vtc has a range between -30 Km/s and 30 Km/s. Rewrite (23.16) into:

δνb
δνt

=
√
c− vtc
c+ vtc

(23.99)

For vtc = 30000 m/s this corresponds to a maximum q = δνb/δνt = 0.99989993577786473 which is equivalent
to:

c

ν0
(1− q)δνt ≈ 0.2 m/s (23.100)

Note that the difference is a function of n, so after 64 channels the deviation is more than 12 m/s. In our example,
the channel separation is approximately 2 km/s and the deviations are therefore small.

23.4.5 Header items in a (legacy) WSRT FITS file

Program nmap (part of NEWSTAR which is a package developed to process WSRT and ATCA data) is/was used
to create FITS files with WSRT line data. We investigated the meaning or interpretation of the various FITS header
items. The program generates it own descriptors related to velocities and frequencies. For example:

• VEL: Velocity (m/s)

• VELC: Velocity code

– 0=continuum,

– 1=heliocentric radio

– 2=LSR radio

– 3=heliocentric optical

– 4=LSR optical

• VELR: Velocity at reference frequency (FRQC)

• INST: Instrument code (0=WSRT, 1=ATCA)

• FRQ0: Rest frequency for line (MHz)

• FRQV: Real frequency for line (MHz)

• FRQC: Centre frequency for line (MHz)

One of functions in nmap is called nmawfh.for. It writes a FITS header using the values in the nmap descriptors.

The value of CRVAL3 is set to FRQV if the velocity code is one of combinations of optical and radio velocity with
heliocentric or local standard of rest reference systems (i.e. RHEL, RLSR, OHEL, OLSR).

The value of CRPIX3 is equal to FRQV -lowest frequency divided by the channel separation. ‘lowest frequency’
is the frequency of the input channel with the lowest frequency.

• The value for FITS keyword VEL= is equal to nmap descriptor VEL, the centre velocity in m/s

• The value for FITS keyword VELR= is equal to nmap descriptor VELR, the Reference velocity

496 Chapter 23. Background information spectral translations

Kapteyn Package Documentation, Release 2.2

• The value for FITS keyword FREQR= is equal to nmap descriptor FRQC, the Reference frequency (Hz)

• The value for FITS keyword FREQ0= is equal to nmap descriptor FRQ0, the Rest frequency (Hz)

VEL !CENTRE VELOCITY (M/S)
VELCODE !VELOCITY CODE
VELR !REFERENCE VELOCITY (M/S)
FREQR !REFERENCE FREQUENCY (HERTZ)
FREQ0 !REST FREQUENCY (HERTZ)

23.5 WCSLIB in a GIPSY task

GIPSY (Groningen Image Processing SYstem) is one of the oldest image processing and data analysis systems.
Python can be used to create GIPSY tasks. The Kapteyn Package is integrated in GIPSY. Here we give a small
example how to use both.

Assuming you have a data set with three axes and the last axis is the spectral axis, the next script is a very small
GIPSY program that asks the user for the name of this set and then calculates the optical velocities for a number
of pixels in the neighborhood of the reference pixel (CRPIX3).

GIPSY data have a descriptor which contains FITS header items (e.g. CRVAL1=) and GIPSY specific keywords
but not only attached to the set but also to subsets (slices) of the data. Not only planes or lines can have their
own header but even pixels can. The script below reads its information from top level (which hosts the global
description of the data cube itself):

1 #!/usr/bin/env python
2 from gipsy import *
3 from kapteyn import wcs
4

5 init()
6

7 while True:
8 try:
9 set = Set(usertext(’INSET=’, ’Input set’))

10 break
11 except:
12 reject(’INSET=’, ’Cannot open set’)
13

14 proj = wcs.Projection(set).sub((3,))
15 s = "Ref. freq at that pixel: %f Hz" % (set[’CRVAL3’],)
16 anyout(s)
17 s = "Velocity: %f m/s" % (set[’DRVAL3’],)
18 anyout(s)
19

20 crpix = set[’CRPIX3’]
21

22 proj2 = proj.spectra(’VOPT-F2W’)
23 for i in range(-2,+3):
24 world = proj2.toworld((crpix+i,))[0]/1000.0 # to world coordinates
25 anyout(str(world)+’ km/s’)
26

27 finis()

This little GIPSY task simulates the functionality of GIPSY task COORDS which lists world coordinates for data
slices. The two most important differences between this task and COORDS are:

• With WCSLIB it is simple to change the output velocity to radio or apparent radial by changing the spectral
translation.

• The Python interface to WCSLIB prepares the GIPSY header information to give correct barycentric or lsrk
velocities (i.e. it also converts the frequency increment to the barycentric or lsrk system).

Read more about GIPSY tasks written in Python in Python recipes for GIPSY

23.5. WCSLIB in a GIPSY task 497

https://www.astro.rug.nl/~gipsy
https://www.astro.rug.nl/~gipsy/python/recipes/pythonrep.php

Kapteyn Package Documentation, Release 2.2

23.5.1 References

498 Chapter 23. Background information spectral translations

Bibliography

[Schwarz1968] Schwarz, U.J., 1968. Analysis of an Observed Function into Components, using its Second
Derivative, Communication from the Netherlands Foundation for Radio Astronomy and the Kapteyn As-
tronomical Laboratory at Groningen, 19 405. (local copy)

[Ref1] Representations of world coordinates in FITS http://www.atnf.csiro.au/people/mcalabre/WCS/wcs.pdf
Greisen E.W. and Calabretta M.R.

[Ref2] Representations of celestial coordinates in FITS http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf
Calabretta M.R. and Greisen E.W.

[Ref3] Representations of spectral coordinates in FITS http://www.atnf.csiro.au/people/mcalabre/WCS/scs.pdf
E. W. Greisen, M. R. Calabretta, F. G. Valdes, and S. L. Allen

[FITS] Definition of the Flexible Image Transport System (FITS), FITS Standard Version 3.0
http://fits.gsfc.nasa.gov/fits_standard.html FITS Working Group , Commission 5: Documentation and
Astronomical Data, International Astronomical Union

[Alp] Alper, Joseph S., Gelb, Robert I., Standard Errors and Confidence Intervals in Nonlinear Regression:
Comparison of Monte Carlo and Parametric Statistics, J. Phys. Chem., 1990, 94 (11), pp 4747–4751 (Journal
of Physical Chemistry)

[And] Andrae, R, Error estimation in astronomy: A guide, arXiv:1009.2755v3 [astro-ph.IM] 29 Oct 2010

[Bev] Bevington, Philip R. , Data Reduction and Error Analysis for the Physical Sciences, 1969, McGraw-Hill

[BRo] Bevington, P.R., Robinson D.K., Data Reduction and Error Analysis for the Physical Sciences, Version
2.0 RLM (23 August 2003)

[Clu] Clutton-Brock, Likelihood Distributions for Estimating Functions When Both Variables Are Subject to Er-
ror, Technometrics, Vol. 9, No. 2 (May, 1967), pp. 261-269

[Ds1] DeSerio, R., Statistical Analysis of Data for PHY48803L, Advanced Physics Laboratory, University of
Florida (version 1) Local copy: statmain-florida.pdf

[Ds2] DeSerio, R., Statistical Analysis of Data for PHY48803L, Advanced Physics Laboratory, University of
Florida (version 2) Local copy: statmain.pdf

[Ds3] DeSerio, R., Regression Algebra, Local copy: matproof_statmain.pdf

[Mar] Marel, P. van der, Franx, M., A new method for the identification of non-gaussian line profiles in elliptical
galaxies. A.J., 407 525-539, 1993 April 20

[Mas] Massey, F. J. The Kolmogorov-Smirnov Test for Goodness of Fit., Journal of the American Statistical As-
sociation, Vol. 46, No. 253, 1951, pp. 68-78

[Mkw] Markwardt, C. B. 2008, “Non-Linear Least Squares Fitting in IDL with MPFIT,” in proc. Astronomical
Data Analysis Software and Systems XVIII, Quebec, Canada, ASP Conference Series, Vol. 411, eds. D.

499

http://www.atnf.csiro.au/people/mcalabre/WCS/wcs.pdf
http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf
http://www.atnf.csiro.au/people/mcalabre/WCS/scs.pdf
http://fits.gsfc.nasa.gov/fits_standard.html

Kapteyn Package Documentation, Release 2.2

Bohlender, P. Dowler & D. Durand (Astronomical Society of the Pacific: San Francisco), p. 251-254 (ISBN:
978-1-58381-702-5) Website: http://purl.com/net/mpfit

[Num] William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery, Numerical Recipes in
C, The Art of Scientific Computing, 2nd edition, Cambridge University Press, 1992

[Ogr] Ogren, J., Norton, J.R., Applying a Simple Linear Least-Squares Algorithm to Data with Uncertainties in
Both Variables, J. of Chem. Education, Vol 69, Number 4, April 1992

[Ore] Orear, Jay, Least squares when both variables have uncertainties, Am. J. Phys. 50(10), Oct 1982

[Pea] Pearson, K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2:559-
572, 1901. A copy of this article can be found at: http://stat.smmu.edu.cn/history

[Scr] Schreier, Franz, Optimized implementations of rational approximations for the Voigt and complex error
function, Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 1010-1025

[Sch] Schwarz, U.J., Analysis of an Observed Function into Components, using its Second Derivative, Bull. Astr.
Inst. Netherlands, 1968, 19 405-413 (local copy)

[Sha] Shao, J., Jackknifing Weighted Least Squares Estimators, Journal of the Royal Statistical Society. Series B
(Methodological), Vol. 51, No. 1(1989), pp. 139-156

[Yor] York, D. Least-squares fitting of a straight line, Canadian Journal of Physics. Vol. 44, p.1079, 1966

[Vog] Vogelaar, M.G.R., XGAUPROF, local copy

[Wil] Williamson, Least-squares fitting of a straight line, J.A., Can. J. Phys, 1968, 46, 1845-1847

[Wol] Wolberg, J., Data Analysis Using the Method of Least Squares, 2006, Springer

[Aoki1] Aoki, S., Soma, M., Kinoshita, H., Inoue, K., 1983. Conversion matrix of epoch B 1950.0 FK4-based
positions of stars to epoch J 2000.0 positions in accordance with the new IAU resolutions, Astron. Astrophys.
128, p.263-267, 1983, ADS Abstract Service 1983

[Aoki2] Aoki, S. et al, 1986. The Conversion from the B1950 FK4 Based Position to the J2000 Position of Celes-
tial Objects, Astrometric Techniques: IAU SYmp:109 Florida p.123, 1986, ADS Abstract Service 1986

[Blaauw] Blaauw, A.; Gum, C. S.; Pawsey, J. L.; Westerhout, G., 1959, Note: Definition of the New I.A.U. System
of Galactic Co-Ordinates Astrophysical Journal, vol. 130, p.702, ADS Abstract Service 1959

[Brouw] Brouw, W.N., 1974. Synthesis Radio Telescope Project; The SRT Reduction Program, Internal Technical
Report ITR 78 about the Standard Reduction Program for the Westerbork Synthesis Radio Telescope, Astr.
Observatory, Leiden, Netherlands

[Calabr] Calabretta, M.R., Greisen, E.W., 2002 Representations of celestial coordinates in FITS Astronomy and
Astrophysics, v.395, p.1077-1122 (2002). PDF version at http://www.atnf.csiro.au/people/mcalabre/WCS/

[Corwin] Corwin, H. G.; de Vaucouleurs, A.; de Vaucouleurs, G., 1994. Southern Galaxy Catalogue (SGC),
VizieR On-line Data Catalog: VII/116. Originally published in: 1985MAUTx...4....1C, RC3 - Third Reference
Catalog of Bright Galaxies

[Cotton] Cotton, W. D.; Condon, J. J.; Arbizzani, E. , 1999. Arcsecond Positions of UGC Galaxies, The Astro-
physical Journal Supplement Series, Volume 125, Issue 2, p.409-412 ADS Abstract Service 1999

[Diebel] Diebel, J, 2006. Representing Attitude: Euler Angles, Quaternions, and Rotation Vectors (local
copy)

[Hering] Hering, R.; Walter, H. G., 1998. Updating of B1950 radio star positions by means of J2000 calibrators.
International Spring Meeting of the Astronomische Gesellschaft: The message of the angles - astrometry from
1798 to 1998, p.198 - 200, http://www.astro.uni-bonn.de/~pbrosche/aa/acta/vol03/acta03_198.html

[Hilton] Hilton, J.L.; Hohenkerk, C. Y., 2004. Rotation matrix from the mean dynamical equator and equinox at
J2000.0 to the ICRS Astronomy and Astrophysics, v.413, p.765-770 (2004). ADS Abstract Service 2004

[Kaplan] Kaplan, G.H., 2005. The IAU Resolutions on Astronomical Reference systems,
Time scales, and Earth Rotation Models, US Naval Observatory, Circular No. 179,
http://aa.usno.navy.mil/publications/docs/Circular_179.pdf

500 Bibliography

http://purl.com/net/mpfit/
http://stat.smmu.edu.cn/history/pearson1901.pdf/
http://www.astro.rug.nl/software/kapteyn-alpha/_downloads/Schwarz-1968.pdf
http://www.astro.rug.nl/~gipsy/xgauprof/xgauprof.pdf
http://adsabs.harvard.edu/abs/1983A%26A...128..263A
http://adsabs.harvard.edu/abs/1986IAUS..109..123A
http://adsabs.harvard.edu/abs/1959ApJ...130..702B
http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf
http://heasarc.nasa.gov/W3Browse/all/rc3.html
http://heasarc.nasa.gov/W3Browse/all/rc3.html
http://adsabs.harvard.edu/abs/1999ApJS..125..409C
http://www.astro.uni-bonn.de/~pbrosche/aa/acta/vol03/acta03_198.html
http://adsabs.harvard.edu/abs/2004A%26A...413..765H
http://aa.usno.navy.mil/publications/docs/Circular_179.pdf

Kapteyn Package Documentation, Release 2.2

[Lieske1] Lieske, J. H.; Lederle, T.; Fricke, W.; Morando, B., 1977. Expressions for the precession quantities
based upon the IAU /1976/ system of astronomical constants, Astronomy and Astrophysics, vol. 58, no. 1-2,
June 1977, p. 1-16 ADS Abstract Service 1977

[Lieske2] Lieske, J.H., 1979. Precession matrix based on IAU 1976 system of astronomical constants Astronomy
and Astrophysics, vol. 73, no. 3, Mar. 1979, p.282-284, ADS Abstract Service 1979

[Murray] Murray, C.A., 1989. The transformation of coordinates between systems of B1950.0 and J2000.0 and
the principal galactic axes referred to J2000.0, Astron. Astrophys, 218, p.325-329, ADS Abstract Service
1989

[Poppe] Poppe P.C.R., Martin, V.A.F., 2005. Sobre as Bases de Referencia Celeste (On
the celestial reference frames), Sitientibus Serie Ciencias Fisicas 01: 30-38 (2005),
http://www2.uefs.br/depfis/sitientibus/vol1/Vera_Main-SPSS.pdf

[Scott] Scott F.P., Hughes J.A. , Computation of Apparent Places for the Southern Reference Star Program, The
Astronomical Journal, Vol 69, Number 5, 1964, p.368-371, ADS Abstract Service 1964

[Seidel] Seidelmann, P.K., 1992. Explanatory Supplement to the Astronomical Almanac, University Science
Books

[Smart] Smart, W.M., 1931, Sixth ed. 1977, reprint 1990. Textbook on Spherical Astronomy, Sixth Edition,
Revised by R.M. Green, Cambridge University Press

[Smith] Smith, C. A.; Kaplan, G. H.; Hughes, J. A.; Seidelmann, P. K.; Yallop, B. D.; Hohenkerk, C. Y., 1989.
Mean and apparent place computations in the new IAU system. I - The transformation of astrometric catalog
systems to the equinox J2000.0. II - Transformation of mean star places from FK4 B1950.0 to FK5 J2000.0
using matrices in 6-space, ADS Abstract Service 1989II

[Soma] Soma, M., Aoki, S. 1990. Transformation of the Mean Place from FK4 to FK5, Inertial Coordinate
System Of/ Sky: IAU SYMP.141 p.131, 1989, ADS Abstract Service 1990

[Wallace1] Wallace, P. T., 1994. The SLALIB Library , Astronomical Data Analysis Software and Systems III,
A.S.P. Conference Series, Vol. 61, 1994, Dennis R. Crabtree, R.J. Hanisch, and Jeannette Barnes, eds., p.481.

[Wallace2] Wallace, P. (chair), IAU SOFA, IAU, 2007, SOFA Tools for Earth Attitude sofa_pn.pdf and also:
ADS Abstract Service 1994

[Wallace3] Wallace, P. T., 2005. SLALIB – Positional Astronomy Library 2.5-3 Programmer’s Manual, Manual

[Yallop] Yallop, B. D.; Hohenkerk, C. Y.; Smith, C. A.; Kaplan, G. H.; Hughes, J. A.; Seidelmann, P. K., 1989.
Mean and apparent place computations in the new IAU system II. Transformation of mean star places from
FK4 B1950.0 to FK5 J2000.0 using matrices in 6-space, Astron. Journal, 97, Number 1, January 1989, ADS
Abstract Service 1989 III

[Aipsmemo] AIPS memo 27 Non-Linear Coordinate Systems in AIPS (Eric W. Greisen, NRAO)

Bibliography 501

http://adsabs.harvard.edu/abs/1977A%26A....58....1L
http://adsabs.harvard.edu/abs/1979A%26A....73..282L
http://adsabs.harvard.edu/abs/1989A\&A...218..325M
http://adsabs.harvard.edu/abs/1989A\&A...218..325M
http://www2.uefs.br/depfis/sitientibus/vol1/Vera_Main-SPSS.pdf
http://adsabs.harvard.edu/abs/1964AJ.....69..368S
http://adsabs.harvard.edu/abs/1989AJ.....97..265S
http://adsabs.harvard.edu/abs/1990IAUS..141..131S
http://iau-sofa.hmnao.com/2007_0810/sofa/sofa_pn.pdf
http://adsabs.harvard.edu/abs/1994ASPC...61..481W
http://www.starlink.rl.ac.uk/star/docs/sun67.htx/sun67.html
http://adsabs.harvard.edu/abs/1989AJ.....97..274Y
http://adsabs.harvard.edu/abs/1989AJ.....97..274Y
http://www.cv.nrao.edu/fits/wcs/aips27.ps

Kapteyn Package Documentation, Release 2.2

502 Bibliography

Index

A
A class for plotting FITS data, 82
active (mplutil.AxesCallback attribute), 149
active (mplutil.CanvasCallback attribute), 151
active (mplutil.TimeCallback attribute), 152
add_frame() (mplutil.VariableColormap method), 153
addEterms() (in module celestial), 50
addgratline() (wcsgrat.Graticule method), 67
all-sky plot, 299
allow_invalid (wcs.Projection attribute), 25
allowedtrans (maputils.FITSimage attribute), 80
alter (maputils.Annotatedimage attribute), 95
altspec (wcs.Projection attribute), 26
altspecarg (wcs.Projection attribute), 26
annimagelist (maputils.MovieContainer attribute), 119
Annotatedimage (class in maputils), 93
Annotatedimage() (maputils.FITSimage method), 82
append() (celestial.skyrefset method), 35
append() (maputils.MovieContainer method), 120
ASCII, 370
aspect (maputils.Annotatedimage attribute), 95
Aspect ratio from FITS header data, 83
aspectratio (maputils.FITSimage attribute), 79
Attributes of a Projection object, 177
auto (mplutil.VariableColormap attribute), 153
axes (mplutil.AxesCallback attribute), 149
axes (wcsgrat.Graticule attribute), 59
AxesCallback (class in mplutil), 149
axisinfo (maputils.FITSimage attribute), 78, 80
axperm (maputils.Annotatedimage attribute), 95
axperm (maputils.FITSimage attribute), 78, 81

B
basename (maputils.Annotatedimage attribute), 95
Beam (class in maputils), 115
Beam() (maputils.Annotatedimage method), 104
Besselian epochs, 42
Besselian to Julian epoch, 458
blankcolor (maputils.Annotatedimage attribute), 95
blur() (maputils.Annotatedimage method), 110
BMatrixEpoch12Epoch2() (in module celestial), 49
box (maputils.Annotatedimage attribute), 95
boxdat (maputils.FITSimage attribute), 79

C
c (in module wcs), 29
Calculate distance on sphere, 77
canvas (mplutil.AxesCallback attribute), 149
canvas (mplutil.CanvasCallback attribute), 151
CanvasCallback (class in mplutil), 150
category (wcs.Projection attribute), 24
cd (wcs.Projection attribute), 24
cdelt (wcs.Projection attribute), 24
celestial

module, 31
celestial (module), 29
chi2_min (kmpfit.Fitter attribute), 157
clipmax (maputils.Annotatedimage attribute), 95
clipmin (maputils.Annotatedimage attribute), 95
cmap (maputils.Annotatedimage attribute), 95
cmapinverse (maputils.Annotatedimage attribute), 95
Colmaplist (class in maputils), 116
Colorbar (class in maputils), 114
Colorbar() (maputils.Annotatedimage method), 101
colormaps (maputils.Colmaplist attribute), 116
columns() (tabarray.tabarray method), 146
confidence_band() (kmpfit.Fitter method), 158
Contours (class in maputils), 113
Contours() (maputils.Annotatedimage method), 100
controlpanel() (maputils.MovieContainer method), 120
Convert degrees to separate field of the hms/dms format,

54
Convert hms or dms values to text or LaTeX represen-

tation, 54
Convert PyFITS header to Python dictionary, 77
convproj (maputils.FITSimage attribute), 79, 81
coordinate representation, 21
Coordinate representations, 167
coordmap() (in module wcs), 27
covar (kmpfit.Fitter attribute), 157
covtol (kmpfit.Fitter attribute), 157
crota (wcs.Projection attribute), 24
crpix (wcs.Projection attribute), 24
CRVAL, 299
crval (wcs.Projection attribute), 24
ctype (wcs.Projection attribute), 24
cunit (wcs.Projection attribute), 24

503

Kapteyn Package Documentation, Release 2.2

D
dat (maputils.FITSimage attribute), 78
data (kmpfit.Fitter attribute), 156
data (maputils.Annotatedimage attribute), 95
Data in a Numpy matrix, 175
Data in Numpy arrays, 175
dateobs (wcs.Projection attribute), 25
Dependent Variable, 363
deschedule() (mplutil.AxesCallback method), 150
deschedule() (mplutil.CanvasCallback method), 151
deschedule() (mplutil.TimeCallback method), 152
description (celestial.skyrefsys attribute), 34
dist_on_sphere() (in module maputils), 77
dmsprec (maputils.Positionmessage attribute), 118
dof (kmpfit.Fitter attribute), 157
download, 4
dynj2000 (in module wcs), 29

E
ecl (in module wcs), 29
Ecliptic, 458
ecliptic (in module wcs), 29
ellipsesamples() (in module shapes), 143
Elliptic terms of aberration, 50
epobs (wcs.Projection attribute), 25
Epoch, 458
epoch (wcs.Projection attribute), 25
Epoch B1950, 458
Epoch conversions, 40
Epoch J2000, 458
epochBessel2JD() (in module celestial), 43
epochJulian2JD() (in module celestial), 43
epochs() (in module celestial), 40
epochs() (in module wcs), 28
epsfcn (kmpfit.Fitter attribute), 157
eq (in module wcs), 28
Equator: mean equator of a date, 458
Equator: true equator of a date, 458
equatorial (in module wcs), 28
Equinox, 458
equinox (wcs.Projection attribute), 24
Equinox of the date, 458
euler (wcs.Projection attribute), 24
event (mplutil.AxesCallback attribute), 150
event (mplutil.CanvasCallback attribute), 151
eventtype (mplutil.AxesCallback attribute), 149
eventtype (mplutil.CanvasCallback attribute), 151
Exception suppression, 179
Extract image data from FITS file, 77

F
Features of the wcs module, 167
Fiducial point, 458
figsize (maputils.FITSimage attribute), 79
filename (maputils.FITSimage attribute), 78
fit() (kmpfit.Fitter method), 158
FITS: Creating a Projection object for a spatial map in

a FITS file (example), 182

FITSaxis (class in maputils), 117
fitsheader2dict() (in module maputils), 77
FITSimage (class in maputils), 77
Fitter (class in kmpfit), 155
FK4, 459
fk4 (in module wcs), 29
FK42FK5Matrix() (in module celestial), 47
fk4_no_e (in module wcs), 29
FK5, 459
fk5 (in module wcs), 29
fluxfie (maputils.Annotatedimage attribute), 95
frame (maputils.Annotatedimage attribute), 96
framespersec (maputils.MovieContainer attribute), 119
ftol (kmpfit.Fitter attribute), 157
fullname (celestial.skyrefsys attribute), 34
fullname2id() (celestial.skyrefset method), 35

G
gal (in module wcs), 29
galactic (in module wcs), 29
Galactic coordinates, 459
gauest() (in module profiles), 161
Get clip values for image data, 76
get_aspectratio() (wcsgrat.Graticule method), 69
get_colornavigation_info() (maputils.Annotatedimage

method), 98
get_dataminmax() (maputils.FITSimage method), 85
get_figsize() (maputils.FITSimage method), 83
get_pixelaspectratio() (maputils.FITSimage method),

83
getEterms() (in module celestial), 50
gethmsdms() (in module wcsgrat), 54
GIPSY, 4
gipsy_connect() (in module mplutil), 154
gmap (wcsgrat.Graticule attribute), 60
graticule, 299
Graticule (class in wcsgrat), 55
Graticule() (maputils.Annotatedimage method), 102
grid2pixel() (wcs.Projection method), 23
gridmode (maputils.Annotatedimage attribute), 96
gridmode (wcs.Projection attribute), 25
gtol (kmpfit.Fitter attribute), 157

H
hdr (maputils.Annotatedimage attribute), 96
hdr (maputils.FITSimage attribute), 78
Header data from a FITS file, 180
header2classic() (maputils.FITSimage method), 86
histeq() (maputils.Annotatedimage method), 110
hmsdms (maputils.Positionmessage attribute), 118

I
I/O structure, 167
IAU2006MatrixEpoch12Epoch2() (in module celes-

tial), 49
IAU2006precangles() (in module celestial), 44
ICRS, 459
icrs (in module wcs), 29

504 Index

Kapteyn Package Documentation, Release 2.2

ICRS2FK5Matrix() (in module celestial), 48
ICRS2J2000Matrix() (in module celestial), 48
id2description() (celestial.skyrefset method), 35
id2fullname() (celestial.skyrefset method), 35
id2skyref() (celestial.skyrefset method), 35
idnum (celestial.skyrefsys attribute), 34
im (maputils.Annotatedimage attribute), 99
Image (class in maputils), 113
Image() (maputils.Annotatedimage method), 98
imageloop() (maputils.MovieContainer method), 120
imshape (maputils.FITSimage attribute), 79, 80
Independent Variable, 363
indx (maputils.MovieContainer attribute), 119
Input syntax for sky definitions, 36
inside() (maputils.Annotatedimage method), 109
inside() (wcs.Projection method), 23
Insidelabels (class in wcsgrat), 69
Insidelabels() (wcsgrat.Graticule method), 67
install, 4
interact_imagecolors() (maputils.Annotatedimage

method), 111
interact_toolbarinfo() (maputils.Annotatedimage

method), 110
interact_writepos() (maputils.Annotatedimage

method), 112
invalid (wcs.Projection attribute), 25

J
j2000 (in module wcs), 29
JD() (in module celestial), 40
JD2epochBessel() (in module celestial), 42
JD2epochJulian() (in module celestial), 43
JMatrixEpoch12Epoch2() (in module celestial), 48
Julian day number, 40
Julian epochs, 43

K
kmpfit (module), 154

L
Label formatting, 41
lat2dms() (in module celestial), 41
lat2dms() (in module wcs), 28
lataxnum (wcs.Projection attribute), 26
latpole (wcs.Projection attribute), 24
Lieskeprecangles() (in module celestial), 44
LLS, 363
lon2dms() (in module celestial), 42
lon2dms() (in module wcs), 28
lon2hms() (in module celestial), 41
lon2hms() (in module wcs), 28
lonaxnum (wcs.Projection attribute), 26
lonpole (wcs.Projection attribute), 24
luts() (mplutil.VariableColormap class method), 153

M
makelabel() (in module wcsgrat), 54
map (maputils.FITSimage attribute), 80

maputils (module), 70
Marker (class in maputils), 115
Marker() (maputils.Annotatedimage method), 105
mas, 459
matplotlib, 4
MatrixEpoch12Epoch2() (in module celestial), 49
MatrixEq2Ecl() (in module celestial), 46
MatrixEqB19502Gal() (in module celestial), 45
MatrixGal2Sgal() (in module celestial), 46
maxfev (kmpfit.Fitter attribute), 157
maxiter (kmpfit.Fitter attribute), 157
message (kmpfit.Fitter attribute), 158
minmatch2id() (celestial.skyrefset method), 35
minmatch2skyref() (celestial.skyrefset method), 35
Minortickmarks() (maputils.Annotatedimage method),

103
mixed() (wcs.Projection method), 22
Mixing pixel- and world coordinates, 172
mixpix (maputils.Annotatedimage attribute), 96
mixpix (maputils.FITSimage attribute), 78, 80
mixpix (wcsgrat.Graticule attribute), 60
mjdobs (wcs.Projection attribute), 25
modify() (mplutil.VariableColormap method), 153
module

celestial, 31
movie_events() (maputils.MovieContainer method),

120
MovieContainer (class in maputils), 118
mplutil (module), 148

N
naxis (maputils.FITSimage attribute), 78
naxis (wcs.Projection attribute), 25
ncols (tabarray.tabarray attribute), 146
Newcombprecangles() (in module celestial), 44
nfev (kmpfit.Fitter attribute), 158
nfree (kmpfit.Fitter attribute), 157
niter (kmpfit.Fitter attribute), 158
NLLS, 363
npar (kmpfit.Fitter attribute), 157
npegged (kmpfit.Fitter attribute), 157
nrows (tabarray.tabarray attribute), 145
NumPy, 4
Numpy, 363

O
Objective Function, 363
objlist (maputils.Annotatedimage attribute), 96
Obliquity, 43
Obliquity (of the Ecliptic), 459
obliquity1980() (in module celestial), 43
obliquity2000() (in module celestial), 43
Open a FITS file, 74
orignorm (kmpfit.Fitter attribute), 157

P
params (kmpfit.Fitter attribute), 157
params0 (kmpfit.Fitter attribute), 156

Index 505

Kapteyn Package Documentation, Release 2.2

parinfo (kmpfit.Fitter attribute), 156
parsehmsdms() (in module positions), 135
pc (wcs.Projection attribute), 24
pixel2grid() (wcs.Projection method), 23
Pixellabels (class in maputils), 115
Pixellabels() (maputils.Annotatedimage method), 102
pixelstep (maputils.Annotatedimage attribute), 96
pixfmt (maputils.Positionmessage attribute), 118
pixoffset (maputils.Annotatedimage attribute), 96
Plot FITS image data with Matplotlib, 93
plot() (maputils.Annotatedimage method), 107
plot() (maputils.Colorbar method), 114
plot() (maputils.Contours method), 114
plot() (maputils.Image method), 113
Position-Velocity plots, 179
Positionmessage (class in maputils), 118
positions (module), 120
positionsfromfile() (maputils.Annotatedimage method),

112
Precession, 459
Precession angles, 44
prerequisites, 4
Print information from FITS header, 83
printattr() (maputils.FITSaxis method), 117
printinfo() (maputils.FITSaxis method), 117
profiles (module), 160
proj (maputils.FITSimage attribute), 79
Projection (class in wcs), 21
projection (maputils.Annotatedimage attribute), 96
Projection objects representing data slices, 173
prompt function, 299
prompt_box() (in module maputils), 75
prompt_dataminmax() (in module maputils), 76
prompt_fitsfile() (in module maputils), 74
prompt_imageaxes() (in module maputils), 74
prompt_skyout() (in module maputils), 76
prompt_spectrans() (in module maputils), 76
ps (wcs.Projection attribute), 24
ptype (maputils.Annotatedimage attribute), 96
pv (wcs.Projection attribute), 24
pxlim (maputils.Annotatedimage attribute), 96
pxlim (maputils.FITSimage attribute), 79
pxlim (wcsgrat.Graticule attribute), 60
PyFITS, 4
pylim (maputils.Annotatedimage attribute), 96
pylim (maputils.FITSimage attribute), 79
Python, 4

R
radesys (wcs.Projection attribute), 25
rchi2_min (kmpfit.Fitter attribute), 157
readColumns() (in module tabarray), 147
Reading headers from FITS files, 180
Reading headers from FITS files (example), 180
Reference frame, 459
Reference system, 459
refsystem (celestial.skyrefsys attribute), 34

remove_frame() (mplutil.VariableColormap method),
153

removeEterms() (in module celestial), 51
reproject_to() (maputils.FITSimage method), 88
resid (kmpfit.Fitter attribute), 157
restfrq (wcs.Projection attribute), 24
restwav (wcs.Projection attribute), 24
RGBimage() (maputils.Annotatedimage method), 99
rgbs (maputils.Annotatedimage attribute), 96
Rotation matrices, 45
rows() (tabarray.tabarray method), 146
rowvec (wcs.Projection attribute), 25
rowvec (wcs.Transformation attribute), 27
Ruler (class in rulers), 137
Ruler() (maputils.Annotatedimage method), 106
rulers (module), 136

S
Sample points on an allipse, 143
scale (mplutil.VariableColormap attribute), 153
scanborder() (wcsgrat.Graticule method), 66
schedule() (mplutil.AxesCallback method), 150
schedule() (mplutil.CanvasCallback method), 151
schedule() (mplutil.TimeCallback method), 152
SE, 363
segments (tabarray.tabarray attribute), 146
Select image data from FITS file, 80
Set axis numbers of FITS image, 74
Set default figure size for Matplotlib, 83
Set output sky, 82
Set pixel limits in FITS image, 75
Set pixel limits of image axes, 81
Set sky system for output, 76
Set spectral translation, 81
Set spectral translation from list, 76
set_aspectratio() (maputils.Annotatedimage method),

98
set_blankcolor() (maputils.Annotatedimage method),

98
set_colormap() (maputils.Annotatedimage method), 97
set_imageaxes() (maputils.FITSimage method), 80
set_interval() (mplutil.TimeCallback method), 152
set_label() (maputils.Colorbar method), 114
set_length() (mplutil.VariableColormap method), 153
set_limits() (maputils.FITSimage method), 81
set_norm() (maputils.Annotatedimage method), 97
set_scale() (mplutil.VariableColormap method), 153
set_skyout() (maputils.FITSimage method), 82
set_source() (mplutil.VariableColormap method), 153
set_spectrans() (maputils.FITSimage method), 81
set_tickmode() (wcsgrat.Graticule method), 65
setp_axislabel() (wcsgrat.Graticule method), 64
setp_contour() (maputils.Contours method), 114
setp_gratline() (wcsgrat.Graticule method), 63
setp_label() (maputils.Contours method), 114
setp_label() (maputils.Pixellabels method), 116
setp_label() (rulers.Ruler method), 139

506 Index

Kapteyn Package Documentation, Release 2.2

setp_label() (wcsgrat.Graticule.Insidelabels method),
68

setp_label() (wcsgrat.Insidelabels method), 69
setp_line() (rulers.Ruler method), 139
setp_linespecial() (wcsgrat.Graticule method), 67
setp_lineswcs0() (wcsgrat.Graticule method), 63
setp_lineswcs1() (wcsgrat.Graticule method), 63
setp_marker() (maputils.Pixellabels method), 116
setp_plotaxis() (wcsgrat.Graticule method), 62
setp_tick() (wcsgrat.Graticule method), 61
setp_ticklabel() (wcsgrat.Graticule method), 65
setp_tickmark() (wcsgrat.Graticule method), 64
sgal (in module wcs), 29
Shapecollection (class in shapes), 141
shapes (module), 139
shift (mplutil.VariableColormap attribute), 153
showall() (in module maputils), 77
simplefit() (in module kmpfit), 160
sky2sky() (in module celestial), 39
skymatrix() (in module celestial), 37
skyout (maputils.Annotatedimage attribute), 96
skyout (wcs.Projection attribute), 25
skyout (wcsgrat.Graticule attribute), 60
skyparser() (in module celestial), 36
Skypolygon (class in maputils), 115
Skypolygon() (maputils.Annotatedimage method), 106
skyrefs_fullname (celestial.skyrefset attribute), 36
skyrefs_id (celestial.skyrefset attribute), 36
skyrefs_list (celestial.skyrefset attribute), 36
skyrefset (class in celestial), 35
skyrefsys (class in celestial), 34
skysys (wcs.Projection attribute), 25
slice2world() (maputils.FITSimage method), 85
sliceaxnames (maputils.Annotatedimage attribute), 96
slicepos (maputils.Annotatedimage attribute), 96
slicepos (maputils.FITSimage attribute), 79, 80
slope (mplutil.VariableColormap attribute), 153
source (mplutil.VariableColormap attribute), 153
source (wcs.Projection attribute), 26
specaxnum (wcs.Projection attribute), 26
spectra() (wcs.Projection method), 23
spectrans (maputils.Annotatedimage attribute), 96
spectrans (maputils.FITSimage attribute), 79, 80
spectrans (wcsgrat.Graticule attribute), 60
status (kmpfit.Fitter attribute), 158
stderr (kmpfit.Fitter attribute), 157
stepfactor (kmpfit.Fitter attribute), 157
str2pos() (in module positions), 134
str2pos() (wcs.Projection method), 23
str_axisinfo() (maputils.FITSimage method), 84
str_header() (maputils.FITSimage method), 83
str_spectrans() (maputils.FITSimage method), 84
str_wcsinfo() (maputils.FITSimage method), 84
sub() (wcs.Projection method), 22
Sub-Projections, 173
supergalactic (in module wcs), 29
Suppressing exceptions in coordinate transformations,

179

T
tabarray (class in tabarray), 145
tabarray (module), 143
TimeCallback (class in mplutil), 151
toggle_images() (maputils.MovieContainer method),

120
topixel() (maputils.Annotatedimage method), 109
topixel() (wcs.Projection method), 22
topixel1d() (wcs.Projection method), 22
toworld() (maputils.Annotatedimage method), 107
toworld() (wcs.Projection method), 22
toworld1d() (wcs.Projection method), 22
transform() (wcs.Transformation method), 27
Transformation (class in wcs), 26
Tutorial

Celestial, 31
types (wcs.Projection attribute), 25

U
unitfactor() (in module positions), 135
update() (mplutil.VariableColormap method), 153
usedate (wcs.Projection attribute), 25

V
VariableColormap (class in mplutil), 152
version (kmpfit.Fitter attribute), 158

W
wcs (module), 21
wcsfmt (maputils.Positionmessage attribute), 118
wcsgrat (module), 51
WCSLIB, 21
WCStick (class in wcsgrat), 69
wcstypes (maputils.Annotatedimage attribute), 97
wcstypes (maputils.FITSimage attribute), 78
wcstypes (wcsgrat.Graticule attribute), 60
write_colormap() (maputils.Annotatedimage method),

98
writeColumns() (in module tabarray), 147
writeto() (tabarray.tabarray method), 146
writetofits() (maputils.FITSimage method), 92
WSSR, 363
wxlim (wcsgrat.Graticule attribute), 60
wylim (wcsgrat.Graticule attribute), 60

X
xaxnum (wcsgrat.Graticule attribute), 60
xerror (kmpfit.Fitter attribute), 157
xstarts (wcsgrat.Graticule attribute), 60
xtol (kmpfit.Fitter attribute), 157
XV maps, 179

Y
yaxnum (wcsgrat.Graticule attribute), 60
ystarts (wcsgrat.Graticule attribute), 60

Z
zfmt (maputils.Positionmessage attribute), 118

Index 507

	I Obtaining and using the package
	Introduction
	Overview
	Prerequisites
	Download
	Installing
	Contact

	How to start
	Introduction
	Which module and documents to use?
	Functionality of the modules in the Kapteyn Package

	License
	Kapteyn Package
	SciPy modules
	WCSLIB
	MPFIT

	Release notes
	Version 2.2.1 (being developed)
	Version 2.2 (Apr 19, 2012)
	Version 2.1 (Feb 14, 2011)
	Version 2.0.2 (Sep 16, 2010)
	Version 2.0.1 (Aug 11, 2010)
	Version 2.0 (Jul 16, 2010)
	Version 1.9.2 (Jul 12, 2010)
	Version 1.9.1 (Feb 25, 2010)
	Version 1.9 (Jan 16, 2010)

	II Module reference
	Module wcs
	Introduction
	Coordinates
	Class Projection
	Class Transformation
	Functions
	Constants
	Error handling

	Module Celestial
	Sky definitions
	Module level data
	Classes
	Core Functions
	Utility functions
	Rotation matrices
	Functions related to E-terms

	Module wcsgrat
	Module level data
	Functions
	Class Graticule
	Class Insidelabels

	Module maputils
	Introduction
	Module level data
	Prompt functions
	Utility functions
	Class FITSimage
	Class Annotatedimage
	Class Image
	Class Contours
	Class Colorbar
	Class Beam
	Class Skypolygon
	Class Marker
	Class Pixellabels
	Class Colmaplist
	Class FITSaxis
	Class Positionmessage
	Class MovieContainer

	Module positions
	Introduction
	How to use this module
	Position syntax
	Functions

	Module rulers
	Module shapes
	Utility functions

	Module tabarray
	Class tabarray
	Functions
	Example

	Module mplutil
	Class AxesCallback
	Class CanvasCallback
	Class TimeCallback
	Class VariableColormap
	Key press filter
	GIPSY keyword event connection
	Matplotlib backends work-arounds

	Module kmpfit
	Introduction
	Class Fitter
	Function simplefit

	Module profiles
	Function
	Reference

	SciPy modules

	III Tutorials
	Tutorial wcs module
	Introduction
	Coordinate representations
	NumPy arrays and matrices
	Attributes
	Invalid coordinates
	Reading data from a FITS file
	Celestial transformations with wcs
	Spectral transformations
	References

	Tutorial maputils module
	Introduction
	Maputils basics
	FITS files
	Prompt functions
	Image objects
	Graticules
	Rulers
	Contours
	Colorbar
	Adding pixel coordinate labels
	Adding a beam
	Markers
	Sky polygons
	Combining different plot objects
	External headers and/or data
	Re-projections and image overlays
	Plotting markers from file
	Mosaics of plots
	Interaction with the display
	Glossary

	Least squares fitting with kmpfit
	Introduction
	A Basic example
	Function simplefit()
	Standard errors of best-fit values
	Goodness of fit
	Profile fitting
	Fitting data when both variables have uncertainties
	Confidence- and prediction intervals
	Special topics
	Glossary
	References

	Tutorial tabarray module
	Introduction
	Simple interface functions
	Tabarray objects and methods
	Glossary

	IV Examples
	All sky plots and graticules
	All Sky plots
	All sky plot gallery
	Source code of the service module

	V Background information
	Background information module celestial
	Rotation matrices
	FK4
	FK4 and the elliptic terms of aberration
	Transformations between the reference systems FK4 and FK5
	Radio maps
	Galactic Coordinates
	Supergalactic coordinates
	Ecliptic coordinates
	ICRS, Dynamical J2000 and FK5
	Composing other transformations
	Defaults in relation to FITS
	Glossary
	References

	Background information spectral translations
	Introduction
	Alternate headers for a spectral line example
	Alternative conversions
	Legacy headers
	WCSLIB in a GIPSY task

	Bibliography
	Index

