Ués

January 1978

- TNTERNET Netebook Saectis 2.4 2,|

(

SPECIFICATION OF INTERNETWORK
! TRANSMISSION CONTROL PROGRAM

TCP

Version 3

Vintan G. Cerf

Advanced Research Projects Agency

Jonathan B. Postel

7= Infarmation Sciences Institute

January 1978

information Sciences Institute
University of Southern California
4676 Admirally Way
Marina del Rey, California 90291

(213) 822-1511

INFORHATION SCIEMCES INSTITUTE

UNIVERSITY OF SDUTHERN CALIFORNIA /ﬁ ;/
—

January 1978
TCP-3 Specification
Table Of Contents

TABLE OF CONTENTS

PIBIHER" .6 o cavaia % 5.5 % 50 6 & & S7edse i s ¥ b & & 8 & ieveusceassng pagsil

[

Yolndeoduetlon u e cala o aTe % 6 @ aereneie_ e e W dimiaaleeis e st PARE

2. The TCP Inlerface totha User + o s v o 0 4 v 4 8 o b o o ssia s & uis & ‘page

g

2.1 The TCP as a post office O 0 et et W Ne W B TS VIRV e Fpage

o

22 Sockels and Addressing + & « 4 s s 5 4 5 3 5 8 % s s s o8 s s o w = « « Ppage

q

23Whatisaleller? . & & v & o s ¢« o s 5 5 s+ 5 % = s s s s s n.» = =« |page

2.4 TCP user commands s+ 2 s % = = = [pPOpE

& % ® ¥ F & W% & ¥ 8 & & & & & W ?

28.10pen a0 T R A . + + s s s = = pape B
24.2Send . . . o O T A et e B Bl il T~ "
2.4.3 Receive . . T P o Wy e T 1 P . page 10
274 Close . . . o e T LT e e o A page 11
25 Urgenl - .+ . ¢ o v o noaiene 8 s m e ok a e s e ma s e page 12
2.4.6 Slalus - & = = 4 ® 8 = . . . e = = ® & w ® 8 = = ® ® page 12
E.Q.? Abnr[L] L] L] L] L] - L] L] L] L] L] L] - - L] L L] - L] L] - L L] L] - - page 13
25 TCPloUser messages .+ o« s s = = o s = 3 s 8 3 5 2 . = 2 » +» » » page 13
25.1 T?PE codes " & B W O® ® B 8 8 & @ ® W 8 4 ¥ B ® O T T T | pzge 14
252 Message formal ey s e e b a4 e 8w b g e =+« « .+ pogeld
2.5.3 Evenl Cﬂdﬂs @ 4 & 8 8 B & F 8 4 K & ® 8 # . L poge | §37

E.IHthurlewlprDtucnls B w5 TR R B R el el el YT page 17

FAultroaduchon . i o b SR e e e e LT TR ik e, W page 17
S.2Well known sockels o« « 4 & « o » ¢ & o & & = S papge 17
3.3 Reconnection protocal . « & « & + &« &« o et G W e page 17

Cerf & Postel [Page i]

TCP-3 Specification
Table Of Contenis

Q. TCPDEsIEn + 5 3 7 9 8 & &7 s a a8 0" 3 % 5 % »
4.1 Introduction

4.2 Connection management . . + + « « « « =

4.2.1 Initial sequence number selection . .o
4.2.2 Establishing a connection SR e s =
4,23 Hali-open conneclions « « & & & & & & » & &
4,2.4 Knowing When to Keep Quiet e T T
4.2 5 Closing a connection i ¥ . P e e s
4.2,6 End of Letler Sequence Number Ad;ustments _
4,2,7 The Communication of Urgent Information T

4.2.8 The Possibility of Less than Reliable Communication
4.2.9 TCP Conneclion State Transitions T

4.3 TCP data structures

4.3.1 Internetwork Packet Farmat s A AW B oa
4.3.2 TCP Packe! Format " & @ & B & @ B B ¥ ¥ ¥ B
4.3.3 Transmission Control Block P e e

4.4 Siructure of the TCP P T
4.4.1 Introductlion £ & & A
4.4.2 Input packe! handler .
4.4.3 Reassembler
4.8.4 Packetizer . . :
445 Qultput packel handfer
4.4,6 Retransmitler F o

= ® ®w ¥ @& a
-
-
L] L]
L]
-
L]
* ® ® % @&
@ @ & & ® @&

L I

4.5 Buffer and window allocation

415.1 Iﬂtrﬂduﬂtiﬂn N B TR : : 1 : : : : : : &
45,2 The send side LA B oA m
A53 Thereceive side + & s o o 5 & + 5 s s = & =

Bib“ngraphyIiifl-lllnll'lllil'!!'!'"'i

[Page li]

* & = @

- Ll Ll -

L] - - - - - L] - - L)

L] - - -

L | Ll & & = =@

- - - .
- - - -

L Ll L @ & &

L R

- @ L] L @ & =

January 1978

- " ® & @

L - - Ll

Ll - L L - - - L] - -

4 & @ % @

L " = =

page 21
page 21

page 25
page 25
page 25
page 29
page 32
page 33
page 34
page B9
page 35
page 35

pege b6
page b6
page B9
page 63

page 65
page 65
page &7
page 68
page 70
page 71
page 71

page 71
page 71
page 72
page 72

page 75

Cerf & Postel

January 1978
TCP-3 Specification

Preface

PREFACE

This document describes the functions to be perforred by the internetwork Transmission
Control Program (TCP) and its interface lo programs or users thal require ils services. There
have been three pravious TCP specifications: The first [CD574] defined version 1 of TCP. A
secand [PGR76a)] was written for the Defense Communications Agency in connection with its
AUTODIN Il project. The third [Cerf 77] defined version 2, for use in the ARPA internetwork
research projects. :

The AUTODIN Il version differed from the eriginal version in the following ways:

Specificetion of a resynchronization mechanism was included, and fields for securily and
priority, which were known requirements of AUTOOIN I, were added.

The internet version 2 dilfered from the eriginal version in the following ways:

A different resynchronization procedure was introduced; an "option" field was defined for
the TCP header to accommodate not only security and priority but other special features
concerned with, for example, packet speech services, dizznostic timestamping, and so on.

This version eliminated all error messages but for RESET and thus simplified the header
format. There are still many local errors which can be reporied to the user, bul none of
these need cross the network(s) belween TCPs.

Connection closing was slightly more elaborate in Version 2 than in version 1 because the
FIN signals had to be acknowledged. Furthermore, the INT and FIN facilities no longer
caused flushing of the data stream. (A separate "flush" facility was tested, but eliminated,
in the end.) Dealing with flow-conirol windows that have gone to zero was a new fealure of
version 2, end, finally, the reassembly of fragmenis into segments was more carefully

specified.

In version 3 specified in this document, TCP has further evolved., The primary changes from
varsion 2 are:

The resynchronization mechanismhas been eliminated in faver of a quiel period on
initialization of the TCP.

Buffer management and Ictters are more tightly coupled by the coupling of 1the end of letter
flag to a receive bulfer size.

The interrupt signal has been eliminated in favor of an urgent pointer.

A turther separation of the internet and TCP specific information in the packet format has
been achieved, with provision for variable length addresses in the internet header.

Cerf & Postel ' [Page iii]

January 1978
TCP-3 Specification

Proface

The evolution from TCP version 2 to version 3 was influenced by many people, but special
mention should be made of the work at MIT's Laboratory for Computer Science on the Data
Stream Proltocol (DSP) by Dave Clark and Dave Reed. Many of the specific changes introduced
in version 3 were first deseribed by Ray Tomlinson of BBN [Tomlinson77]

Although the list of participants in the TCP work is very long (see [CEHKKS77] - the final TCP
project report), special acknowledgements are due to R. Kahn, R. Tomlinson, Y. Dalal, R. Karp
and C., Sunshine for their active participation in the design of TCP.

This edition of the specificatlion benefited from the commenis of the following reviewers:
Michael Padlipsky, Carl Sunshine, John Day, Gary Grossman, and Ray Tomlinson,

[Page iv] Cerf & Poslel

——

January 1978

Transmission Control Protocol

Version 3

1. INTRODUCTION

The Transmission Control Protocol (TCP) is intended for use as a highly reliable host-to-host
protocol between hosts in packel-swilched computer communication networks, and especially in
interconnected systems of such networks. This section introduces some of the terminology
used in the remainder of the document end soma of the assumplions made in the design of the
protocol.

Saeveral besic essumptions are made about process to process communication and these are
listed here without further justification. The interested reader is referred to [CK74,
Tomlinson74, Belsnes74, Dalal74, Dalal75, Sunshine76a, CEHKKS77] for further discussion.
HOSTs are computers ettached to a network, and from the communication network’s point of
view are the sources and destinations of messages. PROCESSES are viewed as the active
elements of all host computers In 8 network (in accordance with the fairly common definition of
a process as a program in execution). Even terminals and files or other /O media ere viewed
as communicating through the use of protesses. Thus, sl network communication is viewed as
Inter-process communication.

Since a process may need lo distinguish among several communication streams between itself
and another process [or processes], we Imagine that each process may have a number of
FORTs through which it communicates with the porls of other processes.

Since port names are selected independently by each operating system, TCP, or user, they may
not be unique. To provide for unique names at each TCP, we concatenate an internet ADDRESS
specific to the TCP level with a port name lo create 8 SOCKET name which will be unigque
throughout eall networks connected togethar.

For example:
Network = ARPANET (number 12),
Host = ISI-TENEXA (imp 22, host 1),
Port = FTP-Server (port 3);

or
PBBP1010-PE01B11B-00BEEE23BEEERE8]
alssleelelsslelele e felalalelatala e fals bl sl s R A

Cerf & Postel ' [Page 1]

January 1978

TCP-3 Specification
Introduction

A pair of socksts form a CONNECTION which can be used to carry dats in either direction (i.s.
“full duplex"). The connection is uniquely identified by lhe <local socket, foreign sockst>
address palr, and the same local sockel name can participate in multiple connections to
different foreign sockels {see section 2.2).

Processes exchange finite length LETTERS as a way of communicating; thus, letter boundaries
might be significant In some process-lo-process communications, However, the length of a
letter may be such that it must bs broken into SEGMENTS before It can be transmitted to Its
destination. We assume that the segments will normally be reassembled Into a lelter before
being passed to the receiving process. A segment may contain all or a part of a letter, but that
a segment never contains parts of more than ona letter.

Furthermore, there is no restriction on the length of a letter. A connection might be formed to
send a single long letter (a stream of byles, In effect). In fact, processes can communicate via
TCP without ever marking the end of a letter, but we think this is atypical of most enticipated
usa. '

There Is, however, a coupling between letters as transmitled and the use of buffers of data that
cross the TCP/user interface. Each time an end of letter (EOL) signal is associated with data
placed into the receiving user’s buffer, the buffer is returned to the user for processing even if
the buffer Is not filled.

We specifically assume that segmenls are transmitted from Host to Host through means of a
PACKET SWITCHING NETWORK (PSN) [RW70, Pouzin73]. This assumption is probably
: Unnecessary, since a circuit switched network; or a hybrid combination of the two, could also
be used, but for concreteness, we explicitly assume that the hosts are connected to one or
mora PACKET SWITCHES [PS] of a PSN [HKOCW70, Pouzin74, SW711

Processes make use of the TCP by handing it letters {or buffers filled with parts of a letter).
The TCP breaks these inlo segments, if necessary, and then embeds each segment in an
INTERNETWORK PACKET. Each internetwork packet is in turn embedded In 2 LOCAL PACKET
suitable for transmission from the host to one of its serving PSs. The packet switches may
perform further formatting, fragmentation, or olher operations to achieve the delivery of the
local packat to the destination Host. a

The term LOCAL PACKET is used generically here to mean the formatted bit string exchanged
between & host and a packel swilch. The formal of bit strings exchanged between the packet
switches in a PSN will generally not be of concern to us. If an internelwork packet is destined
for a TCP in a foreign P5SN, the packet is routed to a gatleway which connects the originating
PSN with an intermediate PSN or with the destination PSN. Routing of internetwork packets to
the gateway may be the responsibility of the source TCP or the local PSN, depending upon the

PSN services available.

One model of TCP operation Is to imagine that there is a basic gateway associated with each

[Page 2] Cerf & Postel

January 1978
TCP-3 Specificalion

Introduction

the gateway may be the responsibility of the source TCP or the local PSN, depending upon the
PSMN services available.

One model of TCP operation is to imagine that there is a basic galeway associated with each
TCP which provides an interface to the local network. This basic galeway performs routing end
packet reformatting or embedding, and may also implement congestion and error control
between the TCP and galeways al or intermediate to the destination TCP.

Al a galewey belween nelworks, the internetwork packet is "unwrapped” from its local packet
format and examined to determine through which network the internetwork packet should
travel next. The internetwork packet is then "wrapped” in a local packet format suitable to the
next network and passed on to-a new packet switch.

A gateway Is permitted to break up a segment carried by an inlernetwork packet into smaller
FRAGMENTS if this Is necessary for transmission throvgh the next network. To do this, the
gateway produces & sel of inlernetwork packels, each carrying a fragment. Fragments may be
broken into smaller ones at intermediate gateways. The packet format is designed so that the
destination TCP can reassemble fragments into segmenis and verify the end-to-end checksum
associated with the segment. Segments, of course, can be reassembled into letters.

Note that the design of fragmentalion procedures is still an active area and this function
may in the future be removed from TCP's concerns and become enlirely a

galeway-lo-gateway lssue.

The TCP is responsible for regulating the flow of internetwork packets to and from the
processes it serves, as a way of preventing its host from becoming saturated or overloaded
with traffic. The TCP is also responsible for retransmitling unacknowledged packets, end for
detecting duplicates. A consequence of this error detection/retransmission scheme is that the
order of letlers received on a given connection can also be maintained [CK74,Sunshine75].
To perform these functions, the TCP opens and closes connections between porls s described
in section 4.2,

Ceri & Postel [Page 3]

January 1978

TCP-3 Specificalion
The TCP Inlerface To Tha User

[Page 4] Cerf & Postel

January 1978
TCP-3 Specification
The TCP Inlerfsce To The Usar

2. THE TCP INTERFACE TO THE USER

The funclional descriplion of user commands to the TCP is, st best, fictional, since every
operating system will have different facilities. Consequently, we must warn readers that various
TCP implementations may have different user interfaces. These will all be TCP's, as long as
control messages are properly inlerpreled or emitted, as required. In spite of this caveat, it
appears useful lo have al leasl one concrete view of a user inlerface to aid In thinking about
TCP-derived services.

2.1 The TCP as a Post Office

The TCP acts in many ways like a postal service since it provides a way for processes to
exchange letters with each olher. It sometimes happens thal 2 process may offer soms
service, bul not know in advance whal its correspondents’ addresses are. The analogy can
be drawn with a mail order house which opens a post office box which can accept mail from
any source., Unlike the post box, however, once a letter from e particular correspondent
arrives, the resulting connection becomes specific to the correspondents until the
correspondents declare otherwise--thus making the TCP more like a telephone service.
Without this particularization, the TCP could rot perform its flow conirol, sequencing,
duplicate detection, end-to-end acknowledgement, and error control services.

2.2 Sockets and Addressing

We have borrowed the term SOCKET from the ARPANET ferminology [CCC70, DCA76). In
general, a sockat is the concatenation of. an internetwork ADDRESS and a PORT identifier.
A CONNECTION Is fully specified by the pair of SOCKETS at each end since the same local
socket name may participate in many connections to different foreign sockets.

Once the conneclion is specified in the OPEN command (see section 2.4.2), the TCP
supplies a (short) local connection name by which the user refers to the connection in
.subsequent commands, As will be seen, this facilitates using conneclions with Initially
unspecified foreign sochets,

TCP's are free to associate ports with- processes however they choose. However, several
basic concepts seem necessary in any implementation. There must be well known sockels
which the TCP associatles only with the “"appropriale" processes by some means. We
envision that processes may "own" sockets, and that processes can only initiate
conneclions on the sockets they own. (Means for implementing ownership is a local issue,
but we envision a Request Port user command, or a method of uniquely allocating a group
of ports to a given process, e.g. by associating the high order bits of a port ‘name with a

given process.)

Once iniliated, a connection may be passed to another process that does not own the local
socket (e.g. from "logger" to service process). Strictly spesaking this is a reconnection issue

Cerf & Postel [Page 5]

January 1978

TCP-3 Specification
The TCP Interfece To The User

which might be more eiegantly handled by a general reconnection protocel as discussed in
section 3.3. To simplify passing a connection within a single TCP, however, such “invisible"
switches may be allowed, as in TENEX systems.

Of course, each conneclion Is assoclated with exactly one process, and any atlempt to
reference that conneclion by another process should be treated as an error by the TCP.
This prevenlts another process from stealing data from or inserting data into another
process’ dala stream, and also prevents masquerading, spoofing, or other forms of .
malicious mischief (given a correct impiementation of TCP in a protective operating sysiem

environment),

A connection is "initialed” by the rendezvous of an arriving internetwork packel and a
waiting Transmission Cantrol Block (TCB) created by a user OPEM, SEND, URGENT, or
RECEIVE command (see section 2.4). The matching of local and foreign sockel identifiers
determines when a2 successful conneclion has been initiated. The connection becomes
"established" when seguence numbers have been synchronized in both directions as

described in section 4.2.2.

It is possible lo specify a socket only partially by setting the PORT identifier to zero or
setting both the TCP and PORT identifiers to zero. A socket of all zero is called
UNSPECIFIED. The purpose behind unspecified sockets is to provide a sort of "general
delivery” facility {useful for processes offering services on "well known" sockets]).

There are bounds on the degree of unspecificity of socket identifiers. TCB's must have fully
- specified local sockets, although the foreign socket may be fully or partly unspecified.

Arriving packets must have fully speciflied sockets.
We employ the following notation:
¥.y.z = fully specified socket with x=net, y=TCP, z=port
®.¥.U = as above, but unspecified port
x.u.u = as above, but unspecified TCP and porl
vy = complelely unspecified
with respect to implemenlation, u = 0 [zero]

We illustrate the principles of maltching by giving all cases of incoming packets which match
with existing TCB's. Generally, bolh the local socket field of the TCB and the destination
sockel field of the arriving packet musl malch, and the foreign field of the TCB and the

source socket field of the arriving packet must match.

[Page 6] Cerf & Postel

et

January 1978
TCP-3 Specification
The TCP Interface To The User

TCB-local TCB-foreign Packet-source Pacxet-destination

(a) a.b.c e.f.g e.f.g a.b.c
(b} a.b.c e.f.u e.f.g a.b.c
{c) a.b.c E.U.U e.f.g a.b.c
{ﬂ] a.b.c Uelds E|f|g a.b.c

There are no other legal combinations of socket identifiers which mateh. Case (d} is typical
of the ARPANET well known sockel idea in which the well known socket (ab.c) LISTENS for
a connection from any (u.u.u) socket. Cases (b) and (¢} can be used to restrict malching to
a particular TCP or net. More elaborate masking fzcilities could be implemented without
adverse effects, so this malching facility could be considered the minimum acceptable for
TCP operation.

2.3 What is a Leller?

A letler is a sequence of one or more successive octets (8-bit bytes) on a TCP connection.
The beginning of a letter is marked by a BOL control flag in a packel. The end of a lefter is
marked by the appearance of an EOL control flag in a peckel. A lelter is the minimum unit
of information which must be passed from a receiving TCP lo a receiving process. A TCP
may pass less information to the receiving program, or it may pass more, but when a TCP
has a complete lelter it must not wait for more data from the remole process before
passing the letter to the receiving process if the receiving process is ready fo accept it.

Generally, the locations of letter boundaries are not passed to the receiving program. The
exceplion Is for non-reliable transmission (see section 4.2.8). In this case, when a seclion
of data Is missing, the data which follows must either begin on a letter boundary or contain
an Indication that the data does not begin on a letter boundary.

The sequence number of the first octel of data in any letters on a given connection is always
equal to zero, modulo the receive buffer size. That is, whenever an EOL is transmittied, the
sender advances his send sequence number by an amouni (in the range O to buffersize-1)
sufficient to consume all the unused space in the receiver’s buffer. The amount of space
consumed in this fashion is accounted for In the flow control mechanism in the same way as
space js consumend by real dala (see section 45) The size of the receive buffer is
communicaled between the TCPs in the conneclion establishing exchange.

The EGOL Interpretation permits the receiving TCP to discard letler boundary information.
Higher level protocols are required to provide their own mechanism for parsing the data
stream and cannot depend on the EOL mechanism. ECL also has the properly that it
consumes all the unused space in a buffer (as specified in the buffer size option).

Cerf & Postel [Page 7]

January 1978

TCP-3 Specification
Tha TCP Inlerface To The User

2.4 TCP User Commands

The following seclions functionally characterize a USER/TCP interface. The notation used Is
similar fo most procedure or function calls in high level languages, but this usage is not
meant to rule out trap type service calls [e.g. SVC's, UUQ’s, EMT"s,...).

The user commands described below specify the basic functions the TCP will perform to
support interprocess communication. Individual implementations should define their own
exact format, and may provide combinations or subsets of the basic functions in single calls.
In particular, some implementations may wish to automalically OPEN a connection on the
first SEND, RECEIVE, or URGENT issued by the user for a given connection.

In providing interprocess communicalion facilities, the TCP musl not only accept commands,
but must also return information to the processes it serves. The latter consists of:

(a) general information about a connection [eg., interrupls, remote close, binding of
unspecified foreign socket]

(b) replies to specific user commands indicating succcess or various types of failure.

Although the means for signalling user processes and the exact format of replies will vary
from one implementation to another, it would promote common understanding and testing if
a common set of codes were adopted. Such a set of event codes is described in section 25.

-2.4.1 Open
Formalt: OPEN (local port, foreign socket [, buffer size] [, timeout])

We assume lhat the local TCP is aware of the identity of the processes it serves and will
check the authority of the process to use the conneclion specified. Depending upon the
implementation of the TCP, the source network and TCP identifiers will either be supplied
by the TCP or by the processes that serve it [e.g. the program which interfaces the TCP
to its packet switch or the packet switch itself]. These considerations are the result of
concern about security, to the extent that no TCP be able to masquerade as another one,
and so on. Similarly, no process can masqguerade as another without the collusion of the
TCP.

If no foreign socket is specified (i.e. the foreign socket parameter Is 0), then this
constititutes a LISTENING local socket which can accept communication from any foreign
sockel. Provision Is also made for parlial specification of foreign sockets as described in
section 2.2,

If the specified connection is already OPEN, an error is returned, otherwise a full-duplex
transmission control block (TCB) Is created and partially filled in with data from the

[Page 8] Cerf & Postel

January 1978
TCP-3 Specificalion
The TCP Intarface To Tha User

OFEN command parameters. The TCB format iz deseribed in more delail in section
4.3.2,

No network traffic need be generated by the OPEN command. The first SEND or
URGENT by the local user or the foreign user will typically cause the TCP {o synchronize
(i.e. establish) the connection, although synchronization could be immedialely initiated on
non-listening opens.

The buffer size, if present, indicates that the caller will always receive data from the
connection in that size of buffers.

The timeout, if present, -permils the caller to set up a timeout for all buffers transmitted
on the conneclion. If a buffer is nol successfully delivered lo the deslination within the
timeout period, the TCP will abort the conneclion. The present global default is 30
seconds. The buffer retransmission rate may vary, and is the responsibility of the TCP
and nol the user. Most likely, it will be related to the measured time for responses from
the remota TCP,

Depending on the TCP implementation, either a local connection name will be returned to
the user by the TCP, or the user will specify lnis local connection name (in which case
another parameter is needed in the call). The loczl connection name can then be used as
a short hand term for the connection defined by the <local sockel, foreign socket> pair.

Responses from the TCP which may occur as a result of this call are detailed in sections

25 and 4.2.9.
2.4.2 Send
Format: SEND(local connection name, buffer address, byte count, EOL flag [, timeoul])

This call causes the data contained in the indicated user buffer to be sent on the
indicaled conneclion. If the connection has not bean opened, the SEND is considered an
error. Some implementations may allow users to SEND first, in which case an automatic
OPEN would be done. If the calling process is not authorized to use this connection, an
error is refurned.

If the EOL flag is set, the data is the End Of 2 Leiter, and the EOL bit will be set in the
last internetwork packet created from the buffer (see section 4.3.2 - TCP packel format).
If the EOL flag is nol set, subsequent SENDs will appear o be part of the same letler.

If no foreign socket was specified in the OPEN, but the connection is established (e.g.
because a LISTENing conneclion has become specific due to a foreign packet arriving for
the local socket]) lhen the designated buffer is sent to the implied foreign socket. In

Cerf & Postel [Page 9]

January 1978

TCP-3 Specification
The TCP Interface To The Usar

general, usars who make use of OPEN wilh an unspecified foreign socket can make use
of SEND wilhout ever explicitly knowing the foreign socket address.

However, If @ SEND is attempled before the foreign socket becomes specified, an error
will be returned. Users can use the STATUS call to delermine the status of the
connection. In some implementations the TCP may notity the user when an unspacified
socket is bound.

If a timeoul is specified, then the current timeout for this connecltion is changed to the
hew one,

In the simplest implementation, SEND would not return control to the sending process
until either the transmission was ecomplete or the timeout had been excesded. However,
this simple method is both highly subject to deadlocks (for example, both sides of the
connection might try to do SENDs before deing any RECEIVEs) and offers poor
performance, so it is nol recommended. A more sophisticated implementation would
return Immediately fo allow the process to run concurrently with network 1/0, and,
furthermore, to allow multiple SENDs lo -be in progress. Multiple SENDs are served in
first come, first served order, so the TCP will queue those it cannot service immediately.

Responses from the TCP which may occur as & resull of this call are detailed in sections
25 and 4,29,

We have implicitly assumed an asynchronous user interface in which a SEND later elicits
some kind of SIGNAL or pseudo-interrupt from the serving TCP. An alternative is to
relurn a response immediately. For instance, SENDs might return Immediate local
acknowledgment, even if the packet sent had not been acknowledged by the distant TCP.
We could optimistically assume eventual success. If we are wrong, the connection will
close, anyway, due to the timeoul. In implementations of this kind (synchronous), there
will still be some asynchronous signals, but these will deal with the connection itself, and
nol with specific packels or letiers.

NOTA BENE: In order for the process to distinguish among error or success indicalions
for different SENDs, it might be appropriate for the buffer address to be returned along
with the coded response to the SEND request. We will offer an example event code
format In section 2.5, showing the information which should be returned to the calling

process.

[Page 10] Cerf & Postel

January 1978
TCP-3 Specification
The TCP Interface To The User

2.4.3 Receive
Format: RECEIVE (local conneclion name, buffer address, byte count)

This command allocales a receiving buffer associzted with the specified connection. If no
OPEN precedes this command or the calling process is nol authorized to use this
conneclion, an error is returned.

In the simplest implementation, control would not return to the calling program until
either the buffer was filled, or some error occured, butl this scheme is highly subject to
deadlocks (see section 2.4.2). A more sophisticaied implementation would permit
several RECEIVEs to be oulstanding at once. These would be filled as letlers, segments
or fragments arrive. This strategy permits increased throughpul, at the cost of a more
elaborate schema (possibly asynchronous) to notify the calling program that a letier has
been received or a buffer filled.

If insufficient buffer space is given to reassemble a cemplete letter, the EOL fleg will not
be sel In the response to the RECEIVE. The buffer will be filled with as much data as it

can hold {see section 2.5.2).

The remaining parts of a partly delivered letter will be placed in buffers es they are made
available via successive RECEIVES. If a number of RECEIVES are oulstanding, they may
be filled with parts of a single long letter or with 2 most one letter each. The event codes
associaled with each RECEIVE will indicate what is coatained in the buffer.

If & buffer size was given in the OPEN call, then all buffers presented in RECEIVE calls
must be of exaclly that size, or an error indication will b= returned,

To distinguish among several outstanding RECEIVES, and to take care of the case that a
letter is smaller than the buffer supplied, the event code Is accompanied by both a buffer
pointer and a byle count indicating the actual length of the letter received.

Responses from the TCP which may ocecur as a result of this command are detailed in
seclions 2.5 and 4.2,9, 1

Alternative implementations of RECEIVE might have ths TCP allocale buffer storage, or
the TCP mighl share a ring buffer with the user. Variations of this kind will produce
obvious variation in user interface to the TCP.

Cerf & Postel [Page 11]

January 1978

TCP-3 Specification
The TCP Interface To The User

2.40.4 Close
Format: CLOSE({local connection name)

This command causes lhe connection specified to be closed, If the connection s not open
or the calling process is not authorized to use this connection, an error Is returned.
Clesing connections is intended to be a graceful operation in the sense that outstanding
SENDs will be lransmitled (and retransmitted), as flow control permils, until all have
been serviced. Thus, it should be acceplable lo make several SEND calls, followed by a
CLOSE, and expect all the data to be sent lo the destination. It should also be clear that
users should continue to RECEIVE on CLOSING connections, since the other side may be
trying to transmit the last of its data. Thus, CLOSE means "I have no more to send” but
does not mean "l will not receive any more. It may happen (if the user level protocol is
not well thought out) that the closing side is unable to get rid of all its data before timing
out. In this event, CLOSE turns inte ABORT, and the closing TCP gives up.

The user may CLOSE the connection at any time on his own initiative, or In response to
various prompts from the TCP (eg., remote close executed, Iransmission timeout
exceeded, deslination inaccessible]).

Because closing @ connection requires communication with the foreign TCP, connections
may remain in the closing stale for a short time. Atlempls to reopen the connection
before the TCP replies to the CLOSE command will result in error responses.

Responses from the TGP whi:h.méy occur as a result of this call are detailed in sections
2.5 and 4.2.9.

2.45 Urgent
Format: URGENT{local connection name)

Special control information is sent to the destinalion indicating that urgent processing is
appropriate. This facility can be used to simulate "break" signals from terminals or
error or completion codes from 1/0 ‘devices, for example. The semantics of this signal to
the receiving process are unspecified. The receiving TCP will signal the urgent condition
to the receiving process as long as the urgent pointer indicates data preceding the urgent
pointer has not been consumed by the receiving process.

It the connection is nol open or the calling process is nol authorized to uwse this
conneclion, an error iz returned.

Responses from the TCP which may occur as a result of this call are detailed in sections
25 and 4.2.9,

[Page 12] Cerf & Postel

i

January 1978
TCP-3 Specification
Thae TCP Interface To The User

2.4.6 Status
Format: STATUS{local connection name)

This Is an implementation dependent user command and could be excluded without
adverse effect. Information returned would typically come from the TCB (see section
4.3.3) associated with the connection.

This command returns a data block containing the following information:

local socket, foreign socket, local connection name, receive window, send window,
connection state, number of buffers awaiting acknowledgemeni, number of buffers
pending receipt (including parlial ones), receive buffer size, urgent state, and default
transmission timeout.

Depending on the state of the conneclion, on or the implementation itself, some of this
information may not be available or meaningful. If the calling process is nol authorized to
use this conneclion, an error is returned. This prevents unauthorized processes from
gaining Information aboul a connection.

Responses from the TCP which may occur as a result of this call are detailed in sections
25 and 4,2.9,

2.4.7 Abort
Format: ABORT (local conneclion name)

This command causes all pending SENDs, URGENTs, and RECEIVES to be aborted, the
TCB to be removed, and a special RESET message lo be sent to the TCP on the other
side of the connection. Depending on the implementation, users may receive abort
indications for each outslanding SEND, RECEIVE, or URGENT, or may simply receive an
ABORT-acknowledgment. The mechanism of resetling a conpection is discussed in
sections 4.2.3 and 4.2.9.

Responses from the TCP which ﬁay oceur as a result of this call are detailed in sections
25 and 4.2.9.

Cerf & Postel [Page 13]

TCP-3 Specificalion

The TCP Interfaca To The User

25 TCP-to-User Messages

25.1 Type Codes

January 1978

All messeges include a type code which identifies the lype of user call to which the
message applies. Types are:

B - General
1 - Applies
2 - Applies
3 - Applies
4 -~ Applies
18 - Applies
28 - Applies
38 - Applies

message, spontaneously sent to user
to OFEN

to CLOSE

1o URGENT

to ABORT

to SEND

ta RECEIVE

to STATUS

25.2 Message Formals

All messages include the following three fields:

Type code

Local connection name

Even! code

For message types 0-4 (General, Open, Close, Urgent, Abort) only these three fields are

necessary.

For message type 10 (Send) one additional field is necessary:

Buffer address

For message type 20 (Receive) three additional fields are necessary:

Buffer address

Byte count (counts byles received)
End-of-Letter flag .

[Page 14]

Cerf & Postel

January 1978
TCP-3 Specification
The TCF Intarface To The User

For message type 30 (Status) addilional data might i~clude:

Local sockel, foreign socket

Send window (measures buffer space al foreign TCP)
Receive window (mcasures buffer space at local TCP)
Connection state {see seclion 4.2.9)

Number of buffers awaiting acknowledgement
Number of buffers awaiting receiplt

Receive buffer size

Urgent Stale (urgent or not urgent)

User timeout

Once more, it is important to note that these formats are nolional. Implementations
which deal with buflfering in different ways may or may nol need to include buffer
addresses in some responses, for example.

25.3 Evenl Codes

The event code specifies the particular event that the TCP wishes to communicate to the
user, Generally speaking, non-zero event codes indicate important state changes or

errors,

In addition to the event code, lwo flags may be useful to classify the event into major
categories and facilitate event processing by the user:

E flag: sel if event is an error
P flag: sel if permanent error (otherwise, retry may succeed)

Events are encoded in 8 bils, the two high order bits being reserved for E and P flags,
respeclively.

Cerf & Postel ' [Page 15]

January 1978

TCP~-3 Specificalion
Tha TCP Interface To The User

Evenls specified so far are listed below with their codes and flag settings.

flags code meaning
4} general success
E,P 1 connection illegal for this process
pd unspecified foreign socket has
become bound
E,P 3 connection not OPEN
4 insufficient resources
E 5 foreign socket not specified
E,P B connection already OPEN
E 7 buffer size not acceptible
8 unused
E,P 9 user timeout, connection aborted
18 unused
11 user urgent indication received
P 12 connection closing
E 13 general error
P 14 connection reset

Possible responses to each of the user commands are listed below. Secltion 4.2.9 offers
substantially more delail.

Tupe B lgenerall: 2 2 2 0 Lyl
Tupe 1 [openl: 8,1, A4, B, 13
Tupe 2 Iclosel: 2,1, 3 a, 13,14
Type 3 [urgentl: 8,1, 3,4,5, g, 12,13, 14
Type 4 [Abortl: ' o R 13
Type 18 [send]: 8,1, 3,4,5 s | 12,13,14
Tupe 28 [receivel: B,1, 3.4, Tomnd, 12,13,14
Tupe 38 [statusl: 8,1, 3, 13

[Page 16] Cerf & Postel

January 1978
TCP-3 Specification
Higher Level Protocols

3. HIGHER LEVEL PROTOCOLS

3.1 Introduction

It is expected that the TCP will be able to support higher level prolocols efficiently. It should
be easy to interface existing ARPANET protocols lixe TELNET [DCA768] and FTP [DCAYE]
to the TCP. Support of Network Voice Protocol, and broadcast protocols, for example, has
been left to version 4 TCP.

3.2 Well Known Sockels

Well known sockels are a convenient mechanism for 2 priori associaling a socket name with
a standard service. For instance, the "telnel-server" process might be permanently assigned
te a parlicular sockel, and other sockets might be reserved for File Transfer, Remote Job
Entry, text generator, reflector, and sink (the three being for test purposes). A socket name
might be reserved for access fo a "look-up" service which would return the specific socket
at which a newly created service would be provided. :

For compatibility wilh ARPANET socket naming convenlions, we refer to the list of assigned
sockels in RFC 739 [Postel77]. -

TCP implementors should note, however, that the gender and directionality of NCP socketls
do nol apply to TGP sockets, so that even numbered as well as odd ones can serve es well
known sockets.

3.3 He;:unnecii'nn .Prntucu'l' :

Port Identifiers fall into two categories: permanent and tramsient. For example, a
Telnel-server process is generally assigned a port identifier that is fixed and well known.
Transien!t processes will in general have porl identifier’s which are dynamically assigned.

In a distributed processing environment, two processes that don't have well known port
Identifiers may often wish to communicate. This can be achieved with the help of a well
known process using a reconneclion protocol. Such a protoeol is briefly outlined using the
communication facilities provided by the TCP. It essentially provides a mechanism by which
port identifiers are exchanged in order to establish a connection between a pair of sockets.

Such a protocol can be used to achieve the dynamic establishment of new connections in
order to have mulliple processes solving a problem co-operatively, or lo provide a user
process access lo a server-application process via a server-exec process, when the
server-exec’s end of the connecltion can not be invisibly passed lo the server-application
process,

A paper on this subject by R. Schantz [Schanlz74] discusses some of the issues

Cerf & Postel [Page 17]

January 1978

TCP-3 Specification
Higher Laval Prolocols

associaled with reconnection, and some of the ideas contained therein went inlo the design
of the protocol outlined below.

In the ARPANET, a protocol (calied the Initial Connection Protocol [Postel72]) was
implemented which would allow a process to connect to a well known socket, thus making
an Implicit request for service, and then be switchod to another socket so thal the well
known socket could be freed for use by others. Since sockets in our TCP are permitted to
participate in more than one connection name, this facility may mot be explicitly needed (ie.
connections <A,B> and <A,C> are distinguishable).

However, the well known socket may be In one network and the actual service socket(s) may
be in anolher netweork {or al least in another TCP) Thus, the invisible swilching of a
connection from one port to another within a TCP may not be sufficient as an “initial
Connection Protocol”, Lel N¢ be a network identifier, and Tx be a TCP identifier. We
imagina that a process wishes to use socket NLT1.Q to access well known socket N2.T2.P.
However, the process associaled with sockel N2.T2P will actually start up a new process
somewhere which will use N3.T3.5 as its server socket. The N{i) and T(i} may be distinct or
the same. The user will send to N2.T2.P the relevant user information such as user nams,
password, and account, This intermediate server will starl up the actual server process and
send to NLTLQ the actual service socket identifiers N3T3S. The connection
(N1.T1.QN2T2P) can then be closed, and the wuser can do a RECEWVE on
{NL.TL.QN3.T3.5). The serving process can SEND on (M3T3.SNLT1.Q) There are many
variations on this scheme, some invelving lhe user process doing a RECEIVE on a differant
socket (e.g. (N1.TLX,U.U.UY with the server doing SEND on (N3.T3.5,N1.T1.X).

[Page 1E] Cerf & Postel

January 1978
TCP-3 Specification
Highar Level Prolocols

Without showing all the detail of synchronization of sequence numbers and the like, we can
lustrate the exchange as shown below.

USER SERYER
1.RECEIVE (N2,T2.P,U.U.U}
1. SEND(N1.T1.0,N2.72.P)==>
<== 2, SEND{2.T2.P,N1.T1.Q0
with "N3.73.5" as data
2. RECEIYE(N1.T1.0,N2.72.P)
3. CLOSE(NL.T1.Q,N2.T72,P) e=>
<== 3, CLOSE(NZ2,T2,P,N1.T71.0)
4. RECEIYE(N1.T1.Q,N3.73.5)
<== 4, SEND{N3.T3.5,Nl.T1.Q)
Reconnection Protocol Example
Figure 3.3-1

At this point, a conneclion is open belween N1.T1.0 and N3.T3.5. A variation might be to
have the user do an extra RECEIVE on (NLT1XUUU) and have the data "NLTL1X" be
sent in the first user SEND. Then, the server can start up the real serving process and do a
SEND on (N3.T3.5NL.T1.X) without having to send the "N3.73.5" data to the user. Or
perhaps both server and receiver exchange this data, to assure security of the uvitimate
connection (le. some wild process might try to comnect to NLTLX if it is merely
RECEIVING on foreign sockel LLULL).

We do not propose any specific recénnection protocol here, butl leave this to further
deliberation, since it is really a user level protocol issue.

Further work on reconnection Is in progress and version 4 of TCP may include provisions for
reconnection via TCP control exchanges.

Cerf & Postel [Page 19]

January 13978

TCP-3 Specificalion
TCP Design

EPHE.’E 20] Cerf & Postel

oy

January 1978
TCP-3 Specitication
TCP Design

4. TCP DESIGN

4.1 Introduction

The TCP Is designed to offer highly reliable, sequanced, and flow-controlled interprocess

. communication across network boundaries. A fundamental notion in the design is that every
octet (B bit byte) of data in an Internetwork packet has a sequence number. Since every
octet is sequenced, each of them can be acknowledged individually or collectively. In
particular, the acknowledgment mechanism emrployed is cumulative so that an
acknowledgment of sequence number X indicates that all oclets up to but not including X
have been received. This mechanism allows for straight-forward duplicale detection in the
presence of retransmission.

This also permits galeways to fragment packels as needed to gel them scross nelworks
with short packet sizes. There is current discussion of how and where fragmentation
should be done, and it may ba that in version 4 TCP fragmentation is removed with the
view thal it is an Internet function not specific to TCR.

It is essential to remember that the actual sequence number space is finite, though very
large. In the current design, this space ranges from O to 2+#+32 - 1. Since lhe space is
finite, all arithmetic dealing with sequence numbers must be performed modulo 2#¢32, This
unsigned arithmetic preserves the relationship of sequence numbers as they cycle from
2##32 - | to 0 again. The lypical kinds of sequence number comparisons which the TCP
mu_stkperfarm include:

{a) delermining that an ar.lknowladgemsnt refers to some sequence number sent but nol
vet acknowledged.

{b) delermining that all sequence numbers occupied by a packet have been
acknowledged (e.g. o remove the packel from a retransmission queue).

(c) determining that an incoming packet contains sequence numbers which are expected
(i.e. that the packet "overlaps" the receive window).

The TCP typically maintains status information about each connection, es is llustrated in
figure 4.1-1, below.

Cerf & Postel [Page 21]

January 1978

TCP-3 Specification
TCP Dasizn
older sequence numbers newer sequence numbers
‘ a ‘ L | 1] ‘ s | B
TR ! H2 12 Ha T3 '
<----= gEqUEnce Spacg =---->

TCP Stale Information for Sending Sequence Space
Figure 4.1-1

L = oldest, unacknowledged sequence numba-r

S = next sequence number to be sent

A = acknowledgement (next sequence number expected by the acknowledging TCP)

H(i) = first sequence numiber of the i-th packet

T(i) = lasl sequence number of the i-th packet
An acceplable acknowledgement, A, is one for which the inequality below holds:

O<(A-L)<=(S~-L) {4.1-1)
We will often write equation (4.1-1) in the form below:

L<A<=5§ ; {4.1-1%)

Note that all arithmelic is modulo 2##32 and that comparisons are unsigned. "<=" means

"less than or equal.”

Similarly, the determination that a particular packet has been fully acknowledged can be
made if the equation below holds:

0 <(T() -L)y<(A-L) (4.1-2)

[Page 22] Cerf & Postel

e

January 1978
TCP-3 Spetcificalion
TCP Design

In this Instance, H{i) and T{i) are related by the equaticn:
TG = Q) + i) - (4.1-3)

where n{l) = the number of octets occupied by tre data in the packel. It is important to
note that n{i) must be non-zero; packets which dao not occupy any seqguence space (e.p.
empty acknowledgement packets) are never pliced on the retransmission gueus, so
would not go through this particular test.

Finally, e packet is judged to occupy a portion of valid receive sequence space if
0<=(T-N)<(R-N) (4.1-4)

Where T is the last sequence number occupied by the packel, N is the next sequence
number expected on an incoming packet, and R is the right edge of the receive window,
as shown in figure 4.1-2,

older sequence numbers newer seguence numbers
| N R
H1 Tl Hz T2 H3 T3

Receive Sequence State Information
Figure 4.1-2
N = nex! sequence number expected on incoming packets
R = last sequence number expected on incoming packets, plus one
Hii) = first sequence number occupied by the i-th incoming packet

T(i} = last sequence number occupied by the i-th incoming packet

Cerf & Postel [Page 23]

January 1978

TCP-3 Specification
TCP Dasign

R and M In figure 4.1-2 are related by the equation:
ReN+W {4.1-5)
Where W = the receive window size

Note that the acceptance test for a packet, since it requires the end of a packet to lie in the
window, is somewhat more restrictive than is absolutely necessary. |If at least the first
sequence number of the packet lies in the receive window, or if some parl of the packet lies
in the receive window, lhen the packet might be judged acceptable. Thus, In figure 4.1-2, at
least packets 1 (H{1)-T(1)) and 2 (H{2)-T(2)) are acceptable by the sirict rule and packel 3
(H(3)-T(3))} may or may nol be, depending on the strictness of interpretation of the rule.

- Note that when R = N, the receive window is zero and no packels should be scceptable
except ACK packets. Thus, it should be possible for a TCP to mainlain 8 zero receive
window while transmilting dala and receiving ACKs on a non-zero send window.

We have taken advanlagg, of the numbering scheme to protect certain control information as
well. This is achieved by implicitly including some control flags in the sequence space so
they can be retransmiltled and acknowledged without confusion (i.e. one and only one copy
of the control will be acted upon). Control information is not physically carried in the packet
dala space (sec seclion 4.3.2 for typical internet TCP packet formal). Consequently, we
must adopl rules for implicitly assigning sequence numbers lo control. In version 3 these
sequenced controls have been reduced to only the SYN and FIN controls which are used
only at conneclion opening and closing. For sequence number purposes, the SYN Is
considered to occur befaore the first actual data octet of the packet in which it ocecurs, while
the FIN is considered lo occur after the last actual data octet in a packet in which it occurs.

The packel length includes both data and sequence-space-occupying controls.
The main jobs of the TCP are:
a. Connection management (establishing and closing full-duplex connections}
b. "Packelizing" of user letters into segments for internet transmission

c. Reassembly of fragments into segments and segmenls into letters. (Note that the
reassembly of fragmenls into segments may become an internet protocol function and of
no concern to TCP In version 4.)

d. Flow control, sequencing, duplicate detection, and retransmission for each connection.
a. Reacling to user requesls for service

In the sections which follow, we elaborate on the way in which the TCP is designed to carry
out each of these tasks,

[Page 24] ' Cerf & Postel

January 1978
TCP-3 Specification
TCP Design

4.2 Connection Management
4.2.1 Initial Sequence Number Selection

The prolocol places no restriction on a particular conneclion being used over and over
again. New instances of a connection will be referred to as incarnations of the connection.
The problem that arises owing to this is, "how doss the TCP identify duplicate packels
from previous incarnations of the connection?. This problem becomes harmfully
apparent if the conneclion Is being opened and closed in quick succession, or if the
connection breaks wilh loss of memory and is then reestablished.

The essence of the solution [Tomlinson74] is that the initial sequence number [ISN]
must be chosen so that a parlicular sequence number can never refer to an "old" octel.
Once the connection is established the sequencing mechanism provided by the TCP
filters oul duplicales.

For a connection to be established or initialized, the two TCP's must synchronize on each
other’s initial sequence numbers. This is done in an exchange of connection establishing
messages carrying a control bit called "SYN" (for synchronize} and the initial sequence
numbers, as a shorthand messages carrying the SYN bil are also called "SYNs". Hence
the solution réqulres a suilable mechanism for picking an initial sequence number, and a
slightly involved handshake to exchange the ISN's. A "three way handshake” is necessary
because sequence numbers are not tied to a global clock in the network, and TCP’s may
have ditferent mechanisms for picking the I1SN's. Thz receiver of the first SYN has no way
of knowing whether the packel was an old delayed one or nol, unless il remembers the
last sequence number used on the connaction {which is not always possible), and so it
must ask the sender to verify this SYN.

The "three way handshake" and the advantages of & "clock-driven” scheme are
discussed In [Tomlinson74). More on the subject, and algorithms for implementing the
clock-driven scheme can be found in [Dalal74, Dalal75, Ceri76b]

f.2.2 Establishing a conneclion

The “three-way handshake” is essentially a unidirectional atlempt to establish a
conneckion, i.e. lhere is an Initialor and a responder. The TCP can also establish a
connection when a simultaneous initiation occurs. A simullaneous attempt occurs when
one TCP receives a "SYN" packet which carries no acknowledgement alfter having sent a
"SYN" earlier. Of course, the arrival of an old duplicate "SYN" packet can potentially
make it appear, o the recipient, that a simultaneous connection initiation ls In progress.
Proper use of "resel” packels can disambiguate these cases. Several examples of
connection initiation are offered below, using a notation due to Tomlinson. Although
these examples do not show conneclion synchronization using data-carrying packels, this
is parfectly legitimate, so long as the recelving TCP doesn't deliver the data to the user

Cerf & Postel [Page 25]

January 1978

TCP-3 Specification
TCP Dasign

until it is clear the dala is valid (i.e. the data must be buffered at the receiver until the
connection reaches the ESTABLISHED state (see figure 4.2-1)).

CLOSED
CLOSE
Delete TCB
OPEN ClL OSE
Create TCB Delets TCB
v
; OFEN
Hewv SYN _SENO or VIBG
Snd 5YN, ACK nd SYN
_Roy” SYN
5YN Snd ACK SYN
RCYD Lo o SENT
im-; < —Beoy SYN.ACK
__CLOSE | ESTAB Snd ACK
Snd FIN
oD HSES - Boy FIN

\ £ Snd FIN Snd ACK L
FIN CLOSE
WAIT UAIT

Jinv,ﬂ.ll_\ > —/ELEEF_
Snd ACK CLOSING Snd FIN

Bev ACK of FIN _timeout
Delete TCB ABORT

TCP Connection State Diagram

Figure 4.2-1

[Page 26] ' Cerf & Postel

s,

January 1978
TCP-3 Specification
TCP Dasign

The simplest lhree-way handshake is shown in fizure 4.2-2 pelow. The figures should be
interpreted in the following way. Each line is rumbared for relerence purposes. Right
arrows (--») indicate departure of a TCP packe! frem TCP A to TCP B, or arrival of a
packet at B from A. Lefl arrows (<--), indicate the reverse. Ellipsis {..) indicates a packet
which is still in the network {delayed). An "Xx¥" indicates a packet which is lost or
rajected. Comments appear in parentheses, TCP siates are keyed lo those in figure
4.2-1, and represent the state AFTER the departure or arrival of the packet (whose
contents are shown in the center of each line). Packet conlenis are shown In abbreviated
form, with sequence number, control flags, and ACK field, Other fields such as window,
eddresses, lengths, and text have been left out, gensraily, in the interest of clarity.

TCP A TCP B
1. OPEN : OFEN
2. SYN-SENT ~-> <5E0 1BB8><5YN> --> SYN-RECEIVED

3. ESTABLISHED <-- <G5EQ 3B8><SYN><ACK 181> <-- SYN-RECEIYED
4, ESTABLISHED --> <SEQ 181><ACK 381> --> ESTABLISHED
5. ESTABLISHED --> <SE0 181»<ACK 381><0ATA> --> ESTABLISHED
Basic 3-Way Handshake for Connection Synchronization
Figure 4.2-2

In line 2 of figure 4.2-2, TCP A begins by sending a SYN packet indicating that it will use
sequence numbers starling with sequence number 100. In line 3, TCP B sengs a SYN
and acknowledges the SYN it received from TCP A. Note that (per figure 4.1-3), the
acknowledgement ficld indicates TCP B is now expecling to hear sequence 101, implicitly
acknowledging the SYM which ocecupled sequence 100,

At line 4, TCP A responds with an empty packet containing an ACK for TCP B's' SYN, and
in line 5, TCP A sends some dala. Note that the sequence number of the packet In line
5 Is the same as in line 4 because the ACK does not occupy sequence number space (if
it did, we would wind up ACKing ACK's!).

Simullaneous initiation is only slightly more compiax, as is shown in figure 4.2-3. Each
TCP cycles from OPEN to SYN-SENT to SYN-RECEIVZO to ESTABLISHED.

The principle reason for the lhree-way handshakz is to prevent old duplicate connection
initiations from causing confusion. To deal with this, a special control message, RESET,
has been devised. A TCP which receives a RESET message first verifies that the ACK
field of the RESET acknowledges something the TCP senlt (olherwise, the message is

Cerf & Poslel ' [Page 27]

January 1978

TCP-3 Specification
TCP Design

ignored). If the recelving TCP is in a non-synchronized state (l.e. SYN-SENT,
SYN-RECEIVED), it returns to OPEN on receiving an acceplable RESET. |If the TCP is In
one of the synchronized stales (ESTABLISHED, FIN-WAIT, CLOSE-WAIT, CLOSING) it
aborts the connection and informs its user. We discuss this latler case under
"half-epen” connection in section 4.2.3,

TCP A TCP B
1. OPEN OPEN
2. SYN-SENT --> <SEQ 18@><SYN> s

3. SYN-RECEIVED <-- <SEQ 38@><SYN> <-— SYN-SENT
b4, v v+ <SEQ 1B8><SYN> --> SYN-RECEIYED
5. SYN-RECEIVED --» <SEQ 181><ACK 381> ...

6. ESTABLISHED <-- <SEQ0 381><ACK 181> <-- SYN-RECEIVED
7. ... <SEQ 1B1><ACK 381> --> ESTABLISHED

Simultaneous Connection Synchreonization

.Figure 4.2-3

[Pege 28] ' Cerf & Postel

January 1978
TCP-3 Specificalion
TCP Design

TCP A TCP B
1. OPEN OPEN
2. SYN-SENT --> <SE0 188><SYN> vl
3. (duplicate) ... <SEQ 18@8><SYN> --> SYN-RECEIVED
4. SYN-SENT <-- <5E0 388><SYN»><ACK 103l> <-- SYN-RECEIVED
5. SYN=SENT --> <5E0 1B81><RS5T><ACK 381> --> OPEN

(ACK is ok)

B. .e. <SEQ 180><SYN> --> SYN-RECEIVED

7. SYN-SENT <-- <5E0 4BB><SYN><ACK 18l> <-- GYN-RECEIVED
8. ESTABLISHED --> <SEQ 181><ACK 481> --> ESTABLISHED
Recovery from Old Duplicale SYN
Figure 4.2-4

As a simple example of recovery from old duplicates, consider figure 4.2-4. At line 3,
and old duplicate SYN arrives al TCP B. TCP B cannot tell that this is an old duplicate,
50 it responds normally (line 4). TCP A delects that the ACK field is incorrect and
returns a RST (reset) with its SEQ and ACK fields selected lo make the packel believable.
TCP B, on receiving the RST, returns to the OPZN state. When the original SYN (pun
intended) finally arrives al line 6, the synchronization proceeds normally. If the SYN at
line 6 had arrived before the RST, a more complex exchange might have occurred with
RST's sent in bolh directions.

4.2.3 Half-Open Connections and Other Anomalies

An eslablishad conneclion is said to be “half-open" if one of the TCP's has closed or
aborted the connection at its end without the knowledge of the other, or if the two ends
of the connection have become desynchronized owing to a crash that resulted in loss of
memory. Such connecctions will automatically become reset if an attempt is made to send
data in either direction. However, half-open conneclions are expected o be unusual, and
the recovery procedure is mildly involved.

If at site A the conneclion no longer exlsts, then an atlempt by the user at site B to send

Cerf & Postel [Page 29]

January 1978

TCP-3 Specification
TCP Dacign

any data on it will resull in the site B TCP receiving a RESET control message. Such a
message should indicate to the site B TCP that something Is wrong and it is expected to
ABORT the connection.

Assume that two user processes A and B are communicating with one another when a
crash occurs causing loss of memory to A's TCP. Depending on the operating system
supporting A’s TCP, il is likely that some error recovery mechanism exists. When the TCP
is up again A is likely to start again from the beginning or from a recovery point. As a
result A will probably try to OPEN the connection again or try lo SEND on the connection
it believes open. In the latler case it receives the error message "connection not open”
from the local TCP. In an attempt to establish the connection A’s TCP will send a packel
containing SYN. This scenario leads to the example shown in figure 4.2-5. After TCP A
crashes, the user attempts lo re-open the connection. TCP B, in the meantime; thinks
the connection is open.

TCP A - TCP B
1. (CRASH) (send 388, recelve 188)
2. OPEN ESTABLISHED
3. SYN-SENT --> <SEQ 488><SYN> —=s (27)
4. (11) < <SEQ 308><ACK 108> <-- ESTABLISHED

5. SYN-SENT --> <SEQ 188><AST><ACK 308> --»> (Abort!!)
Half-Open Connection Discovery

Figure 4.2-5

When the SYN arrives al line 3, TCP B, being in a synchronized state, responds with an
scknowledgment indicaling what sequence it next expects to hear (ACK 100). TCP A
sees that this packel does not acknowledge anything it sent and, being unsynchronized,
sends a reset (RST) because it has detected a half-open connection. TCP B aborls at line
5. TCP A will continua to retransmit its SYN and if the user at TCP B re-opens the
connection, eventually everything will work out.

An interesting alternative case occurs when TCP A crashes and TCP B tries to send data
on what it thinks is a synchronized connection. This is illusirated in figure 4.2-6. In this
case, the data arriving at TCP A from TCP B (line 2) is unacceptable because no such

[Page 30] ' Cerf & Postel

January 1978
TCP-3Specificalion
TCP Design

conhection ewxists, so TCP A sends a RST. The RST is acceptable so TCP B processes it
and aborts the conneclion.

In figure 4.2-7, we find the two TCP's A and B with passive conneclions waiting for SYM.
An old duplicate arriving at TCP B (line 2} stirs B into action. A SYN-ACK is returned
(line 3) and causes TCP A to generate a RST (the ACK in line 3 is nol acceptable). TCP
B accepts the resel and returns to its passive OPEN state.

TCP A TCF B
1. (CRASH) {send 388,receive 188)

2. (77 <-- <SE0 3BB><ACK 188><DATA 18> <-- ESTABLISHED
3. ~-> <SE0 188><RAST><ACK 318> -~> (ABORT!!)

Active Side Causes Half-Open Connaclion Discovery

Fipure 4.2-6
TCP A TCP B
1. OPEN : OFPEN
2. +as <BEQ Z><SYN> --> SYN-RECEIVED

3. (??) <—- <5EQ X><SYN><ACK Z+l> <-- SYN-RECEIVED

4. —-=-> <5EQ0 Z+1><RST><ACK K+l> --> {return to OPEN!)
5. OPEN OPEN
* Old Duplicate SYN Inﬁial:as a Reset on two Passive Sockels
Figure 4.2-7

A variety of other cases are possible, all of which z2re zccounted for by the following rules
for RST generalion and processing.

Cerf & Postal [Page 31]

January 1978

TCP=-3 Specification
TCP Design

Reset Generation

As a general rule, reset (RST) should be sent whenever & packet arrives which
apparently is not intended for the current or a fulure instantiztion of the connection,
A reset should not be sent if it is not clear that this is the case. Thus, if any packel
“arrives for a nonexistant connection, a reset should be senl. If a packet ACKs
something which has never been sent on the current connection, send reset,

1. If the connection is In any non-synchronized state (OPEN, SYN-SENT,
SYN-RECEIVED) or if the connection does nol exist, a resel (RST) should be formed
and senl for any packet that does not acknowledge something the receiver sent
earlier. The RST should take its SEQ field from the ACK field of the offending packet
{if it has one) and its ACK field should acknowledge all data and control in the
offending packet.

2. I the econneclion is in a synchronized state (ESTABLISHED, FIN-WAIT,CLOSE-WAIT,
CLOSING), any unacceptable packet should elicit only an emply acknowledgment
packet containing the current send-sequence number and an acknowladgment
indicating the next sequence number expected to be received.

Reset Processing

All RST (reset) packets are wvalidated by checking their ACK-fields and SEQ fields (if
appropriate). If the RST acknowledges something the receiver sent (bul has not yet
received acknowledgment for), the RST must be valid. RST packels will have ACK
fields which acknowledge any data and control in {he offending packet to assure
acceplability of the RST.

The receiver of a RST first validates it, then changes state. If the receiver was in a
non-synchronized state (OFEN, SYN-SENT, SYMN-RECEIVED) it returns to the OPEN
state (possibly modifying the foreign socket specification in the process--see section
4.3.3), It the rcceiver was in a synchronized stale (ESTABLISHED, FIN-WAIT,
CLOSE-WAIT, CLOSING), it aborts the connection and advises the user (see section
2.4.3 - error 14). :

4.2.4 Knowing When lo Keep Quiet

A basic goal of the TCP design is to prevent packets from being emitled with sequence
numbers which duplicate those which are still in the network. We wanl to assure this
even if a TCP crashes and loses all knowledge of the sequence numbers It has been
using. When new connections are created, an initial sequence number (ISN) generator is
employed which selects a2 new 32 bit ISN. The gereralor is bound to a (possibly
fictitious) 32 bit clock whose low order bit is incremented roughly every 4 microseconds.
The ISN thus cycles every 4.55 hours, approximately. Since we essume that packets will

[Page 32] ' , Cerf & Postel

January 1978
- TCP-3 Specification
' TGP Design

slay in the nelwork no more than tens of scconds or minutes, at worst, we can
reasonably assume that ISN's will be unique.

Ta be sure thal a TCP does not creale a packel thal carries a sequence number which

. may be duplicaled by an old packet remaining in the network the TCP must keep guiet
for a maximum packet lifetime (MPL) before assigning any sequence numbers upon
starling up or recovering from a crash in which memory of sequence numbers in use was

2 lost. For this specification the MPL is taken to be 2 minutes. This value may be
changed if experience indicates it is desirable fo do so. MNole that if a TCP s reinitalized
in some sense yel retains its memory of sequence numbers in use, then it need nol wait
at all; it must only be sure to use sequence numbers larger than lhose recently used.

It should be noled that this strategy does not protect against spoofing, or other replay
type duplicate message problems.

4.25 Closing a Conneclion

CLOSE is an operation meaning "l have no more data lo send." The nolion of closing a
full-duplex connection is subject to ambiguous interpretation, of course, since it may not
be obvious how to treal the receiving side of the connection. We have chosen to treal
. CLOSE in a simplex fashion, The user who CLOSES may conlinue to RECEIVE until he is
[told that the other side has CLOSED also, Thus, a program could initiate several SENDs
E followed by a CLOSE, and then continue to RECEIVE unlil signalled that a RECEIVE failed
because the other side has CLOSED. We assume that the TCP will unilaterally inform a
user, even if no RECEIVEs are oulstanding, that the other side has closed, so the user
can lerminate his side gracefully, A TCP will reliably deliver all buffers SENT before the
conneclion was CLOSED so a user who expects no data in return need only wait to hear
the connection was CLOSED successfully to know that all his data was received at the
destination TCP,

There are essentially three cases:
a) The user initiates by telling the TCP to CLOSE the conneclion
b) The remole TCP iniliates by sending a FIN contral signal
c) Both users CLOSE simullaneously

Case l: Local user initiates the close

In this case, a FIN packet can be constructed and placed on the oulgoing packet
gueue. No further SENDs from the user wiil be azccepted by the TCP, and it enters the
FIN-WAIT state. RECEIVES are allowed in this state. All packets preceding and
including FIN will be retransmitted until acknowiedged. When the other TCP has both

Cerf & Postel [Page 33]

January 1978

TCP-3 Specification
TCP Dacign

acknowledged the FIN and sent a FIN of its own, the first TCP cen ACK this FIN and
delele the connection (see figure 4.2-1). It should be noted that a TCP receiving a
FIN will ACK but not send its own FIN until the user has CLOSED the connection alse.

Case 2: TCP recelves a FIN from the network

If an unsolicited FIN arrives from the network, the receiving TCP can ACK it and tell
the wuser that the conneclion is closing {see Event Codes, section 2.4.3). The user
should respond with a CLOSE, upon which the TCP can send a FIN to the other TCP.
The TCP then waits until its own FIN is acknowledged whereupon it deletes the
conneclion. If an ACK is not forthcoming, after a timeout the connection is aborted
and the user is told (see 2.4.3).

Case 3: both users close simultaneously

A simultaneous CLOSE by users at both ends of a connection causes FIN packets to
be exchanged. When all packets preceding the FIN have been processed and
acknowledged, each TCP can ACK the FIN it has received. Both will, upon receiving
these ACKs, delete the connection,

4,26 End of Letter Sequence Number Adjustmenls

The difference between the sequence numbers of the first ociets of data in any pair of
letters on a given connection is elways equal zero modulo the receive buffer size. That
is, whenever an EOL is transmitted, the sender advances his send sequence number by
an amount (in the range O to buffersize-1) sufficient to consume all the unused space in
the receiver's buffer. The amount of space consumed in this fashion is deducted from

the send window just as is the space consumed by actual data.

The idea is that an EOL signals the consumption of the rest of the space in the buffer
and that the -:Ia_ta sequence numbers reflect that. The exchange of buffer size and
sequencing information is done in unils of octets. If no buffer size is staled, then t_hﬂ

buffer size Is assumed lo be | oclet.

The receiver tells the sender the size of the buffer in a SYN packel that contains a 16 bit
buffer size field in the TCP header, the presence of the field being signaled by a BSZ
control bit.

If a letter starts at sequence number x and is n oclels long and the buffer size is m
octels, then lhe next letter starts at x+im, where i is a positive integer such that
im > n > (i-1)m.

If a buffer size is specified and then all receive buffers provided by the user must be
exactly that size, otherwise the TCP should return an error indication.

[Page 34] Cerf & Postel

L

January 1978
TCP-3 Spetification
TCP Dasign

4.2.7 The Communication of Urgent Information

The urgent mechanism is used to indicate the need for special processing of the data
traversing the connection. This mechanism permits a point in the data stream to be
designated as the end of "urgent" information. Whenever this point is beyond the left
window edge at the receiving TCP, that TCP so informs lhe application program, so the
program can swilch inlo a mode of operation intended to scan through the data up to the
urgent pointer in an atlempt to extract the urgent information. The exact nature of this
scan depends on the higher level protocol being employed, but would typically involve
discarding information.

As soon as an urgent pointer is in advance of the left edge the TCP should tell the user
lo go into "read fasl" mode, when left edge catches up o urgent pointer the TCP should
tell user fo go inlo “read normal" mode. If the urgent poinler Is updated while the user
Is in "read fast"™ mode, the update will be invisible to the user.

The method employs a pointer which is carried in a field of all packets transmitted while
the urgent pointer exceeds the left window edge. A control bit (URG) indicates that the
packetl contains a 16-bit field which should be added to the packe! sequence number to
yleld the urgen! pointer. The absence of this bit indicates that the urgent pointer has not
changed.

It should be mentioned that coordinating the urgent pointer with a letter boundary acls to .
insure ‘Itmely delivery of the urgenl information to the destination prucass.

4.,2.8 The Possibility of Less than Reliable Communication

As a future development TCP may be called on o support other types of applications
that require different types of service. One fealure included at this time to enable such
development is the beginning of letter flag, or BOL, which could be used in conjunction
with EOL (end of letter) in a mode of operation where the receiver acknowledges
everything to keep retransmissions al a minimum to provide a special lype of service. In
this mode TCP provides the user with complete letiers but allows letters to be lost in
between the ones actually delivered. For this mode the TCP must be able to find the
beginning of a letter as well as the end. (Actually this could be done without a special
BOL since the end of one letler is the beginning of the next, but 2 BOL allows & slight
improvement! in the probabilily of finding whole letiers.)

4.2.9 TCP Conneclion State Transilions

The foregoing sections on connection management were succinctly represenled with a
simple state diagram, shown in figure 4.2-1. The figure only illustrates state changes
(and actions which occur as a result), but addresses neither error conditions nor actions
which are nol connecled with state changes. In this section, more detail is offered with

Cerf & Postel [Page 35]

January 1978

TCP~3 Specification
TCP Design

respect lo the reaction of the TCP to various events (user command, packet arrivals).
The characterization of TCP processing of control packets and reaction to user
commands s relatively terse. Certain implemantation choices can make the realization of
the specified processing fairly compact, but these implementation issues are dealt with in
seclions 4.3 - 45. For the sake of compactness, this section deliberalely evoids much
explanatory material which can be found in the implementation sections. Thus, this
section is intended more as a reference than as a tutorial, and really requires exposure to
sections 4.3-4.5 to be fully useful.

Furthermore, it should be kept in mind that some control information occupies sequence
number space along with data (see figure 4.1-3). This latter point means that there is a
natural order in which fo process the data and control porlions of an incoming packet
and that certain controls will change the connection state BEFORE later control or data
(i.e.,, those assigned higher sequence numbers) is processed. An implementation could
teke edvantage of this sequencing to keep track of which portions of a packet (data and
control) had already been processed. Note that by assigning sequence numbers lo some
control bits, it is possible to use the normal acknowledgmenl mechanisms to acknowledge

receipt of control information and to filter out duplicates.

A natural way to think aboul incoming packet processing is o imagine that they are first
tested for proper sequence number (i.e, that their contents lie in the range of the
expected "receive window" in the sequence number space} and then that they are
queued and processed in sequence number order, We are, in this view, ignoring for the
moment the problem of reassembling segments that were fragmenled at paleways, or
which overlap olher, already received, packets.

We have chosen to organize the description according to the connection stale, to key the
description to figure 4.2-1, In the following specifications the user events are mutually
exclusive, while the incomming pachet may call for some or all of the steps described to
be carried out. When a packel causes a state change, but carries more data or control
which should be processed, il is appropriate to conlinue processing in the new state, but
processing of the packet’s acknowledgmenl field or sequence number field should not be
repeated {lest a packet which looked-valid before appear to be an old duplicate or have a
bad acknowledgment field as an artifact of the state change).

A TCP must typically maintain certain state information about each connection in order to
sequence packels. For reference, we present a list of terms below (see section 4.3 for
more detail) which are used in the action summaries for each stale (also see figure
4.2-8),

[Page 36] Cerf & Fostel

—

January 1978

TCP-3 Specification
TCP Design

e SEND WINDOW

o sent, but un-ACKed ?rur,r-]rs.rg,nr & .
PRSPPI
[LEF T-SEQUENCE SEND-SEQUENCE
. MAXIMUM-WINDOM J

le RECEIYE-WINDOW —_—

L

RECE1VE-SEQUENCE

Sequence Number Management

Figure 4.2-8

Glossary of lerms

ACK - A control bit (acknowledge) occupying no sequence space, which Indicates that
the acknowledgment field of this packel specifies the next sequence number the
sender of this packel is expecling o receive-- hence acknowledging receipt of all
previous sequentce numbers,

BOL - A control bit (Begin of Letter) occupying no sequence space, indicating that this
packel begins a logical letter with the first data octet in the packet.

BSZ - A control bit (buffer size) in the incoming SYN packel, occupying no sequence
space, used lo indicate the presence of the buffer size field.

BUFFER-GIZE - A control field (buffer size) in the incoming SYN packet, occupylng no

Cerf & Postel - [Page 37]

January 1978

TCP-3 Specificalion
TCP Dasign

soquence space, used {o stale the receive data buffer size of the sender of this
control. May only be sent in a packet that also carries a SYN.

EOL - A conlrol bit {(End of Letler) occupying no sequence space, indicating that this
packet ends a logical letter wilh the last data octet in the packel. If this end of letter
causes @ less than full buffer to be released to the user and the connection buffer size
is not one octet then the end-of-letter/buffer-size adjusiment to the receive sequence
number must be made.

FIN - A control bit (finis) occupying one sequence number, which indicates that the
sender will send no more dala or control occupying sequence space.

LEFT-SEQUENCE - This is the next sequence number to be acknowledged by the data
receiving TCP (or the lowest currently unacknowledged sequence number) and is
sometimes referred to as the left edge of the transmit "window."

PKT-ACKNOWLEDGMENT - The sequence number in the acknowledgment field of the
erriving packel. ; -

PKT-LENGTH - The amount of sequence number space occupied by a packet,
including any contrals which occupy sequence space.

RECEIVE-SEQUENCE - This is the next sequence number the local TCP is expecting to
receive.

RECEIVE-WINDOW - This represents the sequence numbers the local {receiving) TCP is
willing to receive. Thus, the local TCP considers that packels overlapping the range
RECEIVE-SEQUENCE to RECEIVE-SEQUEMCE + RCCEIVE-WINDOW - 1 carry
acceplable data or control. Packets containing sequence numbers entirely oulside of
this range are tonsidered duplicates and discarded. This topic Is discussed in detail in

section 4.5 on window allocation policies.

RST - A control bit (reset), occcupying no sequence space, indicating that the receiver
should delete the connection without further interaction. The receiver can determine,
based on the sequence number and acknowledgment fields of the incoming packet,
whether il should honor the resel command or Ignore it. In no case does receipt of a
packal containing RST give rise to a RST in response.

SEND-SEQUENCE - This is the next sequence number the local (sending) TCP will use
on the connecltion. It is initially selected from an initial sequence number curve (ISN,
see seclion 4.2.1) and is incremented for each octet of data or sequenced control
transmitted.

SEND-WINDOW - This represents the seguence numbers which the remole (receiving)

[Page 38] Cerf & Postel

January 1978
TCP-3 Specification
TCP Deczign

TCP Is willing to receive. Il Is the value of the wirdow figld specified In packets from
the remote (dala receiving) TCP. The range of sequence numbers which may be
emitted by a TCP lies belween SENI-SEQUENCE and LEFT-SEQUEMCE +
SEND-WINDOW - 1.

SYN - A control bit in the incoming packet, occupying one sequence number, used to
indicale at the initiation of a connection, where the sequence numbering will stark.

URG - A control bit {urgent), occupying no seguerce space, used lo indicate that the
receiving user should be nolified to do urgent processing as long as there is data to
be consumed with sequence numbers less than the value indicated in the urgent
pointer.

URGENT-POINTER - An optional control field present only when the URG bit is on.
This field communicates the value of the urgent pointer which indicates the dale octet
assoclated wilh the sending user’s urgent call,

State and Event Descriptions

Certain error responses shown below are generic. Sece section 25 for details on
TCP-to-user messapes. User commands relerencing conneclions thal do not exisl
receive "connection nol open" (EP3) and references to connections nol accessible to
the caller receive "connection illegal for this process" (EP1). We have not repeated
these generic responses in each description of action performed for each connection
state. Overt allempts to SEND or signal URGENT on a connection with unspecified
foreign socket results in a "foreign socket unspecified” (ED) response.

CLOSED STATE (i.e. connection does nol exist)
User Commands

1. OPEN

Creale a new transmission control biock TCB to hold connection state
information. Fill in local socket identifier, foreign socket if present (the
conneclion is passively "listening” if the foreign socket is unspecified), and user
timeout information. Some implementaiions may issue 5YN packels if the
foreign socket is fully specified. In this case, an initial sequence number (ISN) is
selecled and a SYN packet formed and sent. The LEFT-SEQUENCE is set to
ISN, the SEND-SEQUENCE to ISN + 1, and SYN-SENT stale is entered.

If the caller does not have access to tho local sockel specified, return
"connection illegal for this process." (EPL). If there is no room lo create a new
cannection, return "insufficient resources” (3}

Cerf & Postsl [Page 39]

January 1978

TCP-3 Specification

TCP Design

2. SEND, URGENT, CLOSE, ABORT, RECEIVE, STATUS

Error return "Connection not open” (EP3).

If the user should no have access to such a conneclion, "connection illegal for
this process" (EP1) may be returned.

Incoming Packels.

All Incoming packels are discarded. For an incoming packe! containing an ACK,
except for incoming RST packets which should be ignored, a RST is created with a
sequence number (PKT-SEQUENCE) equal lo the acknowledgment field
(PKT-ACKNOWLEDGMENT) of the incoming packet (if it has one; otherwise
PKT-SEQUENCE is set to zero or, ISN). The acknowledpment field of the RST
should be sel to the sum of the incoming PKT-SEQUENCE and PKT-LENGTH. The
RST and ACK control bits for the outbound packet should be set (see figure 4.2-6).

OPEN STATE

User Commands

[Page 40]

1. OPEN
Relurn "already OPEN" (EP6)
2. SEND or URGENT

Select an SN, send a SYN pachket, set LEFT-SEQUENCE to ISN and
SEMND-SEQUENCE to ISN + 1. Enter SYN-SENT state. Data associsted with
SEND may be sent with SYN packet or queued for transmission after entering
ESTABLISHED state. URGENT can be sent as a combination SYN, URG pachket
{see figure 4.1-3 and section 4.3.2). If there is no room to queue the request,
respond with "insufficient resources” (4},

3. RECEIVE

Queue request if there is space, or respond with "insufficient resources”™ (4}

4. CLOSE

Delele TCB, return "ok" (0). Any outstanding RECEIVES should be returned
with "closing" responses (P12).

Cerf & Postel

o —

January 1978
TCP-3 Specification
TCP Dasign

5. ABORT

Delete TC8, return "ok"™ (0) any outstending RECEIVES should be returned with
"connection resel” (P14) responsas,

6. STATUS
Return state = OPEN .
Incoming Packets
1. ACK

Any acknowledgement Is bad if it arrives on a connection still in the OPEN state.
A resel (RST) packel should be formed for any earriving ACK-bearing Packet,
except another RST. The RST should be formatted as follows:

<SEQ PKT-ACKNOWLEDGMENT><RST><ACK PKT-SEQUENCE + PKT-LENGTH>
Thus the RST will acknowledge any text or control in the offending packet.

2. SYN

RECEIVE-SEQUENCE should be set to PKT-SEQUEMNCE + 1 and any other control
or text should be queued for processing later. ISM should be selected and =&
5YN packel sent of the form:

<SEQ ISN><S5YN><ACK RECEIVE-SEQUENCE>

SEND-SEQUEMCE should be set to ISN + 1| and LEFT-SEQUENCE to ISN. The
connection state should be changed to SYN-RECEIVED. Note that any other
incoming control {combined with SYN) will be processed in the SYM-RECEIVED
stale. Processing of SYN and ACK should not be repeated.

3. Other text or control

Any other control or text-bearing packet (not containing SYN) will have an ACK
and thus will be discarded by lhe ACK processing. An incoming RST packet
could not be valid, since it could not have been sent in response to anything
sent by this incarnation of the connection.

Cerf & Postel [Page 41]

January 1978

TCP-3 Specification

TCP Design

SYN-SENT STATE

User Commands

1.

OPEN
Return "already OPEN" (EPG)
SEND or URGENT

Queue for processing after the connection Is ESTABLISHED or packetize,
starling wilh the current SEND-SEQUENCE number. Typically, nothing can be
senl yel, anyway, because the send window has not yet been set by the other
side. If no space, refurn "insutficient resources” (4).

RECEIVE

Queve for later processing unless there is no room, in which case return
"insufficient resources” (4).

CLOSE

Delete the TCB and return "closing" (P12) responses to any queued SENDs,
RECEIVES, or URGENTS,

ABORT

Delete the TCB and return “reset" (P14) responses o any gqueued SENDS,
RECEIVES, or URGENTS.

STATUS
Return state = SYN-SENT; SEND-SEQUENCE, REGEIVE-WINDOW

Incoming packels

[Page 42]

&

ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE {hen
the ACK is acceptable. LEFT-SEQUENCE should be advanced to equal

PKT-ACKNOWLEDGMENT, and any packet{s) on the relransmission gueue which
are {hereby acknowledged should be removed,

If the packet acknowledgment is not acceptable, @ RST packet should be formed
{excepl when the offending packet is also a RST) which carries the

Cerl & Postel

January 1978

TCP-3 Specification
TCP Dasign

PKT-ACKNOWLEDGMENT as a szgquence number, and acknowledges all text and
confrol of the offending packet,

5YN

RECEIVE-SEQUENCE should be set to PXKT-SEQUENCE + 1 and any packet text
or control queued for later processing. If the packet has an ACK, change the
connection state to ESTABLISHED, otherwise enter SYN-RECEIVED., In any case,
form an ACK packel:

<SEQ SEMD-SEQUENCE><ACK RECEIVE-SEQUENCE=>
end send it.
RST

Delete TCB, enter CLOSED state.

4, Other text or control,

Incoming packets with other control or text combined with SYMN will be
processed in SYN-RECEIVED or ESTABLISHED state. Arriving packels which do
not confain SYN are either old duplicates or out-of-order arrivals. Since these
musl contain ACK fields, they will have been discarded by earlier ACK
processing.

5. User Timeout.

If the user timeoul expires on a packet in the retransmission gueue, abort the
conneclion, notifying the user "retransmission timeout, connection aborted”
(EFP9), and flushing all queues, returning RECEIVES, SENDS or URGENTs with
the same error (EP3). Delete the TCE,

SYN-RECEIVED STATE

User Commands

1. OPEN

Return "elready OPEN" {(EP6)

2. SEND or URGENT

Cerf & Postel

Queue for later processing after enlerinz ESTABLISHED stale, or packelize and
gqueue for output. If no space to queue, respond with “insufficient resources”
(4)

[Page 43]

January 1978

TCP-3 Specification
TCP Design

[Page 44]

*

4.

1.

RECEIVE

Queue for processing after entering ESTABLISHED state. If there is no room to
gueve this request, respond with "insufficient rescurces” (4),

CLOSE

Quesue for processing after entering ESTABLISHED state or packetize and send
FIN packetl. If the latler, enter FIN-WAIT state.

ABORT
Delete TCB, send a RST of the form;
<SEQ SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE>

and return any unprocessed SENDs, URGENTs, or RECEIVEs with "reset” code
{PL14).

STATUS

Return state = SYN-RECEIVED, LEFT-SEQUENCE, SEND-SEQUENCE,
SEND-WINDOW, RECEIVE-SEQUENCE, RECEIVE-WINDOW, and other desired
stalislics number of (SEND, RECEWE buffers queued), packels queued for
reassambly, for retransmission, etc.

Incoming Packels

Check PKT-SEQUENCE

If RECEIVE-SEQUENCE < PKT=-SEQUENCE +MAX (0,PKT-LENGTH-1)
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then the packel sequence
number is acceplable. If not, form a reset (RST) packet:

<SEQ PKT-ACKNOWLEDGMENT> <RST>
<ACK PKT-SEQUENCE + TEXT-LENGTH>

f the incoming packet is RST or has no ACK,.discard it, and do not send RST

formed above. MNole that the test above guarantees that the last sequence
number used by the packet lies in the receive-window. The special "MAX"
operation makes certain that empty ACK packets, whose length are 0, will be
accepled. If the RECEIVE-WINDOW is zero, no packels will be acceplable, but
special allowance should be made to accept valid ACKs.,

Insisting that PKT-SEQUENCE (i.e., the first sequence number occupied by the

Cerf & Postel

January 1978

TCP-3 Specification
TCP Dasign

packel) lie in the RECEIVE-WINDOW esuld lead to deadiock in the case of
alternate galeway routing and different fragmentation.

A Scenario:
Assume the receivers RECEIVE-SEQUENCE is 1.
The sender transmits a packet {pl} conlaining data octets | through 8.

Gateway A fregmenis pl into two new packets, the first (p2) carries data
octets 1 through 4, and the second (p3) carries data octets 5 through 8.

Packet p2 arrives at the receiver and is found acceptible. The receiver sets
the RECEIVE-SEQUENCE to &.

Gateway A breaks.
The sender timesout and retransmits pl as pd.
The receiver finds p3 aflicted with errors and discards it.

Gateway B fragments pd into three naw packels, the first (p5) carries data
octets 1 through 3, the second (p6} carries dala octets 4 through 6, the
third (p?7) carries data octets 7 and 8.

When p5 arrives at the receiver it is acknowledged then discarded since it Is
completely below the RECEIVE-SEQUENCE.

When p6 arrives at the receiver it is acknowledged then if the special MAX
function were not used it would be discarded since il's PKT-SEQUENCE is

below the RECEIVE-SEQUENCE.

A deadlock would develop if p6 wers discarded, and if when the sender
retransmitted it always sent the complete contents of the original packet pl.

2. ACK

Cerf & Postel

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE then
sel LEFT-SEQUENCE = PKT-ACKNOWLEDGMENT, remove any acknowledged
packets from the retransmission queue, and enter ESTABLISHED stale.

If the packet acknowledgment is not acceptable, form a resel packet, as for the
bad sequence cass above, and send i, unless the incoming packet is an RST, in
which case, it should be discarded.

[Page 45]

January 1978

TCP-3 Specification

TCP Design

3.

RST

If the packet has passed sequence and acknowledgment tests, it is valid. Return
this connection to OFEN state, The user need not be informed. All packels on
the retransmission queue should be removed. All packetized buffers must be
assigned new sequence numbers, s0 they should be requeued for re-packetizing.

Other text or control

If there is other control or text in the packet, it can be processed when the
conneclion enters the ESTABLISHED state.

User Timeout

If the user timeoul expires on any packet in the retransmission queue, flush all
queues, return outstanding SENDs, URGENTs or RECEIVEs with “user timeout,
connection aborted” (EP9), and delete the TCB.

ESTABLISHED STATE

User Commands

[Page 46]

1.

OPEN
Respond with “already OPEN" (EPG)
SEND or URGENT

Packetize the buffer, send or queue it for output. If there is Insufficient space
to remember this buffer, simply respond wilh"insufficient resources" (4).

RECEIVE

Reassemble queued incoming segments into receive buffer, and return to user.
Mark “"end of letter" (EOL) if this Is the case. If buffer size is nol one octet
then do end-of-letter /buffer-size adjustment processing. If insufficient incoming
segments are queued fo satisfy the request, queue the request. If there is no
queue space lo remember the RECEIVE, respond with “insufficient resources”

(4)
CLOSE

Queue this until all preceding SENDs or URGENTs have been packelized, then
form a FIN packet and send it. In any case, enter FIN-WAIT state.

Cerf & Postel

January 1978
TCP-3 Specification

TCP Dasign

5. ABORT
Delete TCB and send a reset packet:
<SEQ SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE=>

All queued SENDs, URGENTs, and RECEIVEs should be given "reset" responses
{P14); all packets queued for transmission (except for the RST formed sbove) or
retransmission should be flushed.

6. STATUS

Return stale = ESTABLISHED; SEND-SEQUENCE, LEFT-SEQUENCE,
SEND-WINDOW, RECEIVE-SEQUEMCE, RECEIVE-WINDOW, and other statistics,
as desired. '

Incoming Packels
1. Check PKT-S5EQUENCE

All packets are generally processed in sequence. Initial lests on arrival are used
to discard old duplicates, but further processing is done In PKT-SEQUENCE
order. If a packet’s contents straddle the boundary between old and new, only

the new parls should be processed.

If RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX(PKT-LENGTH-1,0)
< RECEIVE-SEQUENCE + RECEIVE-WINOOW then packetl s acceptable.
Otherwise if PKT-LENGTH is non-zero, an empty acknowledgment packet should
be senl:

<SEQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCE>

In any case, unacceplable packets should be discarded.

2. ACK

if LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE then
set LEFT-SEQUENCE = PKT-ACKNOWLEDGMENT. Any packets on the
retransmission queue which are thereby entirely acknowledged are removed.
Users should receive positive acknowledzments for buffers which have been
SENT and fully acknowledged (i.e., SEND buffer should be returned with "OK"
(0) response). If the ACK is a duplicate, it can be ignored,

3. RST
All pending RECEIVEs, SEMDs, and URGEMTs receive "reset" (Pl4) responses.

Cerf & Postel [Page 47]

January 1978

TCP-3 Specification

TCP Design

[Pege 4B8]

All packet gqueues are flushed. The TCB is deleted, User also recelves an
unsolicited general "resel” signal (P14).

SYN

lgnore the SYN. A packet carrying a SYN could not have passed through the
sequance check unless it had control or text lying beyond the SYN which was
acceptable. To prevent repeat processing of controls or text, such packets could
be "marked" so that all duplicate control or text is removed before they exit
sequance-number check. Other marking slrategies could be employed to
achieve the same effect.

URG

Signal user thal remote side has urgent data (Pl1) if the urgent pointer is in
advance of the data consumed. If the user has already been signalled (or is still
in the "urgent mode") for this continuous sequence of urgent dala, do not
signal the user again.

Packel text

Once in lhe ESTABLISHED state, it is possible to deliver packet fext to user
RECEIVE buffers. Some preliminary packet reassembly may be required to form
valid segmenls from fragments created at a galeway. Text from segments can

., be moved into buffers until either the buifer is full or the segment Is emply. If

the segment emplies and carries an EOL flag, then the user is informed, when
the buffer is returned, that an EOL has been received. [f the buffer size is not
one octet then the end-of-letter /buffer-size adjustment processing must be done.

FIN

An ACK packet should be sent, acknowledging the FIN. The user should be
signalled "connection closing” {(P12) and similar responses should be returned
for any oulstanding RECEIVEs which cannot be salisfied. Connection state
should be changed to CLOSE-WAIT.

8. User Timeout

If the user timeout expires on a packet in the retransmission queue, flush all
queues, return "user limeout, connection aborted" (EP3) for all outstanding
SENDs, URGEMTs, and RECEIVEs, and delete the TCB. The user should receive
an unsolicited message of the same form (EP9).

Cerf & Postel

January 1978

TCP-3 Specification
TCP Design

FIN-WAIT STATE

User-Commands

L.

OPEN
Return "already OPEN" (EPS)

. SEND or URGENT

Raturn "connection closing” (EP12) and do not service reguest.

RECEIVE

Reassemble and return a letter, or as much as will fit, in the user buffer. Queue
the reques! if it cannol be serviced immediately.

CLOSE

Strictly speaking, this is an error and should receive a "connection closing™
(EP12) response. An “ok" {0) response would be eccepiable, too, as long as a
second FIN is not emitted.

ABORT
A resqi packet (RST) should be furmedl and ‘sant:
<SEQ SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE>

Outstanding SENDs, URGENTs, RECEIVEs, CLOSEs, andfor packets queued for
refransmission, or packetizing, should be flushed, with appropriate "connection
reset" (P12).

STATUS

Respond with state = FIN-WAIT, SEND-SEQUENCE, LEFT-SEQUENCE,
SEND-WINDOW, RECEIVE-SEQUENCE, RECEIVE-WINDOW, and other statistical
Information, as desired.

Incoming packels

1.

Corf & Postel

Check PKT-SEQUENCE

If RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX(PKT-LENGTH-1,0)
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then packet seqguence |Is

[Page 49]

January 1578

TCP-3 Specification

TCP Design

[Page 50]

acceptable. Otherwise, if PKT-LENGTH is non-zero, an ACK packet should be
sent:

<5EQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCE>

In any case, an unacceptable packet should be discarded.

. ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced appropriately and any acknowledged
packets deleted from the retransmission queue. SENDs or URGENTs which are
thereby complcted can also be acknowledged to the user. ACK's outside of the
SEND-WINDOW can be ignored, If the retransmission queue Is empty, the user’s
CLOSE can be acknowledged ("0K" (0)) and the TCB deleted.

. RST

All RECEIVEs, SENDs, and URGENTs still oulstanding should receive "reset”
(P14) responses. All packe! queues should be flushed and the connection TCB
deleted. User should also receive an unsolicited general "connection reset"

(P14) signal.

. SYN

.- This case should not occur, since a duplicale of the SYN which started the

current incarnation will have been filtered in the PKT-SEQUENCE processing.
Other S5YN's could not have passed the PKT-SEQUENCE check at all {see SYN
processing for ESTABLISHED state).

. URG

Signal the user that the remote side has urgent data (P11) if the urgent pointer
Is in advance of the data consumed. If the user has already been signalled (or is
still in the “"urgent mode”) for this continuous sequente of urgent data, do not
signal the user again.

. Packaet Text

If there are outstanding RECEIVEs, they should be satisfied, if possible, with the
text of this packet, remaining text should be queued for further processing. If a
RECEIVE Is satisfied, the user should be notified, with "end-of-letter” (EOL)

signal, if appropriale,

Cerf & Postel

January 1978

7.

TCP-3 Specification
TCP Design

FIN

The FIN should be acknowledged, Return any remaining RECEIVEs with
"connecltion closing" (P12) and advise user that connection Is closing with a
general signal (P12). If the retransmission gueue is not empty, then enter
CLOSING state, otherwise, delele the TCB.

User Timeout

if the user timeout expires on a packetl in the retransmission queue, flush all
gueues, relurn "user timeout, connection aborted" messages for all oulstanding
SENDs, RECEIVEs, CLOSES or URGENTs, send an unsolicited general messags
of the same form to the user, and delste the TCB.

CLOSE-WAIT STATE

User Commands

1.

El

OPEN
Return "already OPEN" error (EF6)
SEND or URGENT

Packelize any text to be sent and queue for oulput. If there is insufficient space

" to remembéer the SEND or URGENT, return “insufficient resouces” (4)

Cerf & Postel

RECEIVE

Since the remole side has already sent FIN, RECEIVEs must be satisfied by text
already reassembled, but not yet delivered to the user. If no reassembled
packet text is awailing delivery, the RECEIVE should get a "conneclion closing”
(P12) response. Otherwise, any remaining text can be used to salisfy the
RECEIVE. In implementations which do not acknowledge packets until they have
been delivered into user buffers, the FIN packet which led to the CLOSE-WAIT
state will not be processed until all preceding packet text has been delivered into
user buffers. Consequently, for such an implementation, all RECEIVEs in
CLOSE-WAIT state will receive the "connection closing™ (P12) response.

CLOSE

Queua this request until all preceding SENDs or URGENTs have been packetized;
then send & FIN packel, enter CLOSING state.

[Page 51]

January 1978

TCP-3 Specification

TCP Dasizgn

5, ABORT

Flush any pending SENDs, RECEIVEs and URGENTs, returning “connection
reset” (P14) responses for them. Form and send a RST packet:

<SEQ SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE=>

Flush all packe! queves and delete the TCB.

6. STATUS :

Return state = CLOSE-WAIT, all other TCB values as for ESTABLISHED case.

Incoming Packets

[Page 52]

1.

Check PKT-SEQUENCE

If RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX{PKT-LENGTH-1,0)
< RECEIVE-SEQUENCE + RECEIVE-WINDOW 1then the packet sequence s
escceptable. Otherwise, iF PKT-LENGTH is non-zero, an ACK should be sent:

<5EQ SEND-SEQUENCE=><ACK RECEIVE-SEQUENCE>

Unacceptable packels should be discarded. Others should be processed in
sequence number order.

ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced appropriately and eny acknowledged
packets removed from the retransmission queue. Completed SENDs or

URGENTs should be acknowledged to the user ("OK" (0) returns). ACK's which
are oulside the receive window can be ignored.

RST

All RECEIVEs, SENDs, and URGENTs still outstanding should receive "reset”
(P14) responses. Packel queues should be flushed and the TCB deleted. The
user should also received an unsolicited general "connection reset" signal
(P14).

SYN

This case should not occur, since a duplicate of the SYN which started the
current conneclion incarnation will have been filtered in the PKT-SEQUENCE

Cerf & Postel

January 1978
TCP-3 Specification
TCP Decign

processing. Other SYN's will have been rejected by this test as well {ses SYN
processing for ESTABLISHED state).

5. URG

This should not occur, since a FIN has been received from the remote side.
lgnore the URG.

6. Packel text

This should not cccur, since a FIN has been received from the remote side.
lgnore the packet texl.

7. FIN

This should not oceur, since a FiN has already been received from the remote
side. lgnore the FIN.

8. User Timeout

If the user limeoul expires on a packet in the retransmission queue, flush all
queues, return "user timeout, connection aborted" (EP9) for any outstanding
SENDs, RECEIVEs or URGENTs, send an unsolicited generel message of the
same farm to the user and delete the TCB.

CLOSING STATE .-
User Commands
1. OPEN
Respond with "already OPEN" (EP6)
2. SEND, URGENT
Respond with "connection closing" (EP12)
3. RECEIVE
Respond with “"connection elosing” (EP12)
4. CLOSE

Respond with “connection closing” (EP12)

Cerf & Postel [Page 53]

January 1978

TCP-3 Specificalion

TCP Design

5. ABORT
Respond with "OK" (0} and delete the TCB; flush any remaining packel queues.
If a CLOSE command is still pending, respond "connection reset™ (P14).

6. STATUS

Return State = CLOSING along with other TCP parameters.

Incoming packels

[Page 54]

1. Check PKT-SEQUENCE

It RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX(PKT-LENGTH-1,0)
< PRECEIVE-SEQUENCE + RECEIVE-WINDOW then packet sequence s
acceptable. Otherwise, if PKT-LENGTH is non-zero, an ACK packst should be
farmed and sent:

<SEQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCE>

In any case, an unacceplable packet should be discarded.

. ACK

if LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced and any acknowledged packels deleted
from the retransmission gqueue. SEMDs or URGENTs which are thereby
completed can also be acknowledgzed to the user. ACK's oulside of the
SEND-WINDOW can be ignored.

. RST

Any oulstanding RECEIVEs, SEND, and URGENTs should recelve “reset"
responses (Pl4). All packet gueues should be flushed and the TCB deleled.
Users should also receive an unsolicited general "conneclion reset” (P14)
signal,

. Packet tex! or control

No other control or text should be sent by the remote side, so packets
containing non-zero PKT-LENGTH should be ignored.

. User Timeout

If the user timeout expires on a packet in the retransmission queue, flush all
queues, relurn "user limeout, connection aborted” (EP9) responses for all

Cerf & Postel

January 1978

Carf & Postel

TCP-3 Specification

oulstanding SENDs, URGENTs, RECEVEs, or CLOSEs, send
message of Lhe same form (EP3} to the user and delete the TCB.

TCP Design

an unsolicited

[Page 55]

January 1978
TCP-3 Specification
TGP Design

84,3 TCP Data Structures

Our basic view of internetworking is that all internetwork packets (TCP and otherwise) have
a basic internet header consisting of source/destination address, data and header length
fields, and format indicator, A TCP header follows the Internet header, supplying
information specific fo the TCP protocol. This division allows for the existence of internet
protocols other than TCP, and for experimentation with TCP variations.

4.3.1 Internetwork Packet Format

In this section, we offer a terse descriptive summary of the conlents of the internetwork
header. :

L T B Tt T Tt T e T B Bt S e
IYersionl TOS | Format | Total Length |
s s S S o s 2t et S e e e e
| IH Length=28 | DAL<S | SAL=3 | Destination |
L et T B B B B B Eoe e s et T
[Uestination continued | Source |
o T e T s T e o o o o T T
I Source continued | Internet Options I
e T L o B s et S
I Internet Options continued | Padding |
S T U T S S U BT S SR F R S e

Internet Packet Header Format
Mote that each tick mark represents one bit position.
Figure 4.3-1
Aboul Addresses:

An address is a variable length quantity (in multiples of octets). It is intended for the
first octet of an address to be interpreted as a network identifier, and that the rest of
the address identifies a host within that network. The address field is sllowed to be
even longer than lhal with the view that a hosl may multiplex between several
funclions, or further route messages based on the additional address bits.

If a host were to support two instances of TCP they could be essigned distinct
addresses by using an additional oclet of address beyond that nesded to identify
the host. Other examples of such processes are the XNET (cross-netwark
debugger) server process, the gateway control process, or the packet echoer

[Page 56] Cerf & Poslel

January 1978
TCP-3 Specification
TCP Design

process. There is also the possibility of plzcing anolher whole layer of addressing
hierarchy in this position.

The 8 bit network number, which is the tirst octel of the variable length address, has
a value as specified in RFC 739 [Postel77] In any case the latest information can
be obtained from Jon Postel,

Version: 4 bils

There Is a Version field which indicates the "shape”, or format, of the Internet
portion. This Is version 0. Subsequent versions may employ different formats.

TOS: 4 bits
Type of service. To be defined [ater.
Format: 8 bils

There Is a Format field which indicales the “"shape", or format, of the rest (Prolocol
Specific portion) of the packet is (examples of format values are TCP-3, TCP-4, DSP).
~ The format tield has values as specified in RFC 739 or ils successor. In any case the
’ latest information can be obfained from Jon Postel.

. Total Length: 16 bits

Total Length is the length of the packet in octels including Internet Header, Protocol
Specific Header {in our case TCP Header), and Data.

IH Length: 8 bits

Internet Header Length is the length of the Internet Header in octets, and thus points
to the beginning of the Protocol Specific (e.z. TCP) Header.

DAL: 4 bits
s Destination Address Length in octets.
SAL: 4 bits
Source Address Length in octets.
Destination: variable

The destination address, DAL oclels in length.

Cerf & Postel [Page 57]

January 1578
TCP-3 Specificalion
TCP Dacign

Source: variable

The source address, SAL oclets in length.
Internet Options: wvariahla

To be defined.
Padding: wvariable

Padding fields are used to ensure that the Protocol Specific (e.g. TCP) Header and the
Data begin on 32 bit word boundaries.

[Page 58] ' Cerf & Postel

January 1978
TCP-3 Specification
TCP Design

3.2 TCP Packel Format

In this section, we offer a terse descriptive summary of the contents of the TCP header.

S o [W WS W B Sl ST N S T SIS G AT SR S S SR B Y
| Sequence Number |
U T YN T VAN ST U T S Y S HY L SO QT SHGT SR S RIS SN SN A S S
I Acknouledgement Number]
T o T o T S B B s et T TR S
I % % % % % EABERSEFI |
I 3¢ % % % OCOoOO0OSYIll Window |
o % ® ® % % SKLLTNNI I
e I o T e e T T T o e S S T
I Destination Port |
e T ST AT T B R S M B e Tt
Source Port - |

T T B T o T o T O e e =
Data Offsat | Reserved | Checksum |
i e o B e e e T B e S
Urgent Pointerwy I Buffer Sizew I

O A R Y R AL T S S T ST ST ST P ST SGY T i ST S S W W S e B
TCP Options I Padding |
+

|

+

[y R« I o
£ m
nmom

R N R Ap—

T e o o = T B
| data .
e e T T T e e e e et e
TCP Header Format
Mote that one tick mark represents one bit position.
Figure 4.3-2.
MNote:
Fields marked with an asterisk are omitted if the corresponding conirol flag Is O.
Sequence Number: 32 bits
The sequence number of the firsl data octet in this packetl.
Acknowledgemenl Number: 32 bils

If the ACK conirol bit is set this field contains the value of the next sequence number
the sender of the packetl is expecting to receive.

Cerf & Postel [Page 59]

January 1978
TCP-3 Specification
TCP Design

Conlrol Bits: 16 bits (from left to right):

bLits B-5; unused

bit Bt URG: Urgent Pointer field present
bit 7: BSZ: Buffer Size field present
bit &: BOS: Beginning of Segment

bit 3: EOS: End of Segment

bit 18: ACK: Acknouledgnent field significant
bit 11: BOL: Begin of Letter

bit 12: EOL: End of Letter

bit 13: RST: Reset the connection

bit 14: SYN: Suynchronize seguence numbers
bit 15: FIN: No more data from sender

Window: 16 bits

The number of data octets beyond the one indicated in the acknowledgment field
which the sender of this packet is willing to accept.

Destination Port: 32 bits
Source Porl: 32 bils
Data Offsel: 8 bils

The number of octets in the TCP Header, This indicates where the data begins.

Checksum: 16 bits

The checksum field is the 16 bit one’s complemsnt of the one’s complement sum of
all 16 bit words in the header and text, except that unchecksummed option fields are
replaced with zeros in the computation (sez below). |i a packet contains an odd
number of header and tex! octets to be checksummed, the last octet is padded with
zeros to form a 16 bit word for checksum purposes, The pad is not transmitted as
part of the packet. :

Urgent Pointer: 16 bits

If this field is present then It communicatas the current value of the urgent pointer as
8 positive offset from the sequence number in this packel. This field should only be
sent in packets with the URG control bit set.

[Fage 60] Cerf & Postal

January 1978
TCP-3 Specification
TCP Dasign

Butfer Size: 16 bils

If this field is present then it communicates the receive buffer size for process at the
TCP which sends this packel. This field should only be sent In packets with both the
BSZ and S5YN control bits sel.

TCP Oplions: wvariable

Options may occupy space at the end of the TCP header, and are & multiple of 8 bits
in length. All options have the same basic format:

Option length: & bits

Length in octets (including the two octets of length and kind information)
Option kind: B8 bils

C: 1 bit

If set, thiz option is not included in the checksum calculation. That is, in the
default case (C=0) the option is included in the checksum.

P: 1 bit

If sel, this option is protocol specific (i.e. option is interpreted based on
format and version specified in the internet packet header fields).

Option identifier: 6 bits
There are {wo special cases for options.

The first is an option whose length field is zero. This marks the end of the
option list. Only one oclet is associated with this option, the length octet
ilself, -

The second Is an option whose length field is one. This option serves as
padding and is also one oclet long. This option does not terminate the option
list.

Nole that the list of oplions may be shorter than the header length field might
imply. No guarantees concerning the content of the header beyond the
end-of-oplion mark are made. The itwo special oplions are Included in the
checksum of the packet.

Cerf & Postel ' [Page 61]

TCP~3 Specification
TCP Dasign

January 1978

Currently defined oplions include (kind indicated in octal):

Kind Length
pe= gt
- 1

axx e

oo R

1XX —

188 —_—

181 &

182 [

183 2

22X .

288 -

284 variable

285 variable

3NN -——

ae4 B

Padding:

Meaning

End of option list {checksummed],
occupies one octet only

Padding (checksummed), occupies ons
octet only

Checksummed and protocol independent
Reserved

Checksummed, protocol dependent (TCP)
Reserved

Facket Label-sequence number far
debugging purposes.

Secure Open - used by TCP's
comnunicating with BCR securlty
sustem

Secure Close-used by TCP'se
communicating With BCR security

system

Mot checksummed and Protocol
independent

Reserved

Internetuork timestamp*field; used to

accundlate timestampirg information
during internet transit
Satellite timestamp field; (as above)

Not checksummed and protocol
dependent

Internal TCP timestamp for
diagnostics

Padding fields are used lo ensure that the protocol specific (e.g. TCP) header and the
data begin on 32 bit word boundaries.

[Page 62]

Cerf & Postel

January 1978

TCP-3 Specification
TCP Deslgn

4.3.3 Transmission Control Block

It is highly likely that any implementation will include shared data structures among parts
of the TCP and some asynchronous means of signalling users when lelters have been
delivered.

One typicel data structure is the Transmission Control Block (TCB) which is created and
maintained during the lifelime of a given connection. The TCB contains the following
information (field sizes and content are notional only and may wary from one
implementation to another):

Local connection name: 16 bits
Local socket: variable (fixed for any given TCP)
Local address: wvariable (fixed for any given TCP)
Local port: 32 bils
Foreign socket: variable
Foreign address: wvariable
Foreign porl: 32 bits
Eecq__ive window size in oclets: 16 bits
Receive left window edge (next sequence number expected): 32 bits
Send window size in octets: 16 bits
Send left window edge (earliesl unacknowledged octet): 32 bits
Next packet sequence number lo send: 32 bils

Last sequence number used to update send window (make sure that only the most
recenl window information is used: 32 bils

Send Buffer Size: 16 bils
Receive Buffer Size: 16 bits
Send Urgent Pointer: 16 bits
Receive Urgent Pointer: 16 bits

Cannection state: 4 bits

Cerf & Poslel [Page 63]

January 1978
TCP-3 Specification
TCP Design

See figure 4.2-1 for basic slate diagram,

CLOSED (0), OPEN (1), SYN-SENT (2), SYN-RECEIVED (3), ESTABLISHED (4),
CLOSE-WAIT (5), FIN-WAIT (&), CLOSING (7).

Foreign conneclion specification (UUNUT,UP): 4 bits

UN is set if the foreign nelwork was not specified in the OPEN command. U.T is
sel if the foreign TCP was nol specified in lhe OPEN command. UP is set if 1he
foreign Por! was not specified in the OPEN command. U is set if any of UN, UT,
or LLP are set. UT implies UP and UN implies both UT and UP (see section
2.20). UN, UT, and UP are used to remember the specificity of the foreign
socket at the initial OPEN so that a RST (reset) will return the foreign socket to ils
proper state. U is resel (i.e. made false) when a 5YN is received, but may be set
again on receipt of RS5T, depending upon UN, UT. or UP. Once in the
ESTABLISHED state, UN, UT, and UP can be reset, since the connection will not
return to OPEN on receiving RST after it has become ESTABLISHED.

Retransmission timeout: 16 bits

Head of Send buffer gqueuve [buffers SENT from user to TCPF, but not packetized]:
16 bits k

Tail ot Send buffer queue: 16 bils

Pointer to lasl octet packetized in partially packetized buffer (refers to the buffer at |
the head of the queue): 16 bits '

Head of Send packet queue: 16 bils

Tail of Send packet queue: 16 bils

Head of Packetized buffer queue: 16 bits

Tail of Packetized buffer quaué: 16 bits
Head of Retransmit packet queue: 16 bils

Tail of Retransmit packet queue: 16 bits

Head of Receive buffer queue [queue of buffers given by user to RECEIVE letlers, but |
unfilled]: 16 bits

Tail of Receive buffer queue: 16 bils

Head of Receive packel queue: 16 bits

[Page 64] Cerf & Postel

»

January 1978
TCP-3 Specification
TCP Design

Tail of receive packel queue; 16 bits
Pointer to last octet filled in receive bufier: 16 bils
Pointer to next octet to read from partly emptied packet: 16 bils

Mote; The above two pointers refer to the head of the receive buffer end receive
packel queues respectively.

Forward TCB pointer: 16 bils
Backward TCB pninluif: 16 bits
4.4 Structure of the TCP
4.4.1 Introduclion

Any particular TCP could be viewed in a number of ways. It could be implamentad es an
independenl process, servicing many user processes. It could be viewed as & set of
re-entrant library routines which share a common Interface to the local PSN, and common
buffer storage. It could even be viewed as a sel of processes, some handling the user,
some the input of packets from the net, and some the cutput of packels to the net.

We offer one conceplual framework in which to view the various algorithms that make up
the TCP design. In our view, the TCP is wrillen in two parls, an interrupt or signal driven
part {consisting of five processes), and a reentrant library of subroutines or sysiem calls
which inlerface the user process to the TCP. The subroutines communicate with the
interrupt part through shared data structures (TCBs, shared buffer queues elc.). The five
processes are the Oulput Packet Handler which sends packels to the packet switch; 1he
Packelizer which formals lellers into internet packets; the Input Packel Handler which
processes incoming packets; the Reassembler which builds leiters for users; end the
Retransmitter which retransmits unacknowledged packets.

NOTA BENE: This model is purely conceptual and not recomended for ény
conventional operating system with process swilch limes on the order of 1 ms.
Examples of such systems are: Mullics, TENEX, UNIX, and ELF.

As an example, we can consider whal happens when a user executes a SEND call to the
TCP service routines. The buffer to be sent is placed on a send buffer queue associaled
with the user's TCB. A "Packetizer" process is awakened to creale one or more outpul
packets from the buffer. The Packetizer attempls to maintzsin & non-emplty queue of
output packets so that the oulput handler wili not fall idle waiting for the packetizing
cperation.

A major implementation issue is whether to use TCP resources or user resources for

Cerf & Postel [Page 65]

January 1978
TCP-3 Specificalion
TCP Design

Incoming and oulgoing packets. |f the former, there is a fairness lssue, both among
competing connections and between the sending and receiving sides of the TCP.

When a packet is crealed, it is placed on a FIFQ send packel queue associated with its
TCB. The Packetizer wakes the Qutput Packet Handler and then continues ta packetize a
few more bulffers, perhaps, before going lo sleep. The OQutput Packet Handler is
awokened eilher by a "hungry" packel swilch or by the Packelizer. The send packet
queue can be used as & "work queue” for the Output Packet Handler. After a packet has
been sent, but usually before an ACK is returned, the Quipul Packel Handler moves the
packe!l to a retransmission queue assotialed with each TCB.

Retransmission timeouls can refer to specific packets, or the retransmission queue can
be periodically searched for the timed-oul packets. If an ACK is received, the
retransmission entry can be removed from the retransmit queue, The send packet queue
contains only packels waiting to be senl for the first time.

Simultaneous reading and writing of the TCB queue poinlers must be inhibited through
some sort of semaphore or lockout mechanism. When the Packetizer wants to serve the
next send buffer queue, it must lock out all other access to lhe queus, remove the head
of the queue (assuming of course that there are enough bufiers for packetization),
advance the head of the queue, and then unlock access to the queue.

Incoming packels are examined by the Input Packet Handler. Here they are checked for
valid connection sockels and acknowledgements are processed, causing packets to be
- removed, possibly, from the retransmit packel queue, as needed..

Packels which should bo reassembled into buffers and sent to users are queued by the
Input Packet Handler, on the receive packet queue, for processing by the reassembly
process, The Reassembler looks al its FIFO work gueue and irles to move packels into
user buffers which are queued up in an input buffer queue on each TCH. If a packel has
arrived out of order, it can be queued for processing in the correct sequence. Each time
a packet is moved.into a user buffer, the left window edge of the receiving TCB is moved
to the right so that outgoing packets can carry the correct ACK information. Il the send
buffer queus for the connection in guestion is empty, then the Reassembler creates a
packe! to carry the ACK. '

As packels are moved into buffers and there are filled, the buffers are dequeued from
the receive buffer queue and passed to the user. The Reassembler can also be awakened
by the RECEIVE user call should it have a non-empty receive packet queue with an empty
receive buffer queus,

[Page 66] Cerf & Postel

January 1978
TCP-3 Specification
TCP Dasign

4.4.2 Input Packet Handler

The Input Packe! Handler is awakened when a packet arrives from the network. It first
verifies that the packel is for an existing TCE (i.e. the local and foreign sockel numbers
are matched with those of exisling TCSs). If this fails, 2 "resel” message is constructed
and sent to the point of origin.

The Input Packet Handler looks out for control or error informalion and acts
appropriately. As an example, if the incoming packel is a RS5T (reset) request, and is
"believable”, then the input packet handler clears out the related TCB, emplies the
associated send and receive packet queues, and prepares error relurns for outstanding
user SEND(s) and RECEIVE(s) on lhe reset TCB, The TCB is marked unused and returned
to storage. If the RST refers to an unknown connzction, it is ignored.

Any ACKs contained in incoming packets are used to updzte the send left window edge,
and to remove the ACKed packets from the TCB retransmil packet gueue. If the pachet
being removed was the end of a user buffer, then the buffer must be dequeued from the
packetized buffer queue, and the user informead.

The packel sequence number, the current receive window size, and the recsive Ieit
window edge determine whether the packet lies within the window or outside of it.

Let W = window size
S = size of sequence number space
L = left window edge
R = L+W = right window edge
¥ = sequence number o be tested
For any sequence number, ¥, if
. 0 <=(x-L) mod S < {R-L) mod § = W (4.4-1)
then % is within the window,

A packet should be rejected only if all of it lies outside the window. This Is easily tested
by letting % be, first the packet sequence number, and then the sum of packet sequence
number and packel length, less one in equation 4.4-1 above.

The other case to bc checked occurs when the packet has both head end tail outside of
the receive window, bul Includes the window.

- Let PL = packet length

Cerf & Postel ' [Page 67]

January 1978

TCP-3 Specificalion
TCP Dasign

LR are as before
H = first sequence number in packet
T=H=+PL-1 = last sequence number in packet

For sny packel ranging over sequence numbers [H,T], if

O<=L-H<PL
and
O<=R-H=<PL (4.4-2)

then the packetl includes the receive window,

If the packel lenglh is zero (e.g, an ACK packel), tests should be performed as if the
packel lenglh were ona lo accommodate the case when the receive window is zero.

If the packel lies outside the window, and there are no packels wailing to be seni, then
the Input Packet Handler should construct an ACK of the current receive left window
edge and queue it for oulput on the send packet queue, and signal the Output Packet
Handler. Successfully received packels are placed on the receive packet qusus in the
appropriate sequence order, and the Reassembler is signalled,

The packel window check can not be made if the associated TCB has not received a SYN,
so care must be taken lo check for control and TCB state before doing the window
check,

.43 Reassembler

It is possible thal fragmentation of segments may be removed from responsibility of TCP
and placed al the gateway level only. That decision has not been made as yet so we
include the following discussion of fragment reassembly.

The Reassembler process is activated by both the Input Packet Handler and the RECEIVE
user command. When the Reassembler is awakened il looks al the receive packet queue
for the associated TCE. If there are some packets there, then it sees whether the receive
buffer queue is empty. If it is, then the Reassembler gives up on this TCB and goes back
to sleep; otherwise, if the first packet matches the leit window edge, then the packet can
be moved into the user’s buffer. The Reassembler keeps transferring packets into the
user’s buffer unlil the packet is empty or the buffer is full. Note that a buffer may be
partly filled and then a sequence “hole” be encountered in the receive packel queue, The
Reassembler must mark progress so that the buffer can be filled up starting at the right

[Page 68] Cerf & Postel

Japuary 1978
TCP-3 Specification
TCP Dacsign

place when the "hole" is filled. Similarly a packet might be only parlially emplied when a
buffer Is filled, so progress In tho packel mus} be mzrked.

If a letler was successfully transferred to a ussr buffer, then the Reassembler signals the
user that a letter has arrived and dequeues the buffer associated with it from the TCB
receive buffer queue. if the buffer is filled, then the user is signaled and the buffer
dequeued as before. The event code indicates whethsr the buffer contains all or part of a
letter, as described in section 2.4,

Of course, the sequence number processsing is adjusted to take into account the EOL
as indicated in section 4.2.6.

In every case, when a packet is delivered to 2 buffer, the receive left window edge is

- updaled, and the Packelizer is signaled. If the send packet queus is emply, then the
Reassembler must create a packet to carry the ACK end place it on the send paczket
queue,

Reassembly of incoming packels containing both the beginning and end-of-segment
marks (BOS, EOS; sec section 1.3.2) is straightforward. The packel checksum is intac!
in the packel header and can be used to validate the end-to-end correctness of the data.

Arriving packets with only one or neither bit set are fragments created at a gateway, The
intent behind the TCP design is to preserve the end-to-end nature of the checksum and
acknowledgement procedure, even in the presence of fragmentation. To achieve this
goal, fragments must be reassembled into segmenis and checksummed. This means, in
parlicular, that the original segment header must be reconstructed.

Gateway fragmentation is straightforward. For instance, a packet consisting of sequence
numbers 100-599 can be fragmented inlo two packels of 250 oclels each (including
control). The gateway uses figure 0.1-3 to determine which sequence-consuming control
flags to set in each fragmenl header. In the worst case, suppose both sequence-bearing
control bits are set (e, SYN and FIN), leaving 498 octets of data. A gateway could
produce two fragments, lhe first beginning with sequence number 100 and including
SYN, and up to and including data sequence 349, BOS would be set, along with ACK
and the window field. The checksum field would be zero.

The second packet would contain data ssquences 350-598 and control FIN, as well as
EQS, and a checksum {for the original segmant - it is nol recomputed). The ACK and
window fields are duplicales of those in the first fragment,

If EQOL is present in the original packet, it is carried only in the last fragment produced.
Note that a segment can be divided inte more than twa fragments, end that a fragment
can also be divided. The BOS bil stays with the first fragment, even If that fragment is

Cerf & Poslel [Page 69]

January 1978

TCP-3 Specificalion
TCP Design

subdivided later. Thc EQS and EOL bits stay with the last fragment. Intermediate
fragments may not carry any of BOS, EOS, or EOL.

During reassembly of a segment, it may happen that fragments arrive with sequence
number exlents which owverlap (duc to alternate gateway rouling and different
fragmentation). This makes the job of reassembling fragments more difficull, but not
impossible. Although it is not part of the current specification, it may be useful for
gatleways to produce a fragment checksum in addition to passing the segment checksum
intact. In this way, a bad fragment is less likely to mess up reassembly of a segment.

Gateway fragmenlation rules may require modification or augmentation to deal with
option tields in packet headers. It is generally true that options tend to stay with the
fragment marked "B0OS",

The rules of packet retransmission require that retransmitted packets contain the latest
ACK and window information available. This means that a duplicate of a segment, if
fragmented, may have a different checksum than earlier copies. To assure thal segment
reassembly is not frustrated by this effect, thé ACK and window information used lo
validate the reassembled checksum should be taken from the packet containing the
checksum (i.e., the fragment marked "EQS").

4.4.4 Packetlizer

The Packetizer p,ocess gels work from both the Input Packet Handler and the SEND user
call. The signal from the SEND user call indicates that there is something new to send,
while the one from the Input Packet Handler indicates that more TCP bulfers may be
available from delivered packels,

When the Packelizer is awakened il looks at the send buffer queue for the assoclated
TCB. If there is a new or partial letter awaiting packetization, it tries to packetize the
letter, TCP buffers and window permitting. For every packet produced it signals the
Output Packet Handler (to prevent deadlock in a time sliced scheduling scheme). If a
'run to complelion® scheme is used then one signal only need be produced, the first time
a packet is produced since awakening. If packetization is not possible the Packelizer goes
to sleep.

If a partial buffer was transferred then the Packetizer must mark progress in the send
buffer queue. Complctely packetized buffers are dequeued from ihe send buffer queue
and placed on a packelized buffer queue, when an ACK for the last bit is received the
send buffer is returned to the user.

A SYN must logically precede the first data transmitted on a connection. When the
Packelizer packetizes a letter it must see whether it is the first piece of data being sent
on the connection, in which case it must include the SYN bit, or cause a SYN packet to

[Page 70] _ Cerf & Postel

January 1978
TCP-3 Specification
TCP Design

be sent before the data packet. Some implzmentations may choose not to send data
with SYN, and some may choose to discard any data received with SYN.

4.45 Qulpul Packel Handler

When activated by the Packetizer, or the Imput Packet Handler, or some of the user call
routines, the Qulput Packet Handler attempls to transmit packels to the network (lhis
may involve going through some other network interface program). Transmilted packets
are dequeuved from the send packel queue and put on the retransmit queue along with
the time when they should be retransmitted.

All data packels that are (reMransmitted have the latest receive left window edge in the
ACK field. Some error messages may set the ACK field to refer lo a received packel’s
sequence number,

4.4.6 Reltransmitter

This process can either be viewed as a separate process, or as part of the Output Packet
Handler. Its Implementation can wvary; it could either perform its function by being
awakened al regular intervals, or whan the reiransmission lime occurs far every packel
put on the retransmit queue, In the first case the retransmit queue for each TCB is
examined to see if thore is anything to retransmil, If there is, 2 packel is placed on the
send packel qusus of the corresponding TCH3. The Qulput Packel Handler is also
signaled.

A "demon" process monilors all user send buffers and retransmiltable control messagss
senl on each connection, but not yet acknowiedzed. If the global retransmission timeout
is exceeded for any of thess, the user is notified and the connection aborted.

Mote that, since relransmitted packets carry the latest receive left window edge and
acknowledgement information, the checksum may require recomputation.

4.5 Buffer end Window Allocation
45.1 Introduction

The TCP mansges buffer and window allocation on conmections for two main purposes:
equitably sharing limited TCP buffer space among all connections (multiplexing function),
and limiting atlempls to send packets, so that ihe receiver is not swamped (flow control
function), For further details on the operation znd advantages of the window mechanism
ses [CK74]

Good allocation schemes are one of the hardest problems of TCP design, and much
experimentation must be done to develop efficient and effectiva algorithms, Hence the
following suggestions are merely initial thoughts. Different implementations are

Cerf & Postel [Page 71]

January 1978
TCP-3 Specification
TCP Daesign

encouraged with the hope that results can be compared and better schemes developed.
For commenils on some allocation policies and other factors effecting communication
performance see [GRP77, Sunshina? 7cl.

4.5.2 The S5END Side

The window is determined by the receiver, Currently the sender has no control over the
send window size, and never transmits beyond the right window edge. An exceplion is
made in the case of a zero send window when It is necessary to periodically retransmit to
poll for a window opening ACK. '

Buffers must be allocated for outgoing packets from a TCP buffer pool. The sending
TCP may nol be willing to allocate a full receiver’s window’s worth of buffers, so buffer
space for a connection may be less than what the window would permil. No deadiocks.
are possible even if there is insufficient buffer or window space tor one letter, since the
receiver will ACK parts of letlers as they are put into it's user’s buffer, thus advancing
the window and frecing buffers for the remainder of the letter.

It is not mandatory that the TCP buffer outgoing packels unlil acknowledgements for
them are received, since it is possible to reconstruct them from the actual buffers sent
by the user. However, for purposes of retransmission and processing efficiency it is very
convenient to do,

45.3 The RECEIVE Side
At the receiving side there are two requirements for buffering:
(1) Rele Discrepancy:

If the sender produces data much faster or much slower than the receiver consumes
it, little buffering is needed to maintain the receiver al near maximum rate of
operalion. Simple gqueueing analysis indicales that when the production end
consumptlion (arrival and service) rales are similar in magnitude, more buffering is
needed to reduce the effect of slochastic or bursty arrivals and to kesp the receiver
busy.

{2) Disorderly Arrivals;

When packels arrive oul of order, they must be buffered until the missing packels
arrive so thal packets (or letters) are delivered in sequence. We do nol advocate the
philosophy that they be discarded, unless they have to be, lest a poor effective
bandwidth may be observed. Path length, packel size, traffic level, routing, limeouts,
window size, and other factors may affect the degree to which packets arrive out of
order.

[Page 72]) ' Cerf & Postel

January 1978
TCP-3 Specification
TCP Design

The consideralions for choosing an appropriate window are as follows:

Suppose thal the receiver knows the sender's retransmission limeout, K. This is
usually close to the round trip transmission lime. Suppose also lhat the receiver’s
acceplance rate is U bitsfsec, and lhe window size is W bits. lgnoring line errors end
other traffic, the sender transmits at a rate between W/K and the maximum line rate.
The sender is permilied by the protocol lo send al most a window's worth of dsis
each timeout period.

f W/K is greater than U the difference must be retransmissions, which are
undesirable, so the window should be reduced ta W', such that W'/K is approxima'ely
equal to U, This may mean that the enlire bandwidlh of the transmission channel is
not being used, but it is the faslest rate at which the receiver is accepling daia, ana
the line capacity is free for other users. This is exaclly lhe same as the case wheve
the rates of the sender and receiver are almost equal, and so more buffering is
needed. Thus we see thal line utilization and retransmissions can be lraded =ii
apainst buffering.

Il the receiver does nol accept data fast emough (by nol performing sufficient
RECEIVEs) the sendar may continue retransmitling since the unactepled data will nei
be ACKed. In this case the receiver should reduce the window size to "throltle” the
sender and inhibit useless retransmissions.

Limited experimentalion, simulation, and analysis with buffering and window allocation
sugpests that the receiver should set aside buffer space lo accommodale any window
sent to the sender. Any atlempls at optimislically selting a large window with inadequale
buffer appears lo lead lo poor bandwidlh owing to occasional (or frequent) discarding of
arriving packels for which no buffers are available. Theorelically, seleclion of the ratio of
window size granied to buffer store reserved should be equivalent to the selection of a
buffer size for a stalistical multiplexor.

If the user at the receiving side is not accepting data, the window should be reduced to
zero. In parlicular, if all TCP incoming packel buffers for a connection are filled with
received packels, the window musl go lo zero to preven! retransmissions until the user
accepls some packets,

Setling the receive window to zero can have some inleresling side effecls. In particular,
it is not enough to merely send an emply ACK packel wilh the newly non-zero window,
when the window is re-opened. If the ACK is lost, the other TCP may never transmit
again, (ACKs cannof be refransmitted since lhey cannol, themselves, be ACKed as we
would not know when to stop retransmitling). A TCP should therefore continue to send
dala (retransmissions) even when faced wilh 2 zero window, albeit al a low rale. Design
and discussion of several mechanisms have led to the belief that this is the simplest and
least costly solution to the zero window problem.

Cerf & Postel [Page 73]

January 1978
TCP-3 Specification
Bibliography

[Page 74] Cerf & Postel

January 1978
TCP-3 Specificalion
Bibliography

BIBLIOGRAPHY

Notes of Working Group 6.1 of the International Federation of Information Processing, [also
known as the International Netwoerk Woerking Group or INWG], are available through its
chairman,

Mr. Derek L. A. Barber,
Project EIN,

National Physical Laboratory,
Teddingtan, Middlesex, England.

Readers interested in a rich source of reference to the literature on resource sharing networks
ere urged to consult NBS special publicalion 384:

Helen M. Wood, Shirley Ward Watkins, Ira W. Cotton

Annotated Bibliography of the Literature on Resource Sharing Networks
National Bureau of Standards Special Publication 334

Institute for Computer Sciences and Technology

Revised 1976

available from

Superintendent of Documents
U. 5. Government Prinling Office
Washington, D.C. 20402
order by SD Calaiog No, C13.10.384/rev
Stock No. 003-003-01670-5, §2.45
Special collections of papers on related subjects may bz found in:

1. Wesley Chu (Ed.), Advances in Computer Communications, Artech House, 1976
(revised).

2. Robert Blanc and Ira Cotton (Eds.), Computer Networking, IEEE Press, New York, 1976.
AR76

D. Aitwyver, A. M. Ryhczynski, "Datapac Subscribzr Interfaces,” Proceedings of ICCC76, p.
143-149,

Barber76

Derek L.A. Barber, "A European Informatics Network,” Proceedings of ICCC76, p. 44-50

Cerf & Postel [Page 75]

January 1978

TCP-3 Specificalion
Bibliography

BBN1822

Bolt Beransk and MNewman, "Specification for the Interconnection of a Host and an IMP,”
BBN technical Report 1822, January 1976 (Revised).

Belsnes74

Dag Belsnes, "Nole on Single Messags Communication,” INWG Prolocal Note 3, IFIP
Working Group 6.1, September 1974.

Belsnes744

D. Belsnes, "Flow control in packet switching networks,” IMTG Note 63, IFIP Working
Group 6.1, October 1974.

BLSS

Jerry D. Burchfiel, Elsie M. Leavill, Sonya Shapiro, Theodore R. Strollo, TENEX USERS’
GUIDE, Bolt Beranek and Nowman, Inc.,, Cambridge, MA, January 1975.

BLW74

Richard Binder, Wai Sum Lai, Morris Wilson, "The Alohanel Menehune - Version I," The
Aloha System Technical Report B74-6, University of Hawaii, Seplember 1974.

"BPT76

Jerry D. Burchfiel, William W. Plummer, Raymond S. Tomlinson, "Proposed Revision to the
TCPR," INWG Protocol Note 43, IFIP W.G. 6.1, September 1976.

Bright75

Roy D. Bright, "Experimental Packet Swilch Project of the UK Post Office, "In Computer
Communication Networks, Grimsdale and Kuo, Editors, NATO Advanced Studies Institute
Series, 15-4, Noordhoff International, Leyden, Netherlands, 1975, pp 435-444.

BTB

Jorry D. Burchfiel, Raymond S. Tomlinson, Michazl Beeler, "Functions and Structure of a
Packet Radio Station," AFIPS Proceedings, wvolume 44, 1975, National Computer
Conference, (Anaheim, CA, May 19-22, 1975), AFIPS Press, Monltvale, NJ, 1975, p.
245-251. ;

[Page 76] Cerf & Postel

January 1978

TCP-3 Specification
Bibliography

BW?72

Roberl Bressler and David C. Walden, "A proposed Experiment with a Message Switching
“Protocol,” ARPA RFC 333, NIC 9926, Augmentalion Ressarch Center, Stanford Research
Institute, Menlo Park, CA,, May 1972,

Cashin76
P.M. Cashin, "Datapac Network Prolocols,” Proceedings of ICCC78, P. 150.
CCC70

Stephen Carr, Stephen D. Crocker and Vinton G. Cerf, "Host-Host Communication Protocol
in the ARPA Network,"” AFIPS Proceedings, 1970 Spring Joint Computer Conference,
volume 36, {(Atlantic City, NJ, May 5-7, 1970), AFIPS Press, Montvale, NJ, 1970, p.
5589-598,

cDs74

Vinton G. Cerf, Yogen K. Dalal, Carl Sunshine, "Specification of Internet Transmission
Control Program," INWG General Note 72, IFIP Working Group 6.1, December 1974,

CEHKKS77

Vinton G. Cerf, Stephen Edge, Andrew Hinchley, Richard Karp, Peter T. Kirstein, Paal
Spilling, "Final Repor! of {he Internetwork TCP Project,” to appear.

Cerf74

Vintlon G. Cerf, "An Asscssment of ARPAMNET Protocols,” The Second Jerusalem Conference
on Information Technology, (Jerusalem, Israel, July 29-August 1, 1974), p. 653-664 {also,
INWG General Note 70, IFIP W.G. 6.1, July 1974 and in Network Systems and Software
Infotech State of the Art Report 24, Infolech Information, Lid, Nicholson House,
Maidenhead, Berkshire, England, 1975.)

Cerf76

Vinton G. Cerf, "SCCUfMCCU Characteristics for AUTODIN Ii," Digital Syslems Laboratory
Technical Note 92, Stanford University, July 1976.

Cerf76a

Vinton G. Cerf, "TCP Resynchronization," Digital Systems Lab Technical Note 79, Stanford
University, January 1976.

Cerf & Postel [Page 77]

January 1978

TCP~-3 Specification
Bibliography

Cerf7€b

Vinton G. Cerf, "ARPA Internelwork Protocols Projects, Status Reporl, for the period
November 15, 1975 - February 15, 1976," Digital Systems Laboratory Technical Note 83,
Stanford University, February 1976.

Cert?7

Vinton G. Cerf, "Specificalion of Internet Transmission Control Program - TCP (Version 2),"
March 1977. '

CGN76

W. W. Clipsham, F. E. Glave, M. L. Narraway, "Datapac Network Overview,” Proceedings of
ICGC?E- P.- 131-1361

CHMP72

Stephen D. Crocker, John F. Heafner, Robert Metcalfe and Jonathan B. Postel,
"Function-Oriented Protocols for the ARPA Computer Network, AFIPS Proceedings, 1872
Spring Joint Computer Conference, volume 40, {Atlantic Cily, NJ, May 16-18, 1972), AFIPS
Press, Montvale, NJ, 1972, p. 271-279,

CK74

Vintlon G. Cerf and Robert E. Kahn, "A Protocol for Packet Network Intercommunication,”
IEEE Transactions on Communications, volume COM-22, No. 5, May 1974, p. 637-648.
(An early version of this paper appeared as INWG General Note 39, IFIP Working Group 6.1,

September 1973).

CMS5Z75

Vinton G. Cerf, Alexander McKenzie, Roger Scantlebury, Huberl Zimmermann, "Proposal for
an Internetwork End to End Protoesl," INWG General Note 96, IFIP W.G. 6.1, Seplember
1975 (also in ACM SIGCOMM Quarterly Review Vol. 6, No. 1, Jan 1976.) p. 63-89

Cs74

Vinton G, Cerf and Carl Sunshine, "Prolocols and Gateways for the Interconnection of
Packel Switching Networks,” The Aloha System Technical Report CN 74-22, Proceedings of
the Seventh Hawaii International Conference on Systems Sciences, University of Hawaii,
{Honolulu, Hawaii, January 8-10, 1974).

[Page 78] - Cerf & Postel

January 1978
TCP-3 Specification
Bibliography

Dalal74g

Yogen K. Dalal, "More on Selecting Sequence Numbers, " INWG Prolocol Note 4, IFIP
Working Group 6.1, August 1974, Also in Proceedings of the ACM SIGCOMM/SIGOPS
Interprocess Communications Workshop, (Santa Monica, CA, March 24-25, 1975), and
ACM Operaling Systems Review, Volume 9, Number 3, July 1975, Associalion for Compuler
Machinery, New York, 1975,

Dalal75

Yogen K. Dalal, "Establishing a Connection,"INWG Protocol Note 14, IFIP Working Group
6.1, March 1975,

Danthine75

Andre Danthine and E. Eschenaver, “Influence on the MNode Behavior of the Node-to-Node
Protocol,” Proceedings, Fourth Data Comm. p 7-1 to 7-8.

Davies?1

Donald W. Davies, "The Conltrol of Congestion in Packet Switching Metworks,” Peter E.
Jackson, proceedings, ACM/IEEE Second Symposium on Problems in the Oplimization of
Dala Communication Systems, (Palo Alto, CA. October 20-22, 1971), IEEE (at -71C59-C, p.
46-49.

DCA75

System Performance Spccification for Autodin I, Phase 1, Defense Communications Agency,
Defense Communicalion Engineering Center, November 1975,

DCA76

Elizabeth Feinler and Jonathan B. Poslel, ARPANET Protocol Handbook, Network Information
Center, Stanford Research Instilute, Menlo Park, CA, April 1976,

DDLPR76

A, Danet, R. Despres, A. LeResl, G. Pichon, S. Ritzenthaler, "The French Public Packet
Switching Service: the TRANSPAC Network," Proceedings of ICCC76, p. 251-260.

Cerf & Postel : ' [Page 79]

January 1978

TCP-3 Spetification
Bibliography

DHMMW?Z 4

W. Crowther, F. Hearl, A. McKenzie, J. McQuillan, D, Walden, Nelwork Design Issues, Bolt
Beranek and MNewman, Inc. Technical Report No. 2918, November 1974 (also, INWG
General Note 64, IFIP Working Group 6.1, October 1974; ARPA MNeiwork Measurement Note
26, Network Measurement Group, Oclober 1974),

FG75

Stanley C. Fralick and James C. Garrell, "Technological Consideralions for Packet Radio
Networks,” AFIPS Procecdings, volume 44, 1975, National Compuler Conference,
{Anaheim, CA, May 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 233-243.

FGS575

Howard Frank, Israel Gitman, Richard wan GSlyke, "Packet Radie System - Network
Considerations,” AFIPS Proceedings, volume 44, 1975, Nalional Compuler Conference,
(Anaheim, CA, May 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 217-231.

G575

M. Gien and R. Scantlebury, "interconnection of Packet Switched Networks, Theory and
Praclice,” proceedings of European Computing Conference on Communication Networks,
EUROCOMP, pp. 411-260, Brunel University, Online Conferences Lid, Uxbridge, England,
Scptember 1975, ;

GRP77

L. Gerlick, R. Rom, and J Postel, "Reliable Host-to-Host Protocols: Problems and
Techniques,” proceedings of the Fifth Data Communicalions Symposium, {Snowbird, Utah),
ACM and IEEE, pp. 4.58-4.65, September 1977,

HKOCW70

Frank E. Hearl, Robert E. Kahn, S. M. Ornstein, William R. Crowther, and David C. Walden,
"The Interface Message Processor for the ARPA Computer Network,” AFIPS Proceedings,
1970 Spring Joint Compuler Conference, volume 36, (Atlantic City, NJ, May 5-7, 1970),
AFIPS Press, Montvale, N, 1970, p. 551-567.

[Page 80] | Cerf & Postel

January 1978
TCP-3 Specification
Bibliography

Kahn73

Robert E. Kahn, "Slalus and Plans for the ARPANET,” Martin Greenberger, Julius
Aronofsky, James L. McKenney, William F. Massy, Nelworks for Research and Education:
Sharing Computer and Information Resources Nationwide, MT Press, Cambridge, MA,
1973, p. 51-54,

Kahn75

Robert E. Kshn, "The Organization of Computer Resources into & Packst Radio Network,"
AFIPS Proceedings, volume 44, 1975, National Computer Conference, (Ansheim, CA, Mav
' 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 179-186.

Karp73

Peggy M. Karp, "Origin, Development and Current Status of the ARPANET,” COMPCON7I -
Seventh Annual IEEE Compuler Society International Conference, Digest of Papers,
"Compuling Networks from Mini's to Maxi’s - Are They for Real?” (San Francisco, Ca&,
February 27-28, March 1, 1973), Institute of Elzctrical and Electronic Engineers, Inc., New
York, 1973, p. 49-52.

KC71

Robert E. Kahn, William R. Crowther, "Flow Control in a Resource-Sharing Computer
Network," Peter E. Jackson, Proceedings, ACM/IEEE Second Symposium on Problems In the
Oplimization of Data Communication Syslems, (Palo Alto, CA. Oclober 20-22, 1971},
1971, IEEE (AT-71C559-C, p. 108-116.

Kleinrock74

Leonard Kleinrock and William E. Naylor, “On Meoasured Behavior of the ARPA Network,
AFIPS Proceedings, National Computer Conference, Volume 43, (Chicago, IL, May 6-10,
19748), AFIPS Press, Montvale, NJ, p. 767-780.

Kleinrock75

Leonard Kleinrock and Haolger Opderbeck, "Throughpul in the ARPAMET - Protocols and
Measurement," Proceedings, Fourth Data Communications Symposium, (Quebec City,
Canada, 7-9 October 1975), p. 6-1 to 6-11.

Kleinrock76

Leonard Kieinrock, William E. Naylor, Holger QOpderbeck, "A Study of Line Overhead in the
ARPANET,” Communications of the ACM, Vol 19, No. |, p. 3.

Cerf & Postel [Page 81]

January 1978

TCP-3 Specificalion
Bibliography

LGK75

David Lioyd, Martine Galland, Peter T. Kirstein, "Aim and Objectives of Internetwork
Experiments,” INWG Experiments Note 3, IFIP Working Group 6.1, February 1975.

Mathis76

James E. Mathis, "Single-Connection TCP Specification,” Digital Systems Laboratory
Technical Note 75, Stanford University, January 25, 1976. ;

MB76

Robert M. Melcalfe and David R. Boggs, "Ethernet: Distributed Packet Swilching for Local
Computer MNelworks,” Communications of the ACM, Volume 19, No. 7, July 1976, p.
395-404.

MCCW72

John M. McQuillan, William R. Crowther, Bernard P. Cosell, David C. Walden, Frank E. Heart,
“Improvements in the Design and Performance of the ARPA Network, "AFIPS Proceedings,

Fall Joint Compuler Confcrence, Volume 41, p. 741-754,

McKenzie73

. A. McKenzie, "Host-Host Protocol for the ARPANET," NIC 8246, Stanford Research
Institute [also in ARPANET Protocols Notebook NIC 7104].

McKenzie7da

Alexander McKenzie, "Some Compuler Network Interconnection lssues,” AFIPS Proceedings,
National Computer Conference, Volume 43, (Chicago, lll, May 6-10, 1974), AFIPS Press,
Montvale, NJ, p. 857-859,

McKenzia7db

Alexander McKenzie, “Internetwork Host-to-Host Protocol,” INWG General Note 74, IFIP
Working Group 6.1, December, 1974,

McQuillan75

John M. McQuillan, "The Evolution of Message Processing Technigues in the ARPA
Network,” Network Systems and Software, Infotech State of the Art Report 24, Infolech
Information, Ltd,, Nichalson House, Maidenhead, Berhshire, England, 1975.

[Page 82] Cerf & Postel

January 1978
TCP-3 Specificalion
Bibliography

MPT74

Eric R. Mader, William R. Plummer, Raymond 5. Tomlinson, "A Prolocol Experiment,” INWG
Experiment Note 1, IFIP Working Group 6.1, August 1974,

NAC73

Network Analysis Corporalion, ARPANET: Design, Operation, Manageman! end Performance,
Network Analysis Corporation, Glen Cove, NY, April 1973,

OK74

Holger Opderbeck and Leonard Kleinrock, "The Influence of Contrel Procedures on ths
Performance of Packet-Switched Networks, "NMational Telecommunicalions Conference, Zan
Diego, California, December 15974.

PGR76a

Jonathan B. Poslel, Larry L Garlick, Raphzsl Rom, Transmission Control Protocol
Specification, Augmentation Research Center, Stanford Research Instilule, Menlo Park, CA,
15 July 1976.

PGR76b

Jonathan B. Postel, Larry L. Garlick, Raphacl Rom, Terminal-lo-Host Protocol Speclification,
Augmentation Research Center, Stanford Research Institute, Menlo Park, CA., 15 July 1976.

Postel72

J. Postel, "Official Initial Conneclion Protocol,” Current Network Protocols, Network
Information Cenler, Stanford Research Institute, Menlo Park, California, January 1972 (NIC
7101),

Postel77

J. Postel, "Assigned MNumbers,” RFC 739, NIC 42341, USC--Informalion Sciences Institute,
Marina del Rey, California, 11 November 77.

Pouzin73

Louis Pouzin, "Interconnection of Packet Switchinz Nelworks,” INWG General Note 42, IFIP
Working Group 6.1, October 1973,

Cerf & Poslel . [Page 83]

January 1978

TCP-3 Specification
Bibliogrephy

Pouzin/3a

Louis Pouzin, "Presentation and major design aspects of the CYCLADES Computer
Network,” Data MNetworks: Analysis and Design, Third Data Communications Symposium, St.
Petersburg, Florida, November 1973, pp. 80-87, Also in: Grimsdale and F. Kuo eds,
Computer Communication Networks, NATO Advanced Studies Institute Series, E-4,
Noordhoff, Leyden, Netherlands, 1975, pp. 415-434,

Pouzin/da

Louis Pouzin, "A Proposal for Interconnecting Packet Switching Networks,” INWG General
Note 60, IFIP W.G. 6.1, March 1974. (also in proceedings of EUROCOMP, Brunel
University, May 1974, p. 1023-1036).

Pouzin74b

Louis Pouzin, "Cigale, the Packet Switching Machine on the CYCLADES Computer Network,”
Jack L. Rosenfeld, Information Processing 74, proceedings of the IFIP Congress 1974,
Computer Hardware and Architecture Volume, (Stockholm, Sweden, Auguslt 5-10, 1974),
American Elsevier Publishing Co,, Inc.,, New York, 1974, p. 2155-158,

Retz75

David L. Relz, "ELF - A System for Network Access,” 1975 IEEE Inlercon Conference
Record, (New York, April 8-10, 1975), Institute of Electrical and Electronic Engineers, Inc,
New York, 1975, p. 25-2-1 lo 25-2-5,

Roberts?76

Lawrence G. Roberls, ‘International Interconnection of Public Packet Networks,”
Proceedings, International Conference on Computer Communication, (Toronte, Ontario,

Canada, August 1976), p. 239-245,

RW70

Lawrence G. Roberts and Barry D. Wessler, "Computer Network Development to Achieve
Resource Sharing," AFIPS Proceedings, 1970 Spring Joint Computer Conference, wvolume
36, (Atlantic City, NJ, May 5-7, 1970), AFIPS Press, Montvale, NJ, 1970, p. 543-549.

RW73

Lawrence G. Roberis and Barry D. Wessler, "The ARPA Net," Norman Abramson and
Franklin F. Kuo, Computer-Communication Networks, Prentice-Hall, Inc., Englewood Cliffs,

NJ, 1973.

[Page 84] ' Cerf & Postel

January 1978
TCP-3 Specification
Bibliography

Schantz74

R. Schantz, "Reconnection Protocol", privale communication; available from Schantz at
BEM.

SH75

Adrian V. Stokes and Peter L. Higginson, "The Problems of Connecling Hosts into
ARPANET," Proceedings of the European Conference on Communication Networks,
September 1975, On-line Conferences, Ltd,, Oxbridge, England, p. 25-34.

Sunshine75

Carl Sunshine, "Issues in Communication Protocol Design - Formal Correctness,” INWG
Prolocol Note 5, IFIP Working Group 6.1, October 1975, Also in Proceedings of the ACM
SIGCOMM/SIGOPS Interprocess Communications Workshop, (Santa Monica, CA, March
24-25, 1975),

Sunshine76a

Carl Sunshine, Interprocess Communication Protocols for Compuler Networks, Stanford
University (Ph.D. Dissertation), 1976.

Sunshine76b

Carl Sunshine, "Interconnection of Compuler Networks,” Computer Networks, Vol. 1, NO. 3,
January 1977, pp. 175-195.

Sunshine76c

Carl Sunshine, “Efficiency of Interprocess Communication Protocels for Computer
Networks,” Transaclions of the IEEE on Communications, February 1977, pp, 287-293.

SW71

R. Scantlebury and P.T. Wilkinson, "The Design of a Swilching System to allow remote
Access to Compuler Services by olher computers and Terminal Devices,” Second
Symposium on Problems in the Optimization of Data Communication Systems Proceedings,
Palo Alto, California, October 1971, pp. 160-167.

Cerf & Postel [Page 85]

January 1978

TCP-3 Specification
" Bibliography

Temlinson74d

Raymond 5. Tomlinson, "Selecting Sequence Mumbers," INWG FProtocol Note 2, IFIP
Working Group 6.1, August 1974, Also in Proceedings of the ACM SIGCOMM/SIGOPS
Interprocess Communications Workshop, {Santa Monica, CA, March 24-25, 1975), and
ACM Operaling Syslems Review, Volume 9, Number 3, July 1975, Association for Computer
Machinery, New York, 1975,

Tomlinson77

Raymond 5. Tomlinson, "Proposal for TCP 3" ARPANET message - number
<[BBN-TENEXA]12-0ct-77 11:59.Tomlinson>, October 1977.

Walden72

David C. Walden, "A System for Interprocess Communication in a Resource Sharing
Computer Network,” Communications of the ACM, Volume 15, lssue 4, April 1972, p.

221-230.
WR75

D. C. Walden and R. C. Rettberg, "Gateway Design for Computer Network Interconnection,”
Proceedings, European Computing Conference on Communication Networks, September
1975, On-line Conferences, Lid,, Oxbridgs, England, p. 113-128.

YM76

S. C. K. Young, C. |. McGibbon, "The Control System of the Datapac Metwork," Proceedings
of ICCC76, p. 137-142.

ZE73

Hubert Zimmermann and Michele Elie, "Proposad Standard Host-Host Protocol for
Heterogeneous Computer Networks: Transport Protocol,” INWG General Note 43, IFIP
Working Group 6.1, December 1973 (also Institule Recherche d'Informatique et
d*Autematique [IRIA] Project CYCLADES report SCM 519).

ZE74

Hubert Zimmermann and Michele Elie, "Transport Protocol Standard Host/Host Protocol for
Heterogeneous Computer MNetworks," INWG General Note &1, IFIP Working Group 6.1, April
1974 {also IRIA Project CYCLADES Report SCH 519.1)

[Page 86] . ' Cerf & Postel

January 1878
TCP-3 Specification
Bibliography

fimmermann?5

Hubert Zimmermann, "The CYCLADES End to Erd Protocol," Proceedings, Fourth Data
Communication Symposium, (Quebec City, Canada, October 7-9, 1975), p. 7-21 to 7-26.

Cerf & Poslel [Fage 87]

