Yost<f
1 E N 2 S/. 2/ MAL7]

TCP (Version 2) Specification

)é—-‘

Cechisn 2.4.2

SPECIFICATION OF INTERNET TRANSMISSION CONTROL PROGRAN

TCP {Yersion 2)
Vinton Cerf

March 1377

TABLE OF CONTENTS

Introduction

The TCP Interface to the User
2.1 The TCP 28 a post office
2.2 Sockets and Addreasing
2.3 TCP user commands

.3.1 A Note on style

2 Open

3 Send

4 Recaive
.5 Clase
B
7
g8

Interrupt
Status
Abort
to user messages
1 Type codes
2 Message format
3 Event codes
leve| protocols
1 Introduction
.2 Well known sockets
.2 Reconnection protocol
c .
1
2

.3
' 3
' 3
|
o A
T
o 39
2.4 TCP
i
A
Ve

™ —

onnection management

.1 Initial seguence number selection

.2 Establishing a connection

.2 Hal f-open connections

.4 Resynchronizing a connection

.5 Closing a connection

.& TCP Connection State Tranaitions
data structures

1 [ntroduction

.2 Internetuork Packet Format

.3 Transmission Control Block
ucture of the TCP

1

&, Introduction

TCP (Yersion 2} Specification

page
page
page
page
page
page
page 18
page 11
page 13
page 14
page 14
page 15
page 1B
page 1B
page 16
page 1E
page 17
page 13
page 13
page 13
page 19
page 23
page 23
page 28
page 28
page 23
page 32
page 37
page 43
page 44
page BB
page B&
page B2
page 74
page 77
page 77

W W ~J o a@

TCP (Yersion 2) Specification

4.4.2 lnput packet handler page 79

4.4.3 Reassembler page &1
4,4, 4 Packetizer page 83

4.4,5 Output packet handler page B84

4.4.6 Retransmitter page 84

4.5 Buffer and window allpcation page 85
4.5.1 Introduction page 85

4,5.2 The send side page 85

4.5.3 The receive side page 86

5. References page &3
A. Appendix A - Pathology of Connection Management page 183

1.

TCP (¥ersion 2) Specification

Introduction

This document describes the functions to be performed by the interpetuork
Transmission Control Program (TCP) and its interface to programs or users
that require ite services. There have been tuo previous TCP specifications,
the firet [CDS574) defined version 1 of TCP, A second, [PGR7€al, was uritten
for the Defense Communication Agency in connection with its AUTODIN 11
project. That version marked improvements (such as a specification of the
resynchronization process)! and additions (security and prioritul which were
known reguirements of AUTODIN I1. The present specification represents
version 2 TCP, a direct descendent of the version 1 found in [CDS74].
Elements of version 2 can be found in [PGR76al, but the overlap is
incomplete. A simpler resynchronization procedure has been found: an
"option" field has been defined for the TCP header to accommodate not only
security and priority but other special features conncted with, for example,
packet speech services, diagnostic timestamping, and so on.

Version 2 eliminates all error messages but for RESET and this simplifies the
header format. There are still many local errors which can be reported to the
user, but none of these need cross the network(s! betueen TCP's,

Connection closing is slightiy more elaborate in Version 2 than in version 1
because the FIN signals must be acknouledged. Furthermore, the INT and FIN
facilities no longer cause flushing of the data stream. A separate "flush"
facility was tested, but eliminated, in the end. Oealing with flow-contraol
Hindous that have gone to zero is a new feature of version 2, and, finally,
the reassembly of fragments into segments has been more careful ly specified.
In the AUTODIN 11 version of TCP, modifications uere made to support security
and priority. These have been left out of this version 2 specification
pending their further assessment in connection with ARPA-sponsored
end-to-end security projects. A version 3 TCP is anticipated uhich Wil
address facilities nesded for reliable broadcast services, packel speech, an
graphics, as well as security, priority, internetuork flouw control and
routing.

Although the list of participants in the TCP work is very long (see
[CEHKKS?7] - the final TCP project report), special acknowledgements are due
to R. Kahn, R. Tomlinson, Y. Dalal, R. Karp and C. Sunshine for their active
participation in the design of TCP.

TCP (Yersion 2] Specification

Several basic assumptions are made about process to process communication and
these are listed here uWithout further justification. The interested reader is
referred to [CK74, Tomlinson74, Belsnes74, Dalal74, Dalal?5, Sunshine7Ba,
CEHKKS77] for further discussion. Processes are vieued as the active
elements of all HOST computers in a netuork, Even terminals and files or
other [/0 media are viewed as communicating through the use of processes.
Thus, all metwork communication is viewed as inter-process communication.

Since a process may need to distinguish among several communication streams
betueen itself and ancther process lor proceeses], we imagine that each
process may have a number of PORTs through which it communicates with the
ports of other processes.

Since port names are selected independently by each operating system, TCP, or
user, they may not be unique. To provide for unigue names at each TCP, we
concatenate a NETUWORK identifier, and & TCP identifier with a port name to
create a SOCKET name which will be unique throughout all networks connected
together.

A pair of sockets form a CONNECTION which can be used to carry data in elther
direction [i.e. full duplex], The connection is uniquely identified by the
<local socket, foreign socket> address pair, and the same |local socket name
can participate in multiple connections to different foreign sockets [see
section 2.21.

Processes exchange finite length LETTERS as a way of communicatings thus,
letter boundaries are significant, However, the length of a letter may be
such that it must be broken into SEGMENTS before it can be transmitted to its
destination. We assume that the segments will normally be reassembled into a
letter hefore being passed to the receiving process. Throughout this
document, it is legitimate to assume that a segment contains all or a part of
a letter, but that a segment never contains parts of more than one latter.

Furthermore, there is no restriction on the length of a letter. A connection
might be formed to send a single long letter (a2 stream of bytes, in effect).
In fact, processes can communicate via TCP without ever marking the end of a
letter, but we think this is atypical of most anticipated use.

Ue specifically assume that segments are transmitted from Host te Host

TCP (Yersion 2} Specification

through means of a PACKET SWITCHING NETWORK [PSN] [RW78, Pouzin73]. This
assumption is probably unnecessary, since a circuit suitched network, or a
hybrid combination of the two, could also be used, but for concreteness, uWe
explicitly assume that the hosts are connected to one or more PACKET SWITCHES
[PS) of a PSN [HKOCW78, Pouzin74, SW711.

Processes make use of the TCP by handing it letters {or buffers filled with
parts of a letter). The TCP breaks these into segments, if necessary, and
then embeds each segment in an INTERNETWORK PACKET. Each internetwork packet
is in turn embedded in a LOCAL PACKET suitable for transmission from the host
to one of its serving PS. The packet suitches may perform further formatting,
fragmentation, or other operations to achievae the delivery of the local
packet to the destinmation Host.

The term LOCAL PACKET is used generically here to mean the formatted bit
string exchanged betueen a3 host and 2 packet suitch. The format of bit
strings exchanged betueen the packet switches in a PSN will generally not be
of conecern to us. |f an internetuwork packet is destined for a TCP in a
foreign PSN, the packet is routed to a gateway which connects the origin PSN
With an intermediate or the destination PSN. Routing of internetuwork packets
to the gateway may be the responsibility of the scurce TCP or the local PSN,
depending upon the PSN services available.

One model of TCP operation is to imagine that there is a basic gateway
associated with each TCP uhich provides an interface to the local network.
This hasic gateway performs routing and packet reformatting or embedding, and
may also implement congestion and error contral betueen the TCP and gateuways
at or intermediate to the destipation TCF,

At a gateway betueen networks, the internetuork packet is unurapped from its
local packet format and examined to datermina through which netuwork the
internetuork packet should travel next. The internetuwork packet is then
wrapped in a2 local packet format suitable to the next network and passed on
to a neu packet suitch,

A gateway is permitted to break up a segment carried by an internetuork
packet into smaller FRAGMENTS if this is necessary for transmission through
the mext network. To do this, the gateuway produces a set of internetuwork
packets, each carrying a fragment. Fragments may be broken into smaller ones

TCP (Version 2) Specification

at intermediate gatewaus. The packet format is designed so that the
destination TCP can reassemble fragments into segments and verify the
end-to-end checksum associated with the segment. Segments, of course, can he
reassembled into letters,

The TCP is responsible for regulating the flow of internetwork packets to and
from the processes it serves, as a way of preventing its host from becoming
saturated or over |oaded ujth traffic. The TCP is also responsible for
retransmitting unacknouledged packets, and for detecting duplicates. A
consequence of this error detection/retransmission scheme 1s that the order
of letters received on a given connection can alsa be maintained
[CK74,Sunshine74]. To perform these functions, the TCP opens and closes
connections betueen porte as described in section 4.2. The TCF performs
retransmission, duplicate detection, seguencing., and flow control on all
communication among the processes it serves.

The TCP Interface to the User

The functional description of user commands to the TCP is, at hest,
fictional, since every operating sustem will have different facilities.
Consequent|y, ue must warn readers that various TCP implementations may have
different user interfaces. These uill all be TCP's, as long as control
messages are properly interpreted or emitted, as required. In spite of this
caveat, it appears useful to have at least one concrete view of a user
interface to aid in thinking about TCP-derived services.

2.1 The TCP as a Post Office

The TCP acts in many uways like a postal service since it provides a way
for processes to exchange letters uith each other. [t sometimes happens
that a process may offer some service, but not know in advance what its
correspondents’ addresses are. The analogy can be draun with a mail order
house which opens a3 post office box which can accept mail from any source.
Unlike the post box, however, once a letter fram a particular
correspondent arrives, a port becomes specific to the correspondent until
the ouner of the port declares otheruwise (thus making the TCP more like a
telephone servicel. Without this particularization, the TCP could not

per form its flou control, sequencing, duplicate detection, end-to-end
acknowledgement, and error control services,

weX
o P
e ar-
i &
i 1 ‘(
Cor

TCP (Version 2! Specification

2.2 Sockets and Addressing

He have borrouwed the term SOCKET from the ARPANET terminologu [CCC78,
OCA76]l. In genmeral, a socket is the concatemation of a NETWORK identifier,
TCP identifier, and PORT identifier, A CONNECTION is fully specified by
the pair of SOCKETS at each end since the same local socket name may
participate in many connections to different foreign sockets.

Once the connection is specified in the OPEN command [see sectien 2.3.21,
the TCP supplies a [short) local connection name by which the user refers
to the connection in subsequent commands. [In particular this facilitates
using connections with initially unspecified foreign sockets.

TCP's are free to assaciate ports with processes houwever they choose.
However, several basic concepts seem necessary in any implementation.
There must be well kroun sockets which the TCP associates only with the
"appropriate" processes by some means. ke envision that processes may
"own" sockets, and that processes can only initiate connections on the
sockets they oun [means for implementing ownmership is 2 local issue, but
we envision a Request Port user command, or a method of uniquely]
allocating a group of parts to a given process, e.g. by associating the
high order bits of a port name with a given process).

Once initiated, a connection may be passed to another process that does
not oun the local socket [e.g. from logger to service process]. Strictly
speaking this is a reconnection issue which might be more elegantliy
handled by & general reconnection protocol as discussed in section 3.3. To
simplify passing a connection within a single TCP, however, such
"invisible" suwitches may be allowed, as in TENEX sustems.

0f course, each connection is associated with exactly one process, and any
attempt to reference that connection by another process will be signalled
a8s an error by the TCP. This prevents another process from stealing data
from or inserting data intoc another process’ data stream, and also
prevents masquerading, spoofing, or other forms of malicious mischief.

A caonnection is initiated by the rendezvous pf an arriving internetuork
packet and a waiting Tranamission Control Block [TCB) ereated by a user
OFPEN, SENO, INTERRUPT, or RECEIVE command [sea section 2.3]. The matching

TCP (Version 2] Specification

of local and foreign socket identifiers determines uwhen a successful
connection has been initiated. The connection becomes establishad uhen
sequence numbers have been synchronized in both directions as described in
section 4.2.2.

It is possible to specify a socket only partially by setting the PORT
identifier to zero or setting both the TCP and PORT identifiers to zero. A
socket of all zero is called UNSPECIFIED., The purpose behind unspecified
sockets is to provide a sort of "general delivery" facility [useful for
processes offering services on Hell knoun socketsl.

There are bounds an the degree of unspecificity of socket identifiers.
TCB's must have fully specified local sockets, although the foreign socket
may be fully or partly unspecified. Arriving packets must have fully
apecified sockets.
We employ the follouwing notation:

®%.y.2 = fully specified socket uith x=net, y=TCP, z=port

®.U.u = 3g above, but unspecified port

*,U.u = as gbove, but unspecified TCP and port

U.u, U = completely unspecified

With respect to implementation, u = B [zerol
We illustrate the principles of matching by giving all cases of incoming
packets which match with existing TCB's. Generally, both the local

{foreign) socket of the TCB and the foreign (local) socket of the packet
must match,

TCP (Yersion 2} Specification

TCB local TCB foreign Packet local Packet foreign

{a) a.b.c e.f.qg e.f.g a.b.c
() a.b.c e, f.u e.f.g g.b.c
fel a.b.c VAT e, f.g a.b.c
(el a.b.c FITIY e.f.g a.b.c

There are no other legal combinations of socket identifiers which match.
Case (d) is typical of the ARPANET well known socket idea in which the
well knoun socket (a.b.e) LISTENS for a connection from any (u.u.u)

socket. Cases (b) and (c) can be used to restrict matching to a particular
TCF or net. More elaborate masking facilities could be implemented without
adverse effects, so this matching facility could be considered the minimum
acceptable for TCP operation.

2.3 TCP User Commands

2.3.1 A Note on Style

The following sections functionally characterize a USER/TCP interface.
The notation used is similar to most procedure or function calls in
high level languages, but this usage is not meant to rule out trap type
service calls [e.g. SVC's, UUO's, EMT's,...].

The user commands described below specify the basic functions the TCP
uill perform to support interprocess communication. Individual
implementations should define thair oun exact format, and may provide
combinations or subsets of the basic functions in single calls. In
particular, some implementations may wish to automatically OPEN a
connection on the first SENO, RECEIVE, or INTERRUPT issued by the user
for a given connection.

In providing interprocess communication facilities, the TCP must not
only accept commands, but also return information to the processes it
serves. This communication consists of:

TCP (Yersion 2) Speclfication

{a) general information about a connection [2.g., interrupts,
remote close, binding of unspecified foreign socketl].

{b) replies to specific user commands indicating succcess ar various
tupes of failure.

Al though the means for signalling user processes and the exact format
of replies will vary from one implementation to another, it would
promote common understanding and testing i f a common set of codes were
adopted. Such 2 set of event codes is described in section 2.4.

2.2.2 Open
Format: OPEN (local port, foreign socket [, timeout])

We assume that the |local TCP is aware of the identity of the

processes it serves and will check the authority of the process to use
the connection specified. Depending upon the implementation of the TCP,
the source network and TCP identifiers will either be supplied by the

TCP or by the processes that serve it [e.g. the program which
interfaces the TCP to its packet switch or the packet suitch itselfl.
These considerations are the result of concern about security, to the
extent that no TCP be able to masquerade as another one, and so on,
Similarly, no process can masguerade as another without the collusion
of the TCP,

[f no foreign socket is specified [i.e. the foreign socket parameter is
B or not presentl, then this constititutes a LISTENING local socket
uhich can accept communication from any foreign socket. Praovision is
also made for partial specification of foreign sockets as described in
section 2.2.

¥ the specified connection is already OPEN, an error is returned,
otheruise a ful l-duplex transmission control block [TCB] is created and
partially filled in Wwith data from the OPEN command parameters. The TCB
format is described in more detail in section 4.3.2.

No network traffic need be generated by the OPEN command. The first
SEND or INTERRUPT by the local user or the foreign user will typically

-18-

TCP (Version Z) Specification

cause the TCP to synchronize the connection, although synchronization
could be immediately initiated on non-listening opens.

The timeout, if present, permits the caller to set up a timeout for all
buffers transmitted on the connection. |f a buffer is not successfully
tdelivered to the destimation within the timeout period, the TCP will
abort the connection. The present global default is 38 seconds. The
buffer retransmission rate may vary, and is the responsibility of the
TCP and not the user. Most |ikely, it will be related to the measured
time for responses from the remote TCP.

Uepending on the TCP implementation, either & local connection name

will be returned to the user by the TCP, or the user will specify this
focal connection name (in which case another parameter is needed in the
calll. The local connection name can then be used as a short hand term

for the connection defined by the <local socket, foreign sockets pair.

Hesponses from the TCP which may ocecur as a result of this call are
detailed in sections 2.4 and 4.2.6.

2.3.3 Send

Format: SEND{ local connection name, buffer address, byte count, EOL
flag [, timeout))

This call causes the data contained in the indicated user buffer to be
sent on the indicated cennection. If the comnection has not been
cpened, the SEND is considered an error., Some implementations may allow
users to SEND first, in Which case an automatic OPEN would be dene. If
the calling process is not authorized to use this connection, an error
is returned.

l1f the EOL flag is set, the data is the End Of a Letter, and the EOL
it will be set in the last internetwork packet created from the buffer
(see section 4.3.2 - internetuork packet formatl. If the EOL flag is
not set, subsequent SENDs will appear to be part of the same letter.

If no foreign socket uas specified in the OPEN, but the connection is
established (e.g. because a LISTENing connection has become specific

-11-

TCP (Yersion 2) Specification

due to a foreiagn packet arriving for the local socket]l then the
designated buffer is sent to the implied foreign socket. In general,
users uho make use of OPEN with an unspecified foreign socket can make
use of SEND without ever explicitly knouwina the foreign socket address.

However, if a SEND is attempted before the foreign socket becomes
specified, an error will be returned. Users can use the STATUS call to
determine the status of the connection., In some implementations the TCP
may motify the user uhen an unspecified socket is bound.

If the timeout is specified, then the current timeout for this
cannection |s changed to the ned ona.

In the sinplest implementation, SEND would not return control to the
sending process until either the transmission was complete or the
timeout had been exceeded. This simple method is both highly subject to
deadlocks [for example, both sides of the connection might try to do
SENDs before doing any RECEIVEs] and offers poor performance, so it is
not recommended. A more sophisticated implementation would return
immediately to allow the process to run concurrently with netuork 1/0,
and, furthermore, to allow multiple SENDs to be in progress. Multiple
SENDs are served in first come, first served order, so the TCP will
fqueuve those it cannot service immediately.

Responses from the TCP uhich may occur as a result of this call are
detailed in sections Z.4 and 4.2.6.

We have inplicitly assumed an asynchronous user interface in which a
SEND later elicits some kind of SIGMNAL or pseudo-interrupt from the
serving TCP. An alternative is to return a response immediately. For
instance, SENDs might return immediate local acknouledgment, even if
the packet sent had not been acknouledged by the distant TCP. HWe could
optimistically assume eventual suecess. [|f we are wrong, the

connection uill close, anyuay, due to the timeout. In implementations
of this kind (sunchronous), there uill still be some asunchronous
signalling, but these will deal with the connection itself, and not

Hith specific packets or letters,

NOTA BEME: In order for the process to distinguish among error or

=12-

TCP (Version 2) Specification

success indications for different SENDs, the buffer address should be
returned along uwith the coded response to the SEND request. We will
offer an example event code format in section 2.4, shouwing the
information which should be returned to the calling process.

2.3.4 Receive
Format: RECEIVE {local connection name, buffer address, bute count)

This command allocates a receiving buffer associated nith the specified
connection. 1f no OPEN precedes this command or the callling process is
not authorized to use this connection, an error 18 returned.

In the simplest implementation, control would not return to the calling
program until either the buffer was filled, or some error cccurred, but
this scheme is highly subject to deadlocks [see section 2.3.31. A more
sophisticated implementation would permit several RECEIVE's to be
outstanding at once. These would be filled as letters, segments, or
fragments arrive. This strategy permits increased throughput, at the
cost of a more elaborate scheme [possibly asynchronous] to notify the
calling program that a letter has been received or a buffer filled.

If insufficient buffer space is given to reassemble a complete letter,
the EOL flag will not be set in the response to the RECEIVE. The buffer
will be filled with as much data as it can hold {see section 2.4.2).

The remaining parts of a partiy delivered letter will be placed in
buffers as they are made available via successive RECEIVES., 1f a number
of RECEIVES are outstanding, they may be filled with parts of a single
long letter or with at most one |letter each. The event codes associated
uith each RECEIVE will indicate what is contained in the buffer.

To distinguish among several outstanding RECEIYES, and to take care of
the case that a letter is smaller than the buffer supplied, the event
code is accompanied by both a buffer pointer and a byte count
indicating the actual length of the letter received.

Responses from the TCP which may occur as a result of this command are
detailed in sections 2.4 and 4.2.6.

~13-

TCP (Yersion £2) Specification

Alternative implementations of RECEIVE might have the TCP allocate
buffer storage, or the TCP might share & ring buffer uith the user.
Yariations of this kind will produce cbvious variation In user
interface to the TCP.

2.3.5 Close
Farmat: CLOSE(local connection name)

This command causes the connection epecified to be closed., If the
connection is not apen or the calling process i not authorized to use
thia connection, an error is returned. Closing connections is intended
to be a graceful operation in the sense that outstanding SENDs will be
transmitted {and retransmitted), as flouw control permita, until all
have been serviced. Thus, it should be acceptable to make several SEND
calls, followed by a CLOSE, and expect all the data to be sent to the
destination. It should also be clear that users should continue to
RECEIVE on CLOSING connections, since the other side may be trying to
transmit the last of its data. Thus, CLOSE means "] have no more to

send" but does not mean "I will not receive any more." [t may happen
{if the user |level protocol is not uwell thought out) that the closing
side is unable to get rid of all its data before timing out. In this

event, CLOSE turns into ABORT,and the closina TCP gives up.

The user may CLOSE the conrection at any time on his oun initiative, or

in response to various prompts from the TCP [e.g.. remote close

exscuted, transmission timeout exceeded, destination inaccessiblel.

Because closing a connection requires communication with the foreign

TCP, connections may remain in the closing state for a short time.

Attempts to reopen the connection before the TCP replies to the CLOSE \
command Will result in errors.

Responses from the TCP which may occur as a result of this call are
detailed: in sections 2.4 and 4.2.6.

2.3.6 Interrupt

Format: INTERRUPT{ local connection name }

-14-

TCP (Version 2) Specification

A special control signal is sent 1o the destination indicating an
interrupt condition. This facility can be used to simulate "break”
signals from terminals or error or completion codes from 1/0 devices,
for example, The semantics of this signal to the receiving process are
unspecified. The receiving TCP will signal the interrupt to the
receiving process upon receiving all data preceding the interrupt.

[f the connection is not open or the calling process is not authorized
to use this connection, an error is returned.

Responses from the TCP which may occur as a result of this call are
detailed in sections 2.4 and 4.2.6.

Z2.3.7 GStatus
Format: STATUS({ local connection name |

This is an implementation dependent user command and could be exc|uded
uithout adverse effect. Information returned would typically come from
the TCB (see section 4.3.3) associated with the connection.

This command returns a data block containing the following information:

local socket, foreign socket, local commection name, receive windou,
send windoWw, comnection state, number of buffers auwaiting
acknouledgement, number of buffers pending receipt [including
partial ones), default transmission timeout

Oepencding on the state of the connection, or the implementation some of
this information may not be available or meaningful. 1f the calling
process is not authorized to use this connection, an error is returned,
This prevents umauthorized processes from gaining information about a
connection.

Responses from the TCP which may occur as a result of this call are
detailed in sections 2.4 and 4.2.6.

-15-

TCP {(Yersion 2} Specification

2.3.8 Abort
Format: ABORT (local connmection name)

This command causes all| pending SENDs, INTERRUPTS, and RECEIVES to be
aborted, the TCB to be removed, and a special RESET message to he sent
to the TCP on the other side of the conmection. Depending on the
implemzntation, users may receive abort indications for each
putstanding SENO, RECEIVE, or INTERAUPY, or may simply receive an
ABORT-acknowledgment. The mechanism ot resetting a connection is
discussed in sections 4.2.2 and 4,2,E.

Hesponses from the TCP which may occur as a result of this call are
detailed in sections 2.4 and 4.2.6.

2,4 TCP-to-User Messages

2.4,1 Tupe Codes

All messages include a tupe code which identifies the type of user call
to which the message applies. Types are:

B - General message, spontaneously sent to user
1l - Applies to OFEN

2 - Applies to CLOSE

3 - Applies to INTERRUPT

4 - Applies to ABORT

18 - Applies to SEND

28 - Applies to RECEIVE

38 - Applies to STATUS

2.4.2 Message Farmats [notionall

All messages include the following three fields:

Type code
Local connection name
Event cade

-16~-

TCP (Yersion 2] Specification

For message types B-4 [General, Open, Close, Interrupt, Abortl only
these threes fields are necessaru.

For message tuype 1B [Send] one additional field is necessary:

Buf fer address

For message type 2B [Receivel three additional fields are necessary:

Buffer address

Bute count (counts bytes receijved)
End-of-Letter flag

For message type 38 [Status] additional data might include:

Local socket, foreign socket

Send window [measures buffer space at foreign TCP)
Receive window [measures buffer space at local TCPI]
Connection state [see section 4,2.B]

Number of buffers auaiting acknouledgement

Mumber of buffers auwaiting receipt

Uger timeout

Once more, it is important to note that these formats are notional.
Inplementations which deal with buffering in different ways may or may
not need to Include buffer addresses in some responses, for example.

2.4.3 Event Codes

The event code specifies the particular event that the TCP wishes to
communicate to the user. Generally speaking, non-zero event codes
indicate import state changes or errors,

In addition to the event code, two flags may be useful to classify the

event into major categories amd facilitate avent processing by the
uger:

E flag: set if event is an error

=7

P fla

Events a
for E an

Events s
settings

Possible
Section

Tupe
Tupe
Tupe
Tupe
Tupe
Tupe
Type
Tupe

TCP (Version 2) Specification

g: set if permanent error (ptherwise, retry may succeed).

re encoded in 8 bits, the tuo high order bits being reserved
d P flags, respectivelu.

pecified so far are listed belonw with their codes and flag
code meaning
B general success
1 connection illegal for this process
2 unspecified foreign socket
has become bound
3 connection not OPEN
4 insufficient resources
5 foreign socket not specified
& connection already OPEN
7 unused
8 unused
3 user timeout, connection abarted
18 unused
11 user interrupt received
12 connection closing
13 gerneral error
14 connection reset

responsas to each of the user commands are listed belouw,
4.2.6 offers substantially more detail.

Blgeneral): 2,9,11,12,14

l{openl: B,1,4,6,13

2lclose]: 8,1,3,9,13,14
3linterruptl: B8,1,3,4,5,9,12,13, 14
4 [Abortl: B,1,3.13

iBleend): B8,1,3,4,5,9,12,13,14
28(receivel: 0,1,3,4,9,12,13,14
38(statusl: 8,1,3,13

-18-

TCP (¥ersion 2) Specification

3. Higher Level Protocols

3.1 Introduction

It is expected that the TCP will be able to support higher level protocols
efficiently. It should be easy to interface existing ARPANET protocols

like TELNET [DCA76] and FTP [OCA76] to the TCP. Support of Network Voice
Protocol, Network Graphics Protocol and broadcast protocols has been left

to version 3 TCP, in preparation.

2.2 Well Knoun Sockets

Well knoun sockets are a convenient mechanism for a priori associating a
socket name with a standard service. For instance, the "leogger" process
might be permanently assigned to socket 1, and other sockets reserved for
File Transfer, Remote Job Entry, text generator, reflector, or sink (the
last being for test purposes]. A socket name might be reserved for access
to a "look-up" serviece uhich uould return the specific socket at which a

newly instantiated service uwould be provided,

For compatibility with ARPANET socket naming conventions, ue have reserved
g fow socket names as fol lous:

n.t.l = Logger port

n.t.2 = File Transfer Port

n,t.5 = Remote Job Entry port

"n" and "t" are netuwork and TCP identifiers, respectively

TCF implementors should note, however, that the gender and directionality
of NCP sockets do not apply to TCP sockets, so that even numbersd as wal!
as odd ones can serve as wuell known sockets. 3

- ;

i

3.3 Reconnection Protocol

Port identifiers fall into two categories: permanent and transient. For

example, a Logger process is generally assigned a port identifier that is

-19-

TCP {Yersion 2) Specification

fixed and well knoun. Transient processes will in general have port
identifier'a uhich are dynamically assigned.

In a distributed processing enviromment, tuo processes that don't have
well knoun port identifiers may often wish to communicate. This can be

achicved with the help of @ well knoun process using 3 reconnection
protocol. Such a protocel is hriefly outlined using the communication
facilities provided by the TEP. 1t essentially provides a mechanism by

which port identifiers are exchanged in order to establish a connection
betueen a pair of sockets,

Such a protocol can be used to achieve the dynamic estahlishment of neu
connactions in order to have multiple processes solving a problem
co-operatively, or to provide a user process access to a server process
via a logger, when the logger's end of the comnection can not be invisibly
passed to the server process,

A paper on this subject by A. Schantz [Schantz74] discusses some of the
issues associated uith reconnection, and some of the ideas contained
tharein went into the design of the protocol outlined belou,

in the ARPAMNET, a protocol f{called the Initial Connection Protocol
[Postel72]) was implemented which would allow a process to connect to a
‘well known socket, thus making an implicit request for service, and then
he suitched to another spcket so that the well known socket could be freed
for use by others. Since sockets in our TCP are permitted to participate
im more than ome connectien name, this facility may not be explicitiy
needed (i.e. connections <A,B> and <A,C> are distinguishablel.

However, the well knoun socket may be in one metuwork and the actual
service socket(s) may be in another network (or at least in another TCF).
Thus, the invisible suitching of a connection from one port to another
uithin a TCPF may not be sufficient as an "Initial Connection Protocal". We
imagine that a process wishes to use socket M1.T1.0 to access well knowuwn
sacket M2,TZ.P. Houever, the process associated with socket NZ.T2.P will
actually start up 3 new process somewhere which Wwill use N3.73.5 as its
server socket. The M(i) and T{i) may be distinct or the same. The user
will send to M2.T2.P the relevant user information such as user name,
passuword, and account., The server will start up the server process and

-2B8-

TCP (Version 2} Specification

send to N1.T1,0 the actual service socket identifier; N3.T73.5. The
connection {N1.T1.0,NZ2.T2.P) can then be closed, and the user can do a
RECEIVE on (N1.T1.0,N3.T73.5). The serving process can SEND on
(N3.T3.5,N1.71.0). There are many variations on this scheme, some
involving the user process doing a RECEIVE on a different socket (e.g.
(NL.T1.X,U.U. U} with the server doing SEND on (N3.T3.5,N1.T1.X).

Without shouing all the detail of synchronization of sequence numbers and
the like, we can illustrate the exchange as shoun belou.

USER SERVER
1.RECEIVE (N2.T2.P,0.U. 1)
1. SENDI(NL.T1.0,N2.T2.P)m==>
<== 2, SEND(NZ.TZ2.P,N1.T1.0)

With "M3,73.8" as data

2. RECEIVE{NL.T1.0.N2.T72.P}
3. CLOSE(N1.T1.Q,N2.T2.P}==>

£=

3. CLOSE(NZ.T2.P,N1.T1.D0

4, RECEIVE(N1.T1.Q,N3.73.5}
Cmm 'ﬁu SEM‘D{NB-TE'E-N].! Tl -u]
Reconnection Protocol Examplse
Figure 3.3-1
At this point, 2 connection is open between N1.T1.0 and N3.T3.5. A
variation might be to have the user do an extra RECEIVE on (N1.T1.X,U.U.U)
and have the data "N1.T1.X" be sent in the first user SEND. Then, the

server can start up the real serving process and do a SEND on
(N2.T3.5,N1.T1.¥) without having to send the "N3.T73.5" data to the user.

31 =

TCP (Version Z) Specification

Or perhaps both server and receiver exchange this data, to assure security
of the ultimate connection (i.e. some wild process might try to connect to
N1.T1.X if it is merely RECEIVING on foreign socket U.U.U.).

We do not propeose any specific reconnection protocol here, but leave this
to further deliberation, since it is really a user level protocol issue.

2%

TCP (Version 2) Specification

4. TCP Design
4.1 Introductian

The TCF is designed to offer highly reliable, sequenced, and
flou-control led interprocess communication across network boundaries. A
fundamental notion in the design is that every octet (B bit byte) of data
in an internetwork packet has a sequence number. This permits gateways
to fragment packets as needed to get them across networks with short
packet sizes. Since every octet is sequenced, each of them can be
acknowledged individually or collectively., In particular, the
acknouledgment mechanism employed is cumulative so that an acknouledgment
of seguence number X indicates that all octets up to but not including X
have been received. This mechanism allows for straight-foruward duplicate
detection in the presence of retransmission.

It is essential to remember that the actual seguence number space is
finite, though very large., In the current design, this space ranges from B
to 2ww32 - 1. Since the space is finite, all arithmetic dealing with
sequence numbers must be performed module 2432, This unsigned arithmetic
preserves the relationship of esguence numbers as they cucle from 2ww32 -
1 to B again. The typical kinds of sequence number comparisons which the
TCP must perform include:

(a)l determining that an acknouledgement refers to some sequence number
sent hut not yet acknowledged.

{3} determining that all sequence numbers cccupied by a packet have
been acknowledged (e.g. to remove the packet from a retransmission

fueue,

(c) determining that an incoming packet contains sequence numbers which
are expected {(i.e. that the packet "overlaps" the receive windowl}.

The TCP tuypically maintains status information about each connection, as
is illustrated in figure 4.1-1, below,

B o

TCP (Version 2) Specification

32
1+ © L A t] : 15 1~||¢
| | IH. 71 IH; ‘ 1) of (gt liradul; 1ol
R sEquence Space -----x»

L = oldest, unacknowledged sequence number

S = next sequence number to be sent

A = acknowledgement (next sequence number expected by the ackrowledging

TCP)
H{i) = first sequence number of the i-th packet
T(i) = last sequence number of the i-th packet
TCP State Information for Sending Sequence Space

Figure &,1-1

An acceptable acknouledgement, A, is one for which the inequality below
holds:

B < (A-L) <= (5-L) 46.1-1) L £-45
We will often write equation (4.1-1) In the form belpwu:
L<A<=5 i4,1-1")

5T

TCP (Version 2) Specification

Mote that all arithmetic is modulo 29432 and that comparisons are

unsigned. "<=" means "less than or equal.”

Similarly, the determination that a particular packet has been fully
acknowledged can be made if the eguation below holds:

B < IT{i) = L) <= (A - L) B A {4.1-2)

—

In this instance, H{il and T(i} are related by the equation:
THil = HEi) + nli) -1 (4.1-3)

where nli}l = the number of octets occupied by the packet (including
controll. 1t is important to note that nlil must be non-zero; packets

. Which do not occupy any sequence space {e.g. emptu acknouledgement
packets) are never placed on the retransmission gueue, so would not go
through this particular test.

Finallu, a packet is judged to occupy a portion of valid receive sequence
space |f

B <= (T =L)< (R -1LI I T - (4.1-4)

Where T is the last sequence number pccupied by the packet and R is the
right edge of the receive window, as shoun in figure 4,1-Z2.

..

TCP (Yersion 2) Specification

Lliwt dr
b L '

L = next sequence number expected on incoming packets

R = last sequence number expected on incoming packets, plue one

H{i) = first sequence number occupied by the i-th incoming packet

T(i} = last sequence number occupied by the i-th incoming packet

Receive Sequence State Information
Figure 4.1-2

R and L in figure 4.1-2 are related by the equation:

R=L+U {6.1-5)

Where W = the receive uindow size
Nate that the acceptance test for a packet, since it reguires the end of a
packet to lie in the window, is somewhat more restrictive than is
absolutely necessary. |f at least the first sequence number of the packet
lies in the receive window, or if some part of the packet lies in the
receive window, then the packet might be judged acceptable. Thus, in

figure 4,1-2, at least packets [H{1}-T{l)) and [H{2}-T{Z2}) are acceptable

by the strict rule and packet (H(31-T(3)) may or mauy not be, depending on
the rule.

Note that when R = L, the receive windou is zero and no packets should be
acceptable except ACK packets. Thus, it should be possible for a TCP to

«2B-

vt toa TCP (Version 2} Specification

maintain a zero recelve window while transmitting data and receiving ACKs
on 8 non-zero send windou.

He have taken advantage of the numbering scheme to protect certain control
information as well. This is achieved by implicitly including some
control flags in the sequence space so they can be retransmitted and
acknouledged without confusion (i.e. one and only one copy of the control
will be acted upon). Control information is not physically carried in the
packet data space (see section 4.3.2 for typical internet TCP packet
format)., Consequently, we must adopt rules for implicitly assigning
sequence numbers to control. Figure 4.1-3 shous uhere, in the sequence
space occupied by a packet, the controle (if present) are considered to

lie. The packet length includes both data and seguence-space-occupying
controls.

SYN | INT | ARO DATA RSN | FIN

Lo Packet Length ————=-m-c—omauue >
Implicit Control Sequence Numbering
Figure 4.1-3

The main jobs of the TCP are:

a. Connection management (establishing and closing ful |-duplex
connections)

b. "Packetizing" of user letters into segments for internet
transmission

c. PReassembly of fragments into segments and segments into letters.

d. Flow control, sequencing, duplicate detection, and retransmission
for each connection.

e. Heacting to user regquests for sarvica

~27-

TCP (Yereion 2) Specification

In the sections which follou, ue elaborate on the way in which the TCP is
designed to carry out each of these tasks.

4.2 Connection Management
4.2.1 Initial Sequence Number Selection

The protocol places no restriction on a particular connection being
used over and over again. Neuw instances of a connection will be
referred to as incarnations of the connection. The problem that arises
owing to this is, "houw does the TCP identify duplicate packets from
previous incarnations af the connecticon?”. This problem becomes
harmful ly apparent if the connection is being opened and closed in
guick succession, or if the connaction breaks uwith loss of memory and
is then reestahlished.

The essernce aof the solution [Tomlinson74] is that the initial sequence
& number [ISN] must be chosen so that a particular sequence number can

never refer to an "old" octet. Once the connection is established the

sequencing mechanism provided by the TCP filters out duplicates.

For an assbciation to be established or initialized, the tuo TCP's must
synchronize on each others initial sequence numbers. Hence the solution
requires a suitable mechanism for picking an initial seguence number,
and a slightly involved handshake to exchange the ISN's., A “three uay
handshake" is necessary because sequence numbers are not tied to a
global cleck in the network, and TCP's may have different mechanisms
for picking the ISN's. The receiver of the first SYN has no way of
knowing whether the packet was an old delayed one or not, unless it
remembers the |ast sequence number used on the connection {uhich is not
aluays possible), and so it must ask the sender to verify this SY¥N.

The "three way handshake" and the advantages of a "clock-driven" schems
are discussed in [Tomlinson74]. More on the subject, and algorithms for
implementing the clock-driven scheme can be found in [Dalal74, Dalal7s,
Cert7B8b].

-28_

TCP (Version 2} Specification

4,2.2 Establishing a connection

The "three-uay handshake" is essentially @ unidirectional attempt to
establish a connection, i.e. there is an initiator and a responder.
The TCP can also establish a connection when a simultaneous initiation
occurs. A simultaneous attempt occurs when one TCP receives a "SYN"
packet uhich carries no acknouledgement after having sent a "SYN"
garlier. Of course, the arrival of an old duplicate "SYN" packet can
potential ly make it appear, to the recipient, that a simultaneous
connection initiation ie in progress. Proper use of "reset" packets
can disambiguate these cases. Several examples of connection
initiation are offered below, using a notation due to Tomlinson.
Although these examples do not shou connection synchronization using
tdata-carrying packets, this is perfectly legitimate, so long as the
receiving TCP doesn't deliver the data to the user until it is clear
the data is valid (i.e. the data must be buffered at the receiver untll|
the conmnection reaches the ESTABLISHED state (see figure 4.2-1)).

-79-

CLDSEDR

_DPEN _LLOSE TCP (Yersion 2} Specification
trewle TOR delebe TOLL

SEHD ar

receive SYN ZNBRET o3 Lot i
send YN, ALK stnd STH delete TLR
recewe 3N
send ACH

reccwg ACK for SYW

“recewe SY! 11K
tend ACh

13

cLOSE ESTABSHEY |

i S
send Fib

recewe FiN
send ALK

reLewe FIN
send bLK

E
send FIN

rﬁ:_u_r;__f-,r:fn, Fiud
deleteTo3 -
o

frmmeoub
o oot SR
ABORT tomvesiian,

TCP Connection State Diagram

Figure &,2-1

The simplest three-way handshake is shown in figure 4.2-2 belou. The
figures should be interpreted in the following way. Each line is
numbered for reference purposes. Right arrous {--2} indicate departure
of a TCP packet from TCF A to TCP B, or arrival of a packet at B from
A. Left arrouws l(<--], indicate the reverse. Ellipsis (...) indicates a
packet which is still in the netuork (delayedl. An "XXX" indicates a

-38-

TCP (Yersion 2) Specification

packet which is lost or rejected. Comments appear in parentheses. TCP
states are keued to those in figure 4.2-1, and represent the state
AFTER the departure or arrival of the packet (uhose contents are shoun
in the center of each |ine). Packet contents are shoun in abbreviated
form, with sequence number, control flags, and ACK field. Other fields
such as uindouw, addresses, lengths, and text have been |eft out,
generally, in the interest of clarity.

TCP A TCP B
1. DPEN _ OPEN
2. SYN-SENT --> <SEQ 18@5<SYNs>"" _-» SYN-RECEIVED

al
3. ESTABLISHED <-- <SE0 388><5YN><ACK1Bl> <-- SYN-RECEIVED

A

.1—\|
4, ESTABLISHED --> <SEQ 1B1><ACK 281> --> ESTABLISHED

5. ESTABLISHED --» <SEQ 181:<ACK 3B1=<DATA) --= ESTABLISHED

Basic 3-Way Handshake for Connection Sunchronization

Figure 4,2-2
In line 2 of figure 4.2-2, TCP A begins bu senmding a SYN packet
indicating that it will use sequence numhers starting with sequence
number 188, In line 3, TCP B sends a SYN and acknouledges the SYN it
received from TCF A, MNote that Ilper figure 4.1-3), the acknouledgement
field indicates TCP B is nou expecting to hear seguence 181, implicitly
acknowledging the SYN which cccupied sequence 188,

At line 4, TCP A responds with an empty packet containing an ACK for
TCF B's SYN, and in line §, TCP A sends some data. MNote that the
seguence number of the packet in line § is the same as in line 4§
because the ACK does not occupy sequence number space (if it did, we
would wind up ACKing ACK's!).

Simul taneous initiation is only slightly more complex, as is shown in

-31-

TCP (VYersion Z) Specification

figure 4.2-3. Each TCP cucles from OPEN to SYN-SENT to SYN-RECEIVED to
ESTABLISHED.

The principle reason for the three-uay handshake is to prevent old
duplicate connection initiations from causing confusion. To deal wWith
this, a special control message, RESET, has been devised. A TCP uwhich
receives a RESET message first verifies that the ACK field of the RESET
acknou|edges something the TCP sent (otherwise, the message is

ignored)l., [f the receiving TCP is in a non-synchronized state (i.e.
SYN-SENT, SYN-RECEIYED), it returns to OPEN on receiving an acceptable
RESET. If the TCP is in one of the synchronized states (ESTABLISHED,
FIN-WAIT, CLOSE-WAIT, CLOSING) it aborte the conmection and informs its
user, We discuss this latter case under "half-open" connection in
section 4,2.3.

.

. TCP A TCP B

‘1. OPEN DPEN

2. SYNGSENT > <sED 10B5<svST ... w7
3. " SYN-RECEIVED <-- <SEQ 38B><SYN> <—— SYN-SENT _ in;
4. ... <SEQ 188><SYN>© --> SYN-RECEIVED -

5. SYN-RECEIVED <SEQ 181><ACK 3815 ...

¥
1
W

ESTABLISHED <-- <SEQ 3B1><ACK 1815 <-- SYN-RECEIVED

m

7. ... <SEQ 181><ACK 381> --> ESTABLISHED
Simul taneous Connection Synchronization

F i gUI"E 'nll 2-3

-32=

TCP (Yersion Z) Specification

TCP A TCP B

1. OPEN OPEN i
2. SYN-SENT --> <SEQ 188><SYN> wg“'
3. (duplicate] ... <SEQ 1B@B><SYN> —-> SYN-RECEIVED ¥

4, SYN-SENT <-- <SEQ 388><SYN><ACK 1881><-- SYN-RECEIVED

5. SYN-SENT --> <5E0Q0 18B1><RST><ACK 3Bl>--> OPEN (ACK is ok)

6. «.. <SEQ 18@><SYN> --> SYN-RECEIVED

7. SYN-SENT <-- <SEQ 4B8><SYN><ACK 1B8l> <-- SYN-RECEIVED

8. ESTABLISHED --> <SEQ 1B81--ACK 4Bl» --> ESTABLISHED
Recovery from Old Duplicate SYN

Figure 4.2-4

As a simple example of recovery from pold duplicates, consider figure
4.2-4. At line 3, and old dup!icate SYN arrives at TCP B. TCP B
cannot tell that this is an old duplicate, so it responds normal |y
{line 4). TCP A detects that the ACK field is incorrect and returns a
RSET (reset) with its SE0 and ACK fields selected to make the packet
believable., TCP B, on receiving the RST, returns to the OPEN state.
Hhen the original SYN (pun intended) finally arrives at line 6, the
synchronization proceeds normally. If the SYN at line B had arrived
before the RST, a more complex exchange might have occurred with RST's
sent in both directions.

e

TCP (Version 2) Specification

4.2.3 Hal f-Dpen Connections and Other Anomalies

#in established connection is said to be "half-open” if one of the
TCP's has closed or aborted the connection at its end without the
knouledge of the other, or if the two ends of the connection have
become desynchronized owing to a crash that resulted in loss of memory.
Such connections will automatically become reset if an attempt is made
to send data in either direction. Houever, half-open connections are
expected to be unusual, and the recovery procedure is mildly involved,

If one end of the connection no longer exists, then an attempt by the
other user to send any data on it will result in the sending TCP
receiving a REGET control message. Such a message should indicate to
the receiving TCP that something is wrong and it is expected to ABORT
the coanection.

Assume that two user processes A and B are communicating with one
another when a crash occurs causing loss of memory to A's TCP.
Oepending on the operating sustem supparting A's TCP, it is likely that
some error recovery mechanism exists. When the TCP is up again A is
likely to start again from the beginning or from a recovery point, As a
result A will probably try to OPEN the connection again or try to SEND
on the conmection it believes open. In the latter case it receives the
error message "connection not open" from the local TCP. In an attempt
to establish the connection A's TCP will send a packet containing SYN.
This scenario |eads to the example shoun in figure 4.2-5. After TCP A
crashes, the user attempts to re-open the connection. TCP B, in the
meantime, thinks the connection is open,

G~

TCP (Version Z) Specification

TCP A TCP B
1. (CRASH) [gend Z8@, receive 1B8)
2. OFEN ESTABLISHED
3., S5YN-SENT --> <SE0] 4B8><SYN> -—= {?7)
4. 1N <-=- <5E0 388><ACK 188- <-- ESTABLISHED

5. BSYM-5ENT --» <5EQ0 18B><AST><ACK 380> —-> labort!!)
Hal f-Dpen Connection Discovery

Figure 4,2-5

When the 3YN arrives at line 3, TCP B, being in a synchronized state,
responds With an acknowledgment indicating what sequence it next
expects to hear (ACK 188). TCP A sees that this packet cdoes not
acknouwledge anything it sent and, being unsynchronized, sends a reset
[RST) because it has detected a half-open connection, TCP B aborts at
line 5§, TCP A will continue to retransmit its SYN and if the user at
TCF B re-opens the connection, eventually everything will work out.

Arn interesting alternative case occurs when TCP A crashes and TCP B
tries to send data on what it thinks is sunchronized connection. This
ig illustrated in figure 4.2-B. In this case, the data arriving at TCP
A from TCP B (lime 2) is unacceptable because no such connection
exists, so TCP A sends a R5T. The RST is acceptable so TCP B processes
it and aborts the connection,

In figure 4.2-7, we find the tuo TCP's A and B with passive connections

waiting for SYN. An old duplicate arriving at TCP B (line 2] stirs B
into action. A SYN-ACK is returned (line 3) and causes TCP A to

=35~

TCP (Version 2) Specification

genarate a RST {the ACK in line 3 is not acceptable), TCP B accepts
the reset and returns to its passive OPEN atate.

TCP A TCP B
1. (CRASH) {send 388, receive 188)
2. ?7) <-- <SE0 3B88><ACK 18B><DATA 18> <-- ESTABLISHED
3. --> <S5E0 188><R5T><ACK 318> --> [ABORT!!)

Active Side Causes Half-Open Connection Discovery

Figure 4.2-6

TCP A TCP B
1. OPEN OFEN
2. voo <SEQ Z><SYN> --> SYN-RECEIVED -~ "~
3. (?2?7) <-- <SEQ X><SYN><ACK Z+1> <-- GSYN-RECEIVED
4. --> <SE0 Z+1><AST><ACK K+l> --> (return to OPEN!)
5. OPEN OPEN
Old Duplicate SYN Initiates a Reset on tuo Passive Sockets
Figure 4.2-7

A variety of other cases are possible, all of which are accounted for
by the following rules for AST generation and processing.

Reset Ceneration

TCP (Version 2) Specification

l. If the connection is in any non-synchronized state (DPEN,
SYN-SENT, SYN-RECEIYED) or if the connection does not exist, a reset
(RST) should be formed and sent for any packet that does not
acknouledge something the receiver sent earlier. The RST should take
its 5EQ fleld from the ACK field of the offending packet (if it has
one) and its ACK field should acknouledge all data and contral in
the offending packet,

2. If the connection is in a synchronized state (ESTABLISHED,
FIN-WAIT,CLOSE-WAIT, CLOSING), any unacceptable packet should elicit
only an empty acknouledgment packet containing the current
send-sequence number and an acknouledgment indicating the next
sequence number expected to be received.

Reset Processing

All RST (reset) packets are validated by checking their ACK-fields
and SEQ fields (if appropriate)., [f the RST acknouledges something
the receiver sent (but has not yet received acknowledgment for), the
RST must be valid. RST packets uill have ACK fields uhich
acknouledge any data and control in the offending packet to assure
acceptability of the RST.

The receiver of a RST first validates it, then changes state. [If
the receiver uas in a non-synchronized state (OPEN, SYN-SENT,
SYN-RECEIYED) it returns to the OPEN state (possibly modifying the
foreign socket specification in the process-sse section 4.3.3). If
the receiver was in a synchronized state (ESTABLISHED, FIN-WAIT,
CLOSE-WAIT, CLOSING}, it aborts the connection and advises the user
(see section 2.4.3 - error 14).

4.2.4 Resynchronizing a Connection

A basic goal of the TCP design is to prevent packets from being emitted
With seguence numbers which duplicate those which are still in the
netuork. MWe uwant to assure this even if a TCP crashes and loses all
knouledge of the sequence numbers it has been using. When new
connections are created, an Initial seguence number (ISN) generator is
employed which selects a new 32 bit ISN, The generator is bound to a

-37-

TCP (Yersion 2} Specification

{possibly fictitious) 32 bit clock uhose low order bit is incremented
roughly every 5B8 nanoseconds. The 1SN thus cycles every 4.55 hours,
approximately. Since ue assume that packets uwill stay in the network
no more than tens of seconds or minutes, at worst, we can reasonably

assume that [ISN's will bhe unigue.

In figure 4,.2-8, we shou the history of sequence numbers used by a
particular connection. The ordinate shods sequence number and the
abscissa shous time.

L2 To/e
If a TCP were to crash at the point labeled "C" and uwere to restart,
selecting the [SN at "A", there is a chance that packets emitted just
befare point "C" will still be in the netuork when ned packets bearing
these” sequenca numbers are emitted by the new incarnation of the
Eﬂﬂhettlun. The shaded area to the right of point "C" represents the
packet lifetime in the netuwork. Point "B" represents the point of
‘collision.” ey 41t
To avoid this, it is necessary to detect that a connection is nat using
up sequence space fast enough and to jump the sequence numbers ahead to
avoid a situation |ike that shown in the figure. Figure 4,2-9
illustrates the situation in more detail. The ISN curve is a step
function, changing by 2%x18 every second. The "Forbidden Zone" is one
maximum packet lifetime wide and follous the ISN+STEP curve. At point
"A" an attempt was mace to transmit data which would include sequence
numbers lying above [SHN+STEP. In this case, the TCP should send only
gs much as is allowed and then wait until the clock ticks to send the
rest, 1f ue assume the proposed packet occupies sequence numbers [SEQ,
S5EQ + L-1), uhere L is the length in octets, then the test for tupe "A"
collision is:

@ <« (ISN + STEP - SEO0) <= L (4.2-1)
Note that tests are modulo 2#4w32 to account for circularity of the

sequence space. 1f type "A" collision is about to occur, either delay
one clock step or only send aa much as is "safe".

-3R-

TCP (Version Z2) Specification

PACKET
PER@STENCE

o
.

TIME —— 'EQL 1EL
The Meed for Resynchronization
Figure 4.2-8 T O SRR R
i 5

-39-

TCP (Version 2] Specification

o 55\3& S
> \:._'«Q:_ﬂ__l
SN+ h‘}?-"“—“ N
UFE+STEFﬁﬁ§h+ S*ﬁ
-‘33%: STEP LY
i { R ~
| S S
3 N e 7 - PR, k "
i ~ e AP W
g QN MAXIMUN PACKET T
= h\\&@(}@ N LIFETImE ~_
— | 5 Tt
W1 szquznes NOMBERY (RS I ."{ " }
= | HISTCZIES CRTTTRN]
L g~ %q.. * \
7 | PACKE IFETIME L L o L CLOCK STEP AT MAKLUi4
3| o AL] N TRANSMISS!ON RATE
TRANSMISSION b N
RATEC l E i "
.f Ly g
v‘~;-j§ ; _I™ 1SN
¥ LESEND =---ISN+LIFETIME+STE?
—-— 7SN +STEP

TIME —=

Uetecting the Forhbidden Zone
Figure 4,2-9

The more complex case is that of type "B" collision - the ISN curve
catches up with the actual sequence numbers in use. To accommodate for
the delays resunchronization might involve, it is essential to choose
to resynchronize in time to avoid disaster. Of course, any TCP about
to assign @ seqguonce number which is in the forbidden zone must fall
silent until the forbidden zone is past. Presumablu this will only
last a feu tens of seconds or minutes (depending on the maximum packet
lifetimel,

-4B-

TCP {Yersion 2) Specificatian

We have chosen to create a "Panic Zone" midway betuesn the 1SM cucles.
The test for initiating resynchronization is thus whether SEO lies in
the range [ISN, ISN + S/2 + B X (T + STEP)].

where 5 = 2#wd?2 (sequence number spacel ' {heﬁ,ﬂj:ffq
B = maximum banduidth = Zvw#l8 octets/sec pi:\” il i}. k
il maximum packet |ifetime = 3@ seconds v 24 °
STEP = clock tick = | second = ZwwlE octets
So the test for initiating resynchranization is
B < (SEQ - ISN) <= 2ew3l + 33 X 2418 T (4.2-2)

The actuval resunchronization is straightforuard. A special control
packet containing a resunchronize (RSNl flag (see section 4.3.2) is
sent which carries the current send sequence number as SE0 but the new
ISN in an option field. A receiver of RSN validates it on the basis of
the SEOQ and ACK fields, processes it in sequence (that is, only after
it has processed packets occupying the immediately preceding seguence
space), changes its expected receive seguence number to the contents of
the RSN packet's ACK field, and acknolledges in the new seguence
number. Thus, RSH cccupies tuo sequence numbers, the old (SEQ) and the
ned (1SN}, He illustrate this in figure 4.2-18.

It should be recognized that when TCP A transmits the RSN, it may still
have unacknowu|edged packets in its retransmission gueue. In our
example (figure 4.2-1B), these might occupy sequence numbers 58-33,
The receiving TCP won't send the ACK for the RSN until it has received
all preceding packets, but ACKS for these may be lost. A key
obiservation is that the ACK of 1@8,8Bl1 (line 3, figure 4.2-18) uill
serve to acknouledge all the packets still on TCP A's retransmission
gqueue. To understand this, we need some terminology. A TCP maintains
certain status information about each connection it mamages. In
particular, it keeps 3@ send sequence number {(SENOSEQ) telling it the
next number to assign an outgoing packet.

adiY=

A

L |1‘- v
{-1

&
1*ﬁj

TCP (Version Z2) Specification

TCP A TCP B
1. ESTABLISHED ESTABLISHED
2. ESTABLISHED --» <SEQ S8@><RSN 1BABB><ACK 188> --> ESTABLISHED
3. ESTABLISHED <-- <SE0 1B8-<ACK 18881 --» ESTABLISHED
4., ESTABLISHED --» =S5EQ IEQPE}}<HEK 188><DATA> --> ESTABLISHED
Resynchronization
Figure 4,2-18

[t also keeps a "left-uindou edge" (LWEDGE) which tells it the last

& sequence number that has been acknouledged. A send "uindow" is

maintained telling the TCP which sequence numbers the receiving TCP has
given permission for the sender to transmit (SENDUWINDOW). A packet is
deemed acknowuledged if, on receipt of a valid acknouledgment packet
{i.e. the ACK lies in the range [LWEDGE, LWEOGE + SENDWINDOW - 110, it
is the case that (SEQ + L - 1) lies outside the range [ACK, ACK +
SENDWINDOW - 11, where SEQ and L are the beginning sequence number and
length of any packet in the retransmission gueue reguiring

acknou ledgmont .

The ACK uwhich returns from the RSN in figure 4.2-18 will typically
carry a dindou {(for flow control} ranging from 8 to ZwslB-1, and

_LSUWEDGE wil) become ISN + 1. As is shoun in figure 4.2-11, all packets

on the retransmission gueue, including RSN must be ackmouwledged by
this. |t can easily be shoun that the neuw senduwindouw cannot overlap
the old retransmission gueue, and this guarantees everything will be
acknowl edged.

—§2-

TCP {(Version Z) Specification

2

Sequence number space - 2

RSN Acknouledgement ACKs Retransmission Packets
Figure 4.2=11
4.2.5 Closing a Connection
There are essentially three cases:
a) The user initiates by telling the TCP to CLOSE the connection
b} The remote TCP initiates by sending @ FIN cantrol signal
c! Both users CLOSE simultaneousiy g it 5]
Cace 1: Local user initiates the close
In this case, a FIN packet can he constructed and placed out the
outgoing packet gueue, No further SENDs from the user will be
accepted by the TCP, and it enters the FIN-WUAIT state. RECEIVES are
allouwed in this state. All packets preceding and including FIN will

be retransmitted until acknouwledged. HWhen the other TCP has both
acknouledged the FIN and sent a FIN of its oun, the first TCP can

43—

TCP (Version 2) Specification

ACK this FIN and delete the connection (see figure &.2-1)1. 1t
should be noted that a TCP receiving a FIN will ACK but not send its
ourt FIN until the user has CLOSED the comnection also.

o |

Case I: TCP receives a FIN from the netuork

1f an unsalicited FIN arrives from the netuwork, the receiving TCP
can ACK it and tell the user that the connection is closing (see
Event Codes, section 2.4.3). The uscr should respond with a CLOSE,
upon which the TCP can send a FIN to the other TCP. The TCP then
uaits until its ouwn FIN is acknowledged whereupon it deletes the
conmection., |f an ACK is not forthcaming, after 3 timeout the
connection is aborted and the user is told (see 2,4.3).

Case 3: both users close simul taneously

A simul taneous CLOSE by users at both ends of a connection causes
FIN packets to be exchanged. When all packets preceding the FIN
have heen processed and acknouledged, each TCP can ACK the FIN it
has receivad. Both will, upon receiving these ACKs, delete the
connection.

CLOSE is an operation meaning "I have no more data to send." The
notion of closing a full-duplex connection is subject to ambiguous
interpretation, of course, since it may not be obvious hou to treat the
receiving side of the connection. MWe have chosen to treat CLOSE in a
sinplex fashion. The user who CLOSES may continue to RECEIVE until he
is told that the other side has CLOSED also. Thus, a program could
initiate several SEMDs follouwed by a CLOSE, and then continue to
RECEIVE until signalled that a RECEIVE failed because the other side
has CLOSED. MWe assume that the TCP will wnilaterally inform a user,
oven if no RECE!IVEs are outstanding, that the other side has closed, so
the user canm terminate his side gracefully. A TCP will reliably
deliver all buffers SENT before the ceonnection was CLOSED so a user
that expects no data in return need only wait to hear the connection
was CLOSED successfully to knmow that all his data was received at the
destination TCP. :

4.2.8 TCP Connection State Transitions

bl

TCP (Version 2) Specification

The foregaing sectisnc on ronnection management vere ._.Hr:L"m'“tIu
reproszhted uitn 2 sicple zizte diegram, shown in figurs 4.2-1. Tle
flavre anly illusirato: state rt;n_,. 'shd actions utideh ococur as a
Fasultl, but mreither addreszses orror conditions por 2ctions which are
not connacted widh ztale shenoes In thies section. mwore detail is
offercd witr r=opsct {o the reaciion of the TOP {oc various events (user
cominand, packe! serivalst. The enarocterization of TCF processing of
ontrol pochols 2ot resction to user commands is relalively terse.
Car it lorentatTon choTues O Skt "ha s ool izabion wl the
spacified proceossing fair'y compact, but these inplepeniation issuss
gre dealt with in secticns £,9 - 4.5, For the sake of succinctness.
this sectiion J..Il"'r“‘L"'L1 voids puch explangiory noterial uhich can ke
found in ihe igpizrontaticn sectiions. Thus, *this seciion 18 intendsd
more as a referonce en a8 8 Wilorial, and really readires exposure o
soctions 4.0-4.5 1o be fully useful.

-

Furtherwore, ii shouid be kept 1o nind that some conlieo! inforsation
pooupies segustce number spoce aiurw Hith data (see figpure 4£,1-3),
THiC Yatter poinl wpans that there 15 2 natural order in phich to
frrucess liwe uelo and ceadran porLions of ann ingoliiteg poonel God Lhas
certoin conirols will change the connsrtion stele BEFORE iater centrol
or tata (i.e., tho:zs =t! highar sequence nunbers) (s processeti,

An implomeniation cou : pdesntans of this seauenzing to keep track
of which porticns of 4 patiet ifu*‘ ant control} hau siccvasdy been
processed, dole fmat by dssioning ceqguence sumbors Yo cona contral
bits, it is possible to use the poppal askooulodosant mechonisms lo
scknouledsa recoipt of contral infornation and 13 lter oul
guplicates,

TEh
i

rmmmcime br o dn imasipn
EIE i 'l o = LS 1]

b 1 su
tnat they cre first tested for propsre seguence numbare ll.D.¢ that their
rontents lie Tn the ranga ot the expe-ted "receive winden” in the
seguonce peabeEr spatel and ther that they are gueund and processord o
RO orne pprber oo fle are, in dhie viey, ig:“.l'lr‘inr' frr tho moment

B e L L L e N
ERE R - N ey S A

= "ol

ﬁ ...-.-4:...-_—-: L -
' LR L [T]

sy
= .

F Ld
e o
fi f
n

the problen af reasceabiling coyvonts tnat pere fragmented ot gatewaun,
oo which averlap other, already -eceived, packets,

e have closen to orgenide the description sccording to il contiection
statie, 1o loy the description to figre 6.2-1. UWhen & packel cavses a

wfiB=

1CP (Yersion 2) Specification

stale change, but carries more dala o control which should be
processed, 1t mag be appropriale to continue processing in the neb
gtate, hui procsssing of the packet's acknodledgrent fizeld ar seqguence
numbeor field should nol be reprcatad (lect o packet which looked valid
before appear to bz an old duslicate er have 3 bad acknouledgment field
as an artifact of Lhe state changel.

A TOP must typically maintaln certain state information about eaczh
corminetisy IR goon o staikinge bEcesis ant toodaisrring when
resynchronization is reqguired. For reference, ve present a list of

tern: below (see saclion 4.3 for more delaild uwhich are used in the

action summaries for each state (2l=o see figure 4.2-12).

| = SEND-WINDOW — |
;/fﬂfﬂ 7 :W
UL W 2,5 b lh' Uﬁ'ﬁr.i'_r_é_"“"‘"-‘ ‘l,. '..L“!‘!_f",c_ﬂl: L . o
O s S R el RN W e)
L LErT-sEguEneE SEMD-SECUENCE
" = MALIMILsL Wi Do ':l

S = L ELLWE = WiNDOW —————]
—— i
. - & I

N RELEWE-SEQUENLL

Sequence Huuber Management

Figure 4,2-12

TCP (Version Z) Specification

Glossary of terms

ACK - A control bit (acknouledge) occupuing no segquence space, uhich
indicates that the acknowledgment field of the incoming packet
indicates the next sequence number the sender of the packet is
expecting to receive,

ARD - A control bit lacknouledge requested) occupuing one sequence
number, indicating that the packet must be acknouledged. No other
semantics are associated Wwith this control.

EOL - A control bit (End of Letter) occupying no sequence spoce,
indicating that this packet ends a logical letter with the last data
octet in the packet,

FIN - A control bit (finis) occupying one sequence number, wWhich

indicates that the sender uill send no more data or control
OCCupying sequence space. y
PRES
: w:'hf.-""' T

INT = A contral bit , tr—the—trcomimgpacket occupying one seguence

nuniber, used to indicate that the receiving user should he
signalled or interrupted (out of band signall.

LEFT-SEQUENCE - This is the next sequence number to be acknowledged
by the remote TCP and is sometimes referred to as the left edge of
the tramsmit "windoud."

PKT-ACKNOWLEDGNENT - The acknouledgment sequence number in the
arriving packet,

PKT-LENGTH - The amount of sequence number space occupied by a
packet, including any controls which occupy sequence space.

RECEIVE-SEOUENCE - This is the next sequence number the TCP is
expecting to receive.

RECEIVE-UINDOW - This represents the sequence numbers the local TCP

is willing to receive. Thus, the local TCP considers that packets
over lapping the range RECEIVE-SEQUENCE to RECEIVE-SEQUENCE +

47 -

TCP (Yersion 2) Specification

RECEIVE-WINDOM - 1 carry acceptable data or control. Packets
containing sequence numbers entirely cutside of this range are
considered duplicates and discarded. This topic is discussed in
detail in section 4.5 on window allocation policies.

RSN - A control kit (resynchronize) occupying one sequence number,
indicating that the packet contains @ neu sequence number (n an
optien field. This contrel bit is unique in that it has two
sequence numbers, the last of the old sequence numbers and the first
of the neuw ones. This choice uas made so that the acknowledgment
using the neuw sequence numbers would serve to remove the packet
containing the RSN from the retransmission gueue.

RST - A contral bit (reset) occupuing no seguence space, indicating
that the receiver should delete the connection without further
interaction. The receiver can determine, based on the sequence
number and acknouledgment fields of the incoming packet, whether it
should honor the reset command or ignore it. In no case does a
packet containing RST give rise to a RST packet.

SEND-SEQUENCE - This is the next sequence number the TCP will use an
the conmection, 1t is initially selected from an initial sequence
nunber curve (15N, see section 4.2.1) and is incremented for each
octet of data or control transmitted, 1t may be " jumped foruard"
through resyunchronization (section 4.2.4).

SEND-WINOOW - This represents the sequence numbers which the remote
TCP is willing to receive. The range of sequence numbers which may
be emitted by a TCP |ies between SEMD-SEQUENCE amd LEFT-SEQUENCE +
SEND-WINOOW - 1,

SYN - A control bit in the incoming packet, occupying one sequence
number, used to indicate at the initiation of a connection, where
the seguence numbering will start,

Certain error responses shoun below are generic. User commands
referencing connections do not exist receive "connection nat open"
(EP3) and references to connections not accessible te the caller
receive "connection illegal for this process" (EP1). We have not

48—

TCP (Yersion 2] Specification

repeated these generic responses in each description of action
performed for each connection state. Overt attempts to SENO or
INTERRUPT on a connection wWith unspecified foreign socket results in
a "foreign socket ungpecified" (ES) response.

CLOSED etate (i.e. connection does not exist)

User Commands

li

OPEN
Create a new transmission cantrol block TCB to hold connection
state information. Fill in local socket identifier, foreign
socket (if present. The connection is passively "listening"

if the foreign socket is unspecified), user timeout
information. Some implementations may issue SYN packets if
the foreign socket is fulluy specified. In this case, an
initial seguence number (ISN)} is selected and a SYN packet
formed and sent. The LEFT-SEQUENCE i= set to ISN, the
SEND-SEQUENCE to ISN + 1, and SYN-SENT state is entered.

[f the caller does not have access to the local socket
specified, return "connection illegal for this process.”

(EP1l}. If there is no room to create a ned cannection, return
"insufficient resources" 14§)

. SEND, INTERRUPT, CLOSE, ABORT, RECEIVE, STATUS

Error return "Comnection not open" (EP3).

1f the user should no have access to such a connection,
"connectiaon, illegal for this process" (EPl) may be returned.

Incoming Packets,

All incoming packets are discarded and, except for incoming RST
packets which should be ignored, an RST is created with a
sequence number (PKT-SEQUEMCE) equal to the acknouwledgment field
{PKT-ACKNDOWLEDGHENT) of the incoming packet (if it has one;

49~

TCP (VYersion 2} Specification

otheruise PKT-SEQUENCE may be zero or, perhaps, ISN). The
acknouledgment field of the RST should be set to the sum of the
incoming PKT-SEQUENCE and PKT-LENGTH. The RST and ACK control
bbits for the bound packet should be set lsee figure 4.2-B),

OPEN state

User Commands

l.

3.

S

OPEN
Return "already OPEN" (EPE)
SEND or INTERRUPT

Select an 1SN, send a SYN packet, set LEFT-SEQUENCE to ISN and
SENO-SEQUENCE to ISN + 1. Enter SYN-SEND state. Data
associated With SEND may be sent with SYN packet or gueuwed for
transmission after entering ESTABLISHED state. [INTERRUPT can
be sent as a combination SYN, INT packet (see figure 4.1-3 and
section 4,3.2). |f there is no room, respond with
"insufficient resources" (4],

RECEIVE

ueue request, if there is space or respond with "insufficient
resources” (4)

CLOSE

Delete TCB, return "ok" (@). Any outstanding RECEIVES should
be returned Wwith "closing” responses P12,

ABORT

Delete TCB, return "ok" (B); any outstanding RECEIVES should
be returned With "connection reset" (Pl4) responses.

STATUS

_58-

TCP (Yersion 2) Specification

Return state = OPEN .
Incoming Packets

1. ACK -

Any acknouledgenent is bad if it arrives on a connection still
in the OFEN state. A reset (RST) packet should be formed for
any arriving ACK-bearing Packet, except another RST. The RST
should be formatted as follous:

<SEQ PKT-ACKNOWLEDGHENT><RST><ACK PKT-SEQUENCE + PKT-LENGTH>

Thus the RST will acknouwledge any text or control or control
in the of fending packet.

2. SYN

RECEIVE-SEQUENCE should be set to PKT-SEQUENCE + 1 and any
other control or text should be queued for processing later.
1SN should be selected and a SYN packet sent of the form:

<SEDQ 1SN><5%N><ACK RECEIYE-SEQUENCE=

SEMND-SEQUENCE should be set to ISN + 1 and LEFT-SEQUENCE to
ISN. The connection state should be changed to SYN-RECEIVED.
Note that any other incoming contral {(combined with SYNI will
be processed in the SYN-BECEIVED state. Processing of 5YN and
ACK should not be duplicated.

3. 0Other text or control

fing other control or text-bearing packet [not containing SYN)
will have an ACK and thus will be discarded by the ACK
processing. An incoming RST packe!l could not be valid, since
it could not have been sent in response to anuthing sent by
this incarnation of the connection.

SYMN-S5ENT state

=51-

TCP (Yersion 2) Specification

User Commands
1. OPEN
Return "already OPEN" (EPB)
2. SEND or INTERRUPT

Queue for processing after the connection is ESTABLISHED or
packetize, startin Wwith the current SEND-SEOQUENCE number.
Tupical ly, nothing can be sent yet, anyuway, because the send
window has not yat been set by the other side. [f no space,
return "insufficient resources" (4],

3. RECEIVE

Queue for later processing unless there is no room, in which
case return "insufficient resources" (4).

4. CLOSE

Delete the TCB and return "closing” (P12} responses to any
gueued SENDs, RECEIYES, or IWTERRUPTS.

5. ABORT

Delete the TCB and return "reset" (Pl4) responses to any
gueued SENDS, RECEIVES, or INTERRUPTS.

6. STATUS

Return state = SYM-SENT; SEMT-SEQUENCE, RECEIVE-WINDOW
Incoming packets

1. ACK

| f LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE then
the ACK is acceptable. LEFT-SEQUENCE should be advanced to

T i

TCP [(Yersion 2} Specification

equal PKT-ACKNOWLEDGHMENT, and any packetl(s) on the

retransmission gueue which are thereby acknouledged should be
rempved.

1f the packet acknouledgment is not acceptable, a RST packet
should be formed (except when the cffending packet is also a
RET! uwhich carries the PKT-ACKNOWLEDGMENT as a sequence

number, and acknouwledges all text and control of the offending
packet,

SYN

RECETYE-SEQUENCE should be set to PKT-SEQUENCE + 1 and any
packet text or control gueued for later processing. [f the
packet has an ACK, change the connection state to ESTABLISHED,
otherwise enter SYN-RECEIVED. I[n any case, form an ACK
packet:

<5ED SEND-SEQUENCE><ACK RECE!VYE-SEQUENCE> and send it.

(ither text or control.

Incoming packets with other contral or text combined with SYN
uill be processed in SYN-RECEIVED or ESTABLISHED state.
Arriving packets uhich do not contain SYN are either old
duplicates or out-of-order arrivals. Since these must comtain
ACK fields, they will have been discarded by ear|ier ACK
processing. Note that a valid RST could not be received in

SYN-SEMT state since it could not have been sent in response
to a SYN.

. User Timeout.

1f the user timeout expires on a packet in the retransmission
gueue, abort the connection, notifying the user
"retransmission timeout, conrmection aborted" (EP3), and
flushing all gueues, returning RECEIVES, SENDS or INTERRUPTS
with the same error (EP3). Delete the TCB.

=E3-

TCP (Yersion 2) Specification

SYN-RECEIVED STATE

User Commands

1.

r

5.

DPEN
Return “already OPEN" (EPE)

SEND or INTERRUPT
Queue for later processing after entering ESTABLISHED state,
or packetize and queue for output. If no space to gueue,
respond With "insufficient resources" {&)

RECEIVE
Queue for processing after entering ESTABLISHED state. |[f
there is no room to queue this request, respond uith
"insufficient resources" (4).

CLOSE
Queue for processing after entering ESTABLISHED state or
packetize and send FIN packet. [f the latter, enter FIN-WAIT
state.

ABORT

Delete TCB, send a RST of the form:

<5E0 SEND-SEQUENCE><RST><ACK RECE]YE-SEQUENCE=

and return any unprocessed SEN0Os, INTERRUPTs, or RECEIVE= uwith
"reset" code (Pl4).

STATUS

Return state= SYN-RECEIVED, LEFT-SEQUENCE, SEND-SEQUENCE,
SEND-WINDOW, RECEIVE-SEQUENCE, RECEIVE-WINDOW, and other

54—

TCP (Yersion 2) Specification

desired statistics number of (SEND, RECEIVE buffers queued],
packets gqueued for reassembly, for retransmission, etc.

Incoming Packets

1.

Check PKT-SEOLENCE

1+ RECEIYE-SEQUENCE -« OUT-SEQUENCE 4max (B, PKT-LENGTH -1)
<RECE] VE-SEQUENCE + RECEIVE-WINDOW then the packet seguence is
acceptable. [f not, form a reset (AST) packaet:

<5EQ PKT-ACKNOWLEDGMENT><RST><ACK PKT-SEQUENCE +
TEXKT-LENGTH>

1f the incoming packet is RST or has no ACK, discard it, and
do not send RST formed above. MNote that the test above
guarantees that the last sequence number used by the packet
lies in the receive-window., Insisting that PKT-SEQUENCE
{i.e., the first seguence number occupied by the packet) lie -
in the RECEIVE-WINDOOW could lead to deadlock in the case of
alternate gateuay routing and different fragmentation. The
special "MAX" operation makes certain that empty ACK packets
whose length is B, will be accepted. [f the RECEIVE-WINDOW is
zero, no packets Will be acceptable, but special allonarnce
should be made to accept valid ACUS,

ACK

1§ LEFT-SEQUENCE <PKT-ACKNOULEDGHEMT <= SENO-SEQUENCE then set
LEFT-SEOUENCE = PKT-ACKNOWLEDGMENT, remove any acknouledged
packets from the retransmission queue, and enter ESTABLISHED
state.

1f the packet acknouledgment is not acceptable, form a reset
packet, as for the bad sequence case above and send it, unless

the incoming packet is an RST, in which case, it should be
discarded,

RST

-E5.

TCP (Version 2} Specification

If the packet has passed sequence and acknowledgment tests, 1t
is valic, Return this connection to OPEN state. The user
neec not be informed. All packets on the retransmission gueue
should be removed, All packetized buffers must be assigned
new sequence numbers, so they should be requeued for
re-packetizing.

Other text or contraol

[f there is other control or text in the packet, it can be
processed when the connection enters the ESTABLISHED state.

User Timegut

| f the user timeout expires on any packet in the
retransmission gueue, flush 2|| gueues, return outstanding
SENDs, INTERRUPTs or RECEIVEs with "user timeout, conmection
aborted" (EP3), and delete the TCB.

ESTABLISHED state

User Conmands

ll

2.

OPEN »
Recpond with “already OPEN" (EPE}

SEND or [NTERRUPT
Packetize the buffer, send or queue it for output. If there
is insufficient space to remember this buffer, simply respond
with"insufficient resources” (4].

RECEIVE

Reassemble gueued incoming segments into receive buffer, and
return to user. HMark "end of letter” (EOL) if this is the

case. |f insufficient incoming segments are queued to satisfy
the request, gueue the request. [f there is no queue space to

-5E-

TCP [Yersion Z) Specification

remember the RECEIVE, respond with "insufficient resources"
(41

CLOSE

Oueue this until all preceding SENOs or [NTERRUFTs have been
packetized, then form a FIN packet and zend it. In any case,
enter FIN-WAIT state.

ABORT
Delete TCB and send a reset packet:
<5SE0 SEND-SEQUENCE=><RST»<ACK RECEIVE-SEQUENCE>

All queued SENDs, INTERRUPTs, and RECEIYEs should be given
"reset” responses (Pl4): all packets gueued for tranmsmission
lexcept for the RST formed above) or retransmission should be
flushed.

STATUS

Return state = ESTABLISHED; SEND SEQUENCE, LEFT-SEOUENCE,
SEND-WINDOW, RECEIVE-SEQUENCE, RECEIVE-MWINDOW, and other
statistice, as desired.

Incoming Packets

1I

Check PKT-SEQUENCE

All packets are generally processed in sequence. Initial
tests on arrival are used to discard old duplicates, but
further processing is dorne in PKT-SEQUENCE order. If a
packet's contents straddle the boundary betueen old and neu,
only the new parts should be processed.

1f RECEIVE-SEQUENCE <= PKT-SEQUENCE + max (PKT-LENGTH - 1, B)
<RECE|YE-SEOUENCE + RECEIYE-WINDOW then packet is acceptable.

5=

TCP (¥ersion 2} Specification

Otherwise if PKT-LENGTH is non-zero, an empty acknouledament
packet should be sent:

<5E0 SEND-SEQUEMCEs<ACK RECEIYE-SEQUENCE:=
In any case, unacceptable packets should be discarded.
ALK

I f LEFT-SEQUENCE <PKT-ACKNOULEDGHMENT <= SEND-SEOUENCE then set
LEFT-SEQUENCE = PKT-ACKNOWLEOGMENT. Any packets on the
retransmission gqueue which are thereby entirely acknouledged
are removed. Users should receive positive acknouledgments
for buffers which have been SENT and ful ly acknouledged (i, e.
SEND buffer should be returned with "OK" (B) response). If
the ACK is a duplicate, it can be ighored,

HST

All RECEIVEs, SENDs, and INTERRUPTs receive "reset" (Pl4)
responses. All packet queues are flushed, The TCB is
deleted, User also receives an unsolicited general "reset"”
signal (Pl4),

SYN

Ignare the SYN. A packet carrying a SYN could not have passed
through the sequence check unless it had control or text lying
beyond the SYN which was acceptable. To prevent duplicate
processing, such packets could be "marked"” so that all
duplicate control or text is remaoved before they exit
sequence-number check. Other marking strategies could be
employed to achieve the same effect.

INT

Signal user that remote side has "interrupted" (P11} and
advance RECEIYE-SEQUENCE to asccount for INT. Format and send

GR=

TCP (Yersion 2) Specification

an acknodledgement for the INT, or piggy back the ACK on
return traffic.

ARO

Format and send an ACK packet after advancing RECEIVE-SEQUENCE
to account for AROD. Alternatively, simply set a flag to send
an ACK (possibly by piggy-backing on return packets) at the
earliest opportunitu.

RSN

Since packet contents are being processed in sequence, the
sequence number of the RSN should now equal RECEIVE-SEQUENCE.
RECEIVE-SEQUENCE can be replaced by the RSN option-field
containing the new sequence number. An ACK packet should be
returned or a flag set to send an ACK at the earliest

oppor tuni tu.

Packet test

Once in the ESTABLISHED state, it is possible to deliver
packet text to user FECEIYE huffers. Some preliminary packet
reassembly may be required to form valid sagments from
fragments created at a gateuay. Text from segments can be
moved into buffers until either the buffer is full or the
segment is empty., [f the segment empties amd carries an EOL
flag, then the user is informed, when the buffer is returned,
that an EOL has been received.

FIN

An ACK packet should be sent, acknouledging the FIN., The user
ghould be signalled "connection clesing” (P12) and similar
responses should be returned for any outstanding RECEIVEs

which cannot be satisfied. Connection state should be changed
to CLOSE-LAIT.

18. User Timeout

-9~

FIN-LAIT

TCP (Version 2) Specification

1f the user timeout expires on a packet in the retransmission
queue, flush all queuss, return "user timeout, connection
abor ted" (EP3) for all outstanding SENDs, INTERRUPTs, and
RECEIVEs, and delete the TCB. The user should receive an
unsolicited message of the same form (EP3).

User -Commands

L

2,

OFEN
Return "already OPEN" (EPE]

SEND or [NTERRUPT
Return "connection closing” (EP12) and do not service reqguest.
RECEIVE
Heassemble and return 3 letter, or as much as will fit, in the
user buffer, 0Oueue the reguest if it cannot be serviced
immediately,

CLOSE

Strictly speaking, this is an error and should receive a
"connection closing" (EP12) response. An "ok" (8) response
would be acceptable, too, as long as a second FIN is not
emitted.

ABORT

A recet packet [(RST) should be formed and sent:

<SEQ SEND-SEQUENCE><RST><ACK RECEIYE-SEQUENCE>

Outstanding SENDs, INTERRUPTS, RECEIVEs, CLOSEs, and/or

-EB-

TCF {(Yersion 2) Specification

packets queued for retransmission, or packetizing, should be
flushed, with appropriate "connection reset" (P12},

B. STATUS

Respond with state = FIN-WAIT, SEND-SEQUENCE, LEFT-SEQUENCE,
SEND WINDOW, RECEIVE-SEOUENCE, RECEIVE WINDOW, and other
statistical information, as desired.

Incoming packets
1. Check PKT-SENUENCE

| f RECEIVE-SEQUENCE <= PKT-SECUENCE + MAX (PKT-LENGTH - 1.8} <
RECEIYE-SEOUENCE + RECEIVE-WINDOW then packet sequence is
acceptable., Otherwise, if PKT-LENGTH is non-zero, an ACK
packet should be sent:

<5EQ0 SEND-SEOUENCE=<ACK RECEIWE-SEOUENCE=
In any case, an unacceptable packet should be discarded.
2. ACK

| ¥ LEFT-SEUUENCE < PKT-ACKNOWLEOGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced appropriately and any
acknodledged packets deleted from the retransmission gueue,
SENOs or INTERRUPTs which are thereby compleied can also be
acknouledyged to the user. ACK's outside of the SENO-WINDOW
can be ignored. If the retransmission gueus is emply, the
user’s CLOSE cam be acknouledged ("OK" (B)) and the TCB
deleted.

3. RST

All RECEIVEs, SEMDs, and [NTERRUPTs still outstanding should
receive "reset" (Pl4) responses. All packet gueues should be

-Bl-

TCP (Yersion 2) Specification

flushed and the connection TCB deleted. User should also
receive an unsolicited general "connection reset" (Pl4)
signal.

5YN

This case should not occur, since a duplicate of the SYN which
started the current incarmation will have been filtered in the
PET-SEOQUENCE processing. Other SYN's could not have passed
the PKT-SEQUENCE check at all (see SYN processing for
ESTABLISHED statel.

INT

Atvance RECEIVE-SEOQUENCE by one and signal the user that the
remote side has "interrupted" (PLl). An ACK packet should be
sent in return, or a flag set to send an ACK at the earliest
possible time.

ARO

RECEIVE-SEQUENCE should be advanced by one and an ACK packet
sent in return, or a flag set to accomplish this as soon as
possible.

FPacket Text

¥ there are outstanding RECEIVEs, they should be satisfied,
if possible, with the text of this packet, remaining text
should be gueued for further processing. [f a RECEIVE is
satisfied, the user should be notified, with "end-of-letter"
{(EOL} signal, if appropriate,

RSN

RECEIVE-SEQUENCE should be updated to 1 + NEW-SEQUENCE (
carried in the ASM option field of this packet). An ACK
packet should be prepared, acknouledging the new sequence
number

~52-

2.

1@.

TCP (Yersion 2) Specification

<SEQ SEND-SEOUENCE><ACK RECEIVE-SEQUENCES
FIN

The FIN should be acknouledged. Return any remaining RECEIVYEs
with "connection closing"” (P12) and advise user that

connection is closing with a general signal (P12). 1f the
retransmission queue is not empty, then enter CLOSING state,
otherwise, delete the TCB.

User Timeout

If the user timeout expires on a packet in the retransmission
guewe, flusn all gueues, return "user timeowt, connection

abor ted" messages for all outstanding SENDs, RECEIVEs, CLOSES
or INTERRUPTS, send an unsolicited general message of the same
form to the user, and delete the TCB.

CLOSE-WAIT

User Commands

1.

2.

OPEN
Return "already OPEN" error (EPE)

SENO or INTERRUPT

FPacketize any text to be sant and queuve for output. If there
is insufficient space to remember the SEND or INTERRUPT,
return "insufficient resouces" (4)

RECEIVE

Since the remote side has already sent FIN, RECEIVEs must be
satisfied by text already reassembled, but not delivered to
the user. |f no reassembled packet text is awaiting delivery,
the RECEIVE should get a "connection closing" (PlZ2) response.
Otherwise, any remaining text can be used to satisfy the

-B3-

TCP (Version 2} Specification

RECEIVE. In implementations which do not acknoiledge packets
until they have been delivered into user buffers, the FIN
packet uhich led to the CLOSE-WAIT state will not be processed
until all preceding packet text has been delivered into user
buffers. Canseguently, for such an implementation, all
RECEIVEs in CLOSE-MAIT state will receive the "connection
closing” (F12) response.

4. CLOSE

Oueue this request until all preceding SENDs or INTERRUFTs
have heen packetized, then send a FIN packet, enter CLOSING
state.

5. ABORT

Flush any pending SENDs, RECEIVEs and INTERRUPTs, returning
"connection reset" (Pl4) responses for them. Farm and send a
RST packet:
<SE0 SEND-SEOUEMCE=><RAS5T><ACK RECE!VYE-SEQUENCE=
Flush all packet gueues and delete the TCBE.
B. STATUS

Return state = CLOSE-MWAIT, all other TCB values as for
ESTABLISHED case.

[ncoming Packets
1. Check PKT-SEOUENCE
I f RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX (PKT-LENGTH - 1, B)
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then the packet sequence
is acceptable. Otheruise, if PKT-LENGTH is mom-zero, an ACK
should be sent:

<SEQ SEND-SEQUENCE»><ACK RECE [VE-SEQUENCE>

B4~

Te

TCP (Version 2} Specification

Unacceptable packets should be discarded. Others shoulcd be
processed in sequence number order,

ACK

1f LEFT-SEQUENCE < PKT-ACKNOMLEDGHENT <= SEND-SEQUENCE. then
LEFT-SEQUENCE should be advanced appropriately and any

acknou ledged packets removed from the retransmission queue.
Completed SENDs or INTERRUPTs should be acknouledged to the
user ("0OK" (B) returns). ACK's uhich are outside the receive
windod can be ignored,

RST

All RECEIVEs, SENDs, and INTERRUPTs still outstanding should
receive "reset" (Pl4) responses. Packet gueues should be
flushed and the TCB deleted. The user should also recelved an
unsolicited general "connection reset" signal (P14),

SYN
This case should not occur, since a duplicate of the SYN which
started the current connection incarnation will have besn
filered in the PKT-SEOUENCE processing. Other SYN's will| have
been rejected by this test as well (see SYN processing for
ESTABLISHED state).

INT

This should not occur, since a FIN has heen received from the
remeote side. Ignore the INT.

ARO

This should net occur, since a FIN has heen received from the
remote side. Ignore the ARQO.

Packet text

-R5-

TCP {Version 2) Specification

This should not occur, since a FIN has bheen received from the
remote side, lgnore the packet text.

8. RSN

This should not occur, since a FIN has been received from the
remote side. Ignore the RSN.

3. FIN

This should not occur, since a FIN has already been received
from the remote side. Ignore the FIN.

18. User Timeout
I f the user timeout expires on a packet in the retransmission
gqueue, flush all gueues, return "user timeout, connection
aborted" (EP9) for any outstanding SENDs, RECEIVEs or
INTERRUPTs, send an unsolicited general message of the same
form to the user and delete the TCB.

CLOSING
User Cowmmands

1. OPEN
Respond 1ith “alreacdy OPEN" (EPE)

2. SENO, INTERRUPT
Respond with “connection closing” (EP12)

3. RECEIVE

Respond with "connection closing” (EP12)

4. CLOSE

5.

E.

TCP (Version 2) Specification

Respond with "connection closing" (EPLZ)

ABORT

Respond with "0OK" (8) and delete the TCB, flush any remaining
packet rnueues. [1f a CLOSE command is still pending, respond
"connection reset" (Pl4).

STATUS

Return State = CLOSING along uith other TCP parameters.

Incoming packets

1.

i

3'

Check PKT-SEQUENCE

[+ RECEIVE-SEQUEMNCE <= PKT-SEQUENCE + MAM (PKT-LENGTH - 1,8} <
RECEIVE-SEQUENCE + RECEIVE-WINOOW then packet secuence |s
acceptable, Otherwise, if PKT-LENGTH is non-zero, an ACK
packet should be formed and sent:

<5EQ SEND-SEQUENCE=><ACK RECEIVE-SEQUENCE=>
[n any case, an unacceptable packet should be discarded.
ACK

1 LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SENO-SEQUENCE, then
LEFT-SEQUENCE should be advanced and any acknouwledged packets
deleted from the retransmission gueue. SENOs or [NTERRUPTs
which are thereby completed can also be acknowledged to the
vser. ACK's outside of the SENO-WINDOW can he ignored.

RST

fAny gutstanding RECEIVEs, SEND, and INTERAUFTs should receive
"reset" responses [Pl4). All packet queues should be flushed
and the TCB deleted, Users should also receive an unsolicited
general "connection reset" (Pl4) signal.

-B7-

TCP (Version 2} Specification

4. Packet text or control

No other control or text should be sent by the remote side, so
packets containing non-zero PKT-LENGTH should be ignorecd.

5. User Timeout

[f the user timeout expires on a packet in the retransmission
guewe, flush all gueues, return "user timeout, comnection
abor ted" (EP3) responses for all outstanding SENDs,
INTERRUPTs, RECEIVEs, or CLOSEs, send anm unsolicited message
of the same form {EP3) to the user and delete the TCB.

4.3 TCP Data Structures
4.3.1 Introduction

Our basic view of intermetuworking is that all internetwork packets (TCP
and otherwise) have a basic internet header consisting of
sourcc/destination address, data and header length fields, and format
indicator. The TCP header follows the internet header, supplying
information specific to the TCP protocol. This division allows for the
existence of internet protocols other than TCP, and for experimentation
with TCP variations,

4,2.2 Internetuork Packet Format

In this section, we offer a terse descriptive summary of the contents
of the internetuork and TCP header (see also figure 4.3-1).

Destination Netuork ldentifier: 8 bits

Decimal Octal Metuork

(5] 2] Reserved

1 1 BEN Packet Hadio Netuark

2 2 SF Bay Area Packet Radio Network
3 3 BBN RCC Netuork

-E8-

TCP (Yersion 2) Specification

4 4 Atlantic-Satellite Netuork

b 5 Washington, D.C. Packet Radio Netuwork
6-3 E-3 Not assigned

18 12 ARFANET

11 13 University College London Netuwork
12 14 CYCLADES

13 15 Mational Physical Laboratory

14 16 TELEHET

15 17 British Post Office EPSS

1B 28 OATAPAC

17 21 TRANSPAL

18 22 LCS Network

13 23 TYMNET

28-254 24-376 Unassigned

255 377 Reserved

Destination Host ldentifier: 24 bits

Usually synonymous with a TCP, but more than one TCP may reside at a
host,

Source Network ldentifier: B bits
Source Host ldentifier: 24 bits
Packet length: 1B bits

Measured in 8 bit octets, this length accounts for all octets in the
packet including contral bits, but not includingrpeader bits.

-

e e

Header length: & hits

b

Measured in 8 bit octets, this length accounts for all soctts in the
header including source/destination addresses, packet length and
format fields, etc. Options are included in the header length, but
follouw the fixed fields of the header. The format field can be used
to identify the header type and implicit fixed field length. For

=-£9-

TCP (Version 2] Specification

TCP, the standard header (without options) is 34 (decimal) octets
long.

Format: & bits
Tupes:

B: Raw internet packet

l: TCF

2: Secure TCP

3-14: Mot assigned

15: Internet debugger (XNET)

Note:; all type codes abave are decimal.
The fields below are TCP specific.
TCP wversion number: & bits
Sequence number: 32 bits

Window: 1E bits

Control Flags: 16 bits (from left to rightl:

bit B: S¥N: Reguest to synchronize sending sequence numbers.
bit 1: ACK: the acknowledgment field contains an ACK
bit Z: FIM: Sender will not send any more data

bit 3: ASN: Sender is resynchronizing

Bit &4 EDS: End of Segment; end-end checksum present
bit G EOL: End of Letter

bit B: INT: Sender is interrupting

bit 7t unused

bit 8: BOS: Beginning of segment

bit 3: unused

bit 18; ARQ: Acknowledgment requested

bit 11: RST: Reset the connection packet.

bits 12-15: unused

Reserved: & bits

Destination Port ldentifier: 24 bits

~78-

TCP (Yersion 2) Specification

Reserved: & bits
Source Port Identifier: 24 bits
Acknouledgment: 32 bits

[f the ACK control bit is set this field contains the value of the
next sequ number the sender of the packet is expecting to
0 _r_eceivgjﬁgﬁe RSN control bit is =et, this field contains the
i T value of the neu next sequence number the sender will use. 7

checksum: 18 bits

The checksum field is the 1B bit one's complement of the one's
v complement sum of all words in the header and text, excluding those
& words which represent unchecksummed options (see below). |[If a
" * packet contains an odd number of header and text bytes to be
checksummed, the [ast byte is padded uith zero to form 2 16 bit word
- for checksum purposes. The pad is not transmitted as part of the

packet.

< Options (a multiple of 8 bits in length): 8n bits

Follouwing the checksum, but preceding the data, there may be options in
the header. Options occupy the space betuecen the end of the standard
TCP heacder (34 octets) and the end of the header as accounted for in
the header length field. All options have the same basic format:

8 bits: Dption length in octets (including two octets of length and
kind information)

8 bits: Option kind
C: 1 bit

I1f set, this option is not included in the checksum
calculation.

P: 1 bit

M=

TCP (Version Z) Specification

[f set, this option is protocel specific li.e., option is
interpreted based on format and protocol version specified in
those internet packet header fields.

Option identifier: B bits

There are two special cases for options. The first is an option
whose length field is zero. This marks the end of the option
list. Only one octet is associated with this option, the length
octet itself. The second is an option whose length field is one.
This option serves as padding and is also one octet long., This
option does not terminate the option list. Mote that the list of
options may be shorter than the header length field might implu.
No guarantees concerning the content of the header beuond the
end-of-option mark are made.

Currently defined options loctal numbering) include:

Code Length Meaning

BxX ——= checksummed and protocol independent
51505] -— reserved

1XX - checksummed, protocol dependent (TCP)
168 —_— reserved

181 it Facket label-sequence number for

debugging purposes,

1@z 4 Secure Open - used by TCP's
communicating with BCA security system

183 2 Secure Close-used by TCP's
communicating with BCR security system

72

ZXX

268

284

285
Kt

384

variable

variable

TCP (Version 2) Specification

Not checksummed and Protocol
independent

reserved

Internetuwork timestamp field used to
accumulate timestamping information
during internet transit.

satellite timestamp - (as above)

Mot checksummed and Protoco! Dependent

Internal TCP timestamp for
diagnostics.

73

TCP (Version 2} Specification

e bits —

B | S e 1 -
T Desm DESTIUATION W
= NET Hosy 4
uﬂ
2 | Sounce SOURLE
ﬁg MNET HosT
F @ IE—"-: SRR S
= DATA Heapzr |9, H*Jm—
LENGTH LenaTH | & [SION
R s s W s e e e w ey o -‘-——(

SEQUENCE Numete®R

ConNTROL
FLBGS

";;/z{'f DESTINATION
%};ﬁ PorT
{f”’/’" SOURCE

- FORT

WINDOW

ACKNOWLEDSMENT

TCP HEADER
W
.}E\\%"

CHELKSUM, DFTVOM ...

QOPTIONG .-

o

TATA

H o N A A A A A A A A
TCP Header Format

Figure 4,3-1

4,3.3 Transmission Control Block

it is highly likely that any implementation will include shared data

i T

TCP {(Yersion 2) Specification

structures among parts of the TCP and some asynchronous means of
signalling users uhen letters have been delivered.

Une tupical data structure is the Transmission Control Block (TCB)
which is created and maintained during the |ifetime of a given
connection. The TCB contains the following information (field sizes and
content are notional only and may vary from one implementation to
another]:

Local connection name: 1B bits

Local socket: B4 hits

Foreign socket: B4 bits

Receive window size in octets: 16 bits

Receive left window edge (mext sequence number expected}: 32 bits

Send window size in octets: 16 bits

Send left window edge (earliest unacknouwledged octet): 32 bits

Next packet sequence number to send: 32 blts

Last seguence number used to update send window (make sure that only
the most recent window information is used: 32 bits

Connection state: & bits
See figure 4.2-1 for basic state diagram.

CLOSED (@), OPEN {1}, SYN-SENT (2), SYN-RECEIVED (3), ESTABLISHED
{4), CLOSE-WALIT (5), FIN-WAIT (B}, CLOSING (7).

Foreign connection specification (U,U.N,U.T,U.P}: & bits

U.N is set if the foreign network was not specified in the OPEN
command., U.T is set if the foreign TCP was not specified in the

~TE

TCP (Version) Specificatinn

OFEN cammancd., U.P is set if the foreion Port was not spoci fierl
in the OPEN command. U is set if any of LN, U.T, or LLF are
set. U.T implies U.P and U.N implies both U.T and U.P (see
section Z.28), UW.MN, LT, and U.F are used to remenber the state
of unspecifity of the foreign socket at the initial OFEN so that
a AST (reset) will return the foreign socket to its proper state.
U is reset (i.e. made false) when 3 SYN is received, but may be
set again on receipt of RST, depending upon U.N, U.T. er U.P.
Once in the ESTABLISHED state, U.N, U.T, and U.P can be reset,
since the connection will not return to OPEN on receiving RST
after it has become ESTABLISHED.

Retransmissian timeout: 16 bits

Head of Send buffer queue [buffers SENT from user to TCP, but not
packetizedl: 1B hits

Tail of Send buffer gueue: 1B bits

Pointer to last octet packetized in partially packetized buffer
(refers to the buffer at the head of the queuel: 1B bits

Head of Send packet gueus: 16 bits

Tail of Send packet queue: 15 bits

Head of Packetized buffer queue: 16 bits

Tail pf Packetized buffer queue: 16 bits

Head of Retransmit packet queues: 16 bits

Tail of Retransmit packet queue: 16 bits

Head of Receive buffer gueue [gueue of buffers given by user to
RECEIVE letters, but unfilledl: 16 bits

Tail of Receive buffer gueue: 1B hits

-76=

TCP (Version Z) Specification

Head of Aeceive packet queue: 16 bits

Tail of receive packet gueue: 16 bits

Pointer to last octet filled in receive buffer: 16 bits

Pointer to next octet to read from partiy emptied packet: 1B bits

[Note: The above tuo pointers refer to the head of the receive
Buffer and receive packet queues rezpectivelyl

Foruward TCB pointer: 16 bits
Backward TCH pu]ntér: 16 bits
h.4 Structure of the TCP
4.6.1 Introduction

finy particular TCP could be viewed in a number of ways. 1t could be
implemented as an independent process, servicing many user processes,
It could be viewed as a set of re-entrant library routines which share
2 common interface to the local PSN, and common buffer storage. 1t
could even be vieuwed as a3 sat of processes, some handling the user,
some the input of packets from the net, and some the cutput of packets
to the net.

e offer one conceptual frameuwork in which to view the various
algorithms that make up the TCP design. In our concept, the TCP is
Wwritten in tup parts, an interrupt or signal driven part {consisting of
five processes), and a reentrant library of subroutines or system calls
which interface the user process to the TCP., The subroutines
communicate with the interrupt part through shared data structures
(TCB'=s, shared huffer gueues etc.). The five processes are the Output
Packet Handler wuhich sends packets to the packet suitch; the Packetizer
which farmats letters into internet packets; the Input Packet Handler
which processes incoming packets; the Reassembler which builds letters
for users; and the Retransmitter which retransmits unacknouledged
jppackeis.

o

TCP {Yersion 2) Specification

As an example, uwe can consider what happens when 8 user executes a SEND
call to the TCP service routinmes. The buffer to be sent is placed on a
SEND buffer queue associated with the user's TCB. A 'packetizer’
process is auwakened to create one or more output packets from the
buffer. The packetizer attempts to maintain a non-empty queue of output
packets so that the output handler will nat fall idle waiting for the
packetizing operation,

A major implementation issue is whether to use TCP resources or user
resources for incoming and outgoing packets. 1|f the former, there is a
fairness issue, both among competing connections and betueen the
sending and receiving sides of the TCP.

When a packet is created, it is placed on a FIFD send-packet gueue
associated with its origin TCB. The packetizer wakes the output handler
and then continues to packetize a feu more buffers, perhaps, before
going to sleep. The output handler is auaskened either by a 'hungry’
packet suitch or by the packetizer. The send packet queus can be used
as a "work gueue' for the output handler. After a packet has been sent,
but usually before an ACK is returmed, the output handler moves the
packet to a2 retransmission gueue associated With each TCB.

Retransmission timeouts can refer to specific packets or the
retransmission fgueue can be periodical ly searched for the timed-out
packets. [f an ACK is received, the retransmission entru can be removed
from the retransmit queue. The send packet fueue contains only packets
waiting to be sent for the first time.

As usual, simultaneous reading and writing of the TCB gueue pointers
must be inhibited through some sort of semaphore or lockout mechanism,
When the packetizer Wants to serve the next send buffer queue, it must
lock out all other access to the gueus, remove the head of the gueue
{assuming of course that there are enough buffers for packetization),
advance the head of the gueus, and then unlock access to the gueue.

Incoming packets are examined by the input packet handler. Here they
are checked for valid connection sockets and acknouwledgements are
processed, causing packets to be removed, possibly, from the RETRANSHIT
packet gueue, as needed.

-78-

TCP (Version 2) Specification

Packets uhich should be reassembled into buffers and sent to users are
gueued by the input packet handler, on the receive packet guesue, for
processing by the reassembly process. The reassembler looks at its FIFO
LWork gqueue a@nd tries to move packets into user buffers which are gueued
up in an input buffer gueue on each TCB. |f a packet has arrived out of
order, it can be queued for processing in the correct sequence. Each
time a packet is moved into a user buffer, the left window edge of the
receiving TCB is moved to the right so that outgoing packets can carry
the correct ACK information. |f the SEND buffer gueue is empty, then
the reassembler creates a packet to carry the ACK.

A
Az packets are moved into buffere and 4bere—ara filled, the buffers are
dequeued from the RECEIVE buffer gueue and passed to the user. The
reassembler can also be auakensd by the RECEIVE user call should it
have a non-empty receive packet gueue with an empty RECEIVE buffer
QueLe.

4.4.2 Input Packet Handier

The Input Packet Handler is awakened when a packet arrives from the
metuwork. It first verifies that the packet is for an existing TCB (i.e.
the local and foreign socket numbers are matched With those of existing
TCB's). If this fails, a "reset" message is constructed and sent to the
point of origin.

The input packet handler looks out for ceontrol or error information and
acts appropriately. As an example, if the incoming packet is a RESET
reguest, and is believable, then the input packet handler clears out
the related TCB, empties the associated send and receive packet gueues,
and prepares error returns for outstanding user SEND(s) and RECEIVE(s)
on thoe reset TCB. The TCB is are marked unused and returned to storage.
¥ the RESET refers to an unknown connection, it is ignored,

Any ACK's contained in incoming packets are used to update the send
left uindow edge, and to remove the ACK'ed packets from the TCB
retransmit packet queus. |f the packet being removed was the end of a
ugser buffer, then the buffer must be dequeued from the packetized
buffer queue, and the User informed.

~79-

TCP (Yersion Z) Specification

The packet seguence number, the current receive window size, and the
receive |eft window edge determine whether the packet |ies within the
Hincdod or outside of it,

Let W = window size
S = size of sequence number space
L = left windou edge
R = L+l = right windou edge
» = seguence number to be tested
For any sequence number, =, if Loe o 5: Fa
B <= (x-L) mod S < {R-L) mod S = U {4.4-1)

then % is within the window.
A packet should be rejected only if all of it lies putside the windou.
This is easily tested by letting x be, first the packet seguence
number, and then the sum of packet sequence number and packet length,
loss ane in egquation 4.4-1 above.

The other case to be checked occurs when the packet has both head and
tail outside of the receive windou, but includes the wWindou.

Let PFL = packet length
L,R are as before
H = packet sequence number
T=H4+PL~-1a= |ast packet sequence number
For any packet ranging over sequence numbers [H,T], if

B <=L -H<PL
Ho< L

-58-

™ R i

, A . Ex:i_..- e hgf‘

L ' &

o Pad gt vight

< A xde o TCP (Version 2} Specification

LR c
and i

I _f_ |..-‘-'I'I o

Rl RN by AR T g Lacht 4.4-2)

then the packet includes the receive windou.

[f the packet length is zero fe.g. an ACK packet), tests should be
performed as if the packet length were one to accommodate the case that
the receive windou is zero.

I{ the packet lies outside the window, and there are no packets waiting
to be sent, then the input packet handler should construct an ACK of
the current receive left window edge and gueue it for output on the
send packet gueue, ard signal the output packet handler. Successful ly
received packets are placed on the receive packel queue in the
appropriate sequence order, and the reassenbler signal led.

The packet window check can not be made if the associated TCB has not
received a SYN, so care must be taken to check for control and TCB
state before doing the Wwindow check.

4.6.3 Reassemhbler

The Reaszsembler process is activated by both the Input Packet Handler
and the RECE|YE user command. When the reassembler is auakened it
looks at the receive packet gueue for the associated TCEB. [f there are
saone packets there then it sees Whether the RECEIVE buffor gueus is
empty. [f it is then the reassenbler gives up on this TCB and goes back
to sleep, otheruise if the first packet matches the left windou edge,
then the packet can be moved into the user's buffer. The reassembler
keaps transferring packets into the user's buffer until the packet is
enpty or the buffer is full., Note that a buffer may be partly filled
and then a sequence 'hole' s encountered in the receive packet queue.
The reacsembler nust mark progress so that the buffer can be filled up
sturting at the right place when the *hole' is filled. Similarly a
packat might be only partially emptied when a buffer is filled, so
progress in the packet must be marked.

If a letter uas successfully transferred to a user buffer then the

=Al-

TCP (Version 21 Specification

reassembler signals the user that a letter has arrived and degqueues the
buffer associated with it from the TCB RECEIVE buffer gueus. 1§ the
buffer is filled then the user is signaled and the buffer dequsued as
hefore. The event code indicates whether the buffer contains all or
part of a letter, as described in section 2.4,

In every case, when a packet is delivered to a buffer, the receive left
windod edge is updated, and the packetizer is signaled. This updating
must take account of the extra octetcincluded in the sequencing for
coertain control functions [SYN, RSN, ARD, [NT, FIN,]1. |f the send
packet queue is empty then the reassembler must create a packet to
carry the ACK, and place it on the send packet gueue.

”HuassEmhly of incoming packets containing both the beginning and

end-of-segment (B0S, EO0S: see figure 4.3-1) marks is straightforuard,
The packet checksum is intact in the packet header and can be used to

validate the end-to-end correctness of the data.

Arriving packets with only one or neither bit set are fragments created
at a gateuay., The intent behind the TCP design is to preserve the
end-to-end nature of the checksum and acknouledgement procedure, even
in the presence of fragmentation. To achieve this goal, fragments must
be reassembled into segments and checksummed. This means, in

particular, that the original segrent header must be reconstructed.

The rules of gateway fragmentation are straightforuward. A packet
consisting of sequence numbers 1BB-539 can be fragmented, for instance,
into tuo packels of 58 pctets each (including controll}. The gateuay
wses figure 4.1-3 to determine which sequence-bearing control flags to
set in each fragment header. In the worst case, suppose all
sequence-bearing control bits are set (i.e., SYN, INT, ARG, RSN, FIN},
leaving 495 octets of data. A gateuay could produce tuo fragments, the
firel beginning uith seguence number 108 and including SYM, INT, ARO
and up to and including data sequence 349. BOS would be set, along with
ALK and the window field. Tha checksum field vould be zero.

The second packet would contain data sequences 358-537 and controls RSN
and FIN, as wel)l as EOS, a checksum (for the original segment - 1t is
not recomputed}, and the new sequence number associated with RSN in an

TEP (Yersion 2} Specification

option field. The ACK and window fields are duplicates of those in the
first frapment,

If BEOL i=s present in the original packet, it is carried only in the
lost fragment produced. Note that a segment can be divided into more
than two fragments, and that a fragment can also be divided. The BOS
bit stays with the first fragment, even if that fragment is subdivided
fater. The EOS and EOL bits stay with the last fragment. Intermediate
fragments may not carry any of BOS, EOS, or EDL.

During reassembly of a segment, It may happen that fragments arrive
Wwith sequence number extents which overlap (due to alternate gateuway
routing and diffarent fragmentation). This makes the job of

redssoembling fragmenis more difficult, but not impossible. Although it
15 not part of the current specification, it may be useful| for gateways
to produce a fragment checksum in addition to passing the segment
checksum intact. In this way, a bad fragment is less |ikely to mess up
reassenihly of a segment.

Gateuwau fragmentation rules may require modification or augmentation to
deal with option fields in packat headers. While it is generally true
that options tend to stay with the fragment marked "BOS" we have
already seen that an RSN-bearing packet keeps the option with the
packet containing the RSN,

The rules of packet retransmission require that retransmitted packets
contain the latest ACK and windew information available. This means
that a duplicate of a segment, If fragmented, may have a different
chiecksum than ear|ier copiea. To assure that segment reassembly is not
frustrated by this effect, the ACK and Window information used to
vialidate the reassembled checksum should be taken from the packet
containing the checksum (i.e. the fragment marked "EDS").

4,0.46 Facketizer

The Packetizer process gets work from both the Input Packet Handler and
the SEND user call. The signal from the SEND user call indicates that
there is something new to semd, uhile the one from the input packet

rl'

'y, _I R
ChTe ok ";f-w%an‘*] i

g]
i, P ; e
A okl Hare

FIR D™
{ - cEa i;
/ - cada Lgars =
',?.—"., _-:rMa, ﬁf{..'r';;"! "{:r- La N
£ & oy ﬁja‘-‘drr‘! { | LTt Al
I.'f ’ .l'|.'II Ifl {_".ﬁ"i < t -

/"f'“%’lt o Uﬂ-r‘ﬂ.':.h-L l’:-l -Arr’;rt"L ;J"t;g{:‘ L bVL,IF R .-l-n'-'-r

TCP {Yersion 2} Specification

handler indicates that more TCP huffers may be available from delivered
packets,

Uhen the packetizer is awakened it looks at the SEND buffer queue for
the associated TCB., |f there is a ned or partial letter awaiting
packetization, it tries to packetize the |etter, TCP buffers and window
permitting., For every packet produced it signals the output packet
handler (to prevent deadlock in a time sliced scheduling schemel. 1f a
"run to completion' scheme is used then one signal only need he
produced, the first time 3 packe! is produced since awakening., [f
packetization is not possible the packetizer goes to sleep.

[f a partial buffer was transferred then the packetizer must mark
progress in the SEND buffer queus. Completely packetized huffers are
dequeued from the SEND buffer gueue, and placed on a packetized buffer
queue, so that the buffer can be returned to the user when an ACK for
the last bit is received.

When the packetizer packetizes a letter it must see whether it is the
first piece of data being sent on the connection, in which case it must
include the SYN bit. Some implementations may not permit data to he
sent uith SYN and others may discard any dala received with SYN.

4.4.5 DOutput Packet Handler

g

When activated by the packetizer, or the input packet handler, or some
of the user call routines, the Dutput Packet Handler attempts to
transmit packets to the net (may involve going through some other
netuork interface program). Transmitted packets are dequeued from the
send packet queue and put on the retransmit queue along With the time
when they should be retransmitted.

All data packets that are (reltransmitted have the latest receive left
vindow edge in the ACK field. Some error messages may set the ACK field
to refer to a received packet's =equence number.

4.4.6 Retransmitter

This process can either be viewed as @ separate process, or as part of

-84 -

TCP (Version 2} Specification

the output packet handler. [ts implementation can vary; it could either
pperform its function, by being awakened at regular intervals, or Wwhen
the retransmission time occurs for every packet put on the retransmit
gueus. In the first case the retransmit queue for each TCB is examined
to see if there is anuthing to retransmit. 1f there is, a packet is
pplaced on the send packet queuwe of the corresponding TCB . The output
packet nandler is 3lso signaled,

Anpthner “"demon" process monitors all user Send buffers and
retransmittable control messages sent on each connection, but not uet
acknouledged. 1f the global retransmission timeocut is exceeded for any
of these, the user is notified and the connection ahorted.

4.5 Buftfer and Window Allocation
4.5.1 Introduction

The TCP moanages buffer and window allocation on conmections for tuo
main purposes: eguitably sharing |imited TCP buffer space among all
connections (multiplexing functionl, and limjiting attempts to send
packets, so that the receiver is not swamped (flow control function).
For further detajls on the operation and advantages of the window
mechanisam see [CK74),

Gooel allecation schemes are one of the hardest problems of TCP design,
and mpuch exparimentation must be done to develop efficient and
effective algorithms., Hence the following sugyestions arc merely
initial thoughts. Different implementations are encouraged uith the
hope that results can be compared and hetter schemes developed.

4.5.2 The SEND Side
The window is determined by the receiver. Currently the sender has no
control over the SEND window size, and never transmits beyond the right
uindon edge lexcept during resynchronization].
Buffers must he allocated for outgeing packets from a TCP bhuffer pool.

The TEF may not be willing to allocate a full window's worth of
bufivrs, so buffer space for a connection may be less than what the

-85-

TCP (Yersinon 2) Specification

window vould permit. No deadlocks are possible even if there is
insufficient buffer or windou space for one |etter, since the recejver
will ACK parts of letters as they are put into the user's buffer, thus

advancing the windou and freeing huffers for the remainder of the
letter,

£

It is not mandatory that the TCP buffer outgoing packeis unti|
acknou ledgenents for them are received, since it is possible to
reconstruct them from the actual buffers sent by the user. Houever,

for purposes of retransmission and processing efficiency it is very
convenienl to cdo.

=

4.5.3 The RECEIVE Side

At the receiving side there are tuo reguirenents for buffering:

{1) Rate Discrepancy:

l1f the sender produces data much faster or much slower than the
receiver consumes it, little buffering is needed to maintain the
receiver at near maximum rate of operation. Simple gueueing analusis
indicates that uhen the production and consumption (arrival and
servicel rates are similar in magnitude, more huffering is needed to

reduce the effect of stochastic or hursty arrivals and to keep the
receiver busy.

{2) Disorderly Arrivals;:

Uhen packets arrive out of order, they must be bufferec until the
missing packets arrive so that packets f(or letters) are delivered in
sequence. HWe do not advocate the philosophy that they be discarded,
unless they have to be, otheruwise 2 poor effective banduidth may be
ohserved. Path length, packet size, traffic level, routing,

timeouts, windou size, and other factors affect the amount by wWhich
pickets come out of order.

The considerations for chogsing an appropriate windou are as fol lous:

4

s

Suppose that the receiver knous the sender's retransmission timeout,

sy e
=3t

art

-36-

TCP (¥ersion 2) Specification

'K'. This is usually close to the round trip transmission time.
Suppose also, that the receiver's acceptance rate is 'U" bits/sec,
and the Windouw size is 'W' bits. Ignoring line errors and other
traffic, the semder transmits at a rate betuween W/K and the maximum
line rate (the sender can send 8 Wwindow's worth of data each timeout
periodl.

If WK ie greater than U, the difference must be retransmissions
which is undesirable, so the window should be reduced to W', such
that W' /K is approximately equal to U. This may mean that the entire
banduidth of the tramsmission channe! is mot baing used, but it is
the fastest rate at which the receiver is accepting data, and tho
l'ine capacity is free for other users, This is exactly the sane case
uhere the rates of the sender and receiver were almost equal, and so
more buffering is needed. Thus ue see that linme utilization and
retransmissions can be traded off against buffering.

1f the receiver does not accept data fast enough {by not performing
sufficient RECEIVES! the sender may continue retransmitting since
unaccepted data will not be ACK'ed. In this case the receiver should
reduce the Wwindouw size to "throttle" the sender and inhibit useless
retransmissions.

Limited experimentation, simulation, and analusis With buffering and
window allocation suggests that the receiver should set aside buffer
spoace to accommodate any window sent te the remote transmitter. Any
attempts at optimistically setting @ large wWwindow nith inadequate
imifier appears to lead to poor banduidth owing to occasional lor
frequent) discard of arriving packets for which no buffers are
available., Theoretically selection of the ratio of windon size granted
ta Luffar store reserved should be equivalent to the selection of a
buffer cize for a3 statistical multiplexor.

I f the user at the receiving side is not accepting data, the windou
should be reduced to zero. In particular, if all TCP incoming packet
huffers for a connection are filled with received packets, the window
must o to zero to prevent retramsmissions until| the user accepis some
packets,

-87-

TCP (Yersion 2) Specification

Setting the receive window to zero can have some interesting side
effects. In particular, it is not enough to merely send an empty ACK
packet with the news, non-zero window, when the window is re-opened. 1f
the ACK is lost, the other TCP may never transmit again, ACK's cannot
be retransmitted since they cannot, themselves, be ACKed [ue would not
know When to stop retransmitting). The solution is to send an ARO
packet whenever the receive dwindow is to change from zero to non-zerd.
The ARO can be retransmitted until acknouwledged, since ARO takes up one
sequence nunber. A TCP uhich receives a zero send window should stop
transmission, but can continue to acknouledge incoming traffic.

—R5-

TCP {Version 2) Specification

L L,Il.'n""i"""'.llw J

1 f:b] fur
Iﬁ’
. Refercnces i

Motes of Working Group B.1 [INWG - International Network Working Groupl,
Intermnational Federation of Information Processing, are available through its
chairman, Mr. Derek L. A. Barber, Project EIN, National Phuysical Laboratory,
Teddington, Middiesex, England,

Readers interested in @ rich source of reference to the literature on
resource sharing networks are urged to consult NBS special publication 384
[Helen M. Wood, Shirley Ward Watkins, Ira W. Cotton, Annotated Binliography
of the Literature on Resource Sharing Networks, Mational Bureau of Standards
Special Publication 384, Revised 1976, Institute for Computer Sciences and
Techinologyl available from the Superintendent of Documents, U. S. Gavernment
Printing Office, Washington, D.C. 28482, order by SD Catalog No.
Ci3.18.384/rev, Stock No. BB2-8083-81678-5, 82.45.

Special collections of papers on related subjects may be found in:

1. UWesley Chu (Ed.), Advances in Computer Communications, Artech House,
1376 (revised).

-

Z. Robert Blanc and Ira Cotton (Eds.), Computer Netuworking, IEEE Press,
Neid York, 137E.

-89~

TCP {Yerslon 2) Specification

AR7G

D. Aitugver, A. M. Rubczynski, "Datapac Subscriber Interfaces,"
Proceedings of ICCC76, p. 143-149,

Barbar/6

Devek L.A, Barber, "& European Informatics Netuwork," Proceedings of
ICCC?7E, p. 44-5B

BBN1822

Bolt Beranek and MNewman, "Specification for the Interconnection of a Host
and an [MP," BBN technical Report #1822, January 1376 (Revised).

Belsnes74

Dag Belsnes, "Note on Single Message Communication," INWG Protocol Note
H3, IFIP Working Group B.1, September 13974.

Belsnes744

bD. Belsnes, "Flou control in packet suitching networks,”" INWG Note HB3,
IFIF Working Group B.1, October 1374.

BLSS

Jerry D. Burchfiel, Elsie M. Leavitt, Sonya Shapiro, Theodore R. Strollo,
TENEK USERS' GUIDE, Bolt Beranek and Newman, lnc., Cambridge, MA, January
1975,

BLW74

Richard Binder, Wai Sum Lai, Morris Wilson, "The Alohanet Henehune -

-9p-

TCF (VYersion Z) Specificatiaon

Version 11," The Aloha Sustem Technical Report B74-B6, University of
Hawaii, September 1974,

BFT7E

Jerry O, Burchfial, Witliam W. Plummer, Raymond S. Tomlinson, "Proposed
Revision to the TCP," INWG Protocol Note H43, IFIP W.G. B.1, September
1876.

Bright?s
Rou 0. Bright, "Experimental Packet Suitch Project of the UK Post Office,
"In Computer Communication Netuorks, Grimsdale and Kuo, Editors, NATO
Advanced Studies Institute Series, 15-4, Noordhoff International, Leyden,
Nether lands, 1975, pp 435-444.

B

Jerry D, Burchfiel, Rauymond S. Temlinson, Michael Beeler, "Functions and
Structure of a Packet Radio Station," AFIPS Proceedings, volume 44, 1975,
Mational Computer Conference, (Anaheim, CA, May 19-22, 1975), AFIPS Press,
flomtvale, NJ, 13975, p. 245-251.

BU7Z
Robert Bressler and David C. Walden, "A proposed Experiment with a Message
Switching Protocol," ARPA RFC 333, NIC 9926, Augmentation Research Center,
Stanford Research [nstitute, Menlo Park, CA., May 1372.

Cachin?e
P.M. Cashin, “"Datapac Netuork Protocols,” Proceedings of 1CCC76, P. 158.
coovg
Gtwephan Carr, Stephen O. Crocker and Yinteon G, Cerf, "Host-Host
Communication Protocol in the ARPA Netuwork," AFIPS Proceedings, 1378

Spring Joint Computer Conference, volume 36, {Atlantic City, NJ, May 5-7,
1978), AFIPS Press, Montvale, NJ, 1978, p. S89-538,

-91-

TCP (Version 2] Specification

COS74

Vinton G. Cerf, Yogen K. Dalal, Car! Sunshine, "Specification of Internet
Transmission Control Program,” INUG Ceneral Note #72, IFIP UWorking Group
E.1, December 13974,

CEHKKS77

Vinton G. Cerf, Stephen Edge, Andreu Hinchleu, Richard Karp, Feter T.
Kirstein, Paal Spilling, "Final Report of the Internetwork TCP Project,”
to appear.

Car {74

Vinton G.Cerf, "An Assessment of ARPANET Protocols,” The Second Jerusalem
Conference on Information Technology, (Jerusalem, Israel, July 29-August
1, 1974), p. B53-B64 (also, INUG General Note 78, IFIP W.G. 6.1, July 1374
and in Network Systems and Softuare Infotech State of the Art Report 24,
Infotech Infermation, Ltd., Nicholson House, Maidenhead, Berkshire,
England, 1975.}

Cerf7B

Vinton G. Cerf, "SCCU/MCCU Characteristics for AUTOOIN 11," Oigital
Systems Laboratory Technical Note #32, Stanford University, July 1376.

Cerf7Ca

Vintan G.Cerf, "TCP Resunchronization," Digital Systems Lab Technical Nate
#73, Stanford University, January 1376.

Cert76b
Vinton G.Cerf, "ARPA lnternetwork Protocols Projects, Status Report, for
the period November 15, 1975 - February 15, 1976," Digital Systems
Laboratory Technical Note #83, Stanford University, February 1376.

CGN7E

-92-

TCP (Yersion 2) Specification

W. W. Clipsham, F. E. Glave, M. L. Narraway, "Datapac Network Overview,"
Proceedings of ICCC78, p. 131-13E.

CHMP7Z

Stephen D. Crocker, John F. Heafnper, Robert Metcalfe and Jonathan B.
Postel, "Function-Oriented Protocols for the ARPA Computer Network, AFIPS
Proceedings, 1972 Spring Joint Computer Conference, volume 48, (Atlantic
Citu, NJ, May 16-18, 1372}, AFIPS Press, Montvale, NJ, 1372, p. 271-278.

CK74

Vintaon G. Cerf and Robert E. Kahn, "A Protocol for Packet Network
Intercommunication," IEEE Transactions on Communications, volume COM-22Z,
No. &, May 1874, p. B37-B48. (An early version of this paper appeared as
INWG Gereral Note #33, [FIP Working Group B.1, September 1373}.

CMSZ75

Vinton G. Cerf, Alexander McKenzie, Roger Scantlebury, Hubert Zimmermann,
"Propasal for an Internetwork End to End Protocol," INWG General Note H3E,
IFIP W.G. B.1, September 1375 (also in ACH SIGCOMM Quarterly Review Vol.
&, No. 1, Jan 1397E.) p. E3-83

CS74

Vinton G. Cerf and Carl Sunshine, "Protocols and Gateways for the
Interconnection of Packet Suitching Netuorks," The Aloha Sustem Technical
Report CH 74-22, Proceedings of the Seventh Hawaii International
Confercnce on Systems Sciences, University of Hawaii, (Honmolulu, Hauwaii,
January 8-18, 1974},

Oalal74

Yogen K. Ualal, "More on Selecting Sequence WNumbers, " INWG Protocol Note
#4, 1FIP Working Group 6.1, August 1974, Also in Proceedings of the ACH
SIGCAMIY/SIGOPS Interprocess Communications Workshop, (Santa Monica, CA,
Nareh 264-25, 1975), and ACH Operating Systems Review, Volume 3, Number 3,
July 1075, Association for Computer Machinery, New York, 1375.

=g3=

TCP (Version 2) Specification

UDalal7s

fugen K. Dalal, "Establishing a Connection, "INWG Protocol Note #14, IFIP
Wewrking Group 6.1, March 1975,

Danth ine?s

Anclre Danthine and E. Eschenauer, "Influence on the Mode Behavior of the
Node-to-Node FProtocol," Proceedings, Fourth Data Comm. p V-1 to 7-8.

Davies7l

Donald W. Davies, "The Control of Congestion in Packet Suitching
Meotworks," Peter E. Jackson, proceesdings, ACHM/IEEE Second Sympesium on
Problems in the Optimization of Data Communication Systems, {(Palo Alto,
CA. Dctoher 28-22, 1971), IEEE (at -71CS8-C, p. 46-43.

OCA7S
Systom Performance Specification for Autodin [1, Phase 1, Oefense
Communications Agencu, Defense Communication Engineering Center, November
197%.

OCATG

Clizabeth Feinler and Jonathan B. Postel, ARPANET Protocol Handbook,
Metwork Information Center, Stanford Research Institute, Menlo Park, CA,
April 1976,

DOLFR7S

A. Danet, R. Despres, A. LeRest, G. Pichon, S. Ritzenthaler, "The French
Public Packet Suitching Service: the TRANSPAC Metuwork," Proceedings of
ICCCYB, p. 251-268.

OHMML7 4

W. Crouther, F. Heart, A. McKenzie, J. McQuillan, D. Waldan, Metuork
Design Issues, Bolt Beranek and Newman, Inc. Technical Report No. Z318,

T

TCP (VYersion 2] Specification

MNovember 1974 (also, INUG General Note #B64, IFIP Working Group B.1,
October 1374: ARPA Netuork Measurement Note #28, Network Measurement
Group, October 1874).

FL75

Stanley C. Fralick and James C. Garrett, "Technological Considerations for
Facket Radio Netuorks," AFIPS Proceedings, volume 44, 1975, National
Cumputer Conference, (Anmaheim, CA, May 18-22, 1975), AFIPS Press,

Montvale, NJ, 1975, p. 233-243.

FLATS

Howdrd Frank, lsrael Gitman, Richard van Slyke, "Packet Hadio System -
Wetwork Considerations," AFIPS Proceedings, volume 44, 1375, National
Computer Conference, (Anaheim, CA, May 19-22, 1375), AFIPS Press,
Montwate, MJ, 1875, p. 217-231.

ETA

M. Gien and R. Scantlebury, "Interconnection of Packet Suitched Networks,
Theory and Practice,” proceedings of EURDCOMP, Brunel University,
September 1975,

HEOCUYB

Frank E. Heart, Robert E. Kahn, 5. M. Ornstein, William R. Crouther, and
Oavid C. Walden, "The Interface Message Processor for the AHPA Computer
MNetwork," AFIPS Proceedings, 1978 Spring Joint Computer Conference, volume
36, (Atlantic City, NJ, May 5-7, 1378}, AFIPS Press, Montvale, NJ, 1378,
p. 551-5B7.

Kahn73

lfobert E. Kahn, "Status and Plans for the ARPANET," Martin Greenberger,
Julius Aronofsky, James L. McKenney, William F. Massy, Networks for
Research and Education: Sharing Computer and Information Resources
Mationuide, MIT Press, Cambridge, MA, 1973, p. 51-54.

-95-

TCP (Version 2) Specification

KahnS

Robert E. Kahn, "The Organization of Computer Resources into a Packet
Radio Network," AFIPS Proceedings, volume 44, 1975, Matfonal Computer
Conference, (Anaheim, CA, May 19-22, 1975), AFIPS Press, Montvale, NJ,
1975, p. 173-186E.

Karp?3

Peggy M. Karp, "Origin, Development and Current Status of the ARPANET,"
COMPCONY3 - Seventh Annual IEEE Computer Society International Conference,
Digest of Papers, 'Computing Metworks from Mini's to Maxi's - Are They for
Real?’' (San Francisco, CA, February 27-28, March 1, 1373), Institute of
Electrical and Electronic Engineers, Inc., New York, 1973, p. 43-52.

KC71

Robert E. Kahn, William R. Crouther, "Flow Control in @ Resource-Sharing
Computer Netuork," Peter E. Jackson, Proceedings, ACH/IEEE Seceond
Symposium on Prablems in the Optimization of Data Communication Sustenms,
(Palo Alto, CA. October 28-22, 1971}, 1871, IEEE (AT-71C539-C, p. 188-116.

Kleinrock74

Leonard Kleinrock and William E. Naylor, "On Measured Behavior of the ARPA

Metwork, AFIPS Proceedings, Mational Computer Conference, Yolume 43,

(Chicago, IL., May B-18, 1974), AFIPS Press, Montvale, NJ., p. 767-788.
Klcinrock?5

Leonard Kleinrock and Holger Opderbeck, "Throughput in the ARPANET -
Protocols and Measurement," Proceedings, Fourth Data Communications
Symposium, (Ouebec City, Canada, 7-9 October 1975), p. B=l to B-11.

Kleinrock?7E

Leonard Kleinrock, William E. Naylor, Holger Opderbeck, "A Study of Line
Overhead in the ARPANET," Communications of the ACM, Vol. 19, Ne. 1, p. 3.

-96-

TCP (Version 2} Specification

LGK7S

David Lloyd, Martine Galland, Peter T. Kirstein, "Aim and Dbjectives of
Intermetuork Experiments,"” INWG Experiments Note #3, IFIP Working Group
E.1. February 13975.

Mathis7E

James E. Mathis, “Single-Connection TCP Specification,” Oigital Sustems
Laboratory Technical Note #75, Stanford Universituy, January 25, 1976.

nove

Fobert M. NMetcalfe and David R. Boggs, "Ethernet: Distributed Packet
Suitehing for Local Computer Networks,” Communications of the ACH, Yolume
19, No. 7, July 1976, p. 395-4B4.

MCCOW?2

Jdohn M. Meluillan, William R, Crouther, Bernard F. Cosell, David C.
Halden, Frank E. Heart, "lmprovements in the Design and Performance of the
ARFPA Netuwork, "AFIPS Proceedings, Fall Jeint Computer Conference, Volume
&l, p. 761-754,

McKenzie?3d

A, McKenzie, "Host-Host Protocol for the ARPANET," NIC # 8245, Stanford
Research [nstitute [slso in ARPAMET Protocols Notebook NIC 7184].

MeKeoenzie7da
Alerxander NcKenzie, “"Some Computer Network Intercomnection lssues," AFIFS

Proceedings, National Computer Conference, Volume 43, (Chicaga, 111., May
G-18@, 1974), AFIPS Press, Montvale, NJ., p. 857-259,

Meboneiala)

Al exander MNeKenzie, "Internetuork Host-to-Host Protocel.” INUG General
Hate #74, 1FIP Werking Group 6.1, December, 1974.

97—

TCP (Version 2) Specification

Mcloi | lan75

Iohn M. McOuillan, "The Evolution of Message Processing Technigues in the
AHPA Netiork," Network Systems and Softuars, Infotech State of the Art
leport 4, Infotech Information, Litd., Nighalenn House, Maidonbezd,
Boarhshiir e, England, 1975,

M1 14

Cric R. Mader, William R. Plummer, Raumond 5. Tom!inson. "A Protocol
Experiment,” [NUG Experiment Note #1, IFIP Working Group B.1. August 1374,

WNACTZ

Netuwork Analysis Corporation, ARPANET: Desion, Operatieon, Managsment and
Ferformance, Netuork Analysis Corporation, Glem Cove, NY, April 1973.

Ok 74

Haolger Dpderbeck and Leonard Kleinrock, "The Influence of Control
Procedures on the Performance of Packet-Switched Networks, "National
Telecommunications Conference, San Diego, California, December 1374,

FGR7Ga

Jonathan B. Postel, Larry L. Garlick, Raphael Rom, Tranemission Control
M'rotoco! Specification, Augmentation Recearch Center, Stanford Fesearch
Institute, Nenlo Park, CA, 15 July 1976,

PGR7CL

Jomathan B. Postel, Larry L, Carlick, Raphae! Rom, Terminal-to-Host
Protocal Specification, Augmentation ResearchCenter, Dtanford Reserch
Institute, Nenlo Park, CA., IS July 1976.

Pautel 72

J. Postel, "Ofticial Initial Connection Protocol," Current Netuork

-9 -

TCP (Version Z} Specification

Protocels, Network Information Center, Stanford Research Institute, Menlo
Fark, California, January 1872 (NIC 71681).

Pouzin?2

Louis Fouzin, “Interconnection of Packet Switching Networks," INWG General
Note #42, IFIP Working Group B.1, October 1973.

Mouzin73a
Louis Pouzin, "Presentation and major design aspects of the CYCLADES
Computer Network," Data Networks: Analysis and Design, Third Data
Communications Symposium, 5t. Petersburg, Florida, November 1973, PP.
88-a87.

Pouzindéa
Louis Pouzin, "A Proposal for Intercormnecting Packet Suitching Networks,”
INUG General Note #6R, IFIP W.G. 6.1, March 1974, lalso in proceedings of
EUROCONF, Brune! University, May 1974, p. 1823-1836).

Fouzin7éh
Laouis Fauzin, “"Ligale, the Packet Suitching Machine on the CYCLADES
Losiputer Network,” Jack L. Rosenfeld, Information Processing 74,
proceadings of the IFIP Congress 1974, Computer Harduware and Architecture

Volune, (Stockhalm, Sueden, August 5-18, 13974), American Elsevier
Publishing Co., Inc., Neu York, 1974, p. 2155-158.

Retz75
Lbaviel L. Retz. "ELF - A System for Netuork Access," 1875 1EEE Intercon
Confarence Record, (New York, April 5-18, 1975), Institute of Electrical
anil Tlectronic Engineers, lnc., New York, 1875, p. 25-2-1 to ’5-2-5.

Teeslist 1=/

Lo esnee G, Hober t, "International Interconnection of Puhlic Packet

-99-

TCP (Version 2} Specification

Netuworks," Proceedings. Interpational Conference on Computer
Communication, (Toronto, Ontarioc, Canada, August 1976), p. 239.

RU78

Laurence G. Roberts and Barry 0. Wessler, "Computer Netuork Development to
Achieve Resource Sharing," AFIPS Proceedings, 1378 Spring Joint Computer
Confcrence, volume 36, (Atlantic City, NJ, May 5-7, 1978), AFIPS Press,
Hontvale, NJ, 1378, p. 543-543,

RAL73
Laurence G, Roberts and Barry 0. Uessler, "The ARPA Net," Norman Abramson
anil Frank!in F. Kuo, Computer-Communication Netuarks, Prentice-Hall, Inc.,
Engliewoad Cliffs, NJ, 1373,

Schantz74

R. Schantz, "Reconnection Protocol", private communication; available from
Schantz at BEN. f

SH75

Adrian V., Stokes and Peter L. Higginson, "The Praoblems of Connecting Hosts
into ARPANET," Proceedings of the European Conference on Communication
MNetiorks, September 1975, On-)ine Conferences, Ltd., Oxbridge, England, p.
25-34,

Sunshine?d

C. Sunshinm, "lssues in communication protocol design —- formal
correctness, " [MUG Protocal Note 45, October 1374.

Sunshine?s

Car | Sunshine, "lssues in Communication Protocol Design - Formal
Correctness," [MUG Protocol Note #5, IFIP Working Group 6.1, October 13975.
Also in Proceedings of the ACH SIGCOMM/SIGOPS Interprocess Communications
Workshop, (Sanmta Monica, CA, March 24-25, 1975), and ACH Operating

-188-

TCP (Version 2} Specification

Systems Review, Volume 3, Number 3, July 1875, Association for Computer
Machimery, MNew Yark, 1375.

Sunzhine?ka

Corl Sumshime, Interprocess Communication Protecols for Computer Networks,
Stanford University (Ph.0. Dissertation}!, 197G.

Suncshine?&h

Carl Sunshine, "Alternatives for Computler Netuwork [nterconmection,”
Procoedinge of the Berkeley Workshop on Oistributed Data Management and

Computer Networks, {Laurence Berkeley Laboratory, Ca, May 25-26, 137B), p.
275-288,

S5W7]

it. Scantlebury and P.T, Uilkinson, "The Design of a Guitching System to
allow remote Access to Computer Services by other computers and Terminal
Mevires, " Second Symposium on Problems in the Optimization of Data
Communication Systems Preceedings, Palo Alto, California, October 1971,
mp. LGR-1B7.

Tam! inson74
Maymond 5. Tomlinsan, "Selecting Sequence Numbers.," INHG Protocol Note #2,
IFIP WUorking Group B.1, August 1974. Alsc in Preceedings of the ACH
SIGCOMM/SIG0PS Interprocess Communications Horkshop, (Santa Monica, CA,
Mareh 24-25, 1975), and ACM Dperating Systems Review, Yolume 3, Number 3,
July 13975, Acssociation for Computer Machinmery, New York, 1375,

ol den?2
David C. Walden, "A System for Interprocess Communication in a Hesource
Sharing Computsr MNetuork," Communications of the ACH, Volume 15, Issue 4,

Apr il 1972, p. 221-23B.

LR7S

-181-

TCP (Version Z2) Specification

0. C. Ualden and R, C. Rettberg, "Gateuay Design for Computer Network
Interconnmection,"” Proceedings, Eurcpean Computing Conference on
Communication Netuerks, September 1975, On-line Conferences, Lto.,
Oxbridge, England, p. 113-128.

YM7E

5. C, K. Young, C. [. McGibhon, "The Control System of the Datapac
Metuork, " FProceedings of ICCCT6, p. 137-142,

773

Hubbert Zimmormann and Michels Elie, "Proposed Standard Host-Hnst Protocol
for Heterogencous Computer Networks: Transport Protocol,” INHG General
Note #43, [FIP Working Group G.1, December 1373 (also Institute Recherche
o Informatique et o' Automatigue [1RIA] Project CYCLADES report SCH 518},

ZETH

Hubert Zimmermann and Michele Elie, "Transport Protocol Standard Host/Host
Protocol for Heteroguneous Computer Metworks," INWG General MNote 861, IFIF
Horking Group B.1, April 1374 false IRIA Project CYCLADES Report SCH
517%.1)

Limmer mann/s
Hubert Zimmermann, "The CYCLADCS End to End Protocel," Proceedings, Fourth

Data Communication Symposium, (Ouebec City, Capada, October 7-9, 1375}, p.
7-21 to 7-26,

i,

Si

7.

E’I

18.

11.

TCP (Version 2] Specification

Appendix A - Pathological Examples and Other Notes

Other solutions to the resynchronization problem were examined lhan these in
the specification and we illustrate them here in the hope that these examples
tnill save others the trouble of exploring dry uells.

Uur original resynchronization scheme involved exchanging OSN, ACK, SYN, ACK
on one or both sides of the comnection. J. Mathis constructed a pathological
example shouwing that the unprotected acceptaance of SYN after a SN leads to
potential trouble, and it was this exanple which led us 1o coonclude,
initiallu, that resynchronization must be assumed to occur long after any old
SYNs from previous connection initiation or resynchronizations had died auay.

TCPA TCFB
SYN-SENT --> <SE0 B><SYN= oor ldelayed)
SYN-SENT -=-> <SE0 @><SYN> ——2 EVN-HEEEIVE&
SYN-SENT <-- <5EQ SB><SYN-<ACK> <-- SYN-RECEIVED
ESTALLISHED --» <SE0 1><ACK 51><3 data bytes> --> ESTABLISHED
DSH-SENT --> <SE0 1B><0SN><ACK 51> --» DSN-RECEIVED
DESYMCHED <-= <5Efl S1><ACK 11> <—= DOESYNCHED
RESYMCH --» <5EQ 1BBB><SYN> vee ool ayed)
(delayed duplicatel ... <SEf B><5YN- --> RLSYNCH
Had ACK! <-- <5EQ 51><ACK 1» c-— ESTABL]SHED
{de | ayed) ... <SE0] 1888><SYN> --> Bad 3EQ!
HUH? <-- <5EQ 51><ERR E><1880> z== Unexpected SY¥N!

-183-

12,

TCP (Version 2} Spescificatian

treset!) --> «5Ef] 10@8-<ERR 7><51> --> abor ted
Resynchronization Failure under Oelayed Ouplicate SYN Conditions
Figure A-1

In this exanple, an old duplicate original 5YN (line 1, figure A-11
complelely confuses TCP B, after uhich an exchange of errors & and 7
("vunexpiected SYN" and "RESET") result when TCP A's resynchronizing SYN (lines
7. 18, figure A-1) finallu appears. Thus, & perfectiy ordinary
resynchronization procedure initiated hy TCP A results in TCP B discarding
its enet of the connection, thinking it was only half-gpen. Part of the
problem was that the error message affected both sides of the connection
(perils af full duplex connections!).

In an early attempt to bind sequence numbers across the resynchronization
gap, ue considered another strategy in which both sides would desynchronize
and then resunchronize {the earlier example failed because there was no 3-uay
handshake on the resnchronizing SYN).

TCP A TCF B

1. DOSM SENT --> «<5EQ 18><D5N=<ACK 28> --> 5N RECEIVED
2. [DSM SENT «—— <5E0 Z0><DSN><ACK 11> <-- [0S RECEIVED
3. DEGYNC -=> «5E0 11s<ACK 21> -=> DESYNC

A <—= «<5EQ 2B8B><5YN-<ACK 11> <-- SYN SENT

5. S¥W SENT --» <5E0 1BBB><SYN»<ACK 21> -3

B. --> <SE0 18@1=-<ACK 28Bl1> --> ESTABLISHED
7. ESTABLISHED <-- <5EQ Z801><ACK 1881> g=n

Oual DSN with SYN,ACK

Figure A-2

-1B4-

TCP (Yersion 2) Specification

In this example (figure A-Z], both aides desynchronize and then go through a
hondshake which js protected (lines 4,5 | by the presence of an ol ACK field
refoeroncing the old soquence numbers of the other side. [t was notod that
this mechanism does not easily reduce to one-sided resynchronization since,
if TCP B has sent no data or control {other than the original SYN) on the
connection, the ACK fields of the resuynchronizing SYN and the original SYN
from TCP A uWould be identical. We then had to postulate the use of a NOF
control ta acknouledge the DSN and thus wuarantee unigueness of the ACK field
in TCP A’ s resynchronizing SYN packet. This solution was nol pursued further,
but contains the seeds af the RSN described in section 2.1.3. But in that
casc, old and new sequenco numbers of the same sides of the comection,
rather than opposite sites, are bound together,

-185-

