February 1979

IEN: 81

TRANSMISSION CONTROL PROTOCOL

TCE
Version 4

February 1972

prepared for

Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington, Virginia 22208

oy

Information Sciences Institute
University of Southern California
LETH Admiralty Way
Marina del Rey, California 90291

February 1974

TCP-4

TABLE OF CONTENTS
PHEFAEE @4 4 & 4 4 4444 %% """ =88 8 d @ ddddEddErr s & 5 8 & d AN iii
1- IﬂTRGDUETIGH AAFAAEEFTEEFA R R R R R A A SRS EEE RS TS S R EEEEEEEEE AN 1
Tl MO A L O s i wion s n o S B S R W T A s e 1
e O T g a0 i S TR e e 2
1.3 About This DOCUMERT suussusssesissessssssessssnsssssosssnnsnsess 2
Vel T I T B e A W L O a4 3
1.5 Operabtion .e.ssass A e b iy el are n R W 3
B DO PN L o s Ly e A, T
2.1 Elements of the Internetwork System ...ccieccnasassasasanacanan 7
2.2 Model of Operabtioncaossssssssssss pCmmCREa e e et e e e T
2.3 The Host ENVIPONMENE svsssmimesioisstssssssssisessensssnssessos B
B T D OB o v R SR g
2.5 Relation to Other Protocols ...iisvavasss ' o g iy g9
2.6 Beliable ComMUALOATION v e oo s e s s s e s e e e m o 10
2.7 Connection Establishment and Clearing ...cesecssscssssnanannns 10
2.8 Data Communicabion ... T e S T A e T S e R I e R T 12
3. FUNCTIONAL SPECIFICATION ..cveasssnssassasvassasnsanasnnnssnssass 15
3.1 Header FOPMAL s eeeeasaaaananaaassssssssssssassssnsnssssssssss 15
BT TEPTINIO OET 2wt m e s i) o 0 .+ 19
3.3 Sequence NUDDErScccictssssssnsssessdsssdasssasssansndsss . 23
3.0 Establishing a CONABCLION c.cansesssssssssassaaannassansadnsns 28
3.5 Clozing a Connection .. ccsansnsnmessnss 0 A o o it . R 34
F.6 Data CommMINATTON faeiem s snsasaasssssssesessnsssssmmssiss 36
Fil ENEERTA0ET oiiia e 6o 8 omomontmtaa e w4 o o o il 39
3.8 Evenl Profeasing e+ sssssnssanunnssesasessatonssasnsnssnsss 48
e o o D e e s e e AT,
RAEFERBNEES ias s samianiiaen s e s sn s st sadeis v e P

[Page il

i February 1979

[Page ii]

February 1979
TCP-U

PREFACE

This document describes the Transmission Control Protocol (TCP). There
have been five previous editions of the TCP specifiecation, and the
present text draws heavily from them. There have been many contributors
to this document both in terms of concepts and in terms of text.

Jon Postel

Editor

[Page iii]

< INC-PRDJECT, TCP=-JAN=-T9.NL5.35, >, 17=-Feb=T79 00:23 JBP ;;::;

[Page 0]

February 1979
IEN: 81
Replaces: IENs 55, 44, 4o, 27, 21, 5

Transmission Control Protocol

Version U

1. INTRODUCTION

The Transmission Control Protocol (TCP) is intended for use as a highly
reliable host-to-host protocol between hosts in packet-switched computer
communication networks, and especially in interconnected systems of such
networks.

This document describes the functions to be performed by the
Transmission Control Protoeccl, the program that implements it, and its
interface to programs or users that require its services.

1.1. Motivation

Computer communication systems are playing an increasingly important
role in military, government, and eivilian environments, This
document primarily focuses its attention on military computer
communication requirements, especially robustness in the presence of
communication unreliability, but many of these problems are found in
the civilian and government sector as well.

As strategic and tactical computer communication networks are
developed and deployed, it is essential to provide means of
interconnecting them and to provide standard interprocess
communication protoecls which can support a broad range of
applications. In anticipation of the need for such standards, the
Deputy Undersecretary of Defense for Research and Engineering has
declared the Transmission Control Protocol (TCP) described herein to
be a basis for DoD-wide inter-process communication protocol
standardization.

TCP is a connection-oriented, end=to-end reliable protocol designed to
fit into a layered hierarchy of protocols which support multi=-network
applications. The TCP provides for reliable inter-process
communication between pairs of processes in host computers attached to
distinet but interconnected computer communicaticn networks. Very few
assumptions are made as %o the reliability of the communication
protocols below the TCP layer. At most, the TCP assumes it can obtain
a simple, potentially unreliable datagram service from the lower level
protocols. In principle, the TCP should be able to operate above a
wide spectrum of communication systems ranging from hard wired
connections to packet=awitched or circuit=switched networks.

[Page 1]

February 1979
TCP=U
Introducticn

The TCP fits into a layered protocol architecture just above a basice
Internet Datagram Protocol [1] which provides a way for the TCP to
send and receive variable-length segments of information enclosed in
internet datagram "envelopes". The internet datagram provides a means
for addressing source and destination TCPs in different networks, and
that layer of protocol alaso deals with any fragmentation or reassembly
of the TCP segments which might be required to achieve transport and
delivery through multiple networks and interconnecting gateways.

Protocol Layering

e —————— +
! higher-level !
e ——————— ————————
! TCP !
Fm———— ———+
! internet protocol |
e ————————

leommunication network!

b e
T T

Figure 1

Much of this document is written in the context of TCP implementations
which are co-resident with higher level protoeocls in the host
computer. As a practical matter, many computer systems will be
connected to networks via front-end computers which house the TCP and
internet protocol layers, as well as network specific software. The
TCP specification deseribes an interface to the higher level protocols
which appears to be implementable even for the front-end case, as long
as a suitable host-to-front end protoeol is implemented.

1.2. Scope

The TCF i= intended to provide a reliable process=to=-process
interprocess communication service in a multinetwork environment. The
TCP is intended to be a host-to-host protocol in common use in
multiple networks.

1.3. About this Document

This document represents a specification of the behavior required of
any TCP implementation, both in its interactions with higher level
protoenls and in its interactions with other TCPs. The rest of this
section offers a very brief view of the protocel interfaces and
operation. BSection 2 summarizes the philosophical basis for the TCP
design. Section 3 offers both a detailed description of the actions
required of TCP when various events occur (arrival of new segments,

[Page 2]

February 1979
TCE-4
Introduction

user calls, errors, etc.) and the details of the formats of TCF
segments.

1.4, Interfaces

The TCP interfaces on one side to user or application processes and on
the other side to a lower level protocol such as Internetwork Datagram
Protocol.

The interface between an application process and the TCFP is
illustrated in reasonable detail. This interface consists of a set of
calls much like the calls an operating system provides to applieation
process for manipulating files. For example, there are calls to open
and close connections and to send and receive letters on established
connections., It is also expected that the TCP can asynchronously
communicate with application programs. Although considerable freedom
is permitted to TCP implementors to design interfaces which are
appropriate to a particular operating system environment, this TCP
specification requires a certain minimum functionality to be achieved
at the TCP/user interface for any valid implementation.

The interface between TCP and lower level protocol is essentially
unspecified except that it is assume there is a mechanism whereby the
two can asynchronously pass information to each other. Typically, one
expects the lower level protocol to specify this interface. TCP is
designed to work in a very general environment of interconnected
networks. Therefore, the lower level protocol which is assumed
throughout this document is the Internet Datagram Protocol.

1.5. Operation

As noted above, the primary purpose of the TCP is to provide reliable
logical ecircuit or connection service between pairs of processes. To
provide this service on top of a less reliable internet communication
system requires facilities in the feollowing areas.

Basie Data Transfer
Reliability

Flow Control
Multiplexing
Connections

The basic operation of the TCP is each of these areas is described in
the following paragraphs.

[Page 3]

February 1979
TCP=U
Introduction

Basic Data Transfer:

The TCP is able to transfer a continuous stream of octets in each
direction between its users by packaging some number of octets into
segments for transmission through the internet system. In this
stream mode, the TCP's decide when to block and forward data at
their own convenience.

For users who desire a record-oriented service, the TCF also permits
the user to submit records, called letters, for transmission. When
the sending user indicates a record boundary (end-of-letter), this
causes the TCP's to promptly forward and deliver data up to that
point to the receiver. However, not all letter boundaries are given
to the receiver (several letters may be delivered as a unit).

Reliability:

The TCP must recover from data that is damaged, lost, duplicated, or
delivered out of order by the internet communication system. This
is achieved by assigning a sequence number to each octeti
transmitted, and requiring a positive acknowledgment (ACK) from the
receiving TCP. If the ACK is not received within a timeout
interval, the data is retransmitted. At the receiver, the sequence
numbers are used to correctly order segments that may be received
out of order and to eliminate duplicates. Damage is handled by
adding a checksum to each segment transmitted, checking it at the
receiver, and discarding damaged segments.

As long as the TCPs continue to function properly and the internet
system does not become completely partitioned, no transmission
errors will affect the users., All errors in the internet
communication system are recovered by the TCP.

Flow Control:

TCP provides a means for the receiver to govern the amount of data
sent by the sender. This is achieved by returning a "window" with
every ACK indicating a range of acceptable sequence numbers beyond
the last segment successfully received. For stream mode, the window
indicates an allowed number of octets that the sender may transmit
before receiving further permission. It is also possible for the
TCP to operate in a mode where buffer sizes and letter boundaries
are incorporated in flow control.

[Page 4]

February 1979
TCP-4
Introduction

Multiplexing:

To allow for many process-to-process connections within a single
Host, the TCP provides a set of addresses or ports within each host.
Concatenated with the network and host addresses from the internet
communication layer, this forms a socket, A pair of socketis
uniquely identifies each connection. That is, different connections
may have a commen socket on one side, but the sockets on the other
sides must be different.

The binding of ports to processes is handled independently by each
Host. However, it proves useful to attach frequently used processes
{e.g., a "logger" or timesharing service) to fixed sockeis whieh are
made known to the publie, These services can then be accessed
through the known addresses. Establishing and learning the port
addresses of other processes may involve more dynamic mechanisms.

Connections:

The reliability and flow control mechanisms described above require
that TCPs initialige and maintain certain status information for
each data stream. The combination of this information, including
sockets, sequence nuombers, and window sizes, is called a connection.
Each connection is uniquely specified by a pair of sockeis
identifying its two sides.

When two processes wish to communicate, their TCP's must first
establish a connection (initialize the status information on each
side). When their communication is complete, the connection is
terminated or closed o free the resources for other uses.

Since connections must be established over the unreliable internet
communication system, a handshake mechanism with eclock-based
sequence numbers is used to avoid erroneous initialization of
connections.

[Page 5]

February 1979
TCP-4

[Page 6]

February 1979
TCE=Y

2. PHILOSOPHY
2.1. Elements of the Internetwork System

The internetwork environment consists of hosts connected to networks
which are in turn interconnected via gateways. It is assumed here
that the networks may be either local networks (e.g. the ETHERNET) or
large networks (e.g. the ARPANET), but in any case are based on packet
switching technology. The active agents that produce and consume
messages are processes, Various levels of protocels in the networks,
the gateways, and the hosts, support an interprocess communicaticn
system that provides two way data flow on logical connections between
process ports.

We specifically assume that data is transmitted from host to host
through means of a set of networks. When we say network we have in
mind a packet switched network (PSN). This assumption is probably
unnecessary, since a eireuit switched network or a hybrid combination
of the two could alsc be used; but for concreteness, we explicitly
assume that the hosts are connected to one or more packet switches
(P3) of a P3N.

The term packet is used generieally here to mean the data of one
transaction between a host and a packet switeh. The format of data
blocks exchanged between the packet switches in a network will
generally not be of conecern to us.

Hosts are computers attached te a network, and from the communication
network's point of view, are the sources and destinations of packets.
Processes are viewed as the active elements in host computers (in
accordance with the fairly common definition of a process as a program
in execution). Even terminals and files or other I/0 devices are
viewed as communicating with each other through the use of processes,
Thus, all communication is viewed as inter-process communication.

Since a process may need to distinguish among several communication
streams between itself and another process (or processes), we imagine
that each process may have & number of ports through which it
communicates with the ports of other processes,

2.2. Model of Operation

Processes transmit data by calling on the TCP and passing buffers of
data as arguments. The TCP packages the data from these buffera into
segments, and calls on the internet module to transmit each segment to
the destination TCP. The receiving TCP places the data from a segment
into the receiving users buffer and notifies the receiving user. The
TCPs ineclude control information in the segments which they use to
ensure reliable ordered data transmission.

[Page T]

February 1979
TCP-4
Philosophy

The model of internet communication is that there is a basic gateway
{or internet protoeol module) asscciated with each TCP which provides
an interface to the local network. This basic gateway packages TCP
segments inside internet datagrams and routes these datagrams to a
destination or intermediate gateway. To transmit the datagram through
the loeal network it is embedded in a local network packet,

The packet switches may perform further packaging, fragmentation, or
other operations to achieve the delivery of the local packet to the
destination gateway.

t a gateway between networks, the internet datagram is "unwrapped"
from its local packet and examined to determine through which network
the internet datagram should travel next. The internet datagram is
then "wrapped" in a local packet suitable to the next network and
routed to the next gateway.

A gateway is permitted to break up an internet datagram into smaller
internet datagram fragments if this is necessary for transmission
through the next network. To do this, the gateway produces a sel of
internet datagrams, each ecarrying a fragment. Fragments may be broken
into smaller ones at intermediate gateways. The internet datagram
fragment format is designed sc that the destination gateway can
reaszemble fragments inte internet datagrams,

& destination gateway unwraps the segment from the datagram (after
reassembling the datagram, if necessary) and passes it to the
destination TCP.

2.3. The Host Environmen®t

The TCF is assumed to be a module in a time sharing operating system.
The users access the TCP much like they would access the file system,
The TCP may call on other operating system functions, for example, to
manage data structures., The actual interface to the network is assumed
to be controlled by a deviece driver module. The TCP does not call on
the network deviee driver directly, but rather calls on the internet
datagram protocol module which may in turn call on the device driver.

Though it is assumed here that processes are supporied by the host
operating system, the mechanisms of TCP do not preclude implementation
of the TCP in a front-end processor. However, in such an
implementation, a host-to-front-end protocol must provide the
functionality to support the type of TCP-user interface described
above.

[Pagze B8]

February 1979
TCP=4
Philosophy

2.4, Interfaces

The TCP/user interface provides for calls made by the user on the TCP
to OFEN or CLOSE a connecticn, to SEND or RECEIVE data, or to obtain
STATUS about a connection. These call are like other calls from user
programs on the operating system, for example, the calls to open, read
from, and close a file.

The TCP/internet interface provides calls to send and receive
datagrams addressed to TCP modules in hosts anywhere in the internet
system.

2.5. Relation %o Other Protocols

The following diagram illustrates the place of the TCP in the protocol
hierarchy:

———— —4 dmmm——t fm——— + e ———
1Telnet! ! FTE ! 1Voicel! ... 1 ! Application Level
dmmmmmmt dmmm——t Am————i mmmm——
! ! 1 !
m————— + tmm——— dmm———t
! TCP ! L. HTE Y e 1 ! Host Lewvel
fm————— + F———— + ———— +
1 | 1
o e e e ——————
! Internet Datagram Protocol ! Gateway Lewel
e ————————————— +
!
o ——————————— +
! Loecal Network Protocol I Network Level
e +

Protocol Relationships
Figure 2.
It is expected that the TCP will be able to support higher level

protocols efficiently. It should be easy to interface higher level
protocols like the ARPANET TELMET and FTF [2] to the TCP.

[Page 9]

February 1979
TCP-4
Philosophy

2.6. HReliable Communication

A stream of data sent on a TCP connection is delivered reliably and in
order at the destination.

Transmission is made reliable via the use of sequence numbers and
acknowledgments. Conceptually, each occtet of data iz assigned a
sequence pumber. The sequence number of the first octet of data in a
segment is the sequence number transzmitted with that segment and is
called the segment seguence number. Segments also carry an
acknowledgment number which is the sequence number of the most recent
data octet of transmissions in the reverse direction which has been
accepted. When the TCP transmits a segment it puts a copy on a
retransmission queue and starts a timer, when the acknowledgment for
that data is received the segment is deleted from the gueue. If the
acknowledgment is not received before the timer runs out the segment
is retransmitted. 7

An acknowledgment by TCP does not guarantee that the data has been
delivered to the end user, but only that the TCP has taken the
responsibility to do so.

To govern the flow of dataz into a TCP, a flow control mechanism is
employed. The the data receiving TCP reports a window to the sending
TCF. This window is & number of octets beyond the currently
acknowledged =zeguence number that the data receiving TCP is currently
prepared to receive.

2.7. Connection Establishment and Clearing

To identify the separate data streams that a TCP may handle TCP
provides a port identifier. S8ince port identifiers are selected
independently by each operating system, TCP, or user, they might not
be unique. To provide for unique addresses at each TCP, we
concatenate an internet address identifying the TCF with a port
identifier to create a socket which will be unique throughout all
networks connected together.

A connection is fully specified by the pair of sockets at the ends,
sinece the same local socket may participate in many connections to
different foreign sockets. A connection can be used to carry data in
both directions, that is, it is "full duplex".

TCP's are free to associate ports with processes however they choose.
However, several basic concepts seem necessary in any implementation.
There. must be well-known sockets which the TCP associates only with
the "appropriate" processes by some means. We envision that processes
may "own" ports, and that processes can only initiate connections on

[Page 10]

February 1979
TCP=Y
Philosophy

the ports they own. (Means for implementing ownership is a local
issue, but we envision a Request Port user command, or a method of
uniquely allocating a group of ports to a given process, e.g., by
associating the high order bits of a port name with a given process.)

& connection is specified in the OPEN call by the loecal port and
foreign socket arguments. In return the TCP supplies a (short) loecal
connection name by which the user refers to the connection in
subsequent calls, There are several things that must be remembered
about a connection. To store this information we imagine that there
is a data structure called a Transmission Control Block (TCB). One
implementation strategy would have the loecal connection name be a
pointer to the TCB for this connection. The QOPEN call also specifies
whether the connection establishment is to actively pursued, or to be
passively waited for.

A foreign socket of all zeros is called unspecified. The purpose
behind unspecified sockets is to provide a sort of “general delivery"
facility {useful for processes offering services). This is allowed
only for passive OPENs.

A service process that wished to provide services for unknown other
processes could issue a passive OPEN reguest with an unspecified
foreign socket. Then a connection cold be made with any process that
requested a connection to this local scocket. It would help if this
local socket were known to be associated with this service.

Well=known sockets are a convenient mechanism for a priori associating
a socket address with a standard service. For instance, the
"Telnet-Server" process might be permanently assigned to a particular
aocket, and other sockets might be reserved for File Transfer, Remote
Job Entry, Text Generator, Echoer, and Sink processes (the last three
being for test purposes). A socket address might be reserved for
access Yo a "Look-Up" service which would return the specific socket
at which a newly created service would be provided. The concept of a
well-known socket is part of the TCP specification, but the assignment
of sockets to services is outside this specification.

Processes can issue passive OPENs and wait for matching calls from
other processes and be informed by the TCP when connections have been
established. Two processes which issue calls to each other at the
same time are correctly connected. This flexibility is ecritical for
the support of distributed computing in which components act
asynchronously with each other.

There. are two cases for matching the sockets in the local request and

an incoming segment. In the first case, the loecal request has fully
specified the foreign sccket. In this case, the match must be exact.

[Page 11]

February 1979
TCP=4
Fhilosophy

In the second case, the loeal request has left the foreign socket
unspecified. In this case, any foreign socket is acceptable as long
as the local sockets match,

If there are several pending passive OPENs (recorded in TCBs) with the
same local socket, an incoming segment should be matched to an request
with the specific foreign socket in the segment, if such an request
exists, before selecting an request with an unspecified foreign
socket .

The procedures to establish and clear connections utilize synchronize
(SYN) and finis (FIN) control flags and involve an exchange of three
messages. This exchange has been termed a three-way hand shake [3].

A connection is initiated by the rendezvous of an arriving segment
containing a SYN and a waiting TCB entry created by a user OPEN
command, The matching of leoeal and foreign sockets determines when a
connection has been initiated. The connection becomes "established"
when sequence numbers have been synchronized in both directions.

The elearing of a connection also involves the exchange of segments,
in this case carrying the FIN control flag.

2.8, Data Communication

The data that flows on a connection may be thought of as a stream of
cctets, or as a sequence of records. In TCP the records are ralled
letters and are of wvariable length. The sending user indicates in
each SEND call if the data in that ecall completes a letter by the
setting of the end-of-letter parameter.

The length of a letter may be such that it must be broken into
segments before it can be transmitted to its destination. We assume
that the segments will normally be reassembled into a letter before
being passed to the receiving process. A segment may contain all or a
part of a letter, but a segment never contains parts of more than one
letter. The end of a letter is marked by the appearance of an EQL
control flag in a segment. When a TCP has a complete letter, it must
not wait for more data from the sending process before passing the
letter to the receiving process.

There is a coupling between letters as sent and the use of buffers of
data that cross the TCP/user interface. Each time an end of letter
(EOL) flag is associated with data placed inte the receiving user's
buffer, the buffer is returned to the user for processing even if the
buffer is not filled. If a letter is longer than the user's buffer,
the letter is passed to the user in buffer size units.

[Page 12]

February 1979
TCP-4
Philosophy

If the sender formed a series of letters that were exactly the size of
the receivers buffers, it might occur that the receiver would get
fewer end of letter notifications than the sender issued. This is
because the sending TCP might be able to pack two letters in one
segment for transmission, and the single EOL flag transmitted would
refer Lo Lhe second letter.

The TCP is responsible for regulating the flow of segmentis to and from
the on the connections, as a way of preventing itself from becoming
saturated or overloaded with traffic. This is done using a window
flow control mechanism. The data receiving TCP reporis to the data
sending TCP a window which is the range of sequence numbers of data
ockbets that data receiving TCP is currently prepared to acceptl.

TCP also provides a means to communicate to the receiver of data that
at some point further along in the data stream than the receiver is
currently reading there is urgent data. TCF does not attempt to
define what the user specifically do upon being notified of pending
urgent data, but the general notion is that the receiving process
should take action to read through the end urgent data quickly.

[Page 13]

- February 1979

[Page 14]

February 1979

3!11

TCP-4

3. FUNCTIONAL SPECIFICATION

Header Format

TCP segments are sent as internet datagrams. The Internet Datagram
Protocol header carries several information fields, ineluding the

source and destination host addresses [1].
internet header, supplying information specific to the TCP protocol.
This diviasion allows for the existence of host level protocols other
than TCP.

TCP Header Format

!

o 1

A TCP header follows the

2 3

0123456789012 34567890123U456T78901

S S T O ot o T

Source Port !

D

estination Port !

B T S T S e T et st o e e B ks el eos et

!

Sequence Number

!

B e et Lt Ll e et ot et et e it Sl B el St Bl Sl T el EE TR et Rl Sk ek e sk st st ol
Acknowledgment Number !
B s s ot ks s T e e R it sk s sl s sk s sl S S el e e Sl S o

- TRy B o o

T T L L

e o e e i e e e e e e e e

B T e T LT T e Y T T

Data ! IJIAIEIRISIF!
Offzset! Reserved IRICIOISITII!
! IGIKILITININY
Checksum !

Options

data

+

-+

+

+

!

Window !

!

B s e e e St Tt s o
Urgent Pointer !
e e et R T R B S e el R S
! Padding !

et e Tl e e O e e
!

R e e T e e et

TCP Header Format

Note that one tick mark represents one bit position.

Fizure 3.

Source Port: 16 bits

The =source port number.

Destination Port: 16 bits

The-destination port number.

[Page 15]

February 1979
TCP=-4

Functional Specifiecation

Sequence Number: 32 bits
The sequence number of the first data octet in this segment.
Acknowledgment Number: 32 bits

If the ACK control bit is set this field contains the value of the
next sequence number the sender of the segment is expecting to
regeive,

Data Offset: 4 bits

The number of 32 bit words in the TCP Header. This indicates where
the data begins. The TCP header including options is an integral
number of 32 bits long.

Reserved: B bits
Reserved for future use. Must be zero.
Control Bits: B bits (from left to right):

URS: Urgen:t Pointer field significant
ACK: Acknowledgment field significant
ECQL: End of Letter

RST: Reset the connection

SYN: Synchronize sequence numbers
FIN: MNo more data from sender

Window: 16 bits

The number of data octets beyond the one indicated in the
acknowledgment field which the sender of this segment 1is willing to
accept.

Checksum: 16 bits

The checksum field is the 16 bit one's complement of the one's
complement sum of all 16 bit words in the header and text. If a
segment contains an odd number of header and text octets Lo be
checksummed, the last octet is padded with zeros to form a 16 bit
word for checksum purposes. The pad is not transmitted as part of
the segment. While computing the cheeksum, the checksum field
itself is replaced with zeros,

The checksum also covers a 96 bit pseudo header prefixed to the TCP

header. This pseudo header contains the Source Address, the
Destination Address, the Protocol, and TCP length. This gives the

[Page 16]

February 14979
TCP-4

Funetional Specification

TCP protection against misrouted segments, This information is
parried in the Internet Datagram Protocol and is transfered across
the TCP/Hetwork interface.

o - ==

! Source Address |
oo e L T
! Destination Address 1
s = o e +
! zero | PTCL | TCP Length !
= - +

The TCP Lengtih is the TCP header plus the data length in octets
(this is not a transmitted guantity).

Urgent Pointer: 16 bits

This field communicates the current value of the urgent pointer as a
positive offset from the sequence number in this segment. The

urgent pointer points to the sequence number of the ocetet following
the urgent data. This field should cnly be interpreted in segments

with the URG contreol bit set.
Options: variable

Options may occupy space at the end of the TCP header and are a
multiple of B bits in length. All options are included in the
checksum. An option may begin on any octet boundary. All options
have the same basic format:

Option kind: 8 bits
Option lengtih: 8 bits

Length in octets (including the two octets of length and kind
information)

There are two special cases for options.

The first is the End-of-Options option. Only one octel is
associated with this option, the kind octet itself.

The second is the No-Operation option and is also one octet
long.

Note that the list of options may be shorter than the data offset
field might imply. The content of the header beyond the
End-of-Option option should be header padding (i.e., zero).

(Page 17]

February 1979
TCP-U
Functional Specification

Currently defined options ineclude (kind indicated in oetal):

Kind Length Meaning
0 - End of cpticn list.
1 - No-Operation.
100 - Reserved.
105 4 Buffer Size.

Specific Option Definitiona

End of Option List

i *
1000000001
e T +
Kind=0

This option code indicates the end of the option list. This
might not coincide with the end of the TCP header according to
the Data Offset field. This is used at the end of all options,
not the end of each option, and need only be used if the end of
the options would not otherwise coincide with the end of the TCP
header.

No-Operation

e e e e e

100000007 !

This option code may be used between options, for example, to
align the beginning of a subsequent option on a word boundary.
There is no guarantee that senders will use this option, so
receivers must be prepared to process options even if they do
not begin on a word boundary.

Buffer Size

o ————— Fm————— = ——————— = -
101000101 1000001001 buffer size !
L e s st + .

Kind=105 Length=d

[Page 18]

February 1979
TCP-4
Functional Specification

Buffer Size Option Data: 16 bits

If this option is present, then it communicates the receive
buffer size at the TCP which sends this segment. This field
should only be sent in segments with the 3YN control bit set.
If this option is not used, the default buffer size of one
petet is assumed.

Padding: wvariable

The TCP header padding iz used to ensure that the TCP header ends
and da%a begins on a 32 bit boundary. The padding is composed of
zZEros.

3.2. Terminoclogy

Before we can discuss very much about the coperation of the TCP we need
to introduce some detailed terminoclogy. The maintenance of a TCP
connection requires the remembering of several facts. We conceive of
these faets being stored in a connection record called a Transmission
Control Bloeck or TCE. Among the facts stored in the TCB are the loecal
and remote socket numbers, pointers to the user'as send and receive
buffers, pointers to the retransmit gueue and to the current segment.
In addition several variables relating to the send and receive
sequence numbers are stored in the TCB.

Send Sequence Variables

SND.UNA - send unacknowledged

SND.NXT - send =eqguence

SND.WND = send window

SND.BS = send buffer size

SND.UP = send urgent pointer

SND.WL = send sequence number used for last window update
133 = initial send sequence number

Receive Sequence Variables

RCY.NXT - receive sequence

RCV.WHND = receive window

RCV.BS = receive buffer size

RCV.UP =~ receive urgent pointer

IRS - initial receive seguence number

The following diagrams may help to relate some of these variables to
the sequence space.

[Page 19]

February 1979
TCP=4
Functional Specification

Send Sequence Space

1 2 3 Y
- l—— - 1- -
SHD.URA SND.NXT SND.UNA
+3ND.WHD

- old sequence numbers which have been acknowledged

- seguence numbers of unacknowledged data

sequence numbers allowed for new data transmission
- future sequence numbers which are not yet allowed

i Py =
i

Send Sequence 3Space

Figure 4.

Receive Seguence Space

1 2 3
Tl P ——
RCV.NXT RCV.NXT
+RCV.WND

1 - old sequence numbers which have been acknowledged

2 - sequence numbers allewed for new recepticn

3 - future sequence numbers which are not yet allowed
Receive Sequence Space

Figure 5.

There are alsc some variables used frequently in the discussion that
take their wvalues from the fields of the current segment.

Current Segment Variables

SEG.3EQ - segment seguence number
SEG.ACK - segment acknowledgment number
SEG.LEN - segment length

SEG.WHD - segment window

SEG.UP - segment urgent pointer

A connection progresses through a series of states during its
lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED,

[Page 20]

February 1979
TCP-4
Funetional Specification

ESTABLISHED, FIN-WAIT, CLOSE-WAIT, CLOSING, and the fictional state
CLOSED. Closed is fietional because it represents the state when
there is no TCB, and therefore, no connection.

A TCP connection progresses from one state to another in response to
events. The events are the user calls, OPEN, 3END, RECEIVE, CLOSE,
ABORT, and STATUS; the incoming segments, particularly those
eontaining the SYN and FIN flags; and timeouts.

The Glossary contains a more complete list of terms and their
definitions.

The state diagram in figure 6 only illustrates state changes, together
Wwith the causing events and resulting actions, but addresses neither
error ccnditions nor actions which are not connected with state
changes. In a later section, more detail is offered with respect to
the reaction of the TCP to events,

[Page 21]

TCP-4
Funetional Specifiecation

February 1979

Fm——— -+ A active OPEN
i CLOSED ! B s
fmmmm———— +lmmmmm====t % greate TCE
! = Ay % snd SIN
passive OFEN ! ! CLOSE Y A}
------------ ! I e — A\ Ay
create TCE ! ! delete TCB N \
v ! A} At
g LT + CLOSE ! A
i LISTEN ! = —mmmmmm—ee ! !
o + delete TCE ! !
rev SYN ! ! SEND ! !
—————mm - ! 1 B ! v
e ——————— snd SYN,ACK / A} snd SYN fmmmsmm——
1 T o e - e e ———— | !
! 3YN ! rev 3YN 1 3TN !
1 RCVD Jmm e aaaia ccemca==sa=] SENT |
| ! snd ACK ! |
! S | !
e e e rev ACK of SYN A / reov SIN,ACK fommm e +
I eeeeeeeee———— ! ! memsm—————
! X ! ! snd ACK
! v v
! CLOSE T
| mmmmmmm | ESTAB |
! snd FIN R —
! CLOSE ! ! rev FIN
vy mmmmme— ! ! ——————a
- + sand FIN / Y snd ACK o ———————
! FIN e - e »! CLO3E !
! WAIT Jemmmmmmmmmmmmm e e | WAIT !
o -+ rev FIN A\ i CLOSE fmmm——————
e i N e
and ACK ! ! and FIN
))
tomemm———— +
| CLOSING !
pommmm———— +
rev ACK of FIN ! ! timeout
et et i [W St S
delete TCB v v ABORT
o +
| CLOSED !
fommm————— +

TCP Connection State Diagram
Figure 6.

[Page 22]

February 1979
TCP-4
Funetional Specification

3.3. Sequence Numbers

A fundamental notion in the design is that every cctet of data sent
over a TCP connection has a sequence number. Since every octet is
sequenced, each of them can be acknowledged. The acknowledgment
mechanism employed is cumulative 30 that an acknowledgment of sequence
number ¥ indicates that all cctets up to but not ineluding X have been
received. This mechanism allows for straight=forward duplicate
detection in the presence of retransmission.

It is essential to remember that the actual sequence number space is
finite, though very large. This space ranges from 0 to 2%%#32 - 1,
Since the space is finite, all arithmetic dealing with sequence
numbers must be performed modulo 2%%32, This unsigned arithmetic
preserves the relationship of sequence numbers as they cycle from
2%%¥32 - 1 Lo 0 again. There are some subtleties to computer modulo
arithmetic so great care should be taken in programming these teats.
The typircal kinds of sequence number comparisons which the TCP must
perform include:

{(a) Determining that an acknowledgment refers to some sequence
number sent but not yet acknowledged.

{(b) Determining that all sequence numbers pccupied by a segment
have been acknowledged (e.g., to remove the segment from a
retransmission gueue).

{e) Determining that an incoming segment contains sequence numbers
which are expected (i.e., that the segment "overlaps" the
receive window).

On send connections the following comparisons are needed:

older segquence numbers newer sequence numbers

SND.UNA SEG.ACK SHD,NXT

! | !
Bl EETST 4.4 0. & GRS .4 0.0 8 5 8 et .0 4 4 EEEE TS B

! ! ! | ! !

! | !
Segment 1 Segment 2 Segment 3
{===== ZEeqUence spage —-—-—- >

Sending Sequence Space Information

Figure T.

[Page 23]

February 1979
TCP-4
Funectional Specification

SND.UNA = oldest unacknowledged sequence number
SHD.NXT = next seguence number to be sent
SEG.ACK = acknowledgment (next sequence number expected by the

acknowledging TCP)
SEG.SEQ(i) = first sequence number of the i-th segment
SEG.SEQ+SEG.LEN-1(i) = last seguence number of the i-th segment

An acceptable acknowledgment, SEG.ACK, is one for which the inequality
below holds:

0 < (SEG.ACK - SHD.UNA) =< (SND.NXT - SND.UNA)
or:
SND.UNA < 3EG.ACK =< SND.NXT

Note that all arithmetic is modulo 2¥¥32 and that comparisons are
unsigned. "=<" means "less than or equal".

Similarly, the determination that a particular segment has been fully
acknowledged can be made if the ineguality below holds:

0 < (SEG.SEQ+SEG.LEN-1{i) - SHD.UNA) < (SEG.ACK - SND.UNA)

SEG.LEN(i) is the number of octets occupied by the data in the

segment . t is important to note that SEG.LEN(i) must be non-zero;
segments which do not occupy any sequence 3jpace (e.g., empty
acknowledgment segments) are never placed on the retransmission gueue,
so would not go through this particular test.

[Page 24]

February 1979
TCP-4
Funetional Specification

On receive connections the following comparisons are needed:

older sequence numbers newer sequence numbers
RCV.NXT RCV.NXT+RCV.WND
1

--------- ExxiIKI------xxxxxxxxxx-------—-xxxixx---------
| I | 1
o ; o

Segment 1 Segment 2 Segment 3
{=———— SEeqUEnce SPACE ————- >

Receiving Sequence Space Information
Figure 8.
RCV.NXT = next sequence number expected on incoming segments

RCV.NXT+RCV.WND = last sequence number expected on incoming
segments, plus one

3EG.3EQ{i) = first sequence number occupied by the i-th incoming
segment

SEG.SEQ+SEG.LEN=-1(i) = last sequence number occupied by the i-th
incoming segment

A segment i= judged to cccupy a portion of walid receive sequence
space if

0 =< (SEG.SEQ+SEG.LEN-1 - RCV.NXT) < (RCV.NXT+RCV.WND - RCV.NXT)

SEG.SEQ+5EG.LEN-1 is the last sequence number occupied by the segment,
RCV.NXT is the next sequence number expected on an incoming segment,
and RCV.NXT+RCV.WHND is the right edge of the receive window.

fctually, it is a little more complicated than this. Due to zero

windows and zero length segments, we have four cases for the
acceptablility of an incoming segment:

[Page 25]

February 1979
TCP-4
Functional Specification

Segment Receive Test
Length Window

0 0 SEG.SEQ = RCV.NXT

0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
>0 0 not acceptable
»0 >0 RCV.NXT < SEG.SEQ+SEG.LEN =< RCV.NXT+RCV.WND

Note that the acceptance test for a segment, since it regquires the end
of a segmen:t to lie in the window, is somewhat meore restrictive than
is absolutely necessary. If at least the first sequence number of the
segment lies in the receive window, or if some parti of Lthe segment
lies in the receive window, then the segment might be judged
acceptable. Thus, in figure B, at least segments 1 and 2 are
acceptable by the strict rule and segment 3 may or may not be,
depending on the strictness of interpretation of the rule.

Note that when RCV,NXT = RCV.NXT+RCV.WND, the receive window is zero
and no segments should be acceptable except ACK segments. Thus, it
should be possible for a TCP to maintain a zero receive window while
transmitting data and receiving ACKs.

We have taken advantage of the numbering scheme to protect eertain
control information as well. This is achieved by implieitly ineluding
some control flags in the sequence space so they can be retransmitted
and acknowledged without confusion (i.e., one and only one copy of the
control will be acted upon). Control information is not physieally
carried in the segment data space. Consequently, we must adopt rules
for implieitly assigning sequence numbers to control. The SYN and FIN
are the only controls requiring this protection, and these controls
are used only at connection opening and closing. For sequence number
purposes, the SIN is considered to occur before the first actual data
octet of the segment in which it oeccurs, while the FIN is considered
to occur after the last actual data octet in a segment in which it
occurs. The segment length includes both data and sequence space
ococupying controls.

Initial Sequence Number Selection

The protocol places no restriction on a particular connection belng
used over and over again. A connection is defined by a pair of
sockets. MNew instances of a connection will be referred to as
incarnations of the connection. The problem that arises owing to this
is -- "how does the TCP identify duplicate segments from previous

[Page 26]

February 1979
TCE-L
Funetional Specification

incarnations of the connection?" This problem becomes apparent if the
connection is being opened and closed in quick succession, or if the
connection breaks with loss of memory and is then reestablished.

To avoid confusion we must prevent segments from being emitted with
sequence numbers which duplicate those which are s3till in the network.
We want to assure this, even if a TCP crashes and loses all knowledge
of the sequence numbers it has been using. When new connections are
created, an initial sequence number (ISN) generator is employed which
selects a new 32 bit ISN. The generator iz bound to a (possibly
fietitious) 32 bit eclock whose low order bit i= incremented roughly
every 4 mieroseconds. Thus, the ISN cycles approximately every U4.55
hours. Since we assume that segments will stay in the network no more
than tens of seconds or minutes, at worst, we can reasconably assume
that ISN's will be unique.

For each connecticn there is a send sequence number and a receive
sequence number, The initial send sequence number (IS3) is chosen by
the data sending TCP, and the initial receive sequence number (IRS) is
learned during the connection establishing procedure.

For a connection to be established or initialized, the twe TCP's must
synchronize con each other's initial sequence numbers. This is done in
an exchange of connection establishing messages carrying a control bit
called "SYN" (for synchronize) and the initial sequence numbers. As a
shorthand, messages carrying the SYN bit are also called "SYNs".
Hence, the sclution requires a suitable mechanism for picking an
initial sequence number and a slightly involved handshake to exchange
the ISN's. A "three way handshake" is necessary because seguence
numbers are not tied to a global clock in the network, and TCP's may
have different mechanisms for picking the ISN's. The receiver of the
first SYN has no way of knowing whether the segment was an old delayed
one or not, unless it remembers the last sequence number used on the
connection (whieh is not always possible), and so it must ask the
gender to verify this SYN.

The "three way handshake" and the advantages of a "clock-driven"
scheme are discussed in [3].

Knowing When to Keep Quiet

To be sure that a TCP does not create a segment that carries a
sequence number which may be duplicated by an old segment remaining in
the network, the TCP must keep quiet for a maximum segment lifetime
(M3L) before assigning any sequence numbers upon starting up or
recovering from a crash in which memory of sequence numbers in use was
leost. For this specification the MSL is taken to be 2 minutes. This
value may be changed if experience indicates it is desirable to do so.

[Page 27]

February 1979
TCP-4
Functicnal Specification

Note that if a TCP is reinitialized in scme sense, yet retains its
memory of seguence numbers in use, then it need not wait at all; it
must only be sure to use sequence numbers larger than those recently
used.

It should be noted that this strategy does not protect against
spoofing or other replay type duplicate message problems.

3.4. Establishing a connection

The "three=way handshake" is essentially a unidirectional attempt to
establish a connection; i.e., there is an initiator and a responder.
The TCP can also establish a connection when a simultaneous initiation
ocours. A simultaneous attempt occurs when one TCP receives a "SYN"
segment which carries no acknowledgment after it has sent a "SYNW". OF
course, the arrival of an old duplicate "SYN" segment can potentially
make it appear, to the recipient, that a simultaneous connection
initiation is in progress. Proper use of "resel" segments can
disambiguate these cases. Several examples of connection initiation
are offered below. Although these examples do not show connection
synchronization using data-carrying segments, this is perfectly
legitimate, so long as the receiving TCP doesn't deliver the data to
the user until it is clear the da%a is valid (i.e., the data must be
buffered at the receiver until the connectiion reaches the ESTABLISHED
state).

The simplest three-way handshake is shown in figure 9 below. The
figures should be interpreted in the following way. Each line is
numbered for reference purposes, Right arrows (--») indicate
departure of a TCP segment from TCP A to TCP B, or arrival of a
segment at B from A. Left arrows (<--), indicate the reverse.
Ellipsis (...) indicates a segment which is still in the network
(delayed). An "XXX" indicates a segment which is lost or rejected.
Comments appear in parentheses, TCP states represent the state AFTER
the departure or arrival of the segment (whose contents are shown in
the center of each line). Segment contents are shown in abbreviated
form, with sequence number, control flags, and ACK field. Other
fields such as window, addresses, lengths, and text have been left out
in the interest of clarity.

[Page 28]

February 1979
TCE-4
Functional Specification

TCP A TCP B
1. CLOSED LISTEN
2. SYN-SENT --> <SEQ=100><{CTL=SYN> -=-2» SYN-RECEIVED

3. ESTABLISHED <== <3EQ=300><ACK=101><CTL=5YN,ACK> <-= SYN-RECEIVED
4, ESTABLISHED =-> <SEQ=101><ACK=301><CTL=ACK> -=>» ESTABLISHED
5. ESTABLISHED =--> <SEQ=101><ACK=301><CTL=ACK><DATA» --> ESTABLISHED
Basic 3=Way Handshake for Connection Synchronization
Figure 9.

In line 2 of figure 9, TCP A begins by sending a 3YN segment
indicating that it will use sequence numbers starting with sequence
number 100, In line 3, TCP B sends a 3YN and acknowledges the SYN it
received from TCF A. HNote that the acknowledgment field indicates TCP
B is now expeecting to hear szequence 101, acknowledging the 3YN which
occupied sequence 100.

At line Y4, TCP A responds with an empty segment containing an ACKE for
TCP B's 5YN; and in line 5, TCP A sends some data. MNote that the
segquence number of the segment in line 5 is the same as in line 4§
because the ACK does not occupy sequence number space (if it did, we
would wind up ACKing ACK's!).

Simultaneous initiation is only slightly more complex, as is shown in
figure 10. Each TCP cyeles from CLOSED to SYN-SENT to SYN-RECEIVED to
ESTABL ISHED.

The principle reason for the three-way handshake is to prevent old
duplicate connection initiations from causing confusion. To deal with
this, a special control message, reset, has been devised. A TCP which
receives a reset message first verifies that the ACK field of the
reset acknowledges something the TCP sent (otherwise, the message is
ignored). If the receiving TCP is in a non-synchronized state (i.e.,
SYN-SENT, SYN-RECEIVED), it returns to LISTEN on receiving an
acceptbable reset. If the TCP is in one of the synchronized states
(ESTABLISHED, FIN-WAIT, CLOSE-WAIT, CLOSING), it aborts the connection
and informs its user, We discuss this latter case under "half-open"
conn EID tions below.

[Page 29]

TCP-4

Funectional Specification

Az

TCP A
CLOSED
SYN-SENT ==> £3EQ=100><CTL=31IN>
SYN-RECEIVED <-- <3EQ=300><CTL=SIN>

«ns SOEQ=100><CTL=SYN>

1
1
h'a

SYN-RECEIVED
ESTABLISHED <-= <S5EQ=301><ACK=101><CTL=ACK>

vas SSEQ=1012<ACK=301><CTL=ACK>

Simultanecus Connection Synchroniza
Figure 10,
TCP A
CLOSED
SIN-SENT --> <3EQ=100><{CTL=3SYN>

{duplicate) ... <SEQ=1000><CTL=SYN>

TCF B

CLOSED

L== S5YN-
-=> SIN=-

<3EQ=101><ACK=301><CTL=ACE> ...

February 1979

SENT

RECEIVED

== STN-RECEIVED

--»> ESTABLISHED

tion

SYN-SENT {~-- <SEQ=300><ACK=1001><CTL=SYN,ACK> <--

SYN-SENT ==» £SEQ=1001><RST><{ACK=301>

. <SEQ=100><5YN>

-

Lol

SYN-SENT {=- <SEQ=U00><ACK=101><CTL=3YIN,ACK> <--

ESTABLISHED --> <SEQ=101><{ACK=401><CTL=ACK>
Recovery from 0ld Dupliecate SYN

Figure 11.

25

TCP B

LISTEN

SYN-RECEIVED
SYN-RECEIVED

LISTEN
{ACK iz ok)

SYN-RECEIVED
SYN-RECEIVED

ESTABLISHED

a simple example of recovery from old duplicates, consider

[Page 30]

February 1979
TCP-4
Funetional Specification

figure 11. At line 3, an old duplicate S5YN arrives at TCF B. TCF B
cannot tell that this is an old duplicate, so it responds normally
(line 4). TCPF A detects that the ACK field is incorrect and returns a
RST (reset) with its SEQ and ACK fields selected to make the segment
believable. TCP B, on receiving the R3T, returnz to the LISTEN state.
When the original SYN (pun intended) finally arrives at line 6, the
synehronization proceeds normally. If the SIN at line 6 had arrived
before the H5T, a more complex exchange might have occurred with RS3T's
sent in both direections.

Hal f<0Open Connections and Other Anomalies

An established connection is said to be "half-open" if one of the
TCP's has closed or aborted the connection at its end without the
knowledge of the other, or if the two ends of the connection have
become desynchronized owing to a crash that resulted in loss of
memory. Such connections will automatically become reset if an
attempt is made Lo send data in either direction. However, half-open
connections are expected to be unusual, and the recovery procedure is
mildly involved.

If at site A the connection no longer exists, then an attempt by the
user at site B to send any data on it will result in the site B TCP
receiving a reset control message. Such a message should indicate to
the site B TCP that something is wrong, and it is expected to abort
the connection.

Assume that two user processes A, and B, are communicating with one
another when a crash occurs causing loss of memory to A's TCP.
Depending on the operating system supporting A's TCP, it is likely
that some error recovery mechanism exists. When the TCP is up again,
A iz likely to start again from the beginning or from a recovery
point. As a result A will probably try to OPEN the connection again
or try to SEND on the connection it believes open. In the latter
case, it receives the error message "connection not open" from the
loecal TCF. In an attempt to establish the connection A's TCP will
send a segment containing SYN. This scenario leads to the example
shown in figure 12. After TCP A crashes, the user attempts to re-cpen
the connection. TCP B, in the meantime, thinks the connection is
open.

[Page 31]

February 1979
TCP-4
Functional Specification

TCP A TCP B
1. (CRASH) (send 300,receive 100)
2. CLOSED ESTABLISHED
3. SYN-SENT --> <SEQ=400><CTL=SYN> -=> (27)
L. (11) <-- <SEQ=300><ACK=100><CTL=ACK> <-- ESTABLISHED

5. SYN-SENT --> <SEQ=100><ACK=300><CTL=RST,ACK> --> (Abort!!)
6. CLOSED
T. SYN-SENT --> <SEQ=U400><SYN><CTL=SYN> -=> CLOSED
8. (Abortl!!)<-—- <SEQ=xxx><{ACK=401><CTL=RST, ACK> <=- CLOSED
9. CLOSED CLOSED
Hal f-Open Connection Discovery
Figure 12,

When the SYN arrives at line 3, TCP B, being in a synchronized state,
responds with an acknowledgment indicating what sequence it nex:
expects to hear (ACK 100). TCP A sees that this segment does no%
acknowledge anything it seni and, being unsynchronized, sends a reset
(RST) because it has detected a half-open connection. TCP B aborts at
line 5. TCP A will continue to retransmit its S5YIN; and if the user at
TCF B re-opens the connection, eventually everything will work ous.

An interesting alternative case occeurs when TCP A crashes and TCP B
tries to send data on what it thinks is a synchronized connection.
This is illustrated in figure 13. In this case, the data arriving at
TCP A from TCP B (line 2) is unacceptable because no such connection
exists, so TCP A sends a RST. The RST is acceptable so TCP B
processes it and aberts the connection.

[Page 32]

February 1979
TCP-4
Funotional Specification

TCP A TCE B
1. (CRASH) {send 300,receive 100)
2. SEIT) == CSEQ=300><ACK=100><DATA=10><CTL=ACK> <-- ESTABLISHED
3. -=> <SEQ=100><ACK=310><CTL=RST,ACK> --> (ABORT!!)
feotive Side Causez Half-Open Connection Discovery
Figure 13.
In figure 14, we find the two TCP's A and B with passive connections
waiting for SYN. An old duplicate arriving at TCP B (line 2) stirs B
into action. A SYN-ACK is returned (line 3) and causes TCP A to

generate a RST (the ACK in line 3 is not acceptable). TCP B accepts
the reset and returns to its passive LISTEN state.

TCF A TCF B
1. LISTEN LISTEN
2. «as SSEQ=Z><CTL=SIN> ==> SYN-RECEIVED

3. (77) €== <3EQ=X><ACK=Z+1><CTL=5YN,ACK> ¢{== SYN-RECEIVED
4, -=> ¢SEQ=Z+1><ACK=X+1><CTL=RST,ACK> --> (return to LISTEN!)
5. LISTEN LISTEN
Old Duplicate SYN Initiates a Reset on two Passive Sockets
Figure 14,

A variety of other cases are possible, all of which are accounted for
by the following rules for RST generation and processing.

Reset Generation

As a general rule, reset (RST) should be sent whenever a segment
arrives which apparently is not intended for the current or a future
incarnation of the connection. A reset should not be sent if it is
not clear that this is the case. Thus, if any segment arrives for a
nonexistent connection, a reset should be sent. If a segment ACKs

[Page 33)

February 1979
TCP=4
Functional Specification

something which has never been sent on the current connection, then
one of the following two cases applies.

1. If the connection is in any non-synchronized state (LISTEN,
SYN-SENT, SYN-RECEIVED) or if the connection deoes not exist, a reset
{RST) should be formed and sent for any segment that acknowledges
something not yet sent. The RST should take its SEQ field from the
ACK field of the offending segment (if the ACK control bit was set),
and its ACK field should acknowledge all data and eontrol in the
offending segment., This is done to make the segment believable to the
remote TCP. The sequence field will contain the next segquence the
remote TCP expects, and the acknowledgment field will acknowledge
everything the remote TCP claims to have sent.

2. If the connection is in a synchronized state (ESTABLISHED,
FIN-WAIT, CLOSE-WAIT, CLOSING), any unacceptable =zegment should eliecit
only an empiy acknowledgment segment containing the current
send-sequence number and an acknowledgment indicating the next
sequence number expected to be received.

Reset Processing

All RST (reset) segments are validated by checking their ACK-fields
{and SEQ fields if in a synchronized state). If the RST acknowledges
something the receiver sent (but has not yet received acknowledgment
for), the RST must be valid. RS3T segments will have ACK fields which
acknowledge any data and control in the offending segment to assure
acceptability of the RST. In particular, the R3T is wvalid if
SND.UNA=<SEG.ACK=<SND.NXT.

The receiver of a RST first validates it, then changes state., If the
receiver was in the LISTEN state, it ignores it. If the receiver was
in SYN-RECEIVED state and had previously been in the LISTEN state then
the receiver returns to the LISTEN state, otherwise the receiver
aborts the connection and goes to the CLOSED state. If the receiver
was in any other state, it aborts the connection and advises the user
and goes to the CLOSED state.

3.5. Closing a Connection

CLOSE is an operation meaning "I have no more data to send." The
notion of closing a full=duplex connection is subject to ambiguous
interpretation, of course, since it may not be obvious how to treat
the receiving side of the connection. We have chosen to treat CLOSE
in a simplex fashion. The user who CLOSEs may continue to RECEIVE
until he is told that the other side has CLOSED alsc. Thus, a program
pould initiate several SENDs followed by a CLOSE, and then continue to
RECEIVE until signaled that a RECEIVE failed because the other side

[Page 34]

February 1979
TCP-A
Functional Specification

has CLOSED. We assume that the TCP will unilaterally inform a user,
even if no RECEIVEs are outstanding, that the other side has closed,
so the user can terminate his side gracefully. A TCP will reliably
deliver all buffers SENT before the connection was CLOSED so a user
who expects no data in return need only wait to hear the connection
was CLOSED successfully to know that all his data was received at the
destination TCP.

There are essentially three cases:
1) The user initiates by telling the TCP to CLOSE the connection
2) The remote TCP initiates by sending a FIN control signal
3) Both users CLOSE simultaneously

Case 1: Loecal user initiates the close

In this case, a FIN segment can be constructed and placed on the
outgoing segment queue. No further SENDs from the user will be
accepted by the TCP, and it enters the FIN-WAIT state. RECEIVEs are
allowed in this state. All segments preceding and including FIN
will be retransmitted until acknowledged. When the other TCP has
both acknowledged the FIN and sent a FIN of its own, the first TCP
ecan ACK this FIN and delete the connection. It should be noted that
a TCP receiving a FIN will ACK but not send its own FIN until its
user has CLOSED the conneection also.

Case 2: TCP receives a FIN from the network

If an unsclicited FIN arrives from the network, the receiving TCP
can ACK it and tell the user that the connection is closing. The
user should respond with a CLOSE, upon which the TCP can send a FIN
to the other TCP. The TCP then waits until its own FIN is
acknowledeged whereupon it deletes the connection. If an ACK is not
fortheoming, after a timeout the connection is aborted and the user
is told.

Case 3: both users close simultaneously

A simultaneous CLOSE by users at both ends of a connection causes
FIN segments to be exchanged. When all segments preceding the FINs
have been processed and acknowledged, each TCP can ACK the FIN it
has received. Both will, upon receiving these ACKs, delete the
connection.

[Page 35]

_ VTR YrmedeY
mellanlilsegd lansiisnat

Teey 3 vlal glisvsdalion Ilv 1T enf lsdd scsmms o . CFIOD mad
Jhascls eadt sbix vado add Jed? gollcatsive wna a3VIES3E on 1 meve
vidalisn [idw 3T 4 ¥iLAwsen adle &l sdeilesd nan Seen wif o=
Tere 2 us QEOXW s nplinesncs 4] woled THEE aveYlud ils weviled
fclleamsss ad! wan of Jlaw ¢lnn Bewn mrdem 3l alsh oo sivegEs oow
7 78 Seviscey ke 3dab &l LiIn Jand womd 03 ylisteaecsue G200 maw

AT nollaatieed

ievase il vlizilusese vua o=l
stliveancs odr 3000 of LT an?d palling v sasgisinl weu =T (7T

aaglie fovtscs MIM A gatbase wd svisdlist 127 sromen e=7 (@
viswcenailcmis AL ewwu Aioit f
setls and ooltal2ind esu Laoed 1T emal

mgﬁhhﬂzu;whmmm :-um-._: siss ml
L Rt JOMD JITeERes 320 5TWT
e EEVIEOEE .ecale THiN-WIX ead evefmw 71 Boa 30T aad ¢f Seigecss
UIT pnlbolanl bes polbesewy sdomagen 1A .w2efs RIAL Rl Sewells
sad 12T w20 wi2 aey Dephbeiuomise fiing meftisecsnter € [liv
T ety w12 et w28 1o B1N & fwee Eus NIR w2 n>od
dnad beloa o Blosae £1 Laolovsneso eaf e2elsh bas &1 Y04 nac
s Lo K2V owe w2i bams 208 Jo8 B34 Elte RIS & pelvisos: AT &
~oads mulfosnmes eRs SEEOLD mad Teau

wvasdun Al BYS NI & esviaser 10T L sasd

T guivisoes w2 | wwowien i sevl seviTe X% dpgizdionen =s I
*iT .sulecis el selioenscs A NP wees s Lis? Bas 71 125 mso
uﬂ-mﬂmwummﬁﬁ-u- " Riumes wew
ol BIY mwd w3t Ll W a2 T et . wide wiz o2

T el B s Y o0l ‘eenmor wiS esdeish f] scgoviede Sagbe Svscica
mm;mmnmmﬂm-m-mu
sl at

tisvovonsd uuls wesls n--; dFod :{ sax]

Siuar Rellicetned & 10 wdaw ARG 28 svesn ¢d SO sucesead lusie @
SHLY sa? ibesry stavepet LIS e, Degemcoee i of mioespes NIV
fL Y st B4 sy T doss ,bepbelwnivs dan beseecony ased evad
sl sinlsl (a4 Wl ViSO toqe L MEde di0E bovieosn nan
-

&+ - " N wF [3

(28 sant)

February 1979
TCP-U

Functional Specification

And, whenever an EOL is received, the receiver advances its receive
sequence number, RCV.NXT, by an amount sufficient to consume all the
unused space in the receiver's buffer. The amount of space consumed
in this fashion is subtracted from the receive window just as is the
space consumed by actual data.

older sequence numbers newer sequence numbers

Buffer 1 1 Buffer 2

S wm

SEG.SEQ A B

XXX - data octets from segment
4+4++ = phantom data

{=—=== SEQUENCE SDACE =====3
End of Letter Adjustment
Figure 15.
In the case illustrated above, if the segment does not carry an EQL
flag the next value of SND.NXT or RCV.NXT will be A. If it does carry
an EOL flag the next value will be B.
The exchange of buffer size and sequencing information is done in
units of octets. If no buffer size is stated, then the buffer size is
assumed to be 1 octet. The receiver tells the sender the size of the
buffer in a SYN segment that contains the 16 bit buffer size data in
an option field in the TCP header.
Each EOL advances the sequence number (SN) to the next buffer boundary
SN <- SEG.SEQ+SEG.LEN+B-1-((SEG.SEQ+SEG.LEN+B-1-(IS+1)B)

where IS is the initial sequence number, and B is the buffer size.

The CLOSE user call implies an end of letter, as does the FIN control
flag in an incoming segment.

[Page 37]

February 1979
TCP-4
Functional Specifieation

The Communication of Urgent Information

The objective of the TCP urgent mechanism is to allow the sending user
to stimulate the receiving user to accept some urgent data and to
permit the reeceiving TCP to indiecate to the receiving user when all
the ecurrently known urgent data has been received by the user.

This mechanism permits a point in the data stream to be designated as
the end of "urgent"™ information. Whenever this point is in advance of
the receive sequence number (RCV.NXT) at the receiving TCP, that TCP
should tell the user to go into "urgent mode"; when the receive
sequence number catches up to the urgent pointer, the TCP should tell
user to go into "normal mode". If the urgen® pointer is updated while
the user is in "read fast" mode, the update will be inviszible to the
user.

The method employs a urgent field which is carried in all segments
transmitted, The URG control flag indicates that the urgent field is
meaningful and should be added to the segment sequence number to yield
the urgent pointer. The absence of this flag indicates that the
urgent pointer has not changed.

To send an urgent indication the user must also send at least one data
octet. If the sending user also indicates end of letter timely
delivery of the urgent information to the destination process is
enhanced.

Managing the Window

The window zent in each segment indicates the range of sequence number
the sender of the window (the data receiver) is currently prepared to
accept. There is an assumption that this is somehow related to to the
currently available data buffer space available for this connection.

Indicating a large window encourages transmissions. If more data
arrives than can be accepted this will result in excessive
retransmissions, adding unnecessarily to the load on the network and
the TCPs. Indicating a small window may restrict the transmission of
data to the point of introducing a round trip delay beftween each new
segment transmitted.

The mechanisms provided allow a TCP to advertise a large window and to
subsequently advertise a much smaller window without having accepted
that much data. This, =0 called "shrinking the window," 1s strongly
discouraged.

The sending TCP must be prepared to accept and send al least cne cectel
of new data even if the send window is zero. This is essential to

[Page 38]

February 1979
TCP-U
Functional Specification

guarantee that when either TCP has a zero window the re-opening of the
window will be reliably reported to the other,

Users must keep reading connections they closzse for sending until the
TCP says no more data,

In a connection with a one way data flow the window information will
be carried in acknowledgment segments that all have the same sequence
number so there will be no way to reorder them if they arrive out of
order. This is not a serious problem, but it will allow the window
information to be on occasion temporarily based on old reporis from
the data receiver.

3.7. Interfaces

There are of course two interfaces of concern: the user/TCP interface
and the TCP/network interface. We have a fairly elaborate model of
the user/TCP interface, but only a sketch of the interface to the
lower level protocol module.

User/TCP Interface

The functional description of user commands to the TCP is, at best,
fictional, since every operating system will have different
facilities. Consequently, we must warn readers that different TCP
implementations may have different user interfaces. However, all
TCP's must provide a certain minimum set of services to guarantee
that all TCP implementations can support the same protocol
hierarchy. This section specifies the funeticnal interfaces
required of all TCP implementations.

TCP User Commands

The following sections functionally characterize a USER/TCP
interface. The notation used is similar to most procedure or
funection calls in high level languages, but this usage is not
meant to rule out trap type service calls (e.g., SVC's, UUO's,
EMT's).

The user commands described below specify the basiec functions the
TCP must perform to support interprocess communiecation.
Individual implementations should define their own exact format,
and may provide combinations or subsets of the basic functions in
single calls. In particular, some implementations may wish to
automatically OPEN a connection on the first SEND or RECEIVE
issued by the user for a given connection.

[Page 39]

February 1979
TCE-Y
Functional Specifieation

In providing interprocess communication facilities, the TCP must
not only accept commands, but must also return information to the
processes it serves. The latter consists of:

(a) general information about a connection (e.g., interrupts,
remote close, binding of unspecified foreign socket).

{b) replies to specific user commands indicating success or
various types of failure.

Although the means for signaling user processes and the exact

format of replies will vary from one implementation to another, it
would promote common understanding and testing if a common set of
codes were adopted. Such a set of event codes is described below.

OPEN

Format: OPEN (local port, foreign socket, active/passive
[, buffer size] [, timeout]) -> local connection name

We assume that the local TCP is aware of the identity of the
processes it serves and will check the authority of the process
to use the connection specified. Depending upon the
implementation of the TCP, the local network and TCP identifiers
for the source address will either be supplied by the TCP or by
the processes that serve it (e.g., the program which interfaces
the TCP network). These considerations are the result of
concern about security, to the extent that no TCP be able to
masquerade as another one, and so on, Similarly, no process can
masquerade as another without the collusion of the TCP.

If the active/passive flag is set to passive, then this is a
call to LISTEN for an incoming connection. A passive open may
have either a fully specified foreign socket to wait for a
particular connection or an unspecified foreign socket to wait
for any call. A fully specified passive call can be made active
by the subsequent execution of a SEND.

A full-duplex transmission control block (TCB) is created and
partially filled in with data from the OPEN command parameters.
The TCB format is deseribed in more detail in section 5.4.

On an active OPEN command, the TCP will begin the procedure to
synchronize (i.e., establish) the connection at once.

.The buffer size, if present, indicates that the ecaller will

always receive data from the connection in that size of buffers.
This buffer size is a measure of the buffer between the user and

[Page 401

February 1979

TCP-U
Functional Specification

the local TCP. The buffer aize between the two TCP's may be
different.

The timeout, if present, permits the caller to set up a timeout
for all buffers transmitted on the connection. If a buffer is
not successfully delivered to the destination within the timeout
period, the TCP will abort the connection. The present global
default is 30 seconds. The buffer retransmission rate may vary;
most likely, it will be related to the measured time for
responses from the remote TCP.

Depending on the TCPF implementation, either a local connection
name will be returned to the user by the TCP, or the user will
specify this local connection name (in which case another
parameter is needed in the call). The leocal connection name can
then be used as a short hand term for the connection defined by
the <local socket, foreign sockebt> pair.

Send

Format: SEND(lccal connection name, buffer address, byte count,
EOL flag, URGENT flag [, timeout])

This call causes the data contained in the indicated user buffer
to be sent on the indicated connection. If the connection has
not been opened, the SEND is considered an error. Some
implementations may allow users to SEND first; in which case, an
automatic OPEN would be done. If the calling process is not
authorized to use this connection, an error is returned.

If the EOL flag is set, the data is the End Of a Letter, and the
EOL bit will be set in the last TCP segment created from the
buffer. If the EOL flag is not set; subsequent SENDs will
appear to be part of the same letter.

If the URGENT flag i=z set, segments resulting from this call
will have the urgent pointer =et to indicate that all of the
data associated with this call is urgent. This facility, for
example, can be used to simulate "preak™ signals from terminals
or error or completion codes from I/0 devices. The semantics of
this signal to the receiving process are unspecified. The
receiving TCP will signal the urgent condition to the receiving
process as long as the urgent pointer indicates that data
preceding the urgent pointer has not been consumed by the
receiving process. The purpese of urgent is to stimulate the
_receiver to accept some urgent data and to indicate to the
receiver when all the currently known urgent data has been
received.

[Page 41]

February 1979
TCP=-4
Funetional Specification

The number of times the sending user's TCP signals urgent will
not necessarily be equal to the number of times the receiving
user will be notified of the presence of urgent data.

If no foreign socket was specified in the OPEN, but the
connection is established (e.g., because a LISTENing connection
has become specific due to a foreign segment arriving for the
local socket]) then the designated buffer is sent to the implied
foreign socket. In general, users who make use of OPEN with an
unspecified foreign socket can make use of SEND without ever
explicitly knowing the foreign socket address,

However, if a SEND is attempted before the foreign socket
becomes specified, an error will be returned. Users can use the
STATUS call to determine the status of the connection. In some
implementations the TCP may notify the user when an unspecified
socket is bound.

If a timeout is specified, then the current timecut for this
connection is changed to the new one.

In the simplest implementation, SEND would not return control to
the sending process until either the transmission was complete
or the timeout had been exceeded. However, this simple method
is both highly subject to deadlocks (for example, both sides of
the connection might try to do SENDs before doing any RECEIVEs)
and offers poor performance, 3o it is not recommended. A more
sophisticated implementation would return immediately to allow
the process to run concurrently with network I/0, and,
furthermore, to allow multiple SENDs to be in progress.
Multiple SENDs are served in first come, first served order, so
the TCP will queue those it cannot service immediately.

We have impliecitly assumed an asynchroncus user interface in
which a SEND later elieits =zome kind of SIGHAL or
pseudo-interrupt from the serving TCF. An alternative is to
return a response immediately. For instance, SEND= might return
immediate loeal acknowledgment, even if the segment sent had not
been acknowledged by the distant TCP. We could optimistically
assume eventual success. If we are wrong, the connection will
eclose anyway due to the timeput. In implementations of this
kind (synchronous), there will still be some asynchronous
signals, but these will deal with the connection itself, and not
with specific segments or letters.

NOTA BENE: In order for the process to distinguish among error

, or suecess indiecations for different SENDs, it might be
appropriate for the buffer address to be returned along with the

[Page 42]

February 1979
TCP-4
Functional Specification

coded response to the SEND request. We will offer an example
event code format below, showing the information which should be
returned to the calling process.

Receive

Format: RECEIVE (local connection name, buffer address, byte
count)

This command allocates a receiving buffer aszsociated with the
specified connection. If no OPEN precedes this command or the
calling process is not authorized to use this connection, an
error is returned,

In the simplest implementation, control would not return to the
calling program until either the buffer was filled, or some
error occurred, but this scheme is highly subject to deadlocks.
A more sophisticated implementation would permit several
RECEIVEs to be ocutstanding at once. These would be filled as
letters, segments or fragments arrive. This strategy permits
inereased throughput at the cost of a more elaborate scheme
(possibly asynchronous) to notify the calling program that a
letter has been received or a buffer filled.

If insuffieient buffer space is given to reassemble a complete
letter, the EOL flag will not be set in the response to the
RECEIVE. The buffer will be filled with as much data as it ean
hold. The last buffer required to held the letter is returned
with EOL =signalled.

The remaining parts of a partly delivered letter will be placed
in buffers as they are made available via successive RECEIVEs.
If a number of RECEIVEs are ocutstanding, they may be filled with
parts of a single long letter or with at most one letter each.
The event codes associated with each RECEIVE will indicate what
is contained in the buffer.

If a buffer size was given in the OPEN eall, then all buffers
presented in RECEIVE calls must be of exactly that size, or an
error indication will be returned.

The URGENT flag will be set only if the receiving user has
previcusly been informed via a general event, that urgent data
is waiting. The receiving user should thus be in "read-fast"
mode. If the URGENT flag is on, additional urgent data remains.
.If the URGENT flag is off, this call to RECEIVE has returned all
the urgent data, and the user may now leave "read-fast" mode.

[Page 43]

February 1979
TCE-Y4
Functional Specification

To distinguish among several outstanding RECEIVEs and to take
care of the case that a letter is smaller than the buffer
supplied, the event code is accompanied by both a buffer pointer
and a byte count indicating the actual length of the letter
received.

Alternative implementations of RECEIVE might have the TCP
allocate buffer storage, or the TCP might share a ring buffer
with the user. Variations of this kind will produce cbvious
variation in user interface to the TCP.

Close
Format: CLOSE(local connection name)

This command causes the connection specified to be closed. If
the connection is not open or the calling process is not
authorized to use this connection, an error is returned.

Closing connections is intended to be a graceful operation in
the sense that outstanding SENDs will be transmitted (and
retransmitted), as flow contrel permits, until all have been
gerviced. Thus, it should be acceptable to make several SEND
calls, followed by a CLOSE, and expect all the data to be sent
to the destination. It should alsoc be clear that users should
continue to RECEIVE on CLOSING connections, since the other side
may be trying to transmit the last of its data. Thus, CLOSE
means "I have no more to send" but does not mean "I will not
receive any more." It may happen (if the user level protocol is
not well thought out) that the closing side is unable to get rid
of all its data before timing ocut. In this event, CLOSE turns
into ABORT, and the closing TCP gives up.

The user may CLO3E the connection at any time on his own
initiative, or in response to various prompts from the TCP
(e.g., remote close executed, transmission timeout exceeded,
destination inaccessible).

Because closing a connection requires communication with the
foreign TCP, connections may remain in the closing state for a
short time. Attempts to reopen the connection before the TCP
replies to the CLOSE command will result in error responses,

Close also implies end of letter.

[Page 44]

February 1979
TCP-4
Functional Specification

Status
Format: STATUS(local connection name)

This is an implementation dependent user command and could be
excluded without adverse effect. Information returned would
typically come from the TCB assocciated with the connection.

This command returns a data block containing the following
information:

local socket, foreign socket, local connection name, receive
window, send window, connection state, number of buffers
awaiting acknowledgment, number of buffers pending receipt
(including partial ones), receive buffer size, urgent state,
and default transmission timeout.

Depending on the state of the connection, or on the
implementation itself, some of this information may not be
available or meaningful. If the ecalling process is not
authorized to use this connection, an error is returned. This
prevents unauthorized procesases from gaining information about a
connection.

Abort
Format: ABORT (local connection name)

This command causes all pending SENDs and RECEIVES to be
aborted, the TCB to be removed, and a apecial RESET message to
be sent to the TCP on the other side of the connection.
Depending on the implementation, users may receive abort
indications for each outstanding SEND or RECEIVE, or may simply
receive an ABORT-ackmowledgment.

[(Page 45]

February 1979
TCP-4
Functional Specification

TCP-to=-U=er Messages

It is assumed that the operating system environment provides a
means for the TCP to asynchronously signal the user program. When
the TCP doe= signal a user program certain information is passed
to the user. Often in the specification the information will be
an error message. In other cases there will be information
relating to the completion of processing a SEND or RECEIVE or
other user call.

The following information is provided:

Local Connection Name Always
Response String Always

Buffer Address Send & Receive
Byte count (counts bytes received) Receive
End-of-Letter flag Receive
End-of-Urgent flasg Receive

TCP/Network Interface

The TCP calls on a lower level protocol module to actually send and
receive information over a network. One case is that of the ARPA
internetwork system where the lower level meodule is the Internet
Datagram Protocol [1]. In most cases the following simple interface

would be adequate.

The following two ecalls satisfy the requirements for the TCP to
internet protocol module communication:

SEND (dest, BufPTR, len)
where:
dest = destination address
BufPTR = buffer pointer
len = length of buffer

Response:

OK = sent ok
Error = error in arguments or local network error

[Page U46]

February 1979
TCP-4
Functional Specification

RECV (BufPTR)
Response:

OK = received ok with the additional information:
source address and length
Error = error in arguments or local network error

When the TCP sends a segment, it executes the SEND ecall supplying
all the arguments. The internet protocol module, on receiving
this eall, checks the arguments and prepares and sends the
message. If the arguments are good and the segment is accepted by
the local network, the ecall returns successfully. If either the
arguments are bad, or the segment is not accepted by the loecal
network, the call returns unsuccessfully. On unsuccessful
returns, a reasonable report should be made as to the cause of the
problem, but the details of such reports are up to individual
implementations.

When a segment arrives at the internet protocol module from the
local network, either there is a pending RECV ecall from TCP or
there is not. In the first case, the pending call is satisfied by
passing the information from the segment to the TCP. In the
second case, the TCP is notified of a pending segment.

The notification of a TCP may be via a pseudo interrupt or similar
mechanism, as appropriate in the particular operating system
environment of the implementation.

A TCP's RECV call may then either be immediately satisfied by a
pending segment, or the call may be pending until a segment
arrives.

We note that the Internet Datagram Protocol provides arguments for
a type of service and for a time to live. TCP uses the following
settings for thesze parameters:

type of service = Priority: none, Package: stream, Reliability:
higher, Preference: speed, Speed: higher; or 00110110.

time to live = one minute, or 00111100.

[Page 4T]

February 1979
TCE-4
Functional Specification

3.8. Event Processing

The activity of the TCP can be characterized as responding to events.
The events that oeccur can be ecast into three categories: user ealls,
arriving segments, and timeouts. This section desecribes the
processing the TCP does in response to each of the events. In many
pases the processing required depends on the state of the connection.

Events that ocour:
User Calls

QOPEN
SEND
RECEIVE
CLOSE
ABORT
STATUS

Arriving Segments
SEGMENT ARRIVES
Timeouts

USER TIMEOUT
RETRANSMISSION TIMEQUT

The model of the TCP/user interface is that user commands receive an
immediate return and poszibly a delayed response via an event or
paseudo interrupt. In the following descriptions, the term "signal”
means cause a delayed response.

Error responses are given as character strings. For example, user
commands referencing connections that do not exist receive "error:
connection not open".

Please note in the following that all arithmetic on sequence numbers,
acknowledgment numbers, windows, et cetera is modulo 2%#32 the size of
the sequence number space. Alsoc note that "=(" means less than or
equal to.

A natural way to think about processing incoming segments is to
imagine that they are first tested for proper sequence number (i.e.,
that their contents lie in the range of the expected "receive window"
in the sequence number space) and then that they are generally queued
and processed in sequence number order. We are ignoring the problem
of segments that overlap other, already received, segments.

[Page L4B]

February 1979
TCE-4
Functional Specification
OFEN Call

OFEN Call
CLOSED STATE (i.e., TCB does not exist)

Create a new transmission control block (TCB) te hold connection
state information. Fill in local socket identifier, foreign
socket, and user timeout information. If active and the foreign
socket is unspecified, return "error: foreign socket
unspecified"; if active and the foreign socket is specified, issue
a SYN segment. An initial send sequence number (ISS) is selected
and a SYN segment of the form {SEQ=I55><{CTL=SYN> is sent. Set
SND.UNA to ISS, SND.NXT to IS5+1, enter SYN-3ENT state, and
return.

If the caller does not have access to the local socket specified,
return "error: connection illegal for this process". If there is
ne room to create a new connection, return "error: insufficient
resources" .

LISTEN STATE
SYN-SENT STATE
SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT STATE
CLOSE-WAIT STATE
CLOSING STATE

Return "error: connection already exists".

[Page 49]

uary 1979
TCP-4

Functional Specification
SEND Call

SEND Call
CLOSED STATE (i.e., TCB does not exist)

If the user should no have aceess to such a connection, then
return "error: connection illegal for this process".

Otherwise return "error: connection does not existh,

LISTEN STATE

If the foreign socket is specified, then change the connection
from passive to active, select an IS8, send a SYN segmeni, set
SHD.UNA to ISS and 3ND.NXT to IS5+7. Enter SYN-SENT state. Data
associated with SEND may be sent with SYIN segment or queued for
transmission after entering ESTABLISHED state. The urgent bit if
reguested in the command should be sent with the first data
segment sent as a result of this cemmand. If there is no room to
gueue the request, respond with "error: insufficient resources".
If Foreign socket was not specified, then return "error: foreign
socket unzpecified".

SYN-SENT STATE

Queuwe for processing after the connection is ESTABLISHED.
Typically, nothing can be sent yet, anyway, because the send
window has not yet been set by the other side. If no space,
return "error: insufficient resources"”,

SYN-RECEIVED STATE

Queue for later processing after entering ESTABLISHED state. If
no space to queue, respond with "error: insufficient resources”,

ESTABLISHED STATE

Segmentize the buffer, send or queue it for output, with a
piggy-backed acknowledgment (acknowledgment value = SND.UNA) with
the data (this is not regquired, but there is no advantage in not
doing so). If there is insufficient space to remember this
buffer, simply return "error: insufficient resources".

If remote buffer size is not one octet; then, if this is the end
of a letter, do end-of-letter/buffer-size adjustment processing.
Let ISS be the initial send sequence number used on this
ponnection (the 3YN sequence number), 033 be the send sequence
before sending this segment, NS5 the send sequence after sending

[Page 50]

February 1979
TCP-Y
Functional Specification

SEND Call

this segment, RB be the remote buffer size, and L the number of
octets in this segment. Then:

if EOL D0 then NS5 <- 0355 + L

if EOL 1 then NSS <- 08S+L+RB-1-((0SS+L+RB-1-(185+1))modRB)

Set SHD.NXT <- NS5,
FIN-WAIT STATE
Return "error: connection closing" and do not service request.
CLOSE-WAIT STATE
Segmentize any text to be sent and queue for output. If there is
insufficient space to remember the SEND, return "error:
insufficient resources"

CLOSING STATE

Respond with "error: connection closing"

[Page 51]

February 1979
TCP-U
Functional Specification

RECEIVE Call

RECEIVE Call
CLOSED STATE (i.e., TCB does not exist)

If the user should no have arcess to auch a connection, return
"arror: connection illegal for this proceas®,

Otherwise return "error: connection does not exist".
LISTEN STATE

Queue request if there is space, or respond with "error:
insufficient resources",

SYN-SENT STATE

Queue for later processing unless there is no room, in which case
return "error: insufficient resources”™,

SYN-RECEIVED STATE

Queue for processing after entering ESTABLISHED state., If there
is no room to queue this request, respond with "error:
insufficient resources".

ESTABL ISHED STATE

If insufficient incoming segments are gqueued to satisfy the
request, queue the request. If there is no queue space to
remember the RECEIVE, respond with "error: insufficient
resources",

Reassemble queued incoming segments into receive buffer and return
to user. Mark "end of letter™ (EOL) if this is the case.

When the TCP takes responsibility for delivering data to the user
that fact must be communicated to the sender via an
acknowledgment. The formation of such an acknowledgment is
described below in the discussion of processing an incoming
segment .

[Page 52]

February 1979
TCP-4

Functional Specification
RECEIVE Call

FIN-WAIT STATE

Reassemble and return a letter, or as much as will fit, in the
user buffer. Queue the request if it cannot be serviced
immediately.

CLOSE-WAIT STATE
Since the remote side has already sent FIN, RECEIVEs must be
satisfied by text already reassembled, but not yet delivered to
the user. If no reassembled segment text is awaiting delivery,
the RECEIVE should get a "error: connection closing" response.
Otherwise, any remaining text can be used to satisfy the RECEIVE.
CLOSING STATE

Return "error: connection closing”

[Page 53]

February 1979
TCP-4
Funetional Specification
CLOSE Call

CLOSE Call
CLOSED STATE (i.e., TCB does not exist)

If the user should no have access to such a connection, return
"error:; connection illegal for this process",

Otherwise return "error: connection does not exist",
LISTEN STATE

Any outstanding RECEIVEs should be returned with "error: closing"
responses. Delete TCB, return "ok".

SIN-SENT STATE

Delete the TCE and return "error: closing" responses to any queued
SENDs, or RECEIVEs.

SYN-RECEIVED STATE

Queue for processing after entering ESTABLISHED state or
segmentize and send FIN segment. If the latter, enter FIN-WAIT
state,

ESTABLISHED STATE

Queue this until all preceding SENDs have been segmentized, then
form a FIN segment and send it. In any case, enter FIN-WAIT
state.

FIN-WAIT STATE
trictly speaking, this is an error and should receive a "error:
connection closing" response. An "ok" response would be
acceptable, too, as long as a second FIN is not emitted.

CLOSE-WAIT STATE

Queue this request until all preceding SENDs have been
segmentized; then send a FIN segment, enter CLOSING state.

[Page 54]

February 1979
TCP-4

Functional Specification
CLOSE Call

CLOSING STATE

Respond with "error: connection closing"

[Page 55]

February 1979
TCP-4
Functional Speecification
ABORT Call

ABORT Call
CLOSED STATE (i.e., TCB does not exist)

If the user should no have access to such a connection, return
"error: comnnection illegal for this process".

Otherwise return "error: connection dees not exist",
LISTEN STATE

Any outstanding RECEIVEs should be returned with "error:
connection reset" responszes, Delete TCB, return “ok".

SYN-SENT STATE

Delete the TCE and return "reset" responses to any queued SENDs,
or RECEIVEs.

SIN-RECEIVED STATE
Send a RST of the form:
<{SEQ=5SND.NXT><ACK=RCY.NXT><CTL=RST, ACK>

and return any unprocessed SENDs, or RECEIVEs with "reset" code,
delete the TCB.

ESTAELISHED STATE
Send a reset segment:
<SEQ=SND.NXT><ACK=RCV.NXT><CTL=R3T, ACK>
All queued SENDs and RECEIVEs should be given "resel" responses;

all segments queued for transmission (except for the RST formed
above) or retransmission should be flushed, delete the TCB.

[Page 56]

February 1979
TCP-U
Functional Specification
ABORT Call

FIN-WAIT STATE
A reset segment (RST) should be formed and sent:
<3EQ=3ND.NXT><ACK=RCV.NXT><CTL=RST, ACK>
Outstanding SENDs, RECEIVEs, CLOSEs, and/or segments queued for
retransmission, or segmentizing, should be flushed, with
"oconnection resei™ notifiecation to the user, delete the TCB,

CLOSE-WAIT STATE

Flush any pending SENDs and RECEIVEs, returning "connection reset"
responses for them. Form and send a RST segment:

<3EQ=SHD.NXT><ACK=RCV_NXT><CTL=RST, ACK>
Flush all segment queues and delete the TCB.
CLOSING STATE
Respond with "ok" and delete the TCB; flush any remaining segment

queues. If a CLOSE command is still pending, respond "error:
connection reset".

[Page 57]

February 1979
TCP=4
Functional Specification
STATUS Call

STATUS Call
CLOSED STATE (i.e., TCB does not exist)

If the user should no have access to such a conneciion, return
"appror: connection illegal for this process"”.

Otherwise return "error: connection does not exist"”,
LISTEN STATE

Return "state

LISTEN", and the TCBE pointer.
SYN-SENT STATE

Return "state

SYN-SENT", and the TCE pointer.
SYN-RECEIVED STATE

Return "state = SYN-RECEIVED", and the TCB pointer.
ESTABL ISHED STATE

Return "state = ESTABLISHED", and the TCE pointer,.

FIN-WALT STATE

Return "state = FIN-WAIT", and the TCB peointer.

CLOSE-WAIT STATE

Return "state

CLOSE-WAIT", and the TCE pointer.
CLOSING STATE

Return "state

CLOSING", and the TCB pointer.

[Page 58]

February 1979
TCP-U

Functicnal Specification
SEGHMENT ARRIVES

SEGMENT ARRIVES
If the state is CLOSED (i.e., TCB does not exist) then

all data in the incoming segment is discarded. An incoming
segment containing a RST is discarded. An incoming segment not
containing a RST causes a RST to be sent in response. The
acknowledgment and sequence field values are selected to make the
reset sequence acceptable to the TCP that sent the of fending
packet. If the ACK bit is off, sequence number zero is used.
Then return

<SEQ=SEG.ACK><ACK=SEG.SEQ+SEG.LEN><CTL=RST, ACE>
If the state is LISTEN then

first cheek for an ACK
Any acknowledgment is bad if it arrives on a connection =2till in
the LISTEN state. An acceptable reset segment should be formed
for any arriving ACK-bearing segment, except another RST. The
RST should be formatted as follows:

¢SEQ=SEG.ACK><ACK=SEG.SEQ+SEG.LEN><CTL=RST, ACK>

Thus, the RST will acknowledge any text or eontrol in the
offending segment. Return.

An incoming RST should be ignored. Return.

if there was no ACK then check for a SYN
If the SYN bit is set, RCV.NXT should be set to SEG.SEQ+1 and
any other control or text should be queued for processing later.
1SS should be selected and a SYN segment sent of the form:

<SEQ=ISS><ACK=RCV.NXT><CTL=5YN,ACK>

SND.NXT should be set to ISS+1 and SND.UNA to I155. The
connection state should be changed to SYN-RECEIVED. Note that
any other incoming control or data (combined with SYN) will be
processed in the SYN-RECEIVED state, but processing of SYN and
ACK should not be repeated.

This segment may alsc include data and control bits (e.g., URG,
EOL) whnich were queued for transmission.

[Page 59]

February 1979
TCP-U4
Functional Specifiecation
SEGMENT ARRIVES

if there was no SYN but there was other text or control

Any other control or text-bearing segment (not containing SYN)
will have an ACK and thus will be discarded by the ACK
processing. An incoming RST segment could not be valid, since
it could not have been sent in response to anything sent by this
inearnation of the connection. So you won't get here, but if
you do, drop the segment, and return.

If the state is SYN-SENT then
first check for an ACK

If SND.UNA < SEG.ACK =< SND.NXT then the ACK is acceptable.
SND.UNA should be advanced to equal SEG.ACK, and any segments on
the retransmission queue whiech are thereby acknowledged should
be removed.

If the segment acknowledgment is not acceptable and the RST bit
is off, send an acceptable RST segment of the form:

¢SEQ=SEG.ACK»<ACK=3EG.SEQ+3EG.LEN><CTL=R3T, ACK>
and discard the segment. Return.
if the ACK is ok, check the RS5T bit

If the RST bit iz =et then =ignal the user "error: connection
reset", enter CLOSED state, drop the segment, delete TCD, and
return.

if the ACK is ok and it was not a RST, check the SYIN bit

If the SYN bit is on then, RCV.NXT should be set to SEG.SEQ+1.
If SND.UNA > ISS (our SYN has been ACKed), change the connection
state to ESTABLISHED, otherwise enter SYN-RECEIVED. In any
case, form an ACK segment:

{SEQ=SND.NXT»<ACK=RCV.NXT><{CTL=ACK>

and send it. Data or controls which were gqueued for
transmission may be included.

If there are other controls or text in the segment then continue

_processing at the fifth atep below where the URG bit i1s checked,
otherwise return.

[Page 60]

February 1979
TCP-4
Functional 3Specification
SEGMENT ARRIVES

Otherwise,
first check sequence number

SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT STATE
CLOSE-WAIT STATE
CLOSING STATE

Segments are processed in sequence. Initial tests on arrival
are used to discard old duplicates, but further processing is
dene in BEG.SEQ order. If a segment's contents straddle the
boundary between old and new, only the new parts should be
processed.,

There are four cases for the acceptability test for an incoming
segment !

Segment Receive Test
Length Window

i —— - T i T T

0 0 SEG.SEQ = RCV.NXT
0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
>0 0 not aceceptable
>0 >0 RCV.NXT < SEG.SEQ4+SEG.LEN =< RCV.NXT+RCV.WND

Note that the test above guarantees that the last sequence
number used by the segment lies in the receive-window. If the
RCV.WND is zero, no segments will be acceptable, but special
allowance should be made to accept valid ACKs.

If an incoming segment is not acceptable, an acknowledgment
should be =sent in reply:

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

If the incoming segment is unacceptable, drop it and return.

[Page 61]

February 1979
TCP=-U4
Functional Specification
SEGMENT ARRIVES

second check the ACK field,
SYN-RECEIVED STATE

If the EST bit is off and SND.UNA < SEG.ACK =<{ SND.HNXT then set
SND.UNA <- SEG.ACK, remove any acknowledged segments from the
retransmission queue, and enter ESTABLISHED state,

If the segment acknowledgment is not accepiable, form a reset
segment, as for the bad sequence case above, and send it, unless
the incoming segment is an R3ST, in which case, it should be
discarded, then return.

ESTABL ISHED STATE

If SND.UNA < SEG.ACK =< SND.NXT then set SND.UNA <{- SEG.ACK.
Any segments on the retransmission queue which are thereby
entirely acknowledged are removed. Users should receive
positive acknowledgments for buffers which have been SENT and
fully acknowledged (i.e., SEND buffer should be returned with
"ok" response). If the ACK is a duplicate, it can be ignored.

If the segment passes the sequence number and acknowledgment
number tests the send window should be updated. If

SND.WL =< SEG.3EQ set SND.WND <- SEG.WND and set

SHND.WL <- SEG.S5EQ.

If the remote buffer size is not one, then the
end-of-letter/buffer-size adjustment to sequence numbers may
have an effect on the next expected sequence number to be
acknowledged. It is possible that the remote TCP will
acknowledge with a SEG.ACK equal to a sequence number of an
potet that was skipped over at the end of a letter. This a mild
error on the remote TCPs part, but not cause for alarm.

FIN-WAIT STATE
In addition to the processing for the ESTABLISHED state, if the
retransmission queue is empty, the user's CLOSE can be
acknowledged ("ok") but do not delete the TCB.

CLOSE-WAIT STATE
CLOSING STATE

. Do the same processing as for the ESTABLISHED state.

[Page 62]

February 1979
TCP-4
Functional Specification
SEGMENT ARRIVES

third, check the R3T bit,
SYN-RECEIVED STATE

If the segment has passed sequence and acknowledgment tests, it
is valid, If this connection was initiated with a passive OPEN
(i.e., came from the LISTEN state), then return this connection
to LISTEN state. The user need not be informed. If this
connection was initiated with an active OPEN (i.e., came from
SYN-SENT state) then the connection was refused, signal the user
"eonnection refused". In either case, all segments on the
retransmission queue should be removed.

ESTABL ISHED
FIN-WAIT
CLOSE-WALT
CLOSING STATE

Any outstanding RECEIVEs and SEND should receive "reset"
responses. All segment queues should be flushed., Users should

also receive an unsolicited general "connection reset" signal.,
Enter the CLOSED state, delete the TCB, and return.

fourth, check the SYN bit, Grab=10;

SYN-RECEIVED
ESTABLISHED STATE

The segment sequence number must be in the receive window; if
not, ignore the segment. If the 5YN is on and the segment
sequence and the receive sequence are equal, then everything is
ok and no action is needed; but if they are not equal, there is
an error and a reset must be zent.
If a reset must be sent it is formed as follows:
<3EQ SEG.ACK> <R5T> <ACK SEG.SEQ+3EG.LEN>

The connection must be aborted as if a RST had been received.

[Page 63]

February 1979
TCP-4
Functional Specification

SEGMENT ARRIVES

FIN-WAIT STATE
CLOSE-WAIT STATE

This ease should not occur, since a duplicate of the SYN which
started the current connection inearnation will have been
filtered in the SEG.SEQ processing. Other S¥N's will have been
rejected by this test as well (see SYN processzing for

ESTABL ISHED state).

fifth, check the URG bit,

ESTABL ISHED STATE
FIN-WAIT STATE

Signal the user that the remote side has urgent data if the
urgent pointer is in advance of the data consumed. If the user
has already been signalled (or is still in the "urgent mode™)
for this continuous sequence of urgent data, do not signal the
user again.

CLOSE-WAIT STATE
CLOSING

This should not oecur, since a FIN has been received from the
remote side. Ignore the URG.

sixth, process the segment text,
ESTABL ISHED STATE

Once in the ESTABLISHED state, it is possible to deliver segment
Lext to user RECEIVE buffers. Text from segments can be moved
into buffers until either the buffer is full or the segment is
emply. If the segmenit empties and carries an EOL flag, then the
user is informed, when the buffer is returned, that an EOL has
been received.

If buffer size is not one octet, then do
end-of-letter/buffer-size adjustment processing. Let IRS be the
initial receive sequence number used on thi= connection (then
SYN sequence number), ORS be the receive seguence before
receiving this segment, NRS the receive segquence after receiving
this segment, LB be the loecal buffer size, and L the number of
octets in this segment. Then:

if EOL = O then NRS <- ORS + L

[Page 64]

February 1979
TCP-4

Functional Specification
SEGMENT ARRIVES

if EOL = 0 then NRS <- ORS+L+LB-1={ (ORS+L+LB-1-(IRS+1))modLB)
Set RCV.NXT <- HNRS5.

When the TCP takes responsibility for delivering the data to the
user it must also acknowledge the receipt of the data. Send an
acknowledgment of the form:

¢SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

This acknowledgment should be piggybacked on a segment being
transmitted if possible without incurring undue delay.

FIN-WALIT STATE

If there are oubstanding RECEIVEs, they should be satisfied, ifl
possible, with the text of this segment; remaining text should
be gueued for further processing. If a RECEIVE is satisfied,
the user should be notified, with "end-of-letter” (EOL) signal,
if apprepriate.

CLOSE-WAIT STATE

This should not oceur, since a FIN has been received from the
remote side. Ignore the segment text.

seventh, check the FIN bit,
send an acknowledgment for the FIN. Signal the user "connection
closing", and return any pending RECEIVEs with same message. Note
that FIN implies EOL for any segment text not yet delivered to the

user. If the current state is ESTABLISHED, enter the CLOSE-WAIT
state, If the current state is FIN-WAIT, enter the CLOSING state.

and return.

[Page 65]

February 1979
TCP=-4
Funetional Specification
USER TIMEOUT

USER TIMEOQUT

For any state if the user timecut expires, flush all queues, signal
the user "error: connection aborted due to user timecut" in general
and for any outstanding calls, delete the TCB, and return,

RETRANSMISSION TIMEOUT
For any state if the retransmission timeout expires on a segment in
the retransmission queue, send the segment at the front of the

retransmission queue again, reinitialize the retransmission timer,
and return.

[Page 66]

February 1979
TCE-4

GLOSSARY

1822
BBN Report 1822, "The Specification of the Interconnection of
a Host and an IMP". The specification of interface between a
host and the ARPANET.

ACK

A control bit (acknowledge) occupying no sequence space, which
indicates that the acknowledgment field of this segment
specifies the next sequence number the sender of this segment
is expecting to receive, hence acknowledging receipt of all
previous sequence numbers.

ARFPANET message
The unit of transmission between a host and an IMP in the
ARPANET. The maximum size is about 1012 octets (8096 bits).

ARPANET packet
A unit of transmission used internally in the ARPANET between
IMPs. The maximum size is about 126 octets (1008 bits).

buffer size
An option (buffer size) used to state the receive data buffer
size of the sender of this option. May only be =ent in a
segment that also carries a SYN.

connection
A logical communication path identified by a pair of socketis.

datagram
A message sent in a packet switched computer communications
network.

Destination Address
The destination address, usually the network and host
identifiers.

EOL
& control bit (End of Letter) occupying no sequence space,
indicating that this segment ends a logical letter with the
last data cctet in the segment. If this end of letter causes
a less than full buffer to be released to the user and the
connection buffer size is not one octet then the
end-of-letter/buffer-size adjustment to the recelve sequence
number must be made.

[Page 67]

February 1979

TCP=U

Glossary

FIN
A control bit (finis) occupying one sequence number, which
indiecates that the sender will send no more data or econtrol
oCcoupying sequence space.

fragment
A portion of a logical unit of data, in particular an internet
fragment is a poriion of an internet datagram.

FTE
A file transfer protocol.

header
Control information at the beginning of a message, segment,
fragment, packet or block of data,

host
A computer. In particular a source or destination of messages
from the point of view of the communication network.

Identification
An Internet Datagram Protocol field. This identifying value
assigned by the sender aids in assembling the fragments of a
datagram.

IMP

The Interface Message Processor, the packet switeh of the
ARPANET.

internet address

A source or destination address specific to the host level.

internet datagram

The unit of data exchanged between an internet module and the
nigher level protocol together with the internet header.

internet fragment

IRS

ISN

[Page 68]

A portion of the data of an internet datagram with an internet
header.

The Initial Receive Sequence number. The first sequence
number used by the sender on a connection.

The Initial Sequence Number. The first seguence number used
on a connection. Selected on a clock based procedure.

February 1979
TCP-4
Glozsary

155
The Initial Send Sequence number. The first sequence number
used by the sender on a connection.

leader
Control information at the beginning of a message or bloeck of
data. In particular, in the ARPANET, the control information
on an ARPANET message at the host-IMP interface.

left sequence
This is the next sequence number to be acknowledged by the
data receiving TCP (or the lowest currently unacknowledged
sequence number) and is sometimes referred to as the left edge
of the send window.

letter
A logieal unit of data, in particular the logiecal unit of data
transmitted between processes via TCP.

local packet
The unit of transmission within a loeal network.

module
An implementation, usually in software, of a protocol or other
procedure.

M3L
Maximum Segment Lifetime, the time a TCP segment can exist in
the internetwork system.

ootet
An eight bit byte.

Options
An Option field may contain several options, and each option
may be several octets in length. The options are used
primarily in testing situations; for example, to carry
timestamps. Both the Internetwork Protocol and TCP provide
for options fields.

packet

A package of data with a header which may or may not be
logically complete. More often a physical packaging than a
logical packaging of data.

[Page 69]

TCP-U
Gloss=ary

pors

process

Ps

PSN

RCV.BS

RCV.NXT

RCV.UP

RCV.WHND

February 1979

The portion of a socket that specifies which logiecal input or
output channel of a process is associated with the data.

A program in execution. A source or destination of data from
the point of view of the TCP or other host-to-hest protogcol.

L Packet Switeh. For example, an IMP,

A Packet Switehed Network. For example, the ARPANET.

receive buffer size, the remote buffer size

receive next sequence number

receive urgent pointer

receive window

receive next sequence number

Thiz is the next sequence number the local TCP is expecting to
receive,

receive window

RST

[Page TO]

This represents the sequence numbers the local (receiving) TCP
is willing to receive. Thus, the local TCP considers that
segments overlapping the range RCV.NXT to

RCV.NXT + RCV.WND - 1 carry acceptable data or control.
Segments containing sequence numbers entirely ocutside of this
range are considered duplicates and discarded.

& control bit (reset), occupying no sequence space, indicating
that the receiver should delete the connection without further
interaction. The receiver can determine, based on the
sequence number and acknowledgment fields of the incoming
segment, whether it should honor the reset command or ignore
it. In no case does receipt of a segment containing RST give
rise to a RST in reaponse,

February 1979
TCP-4
Glozzary

RTP
Real Time Protocol: A host-=to=host protocol for communication
of time eritiecal information.
Rubber EOL
An end of letter (EOL) requiring a sequence number adjustment
to align the beginning of the next letter on a buffer
boundary.
SEG.ACK
segment acknowledgment
SEG.LEN
segment length
SEG.3EQ
segment seguence
SEG.UP
segment urgent pointer field
SEG.WHND
segment window field
segment

A logieal unit of data, in particular a TCP segment is the
unit of data transfered between a pair of TCP modules.

segment acknowledgment
The sequence number in the acknowledgment field of the
arriving segment.

segment length
The amount of sequence number space occupied by a segment,
inecluding any controls which occupy sequence space,

segment seguence
The number in the zequence field of the arriving segment.

send sequence
This is the next sequence number the local (sending) TCP will
use on the connection. It is initially selected from an
initial sequence number curve (ISN) and is ineremented for
each octet of data or sequenced control transmitted.

[Page T1]

February 1979
TCP=4
Glossary

send window
This represents the sequence numbers which the remote
(receiving) TCP is willing to receive. It is the value of the
window field specified in segments from the remote (data
receiving) TCP. The range of sequence numbers which may be
emitted by a TCP lies between SND.NXT and
SND.UNA + SND.WND - 1.

SHD.B3
send buffer size, the local buffer size

SND.NXT

send sequence
SND.UHA

left aegquence
SND.UFP

send urgent pointer
SHD . WND

send window
sooket

An address whiech speeifieally inecludes a port identifier, that
iz, the concatenation of an Internet Address with a TCP port.

Source Address
The source address, usually the network and host identifiers.

SYHN
A ocontrol bit in the inecoming segment, cccupying one sequence
number, used at the initiation of a connection, to indicate
where the seguence numbering will start.

TCF
Transmission Control Protocol: A host-to-host protocol for
reliable communication in internetwork environments.

TOS

Type of Service, an Internet Datagram Protocol field.
Type of Service

&n Internet Datagram Protocol field which indicates the type
of service for this internet fragment.

[Page T2]

February 1979

TCP-4
Glossary

URG
A control bit (urgent), occupying no sequence space, used to
indicate that the receiving user should be notified to do
urgent processing as long as there is data to be consumed with

sequence numbers less than the value indicated in the urgent
pointer.

urgent pointer
A control field meaningful only when the URG bit is on. This
field communicates the value of the urgent pointer which

indicates the data octet associated with the sending user's
urgent call,

INET
A cross-=net debugging protocol.

[Page 73]

February 1979
TCP=4

[Page Th]

February 1979
TCP=-4

REFERENCES

(1]

Postel,J. (ed.), "Internetwork Datagram Protocol Specification -
Version 4," Defense Advanced Research Projects Agency, Information
Processing Techniques Offiee, IEN 80, February 1979.

[2]

Feinler, E. and J. Postel, ARPANET Protocol Handbook, Network
Information Center, Stanford Research Institute, Menlo Park, CA,
January 1978.

[3]
Dalal, Y. and C. Sunshine, "Connection Management in Transport

Protocols,” Computer Networks, Vol, 2, No., 6. December 1978, pp.
454-473,

[Page 75]

o February 1979

[Page T6]

