Date: May 4, 1979 IEN 103
An Experimental Network Information Center Name Server (NICNAME)

J. R. Pickens, E. J. Feinler, and J. E. Mathis - SRI

Introduction

This IEN reports a preliminary design and implementation of an
experimental NIC=based name server. A name server 1s essentially a
transaction based inguiry-response process which returns information
on entities which can be named or addressed-<hosts in this particular
case. The Arpanet Network Information Center (NIC) maintains and
distributes the Offiecial Host Table [1] for the Arpanet, as well as a
variety of other related information.

The motivation for this development comes both from current needs in
the Arpanet community for such a service, and from the similar but
wider needs of the burgeoning Internet communify. Existing Arpanet
needs are exemplified by the NIC charter to provide formatted Host
Table information [1]. Existing Internet needs are exemplified by the
need for terminal interface units (TIUs) on ANY network to have
dynamic access to addresses of internet service hosts.

A name server service, as described herein, will permit more
efficient access Lo, and distribution of, host information within the
Arpanet. It can also support a need for host information, especially
pertaining to the Arpanet, from the Internet environment.

The name server function is evolving. Before much of what is
proposed can be provided, or even agreed upon, additional
administrative and technical design decisions are required. The
purpose of this note, therefore, is to catalyze an expanded discussion
of the functions and facilities for the name server service.

The discussion is structured as follows: Section 1 contains a
degeription of the current service and how it is derived from the NIC
databasze service. Section 2 describes possible extensions of the name
server concept by allowing a richer syntax, and by allowing queriles
for services to be built on top of the queries for host addresses.
Section 3 discusses architectural issues, and presents some
preliminary thinking on how we can get from the current centralized,
hierarchic name server service to a distributed service with one {or
more) name servers per network.

1. The SRI Name Server Experiment

An experimental name server has been installed on SRI-KA. It is
accessed via a variant of the Internet Name Server protocol [2]. The

ITEM TYPE

o o s . s . o e e +

| Official Name H Text !

| Alias Names | Text |
e ™ S — I —

| Host Address i Integer(32) |

i Port i Integer(32) | InterNet Services
| Protocol] Integer(8) |

e . . s s et e +

| Host Address i Integer(24) | Arpanet NCP Services
| Socket i Integer(32) |

fmm———— + ———

Syntactiecally, serviece queries can be derived from host queries by the
addition of a service name field, as below:

"INET!REST!SERVICE"

A network independent service query, for example, can be represented
as:

ni®)®ISERVICE"

2.3. Name Server Optionsa

The need for cptions has already been suggested in the discussion of
the "similar names" function. Another group of options may be used to
specify the format of the reply. At one extreme is the compact,
binary, style, such as is currently specified. At the other extreme
is an expanded, textual, style, such as would be represented by a host
table record, and with official/alias names included. Options can be
envisaged which specify:

- binary vs text format

inclusion of each field in the reply

inclusion of official name, per field, in the reply

inclusion of alias names, per field, in the reply

inelusion of other miscellaneous information, such as
operating system, machine type, access restrictions, ete.

Other optiona can be envisioned which specify the scope of the search,
such as "ignore TIPS and USER hosta", Likewise, an alternate form for
specifying formats may be to settle on several standard ones, and
allow an option to select between them.

Certainly, not all pname servers will be able to support all such
options, and not all options are equally useful. Thus, the proposed

initial implementation uses the internet header of TCP 2.5 [3] and
will be converted to Internet Version 4 [4] once it becomes available,

The information which drives the name server service originates from
the Arpanet Official Host Table. (A new host table format suitable
for representing host information for multiple networks has been
designed and will be deseribed in a forthecoming RFC [S]) A massaged
version of this database 13 presented to the name server, upon program
initiation, as an input file. Work is in progress to investigate the
feasibility of abstracting host related information from the NIC
database management system via direet system calls.

User access to the service takes two forms. In the firat form, a
simple user process is provided to format user input into name server
requests. In response to a query of the form "HOST !|ARPA!FOO-TENEX"
is returned an address such as "10 2 0 9" (NET=10, HOST=2, LHOST=0,
IMP=9); the details of the user interface will, of course, vary from
system to system.

This first primitive form of name server access has been implemented
on several Arpanet and PRNET sites as PDP-10 TENEX and LSI-11 TIU
programs. While initially the TENEX program is of 1little practieal
value since all sites have a complete name table, the L3I-11 program
is intended to augment the TIU's host table. The scenarioc here is
that when the packet radio TIU comes alive, it contains only a minimal
host table, including the addresses of perhaps a few candidate name
servers. The user can query the name server with a simple manual
query process and then use the address obtained to openh a TELNET
connection to the desired host.

In the second form of acceas, soon to be operational on packet radio
TIUs, a process=level interface is provided that mediates between
internal processes and the name server. The design issues for
something other than a demonstration system are complex and involve
tradeoffs., The most obvious tradeoff is in the area of network
traffic versus "freshness" of information. The local host table
handler can either send a message to the name server for every address
request or it can perform some type of local caching to remember
frequently requested names. 5SRI ia currently implementing a
procesa=level interface for the L3I-=11 TIU's TELHET program in order
to explore the problems of local host table management in small
machines in a dynamic environment.

2. Name Server Issues

The name server, as currently specified, provides a simple address
binding serviee [2]. In response to a datagram query [4, 6], the name
server returns either an address, a list of similar names, or an
error. Several useful additional functions can be envisioned for the
name server such as service querles and broader access to host related
information. First, however, a few refinements teo the current name

server speclficatlion are proposed.

2.1. Refinements

The current specification needs clarification as to how to interpret
the "similar names" error response. Should there be a fixed
definition of what "similar names" means, or should it be left open %o
the whims of the implementor?

Tnis function seems to be most useful in providing helpful
information to a human interfacing process. It may be useful to model
the behavior of the name server on the behavior of other known
processes wWhich present host-name information on demand. An example
of this is a common implementation of User Telnet [7], in which three
kinds of functions occur:

1. On termination of name input (e.g. <CR>), the user is only
"beeped" if the name is not unigue. If the name is unigue,
the name is filled out, and the requested operation is
initiated.

2. In response to <E3C>, the name will be filled out if unique,
or the user will get "beeped" if the name is not unigue.

3. Only in response to "?" will a list of similar names be
printed. "Similar names", in this case, means all names
which begin with the same character string. The list is
alphabetized.

In support of this style of user interface, it may be more
appropriate to return the "similar names" response only when
requested. Two ways to achieve this are 1) to set an option bit and
2) to use "?" to force the similar names response.

A second point upon which the specification may be enhanced is in
the interpretation given to null network and host fields in the query
string., Currently, if the network field is left ocut, as in "IREST"
(normal query is "INET!REST"), a local network query is assumed.
"IIREST" and "I!NET!"™ are not discussed in the current specification,
and are presumably syntax errors.

Since host names tend to be unique anyway (at least at the present
time) and since there is no way to make a network independent query
under the current design, it may be useful to add to the notion of
"null field", meaning "local", the notion of a special character like
nE¥N yhich means "all".

The semantic range of queries afforded by adopting this convention
is enumerated below (note: ™ is used to mean "null"., Both network and
host fields null ("1I") is, therefore, represented as "~ ~". N means
"network” and R means "rest"):

local net, local host (validity check?)

- & lpeal net, all hosts

“ R local net, named host

L all nets, loecal host (inverse search)

L all nets, all hosts (probably prohibited)
LA all nets, named host (today's situation)
N~ named net, local host (inverse search)

N * named net, all hosts

NR named net, named host

By combining the on-demand-similar-names function, "all" and
"loeal", and by allowing "#" t5 be prepended or postpended to the
query string, one ecan have gueries such as the following:

! |BEN#®7 All hosts named BEN* on loecal net
| % | BEEN*? A1 hosts named BBN* on all nets
I RN T Y%7 All hosts named ®UNIX¥* on all nets

2.2. Service Queries

It has been suggested that the name server can be generalized into
that of a binding function [8]. 1In this context, a very useful
extension is to allow service queries. (One very real appliecation of
this service, which exists within the Packet Radio Project at SRI, is
the need to find the addresses of Hosts which support the LoaderServer
Service (the LoaderServer service allows packet radioc TIUs to receive
executable programs via down-line loading).

A characteristic of service querying, contrasted to host names
querying, is the need for multiple responses. The requester would,
upon receiving multiple service descriptors, attempt to establish
access to each service, one-at-a-time, until successful.

Service descriptors are composed of at least the following (with
more liems probably required):

list will be expanded or contracted to fit the actual needs of
processes using the name server service,

2.4, "More" Data

It is probably apparent to the discerning reader that several of the
proposed name server extensions have the potential for generating more
than a single datagram's worth of reply (576 octets max [9]). (Not of
any consolation is the fact that the current practlical PRNet Packet
size is on the order of 256 octets.) Yet the size of such replies is
not anticipated to reguire a full-blown streaming protocol. Several
alternatives exist:

1. Disallow options which imply large replies,

2. Truncate the packet for large replies,

3. Ignore the recommended maximum datagram size,

4, Utilize an alternate base protocol for such requests,
5. Develop a "more data"™ pseudo-streaming protocol,

Alternative 1 may be chosen, but even within the current specification
the potential for overflow exists (however remote). Alternative 2
implies unpredictable behaviors to the user of the name server
service. Alternative 3 reduces the availability of the service.
Alternative 4 iz certainly possible, but may be over-kill,

Alternative 5 can be very simple. The concept is that the name
server would return, as part of the reply, a code of the following
form:

e o o

| MORE | ID_NEXT |
Fmm———— tmmmmm———— +

ID_NEXT is a name-server-chosen-quantity (1,2,4 octets?),
syntax/semantics unspecified, which allows the name server to find the
next block of reply, the next time it is queried. This quantity may
be an internal pointer, a block number, or whatever the name server
chooses, Follow-on queries may be implemented by recomputing the
entire original query, discarding output until the ID _NEXT block is
reached, or by efficiently storing the entire reply in a cache,
fragmented into blocks (with appropriate decay algorithms).

2.5, Dynamic Updates
In all of the previous discussions, the host name database was

assumed to be a static (or slowly changing entity) with an
administrative and manual update authority. This model was

implemented for expediency and will well serve most of the needs of
the Arpanet and Internet communities. However, a need can be
envisioned for dynamic automated updating of the host table; (imagine
the impact on the current system of any host who changed its address
more than once a week!)

In a closed user group community (such as a local network of
mutually trusting hosts), dynamic updating becomes simply a technical
question concerning packet formatza. In wider communities, a mechanism
to authentieate the change request must be developed. Since the
issues on authentieation are outside the scope of this paper, we can
only note that significant advances in practical deployment of
dispersed processing and central servlces, such as automated host
table management, can only be made when the problems of authentiecation
become tractable.

3. Architecture

The name server concept is invaluable in allowing hosts with
incomplete knowledge of the network address space Lo obtain full
access to network services. Whether for reasons of insufficient
Kernel space or of a dynamically changing environment, the need for
the service is little questioned. The more significant issues,
however, revolve around the methods for providing the service and for
administering and updating the database,

In the current experiment, the service is centralized; and is
supported by a database administered centrally by the NIC. In the
long range, other architectures are possible which address ways to
distribute host information within and between networks and
administrative entities. These present opportunities for more
dynamic, automated, approaches to the maintenance and sharing of
data=-particularly host name data.

From an eveolutionary point of view, the name server service will
likely exist initially as a centralized service, possibly with one
large name server that has multiple network knowledge. From this
beginning, an expansion in two orthogonal directions is possible.

- In the direction of internal distribution, the name server
can be fragmented into multiple cooperating processes, on
separate hosts. The data base can be replicated exactly or
managed as a distributed database.

- In the direction of administrative distribution, multiple
autonomous name servers may exist which exchange data in an
appropriately administered fashion, on a per network or
other administrative basis.

On the part of hosts with small host tables, a possibility for
caching exists, where local, temporary copies are maintained of

subszets of the addressing database. BSuch copies may be obtained
either by remembering previous queries made of name servers, or by
recelving automatic distributions of data from name servers. For
mobile hosts, in which even the home network is unknown, it is
possible to maintain essentially an empty host table.

The potential exists, with service queries, for every host to
contain a very primitive name server function. In response to a query
of the form "!®[*|RealNameServer"™ is returned the address of a real
name server service,

Finally, the possibility existz for multiple name servers to
communicate dynamically, such as in attempting to resolve a query.
1f, for example, a name server on the Arpanet receives a guery for a
host on the Packet Radioc Net, then the Arpanet name server can
conceivably query the Packet radic net name server in order to resolve
the reply.

L, Coneclusion

In this note, a collection of design ideas on the name server
service has been presented. An experimental service, based on the NIC
host table database has been reported.

A continuing examination of the name server service is encouraged,
scoplng out the reguirements and specifying i1ts functional
distribution. A level of service comparable to that outlined
currently [2] will be provided initially, but a more expanded service
merits consideration and discussion. Certainly many open guestions
have been raised in proposing an expansion of the service, but it is
expected that such an expansion will result in more useful support of
internet (and intranet) capability.

References

1.

M. D. Kudlick and E. J. Feinler, Host Names On-line, RFC 608,
3RI Internatlonal, January 1974.

Jd. Postel, Internet Name Server, IEN 61, USC-Information
Sclences Institute, October 1978.

V. Cerf, TCF Version 2 Specification, IEN 5, March 1977.

J. Postel, Internet Datagram Protocol, IEN 81, USC-Information
Sciences Institute, February 1979.

E. J. Feinler, Proposed Official Host Table Format, SERI
International (RFC in preparation).

D. Reed, J. Postel, User Datagram Protoecol, IEN 71,
USC-Information Sciences Institute, January 1979.

E. Leavitt et al; TENEX USER'S GUIDE, Bolt Beranek and Newman
Ine.

Y. Dalal, Group discussion, January 24,25 1979 Internet Meeting.

J. Postel, Internet Meeting Notes - 25&26 January 1979, pp. 12,
IEN 76, USC-Information Sciences Institute, February 1979.

