FLYING PACKET RADIOS AND NETWORK PARTITIONS
IEN #1U6
PRTH #2092
Radia Perlman
Bolt Beranek and Newman, Inc.
June 1980

I. INTRODUCTION

As deseribed in IEN 110, "Internet Addressing and Waming in a
Tactical Environment", a networlk can become partitioned inteo two
or more pieces. Assuming some of these pieces are still
connected to the catenet, we would like the catenet to be able to
efficiently deliver packets to a host in any such piece. Such =z
capability in the catenet could additionally be utilized by a
scheme for delivering intranet traffic across partitions in a
partitioned network.

Another problem is known as the flying packet radio problem, in
which there are two ground PR nets and an airborne PR,
potentially in radic contact with either or both ground nets.
The problem is to route internet packets to that airborne FR.

In IEN #120 I presented a design for network partitioning and for
the flying packet radioc problem., This paper differs from IEN
#120 in several ways:

1) In this paper there is a simpler solution proposed for finding
the host/partition correspondence,

2) In this paper an argument is made for doing the link state
routing algorithm in a straight per gateway (rather than per net)
computation. This is more costly, since there are more gateways
than nets, but it is more straightforward to implement, and is
more flexible.

3} A different solution is proposed for the flying packet radio
problem. The solution in IEN #120 was an easily implementable
one that could be immediately implemented. The sclution in this

paper depends on the rest of the design being implemented, but is
a8 less costly solution,

) In IEN #135, Carl Sunshine and Jon Fostel present an
alternative approach to the flying packet radic problem. A
comparison of the two approaches is made in this paper.

The currently implemented gateway routing algorithm is based on
the original ARPANET algorithm. To efficiently provide for
routing to network partitions, routing must be based on a link
state routing scheme. The necessity for a link state routing
scheme was demonstrated in IEN #120. In this paper I will merely
present the design.

e



IT. LINK 3TATE ROUTING

A "link state" routing scheme is cne in which the nodes computing
the routing have complete knowledge of the state of all the links
in the network. All nodes monitor the state of their links to
their neighbors, and report this information te the nodes that
compute routing. In a teotally distributed algeorithm, all nodes
compute routing, sc that means that all nodes must broadecast the
state of their links to every cother node.

A link state scheme is currently in operaticn in the ARPANET. An
alternative to a link state scheme is the algorithm that used teo
be in operation in the ARPANET, and is currently implemented in
the gateways. In the cld-style ARPANET routing algorithm, nodes
give to their neighbors a vector of their distance to all
destinations, and a node compiles its own distance vector by
taking the minimum distance of its distance to a given neighbor,
plus that neighbor's distance to the destination. The advantage
of a link state scheme over the old-style ARPANET scheme is that
a link state scheme is more flexible, since nodes have more
information.

The most straightforward link state scheme would be one where
each gateway computes routes from itself to all other gateways.
This design was specified in IEN #24 (also known as PRTN #242).
Let us ecall that scheme the per-gateway scheme.

In IEN #120 (PRTN #279) I proposed a modification to the
per-gateway design, wherein gateways computed routes to
destination networks rather than destination gateways. Let us
call that scheme the per-network scheme. The per-network scheme
is computationally less costly for the gateways, since there are
more gateways than nets. However, there is a problem with the
per-net scheme. The problem is that in the per-net scheme,
different costs cannct be assigned to different pairs of gateways
on the same network. And in networks like the packet radio net,
or the ARPANET, the delay between very distant gateways on the
same net can be very different from the delay between close
gateways on that net. Currently there is no mechanism for
measuring delays between neighbor gateways, and the cost function
is the simplest possible —— pumber of hops. However, at some
point in the future we might want to use a more sophisticated
cost function. Thus I recommend abandoning the per-network
approach and going to the straightforward per-gateway approach.

Currently there are few enough gateways so the per-gateway
approach would not be a problem. If in the future there are too
many gateways to make this approach feasible (more than 100),
there are other approaches that can be taken. For example,
instead of a totally distributed algorithm, there can be a few
"routing centers" distributed around the catenet. These routing
centers would be large enough machines so that they would not
have space problems with computations invelving hundreds of

=



nodes, and do not have to be gateways, so the time involved in
computing routes would not degrade gateway forwarding
performance. This would make the link state scheme less costly,
since gateways would only have to report the state of their links
to the routing centers, not to all gateways.

If the number of gateways was truly huge (more than a few
hundred), it would not be practical even for a large routing
center to compute routes for a netweork that large. In that case
a heirarchical approach, of breaking the net into subnetworks and
treating the network of subnetworks as an approximation to the
entire network should be used. This approach has been taken in
the multistation packet radioc design, which is a design to
accomodate a very large network of PRs,

If it is decided that the capability of assigning different costs
to different pairs of gateway links is not essential, the
per-network scheme might be adopted, sc I will include the
description here.

III. TERMINOLOGY
1) neighbor gateways—two gateways attached to the same network

2) functioning neighbor gateways—--neighbor gateways able to
communicate with each other over their common network

3) attached network—--a network physically attached to a gateway,
and with which the gateway can communicate directly (not through
ancther gateway)

4) neighbor network of gateway G—an attached network of a
functioning neighbor gateway of G, excluding attached networks of
G

IV. TABLES TO BE MAINTAINED BEY EACH GATEWAY

1) a list of attached networks--This list is relatively constant
and is updated by a gateway when it notiees a network interface
is down or for some other reason the gateway is incapable of
communicating with an attached network. Keeping this table
updated is solely the responsibility of each gateway, and does
not require intergateway communication.

2) a table of all gateways and their attached networks--This
table is maintained by intergateway communication —- gateways
give copies of their table 1 to all other gateways. The table of
all gateways never shrinks (a down gateway is assumed to exist
but be unreachable).



3) a table of link states to neighbor gateways--This table in
gateway G specifies, for each neighbor gateway G1, over which
common networks G and G1 can communicate. This table is updated
by G periodically bouncing packets off each neighbor gateway from
which it has not recently received traffic. HNote that I refer to
two gateways as neighbor gateways even if they cannot
(temporarily, hopefully) communicate with each other.

4) a list of neighbor networks—-This list is derived from the
table of link states to neighbor gateways and the list of
gateways with attached networks (tables 3 and 2).

5) total link state--This is a table of all gateways and the
state of their links to their neighbor gateways. This table is
compiled from intergateway communiecation. When a gateway notices
that its table of attached networks, or its table of link states
to neighbor gateways (tables 2 and 3) changes, that gateway
efficiently broadecasts this information to all other gateways in
the catenet, To minimize numbers of reports when a link is
flaky, a link on an attached network must be up continuously for
some amount of time before its state is considered to change from
down to up and trigger a link state report.

6) shortest distance matrix--This is a data structure from which
routing decisions can be made directly. It is computed from the
other tables. It is described more fully in part V.

V. ROUTING COMPUTATION
5.1 Per=Network Scheme

A gateway, using the tables described above, construets a
connectivity matrix whose rows and columns represent networks,
and whose entries are 1 if any gateways claim to be attached to
both networks, and infinity otherwise. Then the gateway ¥*'s that
matrix to construct a shortest distance matrix. (The operation
"¥" oonsists of "multiplying" a matrix by itself, using the
operations min and plus instead of plus and times, until the
result stabilizes. This is a well=known algorithm.) The gateway
then looks in the shortest distance matrix for the neighbor
network {or set of such) closest to the destination network, and
chooses a functioning neighbor gateway (or set of such) attached
to that neighbor network, for forwarding packets to that
destination network.

If the cost function assigns different costs to different
networks, then instead of merely putting a "1" in the
connectivity matrix where there is connectivity, the gateway does
the following. If the assigned cost (a constant) of network A is
C{a) and the assigned cost of network B iz C(b), then in the
connectivity matrix for the entry [A,B], deposit Clal. In the
entry [B,A] deposit C[bl. In other words, assign the cost of the
network you are leaving.

BT



When a link state report changes the state of an entry in the
connectivity matrix (remember, all gateways connecting two
networks have to go down before an entry changes to infinity), a
gateway must recompute the distance matrix.

This design is a slight modification of the design presented in
"Gateway Routing", by Radia Perlman (PRTN #242, IEN #2L4), The
medification is that the indices of the matrix are networks, not
gateways, The purpose of this modification is to make the size
of the matrix smaller, an important modification given that in
the catenet there are many more gateways than networks. There
are aspects to the scheme that are irrelevant to a discussion of
how to solve the network partition problem, such as sequence
numbers for link state reports, ete. The purpose of this paper
is to direct a correct approach to the design, and not to present
an implementation specification. Thus an implementer should read
PRTN 242 to discover the details of a link state algorithm that
were not relevant for presentation here.

Note that an alternative to *'ing the matrix is to use the scheme
that the ARPANET has switched over to, which is a link state
scheme in which a shortest path routing tree is constructed from
the connectivity information. The new ARPANET scheme iz less
costly te maintain as links change state. Its disadvantages are
that it precludes load splitting, probably a very important
problem in the case of the catenet, and iz probably a little
harder to implement. Since links will not change state very
often, the author favors the overhead of the matrix *'ing scheme
over the disadvantages of the ARPANET scheme. However, this
decision is separable from the rest of the design and can be
decided either way at a later time.

5.2 Per-Gateway Scheme

This scheme is more straightforward. The rows and columns in the
conhectivity matrix represent gateways. If different costs are
assigned to different gateway links on the same network, gateways
would report the cost of their links to their neighbors in their
link state reports, and this cost would be deposited into the
entries in the connectivity matrix.

As in the per-net scheme, the connectivity matrix could be *'ed,
or the Dijkstra algorithm could be applied.

VI. DETECTING THAT A NETWORK HAS PARTITIONED

Now we look &t the problem of network partitions. In the design
presented so far there is enough information for any gateway to
detect a partitioned network and to isolate groups of gateways on
each partition: A gateway G knows that network N is partitioned
if there are two sets of gateways, set Q and set R, such that all
gateways in beth sets report they are attached to network N, but

=G =



there are no two-way links between a member of set Q and a member
of set R via network N. This information is derived
independently by each gateway from the table of all gateways and
their attached networks, and from the table of total link state
(tables 2 and 5).

VII. DERIVING A NAME FOR EACH PARTITION

It is necessary to expand the internet header to allow a field
for identifying a network partition. The reason for this is to
avoid the necessity for every gateway on a packet's route to
discover to which partition the packet should be sent.

The partition name must give sufficient information so that every
gateway can make the proper routing decisions to send a packet to
that partition, based on its tables of total link state and
gateways/attached nets (tables 5 and 2),

The following schemes for naming a partition are all done
independently by all gateways, as opposed to having some central
authority choose a name and inform all gateways, or having a
group of gateways decide on a name "by committee",

One method of identifying a partition is to use the name of any
member gateway of the partition., It will not matter if two
gateways choose different names for the same partition. 3ince
the sets of gateways involved in the network partitions are
disjoint, any member of the set identifies the set.

Another method is to list (either by an explicit list or a bit
table) the set of gateways that make up that partition. This is
unnecessarily deseriptive, sinece the list of gateways is
derivable from a single member of the set. And it is a less
robust scheme, because any change to the partition (a gateway
going down, coming up, or the net partitioning into more pieces)
can confuse a gateway trying to route to that set of gateways.

In the first method, if the partition changes, the packet will be
routed unambiguously to whatever partition the named gateway is
in. Of course, if the named gateway goes down, the packet
becomes undeliverable, but that is easier to deal with than
trying to deliver a packet to a set of gateways that overlaps two
partitions,

A third method is for each gateway to number partitions from 1 to
the number of partitions, cordered by, say, the highest numbered
gateway in each partition. This method uses fewer bits in the
packet header but is a much less robust scheme. With gateways
having slightly differing information, partition names have
different meanings. Also, partitions can switch names suddenly.
For instance, a net can be partitioned into 2 pieces, numbered 1
and 2, and, assuming the highest numbered gateway was down, and
comes up in partition 2, partitions 1 and 2 now switch
identities.

L e



Thus the recommended method of identifying a partition is the
first method,.

VIII. FIGURING OUT WHICH PARTITION A HOST IS IN

This is the aspect of the design for which I did not find the
design presented in IEN #120 completely satisfying. Here is a
better approach.

Important goals are to:

1) Shield gateways from state information such as which hosts are
in which partitions.

2) Shield hosts from the necessity of knowing much about the
structure of the catenet. In particular, since hosts do not
recelve gateway link state reports, they do not know which
gateways and links are up, do not dynamically discover new
gateways and networks, and thus cannot intelligently provide a
complete source route on a packet., And requirements for
sophistication on the part of the host means adding that
sophistication to many different implementations.

The proposed solution is that:

1) If a gateway receives a packet for a partitioned destination
network, with no partition name filled in in the packet header,
that gateway duplicates the packet, sending a copy of the packet
to each partition. (Subsequent gateways will not duplicate the
packet because the first gateway would have supplied partition
names on the packets it sent out,)

2) Gateways on a partitioned network fill in their IDs in packets
leaving the partitioned network.,

3) Hosts communicating with a host on a partitioned network can
either ignore the whole network partitioning issue, or copy the
partition name from packets returning from the host on the
partitioned network. If hosts ignore the partitioning issue, the
cost is duplicated packets, If hosts choose to copy the
information, they must keep state information per host on that
partitioned network, and they must notiece when that information
becomes out of date (if packets fail to reach their destination,
the host should erase its knowledge of which partition the packet
was routed to, since the other host might have moved to a
different partition).

One advantage of this design is that gateways can be completely
sheltered from per-host state information. They already detect
partitioned networks, so the only added work is duplicating
packets and filling in partition names. Another advantage is
that hosts can either be totally oblivious of the whole issue, at

— =



the expense of duplicated packets, or they can, without much
work, obtain the information of the proper partition for a given
host. And the decision as to which course to take can be taken
independently by each host.

IX. ROUTING PACKETS TO THE CORRECT PARTITION

As stated above, a gateway G, distant from partitioned network N,
must know which gateways are involved in a partition before G can
correctly route a packet — it might have to make a different
routing decision for one partitioen than for another one.

When G detects a network has become partitioned into n pieces, G
must add n-1 rows and columns to its shortest distance matrix,

i.e,, it treats each partition as a separate network. It is an
implementation detail, and not a diffiecult one, to ensure that

the gateway understands the meaning of each row and column. And
given that the gateway understands the meaning of each row and
column, it is easy for it to fill in the connectivity matrix from
its table of total link state. The computation is done exactly
as in the nonpartitioned case.

X. FLYING PACKET RADIOS

In IEN #110, Dr. Vinton Cerf raises the following problem. An
airborne PR flies above two ground nets, A, and B. At times the
airplane PR is in radio contact of A, B, both nets, or neither
ground net, The problem is for hosts in the catenet to send
packets to the airplane PR. They cannot simply fill in "A" or
WEM as the destination network because that might be incorrect.
And if they did somehow know the proper net at the time, higher
level protocols would get confused by a changing net number, and
be unable to mateh packets to an existing connection.

In IEN #120 I presented a scheme for solving this problem that
could be implemented without the rest of the network partitioning
design. That scheme involved assigning a virtual net number to
each airplane PR. Gateways on the ground nets A and B would have
half gateways associated with each virtual net, that "pinged" the
associated airplane PR occasionally to see if it was reachable,
The cost of this solution is traffiec overhead in the ground nets,
from all the pinging, and extra net numbers for each airplane PR,
However, it is easy to implement.

I will present here a solution that is much cheaper, but depends
on the rest of the design in the paper being adopted.



The solution is that;

1) A single virtual net number, P, iz assigned to include all
airborne PRs,

2) Gateways on A and B always report that they are connected to
"nmet P" and that their links to their "neighbors" on the other
ground net, via net P, are always down. (They could report their
link via net P to be up if some airplane PR connects the two
ground nets so that they actually can reach the other ground
gateways, but it is simpler to declare that link always down, and
it will avoid foreing the airborne PRs to forward much traffic.)
Gateways on A report their links to the other gateways on A, via
net P, to be in the same state as the actual links via net A.

The gateways on net B do likewisze.

3) Thus P will look to the rest of the catenet like a partitioned
net. Consequently, gateways receiving packets for P with a blank
partition name will duplicate the packet, sending a copy to each

"partition" of P, 1.e., a copy to net A and a copy to net B, And
gateways on nets A and B receiving packets from "P", will fill in
their IDs as the "partition name" of P,

4} Hosts talking to an airborne PR can either ingore the whole
problem and let its packets get duplicated, or copy the proper
"partition name" in packets it receives from the airplane.
However, since airplanes are liable to switeh nets quickly, the
information is liable to become guickly out of date. Thus it is
probably better (assuming there are only 2 ground nets) to live
with the duplicated packets, ensuring delivery (assuming the
airplane PR is reachable via one of the ground nets).

The cost of this appreoach is the implementation of all the rest
of the network partitioning design presented in this paper, plus
a single virtual net number and duplicated packetz to the
airplane PRs (or hosts copying the information provided in
packets from the airplane PRs).

XI. COMPARISON WITH IEN 135

In IEN #135, Carl Sunshine and Jon Postel present an alternative
approach to the flying packet radic problem, Their approach is:
1) A virtual net number is assigned for all airplane FRs.

2) Airplane PRs have the responsibility for ascertaining their
current network location, and reporting this information to a

global database. (There can be multiple global databases for
reliability.)



3} Hosts wishing to communicate with an airplane PR request their
location from the global database, which furnishes them with a
single level source route to write into the packet header. The
source route consists of both a net number (as in ground net A or
ground net B, depending on which net the airplane in question is
currently in radio connectivity of) and a local address on that
net, called a "forwarder". The purpose of the "forwarder" is
merely to fit this into the already existing mechanism of source
routing, which requires a full internet address. It would be
most convenient to have as the ID of the "forwarder" the same ID
as the destination, so that the destination would be net P, host
X, and the source route would be net A (or B), host XXX.

The authors propose this scheme over the one presented in IEN
#120 {and the one presented here) in order to save the gateways
from dealing with the problem.

Costs of the scheme in IEN #135 are:
1) Maintaining a global database is complex and costly.

2) The airplane PR must ascertain its true net and report this
information to the global database. There is no mechanism
currently designed into packet radio networks to make this easy,
and certainly no mechanism for alerting the airplane PR that it
is "about to leave" a net, as suggested in IEN #135.

3) Hosts wishing to communicate with an airplane PR must first
contact the global database. This is extra code that must be
implemented in order for the host to communicate at all with the
airplane PR. And it must be implemented in every host that might
be in contact with an airplane PR.

4) Airplane PRs are liable to change nets so quickly that by the
time the airplane discovers it has changed nets, contacted the
global database, the host has queried the database, and the host
has received a reply from the database, the airplane FR has very
likely changed nets,

The costs of the scheme presented in this paper are:

1) Implementing a link state routing algorithm for gateways. A
link state algorithm requires more contrel traffic and more
computation than the old-style ARPANET algorithm,., It requires a
recoding of the gateways, since they currently have implemented
the old-style ARPANET algorithm. However, the extra overhead of
the link state scheme is not that bad, and there are
possibilities for decreasing the overhead further (fer instance,
by declaring a set of gateways all connected to the same networks
and all in econtact with each other as a "group" and having a
single member of the group report status information for the
entire group). And the link state scheme gives needed
flexibility for other internet routing problems, for instance
extended routing (including access control),

- 10 =



2) The rest of the partitioning design, all of which is minor,
ineluding:
a) having gateways detect a partition and compute routing
accordingly
b} having gateways receiving packets for a partitioned network
duplicate the packets
c) having gateways on the partitioned net fill in the
partition name on outgoing packets
d) extra packets or having hosts communicating with a host on
a partitioned net copy the partition name from incoming
packets

3) For the flying packet radies, a single virtual net number.

XII. CONCLUSIONS

A link state scheme, as originally presented in PRTN 242,
modified as presented in part IV of this paper should be the
basis of internet routing.

The internet header should include a field long enough for a
gateway ID, for the purpose of specifving a partition name. A
partition name is the ID of any member gateway on that partition.

The first gateway that handles a packet checks to see if it is
addressed to a partitioned network. If so, and if the partition
name field in the internet header i1s blank, the gateway
duplicates the packet for each partition, and sends a copy to
each partition (filling in the partition name on each copy).

When a host receives packets with a partition name filled in, it
can copy that information in a per host table, being careful to
erase that information if packets fail to reach the destination.
Hosts that choose not to implement that will cause nothing more
serious than duplicated packets.

- 11 =



