Stream: Internet Engineering Task Force (IETF)

RFC: 9641

Category: Standards Track

Published: October 2024

ISSN: 2070-1721

Author: K. Watsen
Watsen Networks

REFC 9641
A YANG Data Model for a Truststore

Abstract

This document presents a YANG module for configuring bags of certificates and bags of public
keys that can be referenced by other data models for trust. Notifications are sent when
certificates are about to expire.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9641.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Watsen Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9641
https://www.rfc-editor.org/info/rfc9641
https://trustee.ietf.org/license-info

RFC 9641 A YANG Data Model for a Truststore October 2024

Table of Contents

1. Introduction 2
1.1. Relation to Other RFCs 3
1.2. Specification Language 4
1.3. Adherence to the NMDA 4
1.4. Conventions 4

2. The "ietf-truststore" Module 5
2.1. Data Model Overview 5
2.2. Example Usage 10
2.3. YANG Module 17

3. Support for Built-In Trust Anchors 24

4. Security Considerations 26
4.1. Security of Data at Rest 26
4.2. Unconstrained Public Key Usage 26
4.3. Considerations for the "ietf-truststore” YANG Module 26

5. IANA Considerations 27
5.1. The IETF XML Registry 27
5.2. The YANG Module Names Registry 27

6. References 27
6.1. Normative References 27
6.2. Informative References 28

Acknowledgements 30

Author's Address 30

1. Introduction

This document presents a YANG 1.1 [RFC7950] module that has the following characteristics:

* Provide a central truststore for storing raw public keys and/or certificates.

Watsen Standards Track Page 2

RFC 9641

A YANG Data Model for a Truststore

October 2024

* Provide support for storing named bags of raw public keys and/or named bags of certificates.

* Provide types that can be used to reference raw public keys or certificates stored in the

central truststore.

* Provide groupings that enable raw public keys and certificates to be configured inline or as

references to truststore instances.

* Enable the truststore to be instantiated in other data models, in addition to or in lieu of the
central truststore instance.

1.1. Relation to Other RFCs

This document presents a YANG module [RFC7950] that is part of a collection of RFCs that work
together to ultimately support the configuration of both the clients and servers of both the

Network Configuration Protocol (NETCONF) [RFC6241] and RESTCONF [RFC8040].

The dependency relationship between the primary YANG groupings defined in the various RFCs
is presented in the below diagram. In some cases, a document may define secondary groupings
that introduce dependencies not illustrated in the diagram. The labels in the diagram are
shorthand names for the defining RFCs. The citation references for shorthand names are
provided below the diagram.

Please note that the arrows in the diagram point from referencer to referenced. For example, the
"crypto-types" RFC does not have any dependencies, whilst the "keystore" RFC depends on the

"crypto-types" RFC.

/ \
/ \
truststore keystore
A A A A
[e o
I I (.
| e ettt +
tcp-client-server | / [|
2 Q ssh-client-server | |
| | & tls-client-server
| | | &’ A http-client-server
I I I I I "
| | | +--=-== + B ittt + |
I I I I I I
I tommmmm oo |-===---- [-===mmm - + I I
I I I I I
Fommmmmo - + I I I
I I I I

netconf-client-server

Label in Diagram

Watsen

Reference

crypto-types
A A

Standards Track

restconf-client-server

Page 3

RFC 9641 A YANG Data Model for a Truststore October 2024

crypto-types [RFC9640]

truststore REC 9641

keystore [RFC9642]
tcp-client-server [RFC9643]
ssh-client-server [RFC9644]
tls-client-server [RFC9645]
http-client-server [HTTP-CLIENT-SERVER]

netconf-client-server [NETCONF-CLIENT-SERVER]

restconf-client-server = [RESTCONF-CLIENT-SERVER]
Table 1: Label in Diagram to RFC Mapping

1.2. Specification Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

1.3. Adherence to the NMDA

This document is compliant with the Network Management Datastore Architecture (NMDA)
[RFC8342]. For instance, trust anchors installed during manufacturing (e.g., for trusted, well-
known services) are expected to appear in <operational> (see Section 3).

1.4. Conventions

Various examples in this document use "BASE64VALUE=" as a placeholder value for binary data
that has been base64 encoded (see Section 9.8 of [RFC7950]). This placeholder value is used
because real base64-encoded structures are often many lines long and hence distracting to the
example being presented.

Various examples in this document use the XML [W3C.REC-xml-20081126] encoding. Other
encodings, such as JSON [RFC8259], could alternatively be used.

Various examples in this document contain long lines that may be folded, as described in
[RFC8792].

Watsen Standards Track Page 4

https://rfc-editor.org/rfc/rfc7950#section-9.8

RFC 9641 A YANG Data Model for a Truststore October 2024

This document uses the adjective "central” with the word "truststore" to refer to the top-level
instance of the "truststore-grouping" grouping when the "central-truststore-supported" feature is
enabled. Please be aware that consuming YANG modules MAY instantiate the "truststore-
grouping" grouping in other locations. All such other instances are not the "central” instance.

2. The "ietf-truststore”™ Module

This section defines a YANG 1.1 [RFC7950] module called "ietf-truststore". A high-level overview
of the module is provided in Section 2.1. Examples illustrating the module's use are provided in
Section 2.2 ("Example Usage"). The YANG module itself is defined in Section 2.3.

2.1. Data Model Overview

This section provides an overview of the "ietf-truststore" module in terms of its features,
typedefs, groupings, and protocol-accessible nodes.

2.1.1. Features

The following diagram lists all the "feature" statements defined in the "ietf-truststore" module:

Features:
+-- central-truststore-supported
+-- inline-definitions-supported
+-- certificates
+-- public-keys

The diagram above uses syntax that is similar to but not defined in [RFC8340].

2.1.2. Typedefs

The following diagram lists the "typedef” statements defined in the "ietf-truststore” module:

Typedefs:
leafref
+-- central-certificate-bag-ref
+-- central-certificate-ref
+-- central-public-key-bag-ref
+-- central-public-key-ref

The diagram above uses syntax that is similar to but not defined in [RFC8340].
Comments:

¢ All the typedefs defined in the "ietf-truststore” module extend the base "leafref" type defined
in [RFC7950].

* The leafrefs refer to certificates, public keys, and bags in the central truststore when this
module is implemented.

Watsen Standards Track Page 5

RFC 9641 A YANG Data Model for a Truststore October 2024

* These typedefs are provided to aid consuming modules that import the "ietf-truststore"
module.

2.1.3. Groupings

The "ietf-truststore” module defines the following "grouping" statements:

* central-certificate-ref-grouping

* central-public-key-ref-grouping

¢ inline-or-truststore-certs-grouping

¢ inline-or-truststore-public-keys-grouping
* truststore-grouping

Each of these groupings are presented in the following subsections.

2.1.3.1. The "central-certificate-ref-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "central-certificate-ref-grouping" grouping:

grouping central-certificate-ref-grouping:
+-- certificate-bag? ts:central-certificate-bag-ref
| {central-truststore-supported, certificates}?
+-- certificate? ts:central-certificate-ref
{central-truststore-supported,certificates}?

Comments:

* The "central-certificate-ref-grouping” grouping is provided solely as a convenience to
consuming modules that wish to enable the configuration of a reference to a certificate in a
certificate-bag in the truststore.

 The "certificate-bag" leaf uses the "central-certificate-bag-ref" typedef defined in Section
2.1.2.

* The "certificate" leaf uses the "central-certificate-ref" typedef defined in Section 2.1.2.

2.1.3.2. The "central-public-key-ref-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "central-public-key-ref-grouping" grouping:

grouping central-public-key-ref-grouping:
+-- public-key-bag? ts:central-public-key-bag-ref
{central-truststore-supported, public-keys}?
+-- public-key? ts:central-public-key-ref
{central-truststore-supported, public-keys}?

Watsen Standards Track Page 6

RFC 9641 A YANG Data Model for a Truststore October 2024

Comments:

* The "central-public-key-ref-grouping” grouping is provided solely as a convenience to

consuming modules that wish to enable the configuration of a reference to a public-key in a
public-key-bag in the truststore.

* The "public-key-bag" leaf uses the "central-public-key-bag-ref" typedef defined in Section
2.1.2.

* The "public-key" leaf uses the "central-public-key-ref" typedef defined in Section 2.1.2.

2.1.3.3. The "inline-or-truststore-certs-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "inline-or-truststore-certs-grouping”
grouping:

grouping inline-or-truststore-certs-grouping:
+-- (inline-or-truststore)
+--:(inline) {inline-definitions-supported}?
| +-- inline-definition
| +-- certificate* [name]
| +-- name

| +---u ct:trust-anchor-cert-grouping
+--:(central-truststore)

{central-truststore-supported, certificates}?
+-- central-truststore-reference?

ts:central-certificate-bag-ref

string

Comments:

* The "inline-or-truststore-certs-grouping" grouping is provided solely as a convenience to
consuming modules that wish to offer an option whether a bag of certificates can be defined
inline or as a reference to a bag in the truststore.

* A "choice" statement is used to expose the various options. Each option is enabled by a

"feature" statement. Additional "case" statements MAY be augmented in if, e.g., there is a
need to reference a bag in an alternate location.

* For the "inline-definition" option, the "certificate” node uses the "trust-anchor-cert-grouping”
grouping discussed in Section 2.1.4.8 of [RFC9640].

* For the "central-truststore" option, the "central-truststore-reference" node is an instance of
the "central-certificate-bag-ref" discussed in Section 2.1.2.

2.1.3.4. The "inline-or-truststore-public-keys-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "inline-or-truststore-public-keys-grouping"
grouping:

Watsen Standards Track Page 7

https://rfc-editor.org/rfc/rfc9640#section-2.1.4.8

RFC 9641 A YANG Data Model for a Truststore October 2024

grouping inline-or-truststore-public-keys-grouping:
+-- (inline-or-truststore)
+--:(inline) {inline-definitions-supported}?
| +-- inline-definition
| +-- public-key* [name]
| +-- name
| +---u ct:public-key-grouping
+--:(central-truststore)
{central-truststore-supported, public-keys}?
+-- central-truststore-reference?
ts:central-public-key-bag-ref

string

Comments:

* The "inline-or-truststore-public-keys-grouping" grouping is provided solely as a convenience
to consuming modules that wish to offer an option whether a bag of public keys can be
defined inline or as a reference to a bag in the truststore.

A "choice" statement is used to expose the various options. Each option is enabled by a

"feature" statement. Additional "case" statements MAY be augmented in if, e.g., there is a
need to reference a bag in an alternate location.

* For the "inline-definition" option, the "public-key" node uses the "public-key-grouping"
grouping discussed in Section 2.1.4.4 of [RFC9640].

* For the "central-truststore" option, the "central-truststore-reference" is an instance of the
"certificate-bag-ref" discussed in Section 2.1.2.

2.1.3.5. The "truststore-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "truststore-grouping" grouping:

grouping truststore-grouping:
+-- certificate-bags {certificates}?
| +-- certificate-bag* [name]
| +-- name string
| +-- description? string
| +-- certificate* [name]
| +-- name
| +---u ct:trust-anchor-cert-grouping
+-- public-key-bags {public-keys}?
+-- public-key-bag* [name]
+-- name string
+-- description? string
+-- public-key* [name]
+-- name
+---u ct:public-key-grouping

string

string

Comments:

* The "truststore-grouping" grouping defines a truststore instance as being composed of
certificates and/or public keys, both of which are enabled by "feature" statements. The
structures supporting certificates and public keys are essentially the same, having an outer

Watsen Standards Track Page 8

https://rfc-editor.org/rfc/rfc9640#section-2.1.4.4

RFC 9641 A YANG Data Model for a Truststore October 2024

list of "bags" containing an inner list of objects (i.e., certificates or public keys). The bags
enable trust anchors serving a common purpose to be grouped and referenced together.

» For certificates, each certificate is defined by the "trust-anchor-cert-grouping" grouping
(Section 2.1.4.8 of [RFC9640]). The "cert-data" node is a Cryptographic Message Syntax (CMS)
structure that can be composed of a chain of one or more certificates. Additionally, the
"certificate-expiration"” notification enables the server to alert clients when certificates are
nearing expiration or have already expired.

o For public keys, each public key is defined by the "public-key-grouping” grouping (Section
2.1.4.4 of [RFC9640]). The "public-key" node can be one of any number of structures specified
by the "public-key-format" identity node.

2.1.4. Protocol-Accessible Nodes

The following tree diagram [RFC8340] lists all the protocol-accessible nodes defined in the "ietf-
truststore" module without expanding the "grouping" statements:

module: ietf-truststore

+--rw truststore {central-truststore-supported}?
+---uU truststore-grouping

The following tree diagram [RFC8340] lists all the protocol-accessible nodes defined in the "ietf-
truststore” module with all "grouping” statements expanded, enabling the truststore's full
structure to be seen:

module: ietf-truststore
+--rw truststore {central-truststore-supported}?
+--rw certificate-bags {certificates}?
| +--rw certificate-bag* [name]
+--rw name string
+--rw description? string
+--rw certificate* [name]

|

|

| +--rw name string

| +--rw cert-data trust-anchor-cert-cms
| +---n certificate-expiration

| {certificate-expiration-notification}?

| +-- expiration-date yang:date-and-time

+

--rw public-key-bags {public-keys}?
+--rw public-key-bag* [name]
+--rw name string
+--rw description? string
+--rw public-key* [name]

+--rw name string
+--rw public-key-format identityref
+--rw public-key binary

Comments:

* Protocol-accessible nodes are those nodes that are accessible when the module is
"implemented", as described in Section 5.6.5 of [RFC7950].

Watsen Standards Track Page 9

https://rfc-editor.org/rfc/rfc9640#section-2.1.4.8
https://rfc-editor.org/rfc/rfc9640#section-2.1.4.4
https://rfc-editor.org/rfc/rfc9640#section-2.1.4.4
https://rfc-editor.org/rfc/rfc7950#section-5.6.5

RFC 9641 A YANG Data Model for a Truststore October 2024

* The protocol-accessible nodes for the "ietf-truststore" module are instances of the "truststore-
grouping" grouping discussed in Section 2.1.3.5.

* The top-level "truststore" node is additionally constrained by the "central-truststore-
supported" feature.

* The "truststore-grouping" grouping is discussed in Section 2.1.3.5.

* The reason for why the "truststore-grouping" grouping exists separate from the protocol-
accessible nodes definition is to enable instances of the truststore to be instantiated in other
locations, as may be needed or desired by some modules.

2.2. Example Usage

The examples in this section are encoded using XML, such as might be the case when using the
NETCONTF protocol. Other encodings MAY be used, such as JSON when using the RESTCONF
protocol.

2.2.1. A Truststore Instance

This section presents an example illustrating trust anchors in <intended>, as per Section 2.1.4.
Please see Section 3 for an example illustrating built-in values in <operational>.

The example contained in this section defines eight bags of trust anchors. There are four
certificate-based bags and four public-key-based bags. The following diagram provides an
overview of the contents in the example:

Certificate Bags
+-- Trust anchor certs for authenticating a set of remote servers
+-- End entity certs for authenticating a set of remote servers
+-- Trust anchor certs for authenticating a set of remote clients
+-- End entity certs for authenticating a set of remote clients

Public Key Bags
+-- SSH keys to authenticate a set of remote SSH servers
+-- SSH keys to authenticate a set of remote SSH clients
+-- Raw public keys to authenticate a set of remote SSH servers
+-- Raw public keys to authenticate a set of remote SSH clients

e e e NOTE: I\I llne Wrapping per RFC 8792 e S e e

<truststore
xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore”
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

<!-- A bag of Certificate Bags -->
<certificate-bags>

<!-- Trust Anchor Certs for Authenticating Servers -->
<certificate-bag>
<name>trusted-server-ca-certs</name>
<description>
Trust anchors (i.e., CA certs) used to authenticate server

Watsen Standards Track Page 10

RFC 9641 A YANG Data Model for a Truststore

certificates. A server certificate is authenticated if its
end-entity certificate has a chain of trust to one of these
certificates.

</description>

<certificate>
<name>Server Cert Issuer #1</name>
<cert-data>BASE64VALUE=</cert-data>

</certificate>

<certificate>
<name>Server Cert Issuer #2</name>
<cert-data>BASE64VALUE=</cert-data>

</certificate>

</certificate-bag>

<!-- End Entity Certs for Authenticating Servers -->
<certificate-bag>
<name>trusted-server-ee-certs</name>
<description>
Specific end-entity certificates used to authenticate server
certificates. A server certificate is authenticated if its
end-entity certificate is an exact match to one of these
certificates.
</description>
<certificate>
<name>My Application #1</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate>
<name>My Application #2</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificate-bag>

<!-- Trust Anchor Certs for Authenticating Clients -->
<certificate-bag>
<name>trusted-client-ca-certs</name>
<description>
Trust anchors (i.e., CA certs) used to authenticate client
certificates. A client certificate is authenticated if its
end-entity certificate has a chain of trust to one of these
certificates.
</description>
<certificate>
<name>Client Identity Issuer #1</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate>
<name>Client Identity Issuer #2</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificate-bag>

<!-- End Entity Certs for Authenticating Clients -->
<certificate-bag>
<name>trusted-client-ee-certs</name>
<description>
Specific end-entity certificates used to authenticate client
certificates. A client certificate is authenticated if its

Watsen Standards Track

October 2024

Page 11

RFC 9641 A YANG Data Model for a Truststore

end-entity certificate is an exact match to one of these
certificates.
</description>
<certificate>
<name>George Jetson</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate>
<name>Fred Flintstone</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificate-bag>
</certificate-bags>

<!-- A List of Public Key Bags -->
<public-key-bags>

<!-- Public Keys for Authenticating SSH Servers -->
<public-key-bag>
<name>trusted-ssh-public-keys</name>
<description>
Specific SSH public keys used to authenticate SSH server
public keys. An SSH server public key is authenticated if
its public key is an exact match to one of these public keys.

This list of SSH public keys is analogous to OpenSSH's
"/etc/ssh/ssh_known_hosts" file.

</description>

<public-key>
<name>corp-fwl</name>
<public-key-format>ct:ssh-public-key-format</public-key-form\

at>
<public-key>BASE64VALUE=</public-key>
</public-key>
<public-key>
<name>corp-fw2</name>
<public-key-format>ct:ssh-public-key-format</public-key-form\
at>
<public-key>BASE64VALUE=</public-key>
</public-key>
</public-key-bag>
<!-- SSH Public Keys for Authenticating Application A -->
<public-key-bag>
<name>SSH Public Keys for Application A</name>
<description>
SSH public keys used to authenticate application A's SSH
public keys. An SSH public key is authenticated if it
is an exact match to one of these public keys.
</description>
<public-key>
<name>Application Instance #1</name>
<public-key-format>ct:ssh-public-key-format</public-key-form\
at>
<public-key>BASE64VALUE=</public-key>
</public-key>
<public-key>
<name>Application Instance #2</name>
Watsen Standards Track

October 2024

Page 12

RFC 9641 A YANG Data Model for a Truststore October 2024

<public-key-format>ct:ssh-public-key-format</public-key-form\
at>
<public-key>BASE64VALUE=</public-key>
</public-key>
</public-key-bag>

<!-- Raw Public Keys for TLS Servers -->
<public-key-bag>
<name>Raw Public Keys for TLS Servers</name>
<public-key>
<name>Raw Public Key #1</name>
<public-key-format>ct:subject-public-key-info-format</public\
-key-format>
<public-key>BASE64VALUE=</public-key>
</public-key>
<public-key>
<name>Raw Public Key #2</name>
<public-key-format>ct:subject-public-key-info-format</public\
-key-format>
<public-key>BASE64VALUE=</public-key>
</public-key>
</public-key-bag>

<!-- Raw Public Keys for TLS Clients -->
<public-key-bag>
<name>Raw Public Keys for TLS Clients</name>
<public-key>
<name>Raw Public Key #1</name>
<public-key-format>ct:subject-public-key-info-format</public\
-key-format>
<public-key>BASE64VALUE=</public-key>
</public-key>
<public-key>
<name>Raw Public Key #2</name>
<public-key-format>ct:subject-public-key-info-format</public\
-key-format>
<public-key>BASE64VALUE=</public-key>
</public-key>
</public-key-bag>
</public-key-bags>
</truststore>

2.2.2. A Certificate Expiration Notification

The following example illustrates the "certificate-expiration" notification (per Section 2.1.4.7 of
[RFC9640]) for a certificate configured in the truststore described in Section 2.2.1.

Watsen Standards Track Page 13

https://rfc-editor.org/rfc/rfc9640#section-2.1.4.7

RFC 9641 A YANG Data Model for a Truststore October 2024

S === === NOTE: l\I 1ine Wr’apping per RFC 8792 S === =]

<notification
xmlns="urn:ietf :params:xml:ns:netconf:notification:1.08">
<eventTime>2018-05-25T00:01:00Z</eventTime>
<truststore xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore">
<certificate-bags>
<certificate-bag>
<name>trusted-client-ee-certs</name>
<certificate>
<name>George Jetson</name>
<certificate-expiration>
<expiration-date>26024-01-05T14:18:53-05:00</expiration-d\
ate>
</certificate-expiration>
</certificate>
</certificate-bag>
</certificate-bags>
</truststore>
</notification>

2.2.3. The "Inline or Truststore" Groupings

This section illustrates the various "inline-or-truststore" groupings defined in the "ietf-truststore"
module, specifically the "inline-or-truststore-certs-grouping" (Section 2.1.3.3) and "inline-or-
truststore-public-keys-grouping" (Section 2.1.3.4) groupings.

These examples assume the existence of an example module called "ex-truststore-usage" that has
the namespace "https://example.com/ns/example-truststore-usage".

The "ex-truststore-usage" module is first presented using tree diagrams [RFC8340], followed by
an instance example illustrating all the "inline-or-truststore” groupings in use, followed by the
YANG module itself.

The following tree diagram illustrates the "ex-truststore-usage” module without expanding the
"grouping" statements:

module: ex-truststore-usage
+--rw truststore-usage

+--rw cert* [name]

| +--rw name string

| +---u ts:inline-or-truststore-certs-grouping

+--rw public-key* [name]
+--rw name string
+---u ts:inline-or-truststore-public-keys-grouping

The following tree diagram illustrates the "ex-truststore-usage" module with all "grouping"
statements expanded, enabling the truststore's full structure to be seen:

Watsen Standards Track Page 14

RFC 9641 A YANG Data Model for a Truststore October 2024

module: ex-truststore-usage
+--rw truststore-usage
+--rw cert* [name]
| +--rw name string
+--rw (inline-or-truststore)
+--:(inline) {inline-definitions-supported}?
| +--rw inline-definition
| +--rw certificate* [name]
| +--rw name string
| +--rw cert-data
| | trust-anchor-cert-cms
| +---n certificate-expiration
| {certificate-expiration-notification}?
I
+__

+-- expiration-date yang:date-and-time
:(central-truststore)

{central-truststore-supported,certificates}?
+--rw central-truststore-reference?
ts:central-certificate-bag-ref
--rw public-key* [name]

+--rw name string
+--rw (inline-or-truststore)

+--:(inline) {inline-definitions-supported}?

| +--rw inline-definition

+--rw public-key* [name]

I
I
|
I
I
|
I
I
|
I
I
|
I
I
+

+--rw name string
+--rw public-key-format identityref
+--rw public-key binary

I
I
I
I
+--:(central-truststore)
{central-truststore-supported, public-keys}?
+--rw central-truststore-reference?
ts:central-public-key-bag-ref

The following example provides two equivalent instances of each grouping, the first being a
reference to a truststore and the second being defined inline. The instance having a reference to
a truststore is consistent with the truststore defined in Section 2.2.1. The two instances are
equivalent, as the inlined instance example contains the same values defined by the truststore
instance referenced by its sibling example.

SEE=SsEs=sas=== NOTE: I\I llne Wrapping per RFC 8792 e e e e e =

<truststore-usage
xmlns="https://example.com/ns/example-truststore-usage”
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

<!-- The following two equivalent examples illustrate -->
<!-- the "inline-or-truststore-certs-grouping" grouping: -->
<cert>

<name>example Ta</name>
<central-truststore-reference>trusted-client-ca-certs</central-t\
ruststore-reference>
</cert>

<cert>

Watsen Standards Track Page 15

RFC 9641 A YANG Data Model for a Truststore October 2024

<name>example Tb</name>
<inline-definition>
<certificate>
<name>Client Identity Issuer #1</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate>
<name>Client Identity Issuer #2</name>
<cert-data>BASE64VALUE=</cert-data>

</certificate>
</inline-definition>
</cert>
<!-- The following two equivalent examples illustrate the -->
<!-- "inline-or-truststore-public-keys-grouping" grouping: -->

<public-key>
<name>example 2a</name>
<central-truststore-reference>trusted-ssh-public-keys</central-t\
ruststore-reference>
</public-key>

<public-key>
<name>example 2b</name>
<inline-definition>
<public-key>
<name>corp-fwl</name>
<public-key-format>ct:ssh-public-key-format</public-key-form\

at>
<public-key>BASE64VALUE=</public-key>
</public-key>
<public-key>
<name>corp-fw2</name>
<public-key-format>ct:ssh-public-key-format</public-key-form\
at>

<public-key>BASE64VALUE=</public-key>
</public-key>
</inline-definition>
</public-key>

</truststore-usage>
Following is the "ex-truststore-usage" module's YANG definition:

module ex-truststore-usage {
yang-version 1.1;
namespace "https://example.com/ns/example-truststore-usage";
prefix etu;

import ietf-truststore {
prefix ts;
reference
"RFC 9641: A YANG Data Model for a Truststore";

Watsen Standards Track Page 16

RFC 9641 A YANG Data Model for a Truststore October 2024

organization
"Example Corporation";

contact
"Author: YANG Designer <mailto:yang.designer@example.com>";

description
"This example module illustrates notable groupings defined
in the 'ietf-truststore' module.";

revision 2024-10-10 {
description
"Initial version.";
reference
"RFC 9641: A YANG Data Model for a Truststore":
}

container truststore-usage {
description
"An illustration of the various truststore groupings.";
list cert {
key "name";
leaf name {
type string;
description
"An arbitrary name for this cert.";
}

uses ts:inline-or-truststore-certs-grouping;
description
"A cert that may be configured locally or be
a reference to a cert in the truststore."”;

}
list public-key {
key "name";
leaf name {
type string;
description
"An arbitrary name for this cert.";
}

uses ts:inline-or-truststore-public-keys-grouping;
description

"A public key that may be configured locally or be
a reference to a public key in the truststore.";

2.3. YANG Module
This YANG module imports modules from [RFC8341] and [RFC9640].

<CODE BEGINS> file "ietf-truststore@2024-10-10.yang"
module ietf-truststore {

yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-truststore";

Watsen Standards Track Page 17

RFC 9641 A YANG Data Model for a Truststore October 2024

prefix ts;

import ietf-netconf-acm {
prefix nacm;
reference
"RFC 8341: Network Configuration Access Control Model";

}
import ietf-crypto-types {

prefix ct;

reference

"RFC 9640: YANG Data Types and Groupings for Cryptography";

}
organization

"IETF NETCONF (Network Configuration) Working Group";
contact

"WG Web: https://datatracker.ietf.org/wg/netconf

WG List: NETCONF WG list <mailto:netconf@ietf.org>

Author: Kent Watsen <kent+ietf@watsen.net>";
description

"This module defines a 'truststore' to centralize management
of trust anchors, including certificates and public keys.

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
"SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

"NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
are to be interpreted as described in BCP 14 (RFC 2119)
(RFC 8174) when, and only when, they appear in all
capitals, as shown here.

Copyright (c) 2024 IETF Trust and the persons identified
as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with
or without modification, is permitted pursuant to, and
subject to the license terms contained in, the Revised
BSD License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 9641
(https://www.rfc-editor.org/info/rfc9641); see the RFC
itself for full legal notices.";

revision 2024-10-10 {
description
"Initial version.";
reference
"RFC 9641: A YANG Data Model for a Truststore";
}

[FxxFhkkhkkhkkkhxk/

/* Features */
/****************/

feature central-truststore-supported {
description
"The 'central-truststore-supported' feature indicates that

Watsen Standards Track Page 18

RFC 9641 A YANG Data Model for a Truststore October 2024

the server supports the truststore (i.e., implements the
‘ijetf-truststore' module).";

}
feature inline-definitions-supported {
description
"The 'inline-definitions-supported' feature indicates that
the server supports locally defined trust anchors.";
}
feature certificates {
description
"The 'certificates' feature indicates that the server
implements the /truststore/certificate-bags subtree.";
}
feature public-keys {
description

"The 'public-keys' feature indicates that the server
implements the /truststore/public-key-bags subtree.";

[FRxERhkkhkkkhkkkhkk/

/* Typedefs */
/****************/

typedef central-certificate-bag-ref {
type leafref {
path "/ts:truststore/ts:certificate-bags/"
+ "ts:certificate-bag/ts:name";
}

description
"This typedef defines a reference to a certificate bag
in the central truststore."”;

}

typedef central-certificate-ref {
type leafref {
path "/ts:truststore/ts:certificate-bags/ts:certificate-bag"
+ "[ts:name = current()/../certificate-bag]/"
+ "ts:certificate/ts:name"”;
}
description
"This typedef defines a reference to a specific certificate
in a certificate bag in the central truststore. This typedef
requires that there exist a sibling 'leaf' node called
‘certificate-bag’' that SHOULD have the
‘central-certificate-bag-ref' typedef.";

}

typedef central-public-key-bag-ref {
type leafref {
path "/ts:truststore/ts:public-key-bags/"
+ "ts:public-key-bag/ts:name"”;
}

description

"This typedef defines a reference to a public key bag
in the central truststore."”;

Watsen Standards Track Page 19

RFC 9641 A YANG Data Model for a Truststore October 2024

}

typedef central-public-key-ref {
type leafref {
path "/ts:truststore/ts:public-key-bags/ts:public-key-bag"
+ "[ts:name = current()/../public-key-bag]/"
+ "ts:public-key/ts:name";
}
description
"This typedef defines a reference to a specific public key
in a public key bag in the truststore. This typedef
requires that there exist a sibling 'leaf' node called
"public-key-bag' SHOULD have the
‘central-public-key-bag-ref' typedef.";
}

[RxERhkkkkkkhkkkhkkk/

/* Groupings w3/
/*****************/

// *-ref groupings

grouping central-certificate-ref-grouping {

description

"Grouping for the reference to a certificate in a

certificate-bag in the central truststore.";
leaf certificate-bag {

nacm:default-deny-write;

if-feature "central-truststore-supported”;

if-feature "certificates"”;

type ts:central-certificate-bag-ref;

must '../certificate’;

description

"Reference to a certificate-bag in the truststore.";

leaf certificate {

nacm:default-deny-write;

if-feature "central-truststore-supported”;

if-feature "certificates"”;

type ts:central-certificate-ref;

must '../certificate-bag"’;

description
"Reference to a specific certificate in the
referenced certificate-bag.";

}
}

grouping central-public-key-ref-grouping {
description
"Grouping for the reference to a public key in a
public-key-bag in the central truststore.";
leaf public-key-bag {
nacm:default-deny-write;
if-feature "central-truststore-supported”;
if-feature "public-keys";
type ts:central-public-key-bag-ref;
description
"Reference of a public key bag in the truststore, including
the certificate to authenticate the TLS client.";

Watsen Standards Track Page 20

RFC 9641 A YANG Data Model for a Truststore October 2024

}

leaf public-key {
nacm:default-deny-write;
if-feature "central-truststore-supported”;
if-feature "public-keys";
type ts:central-public-key-ref;
description

"Reference to a specific public key in the
referenced public-key-bag.";
}
}

// inline-or-truststore-* groupings

grouping inline-or-truststore-certs-grouping {
description
"A grouping for the configuration of a list of certificates.
The list of certificates may be defined inline or as a
reference to a certificate bag in the central truststore.

Servers that wish to define alternate truststore locations
MUST augment in custom 'case' statements, enabling
references to those alternate truststore locations.";
choice inline-or-truststore {
nacm:default-deny-write;
mandatory true;
description
"A choice between an inlined definition and a definition
that exists in the truststore.";
case inline {
if-feature "inline-definitions-supported”;
container inline-definition {
description
"A container for locally configured trust anchor
certificates.";
list certificate {
key "name";
min-elements 1;
description
"A trust anchor certificate or chain of certificates."”;
leaf name {
type string;
description
"An arbitrary name for this certificate."”;
}

uses ct:trust-anchor-cert-grouping {
refine "cert-data" {
mandatory true;

}
}
}
}
}
case central-truststore {
if-feature "central-truststore-supported”;
if-feature "certificates";
leaf central-truststore-reference {
type ts:central-certificate-bag-ref;

Watsen Standards Track Page 21

RFC 9641 A YANG Data Model for a Truststore October 2024

description
"A reference to a certificate bag that exists in the
central truststore.";
}
}
}
}

grouping inline-or-truststore-public-keys-grouping {
description
"A grouping that allows the public keys to either be
configured locally, within the data model being used, or be a
reference to a public key bag stored in the truststore.

Servers that wish to define alternate truststore locations
SHOULD augment in custom 'case' statement, enabling
references to those alternate truststore locations.";
choice inline-or-truststore {
nacm:default-deny-write;
mandatory true;
description
"A choice between an inlined definition and a definition
that exists in the truststore.";
case inline {
if-feature "inline-definitions-supported”;
container inline-definition {
description
"A container to hold local public key definitions.";
list public-key {
key "name";
description
"A public key definition.";
leaf name {
type string;
description
"An arbitrary name for this public key.";
}

uses ct:public-key-grouping;
}
}
}
case central-truststore {
if-feature "central-truststore-supported”;
if-feature "public-keys";
leaf central-truststore-reference {
type ts:central-public-key-bag-ref;
description
"A reference to a bag of public keys that exists
in the central truststore.";
}
}
}
}

// the truststore grouping

grouping truststore-grouping {
description

Watsen Standards Track Page 22

RFC 9641

Watsen

A YANG Data Model for a Truststore October 2024

"A grouping definition that enables use in other contexts.
Where used, implementations MUST augment new 'case’
statements into the various inline-or-truststore 'choice’
statements to supply leafrefs to the model-specific
location(s).";
container certificate-bags {
nacm:default-deny-write;
if-feature "certificates"”;
description
"A collection of certificate bags.";
list certificate-bag {
key "name";
description
"A bag of certificates. Each bag of certificates should
be for a specific purpose. For instance, one bag could
be used to authenticate a specific set of servers, while
another could be used to authenticate a specific set of
clients.";
leaf name {
type string;
description
"An arbitrary name for this bag of certificates.";

leaf description {
type string;
description
"A description for this bag of certificates. The
intended purpose for the bag SHOULD be described.”;
}
list certificate {
key "name";
description
"A trust anchor certificate or chain of certificates.";
leaf name {
type string;
description
"An arbitrary name for this certificate.";
}
uses ct:trust-anchor-cert-grouping {
refine "cert-data" {
mandatory true;
}
}
}
}
}
container public-key-bags {
nacm:default-deny-write;
if-feature "public-keys";
description
"A collection of public key bags.";
list public-key-bag {
key "name";
description
"A bag of public keys. Each bag of keys SHOULD be for
a specific purpose. For instance, one bag could be used
to authenticate a specific set of servers, while another
could be used to authenticate a specific set of clients.";

Standards Track Page 23

RFC 9641 A YANG Data Model for a Truststore October 2024

leaf name {
type string;
description
"An arbitrary name for this bag of public keys.";

leaf description {
type string;
description
"A description for this bag of public keys. The
intended purpose for the bag MUST be described."”;
}
list public-key {
key "name";
description
"A public key.";
leaf name {
type string;
description
"An arbitrary name for this public key.";
}

uses ct:public-key-grouping;
}
}
}
}

[xFxkhkhkhkhkhkhkhkhkhkhrhkhkhkhxhx/

/* Protocol-accessible nodes */
/*********************************/

container truststore {
if-feature "central-truststore-supported”;
nacm:default-deny-write;
description
"The truststore contains bags of certificates and
public keys.";
uses truststore-grouping;

}
}

<CODE ENDS>

3. Support for Built-In Trust Anchors

In some implementations, a server may define some built-in trust anchors. For instance, there
may be built-in trust anchors enabling the server to securely connect to well-known services
(e.g., a Secure Zero-Touch Provisioning (SZTP) [RFC8572] bootstrap server) or public Certification
Authority (CA) certificates to connect to arbitrary web services using PKI.

Built-in trust anchors are expected to be set by a vendor-specific process. Any ability for
operators to set and/or modify built-in trust anchors is outside the scope of this document.

Watsen Standards Track Page 24

RFC 9641 A YANG Data Model for a Truststore October 2024

The primary characteristic of the built-in trust anchors is that they are provided by the server, as
opposed to configuration. As such, they are present in <operational> (Section 5.3 of [RFC8342])
and <system> [NETMOD-SYSTEM-CONFIG], if implemented.

The example below illustrates what the truststore in <operational> might look like for a server in
its factory default state. Note that the built-in trust anchor bags have the "or:origin" annotation
value "or:system".

<truststore
xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore”
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
or:origin="or:intended">
<certificate-bags>

<certificate-bag or:origin="or:system">
<name>Built-In Manufacturer Trust Anchor Certificates</name>
<description>
Certificates built into the device for authenticating
manufacturer-signed objects, such as TLS server certificates,
vouchers, etc.
</description>
<certificate>
<name>Manufacturer Root CA Cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificate-bag>

<certificate-bag or:origin="or:system">

<name>Built-In Public Trust Anchor Certificates</name>

<description>
Certificates built into the device for authenticating
certificates issued by public certificate authorities,
such as the end-entity certificate for web servers.

</description>

<certificate>
<name>Public Root CA Cert 1</name>
<cert-data>BASE64VALUE=</cert-data>

</certificate>

<certificate>
<name>Public Root CA Cert 2</name>
<cert-data>BASE64VALUE=</cert-data>

</certificate>

<certificate>
<name>Public Root CA Cert 3</name>
<cert-data>BASE64VALUE=</cert-data>

</certificate>

</certificate-bag>

</certificate-bags>
</truststore>

Watsen Standards Track Page 25

https://rfc-editor.org/rfc/rfc8342#section-5.3

RFC 9641 A YANG Data Model for a Truststore October 2024

4. Security Considerations

4.1. Security of Data at Rest

The YANG module specified in this document defines a mechanism called a "truststore" that, by
its name, suggests that its contents are protected from unauthorized modification.

Security controls for the API (i.e., data in motion) are discussed in Section 4.3, but controls for the
data at rest (e.g., on disk) cannot be specified by the YANG module.

In order to satisfy the expectations of a "truststore", server implementations MUST ensure that
the truststore contents are protected from unauthorized modifications when at rest.

4.2. Unconstrained Public Key Usage

This module enables the configuration of public keys without constraints on their usage, e.g.,
what operations the key is allowed to be used for (encryption, verification, or both).

Trust anchors configured via this module are implicitly trusted to validate certification paths that
may include any name, be used for any purpose, or be subject to constraints imposed by an
intermediate CA or by context in which the truststore is used. Implementations are free to use
alternative or auxiliary structures and validation rules to define constraints that limit the
applicability of a trust anchor.

4.3. Considerations for the "ietf-truststore" YANG Module
This section is modeled after the template defined in Section 3.7.1 of [RFC8407].

The "ietf-truststore” YANG module defines "grouping” and "container" statements that are
designed to be accessed via YANG-based management protocols, such as NETCONF [RFC6241]

and RESTCONF [RFC8040]. These protocols have mandatory-to-implement secure transport layers
(e.g., Secure Shell (SSH) [RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and mandatory-to-
implement mutual authentication.

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

Please be aware that this YANG module uses groupings from other YANG modules that define
nodes that may be considered sensitive or vulnerable in network environments. Please review
the security considerations for dependent YANG modules for information as to which nodes may
be considered sensitive or vulnerable in network environments.

Most of the readable data nodes defined in this YANG module are not considered sensitive or
vulnerable in network environments. However, the "cert-data" node uses the NACM "default-
deny-all" extension for reasons described in Section 3.8 of [RFC9640].

Watsen Standards Track Page 26

https://rfc-editor.org/rfc/rfc8407#section-3.7.1
https://rfc-editor.org/rfc/rfc9640#section-3.8

RFC 9641 A YANG Data Model for a Truststore October 2024

All the writable data nodes defined by this module, both in the "grouping" statements as well as
the protocol-accessible "truststore" instance, may be considered sensitive or vulnerable in some
network environments. For instance, any modification to a trust anchor or reference to a trust
anchor may dramatically alter the implemented security policy. For this reason, the NACM
"default-deny-write" extension has been set for all data nodes defined in this module.

This module does not define any "rpc" or "action" statements, and thus, the security
considerations for such are not provided here.

5. IANA Considerations

5.1. The IETF XML Registry

IANA has registered the following URI in the "ns" registry defined of the "IETF XML Registry"
[RFC3688].

URIL: urn:etfiparams:xml:ns:yang:ietf-truststore
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.

5.2. The YANG Module Names Registry

IANA has registered the following YANG module in the "YANG Module Names" registry defined in
[RFC6020].

Name: ietf-truststore

Namespace: urn:ietf:params:xml:ns:yang:ietf-truststore
Prefix: ts

Reference: RFC 9641

6. References

6.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH) Authentication Protocol",
RFC 4252, DOI 10.17487/RFC4252, January 2006, <https://www.rfc-editor.org/info/
rfc4252>.

[RFC6241] Enns, R, Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed.,
"Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241,
June 2011, <https://www.rfc-editor.org/info/rfc6241>.

Watsen Standards Track Page 27

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc6241

RFC 9641 A YANG Data Model for a Truststore October 2024

[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI
10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.

[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI
10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model",
STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-
editor.org/info/rfc8341>.

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446,
DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.

[RFCI9000] Iyengar,]., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based Multiplexed and
Secure Transport", RFC 9000, DOI 10.17487/RFC9000, May 2021, <https://
www.rfc-editor.org/info/rfc9000>.

[RFC9640] Watsen, K., "YANG Data Types and Groupings for Cryptography", RFC 9640, DOI
10.17487/RFC9640, October 2024, <https://www.rfc-editor.org/info/rfc9640>.

6.2. Informative References

[HTTP-CLIENT-SERVER] Watsen, K., "YANG Groupings for HTTP Clients and HTTP Servers",
Work in Progress, Internet-Draft, draft-ietf-netconf-http-client-server-23, 15
August 2024, <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-
server-23>.

[NETCONF-CLIENT-SERVER] Watsen, K., "NETCONTF Client and Server Models", Work in
Progress, Internet-Draft, draft-ietf-netconf-netconf-client-server-37, 14 August
2024, <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-
server-37>.

[NETMOD-SYSTEM-CONFIG] Ma, Q., Wu, Q., and C. Feng, "System-defined Configuration", Work
in Progress, Internet-Draft, draft-ietf-netmod-system-config-09, 29 September
2024, <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-09>.

[RESTCONF-CLIENT-SERVER] Watsen, K., "RESTCONF Client and Server Models", Work in
Progress, Internet-Draft, draft-ietf-netconf-restconf-client-server-38, 14 August
2024, <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-
server-38>.

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688,
January 2004, <https://www.rfc-editor.org/info/rfc3688>.

Watsen Standards Track Page 28

https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9640
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-23
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-23
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-37
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-37
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-09
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-38
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-38
https://www.rfc-editor.org/info/rfc3688

RFC 9641

[RFC6020]

[RFC8259]

[RFC8340]

[RFC8342]

[RFC8407]

[RFC8572]

[REC8792]

[RFC9642]

[RFC9643]

[RFC9644]

[RFC9645]

A YANG Data Model for a Truststore October 2024

Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October
2010, <https://www.rfc-editor.org/info/rfc6020>.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format",
STD 90, RFC 8259, DOI 10.17487/RFC8259, December 2017, <https://www.rfc-
editor.org/info/rfc8259>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI
10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network
Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342,
March 2018, <https://www.rfc-editor.org/info/rfc8342>.

Bierman, A., "Guidelines for Authors and Reviewers of Documents Containing
YANG Data Models", BCP 216, RFC 8407, DOI 10.17487/RFC8407, October 2018,
<https://www.rfc-editor.org/info/rfc8407>.

Watsen, K., Farrer, L., and M. Abrahamsson, "Secure Zero Touch Provisioning
(SZTP)", RFC 8572, DOI 10.17487/RFC8572, April 2019, <https://www.rfc-
editor.org/info/rfc8572>.

Watsen, K., Auerswald, E., Farrel, A., and Q. Wu, "Handling Long Lines in
Content of Internet-Drafts and RFCs", RFC 8792, DOI 10.17487/RFC8792, June
2020, <https://www.rfc-editor.org/info/rfc8792>.

Watsen, K., "A YANG Data Model for a Keystore", RFC 9642, DOI 10.17487/
RFC9642, October 2024, <https://www.rfc-editor.org/info/rfc9642>.

Watsen, K. and M. Scharf, "YANG Groupings for TCP Clients and TCP Servers",
RFC 9643, DOI 10.17487/RFC9643, October 2024, <https://www.rfc-editor.org/info/
rfc9643>.

Watsen, K., "YANG Groupings for SSH Clients and SSH Servers", RFC 9644, DOI
10.17487/RFC9644, October 2024, <https://www.rfc-editor.org/info/rfc9644>.

Watsen, K., "YANG Groupings for TLS Clients and TLS Servers", RFC 9645, DOI
10.17487/RFC9645, October 2024, <https://www.rfc-editor.org/info/rfc9645>.

[W3C.REC-xml-20081126] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., and F. Yergeau,

Watsen

"Extensible Markup Language (XML) 1.0 (Fifth Edition)", World Wide Web
Consortium Recommendation REC-xml-20081126, November 2008, <https://
www.w3.0rg/TR/2008/REC-xml-20081126/>.

Standards Track Page 29

https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8792
https://www.rfc-editor.org/info/rfc9642
https://www.rfc-editor.org/info/rfc9643
https://www.rfc-editor.org/info/rfc9643
https://www.rfc-editor.org/info/rfc9644
https://www.rfc-editor.org/info/rfc9645
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/

RFC 9641 A YANG Data Model for a Truststore October 2024

Acknowledgements

The authors especially thank Henk Birkholz for contributing YANG to the "ietf-truststore" module
supporting raw public keys and PSKs (pre-shared or pairwise-symmetric keys). While these
contributions were eventually replaced by reusing the existing support for asymmetric and
symmetric trust anchors, respectively, it was only through Henk's initiative that the WG was able
to come to that result.

The authors additionally thank the following for helping give shape to this work (ordered by first
name): Balazs Kovacs, Carl Wallace, Eric Voit, Eric Vyncke, Francesca Palombini, Jensen Zhang,
Jurgen Schonwalder, Lars Eggert, Liang Xia, Martin Bjorklund, Murray Kucherawy, Nick
Hancock, Paul Kyzivat, Qin Wu, Rob Wilton, Robert Varga, Roman Danyliw, and Yoav Nir.

Author's Address

Kent Watsen
Watsen Networks
Email: kent+ietf@watsen.net

Watsen Standards Track Page 30

mailto:kent+ietf@watsen.net

	RFC 9641
	A YANG Data Model for a Truststore
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to Other RFCs
	1.2. Specification Language
	1.3. Adherence to the NMDA
	1.4. Conventions

	2. The "ietf-truststore" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Typedefs
	2.1.3. Groupings
	2.1.3.1. The "central-certificate-ref-grouping" Grouping
	2.1.3.2. The "central-public-key-ref-grouping" Grouping
	2.1.3.3. The "inline-or-truststore-certs-grouping" Grouping
	2.1.3.4. The "inline-or-truststore-public-keys-grouping" Grouping
	2.1.3.5. The "truststore-grouping" Grouping

	2.1.4. Protocol-Accessible Nodes

	2.2. Example Usage
	2.2.1. A Truststore Instance
	2.2.2. A Certificate Expiration Notification
	2.2.3. The "Inline or Truststore" Groupings

	2.3. YANG Module

	3. Support for Built-In Trust Anchors
	4. Security Considerations
	4.1. Security of Data at Rest
	4.2. Unconstrained Public Key Usage
	4.3. Considerations for the "ietf-truststore" YANG Module

	5. IANA Considerations
	5.1. The IETF XML Registry
	5.2. The YANG Module Names Registry

	6. References
	6.1. Normative References
	6.2. Informative References

	Acknowledgements
	Author's Address

 A YANG Data Model for a Truststore

 Watsen Networks

 kent+ietf@watsen.net

 OPS
 netconf
 IETF

 This document presents a YANG module for configuring
 bags of certificates and bags of public keys that can be
 referenced by other data models for trust. Notifications
 are sent when certificates are about to expire.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Relation to Other RFCs

 . Specification Language

 . Adherence to the NMDA

 . Conventions

 . The "ietf-truststore" Module

 . Data Model Overview

 . Example Usage

 . YANG Module

 . Support for Built-In Trust Anchors

 . Security Considerations

 . Security of Data at Rest

 . Unconstrained Public Key Usage

 . Considerations for the "ietf-truststore" YANG Module

 . IANA Considerations

 . The IETF XML Registry

 . The YANG Module Names Registry

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Author's Address

 Introduction
 This document presents a YANG 1.1 module that has
 the following characteristics:

 Provide a central truststore for storing raw public keys and/or certificates.
 Provide support for storing named bags of raw public keys and/or named bags
 of certificates.
 Provide types that can be used to reference raw public keys or certificates
 stored in the central truststore.
 Provide groupings that enable raw public keys and certificates to be
 configured inline or as references to truststore instances.
 Enable the truststore to be instantiated in other data models, in addition
 to or in lieu of the central truststore instance.

 Relation to Other RFCs
 This document presents a YANG module
 that is part of a collection of RFCs that work together
 to ultimately support the configuration of both the clients
 and servers of both the Network Configuration Protocol (NETCONF) and
 RESTCONF .
 The dependency relationship between the primary YANG groupings
 defined in the various RFCs is presented in the below diagram.
 In some cases, a document may define secondary groupings that
 introduce dependencies not illustrated in the diagram.
 The labels in the diagram are shorthand names for the defining
 RFCs. The citation references for shorthand names are provided below
 the diagram.
 Please note that the arrows in the diagram point from referencer
 to referenced. For example, the "crypto-types" RFC does not
 have any dependencies, whilst the "keystore" RFC depends on the
 "crypto-types" RFC.

 crypto-types
 ^ ^
 / \
 / \
 truststore keystore
 ^ ^ ^ ^
 | +---------+ | |
 | | | |
 | +------------+ |
tcp-client-server | / | |
 ^ ^ ssh-client-server | |
 | | ^ tls-client-server
 | | | ^ ^ http-client-server
 | | | | | ^
		+-----+ +---------+		
+-----------	--------	--------------+		
 +-----------+ | | | | |
 | | | | | |
 | | | | | |
 netconf-client-server restconf-client-server

 Label in Diagram to RFC Mapping

 Label in Diagram
 Reference

 crypto-types

 truststore

 RFC 9641

 keystore

 tcp-client-server

 ssh-client-server

 tls-client-server

 http-client-server

 netconf-client-server

 restconf-client-server

 Specification Language

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Adherence to the NMDA
 This document is compliant with the Network Management Datastore Architecture
 (NMDA) . For instance, trust anchors installed
 during manufacturing (e.g., for trusted, well-known services) are expected
 to appear in <operational> (see).

 Conventions
 Various examples in this document use "BASE64VALUE=" as a
 placeholder value for binary data that has been base64
 encoded (see). This
 placeholder value is used because real base64-encoded structures
 are often many lines long and hence distracting to the example
 being presented.
 Various examples in this document use the XML
 encoding. Other encodings, such as JSON ,
	could alternatively be used.
 Various examples in this document contain long lines that may be folded,
 as described in .
 This document uses the adjective "central" with the word "truststore"
 to refer to the top-level instance of the "truststore-grouping" grouping when
 the "central-truststore-supported" feature is enabled. Please be
 aware that consuming YANG modules MAY instantiate the "truststore-grouping" grouping
 in other locations. All such other instances are not the "central"
 instance.

 The "ietf-truststore" Module
 This section defines a YANG 1.1 module called
 "ietf-truststore". A high-level overview of the module is provided in
 . Examples illustrating the module's use
 are provided in ("Example Usage"). The YANG
 module itself is defined in .

 Data Model Overview
 This section provides an overview of the "ietf-truststore" module
 in terms of its features, typedefs, groupings, and protocol-accessible
 nodes.

 Features
 The following diagram lists all the "feature" statements
 defined in the "ietf-truststore" module:

Features:
 +-- central-truststore-supported
 +-- inline-definitions-supported
 +-- certificates
 +-- public-keys

 The diagram above uses syntax that is similar to but not
 defined in .

 Typedefs
 The following diagram lists the "typedef" statements defined in
 the "ietf-truststore" module:

Typedefs:
 leafref
 +-- central-certificate-bag-ref
 +-- central-certificate-ref
 +-- central-public-key-bag-ref
 +-- central-public-key-ref

 The diagram above uses syntax that is similar to but not
 defined in .
 Comments:

 All the typedefs defined in the "ietf-truststore" module
 extend the base "leafref" type defined in .
 The leafrefs refer to certificates, public keys, and bags
 in the central truststore when this module is implemented.
 These typedefs are provided to aid consuming
 modules that import the "ietf-truststore" module.

 Groupings
 The "ietf-truststore" module defines the following "grouping" statements:

 central-certificate-ref-grouping
 central-public-key-ref-grouping
 inline-or-truststore-certs-grouping
 inline-or-truststore-public-keys-grouping
 truststore-grouping

 Each of these groupings are presented in the following subsections.

 The "central-certificate-ref-grouping" Grouping
 The following tree diagram illustrates the
 "central-certificate-ref-grouping" grouping:

 grouping central-certificate-ref-grouping:
 +-- certificate-bag? ts:central-certificate-bag-ref
 | {central-truststore-supported,certificates}?
 +-- certificate? ts:central-certificate-ref
 {central-truststore-supported,certificates}?

 Comments:

 The "central-certificate-ref-grouping" grouping is provided
 solely as a convenience to consuming modules that wish to
 enable the configuration of a reference to a certificate
 in a certificate-bag in the truststore.
 The "certificate-bag" leaf uses the "central-certificate-bag-ref"
 typedef defined in .
 The "certificate" leaf uses the "central-certificate-ref"
 typedef defined in .

 The "central-public-key-ref-grouping" Grouping
 The following tree diagram illustrates the
 "central-public-key-ref-grouping" grouping:

 grouping central-public-key-ref-grouping:
 +-- public-key-bag? ts:central-public-key-bag-ref
 | {central-truststore-supported,public-keys}?
 +-- public-key? ts:central-public-key-ref
 {central-truststore-supported,public-keys}?

 Comments:

 The "central-public-key-ref-grouping" grouping is provided
 solely as a convenience to consuming modules that wish to
 enable the configuration of a reference to a public-key
 in a public-key-bag in the truststore.
 The "public-key-bag" leaf uses the "central-public-key-bag-ref"
 typedef defined in .
 The "public-key" leaf uses the "central-public-key-ref"
 typedef defined in .

 The "inline-or-truststore-certs-grouping" Grouping
 The following tree diagram illustrates the
 "inline-or-truststore-certs-grouping" grouping:

 grouping inline-or-truststore-certs-grouping:
 +-- (inline-or-truststore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +-- certificate* [name]
 | +-- name string
 | +---u ct:trust-anchor-cert-grouping
 +--:(central-truststore)
 {central-truststore-supported,certificates}?
 +-- central-truststore-reference?
 ts:central-certificate-bag-ref

 Comments:

 The "inline-or-truststore-certs-grouping" grouping is provided
 solely as a convenience to consuming modules that wish to offer
 an option whether a bag of certificates can be defined inline
 or as a reference to a bag in the truststore.
 A "choice" statement is used to expose the various options.
 Each option is enabled by a "feature" statement. Additional
 "case" statements MAY be augmented in if, e.g., there is a
 need to reference a bag in an alternate location.
 For the "inline-definition" option, the "certificate" node
 uses the "trust-anchor-cert-grouping" grouping discussed in
 .
 For the "central-truststore" option, the "central-truststore-reference" node is an
 instance of the "central-certificate-bag-ref" discussed in .

 The "inline-or-truststore-public-keys-grouping" Grouping
 The following tree diagram illustrates the
 "inline-or-truststore-public-keys-grouping" grouping:

 grouping inline-or-truststore-public-keys-grouping:
 +-- (inline-or-truststore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +-- public-key* [name]
 | +-- name string
 | +---u ct:public-key-grouping
 +--:(central-truststore)
 {central-truststore-supported,public-keys}?
 +-- central-truststore-reference?
 ts:central-public-key-bag-ref

 Comments:

 The "inline-or-truststore-public-keys-grouping" grouping is provided
 solely as a convenience to consuming modules that wish to offer
 an option whether a bag of public keys can be defined inline
 or as a reference to a bag in the truststore.
 A "choice" statement is used to expose the various options.
 Each option is enabled by a "feature" statement. Additional
 "case" statements MAY be augmented in if, e.g., there is a
 need to reference a bag in an alternate location.
 For the "inline-definition" option, the "public-key" node uses the
 "public-key-grouping" grouping discussed in .
 For the "central-truststore" option, the "central-truststore-reference" is an
 instance of the "certificate-bag-ref" discussed in .

 The "truststore-grouping" Grouping
 The following tree diagram illustrates the
 "truststore-grouping" grouping:

 grouping truststore-grouping:
 +-- certificate-bags {certificates}?
 | +-- certificate-bag* [name]
 | +-- name string
 | +-- description? string
 | +-- certificate* [name]
 | +-- name string
 | +---u ct:trust-anchor-cert-grouping
 +-- public-key-bags {public-keys}?
 +-- public-key-bag* [name]
 +-- name string
 +-- description? string
 +-- public-key* [name]
 +-- name string
 +---u ct:public-key-grouping

 Comments:

 The "truststore-grouping" grouping defines a truststore instance
 as being composed of certificates and/or public keys, both of which
 are enabled by "feature" statements. The structures supporting
 certificates and public keys are essentially the same, having an
 outer list of "bags" containing an inner list of objects
 (i.e., certificates or public keys). The bags enable trust anchors
 serving a common purpose to be grouped and referenced together.
 For certificates, each certificate is defined by the
 "trust-anchor-cert-grouping" grouping (). The "cert-data"
 node is a Cryptographic Message Syntax (CMS) structure that can be composed of a chain of one or
 more certificates. Additionally, the "certificate-expiration"
 notification enables the server to alert clients when certificates
 are nearing expiration or have already expired.
 For public keys, each public key is defined by the
 "public-key-grouping" grouping (). The "public-key"
 node can be one of any number of structures specified by the
 "public-key-format" identity node.

 Protocol-Accessible Nodes
 The following tree diagram lists all the
 protocol-accessible nodes defined in the "ietf-truststore" module without
 expanding the "grouping" statements:

module: ietf-truststore
 +--rw truststore {central-truststore-supported}?
 +---u truststore-grouping

 The following tree diagram lists all the
 protocol-accessible nodes defined in the "ietf-truststore" module with
 all "grouping" statements expanded, enabling the truststore's full
 structure to be seen:

module: ietf-truststore
 +--rw truststore {central-truststore-supported}?
 +--rw certificate-bags {certificates}?
 | +--rw certificate-bag* [name]
 | +--rw name string
 | +--rw description? string
 | +--rw certificate* [name]
 | +--rw name string
 | +--rw cert-data trust-anchor-cert-cms
 | +---n certificate-expiration
 | {certificate-expiration-notification}?
 | +-- expiration-date yang:date-and-time
 +--rw public-key-bags {public-keys}?
 +--rw public-key-bag* [name]
 +--rw name string
 +--rw description? string
 +--rw public-key* [name]
 +--rw name string
 +--rw public-key-format identityref
 +--rw public-key binary

 Comments:

 Protocol-accessible nodes are those nodes that are accessible
 when the module is "implemented", as described in .
 The protocol-accessible nodes for the "ietf-truststore" module
 are instances of the "truststore-grouping" grouping discussed in
 .
 The top-level "truststore" node is additionally constrained
 by the "central-truststore-supported" feature.
 The "truststore-grouping" grouping is discussed in
 .
 The reason for why the "truststore-grouping" grouping exists separate
 from the protocol-accessible nodes definition is to enable
 instances of the truststore to be instantiated in other
 locations, as may be needed or desired by some modules.

 Example Usage
 The examples in this section are encoded using XML, such as might
 be the case when using the NETCONF protocol. Other encodings MAY
 be used, such as JSON when using the RESTCONF protocol.

 A Truststore Instance
 This section presents an example illustrating trust anchors
 in <intended>, as per .
 Please see for an example illustrating
 built-in values in <operational>.
 The example contained in this section defines eight bags of trust
 anchors. There are four certificate-based bags and four public-key-based
 bags. The following diagram provides an overview of the
 contents in the example:

Certificate Bags
 +-- Trust anchor certs for authenticating a set of remote servers
 +-- End entity certs for authenticating a set of remote servers
 +-- Trust anchor certs for authenticating a set of remote clients
 +-- End entity certs for authenticating a set of remote clients

Public Key Bags
 +-- SSH keys to authenticate a set of remote SSH servers
 +-- SSH keys to authenticate a set of remote SSH clients
 +-- Raw public keys to authenticate a set of remote SSH servers
 +-- Raw public keys to authenticate a set of remote SSH clients

=============== NOTE: '\' line wrapping per RFC 8792 ================

<truststore
 xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- A bag of Certificate Bags -->
 <certificate-bags>

 <!-- Trust Anchor Certs for Authenticating Servers -->
 <certificate-bag>
 <name>trusted-server-ca-certs</name>
 <description>
 Trust anchors (i.e., CA certs) used to authenticate server
 certificates. A server certificate is authenticated if its
 end-entity certificate has a chain of trust to one of these
 certificates.
 </description>
 <certificate>
 <name>Server Cert Issuer #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Server Cert Issuer #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificate-bag>

 <!-- End Entity Certs for Authenticating Servers -->
 <certificate-bag>
 <name>trusted-server-ee-certs</name>
 <description>
 Specific end-entity certificates used to authenticate server
 certificates. A server certificate is authenticated if its
 end-entity certificate is an exact match to one of these
 certificates.
 </description>
 <certificate>
 <name>My Application #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>My Application #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificate-bag>

 <!-- Trust Anchor Certs for Authenticating Clients -->
 <certificate-bag>
 <name>trusted-client-ca-certs</name>
 <description>
 Trust anchors (i.e., CA certs) used to authenticate client
 certificates. A client certificate is authenticated if its
 end-entity certificate has a chain of trust to one of these
 certificates.
 </description>
 <certificate>
 <name>Client Identity Issuer #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Client Identity Issuer #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificate-bag>

 <!-- End Entity Certs for Authenticating Clients -->
 <certificate-bag>
 <name>trusted-client-ee-certs</name>
 <description>
 Specific end-entity certificates used to authenticate client
 certificates. A client certificate is authenticated if its
 end-entity certificate is an exact match to one of these
 certificates.
 </description>
 <certificate>
 <name>George Jetson</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Fred Flintstone</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificate-bag>
 </certificate-bags>

 <!-- A List of Public Key Bags -->
 <public-key-bags>

 <!-- Public Keys for Authenticating SSH Servers -->
 <public-key-bag>
 <name>trusted-ssh-public-keys</name>
 <description>
 Specific SSH public keys used to authenticate SSH server
 public keys. An SSH server public key is authenticated if
 its public key is an exact match to one of these public keys.

 This list of SSH public keys is analogous to OpenSSH's
 "/etc/ssh/ssh_known_hosts" file.
 </description>
 <public-key>
 <name>corp-fw1</name>
 <public-key-format>ct:ssh-public-key-format</public-key-form\
at>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>corp-fw2</name>
 <public-key-format>ct:ssh-public-key-format</public-key-form\
at>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </public-key-bag>

 <!-- SSH Public Keys for Authenticating Application A -->
 <public-key-bag>
 <name>SSH Public Keys for Application A</name>
 <description>
 SSH public keys used to authenticate application A's SSH
 public keys. An SSH public key is authenticated if it
 is an exact match to one of these public keys.
 </description>
 <public-key>
 <name>Application Instance #1</name>
 <public-key-format>ct:ssh-public-key-format</public-key-form\
at>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>Application Instance #2</name>
 <public-key-format>ct:ssh-public-key-format</public-key-form\
at>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </public-key-bag>

 <!-- Raw Public Keys for TLS Servers -->
 <public-key-bag>
 <name>Raw Public Keys for TLS Servers</name>
 <public-key>
 <name>Raw Public Key #1</name>
 <public-key-format>ct:subject-public-key-info-format</public\
-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>Raw Public Key #2</name>
 <public-key-format>ct:subject-public-key-info-format</public\
-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </public-key-bag>

 <!-- Raw Public Keys for TLS Clients -->
 <public-key-bag>
 <name>Raw Public Keys for TLS Clients</name>
 <public-key>
 <name>Raw Public Key #1</name>
 <public-key-format>ct:subject-public-key-info-format</public\
-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>Raw Public Key #2</name>
 <public-key-format>ct:subject-public-key-info-format</public\
-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </public-key-bag>
 </public-key-bags>
</truststore>

 A Certificate Expiration Notification
 The following example illustrates the "certificate-expiration"
 notification (per)
 for a certificate configured in the truststore described in .

=============== NOTE: '\' line wrapping per RFC 8792 ================

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2018-05-25T00:01:00Z</eventTime>
 <truststore xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore">
 <certificate-bags>
 <certificate-bag>
 <name>trusted-client-ee-certs</name>
 <certificate>
 <name>George Jetson</name>
 <certificate-expiration>
 <expiration-date>2024-01-05T14:18:53-05:00</expiration-d\
ate>
 </certificate-expiration>
 </certificate>
 </certificate-bag>
 </certificate-bags>
 </truststore>
</notification>

 The "Inline or Truststore" Groupings
 This section illustrates the various "inline-or-truststore" groupings
 defined in the "ietf-truststore" module, specifically the
 "inline-or-truststore-certs-grouping"
 () and
 "inline-or-truststore-public-keys-grouping"
 ()
 groupings.
 These examples assume the existence of an example module called "ex-truststore-usage"
 that has the namespace "https://example.com/ns/example-truststore-usage".
 The "ex-truststore-usage" module is first presented using tree diagrams
 , followed by an instance example illustrating
 all the "inline-or-truststore" groupings in use, followed by the YANG
 module itself.
 The following tree diagram illustrates the "ex-truststore-usage" module without
 expanding the "grouping" statements:

module: ex-truststore-usage
 +--rw truststore-usage
 +--rw cert* [name]
 | +--rw name string
 | +---u ts:inline-or-truststore-certs-grouping
 +--rw public-key* [name]
 +--rw name string
 +---u ts:inline-or-truststore-public-keys-grouping

 The following tree diagram illustrates the "ex-truststore-usage"
 module with all "grouping" statements expanded, enabling the
 truststore's full structure to be seen:

module: ex-truststore-usage
 +--rw truststore-usage
 +--rw cert* [name]
 | +--rw name string
 | +--rw (inline-or-truststore)
 | +--:(inline) {inline-definitions-supported}?
 | | +--rw inline-definition
 | | +--rw certificate* [name]
 | | +--rw name string
 | | +--rw cert-data
 | | | trust-anchor-cert-cms
 | | +---n certificate-expiration
 | | {certificate-expiration-notification}?
 | | +-- expiration-date yang:date-and-time
 | +--:(central-truststore)
 | {central-truststore-supported,certificates}?
 | +--rw central-truststore-reference?
 | ts:central-certificate-bag-ref
 +--rw public-key* [name]
 +--rw name string
 +--rw (inline-or-truststore)
 +--:(inline) {inline-definitions-supported}?
 | +--rw inline-definition
 | +--rw public-key* [name]
 | +--rw name string
 | +--rw public-key-format identityref
 | +--rw public-key binary
 +--:(central-truststore)
 {central-truststore-supported,public-keys}?
 +--rw central-truststore-reference?
 ts:central-public-key-bag-ref

 The following example provides two equivalent instances of
 each grouping, the first being a reference to a truststore
 and the second being defined inline. The instance having
 a reference to a truststore is consistent with the truststore
 defined in . The two instances are
 equivalent, as the inlined instance example contains
 the same values defined by the truststore instance referenced
 by its sibling example.

=============== NOTE: '\' line wrapping per RFC 8792 ================

<truststore-usage
 xmlns="https://example.com/ns/example-truststore-usage"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- The following two equivalent examples illustrate -->
 <!-- the "inline-or-truststore-certs-grouping" grouping: -->

 <cert>
 <name>example 1a</name>
 <central-truststore-reference>trusted-client-ca-certs</central-t\
ruststore-reference>
 </cert>

 <cert>
 <name>example 1b</name>
 <inline-definition>
 <certificate>
 <name>Client Identity Issuer #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Client Identity Issuer #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </inline-definition>
 </cert>

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-truststore-public-keys-grouping" grouping: -->

 <public-key>
 <name>example 2a</name>
 <central-truststore-reference>trusted-ssh-public-keys</central-t\
ruststore-reference>
 </public-key>

 <public-key>
 <name>example 2b</name>
 <inline-definition>
 <public-key>
 <name>corp-fw1</name>
 <public-key-format>ct:ssh-public-key-format</public-key-form\
at>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>corp-fw2</name>
 <public-key-format>ct:ssh-public-key-format</public-key-form\
at>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </inline-definition>
 </public-key>

</truststore-usage>

 Following is the "ex-truststore-usage" module's YANG definition:

module ex-truststore-usage {
 yang-version 1.1;
 namespace "https://example.com/ns/example-truststore-usage";
 prefix etu;

 import ietf-truststore {
 prefix ts;
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 }

 organization
 "Example Corporation";

 contact
 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description
 "This example module illustrates notable groupings defined
 in the 'ietf-truststore' module.";

 revision 2024-10-10 {
 description
 "Initial version.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 }

 container truststore-usage {
 description
 "An illustration of the various truststore groupings.";
 list cert {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this cert.";
 }
 uses ts:inline-or-truststore-certs-grouping;
 description
 "A cert that may be configured locally or be
 a reference to a cert in the truststore.";
 }
 list public-key {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this cert.";
 }
 uses ts:inline-or-truststore-public-keys-grouping;
 description
 "A public key that may be configured locally or be
 a reference to a public key in the truststore.";
 }
 }
}

 YANG Module
 This YANG module imports modules from
 and .

module ietf-truststore {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-truststore";
 prefix ts;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }
 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>
 Author: Kent Watsen <kent+ietf@watsen.net>";
 description
 "This module defines a 'truststore' to centralize management
 of trust anchors, including certificates and public keys.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9641
 (https://www.rfc-editor.org/info/rfc9641); see the RFC
 itself for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 }

 /****************/
 /* Features */
 /****************/

 feature central-truststore-supported {
 description
 "The 'central-truststore-supported' feature indicates that
 the server supports the truststore (i.e., implements the
 'ietf-truststore' module).";
 }

 feature inline-definitions-supported {
 description
 "The 'inline-definitions-supported' feature indicates that
 the server supports locally defined trust anchors.";
 }

 feature certificates {
 description
 "The 'certificates' feature indicates that the server
 implements the /truststore/certificate-bags subtree.";
 }

 feature public-keys {
 description
 "The 'public-keys' feature indicates that the server
 implements the /truststore/public-key-bags subtree.";
 }

 /****************/
 /* Typedefs */
 /****************/

 typedef central-certificate-bag-ref {
 type leafref {
 path "/ts:truststore/ts:certificate-bags/"
 + "ts:certificate-bag/ts:name";
 }
 description
 "This typedef defines a reference to a certificate bag
 in the central truststore.";
 }

 typedef central-certificate-ref {
 type leafref {
 path "/ts:truststore/ts:certificate-bags/ts:certificate-bag"
 + "[ts:name = current()/../certificate-bag]/"
 + "ts:certificate/ts:name";
 }
 description
 "This typedef defines a reference to a specific certificate
 in a certificate bag in the central truststore. This typedef
 requires that there exist a sibling 'leaf' node called
 'certificate-bag' that SHOULD have the
 'central-certificate-bag-ref' typedef.";
 }

 typedef central-public-key-bag-ref {
 type leafref {
 path "/ts:truststore/ts:public-key-bags/"
 + "ts:public-key-bag/ts:name";
 }
 description
 "This typedef defines a reference to a public key bag
 in the central truststore.";
 }

 typedef central-public-key-ref {
 type leafref {
 path "/ts:truststore/ts:public-key-bags/ts:public-key-bag"
 + "[ts:name = current()/../public-key-bag]/"
 + "ts:public-key/ts:name";
 }
 description
 "This typedef defines a reference to a specific public key
 in a public key bag in the truststore. This typedef
 requires that there exist a sibling 'leaf' node called
 'public-key-bag' SHOULD have the
 'central-public-key-bag-ref' typedef.";
 }

 /*****************/
 /* Groupings */
 /*****************/
 // *-ref groupings

 grouping central-certificate-ref-grouping {
 description
 "Grouping for the reference to a certificate in a
 certificate-bag in the central truststore.";
 leaf certificate-bag {
 nacm:default-deny-write;
 if-feature "central-truststore-supported";
 if-feature "certificates";
 type ts:central-certificate-bag-ref;
 must '../certificate';
 description
 "Reference to a certificate-bag in the truststore.";
 }
 leaf certificate {
 nacm:default-deny-write;
 if-feature "central-truststore-supported";
 if-feature "certificates";
 type ts:central-certificate-ref;
 must '../certificate-bag';
 description
 "Reference to a specific certificate in the
 referenced certificate-bag.";
 }
 }

 grouping central-public-key-ref-grouping {
 description
 "Grouping for the reference to a public key in a
 public-key-bag in the central truststore.";
 leaf public-key-bag {
 nacm:default-deny-write;
 if-feature "central-truststore-supported";
 if-feature "public-keys";
 type ts:central-public-key-bag-ref;
 description
 "Reference of a public key bag in the truststore, including
 the certificate to authenticate the TLS client.";
 }
 leaf public-key {
 nacm:default-deny-write;
 if-feature "central-truststore-supported";
 if-feature "public-keys";
 type ts:central-public-key-ref;
 description
 "Reference to a specific public key in the
 referenced public-key-bag.";
 }
 }

 // inline-or-truststore-* groupings

 grouping inline-or-truststore-certs-grouping {
 description
 "A grouping for the configuration of a list of certificates.
 The list of certificates may be defined inline or as a
 reference to a certificate bag in the central truststore.

 Servers that wish to define alternate truststore locations
 MUST augment in custom 'case' statements, enabling
 references to those alternate truststore locations.";
 choice inline-or-truststore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the truststore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container for locally configured trust anchor
 certificates.";
 list certificate {
 key "name";
 min-elements 1;
 description
 "A trust anchor certificate or chain of certificates.";
 leaf name {
 type string;
 description
 "An arbitrary name for this certificate.";
 }
 uses ct:trust-anchor-cert-grouping {
 refine "cert-data" {
 mandatory true;
 }
 }
 }
 }
 }
 case central-truststore {
 if-feature "central-truststore-supported";
 if-feature "certificates";
 leaf central-truststore-reference {
 type ts:central-certificate-bag-ref;
 description
 "A reference to a certificate bag that exists in the
 central truststore.";
 }
 }
 }
 }

 grouping inline-or-truststore-public-keys-grouping {
 description
 "A grouping that allows the public keys to either be
 configured locally, within the data model being used, or be a
 reference to a public key bag stored in the truststore.

 Servers that wish to define alternate truststore locations
 SHOULD augment in custom 'case' statement, enabling
 references to those alternate truststore locations.";
 choice inline-or-truststore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the truststore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold local public key definitions.";
 list public-key {
 key "name";
 description
 "A public key definition.";
 leaf name {
 type string;
 description
 "An arbitrary name for this public key.";
 }
 uses ct:public-key-grouping;
 }
 }
 }
 case central-truststore {
 if-feature "central-truststore-supported";
 if-feature "public-keys";
 leaf central-truststore-reference {
 type ts:central-public-key-bag-ref;
 description
 "A reference to a bag of public keys that exists
 in the central truststore.";
 }
 }
 }
 }

 // the truststore grouping

 grouping truststore-grouping {
 description
 "A grouping definition that enables use in other contexts.
 Where used, implementations MUST augment new 'case'
 statements into the various inline-or-truststore 'choice'
 statements to supply leafrefs to the model-specific
 location(s).";
 container certificate-bags {
 nacm:default-deny-write;
 if-feature "certificates";
 description
 "A collection of certificate bags.";
 list certificate-bag {
 key "name";
 description
 "A bag of certificates. Each bag of certificates should
 be for a specific purpose. For instance, one bag could
 be used to authenticate a specific set of servers, while
 another could be used to authenticate a specific set of
 clients.";
 leaf name {
 type string;
 description
 "An arbitrary name for this bag of certificates.";
 }
 leaf description {
 type string;
 description
 "A description for this bag of certificates. The
 intended purpose for the bag SHOULD be described.";
 }
 list certificate {
 key "name";
 description
 "A trust anchor certificate or chain of certificates.";
 leaf name {
 type string;
 description
 "An arbitrary name for this certificate.";
 }
 uses ct:trust-anchor-cert-grouping {
 refine "cert-data" {
 mandatory true;
 }
 }
 }
 }
 }
 container public-key-bags {
 nacm:default-deny-write;
 if-feature "public-keys";
 description
 "A collection of public key bags.";
 list public-key-bag {
 key "name";
 description
 "A bag of public keys. Each bag of keys SHOULD be for
 a specific purpose. For instance, one bag could be used
 to authenticate a specific set of servers, while another
 could be used to authenticate a specific set of clients.";
 leaf name {
 type string;
 description
 "An arbitrary name for this bag of public keys.";
 }
 leaf description {
 type string;
 description
 "A description for this bag of public keys. The
 intended purpose for the bag MUST be described.";
 }
 list public-key {
 key "name";
 description
 "A public key.";
 leaf name {
 type string;
 description
 "An arbitrary name for this public key.";
 }
 uses ct:public-key-grouping;
 }
 }
 }
 }

 /*********************************/
 /* Protocol-accessible nodes */
 /*********************************/

 container truststore {
 if-feature "central-truststore-supported";
 nacm:default-deny-write;
 description
 "The truststore contains bags of certificates and
 public keys.";
 uses truststore-grouping;
 }
}

 Support for Built-In Trust Anchors
 In some implementations, a server may define some built-in trust anchors.
 For instance, there may be built-in trust anchors enabling the server to
 securely connect to well-known services (e.g., a Secure Zero-Touch Provisioning (SZTP)
 bootstrap server) or public Certification Authority (CA) certificates to connect to arbitrary web
 services using PKI.
 Built-in trust anchors are expected to be set by a vendor-specific process.
 Any ability for operators to set and/or modify built-in trust anchors is outside the
 scope of this document.
 The primary characteristic of the built-in trust anchors is that they are
 provided by the server, as opposed to configuration. As such, they are present in
 <operational> () and <system>
 , if implemented.
 The example below illustrates what the truststore in <operational>
 might look like for a server in its factory default state. Note that the
 built-in trust anchor bags have the "or:origin" annotation value "or:system".

<truststore
 xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <certificate-bags>

 <certificate-bag or:origin="or:system">
 <name>Built-In Manufacturer Trust Anchor Certificates</name>
 <description>
 Certificates built into the device for authenticating
 manufacturer-signed objects, such as TLS server certificates,
 vouchers, etc.
 </description>
 <certificate>
 <name>Manufacturer Root CA Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificate-bag>

 <certificate-bag or:origin="or:system">
 <name>Built-In Public Trust Anchor Certificates</name>
 <description>
 Certificates built into the device for authenticating
 certificates issued by public certificate authorities,
 such as the end-entity certificate for web servers.
 </description>
 <certificate>
 <name>Public Root CA Cert 1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Public Root CA Cert 2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Public Root CA Cert 3</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificate-bag>

 </certificate-bags>
</truststore>

 Security Considerations

 Security of Data at Rest
 The YANG module specified in this document defines a mechanism called a
 "truststore" that, by its name, suggests that its contents are protected
 from unauthorized modification.
 Security controls for the API (i.e., data in motion) are
 discussed in , but controls for the
 data at rest (e.g., on disk) cannot be specified by the YANG module.
 In order to satisfy the expectations of a "truststore", server
 implementations MUST ensure that the truststore contents are protected
 from unauthorized modifications when at rest.

 Unconstrained Public Key Usage
 This module enables the configuration of public keys without
 constraints on their usage, e.g., what operations the key is
 allowed to be used for (encryption, verification, or both).
 Trust anchors configured via this module are implicitly trusted
 to validate certification paths that may include any name, be
 used for any purpose, or be subject to constraints imposed
 by an intermediate CA or by context in which the truststore is
 used. Implementations are free to use alternative or auxiliary
 structures and validation rules to define constraints that
 limit the applicability of a trust anchor.

 Considerations for the "ietf-truststore" YANG Module
 This section is modeled after the template defined in .
 The "ietf-truststore" YANG module defines "grouping" and "container" statements that are designed to be accessed via YANG-based management protocols, such as NETCONF and
 RESTCONF . These protocols have mandatory-to-implement
 secure transport layers (e.g., Secure Shell (SSH) , TLS , and QUIC) and mandatory-to-implement mutual authentication.
 The Network Configuration Access Control Model (NACM) provides the means
 to restrict access for particular users to a preconfigured subset of all available
 protocol operations and content.
 Please be aware that this YANG module uses groupings from
 other YANG modules that define nodes that may be considered
 sensitive or vulnerable in network environments. Please
 review the security considerations for dependent YANG modules
 for information as to which nodes may be considered sensitive
 or vulnerable in network environments.
 Most of the readable data nodes defined in this YANG module
 are not considered sensitive or vulnerable in network environments.
 However, the "cert-data" node uses the NACM "default-deny-all"
 extension for reasons described in .
 All the writable data nodes defined by this module, both in the
 "grouping" statements as well as the protocol-accessible "truststore"
 instance, may be considered sensitive or vulnerable in some network
 environments. For instance, any modification to a trust anchor or
 reference to a trust anchor may dramatically alter the implemented
 security policy. For this reason, the NACM "default-deny-write" extension
 has been set for all data nodes defined in this module.
 This module does not define any "rpc" or "action" statements, and
 thus, the security considerations for such are not provided here.

 IANA Considerations

 The IETF XML Registry
 IANA has registered the following URI in the "ns" registry defined of
 the "IETF XML Registry" .

 URI:
 urn:ietf:params:xml:ns:yang:ietf-truststore
 Registrant Contact:
 The IESG
 XML:
 N/A; the requested URI is an XML namespace.

 The YANG Module Names Registry
 IANA has registered the following YANG module in the "YANG Module Names" registry defined in .

 Name:
 ietf-truststore
 Namespace:
 urn:ietf:params:xml:ns:yang:ietf-truststore
 Prefix:
 ts
 Reference:
 RFC 9641

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The Secure Shell (SSH) Authentication Protocol

 The Secure Shell Protocol (SSH) is a protocol for secure remote login and other secure network services over an insecure network. This document describes the SSH authentication protocol framework and public key, password, and host-based client authentication methods. Additional authentication methods are described in separate documents. The SSH authentication protocol runs on top of the SSH transport layer protocol and provides a single authenticated tunnel for the SSH connection protocol. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Network Configuration Access Control Model

 The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
 This document obsoletes RFC 6536.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.

 YANG Data Types and Groupings for Cryptography

 Watsen Networks

 Informative References

 YANG Groupings for HTTP Clients and HTTP Servers

 Watsen Networks

 This document presents two YANG modules: the first defines a minimal grouping for configuring an HTTP client, and the second defines a minimal grouping for configuring an HTTP server. It is intended that these groupings will be used to help define the configuration for simple HTTP-based protocols (not for complete web servers or browsers). Support is provided for HTTP/1.1, HTTP/2, and HTTP/3.

 Work in Progress

 NETCONF Client and Server Models

 Watsen Networks

 This document presents two YANG modules, one module to configure a NETCONF client and the other module to configure a NETCONF server. Both modules support both the SSH and TLS transport protocols, and support both standard NETCONF and NETCONF Call Home connections. Editorial Note (To be removed by RFC Editor) This draft contains placeholder values that need to be replaced with finalized values at the time of publication. This note summarizes all of the substitutions that are needed. No other RFC Editor instructions are specified elsewhere in this document. Artwork in this document contains shorthand references to drafts in progress. Please apply the following replacements (note: not all may be present): * AAAA --> the assigned RFC value for draft-ietf-netconf-crypto- types * BBBB --> the assigned RFC value for draft-ietf-netconf-trust- anchors * CCCC --> the assigned RFC value for draft-ietf-netconf-keystore * DDDD --> the assigned RFC value for draft-ietf-netconf-tcp-client- server * EEEE --> the assigned RFC value for draft-ietf-netconf-ssh-client- server * FFFF --> the assigned RFC value for draft-ietf-netconf-tls-client- server * GGGG --> the assigned RFC value for draft-ietf-netconf-http- client-server * HHHH --> the assigned RFC value for this draft Artwork in this document contains placeholder values for the date of publication of this draft. Please apply the following replacement: * 2024-08-14 --> the publication date of this draft The "Relation to other RFCs" section Section 1.1 contains the text "one or more YANG modules" and, later, "modules". This text is sourced from a file in a context where it is unknown how many modules a draft defines. The text is not wrong as is, but it may be improved by stating more directly how many modules are defined. The "Relation to other RFCs" section Section 1.1 contains a self- reference to this draft, along with a corresponding reference in the Appendix. Please replace the self-reference in this section with "This RFC" (or similar) and remove the self-reference in the "Normative/Informative References" section, whichever it is in. Tree-diagrams in this draft may use the '\' line-folding mode defined in RFC 8792. However, nicer-to-the-eye is when the '\\' line-folding mode is used. The AD suggested suggested putting a request here for the RFC Editor to help convert "ugly" '\' folded examples to use the '\\' folding mode. "Help convert" may be interpreted as, identify what looks ugly and ask the authors to make the adjustment. The following Appendix section is to be removed prior to publication: * Appendix A. Change Log

 Work in Progress

 System-defined Configuration

 Huawei

 Huawei

 The Network Management Datastore Architecture (NMDA) in RFC 8342 defines several configuration datastores holding configuration. The contents of these configuration datastores are controlled by clients. This document introduces the concept of system configuration datastore holding configuration controlled by the system on which a server is running. The system configuration can be referenced (e.g., leafref) by configuration explicitly created by clients. This document updates RFC 8342.

 Work in Progress

 RESTCONF Client and Server Models

 Watsen Networks

 This document presents two YANG modules, one module to configure a RESTCONF client and the other module to configure a RESTCONF server. Both modules support the TLS transport protocol with both standard RESTCONF and RESTCONF Call Home connections. Editorial Note (To be removed by RFC Editor) This draft contains placeholder values that need to be replaced with finalized values at the time of publication. This note summarizes all of the substitutions that are needed. No other RFC Editor instructions are specified elsewhere in this document. Artwork in this document contains shorthand references to drafts in progress. Please apply the following replacements (note: not all may be present): * AAAA --> the assigned RFC value for draft-ietf-netconf-crypto- types * BBBB --> the assigned RFC value for draft-ietf-netconf-trust- anchors * CCCC --> the assigned RFC value for draft-ietf-netconf-keystore * DDDD --> the assigned RFC value for draft-ietf-netconf-tcp-client- server * EEEE --> the assigned RFC value for draft-ietf-netconf-ssh-client- server * FFFF --> the assigned RFC value for draft-ietf-netconf-tls-client- server * GGGG --> the assigned RFC value for draft-ietf-netconf-http- client-server * HHHH --> the assigned RFC value for draft-ietf-netconf-netconf- client-server * IIII --> the assigned RFC value for this draft Artwork in this document contains placeholder values for the date of publication of this draft. Please apply the following replacement: * 2024-08-14 --> the publication date of this draft The "Relation to other RFCs" section Section 1.1 contains the text "one or more YANG modules" and, later, "modules". This text is sourced from a file in a context where it is unknown how many modules a draft defines. The text is not wrong as is, but it may be improved by stating more directly how many modules are defined. The "Relation to other RFCs" section Section 1.1 contains a self- reference to this draft, along with a corresponding reference in the Appendix. Please replace the self-reference in this section with "This RFC" (or similar) and remove the self-reference in the "Normative/Informative References" section, whichever it is in. Tree-diagrams in this draft may use the '\' line-folding mode defined in RFC 8792. However, nicer-to-the-eye is when the '\\' line-folding mode is used. The AD suggested suggested putting a request here for the RFC Editor to help convert "ugly" '\' folded examples to use the '\\' folding mode. "Help convert" may be interpreted as, identify what looks ugly and ask the authors to make the adjustment. The following Appendix section is to be removed prior to publication: * Appendix A. Change Log

 Work in Progress

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 Network Management Datastore Architecture (NMDA)

 Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.

 Guidelines for Authors and Reviewers of Documents Containing YANG Data Models

 This memo provides guidelines for authors and reviewers of specifications containing YANG modules. Recommendations and procedures are defined, which are intended to increase interoperability and usability of Network Configuration Protocol (NETCONF) and RESTCONF protocol implementations that utilize YANG modules. This document obsoletes RFC 6087.

 Secure Zero Touch Provisioning (SZTP)

 This document presents a technique to securely provision a networking device when it is booting in a factory-default state. Variations in the solution enable it to be used on both public and private networks. The provisioning steps are able to update the boot image, commit an initial configuration, and execute arbitrary scripts to address auxiliary needs. The updated device is subsequently able to establish secure connections with other systems. For instance, a device may establish NETCONF (RFC 6241) and/or RESTCONF (RFC 8040) connections with deployment-specific network management systems.

 Handling Long Lines in Content of Internet-Drafts and RFCs

 This document defines two strategies for handling long lines in width-bounded text content. One strategy, called the "single backslash" strategy, is based on the historical use of a single backslash ('\') character to indicate where line-folding has occurred, with the continuation occurring with the first character that is not a space character (' ') on the next line. The second strategy, called the "double backslash" strategy, extends the first strategy by adding a second backslash character to identify where the continuation begins and is thereby able to handle cases not supported by the first strategy. Both strategies use a self-describing header enabling automated reconstitution of the original content.

 A YANG Data Model for a Keystore

 Watsen Networks

 YANG Groupings for TCP Clients and TCP Servers

 Watsen Networks

 Hochschule Esslingen - University of Applied Sciences

 YANG Groupings for SSH Clients and SSH Servers

 Watsen Networks

 YANG Groupings for TLS Clients and TLS Servers

 Watsen Networks

 Extensible Markup Language (XML) 1.0 (Fifth Edition)

 Acknowledgements
 The authors especially thank for contributing YANG
 to the "ietf-truststore" module supporting raw public keys and PSKs
 (pre-shared or pairwise-symmetric keys). While these contributions
 were eventually replaced by reusing the existing support for
 asymmetric and symmetric trust anchors, respectively, it was only
 through Henk's initiative that the WG was able to come to that result.
 The authors additionally thank the following for helping give shape
 to this work (ordered by first name):
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
	 ,	
 ,
 ,
 ,
 ,
 and .

 Author's Address

 Watsen Networks

 kent+ietf@watsen.net

