
RFC 9642
A YANG Data Model for a Keystore

Abstract
This document presents a YANG module called "ietf-keystore" that enables centralized
configuration of both symmetric and asymmetric keys. The secret value for both key types may
be encrypted or hidden. Asymmetric keys may be associated with certificates. Notifications are
sent when certificates are about to expire.

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9642
Standards Track
October 2024
2070-1721
K. Watsen
Watsen Networks

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9642

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Watsen Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9642
https://www.rfc-editor.org/info/rfc9642
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Relation to Other RFCs

1.2. Specification Language

1.3. Terminology

1.4. Adherence to the NMDA

1.5. Conventions

2. The "ietf-keystore" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. Support for Built-In Keys

4. Encrypting Keys in Configuration

5. Security Considerations

5.1. Security of Data at Rest and in Motion

5.2. Unconstrained Private Key Usage

5.3. Security Considerations for the "ietf-keystore" YANG Module

6. IANA Considerations

6.1. The IETF XML Registry

6.2. The YANG Module Names Registry

7. References

7.1. Normative References

7.2. Informative References

Acknowledgements

Author's Address

3

3

4

5

5

5

6

6

13

22

29

32

34

34

35

35

36

36

36

37

37

37

39

39

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 2

1. Introduction
This document presents a YANG 1.1 module called "ietf-keystore" that enables
centralized configuration of both symmetric and asymmetric keys. The secret value for both key
types may be encrypted or hidden (see). Asymmetric keys may be associated with
certificates. Notifications are sent when certificates are about to expire.

The "ietf-keystore" module defines many "grouping" statements intended for use by other
modules that may import it. For instance, there are groupings that define enabling a key to be
configured either inline (within the defining data model) or as a reference to a key in the central
keystore.

Special consideration has been given for servers that have cryptographic hardware, such as a
trusted platform module (TPM). These servers are unique in that the cryptographic hardware
hides the secret key values. Additionally, such hardware is commonly initialized when
manufactured to protect a "built-in" asymmetric key for which its public half is conveyed in an
identity certificate (e.g., an Initial Device Identifier (IDevID) certificate). See
how built-in keys are supported in Section 3.

This document is intended to reflect existing practices that many server implementations
support at the time of writing. To simplify implementation, advanced key formats may be
selectively implemented.

Implementations may utilize operating-system level keystore utilities (e.g., "Keychain Access" on
MacOS) and/or cryptographic hardware (e.g., TPMs).

[RFC7950]

[RFC9640]

[Std-802.1AR-2018]

1.1. Relation to Other RFCs
This document presents a YANG module that is part of a collection of RFCs that work
together to ultimately support the configuration of both the clients and servers of the Network
Configuration Protocol (NETCONF) and RESTCONF .

The dependency relationship between the primary YANG groupings defined in the various RFCs
is presented in the diagram below. In some cases, a document may define secondary groupings
that introduce dependencies not illustrated in the diagram. The labels in the diagram are
shorthand names for the defining RFCs. The citation references for the shorthand names are
provided below the diagram.

Please note that the arrows in the diagram point from referencer to referenced. For example, the
"crypto-types" RFC does not have any dependencies, whilst the "keystore" RFC depends on the
"crypto-types" RFC.

[RFC7950]

[RFC6241] [RFC8040]

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 3

1.2. Specification Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Label in Diagram Originating RFC

crypto-types

truststore

keystore RFC 9642

tcp-client-server

ssh-client-server

tls-client-server

http-client-server

netconf-client-server

restconf-client-server

Table 1: Labels in Diagram to RFC Mapping

 crypto-types
 ^ ^
 / \
 / \
 truststore keystore
 ^ ^ ^ ^
 | +---------+ | |
 | | | |
 | +------------+ |
tcp-client-server | / | |
 ^ ^ ssh-client-server | |
 | | ^ tls-client-server
 | | | ^ ^ http-client-server
 | | | | | ^
		+-----+ +---------+		
+-----------	--------	--------------+		
 +-----------+ | | | | |
 | | | | | |
 | | | | | |
 netconf-client-server restconf-client-server

[RFC9640]

[RFC9641]

[RFC9643]

[RFC9644]

[RFC9645]

[HTTP-CLIENT-SERVER]

[NETCONF-CLIENT-SERVER]

[RESTCONF-CLIENT-SERVER]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 4

1.3. Terminology
The terms "client" and "server" are defined in and are not redefined here.

The term "keystore" is defined in this document as a mechanism that intends to safeguard
secrets.

The nomenclatures "<running>" and "<operational>" are defined in .

The sentence fragments "augmented" and "augmented in" are used herein as the past tense
verbified form of the "augment" statement defined in .

The term "key" may be used to mean one of three things in this document: 1) the YANG-defined
"asymmetric-key" or "symmetric-key" node defined in this document, 2) the raw key data
possessed by the aforementioned key nodes, or 3) the "key" of a YANG "list" statement. This
document qualifies types '2' and '3' using "raw key value" and "YANG list key" where needed. In
all other cases, an unqualified "key" refers to a YANG-defined "asymmetric-key" or "symmetric-
key" node.

1.4. Adherence to the NMDA
This document is compliant with Network Management Datastore Architecture (NMDA)

. For instance, keys and associated certificates installed during manufacturing (e.g., for
an IDevID certificate) are expected to appear in <operational> (see Section 3).

1.5. Conventions
Various examples in this document use "BASE64VALUE=" as a placeholder value for binary data
that has been base64 encoded (per). This placeholder value is used
because real base64-encoded structures are often many lines long and hence distracting to the
example being presented.

Various examples in this document use the XML encoding. Other
encodings, such as JSON , could alternatively be used.

Various examples in this document contain long lines that may be folded, as described in
.

This document uses the adjective "central" to the word "keystore" to refer to the top-level
instance of the "keystore-grouping", when the "central-keystore-supported" feature is enabled.
Please be aware that consuming YANG modules instantiate the "keystore-grouping" in other
locations. All such other instances are not the "central" instance.

[RFC6241]

[RFC8342]

Section 7.17 of [RFC7950]

[RFC8342]

Section 9.8 of [RFC7950]

[W3C.REC-xml-20081126]
[RFC8259]

[RFC8792]

MAY

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 5

https://rfc-editor.org/rfc/rfc7950#section-7.17
https://rfc-editor.org/rfc/rfc7950#section-9.8

2. The "ietf-keystore" Module
This section defines a YANG 1.1 module called "ietf-keystore". A high-level overview of
the module is provided in Section 2.1. Examples illustrating the module's use are provided in
Section 2.2. The YANG module itself is defined in Section 2.3.

[RFC7950]

2.1. Data Model Overview
This section provides an overview of the "ietf-keystore" module in terms of its features, typedefs,
groupings, and protocol-accessible nodes.

2.1.1. Features

The following diagram lists all the "feature" statements defined in the "ietf-keystore" module:

The diagram above uses syntax that is similar to but not defined in .

Features:
 +-- central-keystore-supported
 +-- inline-definitions-supported
 +-- asymmetric-keys
 +-- symmetric-keys

[RFC8340]

2.1.2. Typedefs

The following diagram lists the "typedef" statements defined in the "ietf-keystore" module:

The diagram above uses syntax that is similar to but not defined in .

Comments:

All the typedefs defined in the "ietf-keystore" module extend the base "leafref" type defined
in .
The leafrefs refer to symmetric and asymmetric keys in the central keystore when this
module is implemented.
These typedefs are provided as an aid to consuming modules that import the "ietf-keystore"
module.

Typedefs:
 leafref
 +-- central-symmetric-key-ref
 +-- central-asymmetric-key-ref

[RFC8340]

•
[RFC7950]

•

•

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 6

2.1.3. Groupings

The "ietf-keystore" module defines the following "grouping" statements:

encrypted-by-grouping
central-asymmetric-key-certificate-ref-grouping
inline-or-keystore-symmetric-key-grouping
inline-or-keystore-asymmetric-key-grouping
inline-or-keystore-asymmetric-key-with-certs-grouping
inline-or-keystore-end-entity-cert-with-key-grouping
keystore-grouping

Each of these groupings are presented in the following subsections.

•
•
•
•
•
•
•

2.1.3.1. The "encrypted-by-grouping" Grouping
The following tree diagram illustrates the "encrypted-by-grouping" grouping:

Comments:

This grouping defines a "choice" statement with options to reference either a symmetric or
an asymmetric key configured in the keystore.
This grouping is usable only when the keystore module is implemented. Servers defining
custom keystore locations augment in alternate "encrypted-by" references to the
alternate locations.

[RFC8340]

 grouping encrypted-by-grouping:
 +-- (encrypted-by)
 +--:(central-symmetric-key-ref)
 | {central-keystore-supported,symmetric-keys}?
 | +-- symmetric-key-ref? ks:central-symmetric-key-ref
 +--:(central-asymmetric-key-ref)
 {central-keystore-supported,asymmetric-keys}?
 +-- asymmetric-key-ref? ks:central-asymmetric-key-ref

•

•
MUST

2.1.3.2. The "central-asymmetric-key-certificate-ref-grouping" Grouping
The following tree diagram illustrates the "central-asymmetric-key-certificate-ref-
grouping" grouping:

[RFC8340]

 grouping central-asymmetric-key-certificate-ref-grouping:
 +-- asymmetric-key? ks:central-asymmetric-key-ref
 | {central-keystore-supported,asymmetric-keys}?
 +-- certificate? leafref

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 7

Comments:

This grouping defines a reference to a certificate in two parts: the first being the name of the
asymmetric key the certificate is associated with, and the second being the name of the
certificate itself.
This grouping is usable only when the keystore module is implemented. Servers defining
custom keystore locations can define an alternate grouping for references to the alternate
locations.

•

•

2.1.3.3. The "inline-or-keystore-symmetric-key-grouping" Grouping
The following tree diagram illustrates the "inline-or-keystore-symmetric-key-
grouping" grouping:

Comments:

The "inline-or-keystore-symmetric-key-grouping" grouping is provided solely as convenience
to consuming modules that wish to offer an option for a symmetric key that is defined either
inline or as a reference to a symmetric key in the keystore.
A "choice" statement is used to expose the various options. Each option is enabled by a
"feature" statement. Additional "case" statements be augmented in if, e.g., there is a
need to reference a symmetric key in an alternate location.
For the "inline-definition" option, the definition uses the "symmetric-key-grouping" grouping
discussed in .
For the "central-keystore" option, the "central-keystore-reference" is an instance of the
"symmetric-key-ref" discussed in Section 2.1.2.

[RFC8340]

 grouping inline-or-keystore-symmetric-key-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:symmetric-key-grouping
 +--:(central-keystore)
 {central-keystore-supported,symmetric-keys}?
 +-- central-keystore-reference?
 ks:central-symmetric-key-ref

•

•
MAY

•
Section 2.1.4.3 of [RFC9640]

•

2.1.3.4. The "inline-or-keystore-asymmetric-key-grouping" Grouping
The following tree diagram illustrates the "inline-or-keystore-asymmetric-key-
grouping" grouping:

[RFC8340]

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 8

https://rfc-editor.org/rfc/rfc9640#section-2.1.4.3

Comments:

The "inline-or-keystore-asymmetric-key-grouping" grouping is provided solely as
convenience to consuming modules that wish to offer an option for an asymmetric key that
is defined either inline or as a reference to an asymmetric key in the keystore.
A "choice" statement is used to expose the various options. Each option is enabled by a
"feature" statement. Additional "case" statements be augmented in if, e.g., there is a
need to reference an asymmetric key in an alternate location.
For the "inline-definition" option, the definition uses the "asymmetric-key-pair-grouping"
grouping discussed in .
For the "central-keystore" option, the "central-keystore-reference" is an instance of the
"asymmetric-key-ref" typedef discussed in Section 2.1.2.

 grouping inline-or-keystore-asymmetric-key-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:asymmetric-key-pair-grouping
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +-- central-keystore-reference?
 ks:central-asymmetric-key-ref

•

•
MAY

•
Section 2.1.4.6 of [RFC9640]

•

2.1.3.5. The "inline-or-keystore-asymmetric-key-with-certs-grouping" Grouping
The following tree diagram illustrates the "inline-or-keystore-asymmetric-key-with-
certs-grouping" grouping:

Comments:

The "inline-or-keystore-asymmetric-key-with-certs-grouping" grouping is provided solely as
convenience to consuming modules that wish to offer an option for an asymmetric key that
is defined either inline or as a reference to an asymmetric key in the keystore.
A "choice" statement is used to expose the various options. Each option is enabled by a
"feature" statement. Additional "case" statements be augmented in if, e.g., there is a
need to reference an asymmetric key in an alternate location.

[RFC8340]

 grouping inline-or-keystore-asymmetric-key-with-certs-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:asymmetric-key-pair-with-certs-grouping
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +-- central-keystore-reference?
 ks:central-asymmetric-key-ref

•

•
MAY

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 9

https://rfc-editor.org/rfc/rfc9640#section-2.1.4.6

For the "inline-definition" option, the definition uses the "asymmetric-key-pair-with-certs-
grouping" grouping discussed in .
For the "central-keystore" option, the "central-keystore-reference" is an instance of the
"asymmetric-key-ref" typedef discussed in Section 2.1.2.

•
Section 2.1.4.12 of [RFC9640]

•

2.1.3.6. The "inline-or-keystore-end-entity-cert-with-key-grouping" Grouping
The following tree diagram illustrates the "inline-or-keystore-end-entity-cert-with-key-
grouping" grouping:

Comments:

The "inline-or-keystore-end-entity-cert-with-key-grouping" grouping is provided solely as
convenience to consuming modules that wish to offer an option for a symmetric key that is
defined either inline or as a reference to a symmetric key in the keystore.
A "choice" statement is used to expose the various options. Each option is enabled by a
"feature" statement. Additional "case" statements be augmented in if, e.g., there is a
need to reference a symmetric key in an alternate location.
For the "inline-definition" option, the definition uses the "asymmetric-key-pair-with-certs-
grouping" grouping discussed in .
For the "central-keystore" option, the "central-keystore-reference" uses the "central-
asymmetric-key-certificate-ref-grouping" grouping discussed in Section 2.1.3.2.

[RFC8340]

 grouping inline-or-keystore-end-entity-cert-with-key-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:asymmetric-key-pair-with-cert-grouping
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +-- central-keystore-reference
 +---u central-asymmetric-key-certificate-ref-grouping

•

•
MAY

•
Section 2.1.4.12 of [RFC9640]

•

2.1.3.7. The "keystore-grouping" Grouping
The following tree diagram illustrates the "keystore-grouping" grouping:[RFC8340]

 grouping keystore-grouping:
 +-- asymmetric-keys {asymmetric-keys}?
 | +-- asymmetric-key* [name]
 | +-- name string
 | +---u ct:asymmetric-key-pair-with-certs-grouping
 +-- symmetric-keys {symmetric-keys}?
 +-- symmetric-key* [name]
 +-- name string
 +---u ct:symmetric-key-grouping

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 10

https://rfc-editor.org/rfc/rfc9640#section-2.1.4.12
https://rfc-editor.org/rfc/rfc9640#section-2.1.4.12

Comments:

The "keystore-grouping" grouping defines a keystore instance as being composed of
symmetric and asymmetric keys. The structure for the symmetric and asymmetric keys is
essentially the same: a "list" inside a "container".
For asymmetric keys, each "asymmetric-key" uses the "asymmetric-key-pair-with-certs-
grouping" grouping discussed in .
For symmetric keys, each "symmetric-key" uses the "symmetric-key-grouping" grouping
discussed in .

•

•
Section 2.1.4.12 of [RFC9640]

•
Section 2.1.4.3 of [RFC9640]

2.1.4. Protocol-Accessible Nodes

The following tree diagram lists all the protocol-accessible nodes defined in the "ietf-
keystore" module without expanding the "grouping" statements:

The following tree diagram lists all the protocol-accessible nodes defined in the "ietf-
keystore" module, with all "grouping" statements expanded, enabling the keystore's full structure
to be seen.

[RFC8340]

module: ietf-keystore
 +--rw keystore {central-keystore-supported}?
 +---u keystore-grouping

[RFC8340]

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ietf-keystore
 +--rw keystore {central-keystore-supported}?
 +--rw asymmetric-keys {asymmetric-keys}?
 | +--rw asymmetric-key* [name]
 | +--rw name string
 | +--rw public-key-format? identityref
 | +--rw public-key? binary
 | +--rw private-key-format? identityref
 | +--rw (private-key-type)
 | | +--:(cleartext-private-key) {cleartext-private-keys}?
 | | | +--rw cleartext-private-key? binary
 | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | +--rw hidden-private-key? empty
 | | +--:(encrypted-private-key) {encrypted-private-keys}?
 | | +--rw encrypted-private-key
 | | +--rw encrypted-by
 | | | +--rw (encrypted-by)
 | | | +--:(central-symmetric-key-ref)
 | | | | {central-keystore-supported,symme\
tric-keys}?
 | | | | +--rw symmetric-key-ref?
 | | | | ks:central-symmetric-key-ref
 | | | +--:(central-asymmetric-key-ref)
 | | | {central-keystore-supported,asymm\
etric-keys}?
 | | | +--rw asymmetric-key-ref?
 | | | ks:central-asymmetric-key-ref

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 11

https://rfc-editor.org/rfc/rfc9640#section-2.1.4.12
https://rfc-editor.org/rfc/rfc9640#section-2.1.4.3

Comments:

Protocol-accessible nodes are those nodes that are accessible when the module is
"implemented", as described in .
The protocol-accessible nodes for the "ietf-keystore" module are instances of the "keystore-
grouping" grouping discussed in Section 2.1.3.7.
The top-level node "keystore" is additionally constrained by the feature "central-keystore-
supported".
The "keystore-grouping" grouping is discussed in Section 2.1.3.7.

 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--rw certificates
 | | +--rw certificate* [name]
 | | +--rw name string
 | | +--rw cert-data end-entity-cert-cms
 | | +---n certificate-expiration
 | | {certificate-expiration-notification}?
 | | +-- expiration-date yang:date-and-time
 | +---x generate-csr {csr-generation}?
 | +---w input
 | | +---w csr-format identityref
 | | +---w csr-info csr-info
 | +--ro output
 | +--ro (csr-type)
 | +--:(p10-csr)
 | +--ro p10-csr? p10-csr
 +--rw symmetric-keys {symmetric-keys}?
 +--rw symmetric-key* [name]
 +--rw name string
 +--rw key-format? identityref
 +--rw (key-type)
 +--:(cleartext-symmetric-key)
 | +--rw cleartext-symmetric-key? binary
 | {cleartext-symmetric-keys}?
 +--:(hidden-symmetric-key) {hidden-symmetric-keys}?
 | +--rw hidden-symmetric-key? empty
 +--:(encrypted-symmetric-key)
 {encrypted-symmetric-keys}?
 +--rw encrypted-symmetric-key
 +--rw encrypted-by
 | +--rw (encrypted-by)
 | +--:(central-symmetric-key-ref)
 | | {central-keystore-supported,symme\
tric-keys}?
 | | +--rw symmetric-key-ref?
 | | ks:central-symmetric-key-ref
 | +--:(central-asymmetric-key-ref)
 | {central-keystore-supported,asymm\
etric-keys}?
 | +--rw asymmetric-key-ref?
 | ks:central-asymmetric-key-ref
 +--rw encrypted-value-format identityref
 +--rw encrypted-value binary

•
Section 5.6.5 of [RFC7950]

•

•

•

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 12

https://rfc-editor.org/rfc/rfc7950#section-5.6.5

The reason for why "keystore-grouping" exists separate from the protocol-accessible nodes
definition is to enable instances of the keystore to be instantiated in other locations, as may
be needed or desired by some modules.

•

2.2. Example Usage
The examples in this section are encoded using XML, such as might be the case when using the
NETCONF protocol. Other encodings be used, such as JSON when using the RESTCONF
protocol.

MAY

2.2.1. A Keystore Instance

The following example illustrates keys in <running>. Please see Section 3 for an example
illustrating built-in values in <operational>.

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore
 xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <symmetric-keys>
 <symmetric-key>
 <name>cleartext-symmetric-key</name>
 <key-format>ct:octet-string-key-format</key-format>
 <cleartext-symmetric-key>BASE64VALUE=</cleartext-symmetric-\
key>
 </symmetric-key>
 <symmetric-key>
 <name>hidden-symmetric-key</name>
 <hidden-symmetric-key/>
 </symmetric-key>
 <symmetric-key>
 <name>encrypted-symmetric-key</name>
 <key-format>ct:one-symmetric-key-format</key-format>
 <encrypted-symmetric-key>
 <encrypted-by>
 <asymmetric-key-ref>hidden-asymmetric-key</asymmetric-k\
ey-ref>
 </encrypted-by>
 <encrypted-value-format>ct:cms-enveloped-data-format</enc\
rypted-value-format>
 <encrypted-value>BASE64VALUE=</encrypted-value>
 </encrypted-symmetric-key>
 </symmetric-key>
 </symmetric-keys>

 <asymmetric-keys>
 <asymmetric-key>
 <name>ssh-rsa-key</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 </asymmetric-key>
 <asymmetric-key>

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 13

 <name>ssh-rsa-key-with-cert</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>ex-rsa-cert2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>raw-private-key</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 </asymmetric-key>
 <asymmetric-key>
 <name>rsa-asymmetric-key</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>ex-rsa-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>ec-asymmetric-key</name>
 <private-key-format>ct:ec-private-key-format</private-key-f\
ormat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>ex-ec-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>hidden-asymmetric-key</name>
 <public-key-format>ct:subject-public-key-info-format</publi\
c-key-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>builtin-idevid-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>my-ldevid-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 14

2.2.2. A Certificate Expiration Notification

The following example illustrates a "certificate-expiration" notification for a certificate associated
with an asymmetric key configured in the keystore.

2.2.3. The "Inline or Keystore" Groupings

This section illustrates the various "inline-or-keystore" groupings defined in the "ietf-keystore"
module, specifically the "inline-or-keystore-symmetric-key-grouping" (Section 2.1.3.3), "inline-or-
keystore-asymmetric-key-grouping" (Section 2.1.3.4), "inline-or-keystore-asymmetric-key-with-
certs-grouping" (Section 2.1.3.5), and "inline-or-keystore-end-entity-cert-with-key-grouping"
(Section 2.1.3.6) groupings.

 <asymmetric-key>
 <name>encrypted-asymmetric-key</name>
 <private-key-format>ct:one-asymmetric-key-format</private-k\
ey-format>
 <encrypted-private-key>
 <encrypted-by>
 <symmetric-key-ref>encrypted-symmetric-key</symmetric-k\
ey-ref>
 </encrypted-by>
 <encrypted-value-format>ct:cms-encrypted-data-format</enc\
rypted-value-format>
 <encrypted-value>BASE64VALUE=</encrypted-value>
 </encrypted-private-key>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

=============== NOTE: '\' line wrapping per RFC 8792 ================

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2018-05-25T00:01:00Z</eventTime>
 <keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
 <asymmetric-keys>
 <asymmetric-key>
 <name>hidden-asymmetric-key</name>
 <certificates>
 <certificate>
 <name>my-ldevid-cert</name>
 <certificate-expiration>
 <expiration-date>2018-08-05T14:18:53-05:00</expiration\
-date>
 </certificate-expiration>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
 </keystore>
</notification>

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 15

These examples assume the existence of an example module called "ex-keystore-usage" that has
the namespace "https://example.com/ns/example-keystore-usage".

The ex-keystore-usage module is first presented using tree diagrams , followed by an
instance example illustrating all the "inline-or-keystore" groupings in use, followed by the YANG
module itself.

2.2.3.1. Tree Diagrams for the "ex-keystore-usage" Module
The following tree diagram illustrates "ex-keystore-usage" without expanding the "grouping"
statements:

The following tree diagram illustrates the "ex-keystore-usage" module with all "grouping"
statements expanded, enabling the usage's full structure to be seen:

[RFC8340]

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ex-keystore-usage
 +--rw keystore-usage
 +--rw symmetric-key* [name]
 | +--rw name string
 | +---u ks:inline-or-keystore-symmetric-key-grouping
 +--rw asymmetric-key* [name]
 | +--rw name string
 | +---u ks:inline-or-keystore-asymmetric-key-grouping
 +--rw asymmetric-key-with-certs* [name]
 | +--rw name
 | | string
 | +---u ks:inline-or-keystore-asymmetric-key-with-certs-groupi\
ng
 +--rw end-entity-cert-with-key* [name]
 +--rw name
 | string
 +---u ks:inline-or-keystore-end-entity-cert-with-key-grouping

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ex-keystore-usage
 +--rw keystore-usage
 +--rw symmetric-key* [name]
 | +--rw name string
 | +--rw (inline-or-keystore)
 | +--:(inline) {inline-definitions-supported}?
 | | +--rw inline-definition
 | | +--rw key-format? identityref
 | | +--rw (key-type)
 | | +--:(cleartext-symmetric-key)
 | | | +--rw cleartext-symmetric-key? binary
 | | | {cleartext-symmetric-keys}?
 | | +--:(hidden-symmetric-key)
 | | | {hidden-symmetric-keys}?
 | | | +--rw hidden-symmetric-key? empty
 | | +--:(encrypted-symmetric-key)

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 16

 | | {encrypted-symmetric-keys}?
 | | +--rw encrypted-symmetric-key
 | | +--rw encrypted-by
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--:(central-keystore)
 | {central-keystore-supported,symmetric-keys}?
 | +--rw central-keystore-reference?
 | ks:central-symmetric-key-ref
 +--rw asymmetric-key* [name]
 | +--rw name string
 | +--rw (inline-or-keystore)
 | +--:(inline) {inline-definitions-supported}?
 | | +--rw inline-definition
 | | +--rw public-key-format? identityref
 | | +--rw public-key? binary
 | | +--rw private-key-format? identityref
 | | +--rw (private-key-type)
 | | +--:(cleartext-private-key)
 | | | {cleartext-private-keys}?
 | | | +--rw cleartext-private-key? binary
 | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | +--rw hidden-private-key? empty
 | | +--:(encrypted-private-key)
 | | {encrypted-private-keys}?
 | | +--rw encrypted-private-key
 | | +--rw encrypted-by
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--:(central-keystore)
 | {central-keystore-supported,asymmetric-keys}?
 | +--rw central-keystore-reference?
 | ks:central-asymmetric-key-ref
 +--rw asymmetric-key-with-certs* [name]
 | +--rw name string
 | +--rw (inline-or-keystore)
 | +--:(inline) {inline-definitions-supported}?
 | | +--rw inline-definition
 | | +--rw public-key-format? identityref
 | | +--rw public-key? binary
 | | +--rw private-key-format? identityref
 | | +--rw (private-key-type)
 | | | +--:(cleartext-private-key)
 | | | | {cleartext-private-keys}?
 | | | | +--rw cleartext-private-key? binary
 | | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | | +--rw hidden-private-key? empty
 | | | +--:(encrypted-private-key)
 | | | {encrypted-private-keys}?
 | | | +--rw encrypted-private-key
 | | | +--rw encrypted-by
 | | | +--rw encrypted-value-format identityref
 | | | +--rw encrypted-value binary
 | | +--rw certificates
 | | | +--rw certificate* [name]
 | | | +--rw name string
 | | | +--rw cert-data
 | | | | end-entity-cert-cms

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 17

 | | | +---n certificate-expiration
 | | | {certificate-expiration-notification}?
 | | | +-- expiration-date yang:date-and-time
 | | +---x generate-csr {csr-generation}?
 | | +---w input
 | | | +---w csr-format identityref
 | | | +---w csr-info csr-info
 | | +--ro output
 | | +--ro (csr-type)
 | | +--:(p10-csr)
 | | +--ro p10-csr? p10-csr
 | +--:(central-keystore)
 | {central-keystore-supported,asymmetric-keys}?
 | +--rw central-keystore-reference?
 | ks:central-asymmetric-key-ref
 +--rw end-entity-cert-with-key* [name]
 +--rw name string
 +--rw (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +--rw inline-definition
 | +--rw public-key-format? identityref
 | +--rw public-key? binary
 | +--rw private-key-format? identityref
 | +--rw (private-key-type)
 | | +--:(cleartext-private-key)
 | | | {cleartext-private-keys}?
 | | | +--rw cleartext-private-key? binary
 | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | +--rw hidden-private-key? empty
 | | +--:(encrypted-private-key)
 | | {encrypted-private-keys}?
 | | +--rw encrypted-private-key
 | | +--rw encrypted-by
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--rw cert-data?
 | | end-entity-cert-cms
 | +---n certificate-expiration
 | | {certificate-expiration-notification}?
 | | +-- expiration-date yang:date-and-time
 | +---x generate-csr {csr-generation}?
 | +---w input
 | | +---w csr-format identityref
 | | +---w csr-info csr-info
 | +--ro output
 | +--ro (csr-type)
 | +--:(p10-csr)
 | +--ro p10-csr? p10-csr
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +--rw central-keystore-reference
 +--rw asymmetric-key?
 | ks:central-asymmetric-key-ref
 | {central-keystore-supported,asymmetric-keys\
}?
 +--rw certificate? leafref

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 18

2.2.3.2. Example Usage for the "ex-keystore-usage" Module
The following example provides two equivalent instances of each grouping, the first being a
reference to a keystore and the second being inlined. The instance having a reference to a
keystore is consistent with the keystore defined in Section 2.2.1. The two instances are
equivalent, as the inlined instance example contains the same values defined by the keystore
instance referenced by its sibling example.

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore-usage
 xmlns="https://example.com/ns/example-keystore-usage"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-symmetric-key-grouping" grouping: -->

 <symmetric-key>
 <name>example 1a</name>
 <central-keystore-reference>cleartext-symmetric-key</central-key\
store-reference>
 </symmetric-key>

 <symmetric-key>
 <name>example 1b</name>
 <inline-definition>
 <key-format>ct:octet-string-key-format</key-format>
 <cleartext-symmetric-key>BASE64VALUE=</cleartext-symmetric-key>
 </inline-definition>
 </symmetric-key>

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-asymmetric-key-grouping" grouping: -->

 <asymmetric-key>
 <name>example 2a</name>
 <central-keystore-reference>rsa-asymmetric-key</central-keystore\
-reference>
 </asymmetric-key>

 <asymmetric-key>
 <name>example 2b</name>
 <inline-definition>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 </inline-definition>
 </asymmetric-key>

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-asymmetric-key-with-certs-grouping" -->

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 19

2.2.3.3. The "ex-keystore-usage" YANG Module
Following is the "ex-keystore-usage" module's YANG definition:

 <!-- grouping: -->

 <asymmetric-key-with-certs>
 <name>example 3a</name>
 <central-keystore-reference>rsa-asymmetric-key</central-keystore\
-reference>
 </asymmetric-key-with-certs>

 <asymmetric-key-with-certs>
 <name>example 3b</name>
 <inline-definition>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>a locally defined cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </inline-definition>
 </asymmetric-key-with-certs>

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-end-entity-cert-with-key-grouping" -->
 <!-- grouping: -->
 <end-entity-cert-with-key>
 <name>example 4a</name>
 <central-keystore-reference>
 <asymmetric-key>rsa-asymmetric-key</asymmetric-key>
 <certificate>ex-rsa-cert</certificate>
 </central-keystore-reference>
 </end-entity-cert-with-key>

 <end-entity-cert-with-key>
 <name>example 4b</name>
 <inline-definition>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <cert-data>BASE64VALUE=</cert-data>
 </inline-definition>
 </end-entity-cert-with-key>

</keystore-usage>

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 20

module ex-keystore-usage {
 yang-version 1.1;
 namespace "https://example.com/ns/example-keystore-usage";
 prefix ex-keystore-usage;

 import ietf-keystore {
 prefix ks;
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }

 organization
 "Example Corporation";

 contact
 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description
 "This example module illustrates notable groupings defined
 in the 'ietf-keystore' module.";

 revision 2024-10-10 {
 description
 "Initial version";
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }

 container keystore-usage {
 description
 "An illustration of the various keystore groupings.";
 list symmetric-key {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-symmetric-key-grouping;
 description
 "An symmetric key that may be configured locally or be a
 reference to a symmetric key in the keystore.";
 }
 list asymmetric-key {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-asymmetric-key-grouping;
 description
 "An asymmetric key, with no certs, that may be configured
 locally or be a reference to an asymmetric key in the
 keystore. The intent is to reference just the asymmetric
 key, not any certificates that may also be associated
 with the asymmetric key.";

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 21

 }
 list asymmetric-key-with-certs {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-asymmetric-key-with-certs-grouping;
 description
 "An asymmetric key and its associated certs that may be
 configured locally or be a reference to an asymmetric
 key (and its associated certs) in the keystore.";
 }
 list end-entity-cert-with-key {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-end-entity-cert-with-key-grouping;
 description
 "An end-entity certificate and its associated asymmetric
 key that may be configured locally or be a reference
 to another certificate (and its associated asymmetric
 key) in the keystore.";
 }
 }
}

2.3. YANG Module
This YANG module has normative references to and .[RFC8341] [RFC9640]

<CODE BEGINS> file "ietf-keystore@2024-10-10.yang"

module ietf-keystore {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-keystore";
 prefix ks;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }

 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 22

 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>";

 description
 "This module defines a 'keystore' to centralize management
 of security credentials.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9642
 (https://www.rfc-editor.org/info/rfc9642); see the RFC
 itself for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version";
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }

 /****************/
 /* Features */
 /****************/

 feature central-keystore-supported {
 description
 "The 'central-keystore-supported' feature indicates that
 the server supports the central keystore (i.e., fully
 implements the 'ietf-keystore' module).";
 }

 feature inline-definitions-supported {
 description
 "The 'inline-definitions-supported' feature indicates that
 the server supports locally defined keys.";
 }

 feature asymmetric-keys {
 description
 "The 'asymmetric-keys' feature indicates that the server

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 23

 implements the /keystore/asymmetric-keys subtree.";

 }

 feature symmetric-keys {
 description
 "The 'symmetric-keys' feature indicates that the server
 implements the /keystore/symmetric-keys subtree.";
 }

 /****************/
 /* Typedefs */
 /****************/

 typedef central-symmetric-key-ref {
 type leafref {
 path "/ks:keystore/ks:symmetric-keys/ks:symmetric-key"
 + "/ks:name";
 }
 description
 "This typedef enables modules to easily define a reference
 to a symmetric key stored in the central keystore.";
 }

 typedef central-asymmetric-key-ref {
 type leafref {
 path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"
 + "/ks:name";
 }
 description
 "This typedef enables modules to easily define a reference
 to an asymmetric key stored in the central keystore.";
 }

 /*****************/
 /* Groupings */
 /*****************/

 grouping encrypted-by-grouping {
 description
 "A grouping that defines a 'choice' statement that can be
 augmented into the 'encrypted-by' node, present in the
 'symmetric-key-grouping' and 'asymmetric-key-pair-grouping'
 groupings defined in RFC 9640, enabling references to keys
 in the central keystore.";
 choice encrypted-by {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice amongst other symmetric or asymmetric keys.";
 case central-symmetric-key-ref {
 if-feature "central-keystore-supported";
 if-feature "symmetric-keys";
 leaf symmetric-key-ref {
 type ks:central-symmetric-key-ref;
 description
 "Identifies the symmetric key used to encrypt the
 associated key.";

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 24

 }
 }
 case central-asymmetric-key-ref {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 leaf asymmetric-key-ref {
 type ks:central-asymmetric-key-ref;
 description
 "Identifies the asymmetric key whose public key
 encrypted the associated key.";
 }
 }
 }
 }

 // *-ref groupings

 grouping central-asymmetric-key-certificate-ref-grouping {
 description
 "A grouping for the reference to a certificate associated
 with an asymmetric key stored in the central keystore.";
 leaf asymmetric-key {
 nacm:default-deny-write;
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 type ks:central-asymmetric-key-ref;
 must '../certificate';
 description
 "A reference to an asymmetric key in the keystore.";
 }
 leaf certificate {
 nacm:default-deny-write;
 type leafref {
 path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"
 + "[ks:name = current()/../asymmetric-key]/"
 + "ks:certificates/ks:certificate/ks:name";
 }
 must '../asymmetric-key';
 description
 "A reference to a specific certificate of the
 asymmetric key in the keystore.";
 }
 }

 // inline-or-keystore-* groupings

 grouping inline-or-keystore-symmetric-key-grouping {
 description
 "A grouping for the configuration of a symmetric key. The
 symmetric key may be defined inline or as a reference to
 a symmetric key stored in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 25

 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:symmetric-key-grouping;
 }
 }
 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "symmetric-keys";
 leaf central-keystore-reference {
 type ks:central-symmetric-key-ref;
 description
 "A reference to a symmetric key that exists in
 the central keystore.";
 }
 }
 }
 }

 grouping inline-or-keystore-asymmetric-key-grouping {
 description
 "A grouping for the configuration of an asymmetric key. The
 asymmetric key may be defined inline or as a reference to
 an asymmetric key stored in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:asymmetric-key-pair-grouping;
 }
 }
 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 leaf central-keystore-reference {
 type ks:central-asymmetric-key-ref;
 description
 "A reference to an asymmetric key that exists in
 the central keystore. The intent is to reference
 just the asymmetric key without any regard for
 any certificates that may be associated with it.";
 }

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 26

 }
 }
 }

 grouping inline-or-keystore-asymmetric-key-with-certs-grouping {
 description
 "A grouping for the configuration of an asymmetric key and
 its associated certificates. The asymmetric key and its
 associated certificates may be defined inline or as a
 reference to an asymmetric key (and its associated
 certificates) in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:asymmetric-key-pair-with-certs-grouping;
 }
 }
 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 leaf central-keystore-reference {
 type ks:central-asymmetric-key-ref;
 description
 "A reference to an asymmetric key (and all of its
 associated certificates) in the keystore, when
 this module is implemented.";
 }
 }
 }
 }

 grouping inline-or-keystore-end-entity-cert-with-key-grouping {
 description
 "A grouping for the configuration of an asymmetric key and
 its associated end-entity certificate. The asymmetric key
 and its associated end-entity certificate may be defined
 inline or as a reference to an asymmetric key (and its
 associated end-entity certificate) in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 27

 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:asymmetric-key-pair-with-cert-grouping;
 }
 }
 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 container central-keystore-reference {
 uses central-asymmetric-key-certificate-ref-grouping;
 description
 "A reference to a specific certificate associated with
 an asymmetric key stored in the central keystore.";
 }
 }
 }
 }

 // the keystore grouping

 grouping keystore-grouping {
 description
 "A grouping definition enables use in other contexts. If ever
 done, implementations MUST augment new 'case' statements
 into the various inline-or-keystore 'choice' statements to
 supply leafrefs to the model-specific location(s).";
 container asymmetric-keys {
 nacm:default-deny-write;
 if-feature "asymmetric-keys";
 description
 "A list of asymmetric keys.";
 list asymmetric-key {
 key "name";
 description
 "An asymmetric key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the asymmetric key.";
 }
 uses ct:asymmetric-key-pair-with-certs-grouping;
 }
 }
 container symmetric-keys {
 nacm:default-deny-write;
 if-feature "symmetric-keys";
 description
 "A list of symmetric keys.";
 list symmetric-key {
 key "name";
 description
 "A symmetric key.";
 leaf name {

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 28

 type string;
 description
 "An arbitrary name for the symmetric key.";
 }
 uses ct:symmetric-key-grouping;
 }
 }
 }

 /*********************************/
 /* Protocol accessible nodes */
 /*********************************/

 container keystore {
 if-feature "central-keystore-supported";
 description
 "A central keystore containing a list of symmetric keys and
 a list of asymmetric keys.";
 nacm:default-deny-write;
 uses keystore-grouping {
 augment "symmetric-keys/symmetric-key/key-type/encrypted-"
 + "symmetric-key/encrypted-symmetric-key/encrypted-by" {
 description
 "Augments in a choice statement enabling the encrypting
 key to be any other symmetric or asymmetric key in the
 central keystore.";
 uses encrypted-by-grouping;
 }
 augment "asymmetric-keys/asymmetric-key/private-key-type/"
 + "encrypted-private-key/encrypted-private-key/"
 + "encrypted-by" {
 description
 "Augments in a choice statement enabling the encrypting
 key to be any other symmetric or asymmetric key in the
 central keystore.";
 uses encrypted-by-grouping;
 }
 }
 }
}

<CODE ENDS>

3. Support for Built-In Keys
In some implementations, a server may support keys built into the server. Built-in keys be
set during the manufacturing process or be dynamically generated the first time the server is
booted or a particular service (e.g., Secure Shell (SSH)) is enabled.

Built-in keys are "hidden" keys expected to be set by a vendor-specific process. Any ability for
operators to set and/or modify built-in keys is outside the scope of this document.

MAY

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 29

The primary characteristic of the built-in keys is that they are provided by the server, as opposed
to being configured. As such, they are present in <operational> () and
<system> , if implemented.

The example below illustrates what the keystore in <operational> might look like for a server in
its factory default state. Note that the built-in keys have the "or:origin" annotation value
"or:system".

The following example illustrates how a single built-in key definition from the previous example
has been propagated to <running>:

Section 5.3 of [RFC8342]
[NETMOD-SYSTEM-CONFIG]

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <asymmetric-keys>
 <asymmetric-key or:origin="or:system">
 <name>Manufacturer-Generated Hidden Key</name>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>Manufacturer-Generated IDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 30

https://rfc-editor.org/rfc/rfc8342#section-5.3

After the above configuration is applied, <operational> should appear as follows:

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
 <asymmetric-keys>
 <asymmetric-key>
 <name>Manufacturer-Generated Hidden Key</name>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>Manufacturer-Generated IDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Deployment-Specific LDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <asymmetric-keys>
 <asymmetric-key or:origin="or:system">
 <name>Manufacturer-Generated Hidden Key</name>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>Manufacturer-Generated IDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate or:origin="or:intended">
 <name>Deployment-Specific LDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 31

4. Encrypting Keys in Configuration
This section describes an approach that enables both the symmetric and asymmetric keys on a
server to be encrypted, such that backup/restore procedures can be used without concern for
raw key data being compromised when in transit.

The approach presented in this section is not normative. This section answers how a
configuration containing secrets that are encrypted by a built-in key (Section 3) can be backed up
from one server and restored on a different server when each server has unique primary keys.
The API defined by the "ietf-keystore" YANG module presented in this document is sufficient to
support the workflow described in this section.

4.1. Key Encryption Key
The ability to encrypt configured keys is predicated on the existence of a key encryption key
(KEK). There may be any number of KEKs in a server. A KEK, by its namesake, is a key that is
used to encrypt other keys. A KEK be either a symmetric key or an asymmetric key.

If a KEK is a symmetric key, then the server provide an API for administrators to encrypt
other keys without needing to know the symmetric key's value. If the KEK is an asymmetric key,
then the server provide an API enabling the encryption of other keys or, alternatively,
assume the administrators can do so themselves using the asymmetric key's public half.

A server possess access to the KEK, or an API using the KEK, so that it can decrypt the other
keys in the configuration at runtime.

4.2. Configuring Encrypted Keys
Each time a new key is configured, it be encrypted by a KEK.

In the "ietf-crypto-types" module , the format for encrypted values is described by
identity statements derived from the "symmetrically-encrypted-value-format" and
"asymmetrically-encrypted-value-format" identity statements.

Implementations of servers implementing the "ietf-keystore" module provide an API
that simultaneously generates a key and encrypts the generated key using a KEK. Thus, the
cleartext value of the newly generated key may never be known to the administrators generating
the keys. Such an API is defined in the "ietf-ssh-common" and "ietf-tls-common" YANG modules
defined in and , respectively.

In case the server implementation does not provide such an API, then the generating and
encrypting steps be performed outside the server, e.g., by an administrator with special
access control rights (such as an organization's crypto officer).

MAY

MUST

SHOULD

MUST

SHOULD

[RFC9640]

SHOULD

[RFC9644] [RFC9645]

MAY

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 32

In either case, the encrypted key can be configured into the keystore using either the "encrypted-
symmetric-key" (for symmetric keys) or the "encrypted-private-key" (for asymmetric keys) nodes.
These two nodes contain both the encrypted raw key value as well as a reference to the KEK that
encrypted the key.

4.3. Migrating Configuration to Another Server
When a KEK is used to encrypt other keys, migrating the configuration to another server is only
possible if the second server has the same KEK. How the second server comes to have the same
KEK is discussed in this section.

In some deployments, mechanisms outside the scope of this document may be used to migrate a
KEK from one server to another. That said, beware that the ability to do so typically entails
having access to the first server; however, in some scenarios, the first server may no longer be
operational.

In other deployments, an organization's crypto officer, possessing a KEK's cleartext value,
configures the same KEK on the second server, presumably as a hidden key or a key protected by
access control, so that the cleartext value is not disclosed to regular administrators. However,
this approach creates high coupling to and dependency on the crypto officers that does not scale
in production environments.

In order to decouple the crypto officers from the regular administrators, a special KEK, called the
"primary key" (PK), may be used.

A PK is commonly a globally unique built-in (see Section 3) asymmetric key. The private raw key
value, due to its long lifetime, is hidden (i.e., "hidden-private-key"; see

). The raw public key value is often contained in an identity certificate (e.g., IDevID).
How to configure a PK during the manufacturing process is outside the scope of this document.

Assuming the server has a PK, the PK can be used to encrypt a "shared KEK", which is then used
to encrypt the keys configured by regular administrators.

With this extra level of indirection, it is possible for a crypto officer to encrypt the same KEK for a
multiplicity of servers offline using the public key contained in their identity certificates. The
crypto officer can then safely hand off the encrypted KEKs to regular administrators responsible
for server installations, including migrations.

In order to migrate the configuration from a first server, an administrator would need to make
just a single modification to the configuration before loading it onto a second server, which is to
replace the encrypted KEK keystore entry from the first server with the encrypted KEK for the
second server. Upon doing this, the configuration (containing many encrypted keys) can be
loaded into the second server while enabling the second server to decrypt all the encrypted keys
in the configuration.

The following diagram illustrates this idea:

Section 2.1.4.5. of
[RFC9640]

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 33

https://rfc-editor.org/rfc/rfc9640#section-2.1.4.5.

5. Security Considerations

5.1. Security of Data at Rest and in Motion
The YANG module defined in this document defines a mechanism called a "keystore" that intends
to protect its contents from unauthorized disclosure and modification.

 +-------------+ +-------------+
 | shared KEK | | shared KEK |
 |(unencrypted)|-------------------------------> | (encrypted) |
 +-------------+ encrypts offline using +-------------+
 ^ each server's PK |
 | |
 | |
 | possesses \o |
 +-------------- |\ |
 / \ shares with |
 crypto +--------------------+
 officer |
 |
 |
+----------------------+ | +----------------------+
server-1			server-2				
configuration			configuration				
+----------------+			+----------------+				
	PK-1					PK-2	
	(hidden)					(hidden)	
+----------------+			+----------------+				
^			^				
	encrypted				encrypted		
	by				by		
+----------------+			+----------------+				
	shared KEK					shared KEK	
	(encrypted)		v		(encrypted)		
+----------------+		+----------------+					
^	regular	^					
		admin					
	encrypted	\o		encrypted			
	by		\		by		
		/ \					
+----------------+	----------------->	+----------------+					
	all other keys		migrate		all other keys		
	(encrypted)		configuration		(encrypted)		
+----------------+		+----------------+					
+----------------------+ +----------------------+

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 34

In order to satisfy the expectations of a keystore, it is that server
implementations ensure that the keystore contents are encrypted when persisted to non-volatile
memory and that the keystore contents that have been decrypted in volatile memory are
zeroized when not in use.

The keystore contents may be encrypted by either encrypting the contents individually (e.g.,
using the "encrypted" value formats) or using persistence-layer-level encryption. If storing
cleartext values (which is per), then persistence-
layer-level encryption be used to protect the data at rest.

If the keystore contents are not encrypted when persisted, then server implementations
ensure the persisted storage is inaccessible.

5.2. Unconstrained Private Key Usage
This module enables the configuration of private keys without constraints on their usage, e.g.,
what operations the key is allowed to be used for (such as signature, decryption, or both).

This module also does not constrain the usage of the associated public keys other than in the
context of a configured certificate (e.g., an identity certificate), in which case the key usage is
constrained by the certificate.

RECOMMENDED

NOT RECOMMENDED Section 3.5 of [RFC9640]
SHOULD

MUST

5.3. Security Considerations for the "ietf-keystore" YANG Module
This section is modeled after the template defined in .

The ietf-keystore YANG module defines a data model that is designed to be accessed via YANG-
based management protocols, such as NETCONF and RESTCONF . These
protocols have mandatory-to-implement secure transport layers (e.g., SSH , TLS

, and QUIC) and mandatory-to-implement mutual authentication.

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

Please be aware that this YANG module uses groupings from other YANG modules that define
nodes that may be considered sensitive or vulnerable in network environments. Please review
the Security Considerations for dependent YANG modules for information as to which nodes may
be considered sensitive or vulnerable in network environments.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable
in some network environments. It is thus important to control read access (e.g., via get, get-
config, or notification) to these data nodes. These are the subtrees and data nodes and their
sensitivity/vulnerability:

Section 3.7.1 of [RFC8407]

[RFC6241] [RFC8040]
[RFC4252]

[RFC8446] [RFC9000]

[RFC8341]

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 35

https://rfc-editor.org/rfc/rfc9640#section-3.5
https://rfc-editor.org/rfc/rfc8407#section-3.7.1

URI:
Registrant Contact:
XML:

Name:
Maintained by IANA:
Namespace:
Prefix:
Reference:

6. IANA Considerations

6.1. The IETF XML Registry
IANA has registered the following URI in the "ns" registry of the "IETF XML Registry" .

urn:ietf:params:xml:ns:yang:ietf-keystore
The IESG

N/A; the requested URI is an XML namespace.

6.2. The YANG Module Names Registry
IANA has registered the following YANG module in the "YANG Module Names" registry defined in

.

ietf-keystore
N

urn:ietf:params:xml:ns:yang:ietf-keystore
ks

RFC 9642

The "cleartext-symmetric-key" node:
This node, imported from the "symmetric-key-grouping" grouping defined in , is
additionally sensitive to read operations such that, in normal use cases, it should never be
returned to a client. For this reason, the NACM extension "default-deny-all" was applied to it
in .

The "cleartext-private-key" node:
This node, defined in the "asymmetric-key-pair-grouping" grouping in , is
additionally sensitive to read operations such that, in normal use cases, it should never be
returned to a client. For this reason, the NACM extension "default-deny-all" is applied to it in

.

All the writable data nodes defined by this YANG module, both in the "grouping" statements as
well as the protocol-accessible "keystore" instance, may be considered sensitive or vulnerable in
some network environments. For instance, any modification to a key or reference to a key may
dramatically alter the implemented security policy. For this reason, the NACM extension "default-
deny-write" has been set for all data nodes defined in this module.

This YANG module does not define any "rpc" or "action" statements, and thus the security
considerations for such is not provided here.

Built-in key types be hidden and/or encrypted (not cleartext). If this is not possible,
access control mechanisms like NACM be used to limit access to the key's secret data to
only the most trusted authorized clients (e.g., belonging to an organization's crypto officer).

[RFC9640]

[RFC9640]

[RFC9640]

[RFC9640]

SHOULD
SHOULD

[RFC3688]

[RFC6020]

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 36

[RFC2119]

[RFC4252]

[RFC6020]

[RFC6241]

[RFC7950]

[RFC8040]

[RFC8174]

[RFC8341]

[RFC8446]

[RFC9000]

[RFC9640]

[HTTP-CLIENT-SERVER]

7. References

7.1. Normative References

, , ,
, , March 1997,
.

 and , ,
, , January 2006,
.

,
, , , October

2010, .

, , , and ,
, , ,

June 2011, .

, , ,
, August 2016, .

, , and , , ,
, January 2017, .

, ,
, , , May 2017,

.

 and , ,
, , , March 2018,

.

, , ,
, August 2018, .

 and ,
, , , May 2021,

.

, , ,
, October 2024, .

7.2. Informative References

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Authentication Protocol"
RFC 4252 DOI 10.17487/RFC4252 <https://www.rfc-editor.org/info/
rfc4252>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-
editor.org/info/rfc8341>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

Watsen, K. "YANG Data Types and Groupings for Cryptography" RFC 9640 DOI
10.17487/RFC9640 <https://www.rfc-editor.org/info/rfc9640>

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 37

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9640

[NETCONF-CLIENT-SERVER]

[NETMOD-SYSTEM-CONFIG]

[RESTCONF-CLIENT-SERVER]

[RFC3688]

[RFC8259]

[RFC8340]

[RFC8342]

[RFC8407]

[RFC8792]

[RFC9641]

[RFC9643]

[RFC9644]

, ,
, , 15 August 2024,

.

, ,
, , 14 August

2024,
.

, , and , ,
, , 29

September 2024,
.

, ,
, , 14 August

2024,
.

, , , , ,
January 2004, .

, ,
, , , December 2017,

.

 and , , , ,
, March 2018, .

, , , , and ,
, , ,

March 2018, .

,
, , , , October 2018,

.

, , , and ,
, , , June

2020, .

, , ,
, October 2024, .

 and , ,
, , October 2024,
.

, , ,
, October 2024, .

Watsen, K. "YANG Groupings for HTTP Clients and HTTP Servers" Work in
Progress Internet-Draft, draft-ietf-netconf-http-client-server-23
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-23>

Watsen, K. "NETCONF Client and Server Models" Work in
Progress Internet-Draft, draft-ietf-netconf-netconf-client-server-37

<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-
server-37>

Ma, Q., Ed. Wu, Q. C. Feng "System-defined Configuration"
Work in Progress Internet-Draft, draft-ietf-netmod-system-config-09

<https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-
config-09>

Watsen, K. "RESTCONF Client and Server Models" Work in
Progress Internet-Draft, draft-ietf-netconf-restconf-client-server-38

<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-
server-38>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Bierman, A. "Guidelines for Authors and Reviewers of Documents Containing
YANG Data Models" BCP 216 RFC 8407 DOI 10.17487/RFC8407
<https://www.rfc-editor.org/info/rfc8407>

Watsen, K. Auerswald, E. Farrel, A. Q. Wu "Handling Long Lines in
Content of Internet-Drafts and RFCs" RFC 8792 DOI 10.17487/RFC8792

<https://www.rfc-editor.org/info/rfc8792>

Watsen, K. "A YANG Data Model for a Truststore" RFC 9641 DOI 10.17487/
RFC9641 <https://www.rfc-editor.org/info/rfc9641>

Watsen, K. M. Scharf "YANG Groupings for TCP Clients and TCP Servers"
RFC 9643 DOI 10.17487/RFC9643 <https://www.rfc-editor.org/info/
rfc9643>

Watsen, K. "YANG Groupings for SSH Clients and SSH Servers" RFC 9644 DOI
10.17487/RFC9644 <https://www.rfc-editor.org/info/rfc9644>

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 38

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-23
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-37
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-37
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-09
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-09
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-38
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-38
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8792
https://www.rfc-editor.org/info/rfc9641
https://www.rfc-editor.org/info/rfc9643
https://www.rfc-editor.org/info/rfc9643
https://www.rfc-editor.org/info/rfc9644

[RFC9645]

[Std-802.1AR-2018]

[W3C.REC-xml-20081126]

, , ,
, October 2024, .

,
, , ,

August 2018, .

, , , , and ,
,

, November 2008, .

Acknowledgements
The authors would like to thank the following for lively discussions on list and in the halls
(ordered by first name): , , , , ,

, , , , ,
, , , , , ,

, , , , , ,
, , , , , ,

, , and .

Watsen, K. "YANG Groupings for TLS Clients and TLS Servers" RFC 9645 DOI
10.17487/RFC9645 <https://www.rfc-editor.org/info/rfc9645>

IEEE "IEEE Standard for Local and Metropolitan Area Networks - Secure
Device Identity" IEEE Std 802.1AR-2018 DOI 10.1109/IEEESTD.2018.8423794

<https://standards.ieee.org/standard/802_1AR-2018.html>

Bray, T. Paoli, J. Sperberg-McQueen, C. M. Maler, E. F. Yergeau
"Extensible Markup Language (XML) 1.0 (Fifth Edition)" W3C Recommendation
REC-xml-20081126 <https://www.w3.org/TR/xml/>

Alan Luchuk Andy Bierman Balázs Kovács Benoit Claise Bert Wijnen
David Lamparter Eric Voit Éric Vyncke Francesca Palombini Jürgen Schönwälder Ladislav
Lhotka Liang Xia Magnus Nyström Mahesh Jethanandani Martin Björklund Mehmet Ersue
Murray Kucherawy Paul Wouters Phil Shafer Qin Wu Radek Krejci Ramkumar Dhanapal
Reese Enghardt Reshad Rahman Rob Wilton Roman Danyliw Sandra Murphy Sean Turner
Tom Petch Warren Kumari Zaheduzzaman Sarker

Author's Address
Kent Watsen
Watsen Networks

kent+ietf@watsen.netEmail:

RFC 9642 A YANG Data Model for a Keystore October 2024

Watsen Standards Track Page 39

https://www.rfc-editor.org/info/rfc9645
https://standards.ieee.org/standard/802_1AR-2018.html
https://www.w3.org/TR/xml/
mailto:kent+ietf@watsen.net

	RFC 9642
	A YANG Data Model for a Keystore
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to Other RFCs
	1.2. Specification Language
	1.3. Terminology
	1.4. Adherence to the NMDA
	1.5. Conventions

	2. The "ietf-keystore" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Typedefs
	2.1.3. Groupings
	2.1.3.1. The "encrypted-by-grouping" Grouping
	2.1.3.2. The "central-asymmetric-key-certificate-ref-grouping" Grouping
	2.1.3.3. The "inline-or-keystore-symmetric-key-grouping" Grouping
	2.1.3.4. The "inline-or-keystore-asymmetric-key-grouping" Grouping
	2.1.3.5. The "inline-or-keystore-asymmetric-key-with-certs-grouping" Grouping
	2.1.3.6. The "inline-or-keystore-end-entity-cert-with-key-grouping" Grouping
	2.1.3.7. The "keystore-grouping" Grouping

	2.1.4. Protocol-Accessible Nodes

	2.2. Example Usage
	2.2.1. A Keystore Instance
	2.2.2. A Certificate Expiration Notification
	2.2.3. The "Inline or Keystore" Groupings
	2.2.3.1. Tree Diagrams for the "ex-keystore-usage" Module
	2.2.3.2. Example Usage for the "ex-keystore-usage" Module
	2.2.3.3. The "ex-keystore-usage" YANG Module

	2.3. YANG Module

	3. Support for Built-In Keys
	4. Encrypting Keys in Configuration
	4.1. Key Encryption Key
	4.2. Configuring Encrypted Keys
	4.3. Migrating Configuration to Another Server

	5. Security Considerations
	5.1. Security of Data at Rest and in Motion
	5.2. Unconstrained Private Key Usage
	5.3. Security Considerations for the "ietf-keystore" YANG Module

	6. IANA Considerations
	6.1. The IETF XML Registry
	6.2. The YANG Module Names Registry

	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Author's Address

 A YANG Data Model for a Keystore

 Watsen Networks

 kent+ietf@watsen.net

 OPS
 netconf

 This document presents a YANG module called "ietf-keystore"
 that enables centralized configuration of both symmetric and
 asymmetric keys. The secret value for both key types may be
 encrypted or hidden. Asymmetric keys may be associated with
 certificates. Notifications are sent when certificates are
 about to expire.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Relation to Other RFCs

 . Specification Language

 . Terminology

 . Adherence to the NMDA

 . Conventions

 . The "ietf-keystore" Module

 . Data Model Overview

 . Example Usage

 . YANG Module

 . Support for Built-In Keys

 . Encrypting Keys in Configuration

 . Security Considerations

 . Security of Data at Rest and in Motion

 . Unconstrained Private Key Usage

 . Security Considerations for the "ietf-keystore" YANG Module

 . IANA Considerations

 . The IETF XML Registry

 . The YANG Module Names Registry

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Author's Address

 Introduction
 This document presents a YANG 1.1 module called
 "ietf-keystore" that enables centralized configuration of both symmetric
 and asymmetric keys. The secret value for both key types may be
 encrypted or hidden (see).
 Asymmetric keys may be associated with certificates. Notifications are
 sent when certificates are about to expire.
 The "ietf-keystore" module defines many "grouping" statements
 intended for use by other modules that may import it. For instance,
 there are groupings that define enabling a key to be configured
 either inline (within the defining data model) or as a reference to a key
 in the central keystore.

 Special consideration has been given for servers that have cryptographic
 hardware, such as a trusted platform module (TPM). These servers are
 unique in that the cryptographic hardware hides the secret key values.
 Additionally, such hardware is commonly initialized when manufactured
 to protect a "built-in" asymmetric key for which its public half is
 conveyed in an identity certificate (e.g., an Initial Device Identifier (IDevID)
 certificate). See how built-in keys are
 supported in .
 This document is intended to reflect existing practices that many
 server implementations support at the time of writing. To simplify
 implementation, advanced key formats may be selectively implemented.
 Implementations may utilize operating-system level
 keystore utilities (e.g., "Keychain Access" on MacOS) and/or cryptographic
 hardware (e.g., TPMs).

 Relation to Other RFCs
 This document presents a YANG module
 that is part of a collection of RFCs that work together
 to ultimately support the configuration of both the clients
 and servers of the Network Configuration Protocol (NETCONF) and
 RESTCONF .
 The dependency relationship between the primary YANG groupings
 defined in the various RFCs is presented in the diagram below.
 In some cases, a document may define secondary groupings that
 introduce dependencies not illustrated in the diagram.
 The labels in the diagram are shorthand names for the defining
 RFCs. The citation references for the shorthand names are provided below
 the diagram.
 Please note that the arrows in the diagram point from referencer
 to referenced. For example, the "crypto-types" RFC does not
 have any dependencies, whilst the "keystore" RFC depends on the
 "crypto-types" RFC.

 crypto-types
 ^ ^
 / \
 / \
 truststore keystore
 ^ ^ ^ ^
 | +---------+ | |
 | | | |
 | +------------+ |
tcp-client-server | / | |
 ^ ^ ssh-client-server | |
 | | ^ tls-client-server
 | | | ^ ^ http-client-server
 | | | | | ^
		+-----+ +---------+		
+-----------	--------	--------------+		
 +-----------+ | | | | |
 | | | | | |
 | | | | | |
 netconf-client-server restconf-client-server

 Labels in Diagram to RFC Mapping

 Label in Diagram
 Originating RFC

 crypto-types

 truststore

 keystore

 RFC 9642

 tcp-client-server

 ssh-client-server

 tls-client-server

 http-client-server

 netconf-client-server

 restconf-client-server

 Specification Language

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 Terminology
 The terms "client" and "server" are defined in and are not redefined here.
 The term "keystore" is defined in this document as a mechanism that intends to safeguard secrets.
 The nomenclatures "<running>" and "<operational>" are defined in .
 The sentence fragments "augmented" and "augmented in" are used herein as the past tense verbified
 form of the "augment" statement defined in .
 The term "key" may be used to mean one of three things in this document: 1) the YANG-defined
 "asymmetric-key" or "symmetric-key" node defined in this document, 2) the raw key data possessed by the aforementioned key nodes, or 3) the "key" of a YANG "list" statement.
	 This document qualifies types '2' and '3' using "raw key value" and
 "YANG list key" where needed. In all other cases, an unqualified "key" refers to a YANG-defined
 "asymmetric-key" or "symmetric-key" node.

 Adherence to the NMDA
 This document is compliant with Network Management Datastore Architecture
 (NMDA) . For instance, keys and associated
 certificates installed during manufacturing (e.g., for an IDevID
 certificate) are expected to appear in <operational>
 (see).

 Conventions
 Various examples in this document use "BASE64VALUE=" as a
 placeholder value for binary data that has been base64 encoded
 (per). This
 placeholder value is used because real base64-encoded structures
 are often many lines long and hence distracting to the example
 being presented.

 Various examples in this document use the XML encoding.
Other encodings, such as JSON , could alternatively be used.

 Various examples in this document contain long lines that may be folded,
 as described in .

 This document uses the adjective "central" to the word "keystore"
 to refer to the top-level instance of the "keystore-grouping", when
 the "central-keystore-supported" feature is enabled. Please be
 aware that consuming YANG modules MAY instantiate the "keystore-grouping"
 in other locations. All such other instances are not the "central"
 instance.

 The "ietf-keystore" Module
 This section defines a YANG 1.1 module called
 "ietf-keystore". A high-level overview of the module is provided in
 . Examples illustrating the module's use
 are provided in . The YANG module itself is
 defined in .

 Data Model Overview
 This section provides an overview of the "ietf-keystore" module
 in terms of its features, typedefs, groupings, and protocol-accessible
 nodes.

 Features
 The following diagram lists all the "feature" statements
 defined in the "ietf-keystore" module:

Features:
 +-- central-keystore-supported
 +-- inline-definitions-supported
 +-- asymmetric-keys
 +-- symmetric-keys

 The diagram above uses syntax that is similar to but not
 defined in .

 Typedefs
 The following diagram lists the "typedef" statements defined in
 the "ietf-keystore" module:

Typedefs:
 leafref
 +-- central-symmetric-key-ref
 +-- central-asymmetric-key-ref

 The diagram above uses syntax that is similar to but not
 defined in .
 Comments:

 All the typedefs defined in the "ietf-keystore" module
 extend the base "leafref" type defined in .
 The leafrefs refer to symmetric and asymmetric keys in the
 central keystore when this module is implemented.
 These typedefs are provided as an aid to consuming
 modules that import the "ietf-keystore" module.

 Groupings
 The "ietf-keystore" module defines the following "grouping" statements:

 encrypted-by-grouping
 central-asymmetric-key-certificate-ref-grouping
 inline-or-keystore-symmetric-key-grouping
 inline-or-keystore-asymmetric-key-grouping
 inline-or-keystore-asymmetric-key-with-certs-grouping
 inline-or-keystore-end-entity-cert-with-key-grouping
 keystore-grouping

 Each of these groupings are presented in the following subsections.

 The "encrypted-by-grouping" Grouping
 The following tree diagram illustrates the
 "encrypted-by-grouping" grouping:

 grouping encrypted-by-grouping:
 +-- (encrypted-by)
 +--:(central-symmetric-key-ref)
 | {central-keystore-supported,symmetric-keys}?
 | +-- symmetric-key-ref? ks:central-symmetric-key-ref
 +--:(central-asymmetric-key-ref)
 {central-keystore-supported,asymmetric-keys}?
 +-- asymmetric-key-ref? ks:central-asymmetric-key-ref

 Comments:

 This grouping defines a "choice" statement with options to reference
 either a symmetric or an asymmetric key configured in the keystore.
 This grouping is usable only when the keystore module is implemented.
 Servers defining custom keystore locations MUST augment in alternate
 "encrypted-by" references to the alternate locations.

 The "central-asymmetric-key-certificate-ref-grouping" Grouping
 The following tree diagram illustrates the
 "central-asymmetric-key-certificate-ref-grouping" grouping:

 grouping central-asymmetric-key-certificate-ref-grouping:
 +-- asymmetric-key? ks:central-asymmetric-key-ref
 | {central-keystore-supported,asymmetric-keys}?
 +-- certificate? leafref

 Comments:

 This grouping defines a reference to a certificate in two parts: the
 first being the name of the asymmetric key the certificate is associated
 with, and the second being the name of the certificate itself.
 This grouping is usable only when the keystore module is implemented.
 Servers defining custom keystore locations can define an alternate grouping
 for references to the alternate locations.

 The "inline-or-keystore-symmetric-key-grouping" Grouping
 The following tree diagram illustrates the
 "inline-or-keystore-symmetric-key-grouping" grouping:

 grouping inline-or-keystore-symmetric-key-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:symmetric-key-grouping
 +--:(central-keystore)
 {central-keystore-supported,symmetric-keys}?
 +-- central-keystore-reference?
 ks:central-symmetric-key-ref

 Comments:

 The "inline-or-keystore-symmetric-key-grouping" grouping is provided
 solely as convenience to consuming modules that wish to offer
 an option for a symmetric key that is defined either inline
 or as a reference to a symmetric key in the keystore.
 A "choice" statement is used to expose the various options.
 Each option is enabled by a "feature" statement. Additional
 "case" statements MAY be augmented in if, e.g., there is a
 need to reference a symmetric key in an alternate location.
 For the "inline-definition" option, the definition uses the
 "symmetric-key-grouping" grouping discussed in .
 For the "central-keystore" option, the "central-keystore-reference" is an
 instance of the "symmetric-key-ref" discussed in .

 The "inline-or-keystore-asymmetric-key-grouping" Grouping
 The following tree diagram illustrates the
 "inline-or-keystore-asymmetric-key-grouping" grouping:

 grouping inline-or-keystore-asymmetric-key-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:asymmetric-key-pair-grouping
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +-- central-keystore-reference?
 ks:central-asymmetric-key-ref

 Comments:

 The "inline-or-keystore-asymmetric-key-grouping" grouping is provided
 solely as convenience to consuming modules that wish to offer
 an option for an asymmetric key that is defined either inline
 or as a reference to an asymmetric key in the keystore.
 A "choice" statement is used to expose the various options.
 Each option is enabled by a "feature" statement. Additional
 "case" statements MAY be augmented in if, e.g., there is a
 need to reference an asymmetric key in an alternate location.
 For the "inline-definition" option, the definition uses the
 "asymmetric-key-pair-grouping" grouping discussed in .
 For the "central-keystore" option, the "central-keystore-reference" is an
 instance of the "asymmetric-key-ref" typedef discussed in
 .

 The "inline-or-keystore-asymmetric-key-with-certs-grouping" Grouping
 The following tree diagram illustrates the
 "inline-or-keystore-asymmetric-key-with-certs-grouping" grouping:

 grouping inline-or-keystore-asymmetric-key-with-certs-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:asymmetric-key-pair-with-certs-grouping
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +-- central-keystore-reference?
 ks:central-asymmetric-key-ref

 Comments:

 The "inline-or-keystore-asymmetric-key-with-certs-grouping" grouping is provided
 solely as convenience to consuming modules that wish to offer
 an option for an asymmetric key that is defined either inline
 or as a reference to an asymmetric key in the keystore.
 A "choice" statement is used to expose the various options.
 Each option is enabled by a "feature" statement. Additional
 "case" statements MAY be augmented in if, e.g., there is a
 need to reference an asymmetric key in an alternate location.
 For the "inline-definition" option, the definition uses the
 "asymmetric-key-pair-with-certs-grouping" grouping discussed in .
 For the "central-keystore" option, the "central-keystore-reference" is an
 instance of the "asymmetric-key-ref" typedef discussed in
 .

 The "inline-or-keystore-end-entity-cert-with-key-grouping" Grouping
 The following tree diagram illustrates the
 "inline-or-keystore-end-entity-cert-with-key-grouping" grouping:

 grouping inline-or-keystore-end-entity-cert-with-key-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:asymmetric-key-pair-with-cert-grouping
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +-- central-keystore-reference
 +---u central-asymmetric-key-certificate-ref-grouping

 Comments:

 The "inline-or-keystore-end-entity-cert-with-key-grouping" grouping is provided
 solely as convenience to consuming modules that wish to offer
 an option for a symmetric key that is defined either inline
 or as a reference to a symmetric key in the keystore.
 A "choice" statement is used to expose the various options.
 Each option is enabled by a "feature" statement. Additional
 "case" statements MAY be augmented in if, e.g., there is a
 need to reference a symmetric key in an alternate location.
 For the "inline-definition" option, the definition uses the
 "asymmetric-key-pair-with-certs-grouping" grouping discussed in .
 For the "central-keystore" option, the "central-keystore-reference" uses the
 "central-asymmetric-key-certificate-ref-grouping" grouping discussed in
 .

 The "keystore-grouping" Grouping
 The following tree diagram illustrates the
 "keystore-grouping" grouping:

 grouping keystore-grouping:
 +-- asymmetric-keys {asymmetric-keys}?
 | +-- asymmetric-key* [name]
 | +-- name string
 | +---u ct:asymmetric-key-pair-with-certs-grouping
 +-- symmetric-keys {symmetric-keys}?
 +-- symmetric-key* [name]
 +-- name string
 +---u ct:symmetric-key-grouping

 Comments:

 The "keystore-grouping" grouping defines a keystore instance
 as being composed of symmetric and asymmetric keys. The structure
 for the symmetric and asymmetric keys is essentially the same:
 a "list" inside a "container".
 For asymmetric keys, each "asymmetric-key" uses the
 "asymmetric-key-pair-with-certs-grouping" grouping discussed in
 .
 For symmetric keys, each "symmetric-key" uses the
 "symmetric-key-grouping" grouping discussed in
 .

 Protocol-Accessible Nodes
 The following tree diagram lists all the
 protocol-accessible nodes defined in the "ietf-keystore" module without
 expanding the "grouping" statements:

module: ietf-keystore
 +--rw keystore {central-keystore-supported}?
 +---u keystore-grouping

 The following tree diagram lists all the
 protocol-accessible nodes defined in the "ietf-keystore" module, with
 all "grouping" statements expanded, enabling the keystore's full
 structure to be seen.

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ietf-keystore
 +--rw keystore {central-keystore-supported}?
 +--rw asymmetric-keys {asymmetric-keys}?
 | +--rw asymmetric-key* [name]
 | +--rw name string
 | +--rw public-key-format? identityref
 | +--rw public-key? binary
 | +--rw private-key-format? identityref
 | +--rw (private-key-type)
 | | +--:(cleartext-private-key) {cleartext-private-keys}?
 | | | +--rw cleartext-private-key? binary
 | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | +--rw hidden-private-key? empty
 | | +--:(encrypted-private-key) {encrypted-private-keys}?
 | | +--rw encrypted-private-key
 | | +--rw encrypted-by
 | | | +--rw (encrypted-by)
 | | | +--:(central-symmetric-key-ref)
 | | | | {central-keystore-supported,symme\
tric-keys}?
 | | | | +--rw symmetric-key-ref?
 | | | | ks:central-symmetric-key-ref
 | | | +--:(central-asymmetric-key-ref)
 | | | {central-keystore-supported,asymm\
etric-keys}?
 | | | +--rw asymmetric-key-ref?
 | | | ks:central-asymmetric-key-ref
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--rw certificates
 | | +--rw certificate* [name]
 | | +--rw name string
 | | +--rw cert-data end-entity-cert-cms
 | | +---n certificate-expiration
 | | {certificate-expiration-notification}?
 | | +-- expiration-date yang:date-and-time
 | +---x generate-csr {csr-generation}?
 | +---w input
 | | +---w csr-format identityref
 | | +---w csr-info csr-info
 | +--ro output
 | +--ro (csr-type)
 | +--:(p10-csr)
 | +--ro p10-csr? p10-csr
 +--rw symmetric-keys {symmetric-keys}?
 +--rw symmetric-key* [name]
 +--rw name string
 +--rw key-format? identityref
 +--rw (key-type)
 +--:(cleartext-symmetric-key)
 | +--rw cleartext-symmetric-key? binary
 | {cleartext-symmetric-keys}?
 +--:(hidden-symmetric-key) {hidden-symmetric-keys}?
 | +--rw hidden-symmetric-key? empty
 +--:(encrypted-symmetric-key)
 {encrypted-symmetric-keys}?
 +--rw encrypted-symmetric-key
 +--rw encrypted-by
 | +--rw (encrypted-by)
 | +--:(central-symmetric-key-ref)
 | | {central-keystore-supported,symme\
tric-keys}?
 | | +--rw symmetric-key-ref?
 | | ks:central-symmetric-key-ref
 | +--:(central-asymmetric-key-ref)
 | {central-keystore-supported,asymm\
etric-keys}?
 | +--rw asymmetric-key-ref?
 | ks:central-asymmetric-key-ref
 +--rw encrypted-value-format identityref
 +--rw encrypted-value binary

 Comments:

 Protocol-accessible nodes are those nodes that are accessible
 when the module is "implemented", as described in .
 The protocol-accessible nodes for the "ietf-keystore" module
 are instances of the "keystore-grouping" grouping discussed in
 .

 The top-level node "keystore" is additionally constrained
 by the feature "central-keystore-supported".
 The "keystore-grouping" grouping is discussed in
 .
 The reason for why "keystore-grouping" exists separate from
 the protocol-accessible nodes definition is to enable
 instances of the keystore to be instantiated in other
 locations, as may be needed or desired by some modules.

 Example Usage
 The examples in this section are encoded using XML, such as might
 be the case when using the NETCONF protocol.
	Other encodings MAY
 be used, such as JSON when using the RESTCONF protocol.

 A Keystore Instance
 The following example illustrates keys in <running>.
 Please see for an example illustrating
 built-in values in <operational>.

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore
 xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <symmetric-keys>
 <symmetric-key>
 <name>cleartext-symmetric-key</name>
 <key-format>ct:octet-string-key-format</key-format>
 <cleartext-symmetric-key>BASE64VALUE=</cleartext-symmetric-\
key>
 </symmetric-key>
 <symmetric-key>
 <name>hidden-symmetric-key</name>
 <hidden-symmetric-key/>
 </symmetric-key>
 <symmetric-key>
 <name>encrypted-symmetric-key</name>
 <key-format>ct:one-symmetric-key-format</key-format>
 <encrypted-symmetric-key>
 <encrypted-by>
 <asymmetric-key-ref>hidden-asymmetric-key</asymmetric-k\
ey-ref>
 </encrypted-by>
 <encrypted-value-format>ct:cms-enveloped-data-format</enc\
rypted-value-format>
 <encrypted-value>BASE64VALUE=</encrypted-value>
 </encrypted-symmetric-key>
 </symmetric-key>
 </symmetric-keys>

 <asymmetric-keys>
 <asymmetric-key>
 <name>ssh-rsa-key</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 </asymmetric-key>
 <asymmetric-key>
 <name>ssh-rsa-key-with-cert</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>ex-rsa-cert2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>raw-private-key</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 </asymmetric-key>
 <asymmetric-key>
 <name>rsa-asymmetric-key</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>ex-rsa-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>ec-asymmetric-key</name>
 <private-key-format>ct:ec-private-key-format</private-key-f\
ormat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>ex-ec-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>hidden-asymmetric-key</name>
 <public-key-format>ct:subject-public-key-info-format</publi\
c-key-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>builtin-idevid-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>my-ldevid-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>encrypted-asymmetric-key</name>
 <private-key-format>ct:one-asymmetric-key-format</private-k\
ey-format>
 <encrypted-private-key>
 <encrypted-by>
 <symmetric-key-ref>encrypted-symmetric-key</symmetric-k\
ey-ref>
 </encrypted-by>
 <encrypted-value-format>ct:cms-encrypted-data-format</enc\
rypted-value-format>
 <encrypted-value>BASE64VALUE=</encrypted-value>
 </encrypted-private-key>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

 A Certificate Expiration Notification
 The following example illustrates a "certificate-expiration"
 notification for a certificate associated with an asymmetric
 key configured in the keystore.

=============== NOTE: '\' line wrapping per RFC 8792 ================

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2018-05-25T00:01:00Z</eventTime>
 <keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
 <asymmetric-keys>
 <asymmetric-key>
 <name>hidden-asymmetric-key</name>
 <certificates>
 <certificate>
 <name>my-ldevid-cert</name>
 <certificate-expiration>
 <expiration-date>2018-08-05T14:18:53-05:00</expiration\
-date>
 </certificate-expiration>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
 </keystore>
</notification>

 The "Inline or Keystore" Groupings
 This section illustrates the various "inline-or-keystore" groupings
 defined in the "ietf-keystore" module, specifically the
 "inline-or-keystore-symmetric-key-grouping"
 (),
 "inline-or-keystore-asymmetric-key-grouping"
 (),
 "inline-or-keystore-asymmetric-key-with-certs-grouping"
 (), and
 "inline-or-keystore-end-entity-cert-with-key-grouping"
 () groupings.
 These examples assume the existence of an example module called "ex-keystore-usage"
 that has the namespace "https://example.com/ns/example-keystore-usage".
 The ex-keystore-usage module is first presented using tree diagrams
 , followed by an instance example illustrating
 all the "inline-or-keystore" groupings in use, followed by the YANG
 module itself.

 Tree Diagrams for the "ex-keystore-usage" Module
 The following tree diagram illustrates "ex-keystore-usage" without
 expanding the "grouping" statements:

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ex-keystore-usage
 +--rw keystore-usage
 +--rw symmetric-key* [name]
 | +--rw name string
 | +---u ks:inline-or-keystore-symmetric-key-grouping
 +--rw asymmetric-key* [name]
 | +--rw name string
 | +---u ks:inline-or-keystore-asymmetric-key-grouping
 +--rw asymmetric-key-with-certs* [name]
 | +--rw name
 | | string
 | +---u ks:inline-or-keystore-asymmetric-key-with-certs-groupi\
ng
 +--rw end-entity-cert-with-key* [name]
 +--rw name
 | string
 +---u ks:inline-or-keystore-end-entity-cert-with-key-grouping

 The following tree diagram illustrates the "ex-keystore-usage"
 module with all "grouping" statements expanded, enabling the
 usage's full structure to be seen:

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ex-keystore-usage
 +--rw keystore-usage
 +--rw symmetric-key* [name]
 | +--rw name string
 | +--rw (inline-or-keystore)
 | +--:(inline) {inline-definitions-supported}?
 | | +--rw inline-definition
 | | +--rw key-format? identityref
 | | +--rw (key-type)
 | | +--:(cleartext-symmetric-key)
 | | | +--rw cleartext-symmetric-key? binary
 | | | {cleartext-symmetric-keys}?
 | | +--:(hidden-symmetric-key)
 | | | {hidden-symmetric-keys}?
 | | | +--rw hidden-symmetric-key? empty
 | | +--:(encrypted-symmetric-key)
 | | {encrypted-symmetric-keys}?
 | | +--rw encrypted-symmetric-key
 | | +--rw encrypted-by
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--:(central-keystore)
 | {central-keystore-supported,symmetric-keys}?
 | +--rw central-keystore-reference?
 | ks:central-symmetric-key-ref
 +--rw asymmetric-key* [name]
 | +--rw name string
 | +--rw (inline-or-keystore)
 | +--:(inline) {inline-definitions-supported}?
 | | +--rw inline-definition
 | | +--rw public-key-format? identityref
 | | +--rw public-key? binary
 | | +--rw private-key-format? identityref
 | | +--rw (private-key-type)
 | | +--:(cleartext-private-key)
 | | | {cleartext-private-keys}?
 | | | +--rw cleartext-private-key? binary
 | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | +--rw hidden-private-key? empty
 | | +--:(encrypted-private-key)
 | | {encrypted-private-keys}?
 | | +--rw encrypted-private-key
 | | +--rw encrypted-by
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--:(central-keystore)
 | {central-keystore-supported,asymmetric-keys}?
 | +--rw central-keystore-reference?
 | ks:central-asymmetric-key-ref
 +--rw asymmetric-key-with-certs* [name]
 | +--rw name string
 | +--rw (inline-or-keystore)
 | +--:(inline) {inline-definitions-supported}?
 | | +--rw inline-definition
 | | +--rw public-key-format? identityref
 | | +--rw public-key? binary
 | | +--rw private-key-format? identityref
 | | +--rw (private-key-type)
 | | | +--:(cleartext-private-key)
 | | | | {cleartext-private-keys}?
 | | | | +--rw cleartext-private-key? binary
 | | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | | +--rw hidden-private-key? empty
 | | | +--:(encrypted-private-key)
 | | | {encrypted-private-keys}?
 | | | +--rw encrypted-private-key
 | | | +--rw encrypted-by
 | | | +--rw encrypted-value-format identityref
 | | | +--rw encrypted-value binary
 | | +--rw certificates
 | | | +--rw certificate* [name]
 | | | +--rw name string
 | | | +--rw cert-data
 | | | | end-entity-cert-cms
 | | | +---n certificate-expiration
 | | | {certificate-expiration-notification}?
 | | | +-- expiration-date yang:date-and-time
 | | +---x generate-csr {csr-generation}?
 | | +---w input
 | | | +---w csr-format identityref
 | | | +---w csr-info csr-info
 | | +--ro output
 | | +--ro (csr-type)
 | | +--:(p10-csr)
 | | +--ro p10-csr? p10-csr
 | +--:(central-keystore)
 | {central-keystore-supported,asymmetric-keys}?
 | +--rw central-keystore-reference?
 | ks:central-asymmetric-key-ref
 +--rw end-entity-cert-with-key* [name]
 +--rw name string
 +--rw (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +--rw inline-definition
 | +--rw public-key-format? identityref
 | +--rw public-key? binary
 | +--rw private-key-format? identityref
 | +--rw (private-key-type)
 | | +--:(cleartext-private-key)
 | | | {cleartext-private-keys}?
 | | | +--rw cleartext-private-key? binary
 | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | +--rw hidden-private-key? empty
 | | +--:(encrypted-private-key)
 | | {encrypted-private-keys}?
 | | +--rw encrypted-private-key
 | | +--rw encrypted-by
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--rw cert-data?
 | | end-entity-cert-cms
 | +---n certificate-expiration
 | | {certificate-expiration-notification}?
 | | +-- expiration-date yang:date-and-time
 | +---x generate-csr {csr-generation}?
 | +---w input
 | | +---w csr-format identityref
 | | +---w csr-info csr-info
 | +--ro output
 | +--ro (csr-type)
 | +--:(p10-csr)
 | +--ro p10-csr? p10-csr
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +--rw central-keystore-reference
 +--rw asymmetric-key?
 | ks:central-asymmetric-key-ref
 | {central-keystore-supported,asymmetric-keys\
}?
 +--rw certificate? leafref

 Example Usage for the "ex-keystore-usage" Module
 The following example provides two equivalent instances of
 each grouping, the first being a reference to a keystore
 and the second being inlined. The instance having
 a reference to a keystore is consistent with the keystore
 defined in . The two instances are
 equivalent, as the inlined instance example contains
 the same values defined by the keystore instance referenced
 by its sibling example.

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore-usage
 xmlns="https://example.com/ns/example-keystore-usage"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-symmetric-key-grouping" grouping: -->

 <symmetric-key>
 <name>example 1a</name>
 <central-keystore-reference>cleartext-symmetric-key</central-key\
store-reference>
 </symmetric-key>

 <symmetric-key>
 <name>example 1b</name>
 <inline-definition>
 <key-format>ct:octet-string-key-format</key-format>
 <cleartext-symmetric-key>BASE64VALUE=</cleartext-symmetric-key>
 </inline-definition>
 </symmetric-key>

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-asymmetric-key-grouping" grouping: -->

 <asymmetric-key>
 <name>example 2a</name>
 <central-keystore-reference>rsa-asymmetric-key</central-keystore\
-reference>
 </asymmetric-key>

 <asymmetric-key>
 <name>example 2b</name>
 <inline-definition>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 </inline-definition>
 </asymmetric-key>

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-asymmetric-key-with-certs-grouping" -->
 <!-- grouping: -->

 <asymmetric-key-with-certs>
 <name>example 3a</name>
 <central-keystore-reference>rsa-asymmetric-key</central-keystore\
-reference>
 </asymmetric-key-with-certs>

 <asymmetric-key-with-certs>
 <name>example 3b</name>
 <inline-definition>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>a locally defined cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </inline-definition>
 </asymmetric-key-with-certs>

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-end-entity-cert-with-key-grouping" -->
 <!-- grouping: -->
 <end-entity-cert-with-key>
 <name>example 4a</name>
 <central-keystore-reference>
 <asymmetric-key>rsa-asymmetric-key</asymmetric-key>
 <certificate>ex-rsa-cert</certificate>
 </central-keystore-reference>
 </end-entity-cert-with-key>

 <end-entity-cert-with-key>
 <name>example 4b</name>
 <inline-definition>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <cert-data>BASE64VALUE=</cert-data>
 </inline-definition>
 </end-entity-cert-with-key>

</keystore-usage>

 The "ex-keystore-usage" YANG Module
 Following is the "ex-keystore-usage" module's YANG definition:

module ex-keystore-usage {
 yang-version 1.1;
 namespace "https://example.com/ns/example-keystore-usage";
 prefix ex-keystore-usage;

 import ietf-keystore {
 prefix ks;
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }

 organization
 "Example Corporation";

 contact
 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description
 "This example module illustrates notable groupings defined
 in the 'ietf-keystore' module.";

 revision 2024-10-10 {
 description
 "Initial version";
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }

 container keystore-usage {
 description
 "An illustration of the various keystore groupings.";
 list symmetric-key {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-symmetric-key-grouping;
 description
 "An symmetric key that may be configured locally or be a
 reference to a symmetric key in the keystore.";
 }
 list asymmetric-key {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-asymmetric-key-grouping;
 description
 "An asymmetric key, with no certs, that may be configured
 locally or be a reference to an asymmetric key in the
 keystore. The intent is to reference just the asymmetric
 key, not any certificates that may also be associated
 with the asymmetric key.";
 }
 list asymmetric-key-with-certs {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-asymmetric-key-with-certs-grouping;
 description
 "An asymmetric key and its associated certs that may be
 configured locally or be a reference to an asymmetric
 key (and its associated certs) in the keystore.";
 }
 list end-entity-cert-with-key {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-end-entity-cert-with-key-grouping;
 description
 "An end-entity certificate and its associated asymmetric
 key that may be configured locally or be a reference
 to another certificate (and its associated asymmetric
 key) in the keystore.";
 }
 }
}

 YANG Module
 This YANG module has normative references to
 and .

module ietf-keystore {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-keystore";
 prefix ks;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }

 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>";

 description
 "This module defines a 'keystore' to centralize management
 of security credentials.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9642
 (https://www.rfc-editor.org/info/rfc9642); see the RFC
 itself for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version";
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }

 /****************/
 /* Features */
 /****************/

 feature central-keystore-supported {
 description
 "The 'central-keystore-supported' feature indicates that
 the server supports the central keystore (i.e., fully
 implements the 'ietf-keystore' module).";
 }

 feature inline-definitions-supported {
 description
 "The 'inline-definitions-supported' feature indicates that
 the server supports locally defined keys.";
 }

 feature asymmetric-keys {
 description
 "The 'asymmetric-keys' feature indicates that the server
 implements the /keystore/asymmetric-keys subtree.";

 }

 feature symmetric-keys {
 description
 "The 'symmetric-keys' feature indicates that the server
 implements the /keystore/symmetric-keys subtree.";
 }

 /****************/
 /* Typedefs */
 /****************/

 typedef central-symmetric-key-ref {
 type leafref {
 path "/ks:keystore/ks:symmetric-keys/ks:symmetric-key"
 + "/ks:name";
 }
 description
 "This typedef enables modules to easily define a reference
 to a symmetric key stored in the central keystore.";
 }

 typedef central-asymmetric-key-ref {
 type leafref {
 path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"
 + "/ks:name";
 }
 description
 "This typedef enables modules to easily define a reference
 to an asymmetric key stored in the central keystore.";
 }

 /*****************/
 /* Groupings */
 /*****************/

 grouping encrypted-by-grouping {
 description
 "A grouping that defines a 'choice' statement that can be
 augmented into the 'encrypted-by' node, present in the
 'symmetric-key-grouping' and 'asymmetric-key-pair-grouping'
 groupings defined in RFC 9640, enabling references to keys
 in the central keystore.";
 choice encrypted-by {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice amongst other symmetric or asymmetric keys.";
 case central-symmetric-key-ref {
 if-feature "central-keystore-supported";
 if-feature "symmetric-keys";
 leaf symmetric-key-ref {
 type ks:central-symmetric-key-ref;
 description
 "Identifies the symmetric key used to encrypt the
 associated key.";
 }
 }
 case central-asymmetric-key-ref {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 leaf asymmetric-key-ref {
 type ks:central-asymmetric-key-ref;
 description
 "Identifies the asymmetric key whose public key
 encrypted the associated key.";
 }
 }
 }
 }

 // *-ref groupings

 grouping central-asymmetric-key-certificate-ref-grouping {
 description
 "A grouping for the reference to a certificate associated
 with an asymmetric key stored in the central keystore.";
 leaf asymmetric-key {
 nacm:default-deny-write;
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 type ks:central-asymmetric-key-ref;
 must '../certificate';
 description
 "A reference to an asymmetric key in the keystore.";
 }
 leaf certificate {
 nacm:default-deny-write;
 type leafref {
 path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"
 + "[ks:name = current()/../asymmetric-key]/"
 + "ks:certificates/ks:certificate/ks:name";
 }
 must '../asymmetric-key';
 description
 "A reference to a specific certificate of the
 asymmetric key in the keystore.";
 }
 }

 // inline-or-keystore-* groupings

 grouping inline-or-keystore-symmetric-key-grouping {
 description
 "A grouping for the configuration of a symmetric key. The
 symmetric key may be defined inline or as a reference to
 a symmetric key stored in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:symmetric-key-grouping;
 }
 }
 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "symmetric-keys";
 leaf central-keystore-reference {
 type ks:central-symmetric-key-ref;
 description
 "A reference to a symmetric key that exists in
 the central keystore.";
 }
 }
 }
 }

 grouping inline-or-keystore-asymmetric-key-grouping {
 description
 "A grouping for the configuration of an asymmetric key. The
 asymmetric key may be defined inline or as a reference to
 an asymmetric key stored in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:asymmetric-key-pair-grouping;
 }
 }
 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 leaf central-keystore-reference {
 type ks:central-asymmetric-key-ref;
 description
 "A reference to an asymmetric key that exists in
 the central keystore. The intent is to reference
 just the asymmetric key without any regard for
 any certificates that may be associated with it.";
 }
 }
 }
 }

 grouping inline-or-keystore-asymmetric-key-with-certs-grouping {
 description
 "A grouping for the configuration of an asymmetric key and
 its associated certificates. The asymmetric key and its
 associated certificates may be defined inline or as a
 reference to an asymmetric key (and its associated
 certificates) in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:asymmetric-key-pair-with-certs-grouping;
 }
 }
 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 leaf central-keystore-reference {
 type ks:central-asymmetric-key-ref;
 description
 "A reference to an asymmetric key (and all of its
 associated certificates) in the keystore, when
 this module is implemented.";
 }
 }
 }
 }

 grouping inline-or-keystore-end-entity-cert-with-key-grouping {
 description
 "A grouping for the configuration of an asymmetric key and
 its associated end-entity certificate. The asymmetric key
 and its associated end-entity certificate may be defined
 inline or as a reference to an asymmetric key (and its
 associated end-entity certificate) in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:asymmetric-key-pair-with-cert-grouping;
 }
 }
 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 container central-keystore-reference {
 uses central-asymmetric-key-certificate-ref-grouping;
 description
 "A reference to a specific certificate associated with
 an asymmetric key stored in the central keystore.";
 }
 }
 }
 }

 // the keystore grouping

 grouping keystore-grouping {
 description
 "A grouping definition enables use in other contexts. If ever
 done, implementations MUST augment new 'case' statements
 into the various inline-or-keystore 'choice' statements to
 supply leafrefs to the model-specific location(s).";
 container asymmetric-keys {
 nacm:default-deny-write;
 if-feature "asymmetric-keys";
 description
 "A list of asymmetric keys.";
 list asymmetric-key {
 key "name";
 description
 "An asymmetric key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the asymmetric key.";
 }
 uses ct:asymmetric-key-pair-with-certs-grouping;
 }
 }
 container symmetric-keys {
 nacm:default-deny-write;
 if-feature "symmetric-keys";
 description
 "A list of symmetric keys.";
 list symmetric-key {
 key "name";
 description
 "A symmetric key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the symmetric key.";
 }
 uses ct:symmetric-key-grouping;
 }
 }
 }

 /*********************************/
 /* Protocol accessible nodes */
 /*********************************/

 container keystore {
 if-feature "central-keystore-supported";
 description
 "A central keystore containing a list of symmetric keys and
 a list of asymmetric keys.";
 nacm:default-deny-write;
 uses keystore-grouping {
 augment "symmetric-keys/symmetric-key/key-type/encrypted-"
 + "symmetric-key/encrypted-symmetric-key/encrypted-by" {
 description
 "Augments in a choice statement enabling the encrypting
 key to be any other symmetric or asymmetric key in the
 central keystore.";
 uses encrypted-by-grouping;
 }
 augment "asymmetric-keys/asymmetric-key/private-key-type/"
 + "encrypted-private-key/encrypted-private-key/"
 + "encrypted-by" {
 description
 "Augments in a choice statement enabling the encrypting
 key to be any other symmetric or asymmetric key in the
 central keystore.";
 uses encrypted-by-grouping;
 }
 }
 }
}

 Support for Built-In Keys
 In some implementations, a server may support keys built into the server.
 Built-in keys MAY be set during the manufacturing process or be dynamically
 generated the first time the server is booted or a particular service
 (e.g., Secure Shell (SSH)) is enabled.
 Built-in keys are "hidden" keys expected to be set by a vendor-specific process.
 Any ability for operators to set and/or modify built-in keys is outside the
 scope of this document.
 The primary characteristic of the built-in keys is that they are provided
 by the server, as opposed to being configured. As such, they are present in
 <operational> () and <system>
 , if implemented.
 The example below illustrates what the keystore in <operational>
 might look like for a server in its factory default state. Note that the
 built-in keys have the "or:origin" annotation value "or:system".

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <asymmetric-keys>
 <asymmetric-key or:origin="or:system">
 <name>Manufacturer-Generated Hidden Key</name>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>Manufacturer-Generated IDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

 The following example illustrates how a single built-in key definition
 from the previous example has been propagated to <running>:

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
 <asymmetric-keys>
 <asymmetric-key>
 <name>Manufacturer-Generated Hidden Key</name>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>Manufacturer-Generated IDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Deployment-Specific LDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

 After the above configuration is applied, <operational> should appear
 as follows:

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <asymmetric-keys>
 <asymmetric-key or:origin="or:system">
 <name>Manufacturer-Generated Hidden Key</name>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>Manufacturer-Generated IDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate or:origin="or:intended">
 <name>Deployment-Specific LDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

 Encrypting Keys in Configuration
 This section describes an approach that enables both the symmetric
 and asymmetric keys on a server to be encrypted, such that
 backup/restore procedures can be used without concern for raw key
 data being compromised when in transit.
 The approach presented in this section is not normative. This section
 answers how a configuration containing secrets that are encrypted by a
 built-in key () can be backed up from one server
 and restored on a different server when each server has unique primary keys.
 The API defined by the "ietf-keystore" YANG module presented in this
 document is sufficient to support the workflow described in this section.

 Key Encryption Key
 The ability to encrypt configured keys is predicated on the
 existence of a key encryption key (KEK). There may be any
 number of KEKs in a server. A KEK, by its namesake, is a key
 that is used to encrypt other keys. A KEK MAY be either a
 symmetric key or an asymmetric key.
 If a KEK is a symmetric key, then the server MUST provide an API for
 administrators to encrypt other keys without needing to know
 the symmetric key's value. If the KEK is an asymmetric key, then
 the server SHOULD provide an API enabling the encryption of other
 keys or, alternatively, assume the administrators can do so themselves
 using the asymmetric key's public half.
 A server MUST possess access to the KEK, or an API using the KEK,
 so that it can decrypt the other keys in the configuration at runtime.

 Configuring Encrypted Keys
 Each time a new key is configured, it SHOULD be encrypted by
 a KEK.
 In the "ietf-crypto-types" module ,
 the format for encrypted values is described by identity statements
 derived from the "symmetrically-encrypted-value-format" and
 "asymmetrically-encrypted-value-format" identity statements.
 Implementations of servers implementing the "ietf-keystore" module
 SHOULD provide an API that simultaneously generates a key and encrypts
 the generated key using a KEK. Thus, the cleartext value of the newly
 generated key may never be known to the administrators generating the keys.
 Such an API is defined in the "ietf-ssh-common" and "ietf-tls-common"
 YANG modules defined in
 and , respectively.
 In case the server implementation does not provide such an API, then
 the generating and encrypting steps MAY be performed outside the
 server, e.g., by an administrator with special access control rights (such as an organization's crypto officer).
 In either case, the encrypted key can be configured into the keystore
 using either the "encrypted-symmetric-key" (for symmetric keys) or the
 "encrypted-private-key" (for asymmetric keys) nodes. These two nodes
 contain both the encrypted raw key value as well as a reference to
 the KEK that encrypted the key.

 Migrating Configuration to Another Server
 When a KEK is used to encrypt other keys, migrating the configuration
 to another server is only possible if the second server has the same KEK.
 How the second server comes to have the same KEK is discussed in this
 section.
 In some deployments, mechanisms outside the scope of this document
 may be used to migrate a KEK from one server to another. That said,
 beware that the ability to do so typically entails having access to
 the first server; however, in some scenarios, the first server may no
 longer be operational.
 In other deployments, an organization's crypto officer, possessing a
 KEK's cleartext value, configures the same KEK on the second server,
 presumably as a hidden key or a key protected by access control, so
 that the cleartext value is not
 disclosed to regular administrators. However, this approach creates
 high coupling to and dependency on the crypto officers that does not
 scale in production environments.
 In order to decouple the crypto officers from the regular administrators,
 a special KEK, called the "primary key" (PK), may be used.
 A PK is commonly a globally unique built-in (see)
 asymmetric key. The private raw key value, due to its long lifetime, is hidden
 (i.e., "hidden-private-key"; see). The raw public key value is often
 contained in an identity certificate (e.g., IDevID). How to
 configure a PK during the manufacturing process is outside the
 scope of this document.
 Assuming the server has a PK, the PK can be used to encrypt a
 "shared KEK", which is then used to encrypt the keys configured
 by regular administrators.
 With this extra level of indirection, it is possible for a
 crypto officer to encrypt the same KEK for a multiplicity of
 servers offline using the public key contained in their identity
 certificates. The crypto officer can then safely hand off
 the encrypted KEKs to regular administrators responsible for
 server installations, including migrations.
 In order to migrate the configuration from a first server, an
 administrator would need to make just a single modification to
 the configuration before loading it onto a second server, which
 is to replace the encrypted KEK keystore entry from the first
 server with the encrypted KEK for the second server. Upon doing
 this, the configuration (containing many encrypted keys) can be
 loaded into the second server while enabling the second server
 to decrypt all the encrypted keys in the configuration.
 The following diagram illustrates this idea:

 +-------------+ +-------------+
 | shared KEK | | shared KEK |
 |(unencrypted)|-------------------------------> | (encrypted) |
 +-------------+ encrypts offline using +-------------+
 ^ each server's PK |
 | |
 | |
 | possesses \o |
 +-------------- |\ |
 / \ shares with |
 crypto +--------------------+
 officer |
 |
 |
+----------------------+ | +----------------------+
server-1			server-2				
configuration			configuration				
+----------------+			+----------------+				
	PK-1					PK-2	
	(hidden)					(hidden)	
+----------------+			+----------------+				
^			^				
	encrypted				encrypted		
	by				by		
+----------------+			+----------------+				
	shared KEK					shared KEK	
	(encrypted)		v		(encrypted)		
+----------------+		+----------------+					
^	regular	^					
		admin					
	encrypted	\o		encrypted			
	by		\		by		
		/ \					
+----------------+	----------------->	+----------------+					
	all other keys		migrate		all other keys		
	(encrypted)		configuration		(encrypted)		
+----------------+		+----------------+					
+----------------------+ +----------------------+

 Security Considerations

 Security of Data at Rest and in Motion
 The YANG module defined in this document defines a mechanism called a
 "keystore" that intends to protect its contents from unauthorized
 disclosure and modification.
 In order to satisfy the expectations of a keystore, it
 is RECOMMENDED that server implementations ensure that the keystore
 contents are encrypted when persisted to non-volatile memory
 and that the keystore contents that have been decrypted
 in volatile memory are zeroized when not in use.
 The keystore contents may be encrypted by either encrypting
 the contents individually (e.g., using the "encrypted" value
 formats) or using persistence-layer-level encryption. If storing cleartext values (which is NOT RECOMMENDED per), then persistence-layer-level encryption SHOULD be used to protect the data at rest.
 If the keystore contents are not encrypted when persisted,
 then server implementations MUST ensure the persisted storage
 is inaccessible.

 Unconstrained Private Key Usage
 This module enables the configuration of private keys without
 constraints on their usage, e.g., what operations the key is
 allowed to be used for (such as signature, decryption, or both).
 This module also does not constrain the usage of the associated
 public keys other than in the context of a configured certificate
 (e.g., an identity certificate), in which case the key usage is
 constrained by the certificate.

 Security Considerations for the "ietf-keystore" YANG Module
 This section is modeled after the template defined in .
 The ietf-keystore YANG module defines a data model that is designed to be accessed via YANG-based management protocols, such as NETCONF and RESTCONF . These protocols have mandatory-to-implement secure transport layers (e.g., SSH , TLS , and QUIC) and mandatory-to-implement mutual authentication.

 The Network Configuration Access Control Model (NACM) provides the means to restrict access for
 particular users to a preconfigured subset
 of all available protocol operations and
 content.
 Please be aware that this YANG module uses groupings from
 other YANG modules that define nodes that may be considered
 sensitive or vulnerable in network environments. Please
 review the Security Considerations for dependent YANG modules
 for information as to which nodes may be considered sensitive
 or vulnerable in network environments.
 Some of the readable data nodes in this YANG module
 may be considered sensitive or vulnerable in some network
 environments. It is thus important to control read access
 (e.g., via get, get-config, or notification) to these
 data nodes. These are the subtrees and data nodes and their
 sensitivity/vulnerability:

 The "cleartext-symmetric-key" node:
 This node, imported from the "symmetric-key-grouping"
 grouping defined in , is
 additionally sensitive to read operations such that,
 in normal use cases, it should never be returned to a client.
 For this reason, the NACM extension "default-deny-all" was
 applied to it in .
 The "cleartext-private-key" node:
 This node, defined in the "asymmetric-key-pair-grouping"
 grouping in , is
 additionally sensitive to read operations such that, in
 normal use cases, it should never be returned to a client. For this
 reason, the NACM extension "default-deny-all" is applied
 to it in .

 All the writable data nodes defined by this YANG module, both in the
 "grouping" statements as well as the protocol-accessible "keystore"
 instance, may be considered sensitive or vulnerable in some network
 environments. For instance, any modification to a key or reference
 to a key may dramatically alter the implemented security policy.
 For this reason, the NACM extension "default-deny-write" has been
 set for all data nodes defined in this module.
 This YANG module does not define any "rpc" or "action" statements, and
 thus the security considerations for such is not provided here.
 Built-in key types SHOULD be hidden and/or encrypted (not
 cleartext). If this is not possible, access control mechanisms
 like NACM SHOULD be used to limit access to the key's secret data
 to only the most trusted authorized clients (e.g., belonging to
 an organization's crypto officer).

 IANA Considerations

 The IETF XML Registry
 IANA has registered the following URI in the "ns" registry of
 the "IETF XML Registry" .

 URI:
 urn:ietf:params:xml:ns:yang:ietf-keystore
 Registrant Contact:
 The IESG
 XML:
 N/A; the requested URI is an XML namespace.

 The YANG Module Names Registry
 IANA has registered the following YANG module in the
 "YANG Module Names" registry defined in .

 Name:
 ietf-keystore
 Maintained by IANA:
 N
 Namespace:
 urn:ietf:params:xml:ns:yang:ietf-keystore
 Prefix:
 ks
 Reference:
 RFC 9642

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The Secure Shell (SSH) Authentication Protocol

 The Secure Shell Protocol (SSH) is a protocol for secure remote login and other secure network services over an insecure network. This document describes the SSH authentication protocol framework and public key, password, and host-based client authentication methods. Additional authentication methods are described in separate documents. The SSH authentication protocol runs on top of the SSH transport layer protocol and provides a single authenticated tunnel for the SSH connection protocol. [STANDARDS-TRACK]

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Network Configuration Access Control Model

 The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
 This document obsoletes RFC 6536.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.

 YANG Data Types and Groupings for Cryptography

 Watsen Networks

 Informative References

 YANG Groupings for HTTP Clients and HTTP Servers

 Watsen Networks

 This document presents two YANG modules: the first defines a minimal grouping for configuring an HTTP client, and the second defines a minimal grouping for configuring an HTTP server. It is intended that these groupings will be used to help define the configuration for simple HTTP-based protocols (not for complete web servers or browsers). Support is provided for HTTP/1.1, HTTP/2, and HTTP/3.

 Work in Progress

 NETCONF Client and Server Models

 Watsen Networks

 This document presents two YANG modules, one module to configure a NETCONF client and the other module to configure a NETCONF server. Both modules support both the SSH and TLS transport protocols, and support both standard NETCONF and NETCONF Call Home connections. Editorial Note (To be removed by RFC Editor) This draft contains placeholder values that need to be replaced with finalized values at the time of publication. This note summarizes all of the substitutions that are needed. No other RFC Editor instructions are specified elsewhere in this document. Artwork in this document contains shorthand references to drafts in progress. Please apply the following replacements (note: not all may be present): * AAAA --> the assigned RFC value for draft-ietf-netconf-crypto- types * BBBB --> the assigned RFC value for draft-ietf-netconf-trust- anchors * CCCC --> the assigned RFC value for draft-ietf-netconf-keystore * DDDD --> the assigned RFC value for draft-ietf-netconf-tcp-client- server * EEEE --> the assigned RFC value for draft-ietf-netconf-ssh-client- server * FFFF --> the assigned RFC value for draft-ietf-netconf-tls-client- server * GGGG --> the assigned RFC value for draft-ietf-netconf-http- client-server * HHHH --> the assigned RFC value for this draft Artwork in this document contains placeholder values for the date of publication of this draft. Please apply the following replacement: * 2024-08-14 --> the publication date of this draft The "Relation to other RFCs" section Section 1.1 contains the text "one or more YANG modules" and, later, "modules". This text is sourced from a file in a context where it is unknown how many modules a draft defines. The text is not wrong as is, but it may be improved by stating more directly how many modules are defined. The "Relation to other RFCs" section Section 1.1 contains a self- reference to this draft, along with a corresponding reference in the Appendix. Please replace the self-reference in this section with "This RFC" (or similar) and remove the self-reference in the "Normative/Informative References" section, whichever it is in. Tree-diagrams in this draft may use the '\' line-folding mode defined in RFC 8792. However, nicer-to-the-eye is when the '\\' line-folding mode is used. The AD suggested suggested putting a request here for the RFC Editor to help convert "ugly" '\' folded examples to use the '\\' folding mode. "Help convert" may be interpreted as, identify what looks ugly and ask the authors to make the adjustment. The following Appendix section is to be removed prior to publication: * Appendix A. Change Log

 Work in Progress

 System-defined Configuration

 Huawei

 Huawei

 Work in Progress

 RESTCONF Client and Server Models

 Watsen Networks

 This document presents two YANG modules, one module to configure a RESTCONF client and the other module to configure a RESTCONF server. Both modules support the TLS transport protocol with both standard RESTCONF and RESTCONF Call Home connections. Editorial Note (To be removed by RFC Editor) This draft contains placeholder values that need to be replaced with finalized values at the time of publication. This note summarizes all of the substitutions that are needed. No other RFC Editor instructions are specified elsewhere in this document. Artwork in this document contains shorthand references to drafts in progress. Please apply the following replacements (note: not all may be present): * AAAA --> the assigned RFC value for draft-ietf-netconf-crypto- types * BBBB --> the assigned RFC value for draft-ietf-netconf-trust- anchors * CCCC --> the assigned RFC value for draft-ietf-netconf-keystore * DDDD --> the assigned RFC value for draft-ietf-netconf-tcp-client- server * EEEE --> the assigned RFC value for draft-ietf-netconf-ssh-client- server * FFFF --> the assigned RFC value for draft-ietf-netconf-tls-client- server * GGGG --> the assigned RFC value for draft-ietf-netconf-http- client-server * HHHH --> the assigned RFC value for draft-ietf-netconf-netconf- client-server * IIII --> the assigned RFC value for this draft Artwork in this document contains placeholder values for the date of publication of this draft. Please apply the following replacement: * 2024-08-14 --> the publication date of this draft The "Relation to other RFCs" section Section 1.1 contains the text "one or more YANG modules" and, later, "modules". This text is sourced from a file in a context where it is unknown how many modules a draft defines. The text is not wrong as is, but it may be improved by stating more directly how many modules are defined. The "Relation to other RFCs" section Section 1.1 contains a self- reference to this draft, along with a corresponding reference in the Appendix. Please replace the self-reference in this section with "This RFC" (or similar) and remove the self-reference in the "Normative/Informative References" section, whichever it is in. Tree-diagrams in this draft may use the '\' line-folding mode defined in RFC 8792. However, nicer-to-the-eye is when the '\\' line-folding mode is used. The AD suggested suggested putting a request here for the RFC Editor to help convert "ugly" '\' folded examples to use the '\\' folding mode. "Help convert" may be interpreted as, identify what looks ugly and ask the authors to make the adjustment. The following Appendix section is to be removed prior to publication: * Appendix A. Change Log

 Work in Progress

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 Network Management Datastore Architecture (NMDA)

 Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.

 Guidelines for Authors and Reviewers of Documents Containing YANG Data Models

 This memo provides guidelines for authors and reviewers of specifications containing YANG modules. Recommendations and procedures are defined, which are intended to increase interoperability and usability of Network Configuration Protocol (NETCONF) and RESTCONF protocol implementations that utilize YANG modules. This document obsoletes RFC 6087.

 Handling Long Lines in Content of Internet-Drafts and RFCs

 This document defines two strategies for handling long lines in width-bounded text content. One strategy, called the "single backslash" strategy, is based on the historical use of a single backslash ('\') character to indicate where line-folding has occurred, with the continuation occurring with the first character that is not a space character (' ') on the next line. The second strategy, called the "double backslash" strategy, extends the first strategy by adding a second backslash character to identify where the continuation begins and is thereby able to handle cases not supported by the first strategy. Both strategies use a self-describing header enabling automated reconstitution of the original content.

 A YANG Data Model for a Truststore

 Watsen Networks

 YANG Groupings for TCP Clients and TCP Servers

 Watsen Networks

 Hochschule Esslingen - University of Applied Sciences

 YANG Groupings for SSH Clients and SSH Servers

 Watsen Networks

 YANG Groupings for TLS Clients and TLS Servers

 Watsen Networks

 IEEE Standard for Local and Metropolitan Area Networks - Secure Device Identity

 IEEE

 Extensible Markup Language (XML) 1.0 (Fifth Edition)

 W3C Recommendation REC-xml-20081126

 Acknowledgements
 The authors would like to thank the following for
 lively discussions on list and in the halls (ordered
 by first name):
	 ,
 ,
	 ,
 ,
	 ,
	 ,
 ,
 ,
 ,
 ,
	 ,
	 ,
	 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
	 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 and .

 Author's Address

 Watsen Networks

 kent+ietf@watsen.net

