Stream: Internet Engineering Task Force (IETF)

RFC: 9649

Category: Informational

Published: November 2024

ISSN: 2070-1721

Authors:]J. Zern P. Massimino . Alakuijala

Google LLC Google LLC Google LLC

RFC 9649
WebP Image Format

Abstract

This document defines the WebP image format and registers a media type supporting its use.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9649.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Zern, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9649
https://www.rfc-editor.org/info/rfc9649
https://trustee.ietf.org/license-info

RFC 9649 WebP Image Format November 2024

Table of Contents

1. Introduction 4
2. WebP Container Specification 4
2.1. Introduction (from "WebP Container Specification") 4
2.2. Terminology & Basics 5
2.3. RIFF File Format 5
2.4. WeDbP File Header 6
2.5. Simple File Format (Lossy) 7
2.6. Simple File Format (Lossless) 8
2.7. Extended File Format 9
2.7.1. Chunks 11
2.7.1.1. Animation 11

2.7.1.2. Alpha 14

2.7.1.3. Bitstream (VP8/VP8L) 16

2.7.1.4. Color Profile 16
2.7.1.5. Metadata 17

2.7.1.6. Unknown Chunks 18

2.7.2. Canvas Assembly from Frames 18
2.7.3. Example File Layouts 19

3. Specification for WebP Lossless Bitstream 20
3.1. Abstract (from "Specification for WebP Lossless Bitstream") 20
3.2. Introduction (from "Specification for WebP Lossless Bitstream") 21
3.3. Nomenclature 21
3.4. RIFF Header 22
3.5. Transforms 23
3.5.1. Predictor Transform 24
3.5.2. Color Transform 27
3.5.3. Subtract Green Transform 29
3.5.4. Color Indexing Transform 30

Zern, et al. Informational Page 2

RFC 9649 WebP Image Format

3.6. Image Data
3.6.1. Roles of Image Data
3.6.2. Encoding of Image Data
3.6.2.1. Prefix-Coded Literals
3.6.2.2. LZ77 Backward Reference
3.6.2.3. Color Cache Coding

3.7. Entropy Code
3.7.1. Overview
3.7.2. Details
3.7.2.1. Decoding and Building the Prefix Codes
3.7.2.2. Decoding of Meta Prefix Codes

3.7.2.3. Decoding Entropy-Coded Image Data

3.8. Overall Structure of the Format
3.8.1. Basic Structure
3.8.2. Structure of Transforms
3.8.3. Structure of the Image Data
4. Security Considerations
5. Interoperability Considerations
6. IANA Considerations
6.1. The 'image/webp' Media Type
6.1.1. Registration Details
7. References
7.1. Normative References

7.2. Informative References

Authors' Addresses

Zern, et al. Informational

November 2024

31
31
32
32
32
35

36
36
36
36
38
40

41
41
41
42

42
43
43
43
43
44
44
45

46

Page 3

RFC 9649 WebP Image Format November 2024

1. Introduction

WebP is an image file format based on the Resource Interchange File Format (RIFF) [RIFF-spec]
(Section 2) that supports lossless and lossy compression as well as alpha (transparency) and
animation. It covers use cases similar to JPEG [JPEG-spec], PNG [RFC2083], and the Graphics
Interchange Format (GIF) [GIF-spec].

WebP consists of two compression algorithms used to reduce the size of image pixel data,
including alpha (transparency) information. Lossy compression is achieved using VP8 intra-
frame encoding [RFC6386]. The lossless algorithm (Section 3) stores and restores the pixel values
exactly, including the color values for fully transparent pixels. A universal algorithm for
sequential data compression [LZ77], prefix coding [Huffman], and a color cache are used for
compression of the bulk data.

2. WebP Container Specification

Note that this section is based on the documentation in the libwebp source
repository [webp-riff-src].

2.1. Introduction (from "WebP Container Specification")

WebP is an image format that uses either (i) the VP8 intra-frame encoding [RFC6386] to compress
image data in a lossy way or (ii) the WebP lossless encoding (Section 3). These encoding schemes
should make it more efficient than older formats, such as JPEG, GIF, and PNG. It is optimized for
fast image transfer over the network (for example, for websites). The WebP format has feature
parity (color profile, metadata, animation, etc.) with other formats as well. This section describes
the structure of a WebP file.

The WebP container (that is, the RIFF container for WebP) allows feature support over and above
the basic use case of WebP (that is, a file containing a single image encoded as a VP8 key frame).
The WebP container provides additional support for the following:

* Lossless Compression: An image can be losslessly compressed, using the WebP lossless
format.

* Metadata: An image may have metadata stored in Exchangeable Image File Format [Exif] or
Extensible Metadata Platform [XMP] format.

* Transparency: An image may have transparency, that is, an alpha channel.
* Color Profile: An image may have an embedded ICC profile (ICCP) [ICC].

* Animation: An image may have multiple frames with pauses between them, making it an
animation.

Zern, et al. Informational Page 4

RFC 9649 WebP Image Format November 2024

2.2. Terminology & Basics

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

A WebP file contains either a still image (that is, an encoded matrix of pixels) or an animation
(Section 2.7.1.1). Optionally, it can also contain transparency information, a color profile, and
metadata. We refer to the matrix of pixels as the canvas of the image.

Bit numbering in chunk diagrams starts at @ for the most significant bit ('MSB 0'), as described in
[RFC1166].

Below are additional terms used throughout this section:

Reader/Writer
Code that reads WebP files is referred to as a reader, while code that writes them is referred
to as a writer.

uint16
A 16-bit, little-endian, unsigned integer.

uint24
A 24-bit, little-endian, unsigned integer.

uint32
A 32-bit, little-endian, unsigned integer.

FourCC
A four-character code (FourCC) is a uint32 created by concatenating four ASCII characters in
little-endian order. This means 'aaaa’ (0x61616161) and 'AAAA' (0x41414141) are treated as
different FourCCs.

1-based
An unsigned integer field storing values offset by -1, for example, such a field would store
value 25 as 24.

ChunkHeader('ABCD")
Used to describe the FourCC and Chunk Size header of individual chunks, where 'ABCD' is the
FourCC for the chunk. This element's size is 8 bytes.

2.3. RIFF File Format
The WebP file format is based on the RIFF [RIFF-spec] document format.

The basic element of a RIFF file is a chunk. It consists of:

Zern, et al. Informational Page 5

RFC 9649 WebP Image Format November 2024

0 1 2 3
©0123456789061234567890123456789801
—t-t—td—t-t-t-t-t -ttt —t—t-F-F-F -ttt -ttt -+t —F—t-+-+-+
Chunk FourcCC |
—t—t—t—F—F—t—t-F-t-F—t—F—F—t-F-F-F-t—F—F—F-t-F-F -+t —F—F—F-+-+-+
Chunk Size |
—t-t—t—d -ttt -ttt —t—t-F—F -ttt -ttt -ttt —F—F—F-+-+-+
: Chunk Payload :
dodt—t—t-t-t-t-t-t -ttt -F-t -ttt -+t —F—F—t-F-F-+-+-+

ot — +— +

Figure 1: 'RIFF' Chunk Structure

Chunk FourCC: 32 bits
ASCII four-character code used for chunk identification.

Chunk Size: 32 bits (uint32)
The size of the chunk in bytes, not including this field, the chunk identifier, or padding.

Chunk Payload: Chunk Size bytes
The data payload. If Chunk Size is odd, a single padding byte -- which MUST be 6 to conform
with RIFF [RIFF-spec] -- is added.

Note: RIFF has a convention that all uppercase chunk FourCCs are standard chunks
that apply to any RIFF file format, while FourCCs specific to a file format are all
lowercase. WebP does not follow this convention.

2.4. WebP File Header

0 1 2 3

©123456789012345678908123456789201

-ttt —t-t-t-t-t-t—t—F-t—t-t-t-t-t-t—F—F -ttt -t -t -t-F—F-+-+-+
R | T | F | F |

e T e s s T S e e e s S T

File Size

e T e e ks S T i e e T Mt st ST SN S AR A S A
W | E | ‘B’ | P |

-ttt —t-t-t-t-t-t—t—t-t—t-t-t-t-t-t—F—F -ttt -t -t -t-F—F-+-+-+

+— +— +— +

Figure 2: WebP File Header Chunk

'RIFF": 32 bits
The ASCII characters 'R, 'T', 'F', 'F'.

Zern, et al. Informational Page 6

RFC 9649 WebP Image Format November 2024

File Size: 32 bits (uint32)

The size of the file in bytes, starting at offset 8. The maximum value of this field is 232 minus
10 bytes, and thus the size of the whole file is at most 4 GiB minus 2 bytes.

"WEBP": 32 bits
The ASCII characters "W', 'E', 'B', 'P".

A WebP file MUST begin with a RIFF header with the FourCC "WEBP'. The file size in the header is
the total size of the chunks that follow plus 4 bytes for the "WEBP' FourCC. The file SHOULD NOT
contain any data after the data specified by File Size. Readers MAY parse such files, ignoring the
trailing data. As the size of any chunk is even, the size given by the RIFF header is also even. The
contents of individual chunks are described in the following sections.

2.5. Simple File Format (Lossy)

This layout SHOULD be used if the image requires lossy encoding and does not require
transparency or other advanced features provided by the extended format. Files with this layout
are smaller and supported by older software.

0 1 2 3

0123456789012345678901234567189801
T T et L e e kS S e a3
I I
| WebP file header (12 bytes)
I
+

-ttt —F-F-F—F-F-F—F-F-F—F-F-F—F-F-F—F-F-F—F—F-F—F—F-F+—F-F-+
'VP8 ' Chunk
+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+

Figure 3: Simple WebP (Lossy) File Format

0 1 2 3
012345678901 2345678906123456789801
T T et A St S i e s et o T S e A S e e h ot 3
| ChunkHeader ('VP8 ') |
I I

dot—F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F—F-F-F-F-F-F—F—F-F—F-F-+-+
VP8 data
+-+-+-+-F+-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-F-F-F-F-+-F-+-+-+-+-+

Figure 4: 'VP8 ' Chunk

VP8 data: Chunk Size bytes
VP8 bitstream data.

Note that the fourth character in the 'VP8 ' FourCC is an ASCII space (0x20).

Zern, et al. Informational Page 7

RFC 9649 WebP Image Format November 2024

The VP8 bitstream format specification is described in [RFC6386].

Note that the VP8 frame header contains the VP8 frame width and height. That is
assumed to be the width and height of the canvas.

The VP8 specification describes how to decode the image into Y'ChCr format. To convert to RGB,
Recommendation 601 [REC601] SHOULD be used. Applications MAY use another conversion
method, but visual results may differ among decoders.

2.6. Simple File Format (Lossless)

Note: Older readers may not support files using the lossless format.

This layout SHOULD be used if the image requires lossless encoding (with an optional
transparency channel) and does not require advanced features provided by the extended format.

0 1 2 3
012345678901 23456789061234567898©01
+-t—t-F-t-F-F-t-t-F-t-F-F-F—F-F-F—F-F-F—tF-F-F—F-F-F-F-F-+-+-+-+-+
| |
| WebP file header (12 bytes) |
|
+

s s S e e L T e e e R e e e (T (T R
"VP8L' Chunk
s S e st s Tt Tt o S e S e S e

Figure 5: Simple WebP (Lossless) File Format

0 1 2 3
0123456789012345678901234567189801
+-t-t-t-t-t-t-t-t—t—t—F—F—F—F—F—t—F-F-F-F-F-F-t-F -ttt —+—+-
| ChunkHeader ('VP8L")
|

+-+-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-F-F-F-F-F-F-F—F-F-F-F-F-+-+-
VP8L data 3
+—+

o+ —— 4+

Figure 6: 'VPSL' Chunk

VP8L data: Chunk Size bytes
VP8L bitstream data.

The specification of the VP8L hitstream can be found in Section 3.

Zern, et al. Informational Page 8

RFC 9649 WebP Image Format November 2024

Note that the VP8L header contains the VP8L image width and height. That is
assumed to be the width and height of the canvas.

2.7. Extended File Format

Note: Older readers may not support files using the extended format.

An extended format file consists of:

* A 'VP8X' Chunk with information about features used in the file.
* An optional 'ICCP' Chunk with a color profile.

* An optional 'ANIM' Chunk with animation control data.

* Image data.

* An optional 'EXIF' Chunk with Exif metadata.

* An optional 'XMP ' Chunk with XMP metadata.

* An optional list of unknown chunks (Section 2.7.1.6).

For a still image, the image data consists of a single frame, which is made up of:

* An optional alpha subchunk (Section 2.7.1.2).
* A bitstream subchunk (Section 2.7.1.3).

For an animated image, the image data consists of multiple frames. More details about frames can
be found in Section 2.7.1.1.

All chunks necessary for reconstruction and color correction, that is, 'VP8X', 'ICCP', 'ANIM,
'ANMF', 'ALPH', 'VP8 ', and 'VP8L', MUST appear in the order described earlier. Readers SHOULD
fail when chunks necessary for reconstruction and color correction are out of order.

Metadata (Section 2.7.1.5) and unknown chunks (Section 2.7.1.6) MAY appear out of order.

Rationale: The chunks necessary for reconstruction should appear first in the file to
allow a reader to begin decoding an image before receiving all of the data. An
application may benefit from varying the order of metadata and custom chunks to
suit the implementation.

Zern, et al. Informational Page 9

RFC 9649 WebP Image Format November 2024

0 1 2 3
©12345678901234567890123456789201

s S e e e T e e o et (T ST T Sl L T e T O T L
I I
| WebP file header (12 bytes)
I I
d—t—t—t-t-t-t-t—t -ttt -t -ttt -ttt —F—F—t-F-F-+-+-+
| ChunkHeader ('VP8X")
I I
d—t—t—t-t-t-t-t—t -ttt -t -ttt -ttt —F—F—t-F-F-+-+-+
[Rsv|I|L|E|X|A|R] Reserved
s S e e e T e e o et (T ST T Sl L T e T O T L
| Canvas Width Minus One

+

t—t—F—t-t-t-t-t—t—F—F—t-t-t-F-F—F—F—F—F-F-F-F -t —F—F—F—F-F-+-+-+-+

Canvas Height Minus One |
+-t-t-t-t—t—t—t-t-t-F-F-+-F+-+-+-+

Figure 7: Extended WebP File Header

Reserved (Rsv): 2 bits
MUST be 0. Readers MUST ignore this field.

ICC profile (I): 1 bit
Set if the file contains an 'ICCP' Chunk.

Alpha (L): 1 bit
Set if any of the frames of the image contain transparency information ("alpha").

Exif metadata (E): 1 bit
Set if the file contains Exif metadata.

XMP metadata (X): 1 bit
Set if the file contains XMP metadata.

Animation (A): 1 bit
Set if this is an animated image. Data in 'ANIM' and 'ANMF' Chunks should be used to control
the animation.

Reserved (R): 1 bit
MUST be 0. Readers MUST ignore this field.

Reserved: 24 bits
MUST be 0. Readers MUST ignore this field.

Canvas Width Minus One: 24 bits
1-based width of the canvas in pixels. The actual canvas width is 1 + Canvas Width Minus

One.

Zern, et al. Informational Page 10

RFC 9649 WebP Image Format November 2024

Canvas Height Minus One: 24 bits
1-based height of the canvas in pixels. The actual canvas heightis 1 + Canvas Height
Minus One.

The product of Canvas Width and Canvas Height MUST be at most PR

Future specifications may add more fields. Unknown fields MUST be ignored.

2.7.1. Chunks

2.7.1.1. Animation
An animation is controlled by 'ANIM' and 'ANMF' Chunks.

0 1 2 3

012345678901 2345678901234567898©01
Rt T e e i e e T T e e et A T S b It S
| ChunkHeader ('ANIM') |
| |

dot-t—F-t-t—t-t-F-t-t—t-t -ttt -t -ttt -ttt —F-t-F—F-+-+-+
| Background Color

Fod-d-t-t—t-t -ttt —F—F—F—F—F—F—F—F-F-F-F -ttt -F-+-+-+
| Loop Count

+-t-t-F-t-t-t-t-F-t-+—F-+-+-+-+-+

Figure 8: ANIM' Chunk

For an animated image, this chunk contains the global parameters of the animation.

Background Color: 32 hits (uint32)
The default background color of the canvas in [Blue, Green, Red, Alpha] byte order. This
color MAY be used to fill the unused space on the canvas around the frames, as well as the
transparent pixels of the first frame. The background color is also used when the Disposal
method is 1.

Notes:

» The background color MAY contain a nonopaque alpha value, even if the Alpha flag in
the 'VP8X' Chunk (Figure 7) is unset.

* Viewer applications SHOULD treat the background color value as a hint and are not
required to use it.

* The canvas is cleared at the start of each loop. The background color MAY be used to
achieve this.

Loop Count: 16 bits (uint16)
The number of times to loop the animation. If it is @, this means infinitely.

Zern, et al. Informational Page 11

RFC 9649 WebP Image Format November 2024

This chunk MUST appear if the Animation flag in the 'VP8X' Chunk is set. If the Animation flag is
not set and this chunk is present, it MUST be ignored.

0 1 2 3
012345678901 2345678901234567898©01
Rt T e e i e e T T e e et A T S b It S

| ChunkHeader (' ANMF ")
|

e e S T S e S S S e S e e R e ot S F e I

| Frame X | .
+-+-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-F-F-F-F-+-F-F-+-+-+-+
. Frame Y | Frame Width Minus One ...
t-t-t-F-t-t-t-t-F-t-t—F-t -ttt -ttt -ttt —F-t-F-F-+-+-+
- | Frame Height Minus One
dot-t—F-t-t—t-t-F-t-t—t-t -ttt -t -ttt -t —F-t-F—F-+-+-+
| Frame Duration | Reserved |B|D]
+-+-+

+-t-F+-+-
: Frame Data :
+-t-F -+ -+—+

Figure 9: ANMF' Chunk

For animated images, this chunk contains information about a single frame. If the Animation flag
is not set, then this chunk SHOULD NOT be present.

Frame X: 24 bits (uint24)
The X coordinate of the upper left corner of the frame is Frame X * 2.

Frame Y: 24 bits (uint24)
The Y coordinate of the upper left corner of the frame is Frame Y * 2.

Frame Width Minus One: 24 bits (uint24)
The 1-based width of the frame. The frame width is 1 + Frame Width Minus One.

Frame Height Minus One: 24 bits (uint24)
The 1-based height of the frame. The frame heightis 1 + Frame Height Minus One.

Frame Duration: 24 bits (uint24)
The time to wait before displaying the next frame, in 1-millisecond units. Note that the
interpretation of the Frame Duration of 0 (and often <= 10) is defined by the implementation.
Many tools and browsers assign a minimum duration similar to GIF.

Reserved: 6 bits
MUST be 0. Readers MUST ignore this field.

Zern, et al. Informational Page 12

RFC 9649 WebP Image Format November 2024

Blending method (B): 1 bit
Indicates how transparent pixels of the current frame are to be blended with corresponding
pixels of the previous canvas:

¢ 0: Use alpha-blending. After disposing of the previous frame, render the current frame
on the canvas using alpha-blending. If the current frame does not have an alpha
channel, assume the alpha value is 255, effectively replacing the rectangle.

* 1: Do not blend. After disposing of the previous frame, render the current frame on the
canvas by overwriting the rectangle covered by the current frame.

Disposal method (D): 1 bit
Indicates how the current frame is to be treated after it has been displayed (before rendering
the next frame) on the canvas:

¢ 0: Do not dispose. Leave the canvas as is.

* 1: Dispose to the background color. Fill the rectangle on the canvas covered by the
current frame with the background color specified in the 'ANIM' Chunk (Figure 8).

Notes:

» The frame disposal only applies to the frame rectangle, that is, the rectangle defined by
Frame X, Frame Y, frame width, and frame height. It may or may not cover the whole
canvas.

¢ Alpha-blending:

Given that each of the R, G, B, and A channels is 8 bits and the RGB channels are not
premultiplied by alpha, the formula for blending 'dst' onto 'src' is:

blend.A = src.A + dst.A * (1 - src.A / 255)
if blend.A = 0 then
blend.RGB = ©
else
blend.RGB =
(src.RGB * src.A +
dst.RGB * dst.A * (1 - src.A / 255)) / blend.A

 Alpha-blending SHOULD be done in linear color space by taking into account the color
profile (Section 2.7.1.4) of the image. If the color profile is not present, standard RGB
(sRGB) is to be assumed. (Note that SRGB also needs to be linearized due to a gamma of
~2.2))

Frame Data: Chunk Size bytes - 16
Consists of:

* An optional alpha subchunk (Section 2.7.1.2) for the frame.
* A bitstream subchunk (Section 2.7.1.3) for the frame.
* An optional list of unknown chunks (Section 2.7.1.6).

Zern, et al. Informational Page 13

RFC 9649 WebP Image Format November 2024

Note: The 'ANMF' payload, Frame Data, consists of individual padded chunks, as
described by the RIFF file format (Section 2.3).

2.7.1.2. Alpha

0 1 2 3

012345678901 2345678901234567898©01
Rt T e e i e e T T e e et A T S b It S
| ChunkHeader ('ALPH") |
| |

t-t—F-t-t-t-t-t-t-F—F—t-t-t-t-t-F-F—F-t-t-t-t-t-F—F—F-t-F-+-+-+-+
|[Rsv| P | F | C | Alpha Bitstream... |
+-+-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-F-F-F-F-+-F-F-+-+-+-+

Figure 10: ALPH' Chunk

Reserved (Rsv): 2 bits
MUST be 0. Readers MUST ignore this field.

Preprocessing (P): 2 bits
These informative bits are used to signal the preprocessing that has been performed during
compression. The decoder can use this information to, for example, dither the values or
smooth the gradients prior to display.

* 0: No preprocessing.
* 1: Level reduction.

Decoders are not required to use this information in any specified way:.

Filtering method (F): 2 bits
The filtering methods used are described as follows:

* 0: None.

* 1: Horizontal filter.
* 2: Vertical filter.

* 3: Gradient filter.

For each pixel, filtering is performed using the following calculations. Assume the alpha
values surrounding the current X position are labeled as:

Zern, et al. Informational Page 14

RFC 9649 WebP Image Format November 2024

Figure 11: Pixels Used in Alpha Filtering

We seek to compute the alpha value at position X. First, a prediction is made depending on
the filtering method:

* Method @: predictor =0
* Method 1: predictor = A
* Method 2: predictor = B
* Method 3: predictor = clip(A + B - C)

where clip(v) is equal to:

e 0ifv<0,
* 255 if v > 255, or
* v otherwise.

The final value is derived by adding the decompressed value X to the predictor and using
modulo-256 arithmetic to wrap the [256..511] range into the [0..255] one:

alpha = (predictor + X) % 256

There are special cases for the left-most and top-most pixel positions.
For example, the top-left value at location (0, 0) uses 0 as the predictor value. Otherwise:

* For horizontal or gradient filtering methods, the left-most pixels at location (0, y) are
predicted using the location (0, y-1) just above.

* For vertical or gradient filtering methods, the top-most pixels at location (%, 0) are
predicted using the location (x-1, 0) on the left.

Compression method (C): 2 bits
The compression method used:

* 0: No compression.
* 1: Compressed using the WebP lossless format.

Alpha bitstream: Chunk Size bytes - 1
Encoded alpha bitstream.

This optional chunk contains encoded alpha data for this frame. A frame containing a 'VP8L'
Chunk SHOULD NOT contain this chunk.

Zern, et al. Informational Page 15

RFC 9649 WebP Image Format November 2024

Rationale: The transparency information is already part of the 'VP8L' Chunk.

The alpha channel data is stored as uncompressed raw data (when the compression method is
'0") or compressed using the lossless format (wWhen the compression method is '1").

» Raw data: This consists of a byte sequence of length = width * height, containing all the 8-bit
transparency values in scan order.

* Lossless format compression: The byte sequence is a compressed image-stream (as described
in Section 3) of implicit dimensions width x height. That is, this image-stream does NOT
contain any headers describing the image dimensions.

Rationale: The dimensions are already known from other sources, so storing them
again would be redundant and prone to errors.

Once the image-stream is decoded into Alpha, Red, Green, Blue (ARGB) color values,
following the process described in the lossless format specification, the transparency
information must be extracted from the green channel of the ARGB quadruplet.

Rationale: The green channel is allowed extra transformation steps in the
specification -- unlike the other channels -- that can improve compression.

2.7.1.3. Bitstream (VP8/VP8L)
This chunk contains compressed bitstream data for a single frame.

A bitstream chunk may be either (i) a 'VP8 ' Chunk, using 'VP8 ' (note the significant fourth-
character space) as its FourCC, or (ii) a 'VP8L' Chunk, using 'VP8L' as its FourCC.

The formats of' VP8 ' and 'VP8L' Chunks are as described in Sections 2.5 and 2.6, respectively.

2.7.1.4. Color Profile

0 1 2 3

012345678901 2345678901234567898©01
t-t—t-F-t-—F-F-t—t-F-t—F-F-F-F-F-F—F-F-F—F—F-F—F-F-F—F—F-+-+-+-+-+
| ChunkHeader ('ICCP") |
-!-—+—-!-
: Color Profile :
et T s Tt s St o S S e e e s St S g e e h e X

Figure 12: 'ICCP' Chunk

Color Profile: Chunk Size bytes
ICC profile.

Zern, et al. Informational Page 16

RFC 9649 WebP Image Format November 2024

This chunk MUST appear before the image data.

There SHOULD be at most one such chunk. If there are more such chunks, readers MAY ignore all
except the first one. See the ICC specification [ICC] for details.

If this chunk is not present, SRGB SHOULD be assumed.

2.7.1.5. Metadata
Metadata can be stored in 'EXIF' or 'XMP ' Chunks.

There SHOULD be at most one chunk of each type (‘'EXIF' and 'XMP "). If there are more such
chunks, readers MAY ignore all except the first one.

The chunks are defined as follows:

0 1 2 3
012345678901 23456789061234567898©01
t-t—t-F-t-F-F-t-t-F-t—F-F-t-F-F-F—F-F-F—F-F-F—F-F-F-F—F-+-+-+-+-+
| ChunkHeader ('EXIF") |
| |

t-t-t-t-t-t-t-t-t-t—t—t—F—F—F—F—F-F -t -ttt -F-F-F-F-F-F-F-F-+-+-+
Exif Metadata
+—+

Figure 13: 'EXIF' Chunk

Exif Metadata: Chunk Size bytes
Image metadata in [Exif] format.

0 1 2 3
012345678901 2345678901234567898©01
T T e e s S e A St IR SR T

| ChunkHeader ('XMP ')

l—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-+—+-l
XMP Metadata

t-t-t-t-d-t-t-t-t-t-t—F—F—F—F—F-F-F -ttt -F-F-F-F-F-F-F-F-F-+-+-+

Figure 14: 'XMP ' Chunk

XMP Metadata: Chunk Size bytes
Image metadata in [XMP] format.

Note that the fourth character in the 'XMP ' FourCC is an ASCII space (0x20).

Zern, et al. Informational Page 17

RFC 9649 WebP Image Format November 2024

Additional guidance about handling metadata can be found in the Metadata Working Group's
"Guidelines For Handling Image Metadata" [MWG].

2.7.1.6. Unknown Chunks

A RIFF chunk (described in Section 2.3) whose FourCC is different from any of the chunks
described in this section is considered an unknown chunk.

Rationale: Allowing unknown chunks gives a provision for future extension of the
format and also allows storage of any application-specific data.

A file MAY contain unknown chunks:

« at the end of the file, as described in Section 2.7, or
¢ at the end of 'ANMF' Chunks, as described in Section 2.7.1.1.

Readers SHOULD ignore these chunks. Writers SHOULD preserve them in their original order
(unless they specifically intend to modify these chunks).

2.7.2. Canvas Assembly from Frames

Here, we provide an overview of how a reader MUST assemble a canvas in the case of an
animated image.

The process begins with creating a canvas using the dimensions given in the 'VP8X' Chunk,
Canvas Width Minus One + 1 pixels wide by Canvas Height Minus One + 1 pixels high. The
Loop Count field from the 'ANIM' Chunk controls how many times the animation process is
repeated. This is Loop Count - 1 for nonzero Loop Count values or infinite if the Loop Count is
Zero.

At the beginning of each loop iteration, the canvas is filled using the background color from the
'ANIM' Chunk or an application-defined color.

'ANMF' Chunks contain individual frames given in display order. Before rendering each frame,
the previous frame's Disposal method is applied.

The rendering of the decoded frame begins at the Cartesian coordinates (2 * Frame X,2 *
Frame Y), using the top-left corner of the canvas as the origin. Frame Width Minus One + 1
pixels wide by Frame Height Minus One + 1 pixels high are rendered onto the canvas using the
Blending method.

The canvas is displayed for Frame Duration milliseconds. This continues until all frames given
by 'ANMF' Chunks have been displayed. A new loop iteration is then begun, or the canvas is left
in its final state if all iterations have been completed.

The following pseudocode illustrates the rendering process. The notation VP8X.field means the
field in the 'VP8X' Chunk with the same description.

Zern, et al. Informational Page 18

RFC 9649 WebP Image Format November 2024

VP8X.flags.hasAnimation MUST be TRUE
canvas <- new image of size VP8X.canvasWidth x VP8X.canvasHeight with
background color ANIM.background_color or
application-defined color.
loop_count <- ANIM.loopCount
dispose_method <- Dispose to background color
if loop_count ==
loop_count = inf
frame_params <- nil
next chunk in image_data is ANMF MUST be TRUE
for loop = @..loop_count - 1
clear canvas to ANIM.background_color or application-defined color
until eof or non-ANMF chunk
frame_params.frameX = Frame X
frame_params.frameY = Frame Y
frame_params.frameWidth = Frame Width Minus One + 1
frame_params.frameHeight = Frame Height Minus One + 1
frame_params.frameDuration = Frame Duration
frame_right = frame_params.frameX + frame_params.frameWidth
frame_bottom = frame_params.frameY + frame_params.frameHeight
VP8X.canvasWidth >= frame_right MUST be TRUE
VP8X.canvasHeight >= frame_bottom MUST be TRUE
for subchunk in 'Frame Data':

if subchunk.tag == "ALPH":
alpha subchunks not found in 'Frame Data' earlier MUST be
TRUE
frame_params.alpha = alpha_data
else if subchunk.tag == "VP8 " OR subchunk.tag == "VP8L":
bitstream subchunks not found in 'Frame Data' earlier MUST
be TRUE

frame_params.bitstream = bitstream_data

apply dispose_method.

render frame with frame_params.alpha and frame_params.bitstream
on canvas with top-left corner at (frame_params.frameX,
frame_params.frameY), using Blending method
frame_params.blendingMethod.

canvas contains the decoded image.

Show the contents of the canvas for

frame_params.frameDuration * 1 ms.

dispose_method = frame_params.disposeMethod

2.7.3. Example File Layouts

Alossy-encoded image with alpha may look as follows:

RIFF/WEBP

+- VP8X (descriptions of features used)
+- ALPH (alpha bitstream)

+- VP8 (bitstream)

Figure 15: A Lossy-Encoded Image with Alpha

A lossless-encoded image may look as follows:

Zern, et al. Informational Page 19

RFC 9649 WebP Image Format November 2024
RIFF/WEBP
+- VP8X (descriptions of features used)
+- VP8L (lossless bitstream)

+- XYZW (unknown chunk)

Figure 16: A Lossless-Encoded Image

A lossless image with an ICC profile and XMP metadata may look as follows:

RIFF/WEBP

+- VP8X (descriptions of features used)
+- ICCP (color profile)

+- VP8L (lossless bitstream)

+- XMP

(metadata)

Figure 17: A Lossless Image with an ICC Profile and XMP Metadata

An animated image with Exif metadata may look as follows:

RIFF/WEBP

+- VP8X (descriptions of features used)
+- ANIM (global animation parameters)
+- ANMF (framel parameters + data)

+- ANMF (frame2 parameters + data)

+- ANMF (frame3 parameters + data)

+- ANMF (frame4 parameters + data)

+- EXIF (metadata)

Figure 18: An Animated Image with Exif Metadata

3. Specification for WebP Lossless Bitstream

Note that this section is based on the documentation in the libwebp source
repository [webp-lossless-src].

3.1. Abstract (from "Specification for WebP Lossless Bitstream™)

WebP lossless is an image format for lossless compression of ARGB images. The lossless format
stores and restores the pixel values exactly, including the color values for pixels whose alpha
value is 0. The format uses subresolution images, recursively embedded into the format itself, for
storing statistical data about the images, such as the used entropy codes, spatial predictors, color
space conversion, and color table. A universal algorithm for sequential data compression [LZ77],

Zern, et al.

Informational Page 20

RFC 9649 WebP Image Format November 2024

prefix coding, and a color cache are used for compression of the bulk data. Decoding speeds
faster than PNG have been demonstrated, as well as 25% denser compression than can be
achieved using today's PNG format [webp-lossless-study].

3.2. Introduction (from "Specification for WebP Lossless Bitstream")

This section describes the compressed data representation of a WebP lossless image.

In this section, we extensively use C programming language syntax [[S0.9899.2018] to describe
the bitstream and assume the existence of a function for reading bits, ReadBits(n). The bytes
are read in the natural order of the stream containing them, and bits of each byte are read in
least-significant-bit-first order. When multiple bits are read at the same time, the integer is
constructed from the original data in the original order. The most significant bits of the returned
integer are also the most significant bits of the original data. Thus, the statement

b = ReadBits(2);
is equivalent with the two statements below:

= ReadBits(1);
|= ReadBits(1) << 1;

b

b
We assume that each color component (that is, alpha, red, blue, and green) is represented using
an 8-bit byte. We define the corresponding type as uint8. A whole ARGB pixel is represented by a
type called uint32, which is an unsigned integer consisting of 32 bits. In the code showing the
behavior of the transforms, these values are codified in the following bits: alpha in bits 31..24,
red in bits 23..16, green in bits 15..8, and blue in bits 7..0; however, implementations of the
format are free to use another representation internally.

Broadly, a WebP lossless image contains header data, transform information, and actual image

data. Headers contain the width and height of the image. A WebP lossless image can go through
four different types of transforms before being entropy encoded. The transform information in
the bitstream contains the data required to apply the respective inverse transforms.

3.3. Nomenclature
ARGB

A pixel value consisting of alpha, red, green, and blue values.

ARGB image
A two-dimensional array containing ARGB pixels.

color cache
A small hash-addressed array to store recently used colors to be able to recall them with
shorter codes.

Zern, et al. Informational Page 21

RFC 9649 WebP Image Format November 2024

color indexing image
A one-dimensional image of colors that can be indexed using a small integer (up to 256
within WebP lossless).

color transform image
A two-dimensional subresolution image containing data about correlations of color
components.

distance mapping
Changes LZ77 distances to have the smallest values for pixels in two-dimensional proximity.

entropy image
A two-dimensional subresolution image indicating which entropy coding should be used in a
respective square in the image, that is, each pixel is a meta prefix code.

LZ77 [LZ77]
A dictionary-based sliding window compression algorithm that either emits symbols or
describes them as sequences of past symbols.

meta prefix code
A small integer (up to 16 bits) that indexes an element in the meta prefix table.

predictor image
A two-dimensional subresolution image indicating which spatial predictor is used for a
particular square in the image.

prefix code
A classic way to do entropy coding where a smaller number of bits are used for more
frequent codes.

prefix coding
A way to entropy code larger integers, which codes a few bits of the integer using an entropy
code and codifies the remaining bits raw. This allows for the descriptions of the entropy
codes to remain relatively small even when the range of symbols is large.

scan-line order
A processing order of pixels (left to right and top to bottom), starting from the left-hand-top
pixel. Once a row is completed, continue from the left-hand column of the next row.

3.4. RIFF Header
The beginning of the header has the RIFF container. This consists of the following 21 bytes:

1. String 'RIFF".

2. A little-endian, 32-bit value of the chunk length, which is the whole size of the chunk
controlled by the RIFF header. Normally, this equals the payload size (file size minus 8 bytes:
4 bytes for the 'RIFF' identifier and 4 bytes for storing the value itself).

3. String "WEBP' (RIFF container name).
4. String 'VP8L' (FourCC for lossless-encoded image data).

Zern, et al. Informational Page 22

RFC 9649 WebP Image Format November 2024

5. A little-endian, 32-bit value of the number of bytes in the lossless stream.
6. 1-byte signature 0x2f.

The first 28 bits of the bitstream specify the width and height of the image. Width and height are
decoded as 14-bit integers as follows:

int image_width = ReadBits(14) + 1;
int image_height = ReadBits(14) + 1;

The 14-bit precision for image width and height limits the maximum size of a WebP lossless
image to 16384x16384 pixels.

The alpha_is_used bit is a hint only and SHOULD NOT impact decoding. It SHOULD be set to 0
when all alpha values are 255 in the picture and 1 otherwise.

int alpha_is_used = ReadBits(1);

The version_number is a 3-bit code that MUST be set to 0. Any other value MUST be treated as an
error.

int version_number = ReadBits(3);

3.5. Transforms

The transforms are reversible manipulations of the image data that can reduce the remaining
symbolic entropy by modeling spatial and color correlations. They can make the final
compression more dense.

An image can go through four types of transforms. A 1 bit indicates the presence of a transform.
Each transform is allowed to be used only once. The transforms are used only for the main-level
ARGB image; the subresolution images (color transform image, entropy image, and predictor
image) have no transforms, not even the 0 bit indicating the end of transforms.

Typically, an encoder would use these transforms to reduce the Shannon entropy in
the residual image. Also, the transform data can be decided based on entropy
minimization.

Zern, et al. Informational Page 23

RFC 9649 WebP Image Format November 2024

while (ReadBits(1)) { // Transform present.
// Decode transform type.
enum TransformType transform_type = ReadBits(2);
// Decode transform data.

,

// Decode actual image data.

If a transform is present, then the next two bits specify the transform type. There are four types
of transforms.

Transform Bit
PREDICTOR_TRANSFORM 0
COLOR_TRANSFORM 1

SUBTRACT_GREEN_TRANSFORM 2

COLOR_INDEXING_TRANSFORM 3
Table 1: Transform Types

The transform type is followed by the transform data. Transform data contains the information
required to apply the inverse transform and depends on the transform type. The inverse
transforms are applied in the reverse order that they are read from the bitstream, that is, last
one first.

Next, we describe the transform data for different types.

3.5.1. Predictor Transform

The predictor transform can be used to reduce entropy by exploiting the fact that neighboring
pixels are often correlated. In the predictor transform, the current pixel value is predicted from
the pixels already decoded (in scan-line order) and only the residual value (actual - predicted) is
encoded. The green component of a pixel defines which of the 14 predictors is used within a
particular block of the ARGB image. The prediction mode determines the type of prediction to use.
We divide the image into squares, and all the pixels in a square use the same prediction mode.

The first 3 bits of prediction data define the block width and height in number of bits.

int size_bits = ReadBits(3) + 2;

int block_width = (1 << size_bits);

int block_height = (1 << size_bits);

#define DIV_ROUND_UP(num, den) (((num) + (den) - 1) / (den))
int transform_width = DIV_ROUND_UP(image_width, 1 << size_bits);

Zern, et al. Informational Page 24

RFC 9649 WebP Image Format November 2024

The transform data contains the prediction mode for each block of the image. Itis a
subresolution image where the green component of a pixel defines which of the 14 predictors is
used for all the block_width * block_height pixels within a particular block of the ARGB
image. This subresolution image is encoded using the same techniques described in Section 3.6.

The number of block columns, transform_width, is used in two-dimensional indexing. For a
pixel (%, y), one can compute the respective filter block address by:

int block_index = (y >> size_bits) * transform_width +
(x >> size_bits);

There are 14 different prediction modes. In each prediction mode, the current pixel value is
predicted from one or more neighboring pixels whose values are already known.

We chose the neighboring pixels (TL, T, TR, and L) of the current pixel (P) as follows:

XX OO0OO0OOo
XX OO0OO0OOo
XX OO0OO0Oo
XXOO0OOoOOo
XX H4O0o
—
XXTUVTWHOO
><><><5|OO
XX X000
XXXO0OO0oOo
XX X000
XX X000

Figure 19: Neighboring Pixels of the Current Pixel (P)

where TL means top-left, T means top, TR means top-right, and L means left. At the time of
predicting a value for P, all O, TL, T, TR, and L pixels have already been processed, and the P pixel
and all X pixels are unknown.

Given the preceding neighboring pixels, the different prediction modes are defined as follows.

Mode Predicted Value of Each Channel of the Current Pixel

0 0xff000000 (represents solid black color in ARGB)
1 L

2 T

3 TR

4 TL

5 Average2(Average2(L, TR), T)

6 Average2(L, TL)

Zern, et al. Informational Page 25

RFC 9649

Mode

10

11

12

13

WebP Image Format November 2024

Predicted Value of Each Channel of the Current Pixel
Average2(L, T)

Average2(TL, T)

Average2(T, TR)

Average2(Average2(L, TL), Average2(T, TR))

Select(L, T, TL)

ClampAddSubtractFull(L, T, TL)

ClampAddSubtractHalf(Average2(L, T), TL)

Table 2: Prediction Modes

Average? is defined as follows for each ARGB component:

uint8 Average2(uint8 a, uint8 b) {
return (a + b) / 2;

}

The Select predictor is defined as follows:

uint32 Select(uint32 L, uint32 T, uint32 TL) {

// L

= left pixel, T = top pixel, TL = top-left pixel.

// ARGB component estimates for prediction.
int pAlpha = ALPHA(L) + ALPHA(T) - ALPHA(TL);
int pRed = RED(L) + RED(T) - RED(TL);

int pGreen = GREEN(L) + GREEN(T) - GREEN(TL);
int pBlue = BLUE(L) + BLUE(T) - BLUE(TL);

// Manhattan distances to estimates for left and top pixels.
int pL = abs(pAlpha - ALPHA(L)) + abs(pRed - RED(L)) +

abs(pGreen - GREEN(L)) + abs(pBlue - BLUE(L));

int pT = abs(pAlpha - ALPHA(T)) + abs(pRed - RED(T)) +

abs(pGreen - GREEN(T)) + abs(pBlue - BLUE(T));

// Return either left or top, the one closer to the prediction.
if (pL < pT) {

return L;
} else {

return T;

}
}

The functions ClampAddSubtractFull and ClampAddSubtractHalf are performed for each ARGB
component as follows:

Zern, et al.

Informational Page 26

RFC 9649 WebP Image Format November 2024

// Clamp the input value between © and 255.
int Clamp(int a) {

return (a < @) ? @ : (a > 255) ? 255 : a;
}

int ClampAddSubtractFull(int a, int b, int c) {
return Clamp(a + b - ¢);
}

int ClampAddSubtractHalf(int a, int b)
return Clamp(a + (a - b) / 2);
}

There are special handling rules for some border pixels. If there is a predictor transform,
regardless of the mode [0..13] for these pixels, the predicted value for the left-topmost pixel of the
image is 0xff000000, all pixels on the top row are L-pixel, and all pixels on the leftmost column
are T-pixel.

Addressing the TR-pixel for pixels on the rightmost column is exceptional. The pixels on the
rightmost column are predicted by using the modes [0..13], just like pixels not on the border, but
the leftmost pixel on the same row as the current pixel is instead used as the TR-pixel.

The final pixel value is obtained by adding each channel of the predicted value to the encoded
residual value.

void PredictorTransformOutput(uint32 residual, uint32 pred,
uint8#* alpha, uint8%* red,
uint8* green, uint8* blue) {
*alpha = ALPHA(residual) + ALPHA(pred);
*red = RED(residual) + RED(pred);
*green = GREEN(residual) + GREEN(pred);
*blue = BLUE(residual) + BLUE(pred);

3.5.2. Color Transform

The goal of the color transform is to decorrelate the R, G, and B values of each pixel. The color
transform keeps the green (G) value as it is, transforms the red (R) value based on the green
value, and transforms the blue (B) value based on the green value and then on the red value.

As is the case for the predictor transform, first the image is divided into blocks, and the same
transform mode is used for all the pixels in a block. For each block, there are three types of color
transform elements.

typedef struct {
uint8 green_to_red;
uint8 green_to_blue;
uint8 red_to_blue;

} ColorTransformElement;

Zern, et al. Informational Page 27

RFC 9649 WebP Image Format November 2024

The actual color transform is done by defining a color transform delta. The color transform delta
depends on the ColorTransformElement, which is the same for all the pixels in a particular
block. The delta is subtracted during the color transform. The inverse color transform then is just
adding those deltas.

The color transform function is defined as follows:

void ColorTransform(uint8 red, uint8 blue, uint8 green,
ColorTransformElement *trans,
uint8 *new_red, uint8 *new_blue) {
// Transformed values of red and blue components
int tmp_red = red;
int tmp_blue = blue;

// Applying the transform is just subtracting the transform deltas

tmp_red -= ColorTransformDelta(trans->green_to_red, green);
tmp_blue -= ColorTransformDelta(trans->green_to_blue, green);
tmp_blue -= ColorTransformDelta(trans->red_to_blue, red);

*new_red = tmp_red & Oxff;
*new_blue = tmp_blue & Oxff;

ColorTransformDelta is computed using a signed 8-bit integer representing a 3.5-fixed-point
number and a signed 8-bit RGB color channel (c) [-128..127] and is defined as follows:

int8 ColorTransformDelta(int8 t, int8 c) {
return (t * ¢) >> 5;

}

A conversion from the 8-bit unsigned representation (uint8) to the 8-bit signed one (int8) is
required before calling ColorTransformDelta(). The signed value should be interpreted as an 8-
bit two's complement number (that is: uint8 range [128..255] is mapped to the [-128..-1] range of
its converted int8 value).

The multiplication is to be done using more precision (with at least 16-bit precision). The sign
extension property of the shift operation does not matter here; only the lowest 8 bits are used
from the result, and in these bits, the sign extension shifting and unsigned shifting are consistent
with each other.

Now, we describe the contents of color transform data so that decoding can apply the inverse
color transform and recover the original red and blue values. The first 3 bits of the color
transform data contain the width and height of the image block in number of bits, just like the
predictor transform:

int size_bits = ReadBits(3) + 2;
int block_width = 1 << size_bits;
int block_height = 1 << size_bits;

Zern, et al. Informational Page 28

RFC 9649 WebP Image Format November 2024

The remaining part of the color transform data contains ColorTransformElement instances,
corresponding to each block of the image. Each ColorTransformElement 'cte' is treated as a
pixel in a subresolution image whose alpha component is 255, red component is
cte.red_to_blue, green component is cte.green_to_blue, and blue component is
cte.green_to_red

During decoding, ColorTransformElement instances of the blocks are decoded and the inverse
color transform is applied on the ARGB values of the pixels. As mentioned earlier, that inverse
color transform is just adding ColorTransformElement values to the red and blue channels. The
alpha and green channels are left as is.

void InverseTransform(uint8 red, uint8 green, uint8 blue,
ColorTransformElement *trans,
uint8 *new_red, uint8 *new_blue) {
// Transformed values of red and blue components
int tmp_red = red;
int tmp_blue = blue;

// Applying the inverse transform is just adding the
// color transform deltas
tmp_red += ColorTransformDelta(trans->green_to_red, green);
tmp_blue += ColorTransformDelta(trans->green_to_blue, green);
tmp_blue +=

ColorTransformDelta(trans->red_to_blue, tmp_red & Oxff);

*new_red = tmp_red & Oxff;
*new_blue = tmp_blue & Oxff;

3.5.3. Subtract Green Transform

The subtract green transform subtracts green values from red and blue values of each pixel.
When this transform is present, the decoder needs to add the green value to both the red and
blue values. There is no data associated with this transform. The decoder applies the inverse
transform as follows:

void AddGreenToBlueAndRed(uint8 green, uint8 *red, uint8 *blue) {
*red (*red + green) & Oxff;
*blue = (*blue + green) & Oxff;

}

This transform is redundant, as it can be modeled using the color transform, but since there is no
additional data here, the subtract green transform can be coded using fewer bits than a full-
blown color transform.

Zern, et al. Informational Page 29

RFC 9649 WebP Image Format November 2024

3.5.4. Color Indexing Transform

If there are not many unique pixel values, it may be more efficient to create a color index array
and replace the pixel values by the array's indices. The color indexing transform achieves this.
(In the context of WebP lossless, we specifically do not call this a palette transform because a
similar but more dynamic concept exists in WebP lossless encoding: color cache.)

The color indexing transform checks for the number of unique ARGB values in the image. If that
number is below a threshold (256), it creates an array of those ARGB values, which is then used
to replace the pixel values with the corresponding index: the green channel of the pixels are
replaced with the index, all alpha values are set to 255, and all red and blue values are set to 0.

The transform data contains the color table size and the entries in the color table. The decoder
reads the color indexing transform data as follows:

// 8-bit value for the color table size
int color_table_size = ReadBits(8) + 1;

The color table is stored using the image storage format itself. The color table can be obtained by
reading an image, without the RIFF header, image size, and transforms, assuming the height of 1
pixel and the width of color_table_size. The color table is always subtraction-coded to reduce
image entropy. The deltas of palette colors contain typically much less entropy than the colors
themselves, leading to significant savings for smaller images. In decoding, every final color in the
color table can be obtained by adding the previous color component values by each ARGB
component separately and storing the least significant 8 bits of the result.

The inverse transform for the image is simply replacing the pixel values (which are indices to the
color table) with the actual color table values. The indexing is done based on the green
component of the ARGB color.

// Inverse transform
argb = color_table[GREEN(argb)];

If the index is equal to or larger than color_table_size, the argb color value should be set to
0x00000000 (transparent black).

When the color table is small (equal to or less than 16 colors), several pixels are bundled into a
single pixel. The pixel bundling packs several (2, 4, or 8) pixels into a single pixel, reducing the
image width respectively.

Pixel bundling allows for a more efficient joint distribution entropy coding of
neighboring pixels and gives some arithmetic coding-like benefits to the entropy
code, but it can only be used when there are 16 or fewer unique values.

color_table_size specifies how many pixels are combined:

Zern, et al. Informational Page 30

RFC 9649 WebP Image Format November 2024

color_table size width_bits value

1.2 3
3.4 2
5..16 1
17..256 0

Table 3: Color Table Size to Bundled Pixel
Bit Width Mapping

width_bits has a value of 0, 1, 2, or 3. A value of 0 indicates no pixel bundling is to be done for
the image. A value of 1 indicates that two pixels are combined, and each pixel has a range of
[0..15]. A value of 2 indicates that four pixels are combined, and each pixel has a range of [0..3]. A
value of 3 indicates that eight pixels are combined, and each pixel has a range of [0..1], that is, a
binary value.

The values are packed into the green component as follows:

*width_bits = 1: For every x value, where x = 2k + 0, a green value at x is positioned into the
4 least significant bits of the green value at X/ 2, and a green value at x + 1 is positioned into
the 4 most significant bits of the green value at x/ 2.

*width_bits = 2: For every x value, where x = 4k + 0, a green value at X is positioned into the
2 least significant bits of the green value at x /4, and green values atx + 1 to x + 3 are
positioned in order to the more significant bits of the green value at x/ 4.

*width_bits = 3: For every x value, where x = 8k + 0, a green value at x is positioned into the
least significant bit of the green value at x/ 8, and green values at x + 1 to x + 7 are positioned
in order to the more significant bits of the green value at x/ 8.

After reading this transform, image_width is subsampled by width_bits. This affects the size of
subsequent transforms. The new size can be calculated using DIV_ROUND_UP, as defined in
Section 3.5.1.

image_width = DIV_ROUND_UP(image_width, 1 << width_bits);

3.6. Image Data

Image data is an array of pixel values in scan-line order.

3.6.1. Roles of Image Data

We use image data in five different roles:

1. ARGB image: Stores the actual pixels of the image.

Zern, et al. Informational Page 31

RFC 9649 WebP Image Format November 2024

2. Entropy image: Stores the meta prefix codes (see "Decoding of Meta Prefix Codes" (Section
3.7.2.2)).

3. Predictor image: Stores the metadata for the predictor transform (see "Predictor Transform"
(Section 3.5.1)).

4. Color transform image: Created by ColorTransformElement values (defined in "Color
Transform" (Section 3.5.2)) for different blocks of the image.

5. Color indexing image: An array of the size of color_table_size (up to 256 ARGB values)
that stores the metadata for the color indexing transform (see "Color Indexing Transform"
(Section 3.5.4)).

3.6.2. Encoding of Image Data

The encoding of image data is independent of its role.

The image is first divided into a set of fixed-size blocks (typically 16x16 blocks). Each of these
blocks are modeled using their own entropy codes. Also, several blocks may share the same
entropy codes.

Rationale: Storing an entropy code incurs a cost. This cost can be minimized if
statistically similar blocks share an entropy code, thereby storing that code only
once. For example, an encoder can find similar blocks by clustering them using their
statistical properties or by repeatedly joining a pair of randomly selected clusters
when it reduces the overall amount of bits needed to encode the image.

Each pixel is encoded using one of the three possible methods:

1. Prefix-coded literals: Each channel (green, red, blue, and alpha) is entropy-coded
independently.

2. LZ77 backward reference: A sequence of pixels are copied from elsewhere in the image.

3. Color cache code: Using a short multiplicative hash code (color cache index) of a recently
seen color.

The following subsections describe each of these in detail.

3.6.2.1. Prefix-Coded Literals

The pixel is stored as prefix-coded values of green, red, blue, and alpha (in that order). See
Section 3.7.2.3 for details.

3.6.2.2. LZ77 Backward Reference
Backward references are tuples of length and distance code:

* Length indicates how many pixels in scan-line order are to be copied.

* Distance code is a number indicating the position of a previously seen pixel, from which the
pixels are to be copied. The exact mapping is described below (Section 3.6.2.2.1).

The length and distance values are stored using LZ77 prefix coding.

Zern, et al. Informational Page 32

RFC 9649 WebP Image Format November 2024

LZ77 prefix coding divides large integer values into two parts: the prefix code and the extra bits.
The prefix code is stored using an entropy code, while the extra bits are stored as they are
(without an entropy code).

Rationale: This approach reduces the storage requirement for the entropy code.
Also, large values are usually rare, so extra bits would be used for very few values in
the image. Thus, this approach results in better compression overall.

The following table denotes the prefix codes and extra bits used for storing different ranges of
values.

Note: The maximum backward reference length is limited to 4096. Hence, only the
first 24 prefix codes (with the respective extra bits) are meaningful for length
values. For distance values, however, all the 40 prefix codes are valid.

Value Range Prefix Code Extra Bits

1 0 0

2 1 0

3 2 0

4 3 0

5.6 4 1

7.8 5 1

9.12 6 2

13..16 7 2

3072..4096 23 10

524289..786432 38 18

786433..1048576 39 18
Table 4: Value to Prefix Code and Extra Bits
Mapping

The pseudocode to obtain a (length or distance) value from the prefix code is as follows:

Zern, et al. Informational Page 33

RFC 9649 WebP Image Format November 2024

if (prefix_code < 4) {
return prefix_code + 1;

}

int extra_bits = (prefix_code - 2) >> 1;

int offset = (2 + (prefix_code & 1)) << extra_bits;
return offset + ReadBits(extra_bits) + 1;

3.6.2.2.1. Distance Mapping

As noted previously, a distance code is a number indicating the position of a previously seen
pixel, from which the pixels are to be copied. This subsection defines the mapping between a
distance code and the position of a previous pixel.

Distance codes larger than 120 denote the pixel distance in scan-line order, offset by 120.

The smallest distance codes [1..120] are special and are reserved for a close neighborhood of the
current pixel. This neighborhood consists of 120 pixels:

* Pixels that are 1 to 7 rows above the current pixel and are up to 8 columns to the left or up to
7 columns to the right of the current pixel [Total such pixels=7 * (8 + 1 + 7) = 112].

* Pixels that are in the same row as the current pixel and are up to 8 columns to the left of the
current pixel [8 such pixels].

The mapping between distance code distance_code and the neighboring pixel offset (xi, yi) is
as follows:

(9, 1)' (1' a)' (11 1)! (_1' 1)' (9, 2)' (2' a)' (11 2)!
(_1v 2)! (2v 1)! (_2: 1): (2: 2): (_2v 2)! (0, 3)! (35 0);
(11 3): (_1' 3)! (3; 1)! (_31 1): (21 3): (_2' 3)! (35 2):
(_3' 2)' (9' 4)' (4r 9)! (11 4)! (_1' 4)' (4' 1)' (_4: 1):
(3! 3)! (_3' 3)! (2; 4)! (_2! 4)! (4! 2)! (_4' 2)! (@v 5);
(31 4): (_3' 4)! (4; 3)! (_41 3): (51 @), (1! 5)! (_11 5):
(5' 1)' (_51 1)! (21 5)! (_2' 5)' (5' 2)' (_51 2)! (4r 4)r
(_4v 4)! (3v 5)! (_3: 5): (5: 3): (_Sv 3)! (0, 6)! (65 0);
(11 6): (_1' 6)! (6, 1)! (_61 1): (21 6): (_2' 6)! (65 2):
(_6' 2)' (4' 5)' (_41 5)! (51 4)! (_5' 4)' (3' 6)' (_3: 6):
(6! 3)! (_6' 3)! (@i 7)! (7: @): (1! 7)! (_1' 7)! (55 5);
(_5! 5)! (7! 1)! (_71 1): (41 6): (_4! 6)! (6! 4)! (_61 4):
(2' 7)' (_21 7)! (7r 2)! (_7' 2)' (3' 7)' (_31 7)! (7r 3)!
(_7v 3)! (Sv 6)! (_5: 6): (6: 5): (_6v 5)! (8v @)v (45 7):
(_4! 7)! (7! 4)! (_71 4): (81 1): (81 2): (6! 6)! (_61 6):
(8' 3)' (5' 7)' (_51 7)! (71 5)! (_7' 5)' (8' 4)' (6r 7)r
E_6v ;)v (7v 6)! (_7: 6): (8: 5): (7! 7)! (_7' 7)! (85 6):
8, 7

Figure 20: Distance Code to Neighboring Pixel Offset Mapping

Zern, et al. Informational Page 34

RFC 9649 WebP Image Format November 2024

For example, the distance code 1 indicates an offset of (8, 1) for the neighboring pixel, that is,
the pixel above the current pixel (0 pixel difference in the X direction and 1 pixel difference in
the Y direction). Similarly, the distance code 3 indicates the top-left pixel.

The decoder can convert a distance code distance_code to a scan-line order distance dist as
follows:

(xi, yi) = distance_map[distance_code - 1]
dist = xi + yi * image_width
if (dist < 1) {
dist = 1
}

where distance_map is the mapping noted above, and image_width is the width of the image in
pixels.

3.6.2.3. Color Cache Coding
Color cache stores a set of colors that have been recently used in the image.

Rationale: This way, the recently used colors can sometimes be referred to more
efficiently than emitting them using the other two methods (described in Sections
3.6.2.1 and 3.6.2.2).

Color cache codes are stored as follows. First, there is a 1-bit value that indicates if the color
cache is used. If this bit is 0, no color cache codes exist, and they are not transmitted in the prefix
code that decodes the green symbols and the length prefix codes. However, if this bit is 1, the
color cache size is read next:

int color_cache_code_bits = ReadBits(4);
int color_cache_size = 1 << color_cache_code_bits;

color_cache_code_bits defines the size of the color cache (1 << color_cache_code_bits). The
range of allowed values for color_cache_code_bits is [1..11]. Compliant decoders MUST
indicate a corrupted bitstream for other values.

A color cache is an array of size color_cache_size. Each entry stores one ARGB color. Colors are
looked up by indexing them by (8x1e35a7bd * color) >> (32 - color_cache_code_bits).
Only one lookup is done in a color cache; there is no conflict resolution.

In the beginning of decoding or encoding of an image, all entries in all color cache values are set
to zero. The color cache code is converted to this color at decoding time. The state of the color
cache is maintained by inserting every pixel, be it produced by backward referencing or as
literals, into the cache in the order they appear in the stream.

Zern, et al. Informational Page 35

RFC 9649 WebP Image Format November 2024

3.7. Entropy Code

3.7.1. Overview

Most of the data is coded using a canonical prefix code [Huffman]. Hence, the codes are
transmitted by sending the prefix code lengths, as opposed to the actual prefix codes.

In particular, the format uses spatially variant prefix coding. In other words, different blocks
of the image can potentially use different entropy codes.

Rationale: Different areas of the image may have different characteristics. So,
allowing them to use different entropy codes provides more flexibility and
potentially better compression.

3.7.2. Details

The encoded image data consists of several parts:

1. Decoding and building the prefix codes.
2. Meta prefix codes.
3. Entropy-coded image data.

For any given pixel (¥, y), there is a set of five prefix codes associated with it. These codes are (in
bitstream order):

* Prefix code #1: Used for green channel, backward-reference length, and color cache.
* Prefix code #2, #3, and #4: Used for red, blue, and alpha channels, respectively.
* Prefix code #5: Used for backward-reference distance.

From here on, we refer to this set as a prefix code group.

3.7.2.1. Decoding and Building the Prefix Codes
This section describes how to read the prefix code lengths from the bitstream.

The prefix code lengths can be coded in two ways. The method used is specified by a 1-bit value.

o If this bit is 1, it is a simple code length code.
o If this bit is 0, it is a normal code length code.

In both cases, there can be unused code lengths that are still part of the stream. This may be
inefficient, but it is allowed by the format. The described tree must be a complete binary tree. A
single leaf node is considered a complete binary tree and can be encoded using either the simple
code length code or the normal code length code. When coding a single leaf node using the
normal code length code, all but one code length are zeros, and the single leaf node value is
marked with the length of 1 -- even when no bits are consumed when that single leaf node tree is
used.

Zern, et al. Informational Page 36

RFC 9649 WebP Image Format November 2024

3.7.2.1.1. Simple Code Length Code

This variant is used in the special case when only 1 or 2 prefix symbols are in the range [0..255]
with code length 1. All other prefix code lengths are implicitly zeros.

The first bit indicates the number of symbols:
int num_symbols = ReadBits(1) + 1;

The following are the symbol values. This first symbol is coded using 1 or 8 bits, depending on
the value of is_first_8bits. The range is [0..1] or [0..255], respectively. The second symbol, if
present, is always assumed to be in the range [0..255] and coded using 8 bits.

int is_first_8bits = ReadBits(1);
symbol® = ReadBits(1 + 7 * is_first_8bits);
code_lengths[symbol@] = 1;
if (num_symbols == 2) {
symbol1l = ReadBits(8);
code_lengths[symboll] = 1;
}

The two symbols should be different. Duplicate symbols are allowed, but inefficient.

Note: Another special case is when all prefix code lengths are zeros (an empty prefix
code). For example, a prefix code for distance can be empty if there are no
backward references. Similarly, prefix codes for alpha, red, and blue can be empty if
all pixels within the same meta prefix code are produced using the color cache.
However, this case doesn't need special handling, as empty prefix codes can be
coded as those containing a single symbol 0.

3.7.2.1.2. Normal Code Length Code

The code lengths of the prefix code fit in 8 bits and are read as follows. First, num_code_lengths
specifies the number of code lengths.

int num_code_lengths = 4 + ReadBits(4);

The code lengths are themselves encoded using prefix codes; lower-level code lengths,
code_length_code_lengths, first have to be read. The rest of those code_length_code_lengths
(according to the order in kCodeLengthCodeOrder) are zeros.

Zern, et al. Informational Page 37

RFC 9649 WebP Image Format November 2024

int kCodelLengthCodes = 19;

int kCodelLengthCodeOrder[kCodeLengthCodes] = {

17, 18, o, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

i

int code_length_code_lengths[kCodeLengthCodes] = { @ }; // All zeros

for (i = @; i < num_code_lengths; ++i) {
code_length_code_lengths[kCodeLengthCodeOrder[i]] = ReadBits(3);

}

Next, if ReadBits(1) == 0, the maximum number of different read symbols (max_symbol) for
each symbol type (A, R, G, B, and distance) is set to its alphabet size:

e G channel: 256 + 24 + color_cache_size
e Other literals (A, R, and B): 256
 Distance code: 40

Otherwise, it is defined as:

int length_nbits

=2 + 2 * ReadBits(3);
int max_symbol = 2 +

ReadBits(length_nbits);

If max_symbol is larger than the size of the alphabet for the symbol type, the bitstream is invalid.

A prefix table is then built from code_length_code_lengths and used to read up to max_symbol
code lengths.

* Code [0..15] indicates literal code lengths.

> Value 0 means no symbols have been coded.
o Values [1..15] indicate the bit length of the respective code.

* Code 16 repeats the previous nonzero value [3..6] times, that is, 3 + ReadBits(2) times. If
code 16 is used before a nonzero value has been emitted, a value of 8 is repeated.

* Code 17 emits a streak of zeros of length [3..10], that is, 3 + ReadBits(3) times.
* Code 18 emits a streak of zeros of length [11..138], that is, 11 + ReadBits(7) times.

Once code lengths are read, a prefix code for each symbol type (A, R, G, B, and distance) is formed
using their respective alphabet sizes.

3.7.2.2. Decoding of Meta Prefix Codes

As noted earlier, the format allows the use of different prefix codes for different blocks of the
image. Meta prefix codes are indexes identifying which prefix codes to use in different parts of
the image.

Meta prefix codes may be used only when the image is being used in the role (Section 3.6.1) of an
ARGB image.

Zern, et al. Informational Page 38

RFC 9649 WebP Image Format November 2024

There are two possibilities for the meta prefix codes, indicated by a 1-bit value:

o If this bit is zero, there is only one meta prefix code used everywhere in the image. No more
data is stored.

o If this bit is one, the image uses multiple meta prefix codes. These meta prefix codes are
stored as an entropy image (described below).

The red and green components of a pixel define a 16-bit meta prefix code used in a particular
block of the ARGB image.

3.7.2.2.1. Entropy Image
The entropy image defines which prefix codes are used in different parts of the image.

The first 3 bits contain the prefix_bits value. The dimensions of the entropy image are derived
from prefix_bits:

int prefix_bits = ReadBits(3) + 2;

int prefix_image_width =
DIV_ROUND_UP(image_width, 1 << prefix_bits);

int prefix_image_height =
DIV_ROUND_UP(image_height, 1 << prefix_bits);

where DIV_ROUND_UP is as defined in Section 3.5.1.

The next bits contain an entropy image of width prefix_image_width and height
prefix_image_height.

3.7.2.2.2. Interpretation of Meta Prefix Codes

The number of prefix code groups in the ARGB image can be obtained by finding the largest meta
prefix code from the entropy image:

int num_prefix_groups = max(entropy image) + 1;

where max(entropy image) indicates the largest prefix code stored in the entropy image.

As each prefix code group contains five prefix codes, the total number of prefix codes is:

int num_prefix_codes = 5 * num_prefix_groups;

Given a pixel (%, y) in the ARGB image, we can obtain the corresponding prefix codes to be used
as follows:

Zern, et al. Informational Page 39

RFC 9649 WebP Image Format November 2024

int position =

(y >> prefix_bits) * prefix_image_width + (x >> prefix_bits);
int meta_prefix_code = (entropy_image[position] >> 8) & @xffff;
PrefixCodeGroup prefix_group = prefix_code_groups[meta_prefix_code];

where we have assumed the existence of PrefixCodeGroup structure, which represents a set of
five prefix codes. Also, prefix_code_groups is an array of PrefixCodeGroup (of size
num_prefix_groups).

The decoder then uses prefix code group prefix_group to decode the pixel (¥, y), as explained in
Section 3.7.2.3.

3.7.2.3. Decoding Entropy-Coded Image Data

For the current position (%, y) in the image, the decoder first identifies the corresponding prefix
code group (as explained in the last section). Given the prefix code group, the pixel is read and
decoded as follows.

Next, read symbol S from the bitstream using prefix code #1.

Note that S is any integer in the range 8 to (256 + 24 + color_cache_size - 1).
See Section 3.6.2.3 for details about color_cache_size.

The interpretation of S depends on its value:

1.If S <256

i. Use S as the green component.

ii. Read red from the bitstream using prefix code #2.
iii. Read blue from the bitstream using prefix code #3.
iv. Read alpha from the bitstream using prefix code #4.

2.1fS>=256 & S <256 + 24

i. Use S - 256 as a length prefix code.

ii. Read extra bits for the length from the bitstream.
iii. Determine backward-reference length L from length prefix code and the extra bits read.
iv. Read the distance prefix code from the bitstream using prefix code #5.

v. Read extra bits for the distance from the bitstream.

vi. Determine backward-reference distance D from the distance prefix code and the extra bits
read.

vii. Copy L pixels (in scan-line order) from the sequence of pixels starting at the current
position minus D pixels.

3.1fS>=256+24
i. Use S - (256 + 24) as the index into the color cache.

Zern, et al. Informational Page 40

RFC 9649

WebP Image Format November 2024

ii. Get ARGB color from the color cache at that index.

3.8. Overall Structure of the Format

Below is a view into the format in Augmented Backus-Naur Form [RFC5234] [RFC7405]. It does
not cover all details. The end-of-image (EOI) is only implicitly coded into the number of pixels
(image_width * image_height).

Note that *element means element can be repeated 0 or more times. 5element
means element is repeated exactly 5 times. %b represents a binary value.

3.8.1. Basic Structure

format
RIFF-header
image-header
image-size
alpha-is-used
version
image-stream

RIFF-header image-header image-stream
%s"RIFF" 40CTET %s"WEBPVP8L" 40CTET

%x2F image-size alpha-is-used version
14BIT 14BIT ; width - 1, height - 1

1BIT

3BIT ; ©

optional-transform spatially-coded-image

3.8.2. Structure of Transforms

optional-transform

transform
transform

predictor-tx
predictor-image

color-tx
color-image

subtract-green-tx

color-indexing-tx
color-indexing-image

Zern, et al.

(%b1 transform optional-transform) / %b@
predictor-tx / color-tx / subtract-green-tx
/ color-indexing-tx

%b00 predictor-image
3BIT ; sub-pixel code
entropy-coded-image

%b01 color-image
3BIT ; sub-pixel code
entropy-coded-image

%b10

%b11 color-indexing-image
8BIT ; color count
entropy-coded-image

Informational Page 41

RFC 9649 WebP Image Format November 2024

3.8.3. Structure of the Image Data

spatially-coded-image
entropy-coded-image

color-cache-info meta-prefix data
color-cache-info data

%b0
/ (%b1 4BIT) ; 1 followed by color cache size

color-cache-info
color-cache-info

meta-prefix %0 / (%b1 entropy-image)

data
entropy-image

prefix-codes 1z77-coded-image
3BIT ; subsample value
entropy-coded-image

prefix-codes
prefix-code-group
5prefix-code ; See "Interpretation of Meta Prefix Codes" to
; understand what each of these five prefix
: codes are for.

prefix-code-group *prefix-codes

prefix-code
simple-prefix-code
normal-prefix-code

simple-prefix-code / normal-prefix-code
; see "Simple Code Length Code" for details
; see "Normal Code Length Code" for details

1z77-coded-image =
*((argb-pixel / 1z77-copy / color-cache-code) 1z77-coded-image)

The following is a possible example sequence:

RIFF-header image-size %b1 subtract-green-tx
%b1 predictor-tx %b8 color-cache-info
%b0@ prefix-codes 1z77-coded-image

4. Security Considerations

Implementations of this format face security risks, such as integer overflows, out-of-bounds
reads and writes to both heap and stack, uninitialized data usage, null pointer dereferences,
resource (disk or memory) exhaustion, and extended resource usage (long running time) as part
of the demuxing and decoding process. In particular, implementations reading this format are
likely to take input from unknown and possibly unsafe sources -- both clients (for example, web
browsers or email clients) and servers (for example, applications that accept uploaded images).
These may result in arbitrary code execution, information leakage (memory layout and
contents), or crashes and thereby allow a device to be compromised or cause a denial of service
to an application using the format [mitre-libwebp] [issues-security].

The format does not employ "active content" but does allow metadata (for example, [XMP] and
[Exif]) and custom chunks to be embedded in a file. Applications that interpret these chunks may
be subject to security considerations for those formats.

Zern, et al. Informational Page 42

RFC 9649 WebP Image Format November 2024

5. Interoperability Considerations

The format is defined using little-endian byte ordering (see Section 3.1 of [RFC2781]), but
demuxing and decoding are possible on platforms using a different ordering with the
appropriate conversion. The container is based on RIFF and allows extension via user-defined
chunks, but nothing beyond the chunks defined by the container format (Section 2) are required
for decoding of the image. These have been finalized, but they were extended in the format's
early stages, so some older readers may not support lossless or animated image decoding.

6. TANA Considerations

IANA has registered the 'image/webp' media type [RFC2046].

6.1. The 'image/webp' Media Type

This section contains the media type registration details per [RFC6838].

6.1.1. Registration Details

Type name: image
Subtype name: webp
Required parameters: N/A
Optional parameters: N/A

Encoding considerations: Binary. The Base64 encoding [RFC4648] should be used on transports
that cannot accommodate binary data directly.

Security considerations: See RFC 9649, Section 4.
Interoperability considerations: See RFC 9649, Section 5.
Published specification: RFC 9649

Applications that use this media type: Applications that are used to display and process images,
especially when smaller image file sizes are important.

Fragment identifier considerations: N/A

Additional information:

Deprecated alias names for this type: N/A

Magic number(s): The first 4 bytes are 0x52, 0x49, 0x46, 0x46 ('RIFF"), followed by 4 bytes for
the 'RIFF' Chunk size. The next 7 bytes are 0x57, 0x45, 0x42, 0x50, 0x56, 0x50, 0x38
(WEBPVPS)).

File extension(s): webp

Apple Uniform Type Identifier: org.webmproject.webp conforms to public.image

Zern, et al. Informational Page 43

https://rfc-editor.org/rfc/rfc2781#section-3.1

RFC 9649

WebP Image Format November 2024

Object Identifiers: N/A

Person & email address to contact for further information: James Zern <jzern@google.com>

Intended usage:

COMMON

Restrictions on usage: N/A

Author: James Zern <jzern@google.com>

Change controller: IETF

7. References

7.1. Normative References

[Exif]

[ICC]

[1S0.9899.2018]

[REC601]

[RFC1166]

[RFC2046]

[RFC2119]

[RFC2781]

Zern, et al.

Camera & Imaging Products Association (CIPA) and Japan Electronics and
Information Technology Industries Association (JEITA), "Exchangeable image
file format for digital still cameras: Exif Version 2.3", CIPA DC-008-2012, JEITA
CP-3451C, December 2012, <https://www.cipa.jp/std/documents/e/
DC-008-2012_E.pdf>.

International Color Consortium, "Image technology colour management --
Architecture, profile format, and data structure", Profile version 4.3.0.0,
REVISION of ICC.1:2004-10, Specification ICC.1:2010, December 2010, <https://
www.color.org/specification/ICC1v43_2010-12.pdf>.

International Organization for Standardization, "Information technology --
Programming languages -- C", Fourth Edition, ISO/IEC 9899:2018, June 2018,
<https://www.iso.org/standard/74528.html>.

ITU, "Studio encoding parameters of digital television for standard 4:3 and wide
screen 16:9 aspect ratios”, ITU-R Recommendation BT.601, March 2011, <https://
www.itu.int/rec/R-REC-BT.601/>.

Kirkpatrick, S., Stahl, M., and M. Recker, "Internet numbers", RFC 1166, DOI
10.17487/RFC1166, July 1990, <https://www.rfc-editor.org/info/rfc1166>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types", RFC 2046, DOI 10.17487/RFC2046, November 1996,
<https://www.rfc-editor.org/info/rfc2046>.

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO 10646", RFC 2781, DOI
10.17487/RFC2781, February 2000, <https://www.rfc-editor.org/info/rfc2781>.

Informational Page 44

https://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
https://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
https://www.color.org/specification/ICC1v43_2010-12.pdf
https://www.color.org/specification/ICC1v43_2010-12.pdf
https://www.iso.org/standard/74528.html
https://www.itu.int/rec/R-REC-BT.601/
https://www.itu.int/rec/R-REC-BT.601/
https://www.rfc-editor.org/info/rfc1166
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2781

RFC 9649

[RFC4648]

[RFC5234]

[RFC6386]

[RFC6838]

[RFC7405]

[RFC8174]

[XMP]

WebP Image Format November 2024

Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI
10.17487/RFC4648, October 2006, <https://www.rfc-editor.org/info/rfc4648>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications:
ABNF", STD 68, RFC 5234, DOI 10.17487/RFC5234, January 2008, <https://
www.rfc-editor.org/info/rfc5234>.

BankosKki, J., Koleszar, J., Quillio, L., Salonen, J., Wilkins, P., and Y. Xu, "VP8 Data
Format and Decoding Guide", RFC 6386, DOI 10.17487/RFC6386, November 2011,
<https://www.rfc-editor.org/info/rfc6386>.

Freed, N., Klensin, J., and T. Hansen, "Media Type Specifications and Registration
Procedures"”, BCP 13, RFC 6838, DOI 10.17487/RFC6838, January 2013, <https://
www.rfc-editor.org/info/rfc6838>.

Kyzivat, P, "Case-Sensitive String Support in ABNF", RFC 7405, DOI 10.17487/
RFC7405, December 2014, <https://www.rfc-editor.org/info/rfc7405>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

Adobe Inc., "XMP Specification", <https://www.adobe.com/devnet/xmp.html>.

7.2. Informative References

[GIF-spec]

[Huffman]

CompuServe Incorporated, "Graphics Interchange Format(sm)", Version 89a,
July 1990, <https://www.w3.org/Graphics/GIF/spec-gif89a.txt>.

Huffman, D., "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the Institute of Radio Engineers, Vol. 40, Issue 9, pp. 1098-1101,
DOI 10.1109/JRPROC.1952.273898, September 1952, <https://doi.org/10.1109/
JRPROC.1952.273898>.

[issues-security] "libwebp Security Issues", <https://issues.webmproject.org/issues?

[JPEG-spec]

[LZ77]

g=componentid:1618983%2B%20(%22Restrict-View-
Security%22%200R%20type:vulnerability)>.

"Information Technology - Digital Compression and Coding of Continuous-Tone
Still Images - Requirements and Guidelines", ITU-T Recommendation T.81, ISO/
IEC 10918-1, September 1992, <https://www.w3.org/Graphics/JPEG/itu-t81.pdf>.

Ziv,]. and A. Lempel, "A Universal Algorithm for Sequential Data Compression",
IEEE Transactions on Information Theory, Vol. 23, Issue 3, pp. 337-343, DOI
10.1109/TIT.1977.1055714, May 1977, <https://doi.org/10.1109/T1T.1977.1055714>.

[mitre-libwebp] "libwebp CVE List", <https://cve.mitre.org/cgi-bin/cvekey.cgi?

Zern, et al.

keyword=libwebp>.

Informational Page 45

https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6386
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.adobe.com/devnet/xmp.html
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://issues.webmproject.org/issues?q=componentid:1618983%2B%20(%22Restrict-View-Security%22%20OR%20type:vulnerability)
https://issues.webmproject.org/issues?q=componentid:1618983%2B%20(%22Restrict-View-Security%22%20OR%20type:vulnerability)
https://issues.webmproject.org/issues?q=componentid:1618983%2B%20(%22Restrict-View-Security%22%20OR%20type:vulnerability)
https://www.w3.org/Graphics/JPEG/itu-t81.pdf
https://doi.org/10.1109/TIT.1977.1055714
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=libwebp
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=libwebp

RFC 9649 WebP Image Format November 2024

[MWG] Metadata Working Group, "Guidelines For Handling Image Metadata", Version
2.0, November 2010, <https://web.archive.org/web/20180919181934/http://
www.metadataworkinggroup.org/pdf/mwg_guidance.pdf>.

[RFC2083] Boutell, T.,, "PNG (Portable Network Graphics) Specification Version 1.0", RFC
2083, DOI 10.17487/RFC2083, March 1997, <https://www.rfc-editor.org/info/
rfc2083>.

[RIFF-spec] "RIFF (Resource Interchange File Format)", <https://www.loc.gov/preservation/
digital/formats/fdd/fdd000025.shtml>.

[webp-lossless-src] "WebP Lossless Bitstream Specification”, July 2024, <https://
chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-
lossless-bitstream-spec.txt>.

[webp-lossless-study] Alakuijala, J. and V. Rabaud, "Lossless and Transparency Encoding in
WebP", August 2017, <https://developers.google.com/speed/webp/docs/
webp_lossless_alpha_study>.

[webp-riff-src] "WebP RIFF Container", July 2024, <https://chromium.googlesource.com/webm/
libwebp/+/refs/tags/webp-rfc9649/doc/webp-container-spec.txt>.

Authors' Addresses

James Zern

Google LLC

1600 Amphitheatre Parkway
Mountain View, CA 94043
United States of America
Phone: +1 650 253-0000
Email: jzern@google.com

Pascal Massimino
Google LLC
Email: pascal.massimino@gmail.com

Jyrki Alakuijala
Google LLC
Email: jyrki.alakuijala@gmail.com

Zern, et al. Informational Page 46

https://web.archive.org/web/20180919181934/http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
https://web.archive.org/web/20180919181934/http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
https://www.rfc-editor.org/info/rfc2083
https://www.rfc-editor.org/info/rfc2083
https://www.loc.gov/preservation/digital/formats/fdd/fdd000025.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000025.shtml
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-lossless-bitstream-spec.txt
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-lossless-bitstream-spec.txt
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-lossless-bitstream-spec.txt
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-container-spec.txt
https://chromium.googlesource.com/webm/libwebp/+/refs/tags/webp-rfc9649/doc/webp-container-spec.txt
tel:+1%20650%20253-0000
mailto:jzern@google.com
mailto:pascal.massimino@gmail.com
mailto:jyrki.alakuijala@gmail.com

	RFC 9649
	WebP Image Format
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. WebP Container Specification
	2.1. Introduction (from "WebP Container Specification")
	2.2. Terminology & Basics
	2.3. RIFF File Format
	2.4. WebP File Header
	2.5. Simple File Format (Lossy)
	2.6. Simple File Format (Lossless)
	2.7. Extended File Format
	2.7.1. Chunks
	2.7.1.1. Animation
	2.7.1.2. Alpha
	2.7.1.3. Bitstream (VP8/VP8L)
	2.7.1.4. Color Profile
	2.7.1.5. Metadata
	2.7.1.6. Unknown Chunks

	2.7.2. Canvas Assembly from Frames
	2.7.3. Example File Layouts

	3. Specification for WebP Lossless Bitstream
	3.1. Abstract (from "Specification for WebP Lossless Bitstream")
	3.2. Introduction (from "Specification for WebP Lossless Bitstream")
	3.3. Nomenclature
	3.4. RIFF Header
	3.5. Transforms
	3.5.1. Predictor Transform
	3.5.2. Color Transform
	3.5.3. Subtract Green Transform
	3.5.4. Color Indexing Transform

	3.6. Image Data
	3.6.1. Roles of Image Data
	3.6.2. Encoding of Image Data
	3.6.2.1. Prefix-Coded Literals
	3.6.2.2. LZ77 Backward Reference
	3.6.2.2.1. Distance Mapping

	3.6.2.3. Color Cache Coding

	3.7. Entropy Code
	3.7.1. Overview
	3.7.2. Details
	3.7.2.1. Decoding and Building the Prefix Codes
	3.7.2.1.1. Simple Code Length Code
	3.7.2.1.2. Normal Code Length Code

	3.7.2.2. Decoding of Meta Prefix Codes
	3.7.2.2.1. Entropy Image
	3.7.2.2.2. Interpretation of Meta Prefix Codes

	3.7.2.3. Decoding Entropy-Coded Image Data

	3.8. Overall Structure of the Format
	3.8.1. Basic Structure
	3.8.2. Structure of Transforms
	3.8.3. Structure of the Image Data

	4. Security Considerations
	5. Interoperability Considerations
	6. IANA Considerations
	6.1. The 'image/webp' Media Type
	6.1.1. Registration Details

	7. References
	7.1. Normative References
	7.2. Informative References

	Authors' Addresses

 WebP Image Format

 Google LLC

 1600 Amphitheatre Parkway
 Mountain View
 CA
 94043
 United States of America

 +1 650 253-0000
 jzern@google.com

 Google LLC

 pascal.massimino@gmail.com

 Google LLC

 jyrki.alakuijala@gmail.com

 art
 VP8
 WebP

 This document defines the WebP image format and registers a media type
 supporting its use.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . WebP Container Specification

 . Introduction (from "WebP Container Specification")

 . Terminology & Basics

 . RIFF File Format

 . WebP File Header

 . Simple File Format (Lossy)

 . Simple File Format (Lossless)

 . Extended File Format

 . Chunks

 . Animation

 . Alpha

 . Bitstream (VP8/VP8L)

 . Color Profile

 . Metadata

 . Unknown Chunks

 . Canvas Assembly from Frames

 . Example File Layouts

 . Specification for WebP Lossless Bitstream

 . Abstract (from "Specification for WebP Lossless Bitstream")

 . Introduction (from "Specification for WebP Lossless Bitstream")

 . Nomenclature

 . RIFF Header

 . Transforms

 . Predictor Transform

 . Color Transform

 . Subtract Green Transform

 . Color Indexing Transform

 . Image Data

 . Roles of Image Data

 . Encoding of Image Data

 . Prefix-Coded Literals

 . LZ77 Backward Reference

 . Color Cache Coding

 . Entropy Code

 . Overview

 . Details

 . Decoding and Building the Prefix Codes

 . Decoding of Meta Prefix Codes

 . Decoding Entropy-Coded Image Data

 . Overall Structure of the Format

 . Basic Structure

 . Structure of Transforms

 . Structure of the Image Data

 . Security Considerations

 . Interoperability Considerations

 . IANA Considerations

 . The 'image/webp' Media Type

 . Registration Details

 . References

 . Normative References

 . Informative References

 Authors' Addresses

 Introduction
 WebP is an image file format based on the Resource Interchange File Format
 (RIFF) ()
 that supports lossless and lossy
 compression as well as alpha (transparency) and animation. It covers use
 cases similar to JPEG,
 PNG, and the
 Graphics Interchange Format (GIF).
 WebP consists of two compression algorithms used to reduce the size of
 image pixel data, including alpha (transparency) information. Lossy
 compression is achieved using VP8 intra-frame encoding . The lossless
 algorithm stores and restores the pixel values exactly,
 including the color values for fully transparent pixels. A universal algorithm for sequential data compression
 , prefix coding,
 and a color cache are used for compression of the bulk data.

 WebP Container Specification

 Note that this section is based on the documentation in the libwebp source repository.

 Introduction (from "WebP Container Specification")
 WebP is an image format that uses either (i) the VP8 intra-frame
 encoding to compress image data in a lossy
 way or (ii) the WebP lossless
 encoding. These encoding schemes should make it more
 efficient than older formats, such as JPEG, GIF, and PNG. It is optimized for fast
 image transfer over the network (for example, for websites). The WebP
 format has feature parity (color profile, metadata, animation,
 etc.) with other formats as well. This section describes the
 structure of a WebP file.
 The WebP container (that is, the RIFF container for WebP) allows feature
 support over and above the basic use case of WebP (that is, a file
 containing a single image encoded as a VP8 key frame). The WebP
 container provides additional support for the following:

 Lossless Compression: An image can be losslessly compressed,
 using the WebP lossless format.
 Metadata: An image may have metadata stored in Exchangeable Image File Format or Extensible Metadata Platform format.
 Transparency: An image may have transparency, that is, an alpha
 channel.
 Color Profile: An image may have an embedded ICC profile (ICCP).
 Animation: An image may have multiple frames with pauses between
 them, making it an animation.

 Terminology & Basics

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 A WebP file contains either a still image (that is, an encoded matrix of
 pixels) or an animation. Optionally,
 it can also contain transparency information, a color profile, and
 metadata. We refer to the matrix of pixels as the canvas of the
 image.
 Bit numbering in chunk diagrams starts at 0 for the most
 significant bit ('MSB 0'), as described in .
 Below are additional terms used throughout this section:

 Reader/Writer
 Code that reads WebP files is referred to as a reader,
 while code that writes them is referred to as a
 writer.
 uint16
 A 16-bit, little-endian, unsigned integer.
 uint24
 A 24-bit, little-endian, unsigned integer.
 uint32
 A 32-bit, little-endian, unsigned integer.
 FourCC
 A four-character code (FourCC) is a uint32 created by
 concatenating four ASCII characters in little-endian order. This
 means 'aaaa' (0x61616161) and 'AAAA' (0x41414141) are treated as
 different FourCCs.
 1-based
 An unsigned integer field storing values offset by -1, for example, such
 a field would store value 25 as 24.
 ChunkHeader('ABCD')
 Used to describe the FourCC and Chunk
 Size header of individual chunks, where 'ABCD' is the FourCC
 for the chunk. This element's size is 8 bytes.

 RIFF File Format
 The WebP file format is based on the RIFF
 document format.
 The basic element of a RIFF file is a chunk. It consists
 of:

 'RIFF' Chunk Structure

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Chunk FourCC |
+-+
| Chunk Size |
+-+
: Chunk Payload :
+-+

 Chunk FourCC: 32 bits
 ASCII four-character code used for chunk identification.
 Chunk Size: 32 bits (uint32)
 The size of the chunk in bytes, not including this field, the
 chunk identifier, or padding.
 Chunk Payload: Chunk Size bytes
 The data payload. If Chunk Size is odd, a single
 padding byte -- which MUST be 0 to conform with RIFF -- is added.

 Note: RIFF has a convention that all uppercase chunk FourCCs are
 standard chunks that apply to any RIFF file format, while FourCCs
 specific to a file format are all lowercase. WebP does not follow
 this convention.

 WebP File Header

 WebP File Header Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 'R' | 'I' | 'F' | 'F' |
+-+
| File Size |
+-+
| 'W' | 'E' | 'B' | 'P' |
+-+

 'RIFF': 32 bits
 The ASCII characters 'R', 'I', 'F', 'F'.
 File Size: 32 bits (uint32)
 The size of the file in bytes, starting at offset 8. The maximum
 value of this field is 2 32 minus 10 bytes, and thus the size of the
 whole file is at most 4 GiB minus 2 bytes.
 'WEBP': 32 bits
 The ASCII characters 'W', 'E', 'B', 'P'.

 A WebP file MUST begin with a RIFF header with the FourCC 'WEBP'. The
 file size in the header is the total size of the chunks that follow
 plus 4 bytes for the 'WEBP' FourCC. The file SHOULD NOT
 contain any data after the data specified by File Size.
 Readers MAY parse such files, ignoring the trailing data. As the size
 of any chunk is even, the size given by the RIFF header is also even.
 The contents of individual chunks are described in the following
 sections.

 Simple File Format (Lossy)
 This layout SHOULD be used if the image requires lossy encoding and
 does not require transparency or other advanced features provided by
 the extended format. Files with this layout are smaller and supported
 by older software.

 Simple WebP (Lossy) File Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
| WebP file header (12 bytes) |
| |
+-+
: 'VP8 ' Chunk :
+-+

 'VP8 ' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('VP8 ') |
| |
+-+
: VP8 data :
+-+

 VP8 data: Chunk Size bytes
 VP8 bitstream data.

 Note that the fourth character in the 'VP8 ' FourCC is an ASCII space
 (0x20).

 The VP8 bitstream format specification is described in .

 Note that the VP8 frame header contains the VP8
 frame width and height. That is assumed to be the width and height of
 the canvas.

 The VP8 specification describes how to decode the image into Y'CbCr
 format. To convert to RGB, Recommendation 601 SHOULD
 be used. Applications MAY use another conversion method, but visual
 results may differ among decoders.

 Simple File Format (Lossless)

 Note: Older readers may not support files using the lossless
 format.

 This layout SHOULD be used if the image requires lossless encoding
 (with an optional transparency channel) and does not require advanced
 features provided by the extended format.

 Simple WebP (Lossless) File Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
| WebP file header (12 bytes) |
| |
+-+
: 'VP8L' Chunk :
+-+

 'VP8L' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('VP8L') |
| |
+-+
: VP8L data :
+-+

 VP8L data: Chunk Size bytes
 VP8L bitstream data.

 The specification of the VP8L bitstream can be found in .

 Note that the VP8L header contains the
 VP8L image width and height. That is assumed to be the width and
 height of the canvas.

 Extended File Format

 Note: Older readers may not support files using the extended
 format.

 An extended format file consists of:

 A 'VP8X' Chunk with information about features used in the
 file.
 An optional 'ICCP' Chunk with a color profile.
 An optional 'ANIM' Chunk with animation control data.
 Image data.
 An optional 'EXIF' Chunk with Exif metadata.
 An optional 'XMP ' Chunk with XMP metadata.
 An optional list of unknown
 chunks.

 For a still image, the image data consists of a
 single frame, which is made up of:

 An optional alpha subchunk.
 A bitstream subchunk.

 For an animated image, the image data consists of
 multiple frames. More details about frames can be found in .
 All chunks necessary for reconstruction and color correction, that is,
 'VP8X', 'ICCP', 'ANIM', 'ANMF', 'ALPH', 'VP8 ', and 'VP8L',
 MUST appear in the order described earlier. Readers
 SHOULD fail when chunks necessary for reconstruction and
 color correction are out of order.
 Metadata and unknown chunks MAY appear out of
 order.

 Rationale: The chunks necessary for reconstruction should
 appear first in the file to allow a reader to begin decoding an image
 before receiving all of the data. An application may benefit from
 varying the order of metadata and custom chunks to suit the
 implementation.

 Extended WebP File Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
| WebP file header (12 bytes) |
| |
+-+
| ChunkHeader('VP8X') |
| |
+-+
|Rsv|I|L|E|X|A|R| Reserved |
+-+
| Canvas Width Minus One | ...
+-+
... Canvas Height Minus One |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Reserved (Rsv): 2 bits

 MUST be 0. Readers MUST ignore this field.
 ICC profile (I): 1 bit
 Set if the file contains an 'ICCP' Chunk.
 Alpha (L): 1 bit
 Set if any of the frames of the image contain transparency
 information ("alpha").
 Exif metadata (E): 1 bit
 Set if the file contains Exif metadata.
 XMP metadata (X): 1 bit
 Set if the file contains XMP metadata.
 Animation (A): 1 bit
 Set if this is an animated image. Data in 'ANIM' and 'ANMF' Chunks
 should be used to control the animation.
 Reserved (R): 1 bit

 MUST be 0. Readers MUST ignore this field.
 Reserved: 24 bits

 MUST be 0. Readers MUST ignore this field.
 Canvas Width Minus One: 24 bits

 1-based width of the canvas in pixels. The actual canvas
 width is 1 + Canvas Width Minus One.
 Canvas Height Minus One: 24 bits

 1-based height of the canvas in pixels. The actual canvas
 height is 1 + Canvas Height Minus One.

 The product of Canvas Width and Canvas Height MUST
 be at most 2 32 - 1.
 Future specifications may add more fields. Unknown fields MUST be
 ignored.

 Chunks

 Animation
 An animation is controlled by 'ANIM' and 'ANMF' Chunks.

 'ANIM' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('ANIM') |
| |
+-+
| Background Color |
+-+
| Loop Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 For an animated image, this chunk contains the global
 parameters of the animation.

 Background Color: 32 bits (uint32)

 The default background color of the canvas in [Blue, Green,
 Red, Alpha] byte order. This color MAY be used to fill the
 unused space on the canvas around the frames, as well as the
 transparent pixels of the first frame. The background color is
 also used when the Disposal method is 1.
 Notes:

 The background color MAY contain a nonopaque alpha value,
 even if the Alpha flag in the 'VP8X' Chunk is unset.
 Viewer applications SHOULD treat the background color value
 as a hint and are not required to use it.
 The canvas is cleared at the start of each loop. The
 background color MAY be used to achieve this.

 Loop Count: 16 bits (uint16)
 The number of times to loop the animation. If it is 0, this means
 infinitely.

 This chunk MUST appear if the Animation flag in the 'VP8X'
 Chunk is set. If the Animation flag is not set and this
 chunk is present, it MUST be ignored.

 'ANMF' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('ANMF') |
| |
+-+
| Frame X | ...
+-+
... Frame Y | Frame Width Minus One ...
+-+
... | Frame Height Minus One |
+-+
| Frame Duration | Reserved |B|D|
+-+
: Frame Data :
+-+

 For animated images, this chunk contains information about a
 single frame. If the Animation flag is not set,
 then this chunk SHOULD NOT be present.

 Frame X: 24 bits (uint24)
 The X coordinate of the upper left corner of the frame is
 Frame X * 2.
 Frame Y: 24 bits (uint24)
 The Y coordinate of the upper left corner of the frame is
 Frame Y * 2.
 Frame Width Minus One: 24 bits (uint24)
 The 1-based width of the frame. The frame width is
 1 + Frame Width Minus One.
 Frame Height Minus One: 24 bits (uint24)
 The 1-based height of the frame. The frame height
 is 1 + Frame Height Minus One.
 Frame Duration: 24 bits (uint24)
 The time to wait before displaying the next frame, in
 1-millisecond units. Note that the interpretation of the Frame Duration
 of 0 (and often <= 10) is defined by the implementation. Many
 tools and browsers assign a minimum duration similar to
 GIF.
 Reserved: 6 bits

 MUST be 0. Readers MUST ignore this field.
 Blending method (B): 1 bit

 Indicates how transparent pixels of the current
 frame are to be blended with corresponding pixels of the
 previous canvas:

 0: Use alpha-blending. After disposing of the
 previous frame, render the current frame on the canvas
 using alpha-blending.
 If the current frame does not have an alpha channel,
 assume the alpha value is 255, effectively replacing the
 rectangle.

 1: Do not blend. After disposing of the
 previous frame, render the current frame on the canvas by
 overwriting the rectangle covered by the current
 frame.

 Disposal method (D): 1 bit

 Indicates how the current frame is to be treated
 after it has been displayed (before rendering the next frame)
 on the canvas:

 0: Do not dispose. Leave the canvas as is.

 1: Dispose to the background color. Fill the
 rectangle on the canvas covered by the current
 frame with the background color specified in the 'ANIM' Chunk.

 Notes:

 The frame disposal only applies to the frame
 rectangle, that is, the rectangle defined by
 Frame X, Frame Y, frame width,
 and frame height. It may or may not cover the
 whole canvas.

 Alpha-blending:
 Given that each of the R, G, B, and A channels is 8 bits
 and the RGB channels are not premultiplied by
 alpha, the formula for blending 'dst' onto 'src' is:

blend.A = src.A + dst.A * (1 - src.A / 255)
if blend.A = 0 then
 blend.RGB = 0
else
 blend.RGB =
 (src.RGB * src.A +
 dst.RGB * dst.A * (1 - src.A / 255)) / blend.A

 Alpha-blending SHOULD be done in linear color space by
 taking into account the color
 profile of the image. If the color profile is not
 present, standard RGB (sRGB) is to be assumed. (Note that sRGB also
 needs to be linearized due to a gamma of ~2.2.)

 Frame Data: Chunk Size bytes - 16

 Consists of:

 An optional alpha subchunk
 for the frame.
 A bitstream
 subchunk for the frame.
 An optional list of unknown chunks.

 Note: The 'ANMF' payload, Frame Data, consists
 of individual padded chunks, as described by the RIFF file format.

 Alpha

 'ALPH' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('ALPH') |
| |
+-+
|Rsv| P | F | C | Alpha Bitstream... |
+-+

 Reserved (Rsv): 2 bits

 MUST be 0. Readers MUST ignore this field.
 Preprocessing (P): 2 bits

 These informative bits are used to signal the
 preprocessing that has been performed during compression. The
 decoder can use this information to, for example, dither the values or
 smooth the gradients prior to display.

 0: No preprocessing.

 1: Level reduction.

 Decoders are not required to use this information in any
 specified way.

 Filtering method (F): 2 bits

 The filtering methods used are described as follows:

 0: None.

 1: Horizontal filter.

 2: Vertical filter.

 3: Gradient filter.

 For each pixel, filtering is performed using the following
 calculations. Assume the alpha values surrounding the current
 X position are labeled as:

 Pixels Used in Alpha Filtering

 C | B |
---+---+
 A | X |

 We seek to compute the alpha value at position X. First, a
 prediction is made depending on the filtering method:

 Method 0: predictor = 0
 Method 1: predictor = A
 Method 2: predictor = B
 Method 3: predictor = clip(A + B - C)

 where clip(v) is equal to:

 0 if v < 0,
 255 if v > 255, or
 v otherwise.

 The final value is derived by adding the decompressed value
 X to the predictor and using modulo-256 arithmetic to
 wrap the [256..511] range into the [0..255] one:

alpha = (predictor + X) % 256

 There are special cases for the left-most and top-most pixel
 positions.
 For example, the top-left value at location (0, 0) uses 0 as the predictor
 value. Otherwise:

 For horizontal or gradient filtering methods, the
 left-most pixels at location (0, y) are predicted using the
 location (0, y-1) just above.
 For vertical or gradient filtering methods, the top-most
 pixels at location (x, 0) are predicted using the location
 (x-1, 0) on the left.

 Compression method (C): 2 bits

 The compression method used:

 0: No compression.

 1: Compressed using the WebP lossless format.

 Alpha bitstream: Chunk Size bytes - 1
 Encoded alpha bitstream.

 This optional chunk contains encoded alpha data for this frame. A
 frame containing a 'VP8L' Chunk SHOULD NOT contain this chunk.

 Rationale: The transparency information is already part of the
 'VP8L' Chunk.

 The alpha channel data is stored as uncompressed raw data
 (when the compression method is '0') or compressed using the
 lossless format (when the compression method is '1').

 Raw data: This consists of a byte sequence of length = width *
 height, containing all the 8-bit transparency values in scan
 order.

 Lossless format compression: The byte sequence is a
 compressed image-stream (as described in) of implicit dimensions width x
 height. That is, this image-stream does NOT contain any
 headers describing the image dimensions.

 Rationale: The dimensions are already known from other sources,
 so storing them again would be redundant and prone to errors.

 Once the image-stream is decoded into Alpha, Red, Green, Blue (ARGB) color values,
 following the process described in the lossless format
 specification, the transparency information must be extracted
 from the green channel of the ARGB quadruplet.

 Rationale: The green channel is allowed extra transformation
 steps in the specification -- unlike the other channels -- that
 can improve compression.

 Bitstream (VP8/VP8L)
 This chunk contains compressed bitstream data for a single
 frame.
 A bitstream chunk may be either (i) a 'VP8 ' Chunk, using 'VP8 '
 (note the significant fourth-character space) as its FourCC,
 or (ii) a 'VP8L' Chunk, using 'VP8L' as its FourCC.
 The formats of' VP8 ' and 'VP8L' Chunks are as described in Sections and , respectively.

 Color Profile

 'ICCP' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('ICCP') |
| |
+-+
: Color Profile :
+-+

 Color Profile: Chunk Size bytes
 ICC profile.

 This chunk MUST appear before the image data.
 There SHOULD be at most one such chunk. If there are more such
 chunks, readers MAY ignore all except the first one. See the ICC specification for details.
 If this chunk is not present, sRGB SHOULD be assumed.

 Metadata
 Metadata can be stored in 'EXIF' or 'XMP ' Chunks.
 There SHOULD be at most one chunk of each type ('EXIF' and 'XMP '). If there are more such chunks, readers MAY ignore all except
 the first one.
 The chunks are defined as follows:

 'EXIF' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('EXIF') |
| |
+-+
: Exif Metadata :
+-+

 Exif Metadata: Chunk Size bytes
 Image metadata in format.

 'XMP ' Chunk

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ChunkHeader('XMP ') |
| |
+-+
: XMP Metadata :
+-+

 XMP Metadata: Chunk Size bytes
 Image metadata in format.

 Note that the fourth character in the 'XMP ' FourCC is an ASCII space
 (0x20).

 Additional guidance about handling metadata can be found in the
 Metadata Working Group's "Guidelines For
 Handling Image Metadata".

 Unknown Chunks
 A RIFF chunk (described in) whose FourCC is
 different from any of the chunks described in this section is
 considered an unknown chunk.

 Rationale: Allowing unknown chunks gives a provision for
 future extension of the format and also allows storage of any
 application-specific data.

 A file MAY contain unknown chunks:

 at the end of the file, as described in , or
 at the end of 'ANMF' Chunks, as described in .

 Readers SHOULD ignore these chunks. Writers SHOULD preserve them
 in their original order (unless they specifically intend to modify
 these chunks).

 Canvas Assembly from Frames
 Here, we provide an overview of how a reader MUST assemble a canvas
 in the case of an animated image.
 The process begins with creating a canvas using the dimensions
 given in the 'VP8X' Chunk, Canvas Width Minus One + 1
 pixels wide by Canvas Height Minus One + 1 pixels high.
 The Loop Count field from the 'ANIM' Chunk controls how
 many times the animation process is repeated. This is Loop
 Count - 1 for nonzero Loop Count values or
 infinite if the Loop Count is zero.
 At the beginning of each loop iteration, the canvas is filled using
 the background color from the 'ANIM' Chunk or an application-defined
 color.
 'ANMF' Chunks contain individual frames given in display order.
 Before rendering each frame, the previous frame's Disposal
 method is applied.
 The rendering of the decoded frame begins at the Cartesian
 coordinates (2 * Frame X, 2 * Frame Y), using the
 top-left corner of the canvas as the origin. Frame Width Minus
 One + 1 pixels wide by Frame Height Minus One + 1
 pixels high are rendered onto the canvas using the Blending
 method.
 The canvas is displayed for Frame Duration milliseconds.
 This continues until all frames given by 'ANMF' Chunks have been
 displayed. A new loop iteration is then begun, or the canvas is left
 in its final state if all iterations have been completed.
 The following pseudocode illustrates the rendering process. The
 notation VP8X.field means the field in the 'VP8X' Chunk
 with the same description.

VP8X.flags.hasAnimation MUST be TRUE
canvas <- new image of size VP8X.canvasWidth x VP8X.canvasHeight with
 background color ANIM.background_color or
 application-defined color.
loop_count <- ANIM.loopCount
dispose_method <- Dispose to background color
if loop_count == 0:
 loop_count = inf
frame_params <- nil
next chunk in image_data is ANMF MUST be TRUE
for loop = 0..loop_count - 1
 clear canvas to ANIM.background_color or application-defined color
 until eof or non-ANMF chunk
 frame_params.frameX = Frame X
 frame_params.frameY = Frame Y
 frame_params.frameWidth = Frame Width Minus One + 1
 frame_params.frameHeight = Frame Height Minus One + 1
 frame_params.frameDuration = Frame Duration
 frame_right = frame_params.frameX + frame_params.frameWidth
 frame_bottom = frame_params.frameY + frame_params.frameHeight
 VP8X.canvasWidth >= frame_right MUST be TRUE
 VP8X.canvasHeight >= frame_bottom MUST be TRUE
 for subchunk in 'Frame Data':
 if subchunk.tag == "ALPH":
 alpha subchunks not found in 'Frame Data' earlier MUST be
 TRUE
 frame_params.alpha = alpha_data
 else if subchunk.tag == "VP8 " OR subchunk.tag == "VP8L":
 bitstream subchunks not found in 'Frame Data' earlier MUST
 be TRUE
 frame_params.bitstream = bitstream_data
 apply dispose_method.
 render frame with frame_params.alpha and frame_params.bitstream
 on canvas with top-left corner at (frame_params.frameX,
 frame_params.frameY), using Blending method
 frame_params.blendingMethod.
 canvas contains the decoded image.
 Show the contents of the canvas for
 frame_params.frameDuration * 1 ms.
 dispose_method = frame_params.disposeMethod

 Example File Layouts
 A lossy-encoded image with alpha may look as follows:

 A Lossy-Encoded Image with Alpha

RIFF/WEBP
+- VP8X (descriptions of features used)
+- ALPH (alpha bitstream)
+- VP8 (bitstream)

 A lossless-encoded image may look as follows:

 A Lossless-Encoded Image

RIFF/WEBP
+- VP8X (descriptions of features used)
+- VP8L (lossless bitstream)
+- XYZW (unknown chunk)

 A lossless image with an ICC profile and XMP metadata may look as
 follows:

 A Lossless Image with an ICC Profile and XMP Metadata

RIFF/WEBP
+- VP8X (descriptions of features used)
+- ICCP (color profile)
+- VP8L (lossless bitstream)
+- XMP (metadata)

 An animated image with Exif metadata may look as follows:

 An Animated Image with Exif Metadata

RIFF/WEBP
+- VP8X (descriptions of features used)
+- ANIM (global animation parameters)
+- ANMF (frame1 parameters + data)
+- ANMF (frame2 parameters + data)
+- ANMF (frame3 parameters + data)
+- ANMF (frame4 parameters + data)
+- EXIF (metadata)

 Specification for WebP Lossless Bitstream

 Note that this section is based on the documentation in the libwebp source repository.

 Abstract (from "Specification for WebP Lossless Bitstream")
 WebP lossless is an image format for lossless compression of ARGB
 images. The lossless format stores and restores the pixel values
 exactly, including the color values for pixels whose alpha value is 0.
 The format uses subresolution images, recursively embedded into the
 format itself, for storing statistical data about the images, such as
 the used entropy codes, spatial predictors, color space conversion,
 and color table. A universal algorithm for sequential data compression , prefix coding, and a color cache are used for
 compression of the bulk data. Decoding speeds faster than PNG have
 been demonstrated, as well as 25% denser compression than can be
 achieved using today's PNG format .

 Introduction (from "Specification for WebP Lossless Bitstream")

 This section describes the compressed data representation of a WebP
 lossless image.
 In this section, we extensively use C programming language syntax
 to describe the bitstream and assume the
 existence of a function for reading bits, ReadBits(n). The
 bytes are read in the natural order of the stream containing them, and
 bits of each byte are read in least-significant-bit-first order. When
 multiple bits are read at the same time, the integer is constructed
 from the original data in the original order. The most significant
 bits of the returned integer are also the most significant bits of the
 original data. Thus, the statement

b = ReadBits(2);

 is equivalent with the two statements below:

b = ReadBits(1);
b |= ReadBits(1) << 1;

 We assume that each color component (that is, alpha, red, blue, and
 green) is represented using an 8-bit byte. We define the corresponding
 type as uint8. A whole ARGB pixel is represented by a type called
 uint32, which is an unsigned integer consisting of 32 bits. In the code showing
 the behavior of the transforms, these values are codified in the following bits: alpha in bits
 31..24, red in bits 23..16, green in bits 15..8, and blue in bits 7..0;
 however, implementations of the format are free to use another
 representation internally.
 Broadly, a WebP lossless image contains header data, transform
 information, and actual image data. Headers contain the width and height of
 the image. A WebP lossless image can go through four different types
 of transforms before being entropy encoded. The transform
 information in the bitstream contains the data required to apply the
 respective inverse transforms.

 Nomenclature

 ARGB
 A pixel value consisting of alpha, red, green, and blue
 values.
 ARGB image
 A two-dimensional array containing ARGB pixels.
 color cache
 A small hash-addressed array to store recently used colors to be
 able to recall them with shorter codes.
 color indexing image
 A one-dimensional image of colors that can be indexed using a
 small integer (up to 256 within WebP lossless).
 color transform image
 A two-dimensional subresolution image containing data about
 correlations of color components.
 distance mapping
 Changes LZ77 distances to have the smallest values for pixels in
 two-dimensional proximity.
 entropy image
 A two-dimensional subresolution image indicating which entropy
 coding should be used in a respective square in the image, that is,
 each pixel is a meta prefix code.
 LZ77
 A dictionary-based sliding window compression algorithm that either
 emits symbols or describes them as sequences of past symbols.
 meta prefix code
 A small integer (up to 16 bits) that indexes an element in the
 meta prefix table.
 predictor image
 A two-dimensional subresolution image indicating which spatial
 predictor is used for a particular square in the image.
 prefix code
 A classic way to do entropy coding where a smaller number of bits
 are used for more frequent codes.
 prefix coding
 A way to entropy code larger integers, which codes a few bits of the
 integer using an entropy code and codifies the remaining bits raw.
 This allows for the descriptions of the entropy codes to remain
 relatively small even when the range of symbols is large.
 scan-line order
 A processing order of pixels (left to right and top to bottom),
 starting from the left-hand-top pixel. Once
 a row is completed, continue from the left-hand column of the next
 row.

 RIFF Header
 The beginning of the header has the RIFF container. This consists of
 the following 21 bytes:

 String 'RIFF'.
 A little-endian, 32-bit value of the chunk length, which is the whole size
 of the chunk controlled by the RIFF header. Normally, this equals the
 payload size (file size minus 8 bytes: 4 bytes for the 'RIFF'
 identifier and 4 bytes for storing the value itself).
 String 'WEBP' (RIFF container name).
 String 'VP8L' (FourCC for lossless-encoded image data).
 A little-endian, 32-bit value of the number of bytes in the
 lossless stream.
 1-byte signature 0x2f.

 The first 28 bits of the bitstream specify the width and height of
 the image. Width and height are decoded as 14-bit integers as
 follows:

int image_width = ReadBits(14) + 1;
int image_height = ReadBits(14) + 1;

 The 14-bit precision for image width and height limits the maximum
 size of a WebP lossless image to 16384x16384 pixels.
 The alpha_is_used bit is a hint only and SHOULD NOT impact
 decoding. It SHOULD be set to 0 when all alpha values are 255 in the
 picture and 1 otherwise.

int alpha_is_used = ReadBits(1);

 The version_number is a 3-bit code that MUST be set to 0. Any other
 value MUST be treated as an error.

int version_number = ReadBits(3);

 Transforms
 The transforms are reversible manipulations of the image data that
 can reduce the remaining symbolic entropy by modeling spatial and
 color correlations. They can make the final compression
 more dense.
 An image can go through four types of transforms. A 1 bit
 indicates the presence of a transform. Each transform is allowed to be
 used only once. The transforms are used only for the main-level
 ARGB image; the subresolution images (color transform image, entropy
 image, and predictor image) have no transforms, not even the 0 bit
 indicating the end of transforms.

 Typically, an encoder would use these transforms to reduce the
 Shannon entropy in the residual image. Also, the transform data can be
 decided based on entropy minimization.

while (ReadBits(1)) { // Transform present.
 // Decode transform type.
 enum TransformType transform_type = ReadBits(2);
 // Decode transform data.
 ...
}

// Decode actual image data.

 If a transform is present, then the next two bits specify the
 transform type. There are four types of transforms.

 Transform Types

 Transform
 Bit

 PREDICTOR_TRANSFORM
 0

 COLOR_TRANSFORM
 1

 SUBTRACT_GREEN_TRANSFORM
 2

 COLOR_INDEXING_TRANSFORM
 3

 The transform type is followed by the transform data. Transform data
 contains the information required to apply the inverse transform and
 depends on the transform type. The inverse transforms are applied in
 the reverse order that they are read from the bitstream, that is, last
 one first.
 Next, we describe the transform data for different types.

 Predictor Transform
 The predictor transform can be used to reduce entropy by exploiting
 the fact that neighboring pixels are often correlated. In the
 predictor transform, the current pixel value is predicted from the
 pixels already decoded (in scan-line order) and only the residual
 value (actual - predicted) is encoded. The green component of a
 pixel defines which of the 14 predictors is used within a particular
 block of the ARGB image. The prediction mode determines the
 type of prediction to use. We divide the image into squares, and all
 the pixels in a square use the same prediction mode.
 The first 3 bits of prediction data define the block width and
 height in number of bits.

int size_bits = ReadBits(3) + 2;
int block_width = (1 << size_bits);
int block_height = (1 << size_bits);
#define DIV_ROUND_UP(num, den) (((num) + (den) - 1) / (den))
int transform_width = DIV_ROUND_UP(image_width, 1 << size_bits);

 The transform data contains the prediction mode for each block of
 the image. It is a subresolution image where the green component
 of a pixel defines which of the 14 predictors is used for all the
 block_width * block_height pixels within a particular
 block of the ARGB image. This subresolution image is encoded using
 the same techniques described in .
 The number of block columns,
 transform_width, is used in two-dimensional indexing. For a pixel (x, y), one can compute the respective filter
 block address by:

int block_index = (y >> size_bits) * transform_width +
 (x >> size_bits);

 There are 14 different prediction modes. In each prediction mode,
 the current pixel value is predicted from one or more neighboring
 pixels whose values are already known.
 We chose the neighboring pixels (TL, T, TR, and L) of the current
 pixel (P) as follows:

 Neighboring Pixels of the Current Pixel (P)

O O O O O O O O O O O
O O O O O O O O O O O
O O O O TL T TR O O O O
O O O O L P X X X X X
X X X X X X X X X X X
X X X X X X X X X X X

 where TL means top-left, T means top, TR means top-right, and L means left. At the
 time of predicting a value for P, all O, TL, T, TR, and L pixels have
 already been processed, and the P pixel and all X pixels are
 unknown.
 Given the preceding neighboring pixels, the different prediction modes
 are defined as follows.

 Prediction Modes

 Mode
 Predicted Value of Each Channel of the Current Pixel

 0
 0xff000000 (represents solid black color in ARGB)

 1
 L

 2
 T

 3
 TR

 4
 TL

 5
 Average2(Average2(L, TR), T)

 6
 Average2(L, TL)

 7
 Average2(L, T)

 8
 Average2(TL, T)

 9
 Average2(T, TR)

 10
 Average2(Average2(L, TL), Average2(T, TR))

 11
 Select(L, T, TL)

 12
 ClampAddSubtractFull(L, T, TL)

 13
 ClampAddSubtractHalf(Average2(L, T), TL)

 Average2 is defined as follows for each ARGB
 component:

uint8 Average2(uint8 a, uint8 b) {
 return (a + b) / 2;
}

 The Select predictor is defined as follows:

uint32 Select(uint32 L, uint32 T, uint32 TL) {
 // L = left pixel, T = top pixel, TL = top-left pixel.

 // ARGB component estimates for prediction.
 int pAlpha = ALPHA(L) + ALPHA(T) - ALPHA(TL);
 int pRed = RED(L) + RED(T) - RED(TL);
 int pGreen = GREEN(L) + GREEN(T) - GREEN(TL);
 int pBlue = BLUE(L) + BLUE(T) - BLUE(TL);

 // Manhattan distances to estimates for left and top pixels.
 int pL = abs(pAlpha - ALPHA(L)) + abs(pRed - RED(L)) +
 abs(pGreen - GREEN(L)) + abs(pBlue - BLUE(L));
 int pT = abs(pAlpha - ALPHA(T)) + abs(pRed - RED(T)) +
 abs(pGreen - GREEN(T)) + abs(pBlue - BLUE(T));

 // Return either left or top, the one closer to the prediction.
 if (pL < pT) {
 return L;
 } else {
 return T;
 }
}

 The functions ClampAddSubtractFull and
 ClampAddSubtractHalf are performed for each ARGB component
 as follows:

// Clamp the input value between 0 and 255.
int Clamp(int a) {
 return (a < 0) ? 0 : (a > 255) ? 255 : a;
}

int ClampAddSubtractFull(int a, int b, int c) {
 return Clamp(a + b - c);
}

int ClampAddSubtractHalf(int a, int b) {
 return Clamp(a + (a - b) / 2);
}

 There are special handling rules for some border pixels. If there
 is a predictor transform, regardless of the mode [0..13] for these
 pixels, the predicted value for the left-topmost pixel of the image
 is 0xff000000, all pixels on the top row are L-pixel, and
 all pixels on the leftmost column are T-pixel.
 Addressing the TR-pixel for pixels on the rightmost column is
 exceptional. The pixels on the rightmost column are predicted by
 using the modes [0..13], just like pixels not on the border, but the
 leftmost pixel on the same row as the current pixel is instead used
 as the TR-pixel.
 The final pixel value is obtained by adding each channel of the
 predicted value to the encoded residual value.

void PredictorTransformOutput(uint32 residual, uint32 pred,
 uint8* alpha, uint8* red,
 uint8* green, uint8* blue) {
 *alpha = ALPHA(residual) + ALPHA(pred);
 *red = RED(residual) + RED(pred);
 *green = GREEN(residual) + GREEN(pred);
 *blue = BLUE(residual) + BLUE(pred);
}

 Color Transform
 The goal of the color transform is to decorrelate the R, G, and B
 values of each pixel. The color transform keeps the green (G) value
 as it is, transforms the red (R) value based on the green value, and transforms
 the blue (B)
 value based on the green value and then on the red value.
 As is the case for the predictor transform, first the image is
 divided into blocks, and the same transform mode is used for all the
 pixels in a block. For each block, there are three types of color
 transform elements.

typedef struct {
 uint8 green_to_red;
 uint8 green_to_blue;
 uint8 red_to_blue;
} ColorTransformElement;

 The actual color transform is done by defining a color
 transform delta. The color transform delta depends on the
 ColorTransformElement, which is the same for all the pixels
 in a particular block. The delta is subtracted during the color
 transform. The inverse color transform then is just adding those
 deltas.
 The color transform function is defined as follows:

void ColorTransform(uint8 red, uint8 blue, uint8 green,
 ColorTransformElement *trans,
 uint8 *new_red, uint8 *new_blue) {
 // Transformed values of red and blue components
 int tmp_red = red;
 int tmp_blue = blue;

 // Applying the transform is just subtracting the transform deltas
 tmp_red -= ColorTransformDelta(trans->green_to_red, green);
 tmp_blue -= ColorTransformDelta(trans->green_to_blue, green);
 tmp_blue -= ColorTransformDelta(trans->red_to_blue, red);

 *new_red = tmp_red & 0xff;
 *new_blue = tmp_blue & 0xff;
}

 ColorTransformDelta is computed using a signed 8-bit
 integer representing a 3.5-fixed-point number and a signed 8-bit
 RGB color channel (c) [-128..127] and is defined as follows:

int8 ColorTransformDelta(int8 t, int8 c) {
 return (t * c) >> 5;
}

 A conversion from the 8-bit unsigned representation
 (uint8) to the 8-bit signed one (int8) is required
 before calling ColorTransformDelta().
 The signed value should be interpreted as an 8-bit two's complement number (that is: uint8 range [128..255] is mapped
 to the [-128..-1] range of its converted int8 value).
 The multiplication is to be done using more precision (with at
 least 16-bit precision). The sign extension property of the shift
 operation does not matter here; only the lowest 8 bits are used from
 the result, and in these bits, the sign extension shifting and
 unsigned shifting are consistent with each other.
 Now, we describe the contents of color transform data so that
 decoding can apply the inverse color transform and recover the
 original red and blue values. The first 3 bits of the color
 transform data contain the width and height of the image block in
 number of bits, just like the predictor transform:

int size_bits = ReadBits(3) + 2;
int block_width = 1 << size_bits;
int block_height = 1 << size_bits;

 The remaining part of the color transform data contains
 ColorTransformElement instances, corresponding to each block
 of the image. Each ColorTransformElement 'cte' is
 treated as a pixel in a subresolution image whose alpha component is
 255, red component is cte.red_to_blue, green
 component is cte.green_to_blue, and blue component is
 cte.green_to_red.
 During decoding, ColorTransformElement instances of the
 blocks are decoded and the inverse color transform is applied on the
 ARGB values of the pixels. As mentioned earlier, that inverse color
 transform is just adding ColorTransformElement values to
 the red and blue channels. The alpha and green channels are left as
 is.

void InverseTransform(uint8 red, uint8 green, uint8 blue,
 ColorTransformElement *trans,
 uint8 *new_red, uint8 *new_blue) {
 // Transformed values of red and blue components
 int tmp_red = red;
 int tmp_blue = blue;

 // Applying the inverse transform is just adding the
 // color transform deltas
 tmp_red += ColorTransformDelta(trans->green_to_red, green);
 tmp_blue += ColorTransformDelta(trans->green_to_blue, green);
 tmp_blue +=
 ColorTransformDelta(trans->red_to_blue, tmp_red & 0xff);

 *new_red = tmp_red & 0xff;
 *new_blue = tmp_blue & 0xff;
}

 Subtract Green Transform
 The subtract green transform subtracts green values from red and
 blue values of each pixel. When this transform is present, the
 decoder needs to add the green value to both the red and blue values. There is
 no data associated with this transform. The decoder applies the
 inverse transform as follows:

void AddGreenToBlueAndRed(uint8 green, uint8 *red, uint8 *blue) {
 *red = (*red + green) & 0xff;
 *blue = (*blue + green) & 0xff;
}

 This transform is redundant, as it can be modeled using the color
 transform, but since there is no additional data here, the subtract
 green transform can be coded using fewer bits than a full-blown
 color transform.

 Color Indexing Transform
 If there are not many unique pixel values, it may be more efficient
 to create a color index array and replace the pixel values by the
 array's indices. The color indexing transform achieves this. (In the
 context of WebP lossless, we specifically do not call this a palette
 transform because a similar but more dynamic concept exists in WebP
 lossless encoding: color cache.)
 The color indexing transform checks for the number of unique ARGB
 values in the image. If that number is below a threshold (256), it
 creates an array of those ARGB values, which is then used to replace
 the pixel values with the corresponding index: the green channel of
 the pixels are replaced with the index, all alpha values are set to
 255, and all red and blue values are set to 0.
 The transform data contains the color table size and the entries in the
 color table. The decoder reads the color indexing transform data as
 follows:

// 8-bit value for the color table size
int color_table_size = ReadBits(8) + 1;

 The color table is stored using the image storage format itself.
 The color table can be obtained by reading an image, without the
 RIFF header, image size, and transforms, assuming the height of 1
 pixel and the width of color_table_size. The color table is
 always subtraction-coded to reduce image entropy. The deltas of
 palette colors contain typically much less entropy than the colors
 themselves, leading to significant savings for smaller images. In
 decoding, every final color in the color table can be obtained by
 adding the previous color component values by each ARGB component
 separately and storing the least significant 8 bits of the
 result.
 The inverse transform for the image is simply replacing the pixel
 values (which are indices to the color table) with the actual color
 table values. The indexing is done based on the green component of
 the ARGB color.

// Inverse transform
argb = color_table[GREEN(argb)];

 If the index is equal to or larger than color_table_size, the
 argb color value should be set to 0x00000000 (transparent
 black).
 When the color table is small (equal to or less than 16 colors),
 several pixels are bundled into a single pixel. The pixel bundling
 packs several (2, 4, or 8) pixels into a single pixel, reducing the
 image width respectively.

 Pixel bundling allows for a more efficient
 joint distribution entropy coding of neighboring pixels and gives
 some arithmetic coding-like benefits to the entropy code, but it can
 only be used when there are 16 or fewer unique values.

 color_table_size specifies how many pixels are
 combined:

 Color Table Size to Bundled Pixel Bit Width Mapping

 color_table_size
 width_bits value

 1..2
 3

 3..4
 2

 5..16
 1

 17..256
 0

 width_bits has a value of 0, 1, 2, or 3. A value of 0
 indicates no pixel bundling is to be done for the image. A value of
 1 indicates that two pixels are combined, and each pixel has a range
 of [0..15]. A value of 2 indicates that four pixels are combined,
 and each pixel has a range of [0..3]. A value of 3 indicates that
 eight pixels are combined, and each pixel has a range of [0..1],
 that is, a binary value.
 The values are packed into the green component as follows:

 width_bits = 1: For every x value, where x = 2k + 0, a
 green value at x is positioned into the 4 least significant bits
 of the green value at x / 2, and a green value at x + 1 is positioned
 into the 4 most significant bits of the green value at x / 2.

 width_bits = 2: For every x value, where x = 4k + 0, a
 green value at x is positioned into the 2 least significant bits
 of the green value at x / 4, and green values at x + 1 to x + 3 are
 positioned in order to the more significant bits of the green
 value at x / 4.

 width_bits = 3: For every x value, where x = 8k + 0, a
 green value at x is positioned into the least significant bit of
 the green value at x / 8, and green values at x + 1 to x + 7 are
 positioned in order to the more significant bits of the green
 value at x / 8.

 After reading this transform, image_width is subsampled by
 width_bits. This affects the size of subsequent transforms.
 The new size can be calculated using DIV_ROUND_UP, as
 defined in .

image_width = DIV_ROUND_UP(image_width, 1 << width_bits);

 Image Data
 Image data is an array of pixel values in scan-line order.

 Roles of Image Data
 We use image data in five different roles:

 ARGB image: Stores the actual pixels of the image.
 Entropy image: Stores the meta prefix
 codes (see "Decoding of Meta Prefix Codes").
 Predictor image: Stores the metadata for the predictor transform (see "Predictor Transform").
 Color transform image: Created by
 ColorTransformElement values (defined in "Color Transform") for different
 blocks of the image.
 Color indexing image: An array of the size of
 color_table_size (up to 256 ARGB values) that stores the
 metadata for the color
 indexing transform (see "Color Indexing Transform").

 Encoding of Image Data
 The encoding of image data is independent of its role.
 The image is first divided into a set of fixed-size blocks
 (typically 16x16 blocks). Each of these blocks are modeled using
 their own entropy codes. Also, several blocks may share the same
 entropy codes.

 Rationale: Storing an entropy code incurs a cost. This cost
 can be minimized if statistically similar blocks share an entropy
 code, thereby storing that code only once. For example, an encoder
 can find similar blocks by clustering them using their statistical
 properties or by repeatedly joining a pair of randomly selected
 clusters when it reduces the overall amount of bits needed to encode
 the image.

 Each pixel is encoded using one of the three possible methods:

 Prefix-coded literals: Each channel (green, red, blue, and alpha)
 is entropy-coded independently.
 LZ77 backward reference: A sequence of pixels are copied from
 elsewhere in the image.
 Color cache code: Using a short multiplicative hash code (color
 cache index) of a recently seen color.

 The following subsections describe each of these in detail.

 Prefix-Coded Literals
 The pixel is stored as prefix-coded values of green, red, blue,
 and alpha (in that order). See for details.

 LZ77 Backward Reference
 Backward references are tuples of length and
 distance code:

 Length indicates how many pixels in scan-line order are to be
 copied.
 Distance code is a number indicating the position of a
 previously seen pixel, from which the pixels are to be copied.
 The exact mapping is described below.

 The length and distance values are stored using LZ77
 prefix coding.
 LZ77 prefix coding divides large integer values into two parts:
 the prefix code and the extra bits. The prefix
 code is stored using an entropy code, while the extra bits are
 stored as they are (without an entropy code).

 Rationale: This approach reduces the storage requirement
 for the entropy code. Also, large values are usually rare, so
 extra bits would be used for very few values in the image. Thus,
 this approach results in better compression overall.

 The following table denotes the prefix codes and extra bits used
 for storing different ranges of values.

 Note: The maximum backward reference length is limited to 4096.
 Hence, only the first 24 prefix codes (with the respective extra
 bits) are meaningful for length values. For distance values,
 however, all the 40 prefix codes are valid.

 Value to Prefix Code and Extra Bits Mapping

 Value Range
 Prefix Code
 Extra Bits

 1
 0
 0

 2
 1
 0

 3
 2
 0

 4
 3
 0

 5..6
 4
 1

 7..8
 5
 1

 9..12
 6
 2

 13..16
 7
 2

 ...
 ...
 ...

 3072..4096
 23
 10

 ...
 ...
 ...

 524289..786432
 38
 18

 786433..1048576
 39
 18

 The pseudocode to obtain a (length or distance) value from the
 prefix code is as follows:

if (prefix_code < 4) {
 return prefix_code + 1;
}
int extra_bits = (prefix_code - 2) >> 1;
int offset = (2 + (prefix_code & 1)) << extra_bits;
return offset + ReadBits(extra_bits) + 1;

 Distance Mapping
 As noted previously, a distance code is a number indicating the
 position of a previously seen pixel, from which the pixels are to
 be copied. This subsection defines the mapping between a distance
 code and the position of a previous pixel.
 Distance codes larger than 120 denote the pixel distance in
 scan-line order, offset by 120.
 The smallest distance codes [1..120] are special and are
 reserved for a close neighborhood of the current pixel. This
 neighborhood consists of 120 pixels:

 Pixels that are 1 to 7 rows above the current pixel and are
 up to 8 columns to the left or up to 7 columns to the right of
 the current pixel [Total such pixels = 7 * (8 + 1 + 7) =
 112].
 Pixels that are in the same row as the current pixel and are up
 to 8 columns to the left of the current pixel [8 such
 pixels].

 The mapping between distance code distance_code and the neighboring
 pixel offset (xi, yi) is as follows:

 Distance Code to Neighboring Pixel Offset Mapping

(0, 1), (1, 0), (1, 1), (-1, 1), (0, 2), (2, 0), (1, 2),
(-1, 2), (2, 1), (-2, 1), (2, 2), (-2, 2), (0, 3), (3, 0),
(1, 3), (-1, 3), (3, 1), (-3, 1), (2, 3), (-2, 3), (3, 2),
(-3, 2), (0, 4), (4, 0), (1, 4), (-1, 4), (4, 1), (-4, 1),
(3, 3), (-3, 3), (2, 4), (-2, 4), (4, 2), (-4, 2), (0, 5),
(3, 4), (-3, 4), (4, 3), (-4, 3), (5, 0), (1, 5), (-1, 5),
(5, 1), (-5, 1), (2, 5), (-2, 5), (5, 2), (-5, 2), (4, 4),
(-4, 4), (3, 5), (-3, 5), (5, 3), (-5, 3), (0, 6), (6, 0),
(1, 6), (-1, 6), (6, 1), (-6, 1), (2, 6), (-2, 6), (6, 2),
(-6, 2), (4, 5), (-4, 5), (5, 4), (-5, 4), (3, 6), (-3, 6),
(6, 3), (-6, 3), (0, 7), (7, 0), (1, 7), (-1, 7), (5, 5),
(-5, 5), (7, 1), (-7, 1), (4, 6), (-4, 6), (6, 4), (-6, 4),
(2, 7), (-2, 7), (7, 2), (-7, 2), (3, 7), (-3, 7), (7, 3),
(-7, 3), (5, 6), (-5, 6), (6, 5), (-6, 5), (8, 0), (4, 7),
(-4, 7), (7, 4), (-7, 4), (8, 1), (8, 2), (6, 6), (-6, 6),
(8, 3), (5, 7), (-5, 7), (7, 5), (-7, 5), (8, 4), (6, 7),
(-6, 7), (7, 6), (-7, 6), (8, 5), (7, 7), (-7, 7), (8, 6),
(8, 7)

 For example, the distance code 1 indicates an offset of
 (0, 1) for the neighboring pixel, that is, the pixel
 above the current pixel (0 pixel difference in the X direction and
 1 pixel difference in the Y direction). Similarly, the distance
 code 3 indicates the top-left pixel.
 The decoder can convert a distance code distance_code to a
 scan-line order distance dist as follows:

(xi, yi) = distance_map[distance_code - 1]
dist = xi + yi * image_width
if (dist < 1) {
 dist = 1
}

 where distance_map is the mapping noted above, and
 image_width is the width of the image in pixels.

 Color Cache Coding
 Color cache stores a set of colors that have been recently used
 in the image.

 Rationale: This way, the recently used colors can
 sometimes be referred to more efficiently than emitting them using
 the other two methods (described in Sections
 and).

 Color cache codes are stored as follows. First, there is a 1-bit
 value that indicates if the color cache is used. If this bit is 0,
 no color cache codes exist, and they are not transmitted in the
 prefix code that decodes the green symbols and the length prefix
 codes. However, if this bit is 1, the color cache size is read
 next:

int color_cache_code_bits = ReadBits(4);
int color_cache_size = 1 << color_cache_code_bits;

 color_cache_code_bits defines the size of the
 color cache (1 << color_cache_code_bits). The
 range of allowed values for color_cache_code_bits is
 [1..11]. Compliant decoders MUST indicate a corrupted
 bitstream for other values.
 A color cache is an array of size color_cache_size. Each
 entry stores one ARGB color. Colors are looked up by indexing them
 by (0x1e35a7bd * color) >> (32 -
 color_cache_code_bits). Only one lookup is done in a
 color cache; there is no conflict resolution.
 In the beginning of decoding or encoding of an image, all entries
 in all color cache values are set to zero. The color cache code is
 converted to this color at decoding time. The state of the color
 cache is maintained by inserting every pixel, be it produced by
 backward referencing or as literals, into the cache in the order
 they appear in the stream.

 Entropy Code

 Overview
 Most of the data is coded using a canonical
 prefix code. Hence, the codes are transmitted by sending the
 prefix code lengths, as opposed to the actual prefix
 codes.
 In particular, the format uses spatially variant prefix
 coding. In other words, different blocks of the image can
 potentially use different entropy codes.

 Rationale: Different areas of the image may have different
 characteristics. So, allowing them to use different entropy codes
 provides more flexibility and potentially better compression.

 Details
 The encoded image data consists of several parts:

 Decoding and building the prefix codes.
 Meta prefix codes.
 Entropy-coded image data.

 For any given pixel (x, y), there is a set of five prefix codes
 associated with it. These codes are (in bitstream order):

 Prefix code #1: Used for green channel,
 backward-reference length, and color cache.

 Prefix code #2, #3, and #4: Used for red,
 blue, and alpha channels, respectively.

 Prefix code #5: Used for backward-reference
 distance.

 From here on, we refer to this set as a prefix code
 group.

 Decoding and Building the Prefix Codes
 This section describes how to read the prefix code lengths from
 the bitstream.
 The prefix code lengths can be coded in two ways. The method
 used is specified by a 1-bit value.

 If this bit is 1, it is a simple code length code.
 If this bit is 0, it is a normal code length
 code.

 In both cases, there can be unused code lengths that are still
 part of the stream. This may be inefficient, but it is allowed by
 the format. The described tree must be a complete binary tree. A
 single leaf node is considered a complete binary tree and can be
 encoded using either the simple code length code or the normal
 code length code. When coding a single leaf node using the
 normal code length code, all but one code length are
 zeros, and the single leaf node value is marked with the length
 of 1 -- even when no bits are consumed when that single leaf node
 tree is used.

 Simple Code Length Code
 This variant is used in the special case when only 1 or 2 prefix
 symbols are in the range [0..255] with code length 1. All
 other prefix code lengths are implicitly zeros.
 The first bit indicates the number of symbols:

int num_symbols = ReadBits(1) + 1;

 The following are the symbol values. This first symbol is coded using
 1 or 8 bits, depending on the value of is_first_8bits. The
 range is [0..1] or [0..255], respectively. The second symbol, if
 present, is always assumed to be in the range [0..255] and coded
 using 8 bits.

int is_first_8bits = ReadBits(1);
symbol0 = ReadBits(1 + 7 * is_first_8bits);
code_lengths[symbol0] = 1;
if (num_symbols == 2) {
 symbol1 = ReadBits(8);
 code_lengths[symbol1] = 1;
}

 The two symbols should be different. Duplicate symbols are
 allowed, but inefficient.

 Note: Another special case is when all prefix code
 lengths are zeros (an empty prefix code). For example, a
 prefix code for distance can be empty if there are no backward
 references. Similarly, prefix codes for alpha, red, and blue can
 be empty if all pixels within the same meta prefix code are
 produced using the color cache. However, this case doesn't need
 special handling, as empty prefix codes can be coded as those
 containing a single symbol 0.

 Normal Code Length Code
 The code lengths of the prefix code fit in 8 bits and are read
 as follows. First, num_code_lengths specifies the number
 of code lengths.

int num_code_lengths = 4 + ReadBits(4);

 The code lengths are themselves encoded using prefix codes;
 lower-level code lengths, code_length_code_lengths, first
 have to be read. The rest of those
 code_length_code_lengths (according to the order in
 kCodeLengthCodeOrder) are zeros.

int kCodeLengthCodes = 19;
int kCodeLengthCodeOrder[kCodeLengthCodes] = {
 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
int code_length_code_lengths[kCodeLengthCodes] = { 0 }; // All zeros
for (i = 0; i < num_code_lengths; ++i) {
 code_length_code_lengths[kCodeLengthCodeOrder[i]] = ReadBits(3);
}

 Next, if ReadBits(1) == 0, the maximum number of
 different read symbols (max_symbol) for each symbol type
 (A, R, G, B, and distance) is set to its alphabet size:

 G channel: 256 + 24 + color_cache_size
 Other literals (A, R, and B): 256
 Distance code: 40

 Otherwise, it is defined as:

int length_nbits = 2 + 2 * ReadBits(3);
int max_symbol = 2 + ReadBits(length_nbits);

 If max_symbol is larger than the size of the alphabet
 for the symbol type, the bitstream is invalid.
 A prefix table is then built from
 code_length_code_lengths and used to read up to
 max_symbol code lengths.

 Code [0..15] indicates literal code lengths.

 Value 0 means no symbols have been coded.
 Values [1..15] indicate the bit length of the respective
 code.

 Code 16 repeats the previous nonzero value [3..6] times,
 that is, 3 + ReadBits(2) times. If code 16 is used before
 a nonzero value has been emitted, a value of 8 is
 repeated.
 Code 17 emits a streak of zeros of length [3..10], that is, 3 +
 ReadBits(3) times.
 Code 18 emits a streak of zeros of length [11..138], that is,
 11 + ReadBits(7) times.

 Once code lengths are read, a prefix code for each symbol type
 (A, R, G, B, and distance) is formed using their respective alphabet
 sizes.

 Decoding of Meta Prefix Codes
 As noted earlier, the format allows the use of different prefix
 codes for different blocks of the image. Meta prefix
 codes are indexes identifying which prefix codes to use in
 different parts of the image.
 Meta prefix codes may be used only when the image is
 being used in the role
 of an ARGB image.
 There are two possibilities for the meta prefix codes, indicated
 by a 1-bit value:

 If this bit is zero, there is only one meta prefix code used
 everywhere in the image. No more data is stored.
 If this bit is one, the image uses multiple meta prefix
 codes. These meta prefix codes are stored as an entropy
 image (described below).

 The red and green components of a pixel define a 16-bit meta
 prefix code used in a particular block of the ARGB image.

 Entropy Image
 The entropy image defines which prefix codes are used in
 different parts of the image.
 The first 3 bits contain the prefix_bits value. The
 dimensions of the entropy image are derived from
 prefix_bits:

int prefix_bits = ReadBits(3) + 2;
int prefix_image_width =
 DIV_ROUND_UP(image_width, 1 << prefix_bits);
int prefix_image_height =
 DIV_ROUND_UP(image_height, 1 << prefix_bits);

 where DIV_ROUND_UP is as defined in .
 The next bits contain an entropy image of width
 prefix_image_width and height prefix_image_height.

 Interpretation of Meta Prefix Codes
 The number of prefix code groups in the ARGB image can be
 obtained by finding the largest meta prefix code from
 the entropy image:

int num_prefix_groups = max(entropy image) + 1;

 where max(entropy image) indicates the largest prefix
 code stored in the entropy image.
 As each prefix code group contains five prefix codes, the
 total number of prefix codes is:

int num_prefix_codes = 5 * num_prefix_groups;

 Given a pixel (x, y) in the ARGB image, we can obtain the
 corresponding prefix codes to be used as follows:

int position =
 (y >> prefix_bits) * prefix_image_width + (x >> prefix_bits);
int meta_prefix_code = (entropy_image[position] >> 8) & 0xffff;
PrefixCodeGroup prefix_group = prefix_code_groups[meta_prefix_code];

 where we have assumed the existence of PrefixCodeGroup
 structure, which represents a set of five prefix codes. Also,
 prefix_code_groups is an array of
 PrefixCodeGroup (of size num_prefix_groups).
 The decoder then uses prefix code group prefix_group to
 decode the pixel (x, y), as explained in .

 Decoding Entropy-Coded Image Data
 For the current position (x, y) in the image, the decoder first
 identifies the corresponding prefix code group (as explained in
 the last section). Given the prefix code group, the pixel is read
 and decoded as follows.
 Next, read symbol S from the bitstream using prefix code #1.

 Note that S is any integer in the range 0 to
 (256 + 24 + color_cache_size - 1). See for details about
 color_cache_size.

 The interpretation of S depends on its value:

 If S < 256

 Use S as the green component.
 Read red from the bitstream using prefix code #2.
 Read blue from the bitstream using prefix code #3.
 Read alpha from the bitstream using prefix code #4.

 If S >= 256 & S < 256 + 24

 Use S - 256 as a length prefix code.
 Read extra bits for the length from the bitstream.
 Determine backward-reference length L from length prefix
 code and the extra bits read.
 Read the distance prefix code from the bitstream using prefix
 code #5.
 Read extra bits for the distance from the bitstream.
 Determine backward-reference distance D from the distance
 prefix code and the extra bits read.
 Copy L pixels (in scan-line order) from the sequence of pixels
starting at the current position minus D pixels.

 If S >= 256 + 24

 Use S - (256 + 24) as the index into the color cache.
 Get ARGB color from the color cache at that index.

 Overall Structure of the Format
 Below is a view into the format in Augmented Backus-Naur Form . It does not cover all details. The end-of-image (EOI)
 is only implicitly coded into the number of pixels (image_width *
 image_height).

 Note that *element means element can be repeated 0 or more times. 5element
means element is repeated exactly 5 times. %b represents a binary value.

 Basic Structure

format = RIFF-header image-header image-stream
RIFF-header = %s"RIFF" 4OCTET %s"WEBPVP8L" 4OCTET
image-header = %x2F image-size alpha-is-used version
image-size = 14BIT 14BIT ; width - 1, height - 1
alpha-is-used = 1BIT
version = 3BIT ; 0
image-stream = optional-transform spatially-coded-image

 Structure of Transforms

optional-transform = (%b1 transform optional-transform) / %b0
transform = predictor-tx / color-tx / subtract-green-tx
transform =/ color-indexing-tx

predictor-tx = %b00 predictor-image
predictor-image = 3BIT ; sub-pixel code
 entropy-coded-image

color-tx = %b01 color-image
color-image = 3BIT ; sub-pixel code
 entropy-coded-image

subtract-green-tx = %b10

color-indexing-tx = %b11 color-indexing-image
color-indexing-image = 8BIT ; color count
 entropy-coded-image

 Structure of the Image Data

spatially-coded-image = color-cache-info meta-prefix data
entropy-coded-image = color-cache-info data

color-cache-info = %b0
color-cache-info =/ (%b1 4BIT) ; 1 followed by color cache size

meta-prefix = %b0 / (%b1 entropy-image)

data = prefix-codes lz77-coded-image
entropy-image = 3BIT ; subsample value
 entropy-coded-image

prefix-codes = prefix-code-group *prefix-codes
prefix-code-group =
 5prefix-code ; See "Interpretation of Meta Prefix Codes" to
 ; understand what each of these five prefix
 ; codes are for.

prefix-code = simple-prefix-code / normal-prefix-code
simple-prefix-code = ; see "Simple Code Length Code" for details
normal-prefix-code = ; see "Normal Code Length Code" for details

lz77-coded-image =
 *((argb-pixel / lz77-copy / color-cache-code) lz77-coded-image)

 The following is a possible example sequence:

RIFF-header image-size %b1 subtract-green-tx
%b1 predictor-tx %b0 color-cache-info
%b0 prefix-codes lz77-coded-image

 Security Considerations
 Implementations of this format face security risks, such as integer
 overflows, out-of-bounds reads and writes to both heap and stack,
 uninitialized data usage, null pointer dereferences, resource (disk or
 memory) exhaustion, and extended resource usage (long running time) as
 part of the demuxing and decoding process. In particular,
 implementations reading this format are likely to take input from
 unknown and possibly unsafe sources -- both clients (for example, web browsers or
 email clients) and servers (for example, applications that accept uploaded
 images). These may result in arbitrary code execution, information
 leakage (memory layout and contents), or crashes and thereby allow a
 device to be compromised or cause a denial of service to an application
 using the format .
 The format does not employ "active content" but does allow metadata
 (for example, and) and custom chunks to be
 embedded in a file. Applications that interpret these chunks may be
 subject to security considerations for those formats.

 Interoperability Considerations
 The format is defined using little-endian byte ordering (see), but demuxing and decoding are
 possible on platforms using a different ordering with the appropriate
 conversion.

 The container is based on RIFF and allows extension via user-defined
 chunks, but nothing beyond the chunks defined by the container format
 () are required for decoding of the image.
 These have been finalized, but they were extended in the format's early
 stages, so some older readers may not support lossless or animated image
 decoding.

 IANA Considerations
 IANA has registered the 'image/webp' media type .

 The 'image/webp' Media Type
 This section contains the media type registration details per .

 Registration Details

 Type name:
 image
 Subtype name:
 webp
 Required parameters:
 N/A
 Optional parameters:
 N/A
 Encoding considerations:
 Binary. The Base64
 encoding should be used on transports that cannot accommodate
 binary data directly.
 Security considerations:
 See RFC 9649, .
 Interoperability considerations:
 See RFC 9649, .
 Published specification:
 RFC 9649
 Applications that use this media type:
 Applications that are used to
 display and process images, especially when smaller image file sizes
 are important.
 Fragment identifier considerations:
 N/A
 Additional information:

 Deprecated alias names for this type:
 N/A
 Magic number(s):
 The first 4 bytes are 0x52, 0x49, 0x46, 0x46
 ('RIFF'), followed by 4 bytes for the 'RIFF' Chunk size. The next 7
 bytes are 0x57, 0x45, 0x42, 0x50, 0x56, 0x50, 0x38
 ('WEBPVP8').
 File extension(s):
 webp
 Apple Uniform Type Identifier:
 org.webmproject.webp conforms to
 public.image
 Object Identifiers:
 N/A

 Person & email address to contact for further information:
 James Zern <jzern@google.com>

 Intended usage:
 COMMON
 Restrictions on usage:
 N/A
 Author:
 James Zern <jzern@google.com>
 Change controller:
 IETF

 References

 Normative References

 Exchangeable image file format for digital still cameras: Exif Version 2.3

 Camera & Imaging Products Association (CIPA)

 Japan Electronics and Information Technology Industries Association (JEITA)

 Image technology colour management -- Architecture, profile format, and data structure

 International Color Consortium

 Profile version 4.3.0.0, REVISION of ICC.1:2004-10

 Information technology -- Programming languages -- C

 International Organization for Standardization

 Fourth Edition

 Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios

 ITU

 Internet numbers

 This memo is a status report on the network numbers and autonomous system numbers used in the Internet community.

 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

 This second document defines the general structure of the MIME media typing system and defines an initial set of media types. [STANDARDS-TRACK]

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 UTF-16, an encoding of ISO 10646

 This document describes the UTF-16 encoding of Unicode/ISO-10646, addresses the issues of serializing UTF-16 as an octet stream for transmission over the Internet, discusses MIME charset naming as described in [CHARSET-REG], and contains the registration for three MIME charset parameter values: UTF-16BE (big-endian), UTF-16LE (little- endian), and UTF-16. This memo provides information for the Internet community.

 The Base16, Base32, and Base64 Data Encodings

 This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. [STANDARDS-TRACK]

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 VP8 Data Format and Decoding Guide

 This document describes the VP8 compressed video data format, together with a discussion of the decoding procedure for the format. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Media Type Specifications and Registration Procedures

 This document defines procedures for the specification and registration of media types for use in HTTP, MIME, and other Internet protocols. This memo documents an Internet Best Current Practice.

 Case-Sensitive String Support in ABNF

 This document extends the base definition of ABNF (Augmented Backus-Naur Form) to include a way to specify US-ASCII string literals that are matched in a case-sensitive manner.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 XMP Specification

 Adobe Inc.

 Informative References

 Graphics Interchange Format(sm)

 CompuServe Incorporated

 Version 89a

 A Method for the Construction of Minimum-Redundancy Codes

 Proceedings of the Institute of Radio Engineers, Vol. 40, Issue 9, pp. 1098-1101

 libwebp Security Issues

 Information Technology - Digital Compression and Coding of Continuous-Tone Still Images - Requirements and Guidelines

 A Universal Algorithm for Sequential Data Compression

 IEEE Transactions on Information Theory, Vol. 23, Issue 3, pp. 337-343

 libwebp CVE List

 Guidelines For Handling Image Metadata

 Metadata Working Group

 Version 2.0

 PNG (Portable Network Graphics) Specification Version 1.0

 This document describes PNG (Portable Network Graphics), an extensible file format for the lossless, portable, well-compressed storage of raster images. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind.

 RIFF (Resource Interchange File Format)

 WebP Lossless Bitstream Specification

 Lossless and Transparency Encoding in WebP

 Google LLC

 Google LLC

 WebP RIFF Container

 Authors' Addresses

 Google LLC

 1600 Amphitheatre Parkway
 Mountain View
 CA
 94043
 United States of America

 +1 650 253-0000
 jzern@google.com

 Google LLC

 pascal.massimino@gmail.com

 Google LLC

 jyrki.alakuijala@gmail.com

