
RFC 9670
JSON Meta Application Protocol (JMAP) Sharing

Abstract
This document specifies a data model for sharing data between users using the JSON Meta
Application Protocol (JMAP). Future documents can reference this document when defining data
types to support a consistent model of sharing.

Stream:
RFC:
Updates:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9670
8620
Standards Track
November 2024
2070-1721
N. Jenkins, Ed.
Fastmail

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9670

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Jenkins Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9670
https://www.rfc-editor.org/rfc/rfc8620
https://www.rfc-editor.org/info/rfc9670
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Notational Conventions

1.2. Terminology

1.3. Data Model Overview

1.4. Subscribing to Shared Data

1.5. Addition to the Capabilities Object

1.5.1. urn:ietf:params:jmap:principals

1.5.2. urn:ietf:params:jmap:principals:owner

2. Principals

2.1. Principal/get

2.2. Principal/changes

2.3. Principal/set

2.4. Principal/query

2.4.1. Filtering

2.5. Principal/queryChanges

3. ShareNotifications

3.1. ShareNotification/get

3.2. ShareNotification/changes

3.3. ShareNotification/set

3.4. ShareNotification/query

3.4.1. Filtering

3.4.2. Sorting

3.5. ShareNotification/queryChanges

4. Framework for Shared Data

4.1. Example

5. Internationalization Considerations

3

3

4

4

4

5

5

5

6

7

7

7

7

7

8

8

9

9

9

10

10

10

10

10

11

14

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 2

6. Security Considerations

6.1. Spoofing

6.2. Unnoticed Sharing

6.3. Denial of Service

6.4. Unauthorized Principals

7. IANA Considerations

7.1. JMAP Capability Registration for "principals"

7.2. JMAP Capability Registration for "principals:owner"

7.3. JMAP Data Type Registration for "Principal"

7.4. JMAP Data Type Registration for "ShareNotification"

8. References

8.1. Normative References

8.2. Informative References

Author's Address

14

14

15

15

15

15

15

16

16

16

16

16

17

17

1. Introduction
The JSON Meta Application Protocol (JMAP) is a generic protocol for synchronizing
data, such as mail, calendars, or contacts, between a client and a server. It is optimized for
mobile and web environments and provides a consistent interface to query, read, and modify
different data types, including comprehensive error handling.

This specification defines a data model to represent entities in a collaborative environment and a
framework for sharing data between them that can be used to provide a consistent sharing
model for different data types. It does not define what may be shared or the granularity of
permissions, as this will depend on the data in question.

[RFC8620]

1.1. Notational Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Type signatures, examples, and property descriptions in this document follow the conventions
established in . Data types defined in the core specification are also used
in this document.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Section 1.1 of [RFC8620]

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 3

https://rfc-editor.org/rfc/rfc8620#section-1.1

Examples of API exchanges only show the methodCalls array of the Request object or the
methodResponses array of the Response object. For compactness, the rest of the Request/
Response object is omitted.

1.2. Terminology
The same terminology is used in this document as in the core JMAP specification. See

.

The terms "Principal" and "ShareNotification" (with this specific capitalization) are used to refer
to the data types defined in this document and instances of those data types.

[RFC8620],
Section 1.6

1.3. Data Model Overview
A Principal (see Section 2) represents an individual, team, or resource (e.g., a room or projector).
The object contains information about the entity being represented, such as a name, description,
and time zone. It may also hold domain-specific information. A Principal may be associated with
zero or more Accounts (see) containing data belonging to the Principal.
Managing the set of Principals within a system is out of scope for this specification, as it is highly
domain specific. It is likely to map directly from a directory service or other user management
system.

Data types may allow users to share data with others by assigning permissions to Principals.
When a user's permissions are changed, a ShareNotification object is created for them so a client
can inform the user of the changes.

[RFC8620], Section 1.6.2

1.4. Subscribing to Shared Data
Permissions determine whether a user may access data but not whether they want to. Some
shared data is of equal importance as the user's own, while other data is just there should the
user wish to explicitly go find it. Clients will often want to differentiate the two. For example, a
company may share mailing list archives for all departments with all employees, but a user may
only generally be interested in the few they belong to. They would have permission to access
many mailboxes but can subscribe to just the ones they care about. The client would provide
separate interfaces for reading mail in subscribed mailboxes and browsing all mailboxes they
have permission to access in order to manage those that they are subscribed to.

The JMAP Session object (see) is defined to include an object in the
"accounts" property for every Account that the user has access to. Collaborative systems may
share data between a very large number of Principals, most of which the user does not care
about day to day. For servers implementing this specification, the Session object only
include Accounts where either the user is subscribed to at least one record (see

) in the Account or the Account belongs to the user. StateChange events (
) for changes to data only be sent for data the user has subscribed to and
 be sent for any Account where the user is not subscribed to any records in the

Account, except where that Account belongs to the user.

[RFC8620], Section 2

MUST
[RFC8620],

Section 1.6.3 [RFC8620],
Section 7.1 SHOULD
MUST NOT

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 4

https://rfc-editor.org/rfc/rfc8620#section-1.6
https://rfc-editor.org/rfc/rfc8620#section-1.6.2
https://rfc-editor.org/rfc/rfc8620#section-2
https://rfc-editor.org/rfc/rfc8620#section-1.6.3
https://rfc-editor.org/rfc/rfc8620#section-7.1

The server reject the user's attempt to subscribe to some resources even if they have
permission to access them (e.g., a calendar representing a location).

A user can query the set of Principals they have access to with "Principal/query" (see Section 2.4).
The Principal object will contain an Account object for all Accounts where the user has
permission to access data for that Principal, even if they are not yet subscribed.

MAY

1.5. Addition to the Capabilities Object
The capabilities object is returned as part of the JMAP Session object; see .
This document defines two additional capability URIs.

[RFC8620], Section 2

1.5.1. urn:ietf:params:jmap:principals

The urn:ietf:params:jmap:principals capability represents support for the Principal and
ShareNotification data types and associated API methods.

The value of this property in the JMAP Session "capabilities" property is an empty object.

The value of this property in an Account's "accountCapabilities" property is an object that
contain the following information on server capabilities and permissions for that Account:

currentUserPrincipalId: Id|null
The id of the Principal in this Account that corresponds to the user fetching this object, if any.

MUST

1.5.2. urn:ietf:params:jmap:principals:owner

The URI urn:ietf:params:jmap:principals:owner is solely used as a key in an Account's
"accountCapabilities" property. It does not appear in the JMAP Session capabilities -- support is
indicated by the urn:ietf:params:jmap:principals URI being present in the session
capabilities.

If urn:ietf:params:jmap:principals:owner is a key in an Account's "accountCapabilities"
property, that Account (and the data therein) is owned by a Principal. Some Accounts may not be
owned by a Principal (e.g., the Account that contains the data for the Principals themselves), in
which case this property is omitted.

The value of this property is an object with the following properties:

accountIdForPrincipal: Id
The id of an Account with the urn:ietf:params:jmap:principals capability that contains
the corresponding Principal object.

principalId:Id
The id of the Principal that owns this Account.

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 5

https://rfc-editor.org/rfc/rfc8620#section-2

2. Principals
A Principal represents an individual, a group, a location (e.g., a room), a resource (e.g., a
projector), or another entity in a collaborative environment. Sharing in JMAP is generally
configured by assigning rights to certain data within an Account to other Principals. For example,
a user may assign permission to read their calendar to a Principal representing another user or
their team.

In a shared environment, such as a workplace, a user may have access to a large number of
Principals.

In most systems, the user will have access to a single Account containing Principal objects. In
some situations, for example, when aggregating data from different places, there may be
multiple Accounts containing Principal objects.

A Principal object has the following properties:

id: Id (immutable; server-set)
The id of the Principal.

type: String
This be one of the following values:

"individual": This represents a single person.
"group": This represents a group of other Principals.
"resource": This represents some resource, e.g., a projector.
"location": This represents a location.
"other": This represents some other undefined Principal.

name: String
The name of the Principal, e.g., "Jane Doe" or "Room 4B".

description: String|null
A longer description of the Principal, for example, details about the facilities of a resource, or
null if no description is available.

email: String|null
An email address for the Principal, or null if no email is available. If given, the value
conform to the "addr-spec" syntax, as defined in .

timeZone: String|null
The time zone for this Principal, if known. If not null, the value be a time zone name
from the IANA Time Zone Database .

MUST

•
•
•
•
•

MUST
[RFC5322], Section 3.4.1

MUST
[IANA-TZDB]

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 6

https://rfc-editor.org/rfc/rfc5322#section-3.4.1

capabilities: String[Object] (server-set)
A map of JMAP capability URIs to domain-specific information about the Principal in relation
to that capability, as defined in the document that registered the capability.

accounts: Id[Account]|null (server-set)
A map of Account id to Account object for each JMAP Account containing data for this
Principal that the user has access to, or null if none.

2.1. Principal/get
This is a standard "/get" method as described in .[RFC8620], Section 5.1

2.2. Principal/changes
This is a standard "/changes" method as described in .

Note: Implementations backed by an external directory may be unable to calculate
changes. In this case, they will always return a "cannotCalculateChanges" error as
described in the core JMAP specification.

[RFC8620], Section 5.2

2.3. Principal/set
This is a standard "/set" method as described in .

Managing Principals is likely tied to a directory service or some other vendor-specific solution.
This management may occur out of band or via an additional capability defined elsewhere.
Allowing direct user modification of properties has security considerations, as noted in Section 6.
A server reject any change it doesn't allow with a "forbidden" SetError.

Where a server does support changes via this API, it allow an update to the "name",
"description", and "timeZone" properties of the Principal with the same id as the
"currentUserPrincipalId" in the Account capabilities. This allows the user to update their own
details.

[RFC8620], Section 5.3

MUST

SHOULD

2.4. Principal/query
This is a standard "/query" method as described in .[RFC8620], Section 5.5

2.4.1. Filtering

A FilterCondition object has the following properties, all of which are optional:

accountIds: String[]
A list of Account ids. The Principal matches if any of the ids in this list are keys in the
Principal's "accounts" property (i.e., if any of the Account ids belong to the Principal).

email: String
The email property of the Principal contains the given string.

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 7

https://rfc-editor.org/rfc/rfc8620#section-5.1
https://rfc-editor.org/rfc/rfc8620#section-5.2
https://rfc-editor.org/rfc/rfc8620#section-5.3
https://rfc-editor.org/rfc/rfc8620#section-5.5

name: String
The name property of the Principal contains the given string.

text: String
The name, email, or description property of the Principal contains the given string.

type: String
The type must be exactly as given to match the condition.

timeZone: String
The timeZone must be exactly as given to match the condition.

All given conditions in the FilterCondition object must match for the Principal to match.

Text matches for "contains" be simple substring matches.SHOULD

2.5. Principal/queryChanges
This is a standard "/queryChanges" method as described in .

Note: Implementations backed by an external directory may be unable to calculate
changes. In this case, they will always return a "cannotCalculateChanges" error as
described in the core JMAP specification.

[RFC8620], Section 5.6

3. ShareNotifications
The ShareNotification data type records when the user's permissions to access a shared object
changes. ShareNotifications are only created by the server; users cannot create them explicitly.
They are stored in the same Account as the Principals.

Clients may present the list of notifications to the user and allow the user to dismiss them. To
dismiss a notification, use a standard "/set" call to destroy it.

The server create a ShareNotification whenever the user's permissions change on an
object. It choose not to create a notification for permission changes to a group Principal,
even if the user is in the group, if this is more likely to be overwhelming than helpful, or if it
would create excessive notifications within the system.

The server limit the maximum number of notifications it will store for a user. When the
limit is reached, any new notification will cause the previously oldest notification to be
automatically deleted.

The server coalesce notifications if appropriate or remove notifications after a certain
period of time or that it deems are no longer relevant.

A ShareNotification object has the following properties:

SHOULD
MAY

MAY

MAY

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 8

https://rfc-editor.org/rfc/rfc8620#section-5.6

id: String (immutable; server-set)
The id of the ShareNotification.

created: UTCDate (immutable; server-set)
The time this notification was created.

changedBy: Entity (immutable; server-set)
Who made the change. An Entity object has the following properties:

name: String
The name of the entity who made the change.

email: String|null
The email of the entity who made the change, or null if no email is available.

principalId: Id|null
The id of the Principal corresponding to the entity who made the change, or null if no
associated Principal.

objectType: String (immutable; server-set)
The name of the data type for the object whose permissions have changed, as registered in the
IANA "JMAP Data Types" registry , e.g., "Calendar" or "Mailbox".

objectAccountId: Id (immutable; server-set)
The id of the Account where this object exists.

objectId: Id (immutable; server-set)
The id of the object that this notification is about.

oldRights: String[Boolean]|null (immutable; server-set)
The "myRights" property of the object for the user before the change.

newRights: String[Boolean]|null (immutable; server-set)
The "myRights" property of the object for the user after the change.

name: String (immutable; server-set)
The name of the object at the time the notification was made. Determining the name will
depend on the data type in question. For example, it might be the "title" property of a
CalendarEvent or the "name" of a Mailbox. The name is to show users who have had their
access rights to the object removed what it is that they can no longer access.

[IANA-JMAP]

3.1. ShareNotification/get
This is a standard "/get" method as described in .[RFC8620], Section 5.1

3.2. ShareNotification/changes
This is a standard "/changes" method as described in .[RFC8620], Section 5.2

3.3. ShareNotification/set
This is a standard "/set" method as described in .[RFC8620], Section 5.3

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 9

https://rfc-editor.org/rfc/rfc8620#section-5.1
https://rfc-editor.org/rfc/rfc8620#section-5.2
https://rfc-editor.org/rfc/rfc8620#section-5.3

Only destroy is supported; any attempt to create/update be rejected with a "forbidden"
SetError.

MUST

3.4. ShareNotification/query
This is a standard "/query" method as described in .[RFC8620], Section 5.5

3.4.1. Filtering

A FilterCondition object has the following properties, all of which are optional:

after: UTCDate|null
The creation date must be on or after this date to match the condition.

before: UTCDate|null
The creation date must be before this date to match the condition.

objectType: String
The objectType value must be identical to the given value to match the condition.

objectAccountId: Id
The objectAccountId value must be identical to the given value to match the condition.

All given conditions in the FilterCondition object must match for the ShareNotification to match.

3.4.2. Sorting

The "created" property be supported for sorting.MUST

3.5. ShareNotification/queryChanges
This is a standard "/queryChanges" method as described in .[RFC8620], Section 5.6

4. Framework for Shared Data
Shareable data types define the following three properties:

isSubscribed: Boolean
The value true indicates that the user wishes to subscribe to see this data. The value false
indicates that the user does not wish to subscribe to see this data. The initial value for this
property when data is shared by another user is implementation dependent, although data
types may give advice on appropriate defaults.

myRights: String[Boolean]
The set of permissions the user currently has. Appropriate permissions are domain specific
and must be defined per data type. Each key is the name of a permission defined for that data
type. The value for the key is true if the user has the permission or false if they do not.

MUST

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 10

https://rfc-editor.org/rfc/rfc8620#section-5.5
https://rfc-editor.org/rfc/rfc8620#section-5.6

shareWith: Id[String[Boolean]]|null
The value of this property is null if the data is not shared with anyone. Otherwise, it is a map
where each key is the id of a Principal with which this data is shared, and the value associated
with that key is the rights to give that Principal, in the same format as the "myRights"
property. The Account id for the Principal id can be found in the capabilities of the Account
this object is in (see Section 1.5.2).

Users with appropriate permission may set this property to modify who the data is shared
with. The Principal that owns the Account that this data is in be in the map, since
the owner's rights are implicit.

MUST NOT

4.1. Example
Suppose we are designing a data model for a very simple to-do list. There is a Todo data type
representing a single item to do, each of which belongs to a single TodoList. The specification
makes the TodoLists shareable by referencing this document and defining the common
properties.

First, it would define a set of domain-specific rights. For example, a TodoListRights object may
have the following properties:

mayRead: Boolean
The user may fetch this TodoList and any Todos that belong to this TodoList.

mayWrite: Boolean
The user may create, update, or destroy Todos that belong to this TodoList and may change
the "name" property of this TodoList.

mayAdmin: Boolean
The user may see and modify the "myRights" property of this TodoList and may destroy this
TodoList.

Then in the TodoList data type, we would include the three common properties described in
Section 4, in addition to any type-specific properties (like "name" in this case):

id: Id (immutable; server-set)
The id of the object.

name: String
A name for this list of Todos.

isSubscribed: Boolean
True if the user has indicated they wish to see this list. If false, clients should not display this
TodoList with the user's other TodoLists but should provide a means for users to see and
subscribe to all TodoLists that have been shared with them.

myRights: TodoListRights
The set of permissions the user currently has for this TodoList.

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 11

shareWith: Id[TodoListRights]|null
If not shared with anyone, the value is null. Otherwise, it's a map where the keys are
Principal ids and the values are the rights given to those Principals. Users with the
"mayAdmin" right may set this property to modify who the data is shared with. The Principal
that owns the Account that this data is in be in the map; their rights are implicit.

We would also define a new Principal capability with two properties:

accountId: Id|null
The accountId containing the Todo data for this Principal, if it has been shared with the
requesting user.

mayShareWith: Boolean
The user may give this Principal permission to access a TodoList.

A client wishing to let the user configure sharing would look at the "capabilities" for the Account
containing the user's Todo data and find the "urn:ietf:params:jmap:principals:owner" property,
as per Section 1.5.2. For example, the JMAP Session object might contain:

From this, the client now knows which Account has the Principal data, and it can fetch the list of
Principals and offer to share it with the user by making an API request like this:

MUST NOT

Figure 1: Part of a JMAP Session Object

{
 "accounts": {
 "u12345678": {
 "name": "jane.doe@example.com",
 "isPersonal": true,
 "isReadOnly": false,
 "accountCapabilities": {
 "urn:com.example:jmap:todo": {},
 "urn:ietf:params:jmap:principals:owner": {
 "accountIdForPrincipal": "u33084183",
 "principalId": "P105aga511jaa"
 }
 }
 },
 ...
 },
 ...
}

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 12

Here's an example response (where "Joe Bloggs" is another user that this user could share their
TodoList with; Joe has not shared any of their own data with this user, so the "accounts" property
is null):

A TodoList can be shared with "Joe Bloggs" by updating its shareWith property, as in this example
request:

Figure 2: "methodCalls" Property of a JMAP Request

[["Principal/get", {
 "accountId": "u33084183",
 "ids": null
}, "0"]]

Figure 3: "methodResponses" Property of a JMAP Response

[["Principal/get", {
 "accountId": "u33084183",
 "state": "7b8eff5zz",
 "list": [{
 "id": "P2342fnddd20",
 "type": "individual",
 "name": "Joe Bloggs",
 "description": null,
 "email": "joe.bloggs@example.com",
 "timeZone": "Australia/Melbourne",
 "capabilities": {
 "urn:com.example:jmap:todo": {
 "accountId": null,
 "mayShareWith": true
 }
 },
 "accounts": null
 }, {
 "id": "P674pp24095qo49pr",
 "name": "Board room",
 "type": "location",
 ...
 }, ...],
 "notFound": []
}, "0"]]

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 13

5. Internationalization Considerations
Experience has shown that unrestricted use of Unicode can lead to problems such as inconsistent
rendering, users reading text and interpreting it differently than intended, and unexpected
results when copying text from one location to another. Servers choose to mitigate this by
restricting the set of characters allowed in otherwise unconstrained String fields. The
FreeformClass, as documented in , might be a good starting point for this.

Attempts to set a value containing code points outside of the permissible set can be handled in a
few ways by the server. The first option is to simply strip the forbidden characters and store the
resulting string. This is likely to be appropriate for control characters, for example, where they
can end up in data accidentally due to copy-and-paste issues and are probably invisible to the
end user. JMAP allows the server to transform data on create/update, as long as any changed
properties are returned to the client in the "/set" response so it knows what has changed, as per

. Alternatively, the server just reject the create/update with an
"invalidProperties" SetError.

Figure 4: "methodCalls" Property of a JMAP Request

[["TodoList/set", {
 "accountId": "u12345678",
 "update": {
 "tl01n231": {
 "shareWith": {
 "P2342fnddd20": {
 "mayRead": true,
 "mayWrite": true,
 "mayAdmin": false
 }
 }
 }
 }
}, "0"]]

MAY

[RFC8264], Section 4.3

[RFC8620], Section 5.3 MAY

6. Security Considerations
All security considerations of JMAP apply to this specification. Additional
considerations are detailed below.

[RFC8620]

6.1. Spoofing
Allowing users to edit their own Principal's name (and, to a lesser extent, email, description, or
type) could allow a user to change their Principal to look like another user in the system,
potentially tricking others into sharing private data with them. Servers may choose to forbid this
and keep logs of such changes to provide an audit trail.SHOULD

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 14

https://rfc-editor.org/rfc/rfc8264#section-4.3
https://rfc-editor.org/rfc/rfc8620#section-5.3

Note that simply forbidding the use of a name already in the system is insufficient protection, as
a malicious user could still change their name to something easily confused with the existing
name by using trivial misspellings or visually similar Unicode characters.

6.2. Unnoticed Sharing
Sharing data with another user allows someone to turn a transitory account compromise (e.g.,
brief access to an unlocked or logged-in client) into a persistent compromise (by setting up
sharing with a user that is controlled by the attacker). This can be mitigated by requiring further
authorization for configuring sharing or sending notifications to the sharer via another channel
whenever a new permission is added.

6.3. Denial of Service
By creating many changes to the sharing status of objects, a user can cause many
ShareNotifications to be generated, which could lead to resource exhaustion. Servers can
mitigate this by coalescing multiple changes to the same object into a single notification, limiting
the maximum number of notifications it stores per user and/or rate-limiting the changes to
sharing permissions in the first place. Automatically deleting older notifications after reaching a
limit can mean the user is not made aware of a sharing change, which can itself be a security
issue. For this reason, it is better to coalesce changes and use other mitigation strategies.

6.4. Unauthorized Principals
The set of Principals within a shared environment be strictly controlled. If adding a new
Principal is open to the public, risks include:

An increased risk of a user accidentally sharing data with an unintended person.
An attacker sharing unwanted or offensive information with the user.
An attacker sharing items with spam content in the names in order to generate
ShareNotification objects, which are likely to be prominently displayed to the user receiving
them.

MUST

•
•
•

7. IANA Considerations

Capability Name:
Intended Use:
Change Controller:
Security and Privacy Considerations:
Reference:

7.1. JMAP Capability Registration for "principals"
IANA has registered "principals" in the "JMAP Capabilities" registry as follows:

urn:ietf:params:jmap:principals
common

IETF
RFC 9670, Section 6

RFC 9670

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 15

[RFC2119]

[RFC5322]

[RFC8174]

8. References

8.1. Normative References

, , ,
, , March 1997,
.

, , , ,
October 2008, .

, ,
, , , May 2017,

.

Capability Name:
Intended Use:
Change Controller:
Security and Privacy Considerations:
Reference:

7.2. JMAP Capability Registration for "principals:owner"
IANA has registered "principals:owner" in the "JMAP Capabilities" registry as follows:

urn:ietf:params:jmap:principals:owner
common

IETF
RFC 9670, Section 6

RFC 9670

Type Name:
Can Reference Blobs:
Can Use for State Change:
Capability:
Reference:

7.3. JMAP Data Type Registration for "Principal"
IANA has registered "Principal" in the "JMAP Data Types" registry as follows:

Principal
No

Yes
urn:ietf:params:jmap:principals
RFC 9670

Type Name:
Can Reference Blobs:
Can Use for State Change:
Capability:
Reference:

7.4. JMAP Data Type Registration for "ShareNotification"
IANA has registered "ShareNotification" in the "JMAP Data Types" registry as follows:

ShareNotification
No

Yes
urn:ietf:params:jmap:principals
RFC 9670

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Resnick, P., Ed. "Internet Message Format" RFC 5322 DOI 10.17487/RFC5322
<https://www.rfc-editor.org/info/rfc5322>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 16

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8620]

[IANA-JMAP]

[IANA-TZDB]

[RFC8264]

 and , ,
, , July 2019,

.

8.2. Informative References

, , .

, , .

 and ,
,

, , October 2017,
.

Jenkins, N. C. Newman "The JSON Meta Application Protocol (JMAP)" RFC
8620 DOI 10.17487/RFC8620 <https://www.rfc-editor.org/info/
rfc8620>

IANA "JMAP Data Types" <https://www.iana.org/assignments/jmap>

IANA "Time Zone Database" <https://www.iana.org/time-zones>

Saint-Andre, P. M. Blanchet "PRECIS Framework: Preparation, Enforcement,
and Comparison of Internationalized Strings in Application Protocols" RFC
8264 DOI 10.17487/RFC8264 <https://www.rfc-editor.org/info/
rfc8264>

Author's Address
Neil Jenkins ()editor
Fastmail
PO Box 234, Collins St West
Melbourne VIC 8007
Australia

neilj@fastmailteam.comEmail:
https://www.fastmail.comURI:

RFC 9670 JMAP Sharing November 2024

Jenkins Standards Track Page 17

https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc8620
https://www.iana.org/assignments/jmap
https://www.iana.org/time-zones
https://www.rfc-editor.org/info/rfc8264
https://www.rfc-editor.org/info/rfc8264
mailto:neilj@fastmailteam.com
https://www.fastmail.com

	RFC 9670
	JSON Meta Application Protocol (JMAP) Sharing
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	1.2. Terminology
	1.3. Data Model Overview
	1.4. Subscribing to Shared Data
	1.5. Addition to the Capabilities Object
	1.5.1. urn:ietf:params:jmap:principals
	1.5.2. urn:ietf:params:jmap:principals:owner

	2. Principals
	2.1. Principal/get
	2.2. Principal/changes
	2.3. Principal/set
	2.4. Principal/query
	2.4.1. Filtering

	2.5. Principal/queryChanges

	3. ShareNotifications
	3.1. ShareNotification/get
	3.2. ShareNotification/changes
	3.3. ShareNotification/set
	3.4. ShareNotification/query
	3.4.1. Filtering
	3.4.2. Sorting

	3.5. ShareNotification/queryChanges

	4. Framework for Shared Data
	4.1. Example

	5. Internationalization Considerations
	6. Security Considerations
	6.1. Spoofing
	6.2. Unnoticed Sharing
	6.3. Denial of Service
	6.4. Unauthorized Principals

	7. IANA Considerations
	7.1. JMAP Capability Registration for "principals"
	7.2. JMAP Capability Registration for "principals:owner"
	7.3. JMAP Data Type Registration for "Principal"
	7.4. JMAP Data Type Registration for "ShareNotification"

	8. References
	8.1. Normative References
	8.2. Informative References

	Author's Address

 JSON Meta Application Protocol (JMAP) Sharing

 Fastmail

 PO Box 234, Collins St West
 Melbourne
 VIC
 8007
 Australia

 neilj@fastmailteam.com
 https://www.fastmail.com

 ART
 jmap
 JMAP
 JSON
 sharing

 This document specifies a data model for sharing data between users using the JSON Meta Application Protocol (JMAP). Future documents can reference this document when defining data types to support a consistent model of sharing.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Notational Conventions

 . Terminology

 . Data Model Overview

 . Subscribing to Shared Data

 . Addition to the Capabilities Object

 . urn:ietf:params:jmap:principals

 . urn:ietf:params:jmap:principals:owner

 . Principals

 . Principal/get

 . Principal/changes

 . Principal/set

 . Principal/query

 . Filtering

 . Principal/queryChanges

 . ShareNotifications

 . ShareNotification/get

 . ShareNotification/changes

 . ShareNotification/set

 . ShareNotification/query

 . Filtering

 . Sorting

 . ShareNotification/queryChanges

 . Framework for Shared Data

 . Example

 . Internationalization Considerations

 . Security Considerations

 . Spoofing

 . Unnoticed Sharing

 . Denial of Service

 . Unauthorized Principals

 . IANA Considerations

 . JMAP Capability Registration for "principals"

 . JMAP Capability Registration for "principals:owner"

 . JMAP Data Type Registration for "Principal"

 . JMAP Data Type Registration for "ShareNotification"

 . References

 . Normative References

 . Informative References

 Author's Address

 Introduction
 The JSON Meta Application Protocol (JMAP) is a generic protocol for synchronizing data, such as mail, calendars, or contacts, between a client and a server. It is optimized for mobile and web environments and provides a consistent interface to query, read, and modify different data types, including comprehensive error handling.
 This specification defines a data model to represent entities in a collaborative environment and a framework for sharing data between them that can be used to provide a consistent sharing model for different data types. It does not define what may be shared or the granularity of permissions, as this will depend on the data in question.

 Notational Conventions

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Type signatures, examples, and property descriptions in this document follow the conventions established in . Data types defined in the core specification are also used in this document.
 Examples of API exchanges only show the methodCalls array of the Request object or the methodResponses array of the Response object. For compactness, the rest of the Request/Response object is omitted.

 Terminology
 The same terminology is used in this document as in the core JMAP specification. See .
 The terms "Principal" and "ShareNotification" (with this specific capitalization) are used to refer to the data types defined in this document and instances of those data types.

 Data Model Overview
 A Principal (see) represents an individual, team, or resource (e.g., a room or projector). The object contains information about the entity being represented, such as a name, description, and time zone. It may also hold domain-specific information. A Principal may be associated with zero or more Accounts (see) containing data belonging to the Principal. Managing the set of Principals within a system is out of scope for this specification, as it is highly domain specific. It is likely to map directly from a directory service or other user management system.
 Data types may allow users to share data with others by assigning permissions to Principals. When a user's permissions are changed, a ShareNotification object is created for them so a client can inform the user of the changes.

 Subscribing to Shared Data
 Permissions determine whether a user may access data but not whether they want to. Some shared data is of equal importance as the user's own, while other data is just there should the user wish to explicitly go find it. Clients will often want to differentiate the two. For example, a company may share mailing list archives for all departments with all employees, but a user may only generally be interested in the few they belong to. They would have permission to access many mailboxes but can subscribe to just the ones they care about. The client would provide separate interfaces for reading mail in subscribed mailboxes and browsing all mailboxes they have permission to access in order to manage those that they are subscribed to.
 The JMAP Session object (see) is defined to include an object in the "accounts" property for every Account that the user has access to. Collaborative systems may share data between a very large number of Principals, most of which the user does not care about day to day. For servers implementing this specification, the Session object MUST only include Accounts where either the user is subscribed to at least one record (see) in the Account or the Account belongs to the user. StateChange events () for changes to data SHOULD only be sent for data the user has subscribed to and MUST NOT be sent for any Account where the user is not subscribed to any records in the Account, except where that Account belongs to the user.
 The server MAY reject the user's attempt to subscribe to some resources even if they have permission to access them (e.g., a calendar representing a location).
 A user can query the set of Principals they have access to with "Principal/query" (see). The Principal object will contain an Account object for all Accounts where the user has permission to access data for that Principal, even if they are not yet subscribed.

 Addition to the Capabilities Object
 The capabilities object is returned as part of the JMAP Session object; see . This document defines two additional capability URIs.

 urn:ietf:params:jmap:principals
 The urn:ietf:params:jmap:principals capability represents support for the Principal and ShareNotification data types and associated API methods.
 The value of this property in the JMAP Session "capabilities" property is an empty object.
 The value of this property in an Account's "accountCapabilities" property is an object that MUST contain the following information on server capabilities and permissions for that Account:

 currentUserPrincipalId: Id|null
 The id of the Principal in this Account that corresponds to the user fetching this object, if any.

 urn:ietf:params:jmap:principals:owner
 The URI urn:ietf:params:jmap:principals:owner is solely used as a key in an Account's "accountCapabilities" property. It does not appear in the JMAP Session capabilities -- support is indicated by the urn:ietf:params:jmap:principals URI being present in the session capabilities.
 If urn:ietf:params:jmap:principals:owner is a key in an Account's "accountCapabilities" property, that Account (and the data therein) is owned by a Principal. Some Accounts may not be owned by a Principal (e.g., the Account that contains the data for the Principals themselves), in which case this property is omitted.
 The value of this property is an object with the following properties:

 accountIdForPrincipal: Id

The id of an Account with the urn:ietf:params:jmap:principals
capability that contains the corresponding Principal object.
 principalId: Id
 The id of the Principal that owns this Account.

 Principals
 A Principal represents an individual, a group, a location (e.g., a room), a resource (e.g., a projector), or another entity in a collaborative environment. Sharing in JMAP is generally configured by assigning rights to certain data within an Account to other Principals. For example, a user may assign permission to read their calendar to a Principal representing another user or their team.
 In a shared environment, such as a workplace, a user may have access to a large number of Principals.
 In most systems, the user will have access to a single Account containing Principal objects. In some situations, for example, when aggregating data from different places, there may be multiple Accounts containing Principal objects.
 A Principal object has the following properties:

 id: Id (immutable; server-set)
 The id of the Principal.
 type: String

 This MUST be one of the following values:

 "individual": This represents a single person.

 "group": This represents a group of other Principals.

 "resource": This represents some resource, e.g., a projector.

 "location": This represents a location.

 "other": This represents some other undefined Principal.

 name: String
 The name of the Principal, e.g., "Jane Doe" or "Room 4B".
 description: String|null
 A longer description of the Principal, for example, details about the facilities of a resource, or null if no description is available.
 email: String|null
 An email address for the Principal, or null if no email is available. If given, the value MUST conform to the "addr-spec" syntax, as defined in .
 timeZone: String|null
 The time zone for this Principal, if known. If not null, the value MUST be a time zone name from the IANA Time Zone Database .
 capabilities: String[Object] (server-set)
 A map of JMAP capability URIs to domain-specific information about the Principal in relation to that capability, as defined in the document that registered the capability.
 accounts: Id[Account]|null (server-set)
 A map of Account id to Account object for each JMAP Account containing data
for this Principal that the user has access to, or null if none.

 Principal/get
 This is a standard "/get" method as described in .

 Principal/changes
 This is a standard "/changes" method as described in .

 Note: Implementations backed by an external directory may be unable to calculate changes. In this case, they will always return a "cannotCalculateChanges" error as described in the core JMAP specification.

 Principal/set
 This is a standard "/set" method as described in .
 Managing Principals is likely tied to a directory service or some other vendor-specific solution. This management may occur out of band or via an additional capability defined elsewhere. Allowing direct user modification of properties has security considerations, as noted in . A server MUST reject any change it doesn't allow with a "forbidden" SetError.
 Where a server does support changes via this API, it SHOULD allow an update to the "name", "description", and "timeZone" properties of the Principal with the same id as the "currentUserPrincipalId" in the Account capabilities. This allows the user to update their own details.

 Principal/query
 This is a standard "/query" method as described in .

 Filtering
 A FilterCondition object has the following properties, all of which are optional:

 accountIds: String[]
 A list of Account ids. The Principal matches if any of the ids in this list are keys in the Principal's "accounts" property (i.e., if any of the Account ids belong to the Principal).
 email: String
 The email property of the Principal contains the given string.
 name: String
 The name property of the Principal contains the given string.
 text: String
 The name, email, or description property of the Principal contains the given string.
 type: String
 The type must be exactly as given to match the condition.
 timeZone: String
 The timeZone must be exactly as given to match the condition.

 All given conditions in the FilterCondition object must match for the Principal to match.
 Text matches for "contains" SHOULD be simple substring matches.

 Principal/queryChanges
 This is a standard "/queryChanges" method as described in .

 Note: Implementations backed by an external directory may be unable to calculate changes. In this case, they will always return a "cannotCalculateChanges" error as described in the core JMAP specification.

 ShareNotifications
 The ShareNotification data type records when the user's permissions to access a shared object changes. ShareNotifications are only created by the server; users cannot create them explicitly. They are stored in the same Account as the Principals.
 Clients may present the list of notifications to the user and allow the user to dismiss them. To dismiss a notification, use a standard "/set" call to destroy it.
 The server SHOULD create a ShareNotification whenever the user's permissions change on an object. It MAY choose not to create a notification for permission changes to a group Principal, even if the user is in the group, if this is more likely to be overwhelming than helpful, or if it would create excessive notifications within the system.
 The server MAY limit the maximum number of notifications it will store for a user. When the limit is reached, any new notification will cause the previously oldest notification to be automatically deleted.
 The server MAY coalesce notifications if appropriate or remove notifications after a certain period of time or that it deems are no longer relevant.
 A ShareNotification object has the following properties:

 id: String (immutable; server-set)
 The id of the ShareNotification.
 created: UTCDate (immutable; server-set)
 The time this notification was created.
 changedBy: Entity (immutable; server-set)

 Who made the change. An Entity object has the following properties:

 name: String
 The name of the entity who made the change.
 email: String|null
 The email of the entity who made the change, or null if no email is available.
 principalId: Id|null
 The id of the Principal corresponding to the entity who made the change, or null if no associated Principal.

 objectType: String (immutable; server-set)
 The name of the data type for the object whose permissions have changed, as registered in the IANA "JMAP Data Types" registry , e.g., "Calendar" or "Mailbox".
 objectAccountId: Id (immutable; server-set)
 The id of the Account where this object exists.
 objectId: Id (immutable; server-set)
 The id of the object that this notification is about.
 oldRights: String[Boolean]|null (immutable; server-set)
 The "myRights" property of the object for the user before the change.
 newRights: String[Boolean]|null (immutable; server-set)
 The "myRights" property of the object for the user after the change.
 name: String (immutable; server-set)
 The name of the object at the time the notification was made. Determining the name will depend on the data type in question. For example, it might be the "title" property of a CalendarEvent or the "name" of a Mailbox. The name is to show users who have had their access rights to the object removed what it is that they can no longer access.

 ShareNotification/get
 This is a standard "/get" method as described in .

 ShareNotification/changes
 This is a standard "/changes" method as described in .

 ShareNotification/set
 This is a standard "/set" method as described in .
 Only destroy is supported; any attempt to create/update MUST be rejected with a "forbidden" SetError.

 ShareNotification/query
 This is a standard "/query" method as described in .

 Filtering
 A FilterCondition object has the following properties, all of which are optional:

 after: UTCDate|null
 The creation date must be on or after this date to match the condition.
 before: UTCDate|null
 The creation date must be before this date to match the condition.
 objectType: String
 The objectType value must be identical to the given value to match the condition.
 objectAccountId: Id
 The objectAccountId value must be identical to the given value to match the condition.

 All given conditions in the FilterCondition object must match for the ShareNotification to match.

 Sorting
 The "created" property MUST be supported for sorting.

 ShareNotification/queryChanges
 This is a standard "/queryChanges" method as described in .

 Framework for Shared Data
 Shareable data types MUST define the following three properties:

 isSubscribed: Boolean
 The value true indicates that the user wishes to subscribe to see this data. The value false indicates that the user does not wish to subscribe to see this data. The initial value for this property when data is shared by another user is implementation dependent, although data types may give advice on appropriate defaults.
 myRights: String[Boolean]
 The set of permissions the user currently has. Appropriate permissions are domain specific and must be defined per data type. Each key is the name of a permission defined for that data type. The value for the key is true if the user has the permission or false if they do not.
 shareWith: Id[String[Boolean]]|null

 The value of this property is null if the data is not shared with anyone. Otherwise, it is a map where each key is the id of a Principal with which this data is shared, and the value associated with that key is the rights to give that Principal, in the same format as the "myRights" property. The Account id for the Principal id can be found in the capabilities of the Account this object is in (see).
 Users with appropriate permission may set this property to modify who the data is shared with. The Principal that owns the Account that this data is in MUST NOT be in the map, since the owner's rights are implicit.

 Example
 Suppose we are designing a data model for a very simple to-do list. There is a Todo data type representing a single item to do, each of which belongs to a single TodoList. The specification makes the TodoLists shareable by referencing this document and defining the common properties.
 First, it would define a set of domain-specific rights. For example, a TodoListRights object may have the following properties:

 mayRead: Boolean
 The user may fetch this TodoList and any Todos that belong to this TodoList.
 mayWrite: Boolean
 The user may create, update, or destroy Todos that belong to this TodoList and may change the "name" property of this TodoList.
 mayAdmin: Boolean
 The user may see and modify the "myRights" property of this TodoList and may destroy this TodoList.

 Then in the TodoList data type, we would include the three common
 properties described in , in addition to any type-specific
 properties (like "name" in this case):

 id: Id (immutable; server-set)
 The id of the object.
 name: String
 A name for this list of Todos.
 isSubscribed: Boolean
 True if the user has indicated they wish to see this list. If false, clients should not display this TodoList with the user's other TodoLists but should provide a means for users to see and subscribe to all TodoLists that have been shared with them.
 myRights: TodoListRights
 The set of permissions the user currently has for this TodoList.
 shareWith: Id[TodoListRights]|null
 If not shared with anyone, the value is null. Otherwise, it's a map where the keys are Principal ids and the values are the rights given to those Principals. Users with the "mayAdmin" right may set this property to modify who the data is shared with. The Principal that owns the Account that this data is in MUST NOT be in the map; their rights are implicit.

 We would also define a new Principal capability with two properties:

 accountId: Id|null
 The accountId containing the Todo data for this Principal, if it has been shared with the requesting user.
 mayShareWith: Boolean
 The user may give this Principal permission to access a TodoList.

 A client wishing to let the user configure sharing would look at the "capabilities" for the Account containing the user's Todo data and find the "urn:ietf:params:jmap:principals:owner" property, as per . For example, the JMAP Session object might contain:

 Part of a JMAP Session Object

{
 "accounts": {
 "u12345678": {
 "name": "jane.doe@example.com",
 "isPersonal": true,
 "isReadOnly": false,
 "accountCapabilities": {
 "urn:com.example:jmap:todo": {},
 "urn:ietf:params:jmap:principals:owner": {
 "accountIdForPrincipal": "u33084183",
 "principalId": "P105aga511jaa"
 }
 }
 },
 ...
 },
 ...
}

 From this, the client now knows which Account has the Principal data,
 and it can fetch the list of Principals and offer to share it with
 the user by making an API request like this:

 "methodCalls" Property of a JMAP Request

[["Principal/get", {
 "accountId": "u33084183",
 "ids": null
}, "0"]]

 Here's an example response (where "Joe Bloggs" is another user that this user could share their TodoList with; Joe has not shared any of their own data with this user, so the "accounts" property is null):

 "methodResponses" Property of a JMAP Response

[["Principal/get", {
 "accountId": "u33084183",
 "state": "7b8eff5zz",
 "list": [{
 "id": "P2342fnddd20",
 "type": "individual",
 "name": "Joe Bloggs",
 "description": null,
 "email": "joe.bloggs@example.com",
 "timeZone": "Australia/Melbourne",
 "capabilities": {
 "urn:com.example:jmap:todo": {
 "accountId": null,
 "mayShareWith": true
 }
 },
 "accounts": null
 }, {
 "id": "P674pp24095qo49pr",
 "name": "Board room",
 "type": "location",
 ...
 }, ...],
 "notFound": []
}, "0"]]

 A TodoList can be shared with "Joe Bloggs" by updating its shareWith property, as in this example request:

 "methodCalls" Property of a JMAP Request

[["TodoList/set", {
 "accountId": "u12345678",
 "update": {
 "tl01n231": {
 "shareWith": {
 "P2342fnddd20": {
 "mayRead": true,
 "mayWrite": true,
 "mayAdmin": false
 }
 }
 }
 }
}, "0"]]

 Internationalization Considerations
 Experience has shown that unrestricted use of Unicode can lead to problems such as inconsistent rendering, users reading text and interpreting it differently than intended, and unexpected results when copying text from one location to another. Servers MAY choose to mitigate this by restricting the set of characters allowed in otherwise unconstrained String fields. The FreeformClass, as documented in , might be a good starting point for this.
 Attempts to set a value containing code points outside of the permissible set can be handled in a few ways by the server. The first option is to simply strip the forbidden characters and store the resulting string. This is likely to be appropriate for control characters, for example, where they can end up in data accidentally due to copy-and-paste issues and are probably invisible to the end user. JMAP allows the server to transform data on create/update, as long as any changed properties are returned to the client in the "/set" response so it knows what has changed, as per . Alternatively, the server MAY just reject the create/update with an "invalidProperties" SetError.

 Security Considerations
 All security considerations of JMAP apply to this specification. Additional considerations are detailed below.

 Spoofing
 Allowing users to edit their own Principal's name (and, to a lesser extent, email, description, or type) could allow a user to change their Principal to look like another user in the system, potentially tricking others into sharing private data with them. Servers may choose to forbid this and SHOULD keep logs of such changes to provide an audit trail.
 Note that simply forbidding the use of a name already in the system is insufficient protection, as a malicious user could still change their name to something easily confused with the existing name by using trivial misspellings or visually similar Unicode characters.

 Unnoticed Sharing
 Sharing data with another user allows someone to turn a transitory account compromise (e.g., brief access to an unlocked or logged-in client) into a persistent compromise (by setting up sharing with a user that is controlled by the attacker). This can be mitigated by requiring further authorization for configuring sharing or sending notifications to the sharer via another channel whenever a new permission is added.

 Denial of Service
 By creating many changes to the sharing status of objects, a user can cause many ShareNotifications to be generated, which could lead to resource exhaustion. Servers can mitigate this by coalescing multiple changes to the same object into a single notification, limiting the maximum number of notifications it stores per user and/or rate-limiting the changes to sharing permissions in the first place. Automatically deleting older notifications after reaching a limit can mean the user is not made aware of a sharing change, which can itself be a security issue. For this reason, it is better to coalesce changes and use other mitigation strategies.

 Unauthorized Principals
 The set of Principals within a shared environment MUST be strictly controlled. If adding a new Principal is open to the public, risks include:

 An increased risk of a user accidentally sharing data with an unintended person.
 An attacker sharing unwanted or offensive information with the user.
 An attacker sharing items with spam content in the names in order to generate ShareNotification objects, which are likely to be prominently displayed to the user receiving them.

 IANA Considerations

 JMAP Capability Registration for "principals"
 IANA has registered "principals" in the "JMAP Capabilities" registry as follows:

 Capability Name:

 urn:ietf:params:jmap:principals
 Intended Use:
 common
 Change Controller:
 IETF
 Security and Privacy Considerations:
 RFC 9670,
 Reference:
 RFC 9670

 JMAP Capability Registration for "principals:owner"
 IANA has registered "principals:owner" in the "JMAP Capabilities" registry as follows:

 Capability Name:

 urn:ietf:params:jmap:principals:owner
 Intended Use:
 common
 Change Controller:
 IETF
 Security and Privacy Considerations:
 RFC 9670,
 Reference:
 RFC 9670

 JMAP Data Type Registration for "Principal"
 IANA has registered "Principal" in the "JMAP Data Types" registry as follows:

 Type Name:
 Principal
 Can Reference Blobs:
 No
 Can Use for State Change:
 Yes
 Capability:

 urn:ietf:params:jmap:principals
 Reference:
 RFC 9670

 JMAP Data Type Registration for "ShareNotification"
 IANA has registered "ShareNotification" in the "JMAP Data Types" registry as follows:

 Type Name:
 ShareNotification
 Can Reference Blobs:
 No
 Can Use for State Change:
 Yes
 Capability:

 urn:ietf:params:jmap:principals
 Reference:
 RFC 9670

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Internet Message Format

 This document specifies the Internet Message Format (IMF), a syntax for text messages that are sent between computer users, within the framework of "electronic mail" messages. This specification is a revision of Request For Comments (RFC) 2822, which itself superseded Request For Comments (RFC) 822, "Standard for the Format of ARPA Internet Text Messages", updating it to reflect current practice and incorporating incremental changes that were specified in other RFCs. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JSON Meta Application Protocol (JMAP)

 This document specifies a protocol for clients to efficiently query, fetch, and modify JSON-based data objects, with support for push notification of changes and fast resynchronisation and for out-of- band binary data upload/download.

 Informative References

 JMAP Data Types

 IANA

 Time Zone Database

 IANA

 PRECIS Framework: Preparation, Enforcement, and Comparison of Internationalized Strings in Application Protocols

 Application protocols using Unicode code points in protocol strings need to properly handle such strings in order to enforce internationalization rules for strings placed in various protocol slots (such as addresses and identifiers) and to perform valid comparison operations (e.g., for purposes of authentication or authorization). This document defines a framework enabling application protocols to perform the preparation, enforcement, and comparison of internationalized strings ("PRECIS") in a way that depends on the properties of Unicode code points and thus is more agile with respect to versions of Unicode. As a result, this framework provides a more sustainable approach to the handling of internationalized strings than the previous framework, known as Stringprep (RFC 3454). This document obsoletes RFC 7564.

 Author's Address

 Fastmail

 PO Box 234, Collins St West
 Melbourne
 VIC
 8007
 Australia

 neilj@fastmailteam.com
 https://www.fastmail.com

