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Abstract
This document discusses the properties, applicability, and operational considerations of Routing
in Fat Trees (RIFT) in different network scenarios with the intention of providing a rough guide
on how RIFT can be deployed to simplify routing operations in Clos topologies and their
variations.
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1. Introduction
This document discusses the properties and applicability of 

 in different deployment scenarios and highlights the operational simplicity of the
technology compared to classical routing solutions. It also documents special considerations
when RIFT is used with or without overlays and/or controllers and how RIFT identifies
miscablings and reroutes around node and link failures.
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2. Terminology
This document uses the terminology defined in . The most frequently used terms and
their definitions from that document are listed here.

Clos / Fat Tree:
This document uses the terms "Clos" and "Fat Tree" interchangeably where it always refers to
a folded spine-and-leaf topology with possibly multiple Points of Delivery (PoDs) and one or
multiple Top of Fabric (ToF) planes. Several modifications such as leaf-2-leaf shortcuts and
multiple level shortcuts are possible and described further in the document. 

Crossbar:
Physical arrangement of ports in a switching matrix without implying any further scheduling
or buffering disciplines. 

Directed Acyclic Graph (DAG):
A finite directed graph with no directed cycles (loops). If links in a Clos are considered as
either being all directed towards the top or bottom, each of such two graphs is a DAG. 

Disaggregation:
The process in which a node decides to advertise more specific prefixes southwards, either
positively to attract the corresponding traffic or negatively to repel it. Disaggregation is
performed to prevent traffic loss and suboptimal routing to the more specific prefixes. 

Leaf:
A node without southbound adjacencies. Level 0 implies a leaf in RIFT, but a leaf does not
have to be level 0. 

LIE:
This is an acronym for "Link Information Element" exchanged on all the system's links
running RIFT to form ThreeWay adjacencies and carry information used to perform RIFT
Zero Touch Provisioning (ZTP) of levels. 

South Reflection:
Often abbreviated just as "reflection", South Reflection defines a mechanism where South
Node TIEs are "reflected" from the level south back up north to allow nodes in the same level
without East-West links to be aware of each other's node Topology Information Elements
(TIEs). 

Spine:
Any nodes north of leaves and south of ToF nodes. Multiple layers of spines in a PoD are
possible. 

TIE:
This is an acronym for "Topology Information Element". TIEs are exchanged between RIFT
nodes to describe parts of a network such as links and address prefixes. A TIE always has a
direction and a type. North TIEs (sometimes abbreviated as N-TIEs) are used when dealing

[RFC9692]
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with TIEs in the northbound representation, and South-TIEs (sometimes abbreviated as S-
TIEs) are used for the southbound equivalent. TIEs have different types, such as node and
prefix TIEs. 

3. Problem Statement of Routing in Modern IP Fabric Fat Tree
Networks

 topologies (commonly called a Fat Tree/network in modern IP fabric considerations
as a similar term for the original definition of the term ) have gained
prominence in today's networking, primarily as a result of the paradigm shift towards a
centralized data-center-based architecture that delivers a majority of computation and storage
services.

Current routing protocols were geared towards a network with an irregular topology with
isotropic properties and a low degree of connectivity. When applied to Fat Tree topologies:

They tend to need extensive configuration or provisioning during initialization and adding
or removing nodes from the fabric. 
For link-state routing protocols, all nodes including spine-and-leaf nodes learn the entire
network topology and routing information, which is actually not needed on the leaf nodes
during normal operation. They flood significant amounts of duplicate link-state information
between spine-and-leaf nodes during topology updates and convergence events, requiring
that additional CPU and link bandwidth be consumed. This may impact the stability and
scalability of the fabric, make the fabric less reactive to failures, and prevent the use of
cheaper hardware at the lower levels (i.e., spine-and-leaf nodes). 

4. Applicability of RIFT to Clos IP Fabrics
Further content of this document assumes that the reader is familiar with the terms and
concepts used in the , , and 

 link-state
protocols.  outlines the requirements of routing in IP fabrics and RIFT protocol
concepts.

4.1. Overview of RIFT
RIFT is a dynamic routing protocol that is tailored for use in Clos, Fat Tree, and other anisotropic
topologies. Therefore, a core property of RIFT is that its operation is sensitive to the structure of
the fabric -- it is anisotropic. RIFT acts as a link-state protocol when "pointing north", advertising
southward routes to northward peers (parents) through flooding and database synchronization.
When "pointing south", RIFT operates hop-by-hop like a distance-vector protocol, typically
advertising a fabric default route towards the ToF, aka superspine, to southward peers (children).

Clos [CLOS]
Fat Tree [FATTREE]

• 

• 

Open Shortest Path First (OSPF) [RFC2328] OSPF for IPv6 [RFC5340]
Intermediate System to Intermediate System (IS-IS) [ISO10589-Second-Edition]

[RFC9692]

RFC 9696 RIFT Applicability Statement April 2025

Wei, et al. Informational Page 5



The fabric default is typically the default route as described in Section 
 of . The ToF nodes may alternatively originate more

specific prefixes (P') southbound instead of the default route. In such a scenario, all addresses
carried within the RIFT domain must be contained within P', and it is possible for a leaf that acts
as gateway to the Internet to advertise the default route instead.

RIFT floods flat link-state information northbound only so that each level obtains the full
topology of the levels that are south of it. That information is never flooded East-West or back
south again, so a top tier node has a full set of prefixes from the Shortest Path First (SPF)
calculation.

In the southbound direction, the protocol operates like a "fully summarizing, unidirectional"
path-vector protocol or, rather, a distance-vector with implicit split horizon. Routing
information, normally just the default route, propagates one hop south and is "re-advertised" by
nodes at next lower level.

A spine node only has information necessary for its level, which is all destinations south of the
node based on SPF calculation, the default route, and potentially disaggregated routes.

RIFT combines the advantages of both link-state and distance-vector protocols:

Fastest possible convergence 
Automatic detection of topology 
Minimal routes/information on Top-of-Rack (ToR) switches, aka leaf nodes 
High degree of ECMP 
Fast decommissioning of nodes 

6.3.8 ("Southbound
Default Route Origination") [RFC9692]

Figure 1: RIFT Overview

         +---------------+       +----------------+
         |      ToF      |       |       ToF      |     LEVEL 2
+        ++------+--+--+-+       ++-+--+----+-----+
|         |      |  |  |          | |  |    |        ^
+         |      |  |  +-------------------------+   |
Distance- |   +-------------------+ |  |    |    |   |
Vector    |   |  |  |               |  |    |    |   +
South     |   |  |  |      +--------+  |    |    |   Link-State
+         |   |  |  |      |           |    |    |   Flooding
|         |   |  +----------------+    |    |    |   North
v         |   |     |      |      |    |    |    |   +
         ++---+-+   +------+    +-+----+   ++----++  |
         |SPINE |   |SPINE |    | SPINE|   | SPINE|  |  LEVEL 1
+        ++----++   ++---+-+    +-+--+-+   ++----++  |
+         |    |     |   |        |  |      |    |   |     ^ N
Distance- |    +-------+ |        |  +--------+  |   |     |   E
Vector    |          | | |        |         | |  |   |  +------>
South     |  +-------+ | |        |  +------+ |  |   |     |
+         |  |         | |        |  |        |  |   |     +
v        ++--++      +-+-++      ++--++      ++--++  +
         |LEAF|      |LEAF|      |LEAF|      |LEAF|     LEVEL 0
         +----+      +----+      +----+      +----+

• 
• 
• 
• 
• 
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Maximum propagation speed with flexible prefixes in an update 

There are two types of link-state databases that are "north representation" North Topology
Information Elements (N-TIEs) and "south representation" South Topology Information Elements
(S-TIEs). The N-TIEs contain a link-state topology description of lower levels, and the S-TIEs
simply carry default and disaggregated routes for the lower levels.

RIFT also eliminates major disadvantages of link-state and distance-vector protocols with the
following:

Reduced and balanced flooding 
Level-constrained automatic neighbor discovery 

To achieve this, RIFT builds on the art of IGPs, such as OSPF, IS-IS, Mobile Ad Hoc Network
(MANET), and Internet of Things (IoT) to provide unique features:

Automatic (positive or negative) route disaggregation of northward routes upon fallen leaves
Recursive operation in the case of negative route disaggregation 
Anisotropic routing that extends a principle seen in the 

 to wide superspines 
Optimal flooding reduction that derives from the concept of a "multipoint relay" (MPR)
found in  and balances the flooding load
over northbound links and nodes 

Additional advantages that are unique to RIFT are listed below. The details of these advantages
can be found in .

True ZTP 
Minimal blast radius on failures 
Can utilize all paths through fabric without looping 
Simple leaf implementation that can scale down to servers 
Key-value store 
Horizontal links used for protection only 

4.2. Applicable Topologies
Albeit RIFT is specified primarily for "proper" Clos or Fat Tree topologies, the protocol natively
supports Points of Delivery (PoD) concepts, which, strictly speaking, are not found in the original
Clos concept.

Further, the specification explains and supports operations of multi-plane Clos variants where
the protocol recommends the use of inter-plane rings at the ToF level to allow the reconciliation
of topology view of different planes to make the Negative Disaggregation viable in case of
failures within a plane. These observations hold not only in case of RIFT but also in the generic
case of dynamic routing on Clos variants with multiple planes and failures in bisectional
bandwidth, especially on the leaves.

• 

• 
• 

• 
• 
• Routing Protocol for Low-Power and

Lossy Networks (RPL) [RFC6550]
• 

Optimized Link State Routing (OLSR) [RFC3626]

RIFT [RFC9692]

• 
• 
• 
• 
• 
• 
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4.2.1. Horizontal Links

RIFT is not limited to pure Clos divided into PoD and multi-planes but supports horizontal (East-
West) links below the ToF level. Those links are used only for last resort northbound forwarding
when a spine loses all its northbound links or cannot compute a default route through them.

A full-mesh connectivity between nodes on the same level can be deployed, which allows North
SPF (N-SPF) to provide for any node losing all its northbound adjacencies (as long as any of the
other nodes in the level are northbound connected) and still participate in northbound
forwarding.

Note that a "ring" of horizontal links at any level below ToF does not provide a "ring-based
protection" scheme since the SPF computation would have to deal with breaking of "loops", an
application for which RIFT is not intended.

4.2.2. Vertical Shortcuts

Through relaxations of the specified adjacency forming rules, RIFT implementations can be
extended to support vertical "shortcuts". The RIFT specification itself does not provide the exact
details since the resulting solution suffers from either a much larger blast radius with increased
flooding volumes or bow tie problems in the case of maximum aggregation routing.

4.2.3. Generalizing to Any Directed Acyclic Graph

RIFT is an anisotropic routing protocol, meaning that it has a sense of direction (northbound,
southbound, and East-West) and operates differently depending on the direction.

Since a DAG provides a sense of north (the direction of the DAG) and south (the reverse), it can
be used to apply RIFT -- an edge in the DAG that has only incoming vertices is a ToF node.

There are a number of caveats though:

The DAG structure must exist before RIFT starts, so there is a need for a companion protocol
to establish the logical DAG structure. 
A generic DAG does not have a sense of East and West. The operation specified for East-West
links and the southbound reflection between nodes are not applicable. Also, ZTP will derive
a sense of depth that will eliminate some links. Variations of ZTP could be derived to meet
specific objectives, e.g., make it so that most routers have at least two parents to reach the
ToF. 
RIFT applies to any Destination-Oriented DAG (DODAG) where there's only one ToF node
and the problem of disaggregation does not exist. In that case, RIFT operates very much like
RPL , but uses link-state information for southbound routes (downwards in RPL's
terms). For an arbitrary DAG with multiple destinations (ToFs), the way disaggregation
happens has to be considered. 
Positive Disaggregation expects that most of the ToF nodes reach most of the leaves, so
disaggregation is the exception as opposed to the rule. When this is no longer true, it makes
sense to turn off disaggregation and route between the ToF nodes over a ring, a full mesh, a

• 

• 

• 

[RFC6550]

• 
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transit network, or a form of area zero. Then again, this operation is similar to RPL
operating as a single DODAG with a virtual root. 
In order to aggregate and disaggregate routes, RIFT requires that all the ToF nodes share the
full knowledge of the prefixes in the fabric. This can be achieved with a ring as suggested by 

, by some preconfiguration, or by using a synchronization with a common
repository where all the active prefixes are registered. 

4.3. Use Cases

4.3.1. Data Center Topologies

4.3.1.1. Data Center Fabrics
RIFT is suited for applying underlay routing in data center (DC) IP fabrics, with the vast majority
of these IP fabrics being Clos architectures (and will be for the foreseeable future). It
significantly simplifies operation and deployment of such fabrics as described in Section 5 for
environments compared to extensive proprietary provisioning and operational solutions.

4.3.1.2. Adaptations to Other Proposed Data Center Topologies

• 

RIFT [RFC9692]

4.2.4. Reachability of Internal Nodes in the Fabric

RIFT does not require that nodes have reachable addresses in the fabric, though it is clearly
desirable for operational purposes. Under normal operating conditions, this can be easily
achieved by injecting the node's loopback address into Prefix North TIEs and Prefix South TIEs
or other implementation-specific mechanisms.

Special considerations arise when a node loses all northbound adjacencies but is not at the top
of the fabric. If a spine node loses all northbound links, the spine node doesn't advertise a
default route. But if the level of the spine node is auto-determined by ZTP, it will "fall down" as
depicted in Figure 8.
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RIFT is not strictly limited to Clos topologies. The protocol only requires a sense of "compass rose
directionality" either achieved through configuration or derivation of levels. So conceptually,
shortcuts between levels could be included. Figure 2 depicts an example of a shortcut between
levels. In this example, suboptimal routing will occur when traffic is sent from L0 to L1 via S0's
default route and back down through A0 or A1. In order to avoid that, only default routes from
A0 or A1 are used. All leaves would be required to install each other's routes.

While various technical and operational challenges may require the use of such modifications,
discussion of those topics is outside the scope of this document.

4.3.2. Metro Networks

The demand for bandwidth is increasing steadily, driven primarily by environments close to
content producers (server farms connection via DC fabrics) but in proximity to content
consumers as well. Consumers are often clustered in metro areas with their own network
architectures that can benefit from simplified, regular Clos structures. Thus, they can also
benefit from RIFT.

4.3.3. Building Cabling

Commercial edifices are often cabled in topologies that are either Clos or its isomorphic
equivalents. The Clos can grow rather high with many levels. That presents a challenge for
classical routing protocols (except BGP  and Private Network-Network Interface (PNNI)

, which is largely phased-out by now) that do not support an arbitrary number of levels,
which RIFT does naturally. Moreover, due to the limited sizes of forwarding tables in network
elements of building cabling, the minimum FIB size RIFT maintains under normal conditions is
cost-effective in terms of hardware and operational costs.

Figure 2: Level Shortcut

.  +-----+        +-----+

.  |     |        |     |

.+-+ S0  |        | S1  |

.| ++---++        ++---++

.|  |   |          |   |

.|  | +------------+   |

.|  | | +------------+ |

.|  | |              | |

.| ++-+--+        +--+-++

.| |     |        |     |

.| | A0  |        | A1  |

.| +-+--++        ++---++

.|   |  |          |   |

.|   |  +------------+ |

.|   | +-----------+ | |

.|   | |             | |

.| +-+-+-+        +--+-++

.+-+     |        |     |

.  | L0  |        | L1  |

.  +-----+        +-----+

[RFC4271]
[PNNI]
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4.3.4. Internal Router Switching Fabrics

It is common in high-speed communications switching and routing devices to use switch fabrics
that are interconnection networks inside the devices connecting the input ports to their output
ports. For example, a crossbar is one of the switch fabric techniques, even though it is not
feasible due to cost, head-of-line blocking, or size trade-offs. Normally, such fabrics are not self-
healing or rely on 1:1 or 1+1 protection schemes, but it is conceivable to use RIFT to operate Clos
fabrics that can deal effectively with interconnections or subsystem failures in such a module.
RIFT is not IP specific and hence any link addressing connecting internal device subnets is
conceivable.

4.3.5. CloudCO

The Cloud Central Office (CloudCO) is a new stage of the telecom Central Office. It takes the
advantage of Software-Defined Networking (SDN) and Network Function Virtualization (NFV) in
conjunction with general purpose hardware to optimize current networks. The following figure
illustrates this architecture at a high level. It describes a single instance or macro-node of
CloudCO that provides a number of value-added services (VASes), a Broadband Access
Abstraction (BAA), and virtualized network services. An Access I/O module faces a CloudCO
access node and the Customer Premises Equipment (CPE) behind it. A Network I/O module is
facing the core network. The two I/O modules are interconnected by a spine-and-leaf fabric 

.[TR-384]
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The Spine-Leaf architecture deployed inside CloudCO meets the network requirements of being
adaptable, agile, scalable, and dynamic.

Figure 3: CloudCO Architecture Example

+---------------------+           +----------------------+
|         Spine       |           |     Spine            |
|         Switch      |           |     Switch           |
+------+---+------+-+-+           +--+-+-+-+-----+-------+
|      |   |      | | |              | | | |     |       |
|      |   |      | | +-------------------------------+  |
|      |   |      | |                | | | |     |    |  |
|      |   |      | +-------------------------+  |    |  |
|      |   |      |                  | | | |  |  |    |  |
|      |   +----------------------+  | | | |  |  |    |  |
|      |          |               |  | | | |  |  |    |  |
|  +---------------------------------+ | | |  |  |    |  |
|  |   |          |               |    | | |  |  |    |  |
|  |   |   +-----------------------------+ |  |  |    |  |
|  |   |   |      |               |    |   |  |  |    |  |
|  |   |   |      |   +--------------------+  |  |    |  |
|  |   |   |      |   |           |    |      |  |    |  |
+--+ +-+---+--+ +-+---+--+     +--+----+--+ +-+--+--+ +--+
|L | | Leaf   | | Leaf   |     |  Leaf    | | Leaf  | |L |
|S | | Switch | | Switch |     |  Switch  | | Switch| |S |
++-+ +-+-+-+--+ +-+-+-+--+     +--+-+--+--+ ++-+--+-+ +-++
 |     | | |      | | |           | |  |     | |  |     |
 |   +-+-+-+--+ +-+-+-+--+     +--+-+--+--+ ++-+--+-+   |
 |   |Compute | |Compute |     | Compute  | |Compute|   |
 |   |Node    | |Node    |     | Node     | |Node   |   |
 |   +--------+ +--------+     +----------+ +-------+   |
 |   || VAS5 || || vDHCP||     || vRouter|| ||VAS1 ||   |
 |   |--------| |--------|     |----------| |-------|   |
 |   |--------| |--------|     |----------| |-------|   |
 |   || VAS6 || || VAS3 ||     || v802.1x|| ||VAS2 ||   |
 |   |--------| |--------|     |----------| |-------|   |
 |   |--------| |--------|     |----------| |-------|   |
 |   || VAS7 || || VAS4 ||     ||  vIGMP || ||BAA  ||   |
 |   |--------| |--------|     |----------| |-------|   |
 |   +--------+ +--------+     +----------+ +-------+   |
 |                                                      |
++-----------+                                +---------++
|Network I/O |                                |Access I/O|
+------------+                                +----------+

5. Operational Considerations
RIFT presents the features for organizations building and operating IP fabrics to simplify the
operation and deployments while achieving many desirable properties of a dynamic routing
protocol on such a substrate:

RIFT only floods routing information to the devices that need it. • 
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RIFT allows for ZTP within the protocol. In its most extreme version, RIFT does not rely on
any specific addressing and can operate using  only
for IP fabric. 
RIFT has provisions to detect common IP fabric miscabling scenarios. 
RIFT automatically negotiates Bidirectional Forwarding Detection (BFD) per link. This allows
for IP and  to replace Link Aggregation Groups (LAGs) that hide
bandwidth imbalances in case of constituent failures. Further automatic link validation
techniques similar to those in  could be supported as well. 
RIFT inherently solves many problems associated with the use of classical routing topologies
with dense meshes and high degrees of ECMP by including automatic bandwidth balancing,
flood reduction, and automatic disaggregation on failures while providing maximum
aggregation of prefixes in default scenarios. ECMP in RIFT eliminates the need for more
Loop-Free Alternate (LFA) procedures. 
RIFT reduces FIB size towards the bottom of the IP fabric where most nodes reside. This
allows for cheaper hardware on the edges and introduction of modern IP fabric
architectures that encompass server multihoming and other mechanisms. 
RIFT provides valley-free routing that is loop free. A valley-free path allows for reversal of
direction at most once from a packet heading northbound to southbound while permitting
traversal of horizontal links in the northbound phase. This allows for the use of any such
valley-free path in bisectional fabric bandwidth between two destinations irrespective of
their metrics that can be used to balance load on the fabric in different ways. Valley-free
routing eliminates the need for any specific micro-loop avoidance procedures for RIFT. 
RIFT includes a key-value distribution mechanism that allows for future applications such
as automatic provisioning of basic overlay services or automatic key rollovers over whole
fabrics. 
RIFT is designed for minimum delay in case of prefix mobility on the fabric. In conjunction
with , RIFT can differentiate anycast advertisements from mobility events and
retain only the most recent advertisement in the latter case. 
Many further operational and design points collected over many years of routing protocol
deployments have been incorporated in RIFT such as fast flooding rates, protection of
information lifetimes, and operationally recognizable remote ends of links and node names. 

5.1. South Reflection
South reflection is a mechanism where South Node TIEs are "reflected" back up north to allow
nodes in the same level without East-West links to "see" each other.

For example, in Figure 4, Spine111\Spine112\Spine121\Spine122 reflects Node S-TIEs from ToF21
to ToF22 separately. Respectively, Spine111\Spine112\Spine121\Spine122 reflects Node S-TIEs
from ToF22 to ToF21 separately, so ToF22 and ToF21 see each other's node information as level 2
nodes.

In an equivalent fashion, as the result of the south reflection between Spine121-Leaf121-
Spine122 and Spine121-Leaf122-Spine122, Spine121 and Spine 122 know each other at level 1.

• 
IPv6 Neighbor Discovery (ND) [RFC4861]

• 
• 

micro-BFD [RFC7130]

[RFC5357]
• 

• 

• 

• 

• 
[RFC8505]

• 
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5.2. Suboptimal Routing on Link Failures

As shown in Figure 4, as the result of the south reflection, Spine121 and Spine 122 know each
other via Leaf121 or Leaf 122 at level 1.

Without disaggregation mechanisms, the packet from leaf121 to prefix122 will probably go up
through linkSL5 to linkTS3 when linkSL6 fails. Then, the packet will go down through linkTS4 to
linkSL8 to Leaf122 or go up through linkSL5 to linkTS6, then go down through linkTS8 and
linkSL8 to Leaf122 based on the pure default route. This is the case of suboptimal routing or bow
tying.

With disaggregation mechanisms, Spine122 will detect the failure according to the reflected node
S-TIE from Spine121 when linkSL6 fails. Based on the disaggregation algorithm provided by
RIFT, Spine122 will explicitly advertise prefix122 in Disaggregated Prefix S-TIE
PrefixTIEElement(prefix122, cost 1). The packet from leaf121 to prefix122 will only be sent to
linkSL7 following a longest-prefix match to prefix 122 directly, then it will go down through
linkSL8 to Leaf122.

5.3. Black-Holing on Link Failures

Figure 4: Suboptimal Routing Upon Link Failure Use Case

              +--------+          +--------+
              | ToF21  |          |  ToF22 |                LEVEL 2
              ++--+-+-++          ++-+--+-++
               |  | | |            | |  | +
               |  | | |            | |  | linkTS8
  +------------+  | +-+linkTS3+-+  | |  | +-------------+
  |               |   |         |  | |  +               |
  |    +---------------------------+ |  linkTS7         |
  |    |          |   |         +    +  +               |
  |    |          |   +-------+linkTS4+------------+    |
  |    |          |             +    +  |          |    |
  |    |          |    +-------------+--+          |    |
  |    |          |    |        |  linkTS6         |    |
+-+----+-+      +-+----+-+     ++--------+       +-+----+-+
|Spine111|      |Spine112|     |Spine121 |       |Spine122| LEVEL 1
+-+---+--+      +-+----+-+     +-+---+---+       +-+----+-+
  |   |           |    |         |   |             |    |
  |   +-------------+  |         +   ++XX+linkSL6+---+  +
  |               | |  |      linkSL5              | |  linkSL8
  |   +-----------+ |  |         +   +---+linkSL7+-+ |  +
  |   |             |  |         |   |               |  |
+-+---+-+        +--+--+-+     +-+---+-+          +--+--+-+
|Leaf111|        |Leaf112|     |Leaf121|          |Leaf122| LEVEL 0
+-+-----+        +-+-----+     +-----+-+          +-+-----+
  +                +                 +              +
Prefix111        Prefix112     Prefix121          Prefix122
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This scenario illustrates a case where double link failure occurs and black-holing can happen.

Without disaggregation mechanisms, the packet from leaf111 to prefix122 would suffer 50%
black-holing based on pure default route when linkTS3 and linkTS4 both fail. The packet is
supposed to go up through linkSL1 to linkTS1 and then go down through linkTS3 or linkTS4 will
be dropped. The packet is supposed to go up through linkSL3 to linkTS2, then go down through
linkTS3 or linkTS4 will be dropped as well. This is the case of black-holing.

With disaggregation mechanisms, ToF22 will detect the failure according to the reflected node S-
TIE of ToF21 from Spine111\Spine112 when linkTS3 and linkTS4 both fail. Based on the
disaggregation algorithm provided by RIFT, ToF22 will explicitly originate an S-TIE with prefix
121 and prefix 122 that is flooded to spines 111, 112, 121, and 122.

The packet from leaf111 to prefix122 will not be routed to linkTS1 or linkTS2. The packet from
leaf111 to prefix122 will only be routed to linkTS5 or linkTS7 following a longest-prefix match to
prefix122.

Figure 5: Black-Holing Upon Link Failure Use Case

                +--------+          +--------+
                | ToF 21 |          | ToF 22 |                LEVEL 2
                ++-+--+-++          ++-+--+-++
                 | |  | |            | |  | +
                 | |  | |            | |  | linkTS8
  +--------------+ |  +-+linkTS3+X+  | |  | +--------------+
  linkTS1          |    |         |  | |  +                |
  +    +-----------------------------+ |  linkTS7          |
  |    |           +    |         +    +  +                |
  |    |      linkTS2   +-------+linkTS4+X+----------+     |
  |    +           +              +    +  |          |     |
  |   linkTS5      +-+    +------------+--+          |     |
  |    +             |    |       |  linkTS6         |     |
+-+----+-+         +-+----+-+    ++-------+        +-+-----++
|Spine111|         |Spine112|    |Spine121|        |Spine122| LEVEL 1
+-+---+--+         ++----+--+    +-+---+--+        +-+----+-+
  |   |             |    |         |   |             |    |
  +   +---------------+  |         +   +---+linkSL6+---+  +
  linkSL1           | |  |      linkSL5              | |  linkSL8
  +   +--+linkSL3+--+ |  |         +   +---+linkSL7+-+ |  +
  |   |               |  |         |   |               |  |
+-+---+-+          +--+--+-+     +-+---+-+          +--+--+-+
|Leaf111|          |Leaf112|     |Leaf121|          |Leaf122| LEVEL 0
+-+-----+          +-+-----+     +-----+-+          +-----+-+
  +                  +                 +                  +
Prefix111          Prefix112     Prefix121          Prefix122
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5.4. Zero Touch Provisioning (ZTP)
RIFT is designed to require a very minimal configuration to simplify its operation and avoid
human errors; based on that minimal information, ZTP auto configures the key operational
parameters of all the RIFT nodes, including the System ID of the node that must be unique in the
RIFT network and the level of the node in the Fat Tree, which determines which peers are
northward "parents" and which are southward "children".

ZTP is always on, but its decisions can be overridden when a network administrator prefers to
impose its own configuration. In that case, it is the responsibility of the administrator to ensure
that the configured parameters are correct, i.e., ensure that the System ID of each node is unique
and that the administratively set levels truly reflect the relative position of the nodes in the
fabric. It is recommended to let ZTP configure the network, and when ZTP does not configure the
network, it is recommended to configure the level of all the nodes to avoid an undesirable
interaction between ZTP and the manual configuration.

ZTP requires that the administrator points out the ToF nodes to set the baseline from which the
fabric topology is derived. The ToF nodes are configured with the TOP_OF_FABRIC flag, which are
initial 'seeds' needed for other ZTP nodes to derive their level in the topology. ZTP computes the
level of each node based on the Highest Available Level (HAL) of the potential parent closest to
that baseline, which represents the superspine. In a fashion, RIFT can be seen as a distance-
vector protocol that computes a set of feasible successors towards the superspine and
autoconfigures the rest of the topology.

The autoconfiguration mechanism computes a global maximum of levels by diffusion. The
derivation of the level of each node happens then based on LIEs received from its neighbors,
whereas each node (with possible exceptions of configured leaves) tries to attach at the highest
possible point in the fabric. This guarantees that even if the diffusion front reaches a node from
"below" faster than from "above", it will greedily abandon already negotiated levels derived
from nodes topologically below it and properly peer with nodes above.

The achieved equilibrium can be disturbed massively by all nodes with the highest level either
leaving or entering the domain (with some finer distinctions not explained further). It is
therefore recommended that each node is multihomed towards nodes with respective HAL
offerings. Fortunately, this is the natural state of things for the topology variants considered in
RIFT.

A RIFT node may also be configured to confine it to the leaf role with the LEAF_ONLY flag. A leaf
node can also be configured to support leaf-2-leaf procedures with the LEAF_2_LEAF flag. In both
cases, the node cannot be TOP_OF_FABRIC and its level cannot be configured. RIFT will fully
determine the node's level after it is attached to the topology and ensure that the node is at the
"bottom of the hierarchy" (southernmost).

5.5. Miscabling

5.5.1. Miscabling Examples
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Figure 6 shows a single-plane miscabling example. It's a perfect Fat Tree fabric except for link-M
connecting Leaf112 to ToF22.

The RIFT control protocol can discover the physical links automatically and is able to detect
cabling that violates Fat Tree topology constraints. It reacts accordingly to such miscabling
attempts, preventing adjacencies between nodes from being formed and traffic from being
forwarded on those miscabled links at a minimum. In such scenario, Leaf112 will use link-M to
derive its level (unless it is leaf) and can report links to Spine111 and Spine112 as miscabled
unless the implementations allow horizontal links.

Figure 7 shows a multi-plane miscabling example. Since Leaf112 and Spine121 belong to two
different PoDs, the adjacency between Leaf112 and Spine121 cannot be formed. Link-W would
be detected and prevented.

Figure 6: A Single-Plane Miscabling Example

  +----------------+              +-----------------+
  |     ToF21      |       +------+      ToF22      |   LEVEL 2
  +-------+----+---+       |      +----+---+--------+
  |       |    |   |       |      |    |   |        |
  |       |    |   +----------------------------+   |
  |   +---------------------------+    |   |    |   |
  |   |   |    |           |           |   |    |   |
  |   |   |    |   +-----------------------+    |   |
  |   |   +------------------------+   |        |   |
  |   |        |   |       |       |   |        |   |
+-+---+--+   +-+---+--+    |    +--+---+-+  +--+---+-+
|Spine111|   |Spine112|    |    |Spine121|  |Spine122| LEVEL 1
+-+---+--+   ++----+--+    |    +--+---+-+  +-+----+-+
  |   |       |    |       |       |   |       |    |
  |   +---------+  |     link-M    |   +---------+  |
  |           | |  |       |       |           | |  |
  |   +-------+ |  |       |       |   +-------+ |  |
  |   |         |  |       |       |   |         |  |
+-+---+-+    +--+--+-+     |     +-+---+-+    +--+--+-+
|Leaf111|    |Leaf112+-----+     |Leaf121|    |Leaf122| LEVEL 0
+-------+    +-------+           +-------+    +-------+
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RIFT provides an optional level determination procedure in its ZTP mode. Nodes in the fabric
without their level configured determine it automatically. However, this can have possible
counter-intuitive consequences. One extreme failure scenario is depicted in Figure 8, and it
shows that if all northbound links of Spine11 fail at the same time, Spine11 negotiates a lower
level than Leaf11 and Leaf12.

To prevent such scenario where leaves are expected to act as switches, the LEAF_ONLY flag can
be set for Leaf111 and Leaf112. Since level -1 is invalid, Spine11 would not derive a valid level
from the topology in Figure 8. It will be isolated from the whole fabric, and it would be up to the
leaves to declare the links towards such spine as miscabled.

Figure 7: A Multiple Plane Miscabling Example

 +-------+    +-------+           +-------+    +-------+
 |ToF  A1|    |ToF  A2|           |ToF  B1|    |ToF  B2| LEVEL 2
 +-------+    +-------+           +-------+    +-------+
 |       |    |       |           |       |    |       |
 |       |    |       +-----------------+ |    |       |
 |       +--------------------------+   | |    |       |
 |     +------+                   | |   | +------+     |
 |     |        +-----------------+ |   |      | |     |
 |     |        |   +--------------------------+ |     |
 |  A  |        | B |               | A |        |  B  |
 +-----+--+   +-+---+--+         +--+---+-+   +--+-----+
 |Spine111|   |Spine112|     +---+Spine121|   |Spine122| LEVEL 1
 +-+---+--+   ++----+--+     |   +--+---+-+   +-+----+-+
   |   |       |    |        |      |   |       |    |
   |   +---------+  |        |      |   +---------+  |
   |           | |  |      link-W   |           | |  |
   |   +-------+ |  |        |      |   +-------+ |  |
   |   |         |  |        |      |   |         |  |
 +-+---+-+    +--+--+-+      |    +-+---+-+    +--+--+-+
 |Leaf111|    |Leaf112+------+    |Leaf121|    |Leaf122| LEVEL 0
 +-------+    +-------+           +-------+    +-------+
+--------PoD#1----------+       +---------PoD#2---------+
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5.5.2. Miscabling Considerations

There are scenarios where operators may want to leverage ZTP and implement additional
cabling constraints that go beyond the previously described topology violations. Enforcing
cabling down to specific level, node, and port combinations might make it simpler for onsite
staff to perform troubleshooting activities or replace optical transceivers and/or cabling as the
physical layout will be consistent across the fabric. This is especially true for densely connected
fabrics where it is difficult to physically manipulate those components. It is also easy to imagine
other models, such as one where the strict port requirement is relaxed.

Figure 9 illustrates an example where the first port on Leaf1 must connect to the first port on
Spine1, the second port on Leaf1 must connect to the first port on Spine2, and so on. Consider a
case where (Leaf1, Port1) and (Leaf1, Port2) were reversed. RIFT would not consider this to be
miscabled by default; however, an operator might want to.

Figure 8: Fallen Spine

+-------+    +-------+        +-------+    +-------+
|ToF  A1|    |ToF  A2|        |ToF  A1|    |ToF  A2|
+-------+    +-------+        +-------+    +-------+
|       |    |       |                |            |
|    +-------+       |                |            |
+    +  |            |  ====>         |            |
X    X  +------+     |                +------+     |
+    +         |     |                       |     |
+----+--+    +-+-----+                     +-+-----+
|Spine11|    |Spine12|                     |Spine12|
+-+---+-+    ++----+-+                     ++----+-+
  |   |       |    |                        |    |
  |   +---------+  |                        |    |
  |   +-------+ |  |                +-------+    |
  |   |         |  |                |            |
+-+---+-+    +--+--+-+        +-----+-+    +-----+-+
|Leaf111|    |Leaf112|        |Leaf111|    |Leaf112|
+-------+    +-------+        +-+-----+    +-+-----+
                                |            |
                                |   +--------+
                                |   |
                              +-+---+-+
                              |Spine11|
                              +-------+
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RIFT allows implementations to provide programmable plug-ins that can adjust ZTP operation
or capture information during computation. While defining this is outside the scope of this
document, such a mechanism could be used to extend the miscabling functionality.

For other protocols to achieve this, it would require additional operational overhead. Consider a
fabric that is using unnumbered OSPF links; it is still very likely that a miscabled link will form
an adjacency. Each attempt to move cables to the correct port may result in the need for
additional troubleshooting as other links will become miscabled in the process. Without
automation to explicitly tell the operator which ports need to be moved where, the process
becomes manually intensive and error-prone very quickly. If the problem goes unnoticed, it will
result in suboptimal performance in the fabric.

5.6. Multicast and Broadcast Implementations
RIFT supports both multicast and broadcast implementations. While a multicast implementation
is preferred, there might cases where a broadcast implementation is optimal or even required.
For example, operating systems on IoT devices and embedded devices may not have the
required multicast support. Another example is containers, which do support multicast in some
cases but tend to be very CPU-inefficient and difficult to tune.

5.7. Positive vs. Negative Disaggregation
Disaggregation is the procedure whereby  advertises a more specific route
southwards as an exception to the aggregated fabric-default north. Disaggregation is useful when
a prefix within the aggregation is reachable via some of the parents but not the others at the
same level of the fabric. It is mandatory when the level is the ToF since a ToF node that cannot
reach a prefix becomes a black hole for that prefix. The hard problem is to know which prefixes
are reachable by whom.

Figure 9: Additional Cabling Constraint Example

           +--------+    +--------+    +--------+    +--------+
           | Spine1 |    | Spine2 |    | Spine3 |    | Spine4 |
           +-1------+    +-1------+    +-1------+    +-1------+
             +             +             +             +
             |  +----------+             |             |
             |  |                        |             |
             |  |  +---------------------+             |
             |  |  |                                   |
             |  |  |  +--------------------------------+
             |  |  |  |
             |  |  |  |
             |  |  |  |
             |  |  |  |
             +  +  +  +
           +-1--2--3--4--+
           |   Leaf1     |   ......
           +-------------+

RIFT [RFC9692]
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In the general case,  solves that problem by interconnecting the ToF nodes so that
the ToF nodes can exchange the full list of prefixes that exist in the fabric and figure out when a
ToF node lacks reachability to some prefixes. This requires additional ports at the ToF, typically
two ports per ToF node to form a ToF-spanning ring.  also defines the southbound
reflection procedure that enables a parent to explore the direct connectivity of its peers, meaning
their own parents and children; based on the advertisements received from the shared parents
and children, it may enable the parent to infer the prefixes its peers can reach.

When a parent lacks reachability to a prefix, it may disaggregate the prefix negatively, i.e.,
advertise that this parent can be used to reach any prefix in the aggregation except that one. The
Negative Disaggregation signaling is simple and functions transitively from ToF to Top-of-Pod
(ToP) and then from ToP to Leaf. However, it is hard for a parent to figure out which prefix it
needs to disaggregate because it does not know what it does not know; it results that the use of a
spanning ring at the ToF is required to operate the Negative Disaggregation. Also, though it is
only an implementation problem, the programming of the FIB is complex compared to normal
routes and may incur recursions.

The more classical alternative is, for the parents that can reach a prefix that peers at the same
level cannot, to advertise a more specific route to that prefix. This leverages the normal longest
prefix match in the FIB and does not require a special implementation. As opposed to the
Negative Disaggregation, the Positive Disaggregation is difficult and inefficient to operate
transitively.

Transitivity is not needed by a grandchild if all its parents received the Positive Disaggregation,
meaning that they shall all avoid the black hole; when that is the case, they collectively build a
ceiling that protects the grandchild. Until then, a parent that received the Positive
Disaggregation may believe that some peers are lacking the reachability and re-advertise too
early or defer and maintain a black hole situation longer than necessary.

In a non-partitioned fabric, all the ToF nodes see one another through the reflection and can
figure out if one is missing a child. In that case, it is possible to compute the prefixes that the
peer cannot reach and disaggregate positively without a ToF-spanning ring. The ToF nodes can
also ascertain that the ToP nodes are each connected to at least a ToF node that can still reach
the prefix, meaning that the transitive operation is not required.

The bottom line is that in a fabric that is partitioned (e.g., using multiple planes) and/or where
the ToP nodes are not guaranteed to always form a ceiling for their children, it is mandatory to
use Negative Disaggregation. On the other hand, in a highly symmetrical and fully connected
fabric (e.g., a canonical Clos Network), the Positive Disaggregation methods save the complexity
and cost associated to the ToF-spanning ring.

Note that in the case of Positive Disaggregation, the first ToF nodes that announce a more-
specific route attract all the traffic for that route and may suffer from a transient incast. A ToP
node that defers injecting the longer prefix in the FIB, in order to receive more advertisements
and spread the packets better, also keeps on sending a portion of the traffic to the black hole in

RIFT [RFC9692]

RIFT [RFC9692]
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the meantime. In the case of Negative Disaggregation, the last ToF nodes that inject the route
may also incur an incast issue; this problem would occur if a prefix that becomes totally
unreachable is disaggregated.

5.8. Mobile Edge and Anycast
When a physical or a virtual node changes its point of attachment in the fabric from a previous-
leaf to a next-leaf, new routes must be installed that supersede the old ones. Since the flooding
flows northwards, the nodes (if any) between the previous-leaf and the common parent are not
immediately aware that the path via the previous-leaf is obsolete and a stale route may exist for
a while. The common parent needs to select the freshest route advertisement in order to install
the correct route via the next-leaf. This requires that the fabric determines the sequence of the
movements of the mobile node.

On the one hand, a classical sequence counter provides a total order for a while, but it will
eventually wrap. On the other hand, a timestamp provides a permanent order, but it may miss a
movement that happens too quickly vs. the granularity of the timing information. It is not
envisioned that an average fabric supports the  in the
short term nor that the precision available with the  (in the
order of 100 to 200 ms) may not be necessarily enough to cover, e.g., the fast mobility of a Virtual
Machine (VM).

Section  of  specifies a hybrid method that combines a sequence
counter from the mobile node and a timestamp from the network taken at the leaf when the
route is injected. If the timestamps of the concurrent advertisements are comparable (i.e., more
distant than the precision of the timing protocol), then the timestamp alone is used to determine
the relative freshness of the routes. Otherwise, the sequence counter from the mobile node is
used if it is available. One caveat is that the sequence counter must not wrap within the
precision of the timing protocol. Another is that the mobile node may not even provide a
sequence counter; in which case, the mobility itself must be slower than the precision of the
timing.

Mobility must not be confused with anycast. In both cases, the same address is injected in RIFT
at different leaves. In the case of mobility, only the freshest route must be conserved since the
mobile node changes its point of attachment for a leaf to the next. In the case of anycast, the
node may either be multihomed (attached to multiple leaves in parallel) or reachable beyond the
fabric via multiple routes that are redistributed to different leaves. Either way, the multiple
routes are equally valid and should be conserved in the case of anycast. Without further
information from the redistributed routing protocol, it is impossible to sort out a movement
from a redistribution that happens asynchronously on different leaves.  expects
that anycast addresses are advertised within the timing precision, which is typically the case
with a low-precision timing and a multihomed node. Beyond that time interval, RIFT interprets
the lag as a mobility and only the freshest route is retained.

When using , RIFT suggests leveraging 6LoWPAN ND  as the IPv6 ND
interaction between the mobile node and the leaf. This not only provides a sequence counter but
also a lifetime and a security token that may be used to protect the ownership of an address 

Precision Time Protocol [IEEEstd1588]
Network Time Protocol [RFC5905]

6.8.4 ("Mobility") [RFC9692]

RIFT [RFC9692]

IPv6 [RFC8200] [RFC8505]
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. When using 6LoWPAN ND , the parallel registration of an anycast address
to multiple leaves is done with the same sequence counter, whereas the sequence counter is
incremented when the point of attachment changes. This way, it is possible to differentiate a
mobile node from a multihomed node, even when the mobility happens within the timing
precision. It is also possible for a mobile node to be multihomed as well, e.g., to change only one
of its points of attachment.

5.10. In-Band Reachability of Nodes
RIFT doesn't precondition that nodes of the fabric have reachable addresses, but operational
reasons to reach the internal nodes may exist. Figure 11 shows an example that the network
management station (NMS) attaches to Leaf1.

[RFC8928] [RFC8505]

5.9. IPv4 over IPv6
RIFT allows advertising IPv4 prefixes over an IPv6 RIFT network. An IPv6 Address Family (AF)
configures via the usual ND mechanisms and then V4 can use V6 next-hops analogous to 

. It is expected that the whole fabric supports the same type of forwarding of AFs on
all the links. RIFT provides an indication whether a node is capable of V4-forwarding and
implementations are possible where different routing tables are computed per AF as long as the
computation remains loop-free.

[RFC8950]

Figure 10: IPv4 over IPv6

                            +-----+        +-----+
                 +---+---+  | ToF |        | ToF |
                     ^      +--+--+        +-----+
                     |      |  |           |     |
                     |      |  +-------------+   |
                     |      |     +--------+ |   |
                     +      |     |          |   |
                    V6      +-----+        +-+---+
                 Forwarding |Spine|        |Spine|
                     +      +--+--+        +-----+
                     |      |  |           |     |
                     |      |  +-------------+   |
                     |      |     +--------+ |   |
                     |      |     |          |   |
                     v      +-----+        +-+---+
                 +---+---+  |Leaf |        | Leaf|
                            +--+--+        +--+--+
                               |              |
                  IPv4 prefixes|              |IPv4 prefixes
                               |              |
                           +---+----+     +---+----+
                           |   V4   |     |   V4   |
                           | subnet |     | subnet |
                           +--------+     +--------+
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If the NMS wants to access Leaf2, it simply works because the loopback address of Leaf2 is
flooded in its Prefix North TIE.

If the NMS wants to access Spine2, it also works because a spine node always advertises its
loopback address in the Prefix North TIE. The NMS may reach Spine2 from Leaf1-Spine2 or
Leaf1-Spine1-ToF1/ToF2-Spine2.

If the NMS wants to access ToF2, ToF2's loopback address needs to be injected into its Prefix
South TIE. This TIE must be seen by all nodes at the level below -- the spine nodes in Figure 11 --
that must form a ceiling for all the traffic coming from below (south). Otherwise, the traffic from
the NMS may follow the default route to the wrong ToF Node, e.g., ToF1.

In the case of failure between ToF2 and spine nodes, ToF2's loopback address must be
disaggregated recursively all the way to the leaves. In a partitioned ToF, even with recursive
disaggregation, a ToF node is only reachable within its plane.

A possible alternative to recursive disaggregation is to use a ring that interconnects the ToF
nodes to transmit packets between them for their loopback addresses only. The idea is that this
is mostly control traffic and should not alter the load-balancing properties of the fabric.

5.11. Dual-Homing Servers
Each RIFT node may operate in ZTP mode. It has no configuration (unless it is a ToF node at the
top of the topology or if it must operate in the topology as a leaf and/or support leaf-2-leaf
procedures), and it will fully configure itself after being attached to the topology.

Figure 11: In-Band Reachability of Nodes

+-------+      +-------+
| ToF1  |      | ToF2  |
++---- ++      ++-----++
 |     |        |     |
 |     +----------+   |
 |     +--------+ |   |
 |     |          |   |
++-----++      +--+---++
|Spine1 |      |Spine2 |
++-----++      ++-----++
 |     |        |     |
 |     +----------+   |
 |     +--------+ |   |
 |     |          |   |
++-----++      +--+---++
| Leaf1 |      | Leaf2 |
+---+---+      +-------+
    |
    |NMS
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Sometimes people may prefer to disaggregate from ToR nodes to servers from startup, i.e., the
servers have multiple routes in the FIB from startup other than default routes to avoid
breakages at the rack level. Full disaggregation of the fabric could be achieved by configuration
supported by RIFT.

5.12. Fabric with a Controller
There are many different ways to deploy the controller. One possibility is attaching a controller
to the RIFT domain from ToF and another possibility is attaching a controller from the leaf.

Figure 12: Dual-Homing Servers

    +---+         +---+         +---+
    |ToF|         |ToF|         |ToF|      ToF
    +---+         +---+         +---+
    |   |         |   |         |   |
    |   +----------------+      |   |
    |          +----------------+   |
    |          |  |   |  |          |
    +----------+--+   +--+----------+
    |     ToR1    |   |     ToR2    |      Spine
    +--+------+---+   +--+-------+--+
+---+  |      |   |   |  |       |  +---+
|   +-----------------+  |       |      |
|   |  |   +-------------+       |      |
|   |  |   |  |   +-----------------+   |
|   |  |   |  +--------------+   |  |   |
|   |  |   |                 |   |  |   |
+---+  +---+                 +---+  +---+
|   |  |   |                 |   |  |   |
+---+  +---+  .............  +---+  +---+
SV(1) SV(2)                 SV(n-1) SV(n)  Leaf
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5.12.1. Controller Attached to ToFs

If a controller is attaching to the RIFT domain from ToF, it usually uses dual-homing connections.
The loopback prefix of the controller should be advertised down by the ToF and spine to the
leaves. If the controller loses the link to ToF, make sure the ToF withdraws the prefix of the
controller.

5.12.2. Controller Attached to Leaf

If the controller is attaching from a leaf to the fabric, no special provisions are needed.

5.13. Internet Connectivity Within Underlay
If global addressing is running without overlay, an external default route needs to be advertised
through the RIFT fabric to achieve internet connectivity. For the purpose of forwarding of the
entire RIFT fabric, an internal fabric prefix needs to be advertised in the Prefix South TIE by ToF
and spine nodes.

5.13.1. Internet Default on the Leaf

In the case that the internet gateway is a leaf, the leaf node as the internet gateway needs to
advertise a default route in its Prefix North TIE.

5.13.2. Internet Default on the ToFs

In the case that the internet gateway is a ToF, the ToF and spine nodes need to advertise a default
route in the Prefix South TIE.

Figure 13: Fabric with a Controller

                 +------------+
                 | Controller |
                 ++----------++
                  |          |
                  |          |
             +----++        ++----+
 -------     | ToF |        | ToF |
    |        +--+--+        +-----+
    |        |  |           |     |
    |        |  +-------------+   |
    |        |     +--------+ |   |
    |        |     |          |   |
             +-----+        +-+---+
RIFT domain  |Spine|        |Spine|
             +--+--+        +-----+
    |        |  |           |     |
    |        |  +-------------+   |
    |        |     +--------+ |   |
    |        |     |          |   |
    |        +-----+        +-+---+
 -------     |Leaf |        | Leaf|
             +-----+        +-----+
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5.14. Subnet Mismatch and Address Families

LIEs are exchanged over all links running RIFT to perform Link (Neighbor) Discovery. A node
must NOT originate LIEs on an AF if it does not process received LIEs on that family. LIEs on the
same link are considered part of the same negotiation independent from the AF they arrive on.
An implementation must be ready to accept TIEs on all addresses it used as the source of LIE
frames.

As shown in Figure 14, an adjacency of nodes A and B may form without further checks, but the
forwarding between nodes A and B may fail because subnet X mismatches with subnet Y.

To prevent this, a RIFT implementation should check for subnet mismatch in a way that is
similar to how IS-IS does. This can lead to scenarios where an adjacency, despite the exchange of
LIEs in both AFs, may end up having an adjacency in a single AF only. This is especially a
consideration in scenarios relating to Section 5.9.

5.15. Anycast Considerations

Figure 14: Subnet Mismatch

+--------+                     +--------+
|        |  LIE          LIE   |        |
|   A    | +---->       <----+ |   B    |
|        +---------------------+        |
+--------+                     +--------+
   X/24                           Y/24
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If the traffic comes from ToF to Leaf111 or Leaf121, which has anycast prefix PrefixA, RIFT can
deal with this case well. However, if the traffic comes from Leaf122, it arrives to Spine21 or
Spine22 at LEVEL 1. Additionally, Spine21 or Spine22 doesn't know another PrefixA attaching
Leaf111, so it will always get to Leaf121 and never Leaf111. If the intention is that the traffic
should be offloaded to Leaf111, then use the policy-guided prefixes defined in .

5.16. IoT Applicability
The design of RIFT inherits the anisotropic design of a default route upwards (northwards) from
RPL . It also inherits the capability to inject external host routes at the Leaf level using
Wireless ND (WiND)  between a RIFT-agnostic host and a RIFT router. Both
the RPL and the RIFT protocols are meant for a large scale, and WiND enables device mobility at
the edge the same way in both cases.

The main difference between RIFT and RPL is that there's a single root with RPL, whereas RIFT
has many ToF nodes. This adds huge capabilities for leaf-2-leaf ECMP paths but additional
complexity with the need to disaggregate. Also, RIFT uses link-state flooding northwards and is
not designed for low-power operation.

Still, nothing prevents that the IP devices connected at the Leaf are IoT devices, which typically
expose their address using WiND -- this is an upgrade from 6LoWPAN ND .

Figure 15: Anycast

                        + traffic
                        |
                        v
                 +------+------+
                 |     ToF     |
                 +---+-----+---+
                 |   |     |   |
    +------------+   |     |   +------------+
    |                |     |                |
+---+---+    +-------+     +-------+    +---+---+
|       |    |       |     |       |    |       |
|Spine11|    |Spine12|     |Spine21|    |Spine22| LEVEL 1
+-+---+-+    ++----+-+     +-+---+-+    ++----+-+
  |   |       |    |         |   |       |    |
  |   +---------+  |         |   +---------+  |
  |   +-------+ |  |         |   +-------+ |  |
  |   |         |  |         |   |         |  |
+-+---+-+    +--+--+-+     +-+---+-+    +--+--+-+
|       |    |       |     |       |    |       |
|Leaf111|    |Leaf112|     |Leaf121|    |Leaf122| LEVEL 0
+-+-----+    ++------+     +-----+-+    +-----+-+
  +           +                  +      ^     +
PrefixA      PrefixB         PrefixA    | PrefixC
                                        |
                                        + traffic

RIFT [RFC9692]

[RFC6550]
[RFC8505] [RFC8928]

[RFC6775]
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A network that serves high speed / high power IoT devices should typically provide
deterministic capabilities for applications such as high speed control loops or movement
detection. The Fat Tree is highly reliable and, in normal conditions, provides an equivalent
multipath operation; however, the ECMP doesn't provide hard guarantees for either delivery or
latency. As long as the fabric is non-blocking, the result is the same, but there can be load
unbalances resulting in incast and possibly congestion loss that will prevent the delivery within
bounded latency.

This could be alleviated with Packet Replication, Elimination, and Ordering Functions (PREOF) 
 leaf-2-leaf, but PREOF is hard to provide at the scale of all flows and the replication

may increase the probability of the overload that it attempts to solve.

Note that the load balancing is not RIFT's problem, but it is key to serve IoT adequately.

[RFC8655]

5.17. Key Management
As outlined in Section  of , either a private shared key or a
public/private key pair is used to authenticate the adjacency. Both the key distribution and key
synchronization methods are out of scope for this document. Both nodes in the adjacency must
share the same keys, key type, and algorithm for a given key ID. Mismatched keys will not
interoperate as their security envelopes will be unverifiable.

Key rollover while the adjacency is active may be supported. The specific mechanism is well
documented in . As outlined in  of , hosts as
well as VMs acting as RIFT devices are possible. Key Management Protocols (KMPs), such as Key
Value (KV) for key rollover in the fabric, use a symmetric key that can be changed easily when
compromised; in which case, the symmetric key of a host is more likely to be compromised than
an in-fabric networking node.

9 ("Security Considerations") [RFC9692]

[RFC6518] 9.9 ("Host Implementations") [RFC9692]

5.18. TTL/Hop Limit of 1 vs. 255 on LIEs/TIEs
The use of a packet's Time to Live (TTL) (IPv4) or Hop Limit (IPv6) to verify whether the packet
was originated by an adjacent node on a connected link has been used in RIFT. RIFT explicitly
requires the use of a TTL/HL value of 1 or 255 when sending/receiving LIEs and TIEs so that
implementers have a choice between the two.

TTL=1 or HL=1 protects against the information disseminating more than 1 hop in the fabric and
should be the default unless configured otherwise. TTL=255 or HL=255 can lead RIFT TIE packet
propagation to more than one hop (the multicast address is already in local subnetwork range)
in case of implementation problems but does protect against a remote attack as well, and the
receiving remote router will ignore such TIE packet unless the remote router is exactly 254 hops
away and accepts only TTL=1 or HL=1.  defines a Generalized TTL Security Mechanism
(GTSM). The GTSM is applicable to LIE/TIE implementations that use a TTL or HL of 255. It
provides a defense from infrastructure attacks based on forged protocol packets from outside
the fabric.

[RFC5082]
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       Introduction
       This document discusses the properties and applicability of
 "RIFT: Routing in Fat Trees" in
different deployment scenarios and highlights the operational simplicity of the
technology compared to classical routing solutions.
It also documents special considerations when RIFT is used with or without overlays and/or controllers and how RIFT identifies miscablings and reroutes around node and link failures.

    
     
       Terminology
       This document uses the terminology defined in  .
The most frequently used terms and their definitions from that document are
listed here.
       
         Clos / Fat Tree:
         
                            This document uses the terms "Clos" and "Fat Tree" interchangeably
                            where it always refers to a folded spine-and-leaf topology with possibly multiple Points of Delivery (PoDs) and one or multiple Top of Fabric (ToF) planes.
                            Several modifications such as leaf-2-leaf
                            shortcuts and multiple level shortcuts are possible and described further in
                            the document.
                        
         Crossbar:
         
                            Physical arrangement of ports in a switching matrix without
                            implying any further scheduling or buffering disciplines.
                        
         Directed Acyclic Graph (DAG):
         A finite directed graph with no directed cycles (loops).
  If links in a Clos are considered as either being all directed towards the
  top or bottom, each of such two graphs is a DAG.
                        
         Disaggregation:
         
                            The process in which a node decides to
                            advertise more specific prefixes southwards, either positively to
                            attract the corresponding traffic or negatively to repel it.
                            Disaggregation is performed to prevent traffic loss and suboptimal
                            routing to the more specific prefixes.
         Leaf:
         A node without southbound adjacencies. Level 0 implies a leaf in RIFT, but a leaf does not have to be level 0.
                        
         LIE:
         This is an acronym for "Link Information Element" exchanged
          on all the system's links running RIFT to form  ThreeWay
          adjacencies and carry information used to perform RIFT Zero Touch
          Provisioning (ZTP) of levels.
                        
         South Reflection:
         Often abbreviated just as
                            "reflection", South Reflection defines a mechanism where South Node TIEs
                            are "reflected" from the level south back up north to allow
                            nodes in the same level
                            without East-West links to be aware of each other's node Topology
                            Information Elements (TIEs).
         Spine:
         Any nodes north of leaves and south of ToF nodes. Multiple
                            layers of spines in a PoD are possible.
                        
         TIE:
         This is an acronym for "Topology Information Element". TIEs are
          exchanged between RIFT nodes to describe parts of a network such as
          links and address prefixes.  A TIE always has a direction and a
          type.  North TIEs (sometimes abbreviated as N-TIEs) are used when
          dealing with TIEs in the northbound representation, and South-TIEs
          (sometimes abbreviated as S-TIEs) are used for the southbound
          equivalent. TIEs have different types, such as node and prefix TIEs.
                        
      
    
     
       Problem Statement of Routing in Modern IP Fabric Fat Tree Networks
       


    Clos topologies (commonly called a Fat Tree/network in modern
   IP fabric considerations as a similar term for the original definition of the
   term  Fat Tree) have gained prominence in today's
   networking, primarily as a result of the paradigm shift towards a
   centralized data-center-based architecture that delivers a majority of
   computation and storage services.
       Current routing protocols were geared towards a network with an
irregular topology with isotropic properties and a low degree of connectivity.
When applied to Fat Tree topologies:

       
         They tend to need extensive configuration or provisioning
            during initialization and adding or removing nodes from the
            fabric.
         For link-state routing protocols, all nodes including
            spine-and-leaf nodes learn the entire network topology and routing
            information, which is actually not needed on the leaf nodes during
            normal operation. They flood significant amounts of duplicate
            link-state information between spine-and-leaf nodes during
            topology updates and convergence events, requiring that additional
            CPU and link bandwidth be consumed.  This may impact the stability
            and scalability of the fabric, make the fabric less reactive to
            failures, and prevent the use of cheaper hardware at the lower
            levels (i.e., spine-and-leaf nodes).
            
      
    
     
       Applicability of RIFT to Clos IP Fabrics
       
Further content of this document assumes that the reader is familiar with the
terms and concepts used in the  Open Shortest Path First
(OSPF),  OSPF for IPv6, and  Intermediate System to Intermediate System
(IS-IS) link-state
protocols.   outlines the
requirements of routing in IP fabrics and RIFT protocol concepts.

       
         Overview of RIFT
         
RIFT is a dynamic routing protocol that is tailored for use in Clos, Fat Tree, and other anisotropic topologies.
Therefore, a core property of RIFT is that its operation is
sensitive to the structure of the fabric -- it is anisotropic. RIFT acts as a link-state protocol when "pointing north", advertising southward routes to northward peers (parents) through flooding and database synchronization. When "pointing south", RIFT operates hop-by-hop like a distance-vector protocol, typically advertising a fabric default route towards the ToF, aka superspine, to southward peers (children).

         
  The fabric default is typically the default route as described in
Section    
"Southbound Default Route Origination" of  .
The ToF nodes may alternatively originate more specific prefixes (P') southbound
instead of the default route. In such a scenario, all addresses carried within
the RIFT domain must be contained within P', and it is possible for a leaf that
acts as gateway to the Internet to advertise the default route instead.

         RIFT floods flat link-state information northbound only so that each level
obtains the full topology of the levels that are south of it. That information is never flooded
East-West or back south again, so a top tier node has a full set of prefixes from
the Shortest Path First (SPF) calculation.

         In the southbound direction, the protocol operates like a "fully summarizing,
unidirectional" path-vector protocol or, rather, a distance-vector with implicit split horizon. Routing information, normally just the default route, propagates one hop south and is "re-advertised" by nodes at next lower level.

         
           RIFT Overview
           
         +---------------+       +----------------+
         |      ToF      |       |       ToF      |     LEVEL 2
+        ++------+--+--+-+       ++-+--+----+-----+
|         |      |  |  |          | |  |    |        ^
+         |      |  |  +-------------------------+   |
Distance- |   +-------------------+ |  |    |    |   |
Vector    |   |  |  |               |  |    |    |   +
South     |   |  |  |      +--------+  |    |    |   Link-State
+         |   |  |  |      |           |    |    |   Flooding
|         |   |  +----------------+    |    |    |   North
v         |   |     |      |      |    |    |    |   +
         ++---+-+   +------+    +-+----+   ++----++  |
         |SPINE |   |SPINE |    | SPINE|   | SPINE|  |  LEVEL 1
+        ++----++   ++---+-+    +-+--+-+   ++----++  |
+         |    |     |   |        |  |      |    |   |     ^ N
Distance- |    +-------+ |        |  +--------+  |   |     |   E
Vector    |          | | |        |         | |  |   |  +------>
South     |  +-------+ | |        |  +------+ |  |   |     |
+         |  |         | |        |  |        |  |   |     +
v        ++--++      +-+-++      ++--++      ++--++  +
         |LEAF|      |LEAF|      |LEAF|      |LEAF|     LEVEL 0
         +----+      +----+      +----+      +----+
        
         A spine node only has information necessary for its level, which is all
destinations south of the node based on SPF calculation, the default route, and
potentially disaggregated routes.

         RIFT combines the advantages of both link-state and distance-vector protocols:

         
           Fastest possible convergence
           Automatic detection of topology
           Minimal routes/information on Top-of-Rack (ToR) switches, aka leaf nodes
           High degree of ECMP
           Fast decommissioning of nodes
           Maximum propagation speed with flexible prefixes in an update
        
         There are two types of link-state databases that are "north representation"
North Topology Information Elements (N-TIEs) and "south representation" South
Topology Information Elements (S-TIEs). The N-TIEs contain a link-state
topology description of lower levels, and the S-TIEs simply carry default and
disaggregated routes for the lower levels.

         RIFT also eliminates major disadvantages of link-state and distance-vector protocols with the following:

         
           Reduced and balanced flooding
           Level-constrained automatic neighbor discovery
        
         
        
         To achieve this, RIFT builds on the art of IGPs, such as OSPF, IS-IS,  Mobile Ad Hoc Network (MANET), and Internet of Things (IoT) to provide unique features:

         
           Automatic (positive or negative) route disaggregation of northward routes upon fallen leaves
           Recursive operation in the case of negative route
            disaggregation 
           Anisotropic routing that extends a principle seen in the  Routing Protocol for Low-Power and Lossy Networks (RPL) to wide superspines
           Optimal flooding reduction that derives from the concept of a "multipoint relay" (MPR) found in  Optimized Link State Routing (OLSR) and
            balances the flooding load over northbound links and nodes
        
         Additional advantages that are unique to RIFT are listed below. The details of these advantages can be found in  RIFT.

         
           True ZTP
           Minimal blast radius on failures
           Can utilize all paths through fabric without looping
           Simple leaf implementation that can scale down to servers
           Key-value store
           Horizontal links used for protection only
        
      
       
         Applicable Topologies
         
Albeit RIFT is specified primarily for "proper" Clos or Fat Tree topologies,
the protocol natively supports Points of Delivery (PoD) concepts, which, strictly speaking, are not found in the original Clos concept.

         Further, the specification explains and supports operations of multi-plane
Clos variants where the protocol recommends the use of inter-plane rings at the
ToF level to allow the reconciliation of topology view of different planes
to make the Negative Disaggregation viable in case of failures within a plane.
These observations hold not only in case of RIFT but also in the generic
case of dynamic routing on Clos variants with multiple planes and failures
in bisectional bandwidth, especially on the leaves.

         
           Horizontal Links
           
RIFT is not limited to pure Clos divided into PoD and multi-planes but
supports horizontal (East-West) links below the ToF level. Those links
are used only for last resort northbound forwarding when a spine loses all its
northbound links or cannot compute a default route through them.

           A full-mesh connectivity between nodes on the same level can be deployed,
which allows North SPF (N-SPF) to provide for any node losing all its
northbound adjacencies (as long as any of the other nodes in the level are
northbound connected) and still participate in northbound forwarding.
          
           Note that a "ring" of horizontal links at any level below ToF does not provide a "ring-based protection" scheme since the SPF computation would have to deal with breaking of "loops", an application for which RIFT is not intended.
          
        
         
           Vertical Shortcuts
           
Through relaxations of the specified adjacency forming rules, RIFT implementations can be extended to support vertical "shortcuts". The RIFT specification
itself does not provide the exact details since the resulting solution suffers from
either a much larger blast radius with increased flooding volumes or
bow tie problems in the case of maximum aggregation routing.

        
         
           Generalizing to Any Directed Acyclic Graph
           
RIFT is an anisotropic routing protocol, meaning that it has a sense of direction (northbound, southbound, and East-West) and operates differently depending on the direction.

           
   Since a DAG provides a sense of north (the
   direction of the DAG) and south (the reverse), it can be used to
   apply RIFT -- an edge in the DAG that has only incoming vertices is a
   ToF node.

          
           
  There are a number of caveats though:
          
           
             The DAG structure must exist before RIFT starts, so there is a need for a companion protocol to establish the logical DAG structure.
  
             A generic DAG does not have a sense of East and West. The operation specified for East-West links and the southbound reflection between nodes are not applicable.
  Also, ZTP will derive a sense of depth that will eliminate some links. Variations of ZTP could be derived to meet specific objectives, e.g., make it so that most routers have at least two parents to reach the ToF.
  
             
  RIFT applies to any Destination-Oriented DAG (DODAG) where there's only one ToF node and the problem of disaggregation does not exist. 

In that case, RIFT operates very much like RPL  , but
uses link-state information for southbound routes (downwards in RPL's terms).
For an arbitrary DAG with multiple destinations (ToFs), the way disaggregation
happens has to be considered.
  
             Positive Disaggregation expects that most of the ToF nodes reach most of the leaves, so disaggregation is the exception as opposed to the rule. When this is no longer true, it makes sense to turn off disaggregation and route between the ToF nodes over a ring, a full mesh, a transit network, or a form of area zero. Then again, this operation is similar to RPL operating as a single DODAG with a virtual root.
  
             
  In order to aggregate and disaggregate routes, RIFT requires that all the ToF nodes share the full knowledge of the prefixes in the fabric. This can be achieved with a ring as suggested by  RIFT, by some preconfiguration, or by using a synchronization with a common repository where all the active prefixes are registered.
  
          
        
         
           Reachability of Internal Nodes in the Fabric
           RIFT does not require that nodes have reachable addresses in the
    fabric, though it is clearly desirable for operational purposes. Under
    normal operating conditions, this can be easily achieved by injecting the
    node's loopback address into Prefix North TIEs and Prefix South TIEs or
    other implementation-specific mechanisms.
          
           

        Special considerations arise when a node loses all northbound
        adjacencies but is not at the top of the fabric. If a spine node loses
        all northbound links, the spine node doesn't advertise a default
        route. But if the level of the spine node is auto-determined by ZTP,
        it will "fall down" as depicted in  .


          
        
      
       
         Use Cases
         
           Data Center Topologies
           
             Data Center Fabrics
             
   RIFT is suited for applying underlay routing in data center (DC) IP
   fabrics, with the vast majority of these IP fabrics being Clos
   architectures (and will be for the foreseeable future). It significantly
   simplifies operation and deployment of such fabrics as described in   for environments compared to extensive proprietary
   provisioning and operational solutions.

          
           
             Adaptations to Other Proposed Data Center Topologies
             
               Level Shortcut
               
.  +-----+        +-----+
.  |     |        |     |
.+-+ S0  |        | S1  |
.| ++---++        ++---++
.|  |   |          |   |
.|  | +------------+   |
.|  | | +------------+ |
.|  | |              | |
.| ++-+--+        +--+-++
.| |     |        |     |
.| | A0  |        | A1  |
.| +-+--++        ++---++
.|   |  |          |   |
.|   |  +------------+ |
.|   | +-----------+ | |
.|   | |             | |
.| +-+-+-+        +--+-++
.+-+     |        |     |
.  | L0  |        | L1  |
.  +-----+        +-----+
            
             
        RIFT is not strictly limited to Clos topologies.  The protocol only
        requires a sense of "compass rose directionality" either achieved
        through configuration or derivation of levels.
        So conceptually, shortcuts between levels could be included.


          depicts an example of a shortcut
        between levels.  In this example, suboptimal routing will
        occur when traffic is sent from L0 to L1 via S0's
        default route and back down through A0 or A1.
        In order to avoid that, only default routes from A0 or A1
        are used. All leaves would be required to install each other's routes.

            
             
        While various technical and operational challenges may require the use of such modifications,
        discussion of those topics is outside the scope of this document.

            
          
        
         
           Metro Networks
           
The demand for bandwidth is increasing steadily, driven primarily by
environments close to
content producers (server farms connection via DC fabrics) but in
proximity to content consumers as well.
Consumers are often clustered in metro areas with their own network
architectures that can benefit
from simplified, regular Clos structures. Thus, they can also benefit from RIFT.


        
         
           Building Cabling
           
Commercial edifices are often cabled in topologies that are
either Clos or its isomorphic equivalents. The
Clos can grow rather high with many levels. That presents a challenge
for classical routing protocols (except BGP   and Private Network-Network Interface (PNNI)  , which is largely
phased-out by now) that do not support
an arbitrary number of levels, which RIFT does naturally. Moreover, due to the limited sizes of forwarding tables in network elements of building cabling, the minimum FIB size RIFT maintains under normal conditions is cost-effective in terms of hardware and operational costs.



        
         
           Internal Router Switching Fabrics
           
It is common in high-speed communications switching and routing 
devices to use switch fabrics that are interconnection networks inside the devices connecting the input ports to their output ports. For example, a crossbar is one of the switch fabric techniques, even though it is not feasible due to cost, head-of-line blocking, or size trade-offs. Normally, such fabrics are not self-healing or rely on 1:1 or 1+1 protection schemes, but it is conceivable to use RIFT to operate Clos fabrics that can deal effectively with interconnections
or subsystem failures in such a module. RIFT is not IP specific and
hence any link addressing connecting internal device subnets is
conceivable.

        
         
           CloudCO
           
The Cloud Central Office (CloudCO) is a new stage of the telecom Central Office. It takes the advantage of Software-Defined Networking (SDN) and Network Function Virtualization (NFV) in conjunction with general purpose hardware to optimize current networks.
The following figure illustrates this architecture at a high level. It describes a single instance or macro-node of CloudCO that provides a number of value-added services (VASes), a Broadband Access Abstraction (BAA), and virtualized network services. An Access I/O module faces a CloudCO access node and the Customer Premises Equipment (CPE) behind it. A Network I/O module is facing the core network. 
The two I/O modules are interconnected by a spine-and-leaf fabric  .

           
             CloudCO Architecture Example
             
+---------------------+           +----------------------+
|         Spine       |           |     Spine            |
|         Switch      |           |     Switch           |
+------+---+------+-+-+           +--+-+-+-+-----+-------+
|      |   |      | | |              | | | |     |       |
|      |   |      | | +-------------------------------+  |
|      |   |      | |                | | | |     |    |  |
|      |   |      | +-------------------------+  |    |  |
|      |   |      |                  | | | |  |  |    |  |
|      |   +----------------------+  | | | |  |  |    |  |
|      |          |               |  | | | |  |  |    |  |
|  +---------------------------------+ | | |  |  |    |  |
|  |   |          |               |    | | |  |  |    |  |
|  |   |   +-----------------------------+ |  |  |    |  |
|  |   |   |      |               |    |   |  |  |    |  |
|  |   |   |      |   +--------------------+  |  |    |  |
|  |   |   |      |   |           |    |      |  |    |  |
+--+ +-+---+--+ +-+---+--+     +--+----+--+ +-+--+--+ +--+
|L | | Leaf   | | Leaf   |     |  Leaf    | | Leaf  | |L |
|S | | Switch | | Switch |     |  Switch  | | Switch| |S |
++-+ +-+-+-+--+ +-+-+-+--+     +--+-+--+--+ ++-+--+-+ +-++
 |     | | |      | | |           | |  |     | |  |     |
 |   +-+-+-+--+ +-+-+-+--+     +--+-+--+--+ ++-+--+-+   |
 |   |Compute | |Compute |     | Compute  | |Compute|   |
 |   |Node    | |Node    |     | Node     | |Node   |   |
 |   +--------+ +--------+     +----------+ +-------+   |
 |   || VAS5 || || vDHCP||     || vRouter|| ||VAS1 ||   |
 |   |--------| |--------|     |----------| |-------|   |
 |   |--------| |--------|     |----------| |-------|   |
 |   || VAS6 || || VAS3 ||     || v802.1x|| ||VAS2 ||   |
 |   |--------| |--------|     |----------| |-------|   |
 |   |--------| |--------|     |----------| |-------|   |
 |   || VAS7 || || VAS4 ||     ||  vIGMP || ||BAA  ||   |
 |   |--------| |--------|     |----------| |-------|   |
 |   +--------+ +--------+     +----------+ +-------+   |
 |                                                      |
++-----------+                                +---------++
|Network I/O |                                |Access I/O|
+------------+                                +----------+
          
           
The Spine-Leaf architecture deployed inside CloudCO meets the network requirements of being adaptable, agile, scalable, and dynamic.
        
      
    
     
       Operational Considerations
       
RIFT presents the features for organizations building and operating
IP fabrics to simplify the operation and deployments while achieving
many desirable
properties of a dynamic routing protocol on such a substrate:

       
         
RIFT only floods routing information to the devices that need it. 

         
RIFT allows for ZTP within the protocol.
In its most extreme version, RIFT does not rely on any specific addressing
and can operate using  IPv6 Neighbor Discovery (ND) only for IP fabric.

         
RIFT has provisions to detect common IP fabric miscabling scenarios.

         
RIFT automatically negotiates Bidirectional Forwarding Detection (BFD) per link. This allows for IP and  micro-BFD to replace Link Aggregation Groups (LAGs) that hide bandwidth
imbalances in case of constituent failures. Further automatic link validation
techniques similar to those in   could be supported as well.

         
RIFT inherently solves many problems associated with the use of
classical routing topologies with dense meshes and high degrees of ECMP by
including automatic bandwidth balancing, flood reduction, and automatic
disaggregation on failures while providing maximum aggregation of prefixes
in default scenarios. ECMP in RIFT eliminates the need for more Loop-Free Alternate (LFA) procedures.

         
RIFT reduces FIB size towards the bottom of the IP fabric where most nodes
reside. This allows for cheaper hardware on the edges and introduction of
modern IP fabric architectures that encompass server multihoming and other
mechanisms.

         
RIFT provides valley-free routing that is loop free. A valley-free path allows for reversal of direction at most once from a packet heading northbound to southbound while permitting traversal of horizontal links in the northbound phase.  This allows for the use of any such valley-free path in bisectional fabric bandwidth between two destinations irrespective of their metrics that can be used to balance load on the fabric in different ways.  Valley-free routing eliminates the need for any specific micro-loop avoidance procedures for RIFT.

         
RIFT includes a key-value distribution mechanism
that allows for future applications
such as automatic provisioning of basic overlay services or automatic key
rollovers over whole fabrics.

         
RIFT is designed for minimum delay in case of prefix mobility on the fabric. In
conjunction with  , RIFT can differentiate anycast advertisements from mobility events and retain only the most recent advertisement in the latter case.

         
Many further operational and design points collected over many years of
routing protocol deployments have been incorporated in RIFT such as
fast flooding rates, protection of information lifetimes, and operationally
 recognizable remote ends of links and node names.

      
       
         South Reflection
         South reflection is a mechanism where South Node TIEs are "reflected"
    back up north to allow nodes in the same level without East-West links to "see"
    each other.
        
         For example, in  , Spine111\Spine112\Spine121\Spine122 reflects Node S-TIEs
    from ToF21 to ToF22 separately. Respectively, Spine111\Spine112\Spine121\Spine122 reflects Node
    S-TIEs from ToF22 to ToF21 separately, so ToF22 and ToF21 see each other's
        node information as level 2 nodes.
        
         In an equivalent fashion, as the result of the south reflection between Spine121-Leaf121-Spine122
    and Spine121-Leaf122-Spine122, Spine121 and Spine 122 know each other at
    level 1.
        
      
       
         Suboptimal Routing on Link Failures
         
           Suboptimal Routing Upon Link Failure Use Case
           
              +--------+          +--------+
              | ToF21  |          |  ToF22 |                LEVEL 2
              ++--+-+-++          ++-+--+-++
               |  | | |            | |  | +
               |  | | |            | |  | linkTS8
  +------------+  | +-+linkTS3+-+  | |  | +-------------+
  |               |   |         |  | |  +               |
  |    +---------------------------+ |  linkTS7         |
  |    |          |   |         +    +  +               |
  |    |          |   +-------+linkTS4+------------+    |
  |    |          |             +    +  |          |    |
  |    |          |    +-------------+--+          |    |
  |    |          |    |        |  linkTS6         |    |
+-+----+-+      +-+----+-+     ++--------+       +-+----+-+
|Spine111|      |Spine112|     |Spine121 |       |Spine122| LEVEL 1
+-+---+--+      +-+----+-+     +-+---+---+       +-+----+-+
  |   |           |    |         |   |             |    |
  |   +-------------+  |         +   ++XX+linkSL6+---+  +
  |               | |  |      linkSL5              | |  linkSL8
  |   +-----------+ |  |         +   +---+linkSL7+-+ |  +
  |   |             |  |         |   |               |  |
+-+---+-+        +--+--+-+     +-+---+-+          +--+--+-+
|Leaf111|        |Leaf112|     |Leaf121|          |Leaf122| LEVEL 0
+-+-----+        +-+-----+     +-----+-+          +-+-----+
  +                +                 +              +
Prefix111        Prefix112     Prefix121          Prefix122
        
         As shown in  , as the result of the south
    reflection, Spine121 and Spine 122 know each other via Leaf121 or Leaf 122 at level 1.
         Without disaggregation mechanisms, the packet from
    leaf121 to prefix122 will probably go up through linkSL5 to linkTS3 when linkSL6 fails. Then, the packet will go
    down through linkTS4 to linkSL8 to Leaf122 or go up through linkSL5 to linkTS6,
    then go down through linkTS8 and linkSL8 to Leaf122 based on the pure default route.
    This is the case of suboptimal routing or bow tying.
         With disaggregation mechanisms, Spine122 will detect the
    failure according to the reflected node S-TIE from Spine121 when linkSL6 fails. Based on the
    disaggregation algorithm provided by RIFT, Spine122 will explicitly advertise
    prefix122 in Disaggregated Prefix S-TIE PrefixTIEElement(prefix122, cost 1). The packet
    from leaf121 to prefix122 will only be sent to linkSL7 following a longest-prefix
    match to prefix 122 directly, then it will go down through linkSL8 to Leaf122.
        
      
       
         Black-Holing on Link Failures
         
           Black-Holing Upon Link Failure Use Case
           
                +--------+          +--------+
                | ToF 21 |          | ToF 22 |                LEVEL 2
                ++-+--+-++          ++-+--+-++
                 | |  | |            | |  | +
                 | |  | |            | |  | linkTS8
  +--------------+ |  +-+linkTS3+X+  | |  | +--------------+
  linkTS1          |    |         |  | |  +                |
  +    +-----------------------------+ |  linkTS7          |
  |    |           +    |         +    +  +                |
  |    |      linkTS2   +-------+linkTS4+X+----------+     |
  |    +           +              +    +  |          |     |
  |   linkTS5      +-+    +------------+--+          |     |
  |    +             |    |       |  linkTS6         |     |
+-+----+-+         +-+----+-+    ++-------+        +-+-----++
|Spine111|         |Spine112|    |Spine121|        |Spine122| LEVEL 1
+-+---+--+         ++----+--+    +-+---+--+        +-+----+-+
  |   |             |    |         |   |             |    |
  +   +---------------+  |         +   +---+linkSL6+---+  +
  linkSL1           | |  |      linkSL5              | |  linkSL8
  +   +--+linkSL3+--+ |  |         +   +---+linkSL7+-+ |  +
  |   |               |  |         |   |               |  |
+-+---+-+          +--+--+-+     +-+---+-+          +--+--+-+
|Leaf111|          |Leaf112|     |Leaf121|          |Leaf122| LEVEL 0
+-+-----+          +-+-----+     +-----+-+          +-----+-+
  +                  +                 +                  +
Prefix111          Prefix112     Prefix121          Prefix122
        
         This scenario illustrates a case where double link failure occurs and
    black-holing can happen.
         Without disaggregation mechanisms, 
    the packet from leaf111 to prefix122 would suffer 50% black-holing based
    on pure default route when linkTS3 and linkTS4 both fail.  The packet is supposed to go up through linkSL1 to
    linkTS1 and then go down through linkTS3 or linkTS4 will be dropped.  The
    packet is supposed to go up through linkSL3 to linkTS2, then go down through
    linkTS3 or linkTS4 will be dropped as well. This is the case of black-holing.
         With disaggregation mechanisms, ToF22 will
    detect the failure according to the reflected node S-TIE of ToF21 from
    Spine111\Spine112 when linkTS3 and linkTS4 both fail. Based on the disaggregation algorithm
    provided by RIFT, ToF22 will explicitly originate an S-TIE with prefix 121 and
    prefix 122 that is flooded to spines 111, 112, 121, and 122.
         The packet from leaf111 to prefix122 will not be routed to linkTS1 or
    linkTS2. The packet from leaf111 to prefix122 will only be routed to linkTS5
    or linkTS7 following a longest-prefix match to prefix122.
      
       
         Zero Touch Provisioning (ZTP)
         
RIFT is designed to require a very minimal configuration to simplify its operation and avoid human errors; based on that minimal information, ZTP auto configures the key operational parameters of all the RIFT nodes, including the System ID of the node that must be unique in the RIFT network and the level of the node in the Fat Tree, which determines which peers are northward "parents" and which are southward "children".

         
ZTP is always on, but its decisions can be overridden when a network
administrator prefers to impose its own configuration. In that case, it is the
responsibility of the administrator to ensure that the configured parameters
are correct, i.e., ensure that the System ID of each node is unique and that
the administratively set levels truly reflect the relative position of the
nodes in the fabric. It is recommended to let ZTP configure the network, and
when ZTP does not configure the network, it is recommended to configure the
level of all the nodes to avoid an undesirable interaction between ZTP and the
manual configuration.

         ZTP requires that the administrator points out the ToF nodes to set the
baseline from which the fabric topology is derived. The ToF nodes are
configured with the TOP_OF_FABRIC flag, which are initial 'seeds' needed for
other ZTP nodes to derive their level in the topology.  ZTP computes the level
of each node based on the Highest Available Level (HAL) of the potential
parent closest to that baseline, which represents the superspine.  In a
fashion, RIFT can be seen as a distance-vector protocol that computes a set of
feasible successors towards the superspine and autoconfigures the rest of the
topology.
        
         
 The autoconfiguration mechanism computes a global maximum of levels by
 diffusion.  The derivation of the level of each node happens then based on
 LIEs received from its neighbors, whereas each node (with possible exceptions
 of configured leaves) tries to attach at the highest possible point in the
 fabric. This guarantees that even if the diffusion front reaches a node from
 "below" faster than from "above", it will greedily abandon already negotiated
 levels derived from nodes topologically below it and properly peer with nodes
 above.

         
 The achieved equilibrium can be disturbed massively by all nodes with the highest level either leaving or entering the domain (with some finer distinctions not explained further).
 It is therefore recommended that each node is multihomed towards nodes with respective HAL offerings. Fortunately, this is the natural state of things for the topology variants considered in RIFT.
        
         
A RIFT node may also be configured to confine it to the leaf role with the LEAF_ONLY flag. A leaf node can also be configured to support leaf-2-leaf procedures with the LEAF_2_LEAF flag. In both cases, the node cannot be TOP_OF_FABRIC and its level cannot be configured. RIFT will fully determine the node's level after it is attached to the topology and ensure that the node is at the "bottom of the hierarchy" (southernmost).

      
       
         Miscabling
         
           Miscabling Examples
           
             A Single-Plane Miscabling Example
             
  +----------------+              +-----------------+
  |     ToF21      |       +------+      ToF22      |   LEVEL 2
  +-------+----+---+       |      +----+---+--------+
  |       |    |   |       |      |    |   |        |
  |       |    |   +----------------------------+   |
  |   +---------------------------+    |   |    |   |
  |   |   |    |           |           |   |    |   |
  |   |   |    |   +-----------------------+    |   |
  |   |   +------------------------+   |        |   |
  |   |        |   |       |       |   |        |   |
+-+---+--+   +-+---+--+    |    +--+---+-+  +--+---+-+
|Spine111|   |Spine112|    |    |Spine121|  |Spine122| LEVEL 1
+-+---+--+   ++----+--+    |    +--+---+-+  +-+----+-+
  |   |       |    |       |       |   |       |    |
  |   +---------+  |     link-M    |   +---------+  |
  |           | |  |       |       |           | |  |
  |   +-------+ |  |       |       |   +-------+ |  |
  |   |         |  |       |       |   |         |  |
+-+---+-+    +--+--+-+     |     +-+---+-+    +--+--+-+
|Leaf111|    |Leaf112+-----+     |Leaf121|    |Leaf122| LEVEL 0
+-------+    +-------+           +-------+    +-------+
          
             shows a single-plane miscabling example. It's a perfect Fat Tree fabric except for link-M connecting Leaf112 to ToF22.
          
           The RIFT control protocol can discover the physical links automatically and is able to detect cabling that violates Fat Tree topology constraints.
        It reacts accordingly to such miscabling attempts, preventing adjacencies between nodes from being formed and traffic from being forwarded on those miscabled links at a minimum.
        In such scenario, Leaf112 will use link-M to derive its level (unless it is leaf) and can report links to Spine111 and Spine112 as miscabled unless the implementations
        allow horizontal links.
          
             shows a multi-plane miscabling example. Since Leaf112 and Spine121 belong to two different PoDs, the adjacency between Leaf112 and Spine121 cannot be formed. Link-W would be detected and prevented.
          
           
             A Multiple Plane Miscabling Example
             
 +-------+    +-------+           +-------+    +-------+
 |ToF  A1|    |ToF  A2|           |ToF  B1|    |ToF  B2| LEVEL 2
 +-------+    +-------+           +-------+    +-------+
 |       |    |       |           |       |    |       |
 |       |    |       +-----------------+ |    |       |
 |       +--------------------------+   | |    |       |
 |     +------+                   | |   | +------+     |
 |     |        +-----------------+ |   |      | |     |
 |     |        |   +--------------------------+ |     |
 |  A  |        | B |               | A |        |  B  |
 +-----+--+   +-+---+--+         +--+---+-+   +--+-----+
 |Spine111|   |Spine112|     +---+Spine121|   |Spine122| LEVEL 1
 +-+---+--+   ++----+--+     |   +--+---+-+   +-+----+-+
   |   |       |    |        |      |   |       |    |
   |   +---------+  |        |      |   +---------+  |
   |           | |  |      link-W   |           | |  |
   |   +-------+ |  |        |      |   +-------+ |  |
   |   |         |  |        |      |   |         |  |
 +-+---+-+    +--+--+-+      |    +-+---+-+    +--+--+-+
 |Leaf111|    |Leaf112+------+    |Leaf121|    |Leaf122| LEVEL 0
 +-------+    +-------+           +-------+    +-------+
+--------PoD#1----------+       +---------PoD#2---------+
          
           RIFT provides an optional level determination procedure in its ZTP mode. Nodes in the fabric without
        their level configured determine it automatically. However, this can have possible counter-intuitive consequences.
        One extreme failure scenario is depicted in  , and it shows that if all northbound links of Spine11 fail at the same time,
        Spine11 negotiates a lower level than Leaf11 and Leaf12.
          
           To prevent such scenario where leaves are expected to act as switches, the LEAF_ONLY flag can be set for Leaf111 and Leaf112.
        Since level -1 is invalid, Spine11 would not derive a valid level from the topology in  . It will be isolated from the whole fabric,
        and it would be up to the leaves to declare the links towards such spine as miscabled.
          
           
             Fallen Spine
             
+-------+    +-------+        +-------+    +-------+
|ToF  A1|    |ToF  A2|        |ToF  A1|    |ToF  A2|
+-------+    +-------+        +-------+    +-------+
|       |    |       |                |            |
|    +-------+       |                |            |
+    +  |            |  ====>         |            |
X    X  +------+     |                +------+     |
+    +         |     |                       |     |
+----+--+    +-+-----+                     +-+-----+
|Spine11|    |Spine12|                     |Spine12|
+-+---+-+    ++----+-+                     ++----+-+
  |   |       |    |                        |    |
  |   +---------+  |                        |    |
  |   +-------+ |  |                +-------+    |
  |   |         |  |                |            |
+-+---+-+    +--+--+-+        +-----+-+    +-----+-+
|Leaf111|    |Leaf112|        |Leaf111|    |Leaf112|
+-------+    +-------+        +-+-----+    +-+-----+
                                |            |
                                |   +--------+
                                |   |
                              +-+---+-+
                              |Spine11|
                              +-------+
          
        
         
           Miscabling Considerations
           There are scenarios where operators may want to leverage ZTP and implement additional cabling constraints that go beyond the previously described topology violations. Enforcing cabling down to specific level, node, and port combinations might make it simpler for onsite staff to perform troubleshooting activities or replace optical transceivers and/or cabling as the physical layout will be consistent across the fabric. This is especially true for densely connected fabrics where it is difficult to physically manipulate those components. It is also easy to imagine other models, such as one where the strict port requirement is relaxed.

             illustrates an example where the first port on Leaf1 must connect to the first port on Spine1, the second port on Leaf1 must connect to the first port on Spine2, and so on. Consider a case where (Leaf1, Port1) and (Leaf1, Port2) were reversed. RIFT would not consider this to be miscabled by default; however, an operator might want to.

           
             Additional Cabling Constraint Example
             
           +--------+    +--------+    +--------+    +--------+
           | Spine1 |    | Spine2 |    | Spine3 |    | Spine4 |
           +-1------+    +-1------+    +-1------+    +-1------+
             +             +             +             +
             |  +----------+             |             |
             |  |                        |             |
             |  |  +---------------------+             |
             |  |  |                                   |
             |  |  |  +--------------------------------+
             |  |  |  |
             |  |  |  |
             |  |  |  |
             |  |  |  |
             +  +  +  +
           +-1--2--3--4--+
           |   Leaf1     |   ......
           +-------------+
            
          
           RIFT allows implementations to provide programmable plug-ins that can adjust
ZTP operation or capture information during computation. While defining this
is outside the scope of this document, such a mechanism could be used to
extend the miscabling functionality.

           For other protocols to achieve this, it would require additional
operational overhead. Consider a fabric that is using unnumbered OSPF links;
it is still very likely that a miscabled link will form an adjacency. Each
attempt to move cables to the correct port may result in the need for
additional troubleshooting as other links will become miscabled in the
process. Without automation to explicitly tell the operator which ports need
to be moved where, the process becomes manually intensive and error-prone very
quickly. If the problem goes unnoticed, it will result in suboptimal
performance in the fabric.
        
      
       
         Multicast and Broadcast Implementations
         RIFT supports both multicast and broadcast implementations. While a
multicast implementation is preferred, there might cases where a broadcast
implementation is optimal or even required. For example, operating systems on
IoT devices and embedded devices may not have the required multicast
support. Another example is containers, which do support multicast in some
cases but tend to be very CPU-inefficient and difficult to tune.
      
       
         Positive vs. Negative Disaggregation
                                                                                                                                                                                                            
    Disaggregation is the procedure whereby  RIFT advertises a more specific route
    southwards as an exception to the aggregated fabric-default
    north. Disaggregation is useful when a prefix within the aggregation is
    reachable via some of the parents but not the others at the same level of
    the fabric.  It is mandatory when the level is the ToF since a ToF node
    that cannot reach a prefix becomes a black hole for that prefix.  The hard
    problem is to know which prefixes are reachable by whom.
        
                                                                                                                                                                                                            
    In the general case,  RIFT solves
    that problem by interconnecting the ToF nodes so that the ToF nodes can
    exchange the full list of prefixes that exist in the fabric and figure out
    when a ToF node lacks reachability to some prefixes. This requires
    additional ports at the ToF, typically two ports per ToF node to form a
    ToF-spanning ring.   RIFT also
    defines the southbound reflection procedure that enables a parent to
    explore the direct connectivity of its peers, meaning their own parents
    and children; based on the advertisements received from the shared parents
    and children, it may enable the parent to infer the prefixes its peers can
    reach.
        
                                                                                                                                                                                                            
    When a parent lacks reachability to a prefix, it may disaggregate the
    prefix negatively, i.e., advertise that this parent can be used to reach
    any prefix in the aggregation except that one. The Negative Disaggregation
    signaling is simple and functions transitively from ToF to Top-of-Pod
    (ToP) and then from ToP to Leaf.  However, it is hard for a parent to
    figure out which prefix it needs to disaggregate because it does not know
    what it does not know; it results that the use of a spanning ring at the
    ToF is required to operate the Negative Disaggregation.  Also, though it
    is only an implementation problem, the programming of the FIB is complex
    compared to normal routes and may incur recursions.
        
                                                                                                                                                                                                            
    The more classical alternative is, for the parents that can reach a prefix
    that peers at the same level cannot, to advertise a more specific route to
    that prefix. This leverages the normal longest prefix match in the FIB
    and does not require a special implementation. As opposed to the
    Negative Disaggregation, the Positive Disaggregation is difficult and
    inefficient to operate transitively.
        
                                                                                                                                                                                                            
    Transitivity is not needed by a grandchild if all its parents received the
    Positive Disaggregation, meaning that they shall all avoid the black hole;
    when that is the case, they collectively build a ceiling that protects the
    grandchild. Until then, a parent that received the Positive
    Disaggregation may believe that some peers are lacking the reachability
    and re-advertise too early or defer and maintain a black hole situation
    longer than necessary.
        
                                                                                                                                                                                                            
                                                                                                                                                                                                          
    In a non-partitioned fabric, all the ToF nodes see one another through the
    reflection and can figure out if one is missing a child. In that case, it is
    possible to compute the prefixes that the peer cannot reach and
    disaggregate positively without a ToF-spanning ring. The ToF nodes can
    also ascertain that the ToP nodes are each connected to at least a ToF
    node that can still reach the prefix, meaning that the transitive
    operation is not required.
        
                                                                                                                                                                                                            
    The bottom line is that in a fabric that is partitioned (e.g., using
    multiple planes) and/or where the ToP nodes are not guaranteed to always
    form a ceiling for their children, it is mandatory to use Negative
    Disaggregation.  On the other hand, in a highly symmetrical and fully
    connected fabric (e.g., a canonical Clos Network), the Positive
    Disaggregation methods save the complexity and cost associated
    to the ToF-spanning ring.
        
                                                                                                                                                                                                            
    Note that in the case of Positive Disaggregation, the first ToF nodes
    that announce a more-specific route attract all the traffic for that
    route and may suffer from a transient incast. A ToP node that defers
    injecting the longer prefix in the FIB, in order to receive more
    advertisements and spread the packets better, also keeps on sending a
    portion of the traffic to the black hole in the meantime. In the case of
    Negative Disaggregation, the last ToF nodes that inject the route may
    also incur an incast issue; this problem would occur if a prefix that
    becomes totally unreachable is disaggregated.
        
      
       
         Mobile Edge and Anycast
                                                                                                                                                                                                            
    When a physical or a virtual node changes its point of attachment in the
    fabric from a previous-leaf to a next-leaf, new routes must be installed
    that supersede the old ones. Since the flooding flows northwards, the
    nodes (if any) between the previous-leaf and the common parent are not
    immediately aware that the path via the previous-leaf is obsolete and a stale
    route may exist for a while. The common parent needs to select the
    freshest route advertisement in order to install the correct route via the
    next-leaf. This requires that the fabric determines the sequence of the
    movements of the mobile node.
        
                                                                                                                                                                                                            
    On the one hand, a classical sequence counter provides a total order for a
    while, but it will eventually wrap. On the other hand, a timestamp provides
    a permanent order, but it may miss a movement that happens too quickly vs. the granularity of the timing information.
                                                                                                                                                                                                          
   It is not envisioned that an average fabric supports the  Precision Time Protocol in the short term nor
   that the precision available with the  Network Time
   Protocol (in the order of 100 to 200 ms) may not be necessarily
   enough to cover, e.g., the fast mobility of a Virtual Machine (VM).

        
         Section  "Mobility" of  
    specifies a hybrid method that combines a sequence counter from the mobile
    node and a timestamp from the network taken at the leaf when the route is
    injected. If the timestamps of the concurrent advertisements are
    comparable (i.e., more distant than the precision of the timing protocol),
    then the timestamp alone is used to determine the relative freshness of
    the routes.  Otherwise, the sequence counter from the mobile node is used if it is available.  One caveat is that the sequence counter must not wrap
    within the precision of the timing protocol. Another is that the mobile
    node may not even provide a sequence counter; in which case, the mobility
    itself must be slower than the precision of the timing.
        
                                                                                                                                                                                                            
    Mobility must not be confused with anycast. In both cases, the same
    address is injected in RIFT at different leaves. In the case of mobility,
    only the freshest route must be conserved since the mobile node changes its
    point of attachment for a leaf to the next. In the case of anycast, the
    node may either be multihomed (attached to multiple leaves in parallel) or
    reachable beyond the fabric via multiple routes that are redistributed to
    different leaves. Either way, the multiple routes are equally valid and
    should be conserved in the case of anycast. Without further information
    from the redistributed routing protocol, it is impossible to sort out a
    movement from a redistribution that happens asynchronously on different
    leaves.   RIFT expects that anycast addresses
    are advertised within the timing precision, which is typically the case
    with a low-precision timing and a multihomed node. Beyond that time
    interval, RIFT interprets the lag as a mobility and only the freshest
    route is retained.
        
          When using  IPv6, RIFT suggests
    leveraging 6LoWPAN ND   as the IPv6 ND interaction
    between the mobile node and the leaf.  This not only provides a sequence
    counter but also a lifetime and a security token that may be used to
    protect the ownership of an address  .  When using
    6LoWPAN ND  , the parallel registration of an
    anycast address to multiple leaves is done with the same sequence counter,
    whereas the sequence counter is incremented when the point of attachment
    changes. This way, it is possible to differentiate a mobile node from a
    multihomed node, even when the mobility happens within the timing
    precision. It is also possible for a mobile node to be multihomed as well,
    e.g., to change only one of its points of attachment.
        
      
       
         IPv4 over IPv6
         RIFT allows advertising IPv4 prefixes over an IPv6 RIFT network.  An
    IPv6 Address Family (AF) configures via the usual ND mechanisms and then
    V4 can use V6 next-hops analogous to  . It is
    expected that the whole fabric supports the same type of forwarding of
    AFs on all the links. RIFT provides an indication whether a
    node is capable of V4-forwarding and implementations are possible where
    different routing tables are computed per AF as long as the
    computation remains loop-free.
        
         
           IPv4 over IPv6
           

                            +-----+        +-----+
                 +---+---+  | ToF |        | ToF |
                     ^      +--+--+        +-----+
                     |      |  |           |     |
                     |      |  +-------------+   |
                     |      |     +--------+ |   |
                     +      |     |          |   |
                    V6      +-----+        +-+---+
                 Forwarding |Spine|        |Spine|
                     +      +--+--+        +-----+
                     |      |  |           |     |
                     |      |  +-------------+   |
                     |      |     +--------+ |   |
                     |      |     |          |   |
                     v      +-----+        +-+---+
                 +---+---+  |Leaf |        | Leaf|
                            +--+--+        +--+--+
                               |              |
                  IPv4 prefixes|              |IPv4 prefixes
                               |              |
                           +---+----+     +---+----+
                           |   V4   |     |   V4   |
                           | subnet |     | subnet |
                           +--------+     +--------+
            
        
      
       
         In-Band Reachability of Nodes
         RIFT doesn't precondition that nodes of the fabric have reachable
        addresses, but operational reasons to reach the internal nodes may
        exist.   shows an example that the
        network management station (NMS) attaches to Leaf1.
        
         
           In-Band Reachability of Nodes
           
+-------+      +-------+
| ToF1  |      | ToF2  |
++---- ++      ++-----++
 |     |        |     |
 |     +----------+   |
 |     +--------+ |   |
 |     |          |   |
++-----++      +--+---++
|Spine1 |      |Spine2 |
++-----++      ++-----++
 |     |        |     |
 |     +----------+   |
 |     +--------+ |   |
 |     |          |   |
++-----++      +--+---++
| Leaf1 |      | Leaf2 |
+---+---+      +-------+
    |
    |NMS
        
         If the NMS wants to access Leaf2, it simply works because the loopback address of Leaf2 is flooded in its Prefix North TIE.
        
         If the NMS wants to access Spine2, it also works because a spine node always advertises its loopback address in the Prefix North TIE. The NMS may reach Spine2 from Leaf1-Spine2 or Leaf1-Spine1-ToF1/ToF2-Spine2.
        
         If the NMS wants to access ToF2, ToF2's loopback address needs to be injected into its Prefix South TIE. This TIE must be seen by all nodes at the level below -- the spine nodes in   -- that must form a ceiling for all the traffic coming from below (south). Otherwise, the traffic from the NMS may follow the default route to the wrong ToF Node, e.g., ToF1.
        
         In the case of failure between ToF2 and spine nodes, ToF2's loopback address must be disaggregated recursively all the way to the leaves. In a partitioned ToF, even with recursive disaggregation, a ToF node is only reachable within its plane.
        
         A possible alternative to recursive disaggregation is to use a ring that interconnects the ToF nodes to transmit packets between them for their loopback addresses only. The idea is that this is mostly control traffic and should not alter the load-balancing properties of the fabric.
        
      
       
         Dual-Homing Servers
         Each RIFT node may operate in ZTP mode.  It has no configuration (unless it
is a ToF node at the top of the topology or if it must operate in the topology
as a leaf and/or support leaf-2-leaf procedures), and it will fully configure
itself after being attached to the topology.
        
         
           Dual-Homing Servers
           
    +---+         +---+         +---+
    |ToF|         |ToF|         |ToF|      ToF
    +---+         +---+         +---+
    |   |         |   |         |   |
    |   +----------------+      |   |
    |          +----------------+   |
    |          |  |   |  |          |
    +----------+--+   +--+----------+
    |     ToR1    |   |     ToR2    |      Spine
    +--+------+---+   +--+-------+--+
+---+  |      |   |   |  |       |  +---+
|   +-----------------+  |       |      |
|   |  |   +-------------+       |      |
|   |  |   |  |   +-----------------+   |
|   |  |   |  +--------------+   |  |   |
|   |  |   |                 |   |  |   |
+---+  +---+                 +---+  +---+
|   |  |   |                 |   |  |   |
+---+  +---+  .............  +---+  +---+
SV(1) SV(2)                 SV(n-1) SV(n)  Leaf
        
         Sometimes people may prefer to disaggregate from ToR nodes to servers from
startup, i.e., the servers have multiple routes in the FIB from startup other
than default routes to avoid breakages at the rack level.  Full disaggregation
of the fabric could be achieved by configuration supported by RIFT.
        
      
       
         Fabric with a Controller
         There are many different ways to deploy the controller. One possibility is attaching a controller to the RIFT domain from ToF and another possibility is attaching a controller from the leaf.
        
         
           Fabric with a Controller
           
                 +------------+
                 | Controller |
                 ++----------++
                  |          |
                  |          |
             +----++        ++----+
 -------     | ToF |        | ToF |
    |        +--+--+        +-----+
    |        |  |           |     |
    |        |  +-------------+   |
    |        |     +--------+ |   |
    |        |     |          |   |
             +-----+        +-+---+
RIFT domain  |Spine|        |Spine|
             +--+--+        +-----+
    |        |  |           |     |
    |        |  +-------------+   |
    |        |     +--------+ |   |
    |        |     |          |   |
    |        +-----+        +-+---+
 -------     |Leaf |        | Leaf|
             +-----+        +-----+
        
         
           Controller Attached to ToFs
           If a controller is attaching to the RIFT domain from ToF, it usually uses dual-homing connections. The loopback prefix of the controller should be advertised down by the ToF and spine to the leaves. If the controller loses the link to ToF, make sure the ToF withdraws the prefix of the controller.
        
         
           Controller Attached to Leaf
           If the controller is attaching from a leaf to the fabric, no special provisions are needed.

        
      
       
         Internet Connectivity Within Underlay
         If global addressing is running without overlay, an external default route needs to be advertised through the RIFT fabric to achieve internet connectivity. For the purpose of forwarding of the entire RIFT fabric, an internal fabric prefix needs to be advertised in the Prefix South TIE by ToF and spine nodes.
         
           Internet Default on the Leaf
           In the case that the internet gateway is a leaf, the leaf node as the internet gateway needs to advertise a default route in its Prefix North TIE.
        
         
           Internet Default on the ToFs
           In the case that the internet gateway is a ToF, the ToF and spine nodes need to advertise a default route in the Prefix South TIE.
        
      
       
         Subnet Mismatch and Address Families
         
           Subnet Mismatch
           
+--------+                     +--------+
|        |  LIE          LIE   |        |
|   A    | +---->       <----+ |   B    |
|        +---------------------+        |
+--------+                     +--------+
   X/24                           Y/24
        
         
         LIEs are exchanged over all links running RIFT to perform Link (Neighbor) Discovery. A node must NOT originate LIEs on an AF if it does not process received LIEs on that family.
        LIEs on the same link are considered part of the same negotiation independent from the AF they arrive on.
        An implementation must be ready to accept TIEs on all addresses it used as the source of LIE frames.
        
         As shown in  , an adjacency of nodes A
    and B may form without further checks, but the forwarding between nodes A and B may fail
    because subnet X mismatches with subnet Y.
        
         To prevent this, a RIFT implementation should check for subnet mismatch in a way that is similar to how IS-IS does. This can lead to scenarios where an adjacency, despite the exchange of LIEs in both
        AFs, may end up having an adjacency in a single AF only. This is especially a consideration in scenarios relating to  .
        
      
       
         Anycast Considerations
         
           Anycast
           
                        + traffic
                        |
                        v
                 +------+------+
                 |     ToF     |
                 +---+-----+---+
                 |   |     |   |
    +------------+   |     |   +------------+
    |                |     |                |
+---+---+    +-------+     +-------+    +---+---+
|       |    |       |     |       |    |       |
|Spine11|    |Spine12|     |Spine21|    |Spine22| LEVEL 1
+-+---+-+    ++----+-+     +-+---+-+    ++----+-+
  |   |       |    |         |   |       |    |
  |   +---------+  |         |   +---------+  |
  |   +-------+ |  |         |   +-------+ |  |
  |   |         |  |         |   |         |  |
+-+---+-+    +--+--+-+     +-+---+-+    +--+--+-+
|       |    |       |     |       |    |       |
|Leaf111|    |Leaf112|     |Leaf121|    |Leaf122| LEVEL 0
+-+-----+    ++------+     +-----+-+    +-----+-+
  +           +                  +      ^     +
PrefixA      PrefixB         PrefixA    | PrefixC
                                        |
                                        + traffic
        
         If the traffic comes from ToF to Leaf111 or Leaf121, which has anycast prefix PrefixA, RIFT can deal with this case well. However, if the traffic comes from Leaf122, it arrives to Spine21 or Spine22 at LEVEL 1. Additionally, Spine21 or Spine22 doesn't know another PrefixA attaching Leaf111, so it will always get to Leaf121 and never Leaf111. If the intention is that the traffic should be offloaded to Leaf111, then use the policy-guided prefixes defined in  RIFT.
        
      
       
         IoT Applicability
         The design of RIFT inherits the anisotropic design of a default route upwards (northwards) from RPL  . It also inherits the capability to inject external host routes at the Leaf level using Wireless ND (WiND)     between a RIFT-agnostic host and a RIFT router. Both the RPL and the RIFT protocols are meant for a large scale, and WiND enables device mobility at the edge the same way in both cases.
         The main difference between RIFT and RPL is that there's a single root with RPL, whereas RIFT has many ToF nodes. This adds huge capabilities for leaf-2-leaf ECMP paths but additional complexity with the need to disaggregate. Also, RIFT uses link-state flooding northwards and is not designed for low-power operation.
         Still, nothing prevents that the IP devices connected at the Leaf are IoT devices, which typically expose their address using WiND -- this is an upgrade from 6LoWPAN ND  .
         A network that serves high speed / high power IoT devices should typically provide deterministic capabilities for applications such as high speed control loops or movement detection. The Fat Tree is highly reliable and, in normal conditions, provides an equivalent multipath operation; however, the ECMP doesn't provide hard guarantees for either delivery or latency. As long as the fabric is non-blocking, the result is the same, but there can be load unbalances resulting in incast and possibly congestion loss that will prevent the delivery within bounded latency.
         This could be alleviated with Packet Replication, Elimination, and
      Ordering Functions (PREOF)   leaf-2-leaf, but PREOF is hard to provide at the scale of all flows and the replication may increase the probability of the overload that it attempts to solve.
         Note that the load balancing is not RIFT's problem, but it is key to serve IoT adequately.
      
       
         Key Management
         

        As outlined in Section  "Security Considerations" of  , either a private shared key or a public/private key pair is used to authenticate the adjacency.
        Both the key distribution and key synchronization methods are out of
        scope for this document.  Both nodes in the adjacency must share the
        same keys, key type, and algorithm for a given key ID.  Mismatched
        keys will not interoperate as their security envelopes will be unverifiable.



        
         
        Key rollover while the adjacency is active may be supported.  The
        specific mechanism is well documented in  .
As outlined in  "Host Implementations" of  , hosts as well as VMs acting as RIFT devices are possible. Key Management Protocols (KMPs), such as Key Value (KV) for key rollover in the fabric, use a symmetric key that can be changed easily when compromised; in which case, the symmetric key of a host is more likely to be compromised than an in-fabric networking node. 
        
      
       
         TTL/Hop Limit of 1 vs. 255 on LIEs/TIEs
         
        The use of a packet's Time to Live (TTL) (IPv4) or Hop Limit (IPv6) to verify whether the packet was originated by an adjacent node on a connected link has been used in RIFT. 
RIFT explicitly requires the use of a TTL/HL value of 1 or 255 when sending/receiving LIEs and TIEs so that implementers have a choice between the two.  
        
           
		TTL=1 or HL=1 protects against the information disseminating more than 1 hop in the fabric and should be the default unless configured otherwise. TTL=255 or HL=255 can lead RIFT TIE packet propagation to more than one hop (the multicast address is already in local subnetwork range) in case of implementation problems but does protect against a remote attack as well, and the receiving remote router will ignore such TIE packet unless the remote router is exactly 254 hops away and accepts only TTL=1 or HL=1.   defines a Generalized TTL Security Mechanism (GTSM). The GTSM is applicable to LIE/TIE implementations that use a TTL or HL of 255. It provides a defense from infrastructure attacks based on forged protocol packets from outside the fabric.
        
      
    
     
       Security Considerations
       This document presents applicability of RIFT. As such, it does not
   introduce any security considerations.  However, there are a number
   of security concerns in  .
    
     
       IANA Considerations
       This document has no IANA actions.
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