Stream: Independent Submission

RFC: 9102

Category: Experimental

Published: August 2021

ISSN: 2070-1721

Authors: V. Dukhovni S. Huque W. Toorop P. Wouters M. Shore
Two Sigma Salesforce NLnet Labs Aiven Fastly

REC 9102
TLS DNSSEC Chain Extension

Abstract

This document describes an experimental TLS extension for the in-band transport of the
complete set of records that can be validated by DNSSEC and that are needed to perform DNS-
Based Authentication of Named Entities (DANE) of a TLS server. This extension obviates the need
to perform separate, out-of-band DNS lookups. When the requisite DNS records do not exist, the
extension conveys a denial-of-existence proof that can be validated.

This experimental extension is developed outside the IETF and is published here to guide
implementation of the extension and to ensure interoperability among implementations.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for examination,
experimental implementation, and evaluation.

This document defines an Experimental Protocol for the Internet community. This is a
contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has
chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9102.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

Dukhovni, et al. Experimental Page 1

https://www.rfc-editor.org/rfc/rfc9102
https://www.rfc-editor.org/info/rfc9102

RFC 9102 TLS DNSSEC Chain August 2021

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

Table of Contents

1. Introduction
1.1. Scope of the Experiment

1.2. Requirements Notation

2. DNSSEC Authentication Chain Extension
2.1. Protocol, TLS 1.2
2.2. Protocol, TLS 1.3
2.3. DNSSEC Authentication Chain Data

2.3.1. Authenticated Denial of Existence

. Construction of Serialized Authentication Chains

. Caching and Regeneration of the Authentication Chain
. Expired Signatures in the Authentication Chain

. Verification

. Extension Pinning

. Trust Anchor Maintenance

© 0 N oo U s~ W

. Virtual Hosting

10. Operational Considerations
11. Security Considerations

12. IANA Considerations

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Test Vectors
Al. _443._tcp.www.example.com
A.2. _25._tcp.example.com NSEC Wildcard
A.3. _25._tcp.example.org NSEC3 Wildcard

Dukhovni, et al. Experimental Page 2

https://trustee.ietf.org/license-info

RFC 9102 TLS DNSSEC Chain August 2021

A4, _443._tcp.www.example.org CNAME

A.5. _443._tcp.www.example.net DNAME

A.6. _25._tcp.smtp.example.com NSEC Denial of Existence
A.7. _25._tcp.smtp.example.org NSEC3 Denial of Existence

A.8. _443._tcp.www.insecure.example NSEC3 Opt-Out Insecure Delegation

Acknowledgments

Authors' Addresses

1. Introduction

This document describes an experimental TLS [RFC5246] [RFC8446] extension for in-band
transport of the complete set of resource records (RRs) validated by DNSSEC [RFC4033] [RFC4034]
[RFC4035]. This extension enables a TLS client to perform DANE authentication [RFC6698]
[REC7671] of a TLS server without the need to perform out-of-band DNS lookups. Retrieval of the
required DNS records may be unavailable to the client [DISCOVERY] or may incur undesirable
additional latency.

The extension described here allows a TLS client to request that the TLS server return the
DNSSEC authentication chain corresponding to its DNSSEC-validated DANE TLSA resource record
set (RRset) or authenticated denial of existence of such an RRset (as described in Section 2.3.1). If
the server supports this extension, it performs the appropriate DNS queries, builds the
authentication chain, and returns it to the client. The server will typically use a previously
cached authentication chain, but it will need to rebuild it periodically as described in Section 4.
The client then authenticates the chain using a preconfigured DNSSEC trust anchor.

In the absence of TLSA records, this extension conveys the required authenticated denial of
existence. Such proofs are needed to securely signal that specified TLSA records are not available
so that TLS clients can safely fall back to authentication based on Public Key Infrastructure X.509
(PKIX, sometimes called WebPK]) if allowed by local policy. These proofs are also needed to avoid
downgrade from opportunistic authenticated TLS (when DANE TLSA records are present) to
unauthenticated opportunistic TLS (in the absence of DANE). Denial-of-existence records are also
used by the TLS client to clear extension pins that are no longer relevant, as described in Section
7.

This extension supports DANE authentication of either X.509 certificates or raw public keys, as
described in the DANE specification [RFC6698] [RFC7671] [RFC7250].

This extension also mitigates against an unknown key share (UKS) attack [DANE-UKS] when
using raw public keys since the server commits to its DNS name (normally found in its
certificate) via the content of the returned TLSA RRset.

Dukhovni, et al. Experimental Page 3

RFC 9102 TLS DNSSEC Chain August 2021

This experimental extension is developed outside the IETF and is published here to guide
implementation of the extension and to ensure interoperability among implementations.

1.1. Scope of the Experiment

The mechanism described in this document is intended to be used with applications on the wider
internet. One application of TLS well suited for the TLS DNSSEC Chain extension is DNS over TLS
[RFC7858]. In fact, one of the authentication methods for DNS over TLS is the mechanism
described in this document, as specified in Section 8.2.2 of [RFC8310].

The need for this mechanism when using DANE to authenticate a DNS-over-TLS resolver is
obvious, since DNS may not be available to perform the required DNS lookups. Other
applications of TLS would benefit from using this mechanism as well. The client sides of those
applications would not be required to be used on endpoints with a working DNSSEC resolver in
order for them to use the DANE authentication of the TLS service. Therefore, we invite other TLS
services to try out this mechanism as well.

In the TLS Working Group, concerns have been raised that the pinning technique as described in
Section 7 would complicate deployability of the TLS DNSSEC chain extension. The goal of the
experiment is to study these complications in real-world deployments. This experiment hopefully
will give the TLS Working Group some insight into whether or not this is a problem.

If the experiment is successful, it is expected that the findings of the experiment will result in an
updated document for Standards Track approval.

1.2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

2. DNSSEC Authentication Chain Extension

2.1. Protocol, TLS 1.2

A client MAY include an extension of type dnssec_chain in the (extended) ClientHello. The
extension_data field of this extension consists of the server's 16-bit TCP port number in
network (big-endian) byte order. Clients sending this extension MUST also send the Server Name
Identification (SNI) extension [RFC6066]. Together, these make it possible for the TLS server to
determine which authenticated TLSA RRset chain needs to be used for the dnssec_chain
extension.

Dukhovni, et al. Experimental Page 4

https://www.rfc-editor.org/rfc/rfc8310#section-8.2.2

RFC 9102 TLS DNSSEC Chain August 2021

When a server that implements (and is configured to enable the use of) this extension receives a
dnssec_chain extension in the ClientHello, it MUST first check whether the requested TLSA RRset
(based on the port number in this extension and hostname in the SNI extension) is associated
with the server. If the extension, the SNI hostname, or the port number is unsupported, the
server's extended ServerHello message MUST NOT include the dnssec_chain extension.

Otherwise, the server's extended ServerHello message MUST contain a serialized authentication
chain using the format described below. If the server does not have access to the requested DNS
chain -- for example, due to a misconfiguration or expired chain -- the server MUST omit the
extension rather than send an incomplete chain. Clients that are expecting this extension MUST
interpret this as a downgrade attack and MUST abort the TLS connection. Therefore, servers
MUST send denial-of-existence proofs unless, for the particular application protocol or service,
clients are expected to continue even in the absence of such a proof. As with all TLS extensions, if
the server does not support this extension, it will not return any authentication chain.

The set of supported combinations of a port number and SNI name may be configured explicitly
by server administrators or could be inferred from the available certificates combined with a list
of supported ports. It is important to note that the client's notional port number may be different
from the actual port on which the server is receiving connections.

Differences between the client's notional port number and the actual port at the server could be
a result of intermediate systems performing network address translation or a result of a redirect
via HTTPS or SVCB records (both defined in [DNSOP-SVCB-HTTPS]).

Though a DNS zone's HTTPS or SVCB records may be signed, a client using this protocol might not
have direct access to a validating resolver and might not be able to check the authenticity of the
target port number or hostname. In order to avoid downgrade attacks via forged DNS records,
the SNI name and port number inside the client extension MUST be based on the original SNI
name and port and MUST NOT be taken from the encountered HTTPS or SVCB record. The client
supporting this document and HTTPS or SVCB records MUST still use the HTTPS or SVCB records
to select the target transport endpoint. Servers supporting this extension that are targets of
HTTPS or SVCB records MUST be provisioned to process client extensions based on the client's
logical service endpoint's SNI name and port as it is prior to HTTPS or SVCB indirection.

2.2. Protocol, TLS 1.3

In TLS 1.3 [RFC8446], when the server receives the dnssec_chain extension, it adds its
dnssec_chain extension to the extension block of the Certificate message containing the end-
entity certificate being validated rather than to the extended ServerHello message.

The extension protocol behavior otherwise follows that specified for TLS version 1.2 [RFC5246].

Dukhovni, et al. Experimental Page 5

RFC 9102 TLS DNSSEC Chain August 2021

2.3. DNSSEC Authentication Chain Data

The extension_data field of the client's dnssec_chain extension MUST contain the server's 16-
bit TCP port number in network (big-endian) byte order:

struct {
uint16 PortNumber;
} DnssecChainExtension;

The extension_data field of the server's dnssec_chain extension MUST contain a DNSSEC
authentication chain encoded in the following form:

struct {

uint16 ExtSupportLifetime;

opaque AuthenticationChain<1..2%16-1>
} DnssecChainExtension;

The ExtSupportLifetime value is the number of hours that the TLS server has committed itself to
serving this extension. A value of zero prohibits the client from unilaterally requiring ongoing
use of the extension based on prior observation of its use (extension pinning). This is further
described in Section 7.

The AuthenticationChain is composed of a sequence of uncompressed wire format DNS RRs
(including all requisite RRSIG RRs [RFC4034]) in no particular order. The format of the resource
record is described in [RFC1035], Section 3.2.1.

RR = { owner, type, class, TTL, RDATA length, RDATA }
The order of returned RRs is unspecified, and a TLS client MUST NOT assume any ordering of RRs.

Use of DNS wire format records enables easier generation of the data structure on the server and
easier verification of the data on the client by means of existing DNS library functions.

The returned RRsets MUST contain either the TLSA RRset or the associated denial-of-existence
proof of the configured (and requested) SNI name and port. In either case, the chain of RRsets
MUST be accompanied by the full set of DNS records needed to authenticate the TLSA record set
or its denial of existence up the DNS hierarchy to either the root zone or another trust anchor
mutually configured by the TLS server and client.

When some subtree in the chain is subject to redirection via DNAME records, the associated
inferred CNAME records need not be included. They can be inferred by the DNS validation code
in the client. Any applicable ordinary CNAME records that are not synthesized from DNAME
records MUST be included along with their RRSIGs.

Dukhovni, et al. Experimental Page 6

https://www.rfc-editor.org/rfc/rfc1035#section-3.2.1

RFC 9102 TLS DNSSEC Chain August 2021

In case of a server-side DNS problem, servers may be unable to construct the authentication
chain and would then have no choice but to omit the extension.

In the case of a denial-of-existence response, the authentication chain MUST include all DNSSEC-
signed records, starting with those from the trust anchor zone, that chain together to reach a
proof of either:

* the nonexistence of the TLSA records (possibly redirected via aliases) or

* an insecure delegation above or at the (possibly redirected) owner name of the requested
TLSA RRset.

Names that are aliased via CNAME and/or DNAME records may involve multiple branches of the
DNS tree. In this case, the authentication chain structure needs to include DS and DNSKEY record
sets that cover all the necessary branches.

The returned chain SHOULD also include the DNSKEY RRsets of all relevant trust anchors
(typically just the root DNS zone). Though the same trust anchors are presumably also
preconfigured in the TLS client, including them in the response from the server permits TLS
clients to use the automated trust anchor rollover mechanism defined in [RFC5011] to update
their configured trust anchors.

Barring prior knowledge of particular trust anchors that the server shares with its clients, the
chain constructed by the server MUST be extended as closely as possible to the root zone.
Truncation of the chain at some intermediate trust anchor is generally only appropriate inside
private networks where all clients and the server are expected to be configured with DNS trust
anchors for one or more non-root domains.

The following is an example of the records in the AuthenticationChain structure for the HTTPS
server at www.example.com, where there are zone cuts at com and example.com (record data are
omitted here for brevity):

_443._tcp.www.example.com. TLSA
RRSIG(_443._tcp.www.example.com. TLSA)
example.com. DNSKEY

RRSIG(example.com. DNSKEY)
example.com. DS

RRSIG(example.com. DS)

com. DNSKEY
RRSIG(com. DNSKEY)
com. DS

RRSIG(com. DS)

. DNSKEY

RRSIG(. DNSKEY)

Dukhovni, et al. Experimental Page 7

RFC 9102 TLS DNSSEC Chain August 2021

The following is an example of denial of existence for a TLSA RRset at
_443 . _tcp.www.example.com. The NSEC record in this example asserts the nonexistence of both
the requested RRset and any potentially relevant wildcard records.

www .example.com. IN NSEC example.com. A NSEC RRSIG
RRSIG(www.example.com. NSEC)
example.com. DNSKEY
RRSIG(example.com. DNSKEY)
example.com. DS
RRSIG(example.com. DS)

com. DNSKEY

RRSIG(com. DNSKEY)

com. DS

RRSIG(com. DS)

. DNSKEY

RRSIG(. DNSKEY)

The following is an example of (hypothetical) insecure delegation of example.com from the .com
zone. This example shows NSEC3 records [RFC5155] with opt-out.

; covers example.com

onib9mgub9hBrml3cdf5bgrj59dkjhvj.com. NSEC3 (1 1 © -
onib9mgub9h@rml3cdf5bgrj59dkjhvl NS DS RRSIG)

RRSIG(onib9mgub9h@rml3cdf5bgrj59dkjhvij.com. NSEC3)

; covers *.com

3rl2r262egdnlap50lhae7mah2ah@9hi.com. NSEC3 (1 1 0 -
3rl2r262eg@Bnlap50lhae7mah2ah@9hk NS DS RRSIG)

RRSIG(3rl2r262egdnlap50lhae7mah2ah89hj.com. NSEC3)

; closest-encloser "com"

ckBpojmg8741jref7efn8430qvit8bsm.com. NSEC3 (1 1 0 -
ck@pojmg8741jref7efn8430qvit8bsm.com
NS SOA RRSIG DNSKEY NSEC3PARAM)

RRSIG(ck@pojmg8741jref7efn8430qvit8bsm.com. NSEC3)

com. DNSKEY

RRSIG(com. DNSKEY)

com. DS

RRSIG(com. DS)

. DNSKEY

RRSIG(. DNSKEY)

2.3.1. Authenticated Denial of Existence

TLS servers that support this extension and respond to a request containing this extension that
do not have a signed TLSA record for the configured (and requested) SNI name and port MUST
instead return a DNSSEC chain that provides authenticated denial of existence for the configured
SNI name and port. A TLS client receiving proof of authenticated denial of existence MUST use an
alternative method to verify the TLS server identity or close the connection. Such an alternative
could be the classic PKIX model of preinstalled root certificate authorities (CAs).

Dukhovni, et al. Experimental Page 8

RFC 9102 TLS DNSSEC Chain August 2021

Authenticated denial chains include NSEC or NSEC3 records that demonstrate one of the
following facts:

» The TLSA record (after any DNSSEC-validated alias redirection) does not exist.

* There is no signed delegation to a DNS zone that is either an ancestor of or the same as the
TLSA record name (after any DNSSEC-validated alias redirection).

3. Construction of Serialized Authentication Chains

This section describes a possible procedure for the server to use to build the serialized DNSSEC
chain.

When the goal is to perform DANE authentication [RFC6698] [RFC7671] of the server, the DNS
record set to be serialized is a TLSA record set corresponding to the server's domain name,
protocol, and port number.

The domain name of the server MUST be that included in the TLS server_name (SNI) extension
[RFC6066]. If the server does not recognize the SNI name as one of its own names but wishes to
proceed with the handshake rather than abort the connection, the server MUST NOT send a
dnssec_chain extension to the client.

The name in the client's SNI extension MUST NOT be CNAME expanded by the server. The TLSA
base domain (Section 3 of [RFC6698]) SHALL be the hostname from the client's SNI extension, and
the guidance in Section 7 of [RFC7671] does not apply. See Section 9 for further discussion.

The TLSA record to be queried is constructed by prepending underscore-prefixed port number
and transport name labels to the domain name as described in [RFC6698]. The port number is
taken from the client's dnssec_chain extension. The transport name is "tcp" for TLS servers and
"udp" for DTLS servers. The port number label is the leftmost label, followed by the transport
name label, followed by the server domain name (from SNI).

The components of the authentication chain are typically built by starting at the target record set
and its corresponding RRSIG, then traversing the DNS tree upwards towards the trust anchor
zone (normally the DNS root). For each zone cut, the DNSKEY, DS RRsets, and their signatures are
added. However, see Section 2.3 for specific processing needed for aliases. If DNS response
messages contain any domain names utilizing name compression [RFC1035], then they MUST be
uncompressed prior to inclusion in the chain.

Implementations of EDNS CHAIN query requests as specified in [RFC7901] may offer an easier
way to obtain all of the chain data in one transaction with an upstream DNSSEC-aware recursive
server.

4. Caching and Regeneration of the Authentication Chain

DNS records have Time To Live (TTL) parameters, and DNSSEC signatures have validity periods
(specifically signature expiration times). After the TLS server constructs the serialized
authentication chain, it SHOULD cache and reuse it in multiple TLS connection handshakes.

Dukhovni, et al. Experimental Page 9

https://www.rfc-editor.org/rfc/rfc6698#section-3
https://www.rfc-editor.org/rfc/rfc7671#section-7

RFC 9102 TLS DNSSEC Chain August 2021

However, it SHOULD refresh and rebuild the chain as TTL values require. A server
implementation could carefully track TTL parameters and requery component records in the
chain correspondingly. Alternatively, it could be configured to rebuild the entire chain at some
predefined periodic interval that does not exceed the DNS TTLs of the component records in the
chain. If a record in the chain has a very short TTL (e.g., 0 up to a few seconds), the server MAY
decide to serve the authentication chain a few seconds past the minimum TTL in the chain. This
allows an implementation to dedicate a process or single thread to building the authentication
chain and reuse it for more than a single waiting TLS client before needing to rebuild the
authentication chain.

5. Expired Signatures in the Authentication Chain

A server MAY look at the signature expiration of RRSIG records. While these should never expire
before the TTL of the corresponding DNS record is reached, if this situation is nevertheless
encountered, the server MAY lower the TTL to prevent serving expired RRSIGs if possible. If the
signatures are already expired, the server MUST still include these records in the authentication
chain. This allows the TLS client to either support a grace period for staleness or give a detailed
error, either as a log message or a message to a potential interactive user of the TLS connection.
The TLS client SHOULD handle expired RRSIGs similarly to how it handles expired PKIX
certificates.

6. Verification

A TLS client performing DANE-based verification might not need to use this extension. For
example, the TLS client could perform DNS lookups and DANE verification without this
extension, or it could fetch authentication chains via another protocol. If the TLS client already
possesses a valid TLSA record, it MAY bypass use of this extension. However, if it includes this
extension, it MUST use the TLS server reply to update the extension pinning status of the TLS
server's extension lifetime. See Section 7.

A TLS client making use of this specification that receives a valid DNSSEC authentication chain
extension from a TLS server MUST use this information to perform DANE authentication of the
TLS server. In order to perform the validation, it uses the mechanism specified by the DNSSEC
protocol [RFC4035] [RFC5155]. This mechanism is sometimes implemented in a DNSSEC
validation engine or library.

If the authentication chain validates, the TLS client then performs DANE authentication of the
server according to the DANE TLS protocol [RFC6698] [REC7671].

Clients MAY cache the server's validated TLSA RRset to amortize the cost of receiving and
validating the chain over multiple connections. The period of such caching MUST NOT exceed the
TTL associated with those records. A client that possesses a validated and unexpired TLSA RRset
or the full chain in its cache does not need to send the dnssec_chain extension for subsequent
connections to the same TLS server. It can use the cached information to perform DANE
authentication.

Dukhovni, et al. Experimental Page 10

RFC 9102 TLS DNSSEC Chain August 2021

Note that when a client and server perform TLS session resumption, the server sends no
dnssec_chain. This is particularly clear with TLS 1.3, where the certificate message to which the
chain might be attached is also not sent on resumption.

7. Extension Pinning

TLS applications can be designed to unconditionally mandate this extension. Such TLS clients
requesting this extension would abort a connection to a TLS server that does not respond with an
extension reply that can be validated.

However, in a mixed-use deployment of PKIX and DANE, there is the possibility that the security
of a TLS client is downgraded from DANE to PKIX. This can happen when a TLS client connection
is intercepted and redirected to a rogue TLS server presenting a TLS certificate that is considered
valid from a PKIX point of view but does not match the legitimate server's TLSA records. By
omitting this extension, such a rogue TLS server could downgrade the TLS client to validate the
mis-issued certificate using only PKIX and not via DANE, provided the TLS client is also not able
to fetch the TLSA records directly from DNS.

The ExtSupportLifetime element of the extension provides a countermeasure against such
downgrade attacks. Its value represents the number of hours that the TLS server (or cluster of
servers serving the same server name) commits to serving this extension in the future. This is
referred to as the "pinning time" or "extension pin" of the extension. A non-zero extension pin
value received MUST ONLY be used if the extension also contains a valid TLSA authentication
chain that matches the server's certificate chain (the server passes DANE authentication based on
the enclosed TLSA RRset).

Any existing extension pin for the server instance (name and port) MUST be cleared on receipt of
a valid denial of existence for the associated TLSA RRset. The same also applies if the client
obtained the denial-of-existence proof via another method, such as through direct DNS queries.
Based on the TLS client's local policy, it MAY then terminate the connection or MAY continue
using PKIX-based server authentication.

Extension pins MUST also be cleared upon the completion of a DANE-authenticated handshake
with a server that returns a dnssec_chain extension with a zero ExtSupportLifetime.

Upon completion of a fully validated handshake with a server that returns a dnssec_chain
extension with a non-zero ExtSupport lifetime, the client MUST update any existing pin lifetime
for the service (name and port) to a value that is not longer than that indicated by the server. The
client MAY, subject to local policy, create a previously nonexistent pin, again for a lifetime that is
not longer than that indicated by the server.

The extension support lifetime is not constrained by any DNS TTLs or RRSIG expirations in the
returned chain. The extension support lifetime is the time for which the TLS server is committing
itself to serve the extension; it is not a validity time for the returned chain data. During this
period, the DNSSEC chain may be updated. Therefore, the ExtSupportLifetime value is not
constrained by any DNS TTLs or RRSIG expirations in the returned chain.

Dukhovni, et al. Experimental Page 11

RFC 9102 TLS DNSSEC Chain August 2021

Clients MAY implement support for a subset of DANE certificate usages. For example, clients may
support only DANE-EE(3) and DANE-TA(2) [RFC7218], only PKIX-EE(1) and PKIX-TA(0), or all four.
Clients that implement DANE-EE(3) and DANE-TA(2) MUST implement the relevant updates in
[REC7671].

For a non-zero saved value ("pin") of the ExtSupportLifetime element of the extension, TLS
clients that do not have a cached TLSA RRset with an unexpired TTL MUST use the extension for
the associated name and port to obtain this information from the TLS server. This TLS client then
MUST require that the TLS server respond with this extension, which MUST contain a valid TLSA
RRset or proof of nonexistence of the TLSA RRset that covers the requested name and port. Note
that a nonexistence proof or proof of insecure delegation will clear the pin. The TLS client MUST
require this for as long as the time period specified by the pin value, independent of the DNS
TTLs. During this process, if the TLS client fails to receive this information, it MUST either abort
the connection or delay communication with the server via the TLS connection until it is able to
obtain valid TLSA records (or proof of nonexistence) out of band, such as via direct DNS lookups.
If attempts to obtain the TLSA RRset out of band fail, the client MUST abort the TLS connection. It
MAY try a new TLS connection again (for example, using an exponential back-off timer) in an
attempt to reach a different TLS server instance that does properly serve the extension.

A TLS client that has a cached validated TLSA RRset and a valid non-zero extension pin time MAY
still refrain from requesting the extension as long as it uses the cached TLSA RRset to
authenticate the TLS server. This RRset MUST NOT be used beyond its received TTL. Once the
TLSA RRset's TTL has expired, the TLS client with a valid non-zero extension pin time MUST
request the extension and MUST abort the TLS connection if the server responds without the
extension. A TLS client MAY attempt to obtain the valid TLSA RRset by some other means before
initiating a new TLS connection.

Note that requiring the extension is NOT the same as requiring the use of DANE TLSA records or
even DNSSEC. A DNS zone operator may at any time delete the TLSA records or even remove the
DS records to disable the secure delegation of the server's DNS zone. The TLS server will replace
the chain with the corresponding denial-of-existence chain when it updates its cached TLSA
authentication chain. The server's only obligation is continued support for this extension.

8. Trust Anchor Maintenance

The trust anchor may change periodically, e.g., when the operator of the trust anchor zone
performs a DNSSEC key rollover. TLS clients using this specification MUST implement a
mechanism to keep their trust anchors up to date. They could use the method defined in
[RFC5011] to perform trust anchor updates in-band in TLS by tracking the introduction of new
keys seen in the trust anchor DNSKEY RRset. However, alternative mechanisms external to TLS
may also be utilized. Some operating systems may have a system-wide service to maintain and
keep the root trust anchor up to date. In such cases, the TLS client application could simply
reference that as its trust anchor, periodically checking whether it has changed. Some
applications may prefer to implement trust anchor updates as part of their automated software
updates.

Dukhovni, et al. Experimental Page 12

RFC 9102 TLS DNSSEC Chain August 2021

9. Virtual Hosting

Delivery of application services is often provided by a third party on behalf of the domain owner
(hosting customer). Since the domain owner may want to be able to move the service between
providers, non-zero support lifetimes for this extension should only be enabled by mutual
agreement between the provider and domain owner.

When CNAME records are employed to redirect network connections to the provider's network,
as mentioned in Section 3, the server uses the client's SNI hostname as the TLSA base domain
without CNAME expansion. When the certificate chain for the service is managed by the
provider, it is impractical to coordinate certificate changes by the provider with updates in the
hosting customer's DNS. Therefore, the TLSA RRset for the hosted domain is best configured as a
CNAME from the customer's domain to a TLSA RRset that is managed by the provider as part of
delivering the hosted service. For example:

; Customer DNS

www .example.com. IN CNAME nodel.provider.example.

_443 . _tcp.www.example.com. IN CNAME _dane443.nodel.provider.example.
; Provider DNS

nodel.provider.example. IN A 192.0.2.1

_dane443 .nodel.provider.example. IN TLSA 1 1 1

Clients that obtain TLSA records directly from DNS, bypassing this extension, may perform
CNAME expansion as in Section 7 of [RFC7671]. If TLSA records are associated with the fully
expanded name, that name may be used as the TLSA base domain and SNI name for the TLS
handshake.

To avoid confusion, it is RECOMMENDED that server operators not publish TLSA RRs (_port._tcp. +
base domain) based on the expanded CNAMEs used to locate their network addresses. Instead,
the server operator SHOULD publish TLSA RRs at an alternative DNS node (as in the example
above), to which the hosting customer will publish a CNAME alias. This results in all clients
(whether they obtain TLSA records from DNS directly or employ this extension) seeing the same
TLSA records and sending the same SNI name.

10. Operational Considerations

When DANE is being introduced incrementally into an existing PKIX environment, there may bhe
scenarios in which DANE authentication for a server fails but PKIX succeeds, or vice versa. What
happens here depends on TLS client policy. If DANE authentication fails, the client may decide to
fall back to regular PKIX authentication. In order to do so efficiently within the same TLS
handshake, the TLS server needs to have provided the full X.509 certificate chain. When TLS
servers only support DANE-EE or DANE-TA modes, they have the option to send a much smaller
certificate chain: just the EE certificate for the former and a short certificate chain from the

Dukhovni, et al. Experimental Page 13

https://www.rfc-editor.org/rfc/rfc7671#section-7

RFC 9102 TLS DNSSEC Chain August 2021

DANE trust anchor to the EE certificate for the latter. If the TLS server supports both DANE and
regular PKIX and wants to allow efficient PKIX fallback within the same handshake, they should
always provide the full X.509 certificate chain.

When a TLS server operator wishes to no longer deploy this extension, it must properly
decommission its use. If a non-zero pin lifetime is presently advertised, it must first be changed
to 0. The extension can be disabled once all previously advertised pin lifetimes have expired.
Removal of TLSA records or even DNSSEC signing of the zone can be done at any time, but the
server MUST still be able to return the associated denial-of-existence proofs to any clients that
have unexpired pins.

TLS clients MAY reduce the received extension pin value to a maximum set by local policy. This
can mitigate a theoretical yet unlikely attack where a compromised TLS server is modified to
advertise a pin value set to the maximum of 7 years. Care should be taken not to set a local
maximum that is too short as that would reduce the downgrade attack protection that the
extension pin offers.

If the hosting provider intends to use end-entity TLSA records (certificate usage PKIX-EE(1) or
DANE-EE(3)), then the simplest approach is to use the same key pair for all the certificates at a
given hosting node and publish "1 1 1" or "3 1 1" RRs matching the common public key. Since key
rollover cannot be simultaneous across multiple certificate updates, there will be times when
multiple "1 1 1" (or "3 1 1") records will be required to match all the extant certificates. Multiple
TLSA records are, in any case, needed a few TTLs before certificate updates as explained in
Section 8 of [RFC7671].

If the hosting provider intends to use trust anchor TLSA records (certificate usage PKIX-TA(0) or
DANE-TA(2)), then the same TLSA record can match all end-entity certificates issues by the
certification authority in question and continues to work across end-entity certificate updates so
long as the issuer certificate or public keys remain unchanged. This can be easier to implement
at the cost of greater reliance on the security of the selected certification authority.

The provider can, of course, publish separate TLSA records for each customer, which increases
the number of such RRsets that need to be managed but makes each one independent of the rest.

11. Security Considerations

The security considerations of the normatively referenced RFCs all pertain to this extension.
Since the server is delivering a chain of DNS records and signatures to the client, it MUST rebuild
the chain in accordance with TTL and signature expiration of the chain components as described
in Section 4. TLS clients need roughly accurate time in order to properly authenticate these
signatures. This could be achieved by running a time synchronization protocol like NTP
[RFC5905] or SNTP [RFC5905], which are already widely used today. TLS clients MUST support a
mechanism to track and roll over the trust anchor key or be able to avail themselves of a service
that does this, as described in Section 8. Security considerations related to mandating the use of
this extension are described in Section 7.

Dukhovni, et al. Experimental Page 14

https://www.rfc-editor.org/rfc/rfc7671#section-8

RFC 9102 TLS DNSSEC Chain August 202