Network Working Group R. Fielding

Request for Comments: 2068 UC Irvine
Category: Standards Track J. Gettys
J. Mogul
DEC
H. Frystyk
T. Berners-Lee
MIT/LCS

January 1997

Hypertext Transfer Protocol -- HTTP/1.1

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level

protocol for distributed, collaborative, hypermedia information

systems. It is a generic, stateless, object-oriented protocol which

can be used for many tasks, such as name servers and distributed
object management systems, through extension of its request methods.
A feature of HTTP is the typing and negotiation of data

representation, allowing systems to be built independently of the

data being transferred.

HTTP has been in use by the World-Wide Web global information
initiative since 1990. This specification defines the protocol
referred to as "HTTP/1.1".

Table of Contents

1 INtroducCtion.......ccccvvvivieeeiiiiee e 7

1.1 PUIMPOSE ... 7

1.2 REqUIrEMENLS ...vvveeeveeeeeeieccciiiineee e e e e 7

1.3 Terminologycccceevviieeeeeiniiiiee i 8

1.4 Overall Operationccccceevveveeeeennnnen. 11

2 Notational Conventions and Generic Gramma.............. 13
2.1 Augmented BNF ... 13
2.2BasiCRUIESccooeviivieiiiie e, 15

3 Protocol Parameters........ccooeoeeevevvvveeieeereennn, 17

B3I HTTP VErSION .occvvveiveeeeeeeeeeeeeeeeeean, 17

Fielding, et. al. Standards Track [Page 1]

RFC 2068 HTTP/1.1 January 1997

3.2 Uniform Resource Identifierscccceeeeeee. 18
3.2.1 General SyntaXccccceeevviiieeeenninn. 18
3.22http URL oo 19
3.2.3 URI COMPAriSONcceeeveiiiiiiiiiiieeeaaann 20

3.3 Date/Time FOrmatscccceeeeeeeeeeninininns 21
3.3 LFUll DAt ..oeeveeviiiieeeeiiiiiee e 21
3.3.2 Delta Secondscoocvveveeiiiiiieeennnne, 22

3.4 Character Setsccccovvveveeiiiiieeeeeiin, 22

3.5 Content CodiNgscoeevviriieeiniiiieeeeee, 23

3.6 Transfer Codingscccoeevviiiiiiiiiiieenenenn. 24

3.7 Media TYPES ...uvvvveiiiieeeeee e 25
3.7.1 Canonicalization and Text Defaults 26
3.7.2 Multipart TYPES ...coeeevvvvviviiieieeeeeeeeennn 27

3.8 Product TOKENScccovvviiiiiiiiiiceceeeen 28

3.9 Quality Valuesccccvevviiiiiiciniiieeen 28

3.10 Language Tagscoovvevrereemmeemnnninnnnnnnnens 28

3. 11 ENtity TAGS «oooooeeeiiveeeieeeeeee e 29

3.12 Range UNitScooovvviiiiiiiieeeeceee e 30

A HTTP MeSSage........cccvvvveveeeeeeeieeennernnnennnnnnns 30

4.1 MeSSage TYPES ...ccovvvrvrrrrrrnrinineeeeeeneeenns 30

4.2 Message Headersccooccveveiniiieeennnnn 31

4.3 Message Bodyccccvviiiiiiiiiiiiiis 32

4.4 Message Lengthcccooviiiiiiiinnn, 32

4.5 General Header Fieldsccccoecviveennnnee 34

5 REQUEST....cciiiie i 34

5.1 Request-Linecccceevvviieieiiiiiiieee, 34
5.1.1 Methodocoovviiveeiiiiee e 35
5.1.2 Request-URIooooiiiiiiiiiiiiiiinnn, 35

5.2 The Resource Identified by a Request 37
5.3 Request Header Fieldsccccvvvvnneeen. 37

6 RESPONSE.....coeveveeeeeeeeeeeieie s 38

6.1 Status-LiNeccceeevviivciiiieiieeee e 38
6.1.1 Status Code and Reason Phrase 39
6.2 Response Header Fieldsccccccceeiiiinnnnns 41

T ENHLY o 41

7.1 Entity Header Fieldscccccvvvvvennnn. 41

7.2 Entity BOAY ..oovvveeeeiiiiiiieeeeeee e 42
721 TYPE oo 42
7.2.2Length ..o 43

8 CONNECLIONS. ... 43

8.1 Persistent CoNNECLiONSocecvvvvveeeenn. 43
8.1.1 PUIPOSE ..ottt 43
8.1.2 Overall Operationcccccveveeeeeerinnnnns 44
8.1.3 Proxy Serverscccccoeccvvrvveeeeneeennnnn 45
8.1.4 Practical Considerationsccccueeeee.. 45
8.2 Message Transmission Requirements 46

9 Method Definitions............cccveeeeeiieiinnniiis 48

9.1 Safe and Idempotent Methodscuoee..... 48

Fielding, et. al. Standards Track [Page 2]

RFC 2068 HTTP/1.1 January 1997

9.1.1 Safe Methodscccoovviiieeiiiiiienenne 48

9.1.2 Idempotent Methodscccccuveeeeiiinienn. 49

9.2 OPTIONS ...ttt 49

9.3 GET wtiiiiiiiiiieee et 50

9.4 HEAD ...ttt 50

9.5 POST oottt 51

9.6 PUT i 52

9.7 DELETE ...coveiiiieeeeceee e, 53
9.8TRACE ... 53

10 Status Code Definitions.......cccceeeveeeeeeeeennnn. 53

10.1 Informational IXXccoovvivvvriveeeennnennn. 54
10.1.1 100 CONtINUE ...evevvviiieeeiiiieee e 54
10.1.2 101 Switching Protocolscccccvveeenn. 54
10.2 Successful 2XX ..uvvvviiiiiiiieiiieeeeeeeeeeee, 54
10.2.1 200 OK ..evviieeeiiiiiee et 54
10.2.2 201 Createdccovvvvvvvvvvvvnrniniieennn, 55
10.2.3 202 Acceptedcoooviiiiiiiiiiiieieeeee, 55
10.2.4 203 Non-Authoritative Information 55
10.2.5 204 No Contentccceveeeveereeennniinnns 55
10.2.6 205 Reset Contentccceevvvvveveeennns 56
10.2.7 206 Partial Contentccccvvvvvnnnnnn. 56

10.3 Redirection 3XXcccceeevviiiiiiiiiiiiiniinnns 56
10.3.1 300 Multiple Choicesccccuvveeeerennnn. 57
10.3.2 301 Moved Permanentlycccoeeennnns 57
10.3.3 302 Moved Temporarilycccccvvvveeereeennn. 58
10.3.4 303 See Othercceeeeeeeeieiiiiiiiiiiiieen, 58
10.3.5 304 Not Modifiedccccceevvviveeeennnn. 58
10.3.6 305 USE ProXyeeeeeeiiiiiiniiiaieeeeeeenn, 59

10.4 Client Error 4XXcccceeeiiiiniiiiiieieeeeenn. 59
10.4.1 400 Bad Requestccoeevevvvvvneennnnn. 60
10.4.2 401 Unauthorizedccocceeevviieeeennns 60
10.4.3 402 Payment Requiredcoccvveeernnnen. 60
10.4.4 403 Forbiddenccccccvvveiciieenennnn. 60
10.4.5 404 Not Foundcccccvevvivvveeeeninnnnnn. 60
10.4.6 405 Method Not Allowedcc.cuuee 61
10.4.7 406 Not Acceptableccccvvvvveeeeennn. 61
10.4.8 407 Proxy Authentication Required 61
10.4.9 408 Request TImeoutccccvvveveereennnnn. 62
10.4.10 409 Conflictcccvvvveeiiiieee i, 62
10.4.11 420 GONE ..covvvvereeeiiiee e 62
10.4.12 411 Length Requiredcccccceeverinnnne 63
10.4.13 412 Precondition Failed 63
10.4.14 413 Request Entity Too Largec......... 63
10.4.15 414 Request-URI Too Longcccuvveeee. 63
10.4.16 415 Unsupported Media Typeccceeeernnes 63
10.5 Server Error 5XX ...covvvvveviiiiieeeiiiiiinieeaes 64
10.5.1 500 Internal Server Errorcccoeeeueee 64
10.5.2 501 Not Implementedcccccvvveeeeeennn. 64

Fielding, et. al. Standards Track [Page 3]

RFC 2068 HTTP/1.1 January 1997

10.5.3 502 Bad Gatewaycccccvveeeeeereiiinnnns 64
10.5.4 503 Service Unavailable 64
10.5.5 504 Gateway TiMeoUtcceevrvveeeernns 64
10.5.6 505 HTTP Version Not Supported 65
11 Access Authentication...........cccccevvcvvereerrenn. 65
11.1 Basic Authentication Schemecc.cc.... 66
11.2 Digest Authentication Schemecccc.......... 67
12 Content Negotiation..........ccccoevveeeeriiiieenennns 67
12.1 Server-driven Negotiationcccceeuuee. 68
12.2 Agent-driven Negotiationcccuvvnneee. 69
12.3 Transparent Negotiationccccuvvneee. 70
13 Caching iN HTTP...uvvvviieeeiiiiieeeeeeeee 70
13.1.1 Cache COITeCtnessccceevervrerneneennnn 72
13.2.2 Warningscccceeeeviveeeeninineneeene 73
13.1.3 Cache-control Mechanisms 74
13.1.4 Explicit User Agent Warnings 74
13.1.5 Exceptions to the Rules and Warnings 75
13.1.6 Client-controlled Behavior 75
13.2 Expiration Modelcccccccevvviicniiivnennnnn. 75
13.2.1 Server-Specified Expiration 75
13.2.2 Heuristic Expirationc.cccccveeeennne 76
13.2.3 Age Calculationsccccuveeeeeeeeennnnn. 77
13.2.4 Expiration Calculations 79
13.2.5 Disambiguating Expiration Values 80
13.2.6 Disambiguating Multiple Responses 80
13.3 Validation Modelcccocvvvevieeeeeninnnns 81
13.3.1 Last-modified Datesccccceeveeeeennnn. 82
13.3.2 Entity Tag Cache Validators 82
13.3.3 Weak and Strong Validatorsccc........ 82
13.3.4 Rules for When to Use Entity Tags and Last-
modified Dates..........ccoovvevrreeinnienneeeee 85
13.3.5 Non-validating Conditionals 86
13.4 Response Cachabilitycccoccuveveenne 86
13.5 Constructing Responses From Caches 87
13.5.1 End-to-end and Hop-by-hop Headers 88
13.5.2 Non-modifiable Headerscccccoueeee. 88
13.5.3 Combining Headersccccvvvvveeennn. 89
13.5.4 Combining Byte Rangesccccccvveernnee 90
13.6 Caching Negotiated Responsescccccee..... 90
13.7 Shared and Non-Shared Cachesc.cccc........ 91
13.8 Errors or Incomplete Response Cache Behavior 91
13.9 Side Effects of GET and HEADcceenee. 92
13.10 Invalidation After Updates or Deletions 92
13.11 Write-Through Mandatoryccceeeennes 93
13.12 Cache Replacementccccceeevviinieeennnns 93
13.13 History LiStScccooviiiiiiiiiiiieiieeeeeee 93
14 Header Field Definitions.............ccoccoveennnnen. 94
14,1 ACCEPL v 95

Fielding, et. al. Standards Track [Page 4]

RFC 2068 HTTP/1.1 January 1997

14.2 Accept-Charsetcccccveeeevviiiccniviineennnn. 97

14.3 Accept-Encodingcccceeevviivieeieniiinennn. 97
14.4 Accept-Languageccccceeevvinnirnnnennnenn. 98
14.5 Accept-Rangescccceeeeeiiiiiinieieeeeeeen, 99

146 AQE oo 99

147 AlIOW .ooeeviiiiiiiiie e 100

14.8 Authorizationccccccevvviieeeniiiiennen, 100

14.9 Cache-Controlcccccvveeeeeiiiiiiiinnen, 101
14.9.1 What is Cachablecccccccceerininnnns 103
14.9.2 What May be Stored by Caches 103
14.9.3 Modifications of the Basic Expiration Mechanism 104
14.9.4 Cache Revalidation and Reload Controls 105
14.9.5 No-Transform Directivecceeeenne 107
14.9.6 Cache Control Extensionscc........ 108
14.10 CoNNECLION ... 109
14.11 Content-Basecccceeeveeiiiiiiiiieininnnn, 109
14.12 Content-Encodingooovcuvvviveeeneennnnn. 110
14.13 Content-Languagecccoevevvvevvenneeneennne 110
14.14 Content-Lengthccccooviiviiiinnnnnnen. 111
14.15 Content-Locationcccccvvvveeereeennn. 112
14.16 Content-MD5ccceeeeiviiiiiee e 113
14.17 Content-Rangecccceeeeeiiiiiiiiiiiiennns 114
14.18 Content-TYpeccoeeeeeiiiiiiiiiiieeeeieiinns 116
1419 DAte ..ooveiiiieieee e 116

1420 ETAG «ovveiiveiieeeiiieeee e 117

14.21 EXPIFES .ooeviveeeieiiiiiieee e 117

14.22 FrOM v 118

1423 HOSt covvveeeeiiiieee e 119

14.24 If-Modified-Sinceccccoceveieeennnnns 119
14.25 If-Match ...occveeeieiie e, 121

14.26 If-None-Matchcccccovviiiiiiiinnnnn, 122
14.27 If-RANQGE ..ooooviiiiieiiieee e 123

14.28 If-Unmodified-Sincecccccccceeviinnnnnee. 124
14.29 Last-Modifiedccccoeeeeeiiiiiinns 124
14.30 LOCALION ...oevveeeiiiiiiiiiiiieeee e 125

14.31 Max-Forwardsc.cccccvveeniiineeennnnnnn, 125
14.32 Pragmacccvvveveeeeeeeieieinninnnennns 126

14.33 Proxy-Authenticateccccoecveeeennnnnn 127
14.34 Proxy-Authorizationcccceceveeeennnnne 127
14.35 PUBIIC ...ovvveiiiiiieee e 127

14.36 RANQEcoovviieeeieieeieie e 128
14.36.1 Byte Rangescccoeevvvvvviinneeeeennnnn. 128
14.36.2 Range Retrieval Requests 130
14.37 Referer ... 131

14.38 Retry-Aftercccvvieieiiiiieee e, 131

14.39 SEeIVer ..ccoooiiiiiiiiiieeee 132

14.40 Transfer-Encodingccccccccovviiinnnnee. 132
14.41 Upgradeccccovvveeeeeeeeeee i, 132

Fielding, et. al. Standards Track [Page 5]

RFC 2068 HTTP/1.1 January 1997

14.42 User-Agentooovvvveeeeeeeevnnnninnnnnnns 134

T4 43 VAIY oo 134

1444 Vi@ coccoecviiiiieiiie e 135

14.45 Warningeeeeeeveeeeeeniiniiiiiieeeen. 137

14.46 WWW-Authenticatecccccceeeeeriniinns 139

15 Security Considerations.........ccccccvveeeeeeiiinnnns 139

15.1 Authentication of Clientscccceeenee 139

15.2 Offering a Choice of Authentication Schemes 140
15.3 Abuse of Server Log Information 141
15.4 Transfer of Sensitive Information 141

15.5 Attacks Based On File and Path Names 142
15.6 Personal Informationcccccevvnnnenn. 143

15.7 Privacy Issues Connected to Accept Headers 143
15.8 DNS SpOOfingcevevvieveiiiiiiiiieeiiiiieennn 144

15.9 Location Headers and Spoofingcc...... 144

16 Acknowledgments...........cccceeeeriniiiiiiinenenn. 144

17 References.......ccouveeeeeiiiieiiiiiiiiieeee 146

18 Authors’ AddreSSeS.......ocvvvvveviiieeeeeiiienenn. 149

19 AppeNndiCeS........ccccvvvriiieiriee e ee e 150

19.1 Internet Media Type message/http 150
19.2 Internet Media Type multipart/byteranges 150
19.3 Tolerant Applicationscccccceeveiiinnnee 151

19.4 Differences Between HTTP Entities and

MIME ENttI€S.....cevviiiiiieee i 152

19.4.1 Conversion to Canonical Form 152
19.4.2 Conversion of Date Formats 153
19.4.3 Introduction of Content-Encoding 153
19.4.4 No Content-Transfer-Encoding 153
19.4.5 HTTP Header Fields in Multipart Body-Parts153
19.4.6 Introduction of Transfer-Encoding 154
19.4.7 MIME-VErSIONcooevveieiiiiiiieenniinn 154

19.5 Changes from HTTP/1.0ccoceeeriiiieennne 154
19.5.1 Changes to Simplify Multi-homed Web Servers and
Conserve IP Addressescccccceveeeeeniiiiiinnns 155

19.6 Additional Featuresccccceeeeriiiinnnnns 156

19.6.1 Additional Request Methods 156
19.6.2 Additional Header Field Definitions 156
19.7 Compatibility with Previous Versions 160
19.7.1 Compatibility with HTTP/1.0 Persistent
CONNECHIONS.....cooiiiiiiiiiieee e 161

Fielding, et. al. Standards Track [Page 6]

RFC 2068 HTTP/1.1 January 1997

1 Introduction
1.1 Purpose

The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypermedia information
systems. HTTP has been in use by the World-Wide Web global
information initiative since 1990. The first version of HTTP,

referred to as HTTP/0.9, was a simple protocol for raw data transfer
across the Internet. HTTP/1.0, as defined by RFC 1945 [6], improved
the protocol by allowing messages to be in the format of MIME-like
messages, containing metainformation about the data transferred and
modifiers on the request/response semantics. However, HTTP/1.0 does
not sufficiently take into consideration the effects of hierarchical
proxies, caching, the need for persistent connections, and virtual
hosts. In addition, the proliferation of incompletely-implemented
applications calling themselves "HTTP/1.0" has necessitated a
protocol version change in order for two communicating applications
to determine each other’s true capabilities.

This specification defines the protocol referred to as "HTTP/1.1".
This protocol includes more stringent requirements than HTTP/1.0 in
order to ensure reliable implementation of its features.

Practical information systems require more functionality than simple
retrieval, including search, front-end update, and annotation. HTTP
allows an open-ended set of methods that indicate the purpose of a
request. It builds on the discipline of reference provided by the
Uniform Resource Identifier (URI) [3][20], as a location (URL) [4] or
name (URN) , for indicating the resource to which a method is to be
applied. Messages are passed in a format similar to that used by
Internet mail as defined by the Multipurpose Internet Mail Extensions
(MIME).

HTTP is also used as a generic protocol for communication between
user agents and proxies/gateways to other Internet systems, including
those supported by the SMTP [16], NNTP [13], FTP [18], Gopher [2],
and WAIS [10] protocols. In this way, HTTP allows basic hypermedia
access to resources available from diverse applications.

1.2 Requirements

This specification uses the same words as RFC 1123 [8] for defining
the significance of each particular requirement. These words are:

MUST

This word or the adjective "required" means that the item is an
absolute requirement of the specification.

Fielding, et. al. Standards Track [Page 7]

RFC 2068 HTTP/1.1 January 1997

SHOULD
This word or the adjective "recommended" means that there may
exist valid reasons in particular circumstances to ignore this
item, but the full implications should be understood and the case
carefully weighed before choosing a different course.

MAY
This word or the adjective "optional" means that this item is
truly optional. One vendor may choose to include the item because
a particular marketplace requires it or because it enhances the
product, for example; another vendor may omit the same item.

An implementation is not compliant if it fails to satisfy one or more
of the MUST requirements for the protocols it implements. An
implementation that satisfies all the MUST and all the SHOULD
requirements for its protocols is said to be "unconditionally
compliant”; one that satisfies all the MUST requirements but not all
the SHOULD requirements for its protocols is said to be
"conditionally compliant."

1.3 Terminology

This specification uses a number of terms to refer to the roles
played by participants in, and objects of, the HTTP communication.

connection
A transport layer virtual circuit established between two programs
for the purpose of communication.

message
The basic unit of HTTP communication, consisting of a structured
sequence of octets matching the syntax defined in section 4 and
transmitted via the connection.

request
An HTTP request message, as defined in section 5.

response
An HTTP response message, as defined in section 6.

resource
A network data object or service that can be identified by a URI,
as defined in section 3.2. Resources may be available in multiple
representations (e.g. multiple languages, data formats, size,
resolutions) or vary in other ways.

Fielding, et. al. Standards Track [Page 8]

RFC 2068 HTTP/1.1 January 1997

entity
The information transferred as the payload of a request or
response. An entity consists of metainformation in the form of
entity-header fields and content in the form of an entity-body, as
described in section 7.

representation
An entity included with a response that is subject to content
negotiation, as described in section 12. There may exist multiple
representations associated with a particular response status.

content negotiation
The mechanism for selecting the appropriate representation when
servicing a request, as described in section 12. The
representation of entities in any response can be negotiated
(including error responses).

variant
A resource may have one, or more than one, representation(s)
associated with it at any given instant. Each of these
representations is termed a ‘variant.” Use of the term ‘variant’
does not necessarily imply that the resource is subject to content
negotiation.

client
A program that establishes connections for the purpose of sending
requests.

user agent
The client which initiates a request. These are often browsers,
editors, spiders (web-traversing robots), or other end user tools.

server
An application program that accepts connections in order to
service requests by sending back responses. Any given program may
be capable of being both a client and a server; our use of these
terms refers only to the role being performed by the program for a
particular connection, rather than to the program’s capabilities
in general. Likewise, any server may act as an origin server,
proxy, gateway, or tunnel, switching behavior based on the nature
of each request.

origin server
The server on which a given resource resides or is to be created.

Fielding, et. al. Standards Track [Page 9]

RFC 2068 HTTP/1.1 January 1997

proxy
An intermediary program which acts as both a server and a client
for the purpose of making requests on behalf of other clients.
Requests are serviced internally or by passing them on, with
possible translation, to other servers. A proxy must implement
both the client and server requirements of this specification.

gateway
A server which acts as an intermediary for some other server.
Unlike a proxy, a gateway receives requests as if it were the
origin server for the requested resource; the requesting client
may not be aware that it is communicating with a gateway.

tunnel
An intermediary program which is acting as a blind relay between
two connections. Once active, a tunnel is not considered a party
to the HTTP communication, though the tunnel may have been
initiated by an HTTP request. The tunnel ceases to exist when both
ends of the relayed connections are closed.

cache
A program’s local store of response messages and the subsystem
that controls its message storage, retrieval, and deletion. A
cache stores cachable responses in order to reduce the response
time and network bandwidth consumption on future, equivalent
requests. Any client or server may include a cache, though a cache
cannot be used by a server that is acting as a tunnel.

cachable
A response is cachable if a cache is allowed to store a copy of
the response message for use in answering subsequent requests. The
rules for determining the cachability of HTTP responses are
defined in section 13. Even if a resource is cachable, there may
be additional constraints on whether a cache can use the cached
copy for a particular request.

first-hand
A response is first-hand if it comes directly and without
unnecessary delay from the origin server, perhaps via one or more
proxies. A response is also first-hand if its validity has just
been checked directly with the origin server.

explicit expiration time

The time at which the origin server intends that an entity should
no longer be returned by a cache without further validation.

Fielding, et. al. Standards Track [Page 10]

RFC 2068 HTTP/1.1 January 1997

heuristic expiration time
An expiration time assigned by a cache when no explicit expiration
time is available.

age
The age of a response is the time since it was sent by, or
successfully validated with, the origin server.

freshness lifetime
The length of time between the generation of a response and its
expiration time.

fresh
A response is fresh if its age has not yet exceeded its freshness
lifetime.

stale
A response is stale if its age has passed its freshness lifetime.

semantically transparent
A cache behaves in a "semantically transparent” manner, with
respect to a particular response, when its use affects neither the
requesting client nor the origin server, except to improve
performance. When a cache is semantically transparent, the client
receives exactly the same response (except for hop-by-hop headers)
that it would have received had its request been handled directly
by the origin server.

validator
A protocol element (e.g., an entity tag or a Last-Modified time)
that is used to find out whether a cache entry is an equivalent
copy of an entity.

1.4 Overall Operation

The HTTP protocol is a request/response protocol. A client sends a
request to the server in the form of a request method, URI, and
protocol version, followed by a MIME-like message containing request
modifiers, client information, and possible body content over a
connection with a server. The server responds with a status line,
including the message’s protocol version and a success or error code,
followed by a MIME-like message containing server information, entity
metainformation, and possible entity-body content. The relationship
between HTTP and MIME is described in appendix 19.4.

Fielding, et. al. Standards Track [Page 11]

RFC 2068 HTTP/1.1 January 1997

Most HTTP communication is initiated by a user agent and consists of
a request to be applied to a resource on some origin server. In the
simplest case, this may be accomplished via a single connection (v)
between the user agent (UA) and the origin server (O).

request chain >
UA v @)
< response chain

A more complicated situation occurs when one or more intermediaries
are present in the request/response chain. There are three common
forms of intermediary: proxy, gateway, and tunnel. A proxy is a
forwarding agent, receiving requests for a URI in its absolute form,
rewriting all or part of the message, and forwarding the reformatted
request toward the server identified by the URI. A gateway is a
receiving agent, acting as a layer above some other server(s) and, if
necessary, translating the requests to the underlying server’s
protocol. A tunnel acts as a relay point between two connections
without changing the messages; tunnels are used when the
communication needs to pass through an intermediary (such as a
firewall) even when the intermediary cannot understand the contents
of the messages.

request chain >
UA ----- V----- A - V----- B--—- V----- C - V----- O
< response chain

The figure above shows three intermediaries (A, B, and C) between the
user agent and origin server. A request or response message that
travels the whole chain will pass through four separate connections.

This distinction is important because some HTTP communication options
may apply only to the connection with the nearest, non-tunnel

neighbor, only to the end-points of the chain, or to all connections

along the chain. Although the diagram is linear, each participant

may be engaged in multiple, simultaneous communications. For example,
B may be receiving requests from many clients other than A, and/or
forwarding requests to servers other than C, at the same time that it

is handling A’s request.

Any party to the communication which is not acting as a tunnel may
employ an internal cache for handling requests. The effect of a cache
is that the request/response chain is shortened if one of the
participants along the chain has a cached response applicable to that
request. The following illustrates the resulting chain if B has a

cached copy of an earlier response from O (via C) for a request which
has not been cached by UA or A.

Fielding, et. al. Standards Track [Page 12]

RFC 2068 HTTP/1.1 January 1997

request chain ---------- >
UA ----- V----- A - V----- B------ C------ @)
<o response chain

Not all responses are usefully cachable, and some requests may
contain modifiers which place special requirements on cache behavior.
HTTP requirements for cache behavior and cachable responses are
defined in section 13.

In fact, there are a wide variety of architectures and configurations

of caches and proxies currently being experimented with or deployed
across the World Wide Web; these systems include national hierarchies
of proxy caches to save transoceanic bandwidth, systems that
broadcast or multicast cache entries, organizations that distribute
subsets of cached data via CD-ROM, and so on. HTTP systems are used
in corporate intranets over high-bandwidth links, and for access via
PDAs with low-power radio links and intermittent connectivity. The

goal of HTTP/1.1 is to support the wide diversity of configurations
already deployed while introducing protocol constructs that meet the
needs of those who build web applications that require high

reliability and, failing that, at least reliable indications of

failure.

HTTP communication usually takes place over TCP/IP connections. The
default port is TCP 80, but other ports can be used. This does not
preclude HTTP from being implemented on top of any other protocol on
the Internet, or on other networks. HTTP only presumes a reliable
transport; any protocol that provides such guarantees can be used;

the mapping of the HTTP/1.1 request and response structures onto the
transport data units of the protocol in question is outside the scope

of this specification.

In HTTP/1.0, most implementations used a new connection for each
request/response exchange. In HTTP/1.1, a connection may be used for
one or more request/response exchanges, although connections may be
closed for a variety of reasons (see section 8.1).

2 Notational Conventions and Generic Grammar

2.1 Augmented BNF
All of the mechanisms specified in this document are described in
both prose and an augmented Backus-Naur Form (BNF) similar to that
used by RFC 822 [9]. Implementers will need to be familiar with the

notation in order to understand this specification. The augmented BNF
includes the following constructs:

Fielding, et. al. Standards Track [Page 13]

RFC 2068 HTTP/1.1 January 1997

name = definition
The name of a rule is simply the name itself (without any enclosing
"<"and ">") and is separated from its definition by the equal "="
character. Whitespace is only significant in that indentation of
continuation lines is used to indicate a rule definition that spans
more than one line. Certain basic rules are in uppercase, such as
SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle brackets are used
within definitions whenever their presence will facilitate
discerning the use of rule names.

"literal”
Quotation marks surround literal text. Unless stated otherwise, the
text is case-insensitive.

rulel | rule2
Elements separated by a bar ("|") are alternatives, e.g., "yes |
no" will accept yes or no.

(rulel rule2)
Elements enclosed in parentheses are treated as a single element.
Thus, "(elem (foo | bar) elem)" allows the token sequences "elem
foo elem" and "elem bar elem".

*rule
The character "*" preceding an element indicates repetition. The
full form is "<n>*<m>element" indicating at least <n> and at most
<m> occurrences of element. Default values are 0 and infinity so
that "*(element)" allows any number, including zero; "1*element”
requires at least one; and "1*2element” allows one or two.

[rule]
Square brackets enclose optional elements; "[foo bar]" is
equivalent to "*1(foo bar)".

N rule
Specific repetition: "<n>(element)" is equivalent to
"<n>*<n>(element)"; that is, exactly <n> occurrences of (element).
Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three
alphabetic characters.

#rule
A construct "#" is defined, similar to "*", for defining lists of
elements. The full form is "<n>#<m>element " indicating at least
<n> and at most <m> elements, each separated by one or more commas
(",") and optional linear whitespace (LWS). This makes the usual
form of lists very easy; a rule such as "(*LWS element *(*LWS ","
*LWS element)) " can be shown as "1#element". Wherever this
construct is used, null elements are allowed, but do not contribute

Fielding, et. al. Standards Track [Page 14]

RFC 2068 HTTP/1.1 January 1997

to the count of elements present. That is, "(element), , (element)

" is permitted, but counts as only two elements. Therefore, where
at least one element is required, at least one non-null element

must be present. Default values are 0 and infinity so that
"#element" allows any number, including zero; "1#element" requires
at least one; and "1#2element" allows one or two.

; comment
A semi-colon, set off some distance to the right of rule text,
starts a comment that continues to the end of line. This is a
simple way of including useful notes in parallel with the
specifications.

implied *LWS
The grammar described by this specification is word-based. Except
where noted otherwise, linear whitespace (LWS) can be included
between any two adjacent words (token or quoted-string), and
between adjacent tokens and delimiters (tspecials), without
changing the interpretation of a field. At least one delimiter
(tspecials) must exist between any two tokens, since they would
otherwise be interpreted as a single token.

2.2 Basic Rules

The following rules are used throughout this specification to
describe basic parsing constructs. The US-ASCII coded character set
is defined by ANSI X3.4-1986 [21].

OCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCII character (octets 0 - 127)>
UPALPHA = <any US-ASCII uppercase letter "A".."Z">
LOALPHA = <any US-ASCII lowercase letter "a".."z">
ALPHA = UPALPHA | LOALPHA
DIGIT = <any US-ASCII digit "0".."9">
CTL = <any US-ASCII control character
(octets 0 - 31) and DEL (127)>
CR = <US-ASCII CR, carriage return (13)>
LF = <US-ASCII LF, linefeed (10)>
SP = <US-ASCII SP, space (32)>
HT = <US-ASCII HT, horizontal-tab (9)>
<"> = <US-ASCII double-quote mark (34)>

Fielding, et. al. Standards Track [Page 15]

RFC 2068 HTTP/1.1 January 1997

HTTP/1.1 defines the sequence CR LF as the end-of-line marker for all
protocol elements except the entity-body (see appendix 19.3 for
tolerant applications). The end-of-line marker within an entity-body

is defined by its associated media type, as described in section 3.7.

CRLF =CRLF

HTTP/1.1 headers can be folded onto multiple lines if the
continuation line begins with a space or horizontal tab. All linear
white space, including folding, has the same semantics as SP.

LWS = [CRLF] 1*(SP | HT)

The TEXT rule is only used for descriptive field contents and values
that are not intended to be interpreted by the message parser. Words
of *TEXT may contain characters from character sets other than ISO
8859-1 [22] only when encoded according to the rules of RFC 1522
[14].

TEXT = <any OCTET except CTLs,
but including LWS>

Hexadecimal numeric characters are used in several protocol elements.

HEX ="A"|"B"|"C"|"D"|"E" | "F"
| "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

Many HTTP/1.1 header field values consist of words separated by LWS
or special characters. These special characters MUST be in a quoted
string to be used within a parameter value.

token = 1*<any CHAR except CTLs or tspecials>
tspecials ="("|")"|"<"|"™>"|"@"

N D T i

LT

"""} | SP | HT

Comments can be included in some HTTP header fields by surrounding
the comment text with parentheses. Comments are only allowed in
fields containing "comment" as part of their field value definition.

In all other fields, parentheses are considered part of the field

value.

comment ="("*(ctext | comment) ")"
ctext = <any TEXT excluding "(* and ")">

Fielding, et. al. Standards Track [Page 16]

RFC 2068 HTTP/1.1 January 1997

A string of text is parsed as a single word if it is quoted using
double-quote marks.

quoted-string = (<"> *(qdtext) <">)
gdtext = <any TEXT except <">>

The backslash character ("\") may be used as a single-character quoting
mechanism only within quoted-string and comment constructs.

guoted-pair ="\"CHAR
3 Protocol Parameters
3.1 HTTP Version

HTTP uses a "<major>.<minor>" numbering scheme to indicate versions
of the protocol. The protocol versioning policy is intended to allow

the sender to indicate the format of a message and its capacity for
understanding further HTTP communication, rather than the features
obtained via that communication. No change is made to the version
number for the addition of message components which do not affect
communication behavior or which only add to extensible field values.
The <minor> number is incremented when the changes made to the
protocol add features which do not change the general message parsing
algorithm, but which may add to the message semantics and imply
additional capabilities of the sender. The <major> number is
incremented when the format of a message within the protocol is
changed.

The version of an HTTP message is indicated by an HTTP-Version field
in the first line of the message.

HTTP-Version ="HTTP""/" 1*DIGIT "." 1*DIGIT

Note that the major and minor numbers MUST be treated as separate
integers and that each may be incremented higher than a single digit.
Thus, HTTP/2.4 is a lower version than HTTP/2.13, which in turn is

lower than HTTP/12.3. Leading zeros MUST be ignored by recipients and
MUST NOT be sent.

Applications sending Request or Response messages, as defined by this
specification, MUST include an HTTP-Version of "HTTP/1.1". Use of

this version number indicates that the sending application is at

least conditionally compliant with this specification.

The HTTP version of an application is the highest HTTP version for
which the application is at least conditionally compliant.

Fielding, et. al. Standards Track [Page 17]

RFC 2068 HTTP/1.1 January 1997

Proxy and gateway applications must be careful when forwarding
messages in protocol versions different from that of the application.
Since the protocol version indicates the protocol capability of the
sender, a proxy/gateway MUST never send a message with a version
indicator which is greater than its actual version; if a higher

version request is received, the proxy/gateway MUST either downgrade
the request version, respond with an error, or switch to tunnel

behavior. Requests with a version lower than that of the
proxy/gateway’s version MAY be upgraded before being forwarded; the
proxy/gateway’s response to that request MUST be in the same major
version as the request.

Note: Converting between versions of HTTP may involve modification
of header fields required or forbidden by the versions involved.

3.2 Uniform Resource ldentifiers

URIs have been known by many names: WWW addresses, Universal Document
Identifiers, Universal Resource Identifiers , and finally the

combination of Uniform Resource Locators (URL) and Names (URN). As

far as HTTP is concerned, Uniform Resource Identifiers are simply

formatted strings which identify--via name, location, or any other
characteristic--a resource.

3.2.1 General Syntax
URIs in HTTP can be represented in absolute form or relative to some
known base URI, depending upon the context of their use. The two
forms are differentiated by the fact that absolute URIs always begin
with a scheme name followed by a colon.
URI = (absoluteURI | relativeURI) ["#" fragment]

absoluteURI = scheme ™" *(uchar | reserved)

relativeURI = net_path | abs_path | rel_path

net_path ="/[" net_loc [abs_path]
abs_path ="/"rel_path

rel_path =[path][";" params]["?" query]
path = fsegment *("/" segment)
fsegment = 1*pchar

segment = *pchar

params = param *(";" param)

param =*(pchar | "/")

Fielding, et. al. Standards Track [Page 18]

RFC 2068 HTTP/1.1 January 1997

scheme = 1*(ALPHA | DIGIT | "+" | "-"|".")
net_loc =*(pchar|""|"?")

query =*(uchar | reserved)

fragment =*(uchar | reserved)

pchar =uchar |""|"@" | "&" | "="]"+"

uchar = unreserved | escape

unreserved = ALPHA | DIGIT | safe | extra | national
escape ="%" HEX HEX

reserved S I A I I I eV IR I
extra =[]

safe =gt

unsafe - CTL | SP | <II> | II#II | II%II II<II | II>II
national = <any OCTET excluding ALPHA, DIGIT,

reserved, extra, safe, and unsafe>

For definitive information on URL syntax and semantics, see RFC 1738
[4] and RFC 1808 [11]. The BNF above includes national characters not
allowed in valid URLs as specified by RFC 1738, since HTTP servers
are not restricted in the set of unreserved characters allowed to
represent the rel_path part of addresses, and HTTP proxies may
receive requests for URIs not defined by RFC 1738.

The HTTP protocol does not place any a priori limit on the length of

a URI. Servers MUST be able to handle the URI of any resource they
serve, and SHOULD be able to handle URIs of unbounded length if they
provide GET-based forms that could generate such URIs. A server
SHOULD return 414 (Request-URI Too Long) status if a URI is longer
than the server can handle (see section 10.4.15).

Note: Servers should be cautious about depending on URI lengths
above 255 bytes, because some older client or proxy implementations
may not properly support these lengths.
3.2.2 http URL
The "http" scheme is used to locate network resources via the HTTP

protocol. This section defines the scheme-specific syntax and
semantics for http URLSs.

Fielding, et. al. Standards Track [Page 19]

RFC 2068 HTTP/1.1 January 1997

http_ URL = "http:" "//" host [":" port] [abs_path]

host = <A legal Internet host domain name
or IP address (in dotted-decimal form),
as defined by Section 2.1 of RFC 1123>

port =*DIGIT

If the port is empty or not given, port 80 is assumed. The semantics

are that the identified resource is located at the server listening

for TCP connections on that port of that host, and the Request-URI

for the resource is abs_path. The use of IP addresses in URL's SHOULD
be avoided whenever possible (see RFC 1900 [24]). If the abs_path is
not present in the URL, it MUST be given as "/" when used as a
Request-URI for a resource (section 5.1.2).

3.2.3 URI Comparison
When comparing two URIs to decide if they match or not, a client
SHOULD use a case-sensitive octet-by-octet comparison of the entire
URIs, with these exceptions:

0 A port that is empty or not given is equivalent to the default
port for that URI;

0 Comparisons of host names MUST be case-insensitive;
0 Comparisons of scheme names MUST be case-insensitive;
0 An empty abs_path is equivalent to an abs_path of "/".

Characters other than those in the "reserved" and "unsafe" sets (see
section 3.2) are equivalent to their "'%" HEX HEX" encodings.

For example, the following three URIs are equivalent:
http://abc.com:80/"smith/home.html

http://ABC.com/%7Esmith/home.html
http://ABC.com:/%7esmith/home.html

Fielding, et. al. Standards Track [Page 20]

RFC 2068 HTTP/1.1 January 1997

3.3 Date/Time Formats
3.3.1 Full Date

HTTP applications have historically allowed three different formats
for the representation of date/time stamps:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C’s asctime() format

The first format is preferred as an Internet standard and represents

a fixed-length subset of that defined by RFC 1123 (an update to RFC
822). The second format is in common use, but is based on the
obsolete RFC 850 [12] date format and lacks a four-digit year.
HTTP/1.1 clients and servers that parse the date value MUST accept
all three formats (for compatibility with HTTP/1.0), though they MUST
only generate the RFC 1123 format for representing HTTP-date values
in header fields.

Note: Recipients of date values are encouraged to be robust in
accepting date values that may have been sent by non-HTTP
applications, as is sometimes the case when retrieving or posting
messages via proxies/gateways to SMTP or NNTP.

All HTTP date/time stamps MUST be represented in Greenwich Mean Time
(GMT), without exception. This is indicated in the first two formats

by the inclusion of "GMT" as the three-letter abbreviation for time

zone, and MUST be assumed when reading the asctime format.

HTTP-date =rfcl1123-date | rfc850-date | asctime-date
rfc1123-date = wkday "," SP datel SP time SP "GMT"

rfc850-date = weekday "," SP date2 SP time SP "GMT"
asctime-date = wkday SP date3 SP time SP 4DIGIT

datel = 2DIGIT SP month SP 4DIGIT

; day month year (e.g., 02 Jun 1982)
date2 = 2DIGIT "-" month "-" 2DIGIT

; day-month-year (e.g., 02-Jun-82)
date3 = month SP (2DIGIT | (SP 1DIGIT))

; month day (e.g., Jun 2)

time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
: 00:00:00 - 23:59:59

wkday ~ ="Mon"|"Tue" | "Wed"
| "Thu" | "Fri" | "Sat" | "Sun"

Fielding, et. al. Standards Track [Page 21]

RFC 2068 HTTP/1.1 January 1997

weekday ="Monday" | "Tuesday" | "Wednesday"
| "Thursday" | "Friday" | "Saturday" | "Sunday"

month ="Jan" | "Feb" | "Mar" | "Apr"
| "May" | "Jun” | "Jul" | "Aug"
| "Sep” | "Oct" | "Nov" | "Dec”

Note: HTTP requirements for the date/time stamp format apply only
to their usage within the protocol stream. Clients and servers are
not required to use these formats for user presentation, request
logging, etc.

3.3.2 Delta Seconds

Some HTTP header fields allow a time value to be specified as an
integer number of seconds, represented in decimal, after the time
that the message was received.

delta-seconds = 1*DIGIT
3.4 Character Sets

HTTP uses the same definition of the term "character set" as that
described for MIME:

The term "character set" is used in this document to refer to a
method used with one or more tables to convert a sequence of octets
into a sequence of characters. Note that unconditional conversion

in the other direction is not required, in that not all characters

may be available in a given character set and a character set may
provide more than one sequence of octets to represent a particular
character. This definition is intended to allow various kinds of
character encodings, from simple single-table mappings such as US-
ASCII to complex table switching methods such as those that use 1ISO
2022’s techniques. However, the definition associated with a MIME
character set name MUST fully specify the mapping to be performed
from octets to characters. In particular, use of external profiling
information to determine the exact mapping is not permitted.

Note: This use of the term "character set" is more commonly

referred to as a "character encoding.” However, since HTTP and MIME
share the same registry, it is important that the terminology also

be shared.

Fielding, et. al. Standards Track [Page 22]

RFC 2068 HTTP/1.1 January 1997

HTTP character sets are identified by case-insensitive tokens. The
complete set of tokens is defined by the IANA Character Set registry
[19].

charset = token

Although HTTP allows an arbitrary token to be used as a charset
value, any token that has a predefined value within the IANA
Character Set registry MUST represent the character set defined by
that registry. Applications SHOULD limit their use of character sets
to those defined by the IANA registry.

3.5 Content Codings

Content coding values indicate an encoding transformation that has
been or can be applied to an entity. Content codings are primarily
used to allow a document to be compressed or otherwise usefully
transformed without losing the identity of its underlying media type
and without loss of information. Frequently, the entity is stored in
coded form, transmitted directly, and only decoded by the recipient.

content-coding = token

All content-coding values are case-insensitive. HTTP/1.1 uses
content-coding values in the Accept-Encoding (section 14.3) and
Content-Encoding (section 14.12) header fields. Although the value
describes the content-coding, what is more important is that it
indicates what decoding mechanism will be required to remove the
encoding.

The Internet Assigned Numbers Authority (IANA) acts as a registry for
content-coding value tokens. Initially, the registry contains the

following tokens:

gzip An encoding format produced by the file compression program "gzip"
(GNU zip) as described in RFC 1952 [25]. This format is a Lempel-
Ziv coding (LZ77) with a 32 bit CRC.

compress
The encoding format produced by the common UNIX file compression
program "compress". This format is an adaptive Lempel-Ziv-Welch
coding (LZW).

Fielding, et. al. Standards Track [Page 23]

RFC 2068 HTTP/1.1 January 1997

Note: Use of program names for the identification of encoding
formats is not desirable and should be discouraged for future
encodings. Their use here is representative of historical practice,
not good design. For compatibility with previous implementations of
HTTP, applications should consider "x-gzip" and "x-compress" to be
equivalent to "gzip" and "compress" respectively.

deflate The "zlib" format defined in RFC 1950[31] in combination with
the "deflate” compression mechanism described in RFC 1951[29].

New content-coding value tokens should be registered; to allow
interoperability between clients and servers, specifications of the
content coding algorithms needed to implement a new value should be
publicly available and adequate for independent implementation, and
conform to the purpose of content coding defined in this section.

3.6 Transfer Codings

Transfer coding values are used to indicate an encoding
transformation that has been, can be, or may need to be applied to an
entity-body in order to ensure "safe transport" through the network.
This differs from a content coding in that the transfer coding is a
property of the message, not of the original entity.

transfer-coding = "chunked" | transfer-extension
transfer-extension = token

All transfer-coding values are case-insensitive. HTTP/1.1 uses
transfer coding values in the Transfer-Encoding header field (section
14.40).

Transfer codings are analogous to the Content-Transfer-Encoding
values of MIME , which were designed to enable safe transport of
binary data over a 7-bit transport service. However, safe transport
has a different focus for an 8bit-clean transfer protocol. In HTTP,
the only unsafe characteristic of message-bodies is the difficulty in
determining the exact body length (section 7.2.2), or the desire to
encrypt data over a shared transport.

The chunked encoding modifies the body of a message in order to
transfer it as a series of chunks, each with its own size indicator,
followed by an optional footer containing entity-header fields. This
allows dynamically-produced content to be transferred along with the
information necessary for the recipient to verify that it has

received the full message.

Fielding, et. al. Standards Track [Page 24]

RFC 2068 HTTP/1.1 January 1997

Chunked-Body = *chunk
"0" CRLF
footer
CRLF

chunk = chunk-size [chunk-ext] CRLF
chunk-data CRLF

hex-no-zero = <HEX excluding "0">

chunk-size = hex-no-zero *HEX

chunk-ext =*(";" chunk-ext-name ["=" chunk-ext-value])
chunk-ext-name = token

chunk-ext-val = token | quoted-string

chunk-data = chunk-size(OCTET)

footer = *entity-header

The chunked encoding is ended by a zero-sized chunk followed by the
footer, which is terminated by an empty line. The purpose of the

footer is to provide an efficient way to supply information about an
entity that is generated dynamically; applications MUST NOT send
header fields in the footer which are not explicitly defined as being
appropriate for the footer, such as Content-MD5 or future extensions
to HTTP for digital signatures or other facilities.

An example process for decoding a Chunked-Body is presented in
appendix 19.4.6.

All HTTP/1.1 applications MUST be able to receive and decode the
"chunked" transfer coding, and MUST ignore transfer coding extensions
they do not understand. A server which receives an entity-body with a
transfer-coding it does not understand SHOULD return 501
(Unimplemented), and close the connection. A server MUST NOT send
transfer-codings to an HTTP/1.0 client.

3.7 Media Types
HTTP uses Internet Media Types in the Content-Type (section 14.18)
and Accept (section 14.1) header fields in order to provide open and
extensible data typing and type negotiation.
media-type = type "/" subtype *(";" parameter)
type = token
subtype = token

Parameters may follow the type/subtype in the form of attribute/value
pairs.

Fielding, et. al. Standards Track [Page 25]

RFC 2068 HTTP/1.1 January 1997

parameter = attribute "=" value
attribute = token
value = token | quoted-string

The type, subtype, and parameter attribute names are case-

insensitive. Parameter values may or may not be case-sensitive,
depending on the semantics of the parameter name. Linear white space
(LWS) MUST NOT be used between the type and subtype, nor between an
attribute and its value. User agents that recognize the media-type

MUST process (or arrange to be processed by any external applications
used to process that type/subtype by the user agent) the parameters

for that MIME type as described by that type/subtype definition to

the and inform the user of any problems discovered.

Note: some older HTTP applications do not recognize media type
parameters. When sending data to older HTTP applications,
implementations should only use media type parameters when they are
required by that type/subtype definition.

Media-type values are registered with the Internet Assigned Number
Authority (IANA). The media type registration process is outlined in
RFC 2048 [17]. Use of non-registered media types is discouraged.

3.7.1 Canonicalization and Text Defaults

Internet media types are registered with a canonical form. In
general, an entity-body transferred via HTTP messages MUST be
represented in the appropriate canonical form prior to its
transmission; the exception is "text" types, as defined in the next
paragraph.

When in canonical form, media subtypes of the "text" type use CRLF as
the text line break. HTTP relaxes this requirement and allows the
transport of text media with plain CR or LF alone representing a line
break when it is done consistently for an entire entity-body. HTTP
applications MUST accept CRLF, bare CR, and bare LF as being
representative of a line break in text media received via HTTP. In
addition, if the text is represented in a character set that does not

use octets 13 and 10 for CR and LF respectively, as is the case for
some multi-byte character sets, HTTP allows the use of whatever octet
sequences are defined by that character set to represent the

equivalent of CR and LF for line breaks. This flexibility regarding

line breaks applies only to text media in the entity-body; a bare CR

or LF MUST NOT be substituted for CRLF within any of the HTTP control
structures (such as header fields and multipart boundaries).

If an entity-body is encoded with a Content-Encoding, the underlying
data MUST be in a form defined above prior to being encoded.

Fielding, et. al. Standards Track [Page 26]

RFC 2068 HTTP/1.1 January 1997

The "charset" parameter is used with some media types to define the
character set (section 3.4) of the data. When no explicit charset
parameter is provided by the sender, media subtypes of the "text"
type are defined to have a default charset value of "ISO-8859-1" when
received via HTTP. Data in character sets other than "ISO-8859-1" or
its subsets MUST be labeled with an appropriate charset value.

Some HTTP/1.0 software has interpreted a Content-Type header without
charset parameter incorrectly to mean "recipient should guess."

Senders wishing to defeat this behavior MAY include a charset

parameter even when the charset is ISO-8859-1 and SHOULD do so when
it is known that it will not confuse the recipient.

Unfortunately, some older HTTP/1.0 clients did not deal properly with
an explicit charset parameter. HTTP/1.1 recipients MUST respect the
charset label provided by the sender; and those user agents that have
a provision to "guess" a charset MUST use the charset from the
content-type field if they support that charset, rather than the
recipient’s preference, when initially displaying a document.

3.7.2 Multipart Types

MIME provides for a number of "multipart” types -- encapsulations of
one or more entities within a single message-body. All multipart

types share a common syntax, as defined in MIME [7], and MUST
include a boundary parameter as part of the media type value. The
message body is itself a protocol element and MUST therefore use only
CRLF to represent line breaks between body-parts. Unlike in MIME, the
epilogue of any multipart message MUST be empty; HTTP applications
MUST NOT transmit the epilogue (even if the original multipart
contains an epilogue).

In HTTP, multipart body-parts MAY contain header fields which are
significant to the meaning of that part. A Content-Location header
field (section 14.15) SHOULD be included in the body-part of each
enclosed entity that can be identified by a URL.

In general, an HTTP user agent SHOULD follow the same or similar
behavior as a MIME user agent would upon receipt of a multipart type.
If an application receives an unrecognized multipart subtype, the
application MUST treat it as being equivalent to "multipart/mixed".

Note: The "multipart/form-data” type has been specifically defined

for carrying form data suitable for processing via the POST request
method, as described in RFC 1867 [15].

Fielding, et. al. Standards Track [Page 27]

RFC 2068 HTTP/1.1 January 1997

3.8 Product Tokens

Product tokens are used to allow communicating applications to
identify themselves by software name and version. Most fields using
product tokens also allow sub-products which form a significant part
of the application to be listed, separated by whitespace. By
convention, the products are listed in order of their significance

for identifying the application.

product = token ["/" product-version]
product-version = token

Examples:

User-Agent: CERN-LineMode/2.15 libwww/2.17b3
Server: Apache/0.8.4

Product tokens should be short and to the point -- use of them for
advertising or other non-essential information is explicitly

forbidden. Although any token character may appear in a product-
version, this token SHOULD only be used for a version identifier
(i.e., successive versions of the same product SHOULD only differ in
the product-version portion of the product value).

3.9 Quality Values

HTTP content negotiation (section 12) uses short "floating point"
numbers to indicate the relative importance ("weight") of various
negotiable parameters. A weight is normalized to a real number in the
range 0 through 1, where 0 is the minimum and 1 the maximum value.
HTTP/1.1 applications MUST NOT generate more than three digits after
the decimal point. User configuration of these values SHOULD also be
limited in this fashion.

qualue = ("0"["." 0*3DIGIT])
(27 [03('0))

"Quality values" is a misnomer, since these values merely represent
relative degradation in desired quality.

3.10 Language Tags

A language tag identifies a natural language spoken, written, or
otherwise conveyed by human beings for communication of information
to other human beings. Computer languages are explicitly excluded.
HTTP uses language tags within the Accept-Language and Content-
Language fields.

Fielding, et. al. Standards Track [Page 28]

RFC 2068 HTTP/1.1 January 1997

The syntax and registry of HTTP language tags is the same as that
defined by RFC 1766 [1]. In summary, a language tag is composed of 1
or more parts: A primary language tag and a possibly empty series of
subtags:

language-tag = primary-tag *("-" subtag)

primary-tag = 1*8ALPHA
subtag = 1*8ALPHA

Whitespace is not allowed within the tag and all tags are case-
insensitive. The name space of language tags is administered by the
IANA. Example tags include:

en, en-US, en-cockney, i-cherokee, x-pig-latin

where any two-letter primary-tag is an ISO 639 language abbreviation
and any two-letter initial subtag is an ISO 3166 country code. (The
last three tags above are not registered tags; all but the last are
examples of tags which could be registered in future.)

3.11 Entity Tags

Entity tags are used for comparing two or more entities from the same
requested resource. HTTP/1.1 uses entity tags in the ETag (section
14.20), If-Match (section 14.25), If-None-Match (section 14.26), and
If-Range (section 14.27) header fields. The definition of how they

are used and compared as cache validators is in section 13.3.3. An
entity tag consists of an opaque quoted string, possibly prefixed by

a weakness indicator.

entity-tag = [weak] opaque-tag

weak ="W/"
opague-tag = quoted-string

A "strong entity tag" may be shared by two entities of a resource
only if they are equivalent by octet equality.

A "weak entity tag," indicated by the "W/" prefix, may be shared by
two entities of a resource only if the entities are equivalent and
could be substituted for each other with no significant change in
semantics. A weak entity tag can only be used for weak comparison.

An entity tag MUST be unique across all versions of all entities
associated with a particular resource. A given entity tag value may
be used for entities obtained by requests on different URIs without
implying anything about the equivalence of those entities.

Fielding, et. al. Standards Track [Page 29]

RFC 2068 HTTP/1.1 January 1997

3.12 Range Units

HTTP/1.1 allows a client to request that only part (a range of) the
response entity be included within the response. HTTP/1.1 uses range
units in the Range (section 14.36) and Content-Range (section 14.17)
header fields. An entity may be broken down into subranges according
to various structural units.

range-unit = bytes-unit | other-range-unit

bytes-unit = "bytes"”
other-range-unit = token

The only range unit defined by HTTP/1.1 is "bytes". HTTP/1.1
implementations may ignore ranges specified using other units.
HTTP/1.1 has been designed to allow implementations of applications
that do not depend on knowledge of ranges.

4 HTTP Message
4.1 Message Types

HTTP messages consist of requests from client to server and responses
from server to client.

HTTP-message = Request|Response ; HTTP/1.1 messages

Request (section 5) and Response (section 6) messages use the generic
message format of RFC 822 [9] for transferring entities (the payload

of the message). Both types of message consist of a start-line, one

or more header fields (also known as "headers"), an empty line (i.e.,

a line with nothing preceding the CRLF) indicating the end of the

header fields, and an optional message-body.

generic-message = start-line
*message-header
CRLF
[message-body]

start-line = Request-Line | Status-Line
In the interest of robustness, servers SHOULD ignore any empty
line(s) received where a Request-Line is expected. In other words, if

the server is reading the protocol stream at the beginning of a
message and receives a CRLF first, it should ignore the CRLF.

Fielding, et. al. Standards Track [Page 30]

RFC 2068 HTTP/1.1 January 1997

Note: certain buggy HTTP/1.0 client implementations generate an
extra CRLF's after a POST request. To restate what is explicitly
forbidden by the BNF, an HTTP/1.1 client must not preface or follow
a request with an extra CRLF.

4.2 Message Headers

HTTP header fields, which include general-header (section 4.5),
request-header (section 5.3), response-header (section 6.2), and
entity-header (section 7.1) fields, follow the same generic format as
that given in Section 3.1 of RFC 822 [9]. Each header field consists

of a name followed by a colon (":") and the field value. Field names

are case-insensitive. The field value may be preceded by any amount
of LWS, though a single SP is preferred. Header fields can be
extended over multiple lines by preceding each extra line with at

least one SP or HT. Applications SHOULD follow "common form" when
generating HTTP constructs, since there might exist some
implementations that fail to accept anything beyond the common forms.

message-header = field-name ";" [field-value] CRLF

field-name = token
field-value = *(field-content | LWS)

field-content = <the OCTETs making up the field-value
and consisting of either *TEXT or combinations
of token, tspecials, and quoted-string>

The order in which header fields with differing field names are
received is not significant. However, it is "good practice" to send
general-header fields first, followed by request-header or response-
header fields, and ending with the entity-header fields.

Multiple message-header fields with the same field-name may be
present in a message if and only if the entire field-value for that

header field is defined as a comma-separated list [i.e., #(values)].

It MUST be possible to combine the multiple header fields into one
"field-name: field-value" pair, without changing the semantics of the
message, by appending each subsequent field-value to the first, each
separated by a comma. The order in which header fields with the same
field-name are received is therefore significant to the

interpretation of the combined field value, and thus a proxy MUST NOT
change the order of these field values when a message is forwarded.

Fielding, et. al. Standards Track [Page 31]

RFC 2068 HTTP/1.1 January 1997

4.3 Message Body

The message-body (if any) of an HTTP message is used to carry the
entity-body associated with the request or response. The message-body
differs from the entity-body only when a transfer coding has been
applied, as indicated by the Transfer-Encoding header field (section
14.40).

message-body = entity-body
| <entity-body encoded as per Transfer-Encoding>

Transfer-Encoding MUST be used to indicate any transfer codings
applied by an application to ensure safe and proper transfer of the
message. Transfer-Encoding is a property of the message, not of the
entity, and thus can be added or removed by any application along the
request/response chain.

The rules for when a message-body is allowed in a message differ for
requests and responses.

The presence of a message-body in a request is signaled by the
inclusion of a Content-Length or Transfer-Encoding header field in

the request’'s message-headers. A message-body MAY be included in a
request only when the request method (section 5.1.1) allows an
entity-body.

For response messages, whether or not a message-body is included with
a message is dependent on both the request method and the response
status code (section 6.1.1). All responses to the HEAD request method
MUST NOT include a message-body, even though the presence of entity-
header fields might lead one to believe they do. All 1xx

(informational), 204 (no content), and 304 (not modified) responses
MUST NOT include a message-body. All other responses do include a
message-body, although it may be of zero length.

4.4 Message Length

When a message-body is included with a message, the length of that
body is determined by one of the following (in order of precedence):

1. Any response message which MUST NOT include a message-body
(such as the 1xx, 204, and 304 responses and any response to a HEAD
request) is always terminated by the first empty line after the
header fields, regardless of the entity-header fields present in the
message.

2. If a Transfer-Encoding header field (section 14.40) is present and
indicates that the "chunked" transfer coding has been applied, then

Fielding, et. al. Standards Track [Page 32]

RFC 2068 HTTP/1.1 January 1997

the length is defined by the chunked encoding (section 3.6).

3. If a Content-Length header field (section 14.14) is present, its
value in bytes represents the length of the message-body.

4. If the message uses the media type "multipart/byteranges”, which is
self-delimiting, then that defines the length. This media type MUST
NOT be used unless the sender knows that the recipient can parse it;
the presence in a request of a Range header with multiple byte-range
specifiers implies that the client can parse multipart/byteranges
responses.

5. By the server closing the connection. (Closing the connection
cannot be used to indicate the end of a request body, since that
would leave no possibility for the server to send back a response.)

For compatibility with HTTP/1.0 applications, HTTP/1.1 requests
containing a message-body MUST include a valid Content-Length header
field unless the server is known to be HTTP/1.1 compliant. If a

request contains a message-body and a Content-Length is not given,

the server SHOULD respond with 400 (bad request) if it cannot
determine the length of the message, or with 411 (length required) if

it wishes to insist on receiving a valid Content-Length.

All HTTP/1.1 applications that receive entities MUST accept the
"chunked" transfer coding (section 3.6), thus allowing this mechanism

to be used for messages when the message length cannot be determined
in advance.

Messages MUST NOT include both a Content-Length header field and the
"chunked" transfer coding. If both are received, the Content-Length
MUST be ignored.

When a Content-Length is given in a message where a message-body is
allowed, its field value MUST exactly match the number of OCTETSs in
the message-body. HTTP/1.1 user agents MUST notify the user when an
invalid length is received and detected.

Fielding, et. al. Standards Track [Page 33]

RFC 2068 HTTP/1.1 January 1997

4.5 General Header Fields

There are a few header fields which have general applicability for
both request and response messages, but which do not apply to the
entity being transferred. These header fields apply only to the
message being transmitted.

general-header = Cache-Control ; Section 14.9
| Connection ; Section 14.10
| Date ; Section 14.19
| Pragma ; Section 14.32
| Transfer-Encoding ; Section 14.40
| Upgrade ; Section 14.41
| Via ; Section 14.44

General-header field names can be extended reliably only in
combination with a change in the protocol version. However, new or
experimental header fields may be given the semantics of general
header fields if all parties in the communication recognize them to
be general-header fields. Unrecognized header fields are treated as
entity-header fields.

5 Request

A request message from a client to a server includes, within the
first line of that message, the method to be applied to the resource,
the identifier of the resource, and the protocol version in use.

Request = Request-Line ; Section 5.1
*(general-header ; Section 4.5
| request-header ; Section 5.3
| entity-header) ; Section 7.1
CRLF
[message-body] ; Section 7.2

5.1 Request-Line
The Request-Line begins with a method token, followed by the
Request-URI and the protocol version, and ending with CRLF. The
elements are separated by SP characters. No CR or LF are allowed
except in the final CRLF sequence.

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Fielding, et. al. Standards Track [Page 34]

RFC 2068 HTTP/1.1 January 1997

5.1.1 Method

The Method token indicates the method to be performed on the resource
identified by the Request-URI. The method is case-sensitive.

Method ="OPTIONS" ; Section 9.2
| "GET" ; Section 9.3
| "HEAD" ; Section 9.4
| "POST" ; Section 9.5
| "PUT" ; Section 9.6
| "DELETE" ; Section 9.7
| "TRACE" ; Section 9.8
I

extension-method
extension-method = token

The list of methods allowed by a resource can be specified in an

Allow header field (section 14.7). The return code of the response
always natifies the client whether a method is currently allowed on a
resource, since the set of allowed methods can change dynamically.
Servers SHOULD return the status code 405 (Method Not Allowed) if the
method is known by the server but not allowed for the requested
resource, and 501 (Not Implemented) if the method is unrecognized or
not implemented by the server. The list of methods known by a server
can be listed in a Public response-header field (section 14.35).

The methods GET and HEAD MUST be supported by all general-purpose
servers. All other methods are optional; however, if the above

methods are implemented, they MUST be implemented with the same
semantics as those specified in section 9.

5.1.2 Request-URI

The Request-URI is a Uniform Resource Identifier (section 3.2) and
identifies the resource upon which to apply the request.

Request-URI ="*"| absoluteURI | abs_path
The three options for Request-URI are dependent on the nature of the
request. The asterisk "*" means that the request does not apply to a
particular resource, but to the server itself, and is only allowed
when the method used does not necessarily apply to a resource. One
example would be

OPTIONS * HTTP/1.1

The absoluteURI form is required when the request is being made to a
proxy. The proxy is requested to forward the request or service it

Fielding, et. al. Standards Track [Page 35]

RFC 2068 HTTP/1.1 January 1997

from a valid cache, and return the response. Note that the proxy MAY
forward the request on to another proxy or directly to the server
specified by the absoluteURI. In order to avoid request loops, a

proxy MUST be able to recognize all of its server names, including
any aliases, local variations, and the numeric IP address. An example
Request-Line would be:

GET http://www.w3.org/pub/WWW)/TheProject.html HTTP/1.1

To allow for transition to absoluteURIs in all requests in future
versions of HTTP, all HTTP/1.1 servers MUST accept the absoluteURI
form in requests, even though HTTP/1.1 clients will only generate
them in requests to proxies.

The most common form of Request-URI is that used to identify a
resource on an origin server or gateway. In this case the absolute

path of the URI MUST be transmitted (see section 3.2.1, abs_path) as
the Request-URI, and the network location of the URI (net_loc) MUST
be transmitted in a Host header field. For example, a client wishing

to retrieve the resource above directly from the origin server would
create a TCP connection to port 80 of the host "www.w3.org" and send
the lines:

GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.w3.0rg

followed by the remainder of the Request. Note that the absolute path
cannot be empty; if none is present in the original URI, it MUST be
given as "/" (the server root).

If a proxy receives a request without any path in the Request-URI and
the method specified is capable of supporting the asterisk form of
request, then the last proxy on the request chain MUST forward the
request with "*" as the final Request-URI. For example, the request

OPTIONS http://www.ics.uci.edu:8001 HTTP/1.1
would be forwarded by the proxy as

OPTIONS *HTTP/1.1
Host: www.ics.uci.edu:8001

after connecting to port 8001 of host "www.ics.uci.edu".
The Request-URI is transmitted in the format specified in section
3.2.1. The origin server MUST decode the Request-URI in order to

properly interpret the request. Servers SHOULD respond to invalid
Request-URIs with an appropriate status code.

Fielding, et. al. Standards Track [Page 36]

RFC 2068 HTTP/1.1 January 1997

In requests that they forward, proxies MUST NOT rewrite the
"abs_path" part of a Request-URI in any way except as noted above to
replace a null abs_path with "*", no matter what the proxy does in

its internal implementation.

Note: The "no rewrite" rule prevents the proxy from changing the
meaning of the request when the origin server is improperly using a
non-reserved URL character for a reserved purpose. Implementers
should be aware that some pre-HTTP/1.1 proxies have been known to
rewrite the Request-URI.

5.2 The Resource Identified by a Request

HTTP/1.1 origin servers SHOULD be aware that the exact resource
identified by an Internet request is determined by examining both the
Request-URI and the Host header field.

An origin server that does not allow resources to differ by the
requested host MAY ignore the Host header field value. (But see
section 19.5.1 for other requirements on Host support in HTTP/1.1.)

An origin server that does differentiate resources based on the host
requested (sometimes referred to as virtual hosts or vanity

hostnames) MUST use the following rules for determining the requested
resource on an HTTP/1.1 request:

1. If Request-URI is an absoluteURI, the host is part of the
Request-URI. Any Host header field value in the request MUST be
ignored.

2. If the Request-URI is not an absoluteURI, and the request
includes a Host header field, the host is determined by the Host
header field value.

3. If the host as determined by rule 1 or 2 is not a valid host on
the server, the response MUST be a 400 (Bad Request) error
message.

Recipients of an HTTP/1.0 request that lacks a Host header field MAY
attempt to use heuristics (e.g., examination of the URI path for
something unique to a particular host) in order to determine what
exact resource is being requested.

5.3 Request Header Fields
The request-header fields allow the client to pass additional

information about the request, and about the client itself, to the
server. These fields act as request modifiers, with semantics

Fielding, et. al. Standards Track [Page 37]

RFC 2068 HTTP/1.1

equivalent to the parameters on a pr
invocation.

request-header = Accept
| Accept-Charset
| Accept-Encoding
| Accept-Language
| Authorization
| From
| Host
| If-Modified-Since
| If-Match
| If-None-Match
| If-Range
| If-Unmodified-Since
| Max-Forwards
| Proxy-Authorization
| Range
| Referer
| User-Agent

'S

Request-header field names can be

January 1997

ogramming language method

; Section 14.1
; Section 14.2
: Section 14.3
; Section 14.4
Section 14.8
ection 14.22

; Section 14.23

; Section 14.24

; Section 14.25

; Section 14.26

: Section 14.27

: Section 14.28
; Section 14.31
; Section 14.34

; Section 14.36
; Section 14.37

Section 14.42

extended reliably only in

combination with a change in the protocol version. However, new or
experimental header fields MAY be given the semantics of request-
header fields if all parties in the communication recognize them to
be request-header fields. Unrecognized header fields are treated as
entity-header fields.

6 Response

After receiving and interpreting a request message, a server responds
with an HTTP response message.

Response = Status-Line ; Section 6.1
*(general-header ; Section 4.5
| response-header ; Section 6.2
| entity-header) ; Section 7.1
CRLF
[message-body] ; Section 7.2

6.1 Status-Line

The first line of a Response message is the Status-Line, consisting
of the protocol version followed by a numeric status code and its
associated textual phrase, with each element separated by SP
characters. No CR or LF is allowed except in the final CRLF
sequence.

Fielding, et. al. Standards Track [Page 38]

RFC 2068 HTTP/1.1 January 1997

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
6.1.1 Status Code and Reason Phrase

The Status-Code element is a 3-digit integer result code of the

attempt to understand and satisfy the request. These codes are fully
defined in section 10. The Reason-Phrase is intended to give a short
textual description of the Status-Code. The Status-Code is intended
for use by automata and the Reason-Phrase is intended for the human
user. The client is not required to examine or display the Reason-
Phrase.

The first digit of the Status-Code defines the class of response. The
last two digits do not have any categorization role. There are 5
values for the first digit:

o 1xx: Informational - Request received, continuing process

0 2xx: Success - The action was successfully received, understood,
and accepted

o0 3xx: Redirection - Further action must be taken in order to
complete the request

0 4xx: Client Error - The request contains bad syntax or cannot be
fulfilled

0 5xx: Server Error - The server failed to fulfill an apparently
valid request

The individual values of the numeric status codes defined for

HTTP/1.1, and an example set of corresponding Reason-Phrase’s, are
presented below. The reason phrases listed here are only recommended
-- they may be replaced by local equivalents without affecting the
protocol.

Status-Code ="100" ; Continue
| "101" ; Switching Protocols

| "200" ; OK

| "201" ; Created

| "202" ; Accepted

| "203" ; Non-Authoritative Information
| "204" ; No Content

| "205" ; Reset Content

| "206" ; Partial Content

| "300" ; Multiple Choices

| 301" ; Moved Permanently

| "302" ; Moved Temporarily

Fielding, et. al. Standards Track [Page 39]

RFC 2068 HTTP/1.1 January 1997

| "303" ; See Other

| "304" ; Not Modified

| "305" ; Use Proxy

| "400" ; Bad Request

| "401" ; Unauthorized

| "402" ; Payment Required

| "403" ; Forbidden

| "404" ; Not Found

| "405" ; Method Not Allowed

| "406" ; Not Acceptable

| "407" ; Proxy Authentication Required
| "408" ; Request Time-out

| "409" ; Conflict

| "410" ; Gone

| "411" ; Length Required

| "412" ; Precondition Failed

| "413" ; Request Entity Too Large
| "414" ; Request-URI Too Large

| "415" ; Unsupported Media Type
| "500" ; Internal Server Error

| "501" ; Not Implemented

| "502" ; Bad Gateway

| "503" ; Service Unavailable

| "504" ; Gateway Time-out

| "505" ; HTTP Version not supported
| extension-code

extension-code = 3DIGIT
Reason-Phrase = *<TEXT, excluding CR, LF>

HTTP status codes are extensible. HTTP applications are not required
to understand the meaning of all registered status codes, though such
understanding is obviously desirable. However, applications MUST
understand the class of any status code, as indicated by the first

digit, and treat any unrecognized response as being equivalent to the
x00 status code of that class, with the exception that an

unrecognized response MUST NOT be cached. For example, if an
unrecognized status code of 431 is received by the client, it can
safely assume that there was something wrong with its request and
treat the response as if it had received a 400 status code. In such
cases, user agents SHOULD present to the user the entity returned
with the response, since that entity is likely to include human-
readable information which will explain the unusual status.

Fielding, et. al. Standards Track [Page 40]

RFC 2068 HTTP/1.1 January 1997

6.2 Response Header Fields

The response-header fields allow the server to pass additional
information about the response which cannot be placed in the Status-
Line. These header fields give information about the server and about
further access to the resource identified by the Request-URI.

response-header = Age ; Section 14.6
| Location ; Section 14.30
| Proxy-Authenticate ; Section 14.33
| Public ; Section 14.35
| Retry-After ; Section 14.38
| Server ; Section 14.39
| Vary ; Section 14.43
| Warning ; Section 14.45
| WWW-Authenticate ; Section 14.46

Response-header field names can be extended reliably only in
combination with a change in the protocol version. However, new or
experimental header fields MAY be given the semantics of response-
header fields if all parties in the communication recognize them to

be response-header fields. Unrecognized header fields are treated as
entity-header fields.

7 Entity
Request and Response messages MAY transfer an entity if not otherwise
restricted by the request method or response status code. An entity
consists of entity-header fields and an entity-body, although some
responses will only include the entity-headers.

In this section, both sender and recipient refer to either the client
or the server, depending on who sends and who receives the entity.

7.1 Entity Header Fields
Entity-header fields define optional metainformation about the

entity-body or, if no body is present, about the resource identified
by the request.

Fielding, et. al. Standards Track [Page 41]

RFC 2068 HTTP/1.1 January 1997

entity-header = Allow ; Section 14.7
| Content-Base ; Section 14.11
| Content-Encoding ; Section 14.12
| Content-Language ; Section 14.13
| Content-Length ; Section 14.14
| Content-Location ; Section 14.15
| Content-MD5 ; Section 14.16
| Content-Range ; Section 14.17
| Content-Type ; Section 14.18
| ETag ; Section 14.20
| Expires ; Section 14.21
| Last-Modified ; Section 14.29

| extension-header
extension-header = message-header

The extension-header mechanism allows additional entity-header fields
to be defined without changing the protocol, but these fields cannot

be assumed to be recognizable by the recipient. Unrecognized header
fields SHOULD be ignored by the recipient and forwarded by proxies.

7.2 Entity Body

The entity-body (if any) sent with an HTTP request or response is in
a format and encoding defined by the entity-header fields.

entity-body =*OCTET

An entity-body is only present in a message when a message-body is
present, as described in section 4.3. The entity-body is obtained

from the message-body by decoding any Transfer-Encoding that may have
been applied to ensure safe and proper transfer of the message.

7.2.1 Type

When an entity-body is included with a message, the data type of that
body is determined via the header fields Content-Type and Content-
Encoding. These define a two-layer, ordered encoding model:

entity-body := Content-Encoding(Content-Type(data))

Content-Type specifies the media type of the underlying data.
Content-Encoding may be used to indicate any additional content
codings applied to the data, usually for the purpose of data
compression, that are a property of the requested resource. There is
no default encoding.

Fielding, et. al. Standards Track [Page 42]

RFC 2068 HTTP/1.1 January 1997

Any HTTP/1.1 message containing an entity-body SHOULD include a
Content-Type header field defining the media type of that body. If
and only if the media type is not given by a Content-Type field, the
recipient MAY attempt to guess the media type via inspection of its
content and/or the name extension(s) of the URL used to identify the
resource. If the media type remains unknown, the recipient SHOULD
treat it as type "application/octet-stream".

7.2.2 Length

The length of an entity-body is the length of the message-body after
any transfer codings have been removed. Section 4.4 defines how the
length of a message-body is determined.

8 Connections
8.1 Persistent Connections
8.1.1 Purpose

Prior to persistent connections, a separate TCP connection was
established to fetch each URL, increasing the load on HTTP servers
and causing congestion on the Internet. The use of inline images and
other associated data often requires a client to make multiple
requests of the same server in a short amount of time. Analyses of
these performance problems are available [30][27]; analysis and
results from a prototype implementation are in [26].

Persistent HTTP connections have a number of advantages:

0 By opening and closing fewer TCP connections, CPU time is saved,
and memory used for TCP protocol control blocks is also saved.

o HTTP requests and responses can be pipelined on a connection.
Pipelining allows a client to make multiple requests without
waiting for each response, allowing a single TCP connection to be
used much more efficiently, with much lower elapsed time.

o Network congestion is reduced by reducing the number of packets
caused by TCP opens, and by allowing TCP sufficient time to
determine the congestion state of the network.

o HTTP can evolve more gracefully; since errors can be reported
without the penalty of closing the TCP connection. Clients using
future versions of HTTP might optimistically try a new feature, but
if communicating with an older server, retry with old semantics
after an error is reported.

HTTP implementations SHOULD implement persistent connections.

Fielding, et. al. Standards Track [Page 43]

RFC 2068 HTTP/1.1 January 1997

8.1.2 Overall Operation

A significant difference between HTTP/1.1 and earlier versions of
HTTP is that persistent connections are the default behavior of any
HTTP connection. That is, unless otherwise indicated, the client may
assume that the server will maintain a persistent connection.

Persistent connections provide a mechanism by which a client and a
server can signal the close of a TCP connection. This signaling takes
place using the Connection header field. Once a close has been
signaled, the client MUST not send any more requests on that
connection.

8.1.2.1 Negotiation

An HTTP/1.1 server MAY assume that a HTTP/1.1 client intends to
maintain a persistent connection unless a Connection header including
the connection-token "close" was sent in the request. If the server
chooses to close the connection immediately after sending the
response, it SHOULD send a Connection header including the
connection-token close.

An HTTP/1.1 client MAY expect a connection to remain open, but would
decide to keep it open based on whether the response from a server
contains a Connection header with the connection-token close. In case
the client does not want to maintain a connection for more than that
request, it SHOULD send a Connection header including the
connection-token close.

If either the client or the server sends the close token in the
Connection header, that request becomes the last one for the
connection.

Clients and servers SHOULD NOT assume that a persistent connection is
maintained for HTTP versions less than 1.1 unless it is explicitly

signaled. See section 19.7.1 for more information on backwards
compatibility with HTTP/1.0 clients.

In order to remain persistent, all messages on the connection must
have a self-defined message length (i.e., one not defined by closure
of the connection), as described in section 4.4.

8.1.2.2 Pipelining
A client that supports persistent connections MAY "pipeline” its
requests (i.e., send multiple requests without waiting for each

response). A server MUST send its responses to those requests in the
same order that the requests were received.

Fielding, et. al. Standards Track [Page 44]

RFC 2068 HTTP/1.1 January 1997

Clients which assume persistent connections and pipeline immediately
after connection establishment SHOULD be prepared to retry their
connection if the first pipelined attempt fails. If a client does

such a retry, it MUST NOT pipeline before it knows the connection is
persistent. Clients MUST also be prepared to resend their requests if
the server closes the connection before sending all of the
corresponding responses.

8.1.3 Proxy Servers

It is especially important that proxies correctly implement the
properties of the Connection header field as specified in 14.2.1.

The proxy server MUST signal persistent connections separately with
its clients and the origin servers (or other proxy servers) that it
connects to. Each persistent connection applies to only one transport
link.

A proxy server MUST NOT establish a persistent connection with an
HTTP/1.0 client.

8.1.4 Practical Considerations

Servers will usually have some time-out value beyond which they will
no longer maintain an inactive connection. Proxy servers might make
this a higher value since it is likely that the client will be making

more connections through the same server. The use of persistent
connections places no requirements on the length of this time-out for
either the client or the server.

When a client or server wishes to time-out it SHOULD issue a graceful
close on the transport connection. Clients and servers SHOULD both
constantly watch for the other side of the transport close, and

respond to it as appropriate. If a client or server does not detect

the other side’s close promptly it could cause unnecessary resource
drain on the network.

A client, server, or proxy MAY close the transport connection at any
time. For example, a client MAY have started to send a new request at
the same time that the server has decided to close the "idle"
connection. From the server’s point of view, the connection is being
closed while it was idle, but from the client’s point of view, a

request is in progress.

This means that clients, servers, and proxies MUST be able to recover
from asynchronous close events. Client software SHOULD reopen the
transport connection and retransmit the aborted request without user
interaction so long as the request method is idempotent (see section

Fielding, et. al. Standards Track [Page 45]

RFC 2068 HTTP/1.1 January 1997

9.1.2); other methods MUST NOT be automatically retried, although
user agents MAY offer a human operator the choice of retrying the
request.

However, this automatic retry SHOULD NOT be repeated if the second
request fails.

Servers SHOULD always respond to at least one request per connection,
if at all possible. Servers SHOULD NOT close a connection in the

middle of transmitting a response, unless a network or client failure

is suspected.

Clients that use persistent connections SHOULD limit the number of
simultaneous connections that they maintain to a given server. A
single-user client SHOULD maintain AT MOST 2 connections with any
server or proxy. A proxy SHOULD use up to 2*N connections to another
server or proxy, where N is the number of simultaneously active

users. These guidelines are intended to improve HTTP response times
and avoid congestion of the Internet or other networks.

8.2 Message Transmission Requirements
General requirements:

0 HTTP/1.1 servers SHOULD maintain persistent connections and use
TCP's flow control mechanisms to resolve temporary overloads,
rather than terminating connections with the expectation that
clients will retry. The latter technique can exacerbate network
congestion.

0 An HTTP/1.1 (or later) client sending a message-body SHOULD monitor
the network connection for an error status while it is transmitting
the request. If the client sees an error status, it SHOULD
immediately cease transmitting the body. If the body is being sent
using a "chunked" encoding (section 3.6), a zero length chunk and
empty footer MAY be used to prematurely mark the end of the
message. If the body was preceded by a Content-Length header, the
client MUST close the connection.

0 An HTTP/1.1 (or later) client MUST be prepared to accept a 100
(Continue) status followed by a regular response.

0 An HTTP/1.1 (or later) server that receives a request from a
HTTP/1.0 (or earlier) client MUST NOT transmit the 100 (continue)
response; it SHOULD either wait for the request to be completed
normally (thus avoiding an interrupted request) or close the
connection prematurely.

Fielding, et. al. Standards Track [Page 46]

RFC 2068 HTTP/1.1 January 1997

Upon receiving a method subject to these requirements from an
HTTP/1.1 (or later) client, an HTTP/1.1 (or later) server MUST either
respond with 100 (Continue) status and continue to read from the
input stream, or respond with an error status. If it responds with an
error status, it MAY close the transport (TCP) connection or it MAY
continue to read and discard the rest of the request. It MUST NOT
perform the requested method if it returns an error status.

Clients SHOULD remember the version number of at least the most
recently used server; if an HTTP/1.1 client has seen an HTTP/1.1 or
later response from the server, and it sees the connection close
before receiving any status from the server, the client SHOULD retry
the request without user interaction so long as the request method is
idempotent (see section 9.1.2); other methods MUST NOT be
automatically retried, although user agents MAY offer a human
operator the choice of retrying the request.. If the client does

retry the request, the client

0 MUST first send the request header fields, and then

0 MUST wait for the server to respond with either a 100 (Continue)
response, in which case the client should continue, or with an
error status.

If an HTTP/1.1 client has not seen an HTTP/1.1 or later response from
the server, it should assume that the server implements HTTP/1.0 or
older and will not use the 100 (Continue) response. If in this case

the client sees the connection close before receiving any status from
the server, the client SHOULD retry the request. If the client does
retry the request to this HTTP/1.0 server, it should use the

following "binary exponential backoff" algorithm to be assured of
obtaining a reliable response:

1. Initiate a new connection to the server

2. Transmit the request-headers

3. Initialize a variable R to the estimated round-trip time to the
server (e.g., based on the time it took to establish the
connection), or to a constant value of 5 seconds if the round-trip

time is not available.

4. Compute T = R * (2**N), where N is the number of previous retries
of this request.

5. Wait either for an error response from the server, or for T seconds
(whichever comes first)

Fielding, et. al. Standards Track [Page 47]

RFC 2068 HTTP/1.1 January 1997

6. If no error response is received, after T seconds transmit the body
of the request.

7. If client sees that the connection is closed prematurely, repeat
from step 1 until the request is accepted, an error response is
received, or the user becomes impatient and terminates the retry
process.

No matter what the server version, if an error status is received,
the client

o MUST NOT continue and

0 MUST close the connection if it has not completed sending the
message.

An HTTP/1.1 (or later) client that sees the connection close after
receiving a 100 (Continue) but before receiving any other status
SHOULD retry the request, and need not wait for 100 (Continue)
response (but MAY do so if this simplifies the implementation).

9 Method Definitions

The set of common methods for HTTP/1.1 is defined below. Although
this set can be expanded, additional methods cannot be assumed to
share the same semantics for separately extended clients and servers.

The Host request-header field (section 14.23) MUST accompany all
HTTP/1.1 requests.

9.1 Safe and Idempotent Methods
9.1.1 Safe Methods

Implementers should be aware that the software represents the user in
their interactions over the Internet, and should be careful to allow

the user to be aware of any actions they may take which may have an
unexpected significance to themselves or others.

In particular, the convention has been established that the GET and
HEAD methods should never have the significance of taking an action
other than retrieval. These methods should be considered "safe." This
allows user agents to represent other methods, such as POST, PUT and
DELETE, in a special way, so that the user is made aware of the fact
that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not
generate side-effects as a result of performing a GET request; in

Fielding, et. al. Standards Track [Page 48]

RFC 2068 HTTP/1.1 January 1997

fact, some dynamic resources consider that a feature. The important
distinction here is that the user did not request the side-effects,
so therefore cannot be held accountable for them.

9.1.2 Idempotent Methods

Methods may also have the property of "idempotence” in that (aside
from error or expiration issues) the side-effects of N > 0 identical
requests is the same as for a single request. The methods GET, HEAD,
PUT and DELETE share this property.

9.2 OPTIONS

The OPTIONS method represents a request for information about the
communication options available on the request/response chain
identified by the Request-URI. This method allows the client to
determine the options and/or requirements associated with a resource,
or the capabilities of a server, without implying a resource action

or initiating a resource retrieval.

Unless the server’s response is an error, the response MUST NOT
include entity information other than what can be considered as
communication options (e.g., Allow is appropriate, but Content-Type
is not). Responses to this method are not cachable.

If the Request-URI is an asterisk ("*"), the OPTIONS request is
intended to apply to the server as a whole. A 200 response SHOULD
include any header fields which indicate optional features
implemented by the server (e.g., Public), including any extensions

not defined by this specification, in addition to any applicable

general or response-header fields. As described in section 5.1.2, an
"OPTIONS *" request can be applied through a proxy by specifying the
destination server in the Request-URI without any path information.

If the Request-URI is not an asterisk, the OPTIONS request applies
only to the options that are available when communicating with that
resource. A 200 response SHOULD include any header fields which
indicate optional features implemented by the server and applicable
to that resource (e.g., Allow), including any extensions not defined
by this specification, in addition to any applicable general or
response-header fields. If the OPTIONS request passes through a
proxy, the proxy MUST edit the response to exclude those options
which apply to a proxy’s capabilities and which are known to be
unavailable through that proxy.

Fielding, et. al. Standards Track [Page 49]

RFC 2068 HTTP/1.1 January 1997

9.3 GET

The GET method means retrieve whatever information (in the form of an
entity) is identified by the Request-URI. If the Request-URI refers

to a data-producing process, it is the produced data which shall be
returned as the entity in the response and not the source text of the
process, unless that text happens to be the output of the process.

The semantics of the GET method change to a "conditional GET" if the
request message includes an If-Modified-Since, If-Unmodified-Since,
If-Match, If-None-Match, or If-Range header field. A conditional GET
method requests that the entity be transferred only under the
circumstances described by the conditional header field(s). The
conditional GET method is intended to reduce unnecessary network
usage by allowing cached entities to be refreshed without requiring
multiple requests or transferring data already held by the client.

The semantics of the GET method change to a "partial GET" if the
request message includes a Range header field. A partial GET requests
that only part of the entity be transferred, as described in section

14.36. The partial GET method is intended to reduce unnecessary
network usage by allowing partially-retrieved entities to be

completed without transferring data already held by the client.

The response to a GET request is cachable if and only if it meets the
requirements for HTTP caching described in section 13.

9.4 HEAD

The HEAD method is identical to GET except that the server MUST NOT
return a message-body in the response. The metainformation contained

in the HTTP headers in response to a HEAD request SHOULD be identical
to the information sent in response to a GET request. This method can

be used for obtaining metainformation about the entity implied by the
request without transferring the entity-body itself. This method is

often used for testing hypertext links for validity, accessibility,

and recent modification.

The response to a HEAD request may be cachable in the sense that the
information contained in the response may be used to update a
previously cached entity from that resource. If the new field values
indicate that the cached entity differs from the current entity (as

would be indicated by a change in Content-Length, Content-MD5, ETag
or Last-Modified), then the cache MUST treat the cache entry as

stale.

Fielding, et. al. Standards Track [Page 50]

RFC 2068 HTTP/1.1 January 1997

9.5 POST

The POST method is used to request that the destination server accept
the entity enclosed in the request as a new subordinate of the

resource identified by the Request-URI in the Request-Line. POST is
designed to allow a uniform method to cover the following functions:

0 Annotation of existing resources;

0 Posting a message to a bulletin board, newsgroup, mailing list,
or similar group of articles;

o Providing a block of data, such as the result of submitting a
form, to a data-handling process;

0 Extending a database through an append operation.

The actual function performed by the POST method is determined by the
server and is usually dependent on the Request-URI. The posted entity
is subordinate to that URI in the same way that a file is subordinate

to a directory containing it, a news article is subordinate to a

newsgroup to which it is posted, or a record is subordinate to a
database.

The action performed by the POST method might not result in a
resource that can be identified by a URI. In this case, either 200
(OK) or 204 (No Content) is the appropriate response status,
depending on whether or not the response includes an entity that
describes the result.

If a resource has been created on the origin server, the response
SHOULD be 201 (Created) and contain an entity which describes the
status of the request and refers to the new resource, and a Location
header (see section 14.30).

Responses to this method are not cachable, unless the response
includes appropriate Cache-Control or Expires header fields. However,
the 303 (See Other) response can be used to direct the user agent to
retrieve a cachable resource.

POST requests must obey the message transmission requirements set out
in section 8.2.

Fielding, et. al. Standards Track [Page 51]

RFC 2068 HTTP/1.1 January 1997

9.6 PUT

The PUT method requests that the enclosed entity be stored under the
supplied Request-URI. If the Request-URI refers to an already

existing resource, the enclosed entity SHOULD be considered as a
modified version of the one residing on the origin server. If the
Request-URI does not point to an existing resource, and that URI is
capable of being defined as a new resource by the requesting user
agent, the origin server can create the resource with that URI. If a

new resource is created, the origin server MUST inform the user agent
via the 201 (Created) response. If an existing resource is modified,
either the 200 (OK) or 204 (No Content) response codes SHOULD be sent
to indicate successful completion of the request. If the resource

could not be created or modified with the Request-URI, an appropriate
error response SHOULD be given that reflects the nature of the
problem. The recipient of the entity MUST NOT ignore any Content-*
(e.g. Content-Range) headers that it does not understand or implement
and MUST return a 501 (Not Implemented) response in such cases.

If the request passes through a cache and the Request-URI identifies
one or more currently cached entities, those entries should be
treated as stale. Responses to this method are not cachable.

The fundamental difference between the POST and PUT requests is
reflected in the different meaning of the Request-URI. The URI in a
POST request identifies the resource that will handle the enclosed
entity. That resource may be a data-accepting process, a gateway to
some other protocol, or a separate entity that accepts annotations.

In contrast, the URI in a PUT request identifies the entity enclosed

with the request -- the user agent knows what URI is intended and the
server MUST NOT attempt to apply the request to some other resource.
If the server desires that the request be applied to a different URI,

it MUST send a 301 (Moved Permanently) response; the user agent MAY
then make its own decision regarding whether or not to redirect the
request.

A single resource MAY be identified by many different URIs. For
example, an article may have a URI for identifying "the current
version" which is separate from the URI identifying each particular
version. In this case, a PUT request on a general URI may result in
several other URIs being defined by the origin server.

HTTP/1.1 does not define how a PUT method affects the state of an
origin server.

PUT requests must obey the message transmission requirements set out
in section 8.2.

Fielding, et. al. Standards Track [Page 52]

RFC 2068 HTTP/1.1 January 1997

9.7 DELETE

The DELETE method requests that the origin server delete the resource
identified by the Request-URI. This method MAY be overridden by human
intervention (or other means) on the origin server. The client cannot

be guaranteed that the operation has been carried out, even if the

status code returned from the origin server indicates that the action

has been completed successfully. However, the server SHOULD not
indicate success unless, at the time the response is given, it

intends to delete the resource or move it to an inaccessible

location.

A successful response SHOULD be 200 (OK) if the response includes an
entity describing the status, 202 (Accepted) if the action has not

yet been enacted, or 204 (No Content) if the response is OK but does
not include an entity.

If the request passes through a cache and the Request-URI identifies
one or more currently cached entities, those entries should be
treated as stale. Responses to this method are not cachable.

9.8 TRACE

The TRACE method is used to invoke a remote, application-layer loop-
back of the request message. The final recipient of the request
SHOULD reflect the message received back to the client as the
entity-body of a 200 (OK) response. The final recipient is either the
origin server or the first proxy or gateway to receive a Max-Forwards
value of zero (0) in the request (see section 14.31). A TRACE request
MUST NOT include an entity.

TRACE allows the client to see what is being received at the other
end of the request chain and use that data for testing or diagnostic
information. The value of the Via header field (section 14.44) is of
particular interest, since it acts as a trace of the request chain.
Use of the Max-Forwards header field allows the client to limit the
length of the request chain, which is useful for testing a chain of
proxies forwarding messages in an infinite loop.

If successful, the response SHOULD contain the entire request message
in the entity-body, with a Content-Type of "message/http". Responses
to this method MUST NOT be cached.
10 Status Code Definitions
Each Status-Code is described below, including a description of which

method(s) it can follow and any metainformation required in the
response.

Fielding, et. al. Standards Track [Page 53]

RFC 2068 HTTP/1.1 January 1997

10.1 Informational 1xx

This class of status code indicates a provisional response,

consisting only of the Status-Line and optional headers, and is
terminated by an empty line. Since HTTP/1.0 did not define any 1xx
status codes, servers MUST NOT send a 1xx response to an HTTP/1.0
client except under experimental conditions.

10.1.1 100 Continue

The client may continue with its request. This interim response is

used to inform the client that the initial part of the request has

been received and has not yet been rejected by the server. The client
SHOULD continue by sending the remainder of the request or, if the
request has already been completed, ignore this response. The server
MUST send a final response after the request has been completed.

10.1.2 101 Switching Protocols

The server understands and is willing to comply with the client’s
request, via the Upgrade message header field (section 14.41), for a
change in the application protocol being used on this connection. The
server will switch protocols to those defined by the response’s
Upgrade header field immediately after the empty line which
terminates the 101 response.

The protocol should only be switched when it is advantageous to do
so. For example, switching to a newer version of HTTP is
advantageous over older versions, and switching to a real-time,
synchronous protocol may be advantageous when delivering resources
that use such features.

10.2 Successful 2xx

This class of status code indicates that the client’s request was
successfully received, understood, and accepted.

10.2.1 200 OK

The request has succeeded. The information returned with the response
is dependent on the method used in the request, for example:

GET an entity corresponding to the requested resource is sent in the
response;

HEAD the entity-header fields corresponding to the requested resource
are sent in the response without any message-body;

Fielding, et. al. Standards Track [Page 54]

RFC 2068 HTTP/1.1 January 1997

POST an entity describing or containing the result of the action;

TRACE an entity containing the request message as received by the end
server.

10.2.2 201 Created

The request has been fulfilled and resulted in a new resource being
created. The newly created resource can be referenced by the URI(S)
returned in the entity of the response, with the most specific URL

for the resource given by a Location header field. The origin server
MUST create the resource before returning the 201 status code. If the
action cannot be carried out immediately, the server should respond
with 202 (Accepted) response instead.

10.2.3 202 Accepted

The request has been accepted for processing, but the processing has
not been completed. The request MAY or MAY NOT eventually be acted
upon, as it MAY be disallowed when processing actually takes place.
There is no facility for re-sending a status code from an

asynchronous operation such as this.

The 202 response is intentionally non-committal. Its purpose is to
allow a server to accept a request for some other process (perhaps a
batch-oriented process that is only run once per day) without

requiring that the user agent’s connection to the server persist

until the process is completed. The entity returned with this

response SHOULD include an indication of the request’s current status
and either a pointer to a status monitor or some estimate of when the
user can expect the request to be fulfilled.

10.2.4 203 Non-Authoritative Information

The returned metainformation in the entity-header is not the

definitive set as available from the origin server, but is gathered

from a local or a third-party copy. The set presented MAY be a subset
or superset of the original version. For example, including local
annotation information about the resource MAY result in a superset of
the metainformation known by the origin server. Use of this response
code is not required and is only appropriate when the response would
otherwise be 200 (OK).

10.2.5 204 No Content
The server has fulfilled the request but there is no new information

to send back. If the client is a user agent, it SHOULD NOT change its
document view from that which caused the request to be sent. This

Fielding, et. al. Standards Track [Page 55]

RFC 2068 HTTP/1.1 January 1997

response is primarily intended to allow input for actions to take

place without causing a change to the user agent’s active document
view. The response MAY include new metainformation in the form of
entity-headers, which SHOULD apply to the document currently in the
user agent’s active view.

The 204 response MUST NOT include a message-body, and thus is always
terminated by the first empty line after the header fields.

10.2.6 205 Reset Content

The server has fulfilled the request and the user agent SHOULD reset
the document view which caused the request to be sent. This response
is primarily intended to allow input for actions to take place via

user input, followed by a clearing of the form in which the input is

given so that the user can easily initiate another input action. The
response MUST NOT include an entity.

10.2.7 206 Partial Content

The server has fulfilled the partial GET request for the resource.

The request must have included a Range header field (section 14.36)
indicating the desired range. The