Internet Engineering Task Force (IETF) Z. Shelby

Request for Comments: 7252 ARM
Category: Standards Track K. Hartke
ISSN: 2070-1721 C. Bormann
Universitaet Bremen TZI
June 2014

The Constrained Application Protocol (CoAP)
Abstract

The Constrained Application Protocol (CoAP) is a specialized web
transfer protocol for use with constrained nodes and constrained

(e.g., low-power, lossy) networks. The nodes often have 8-bit
microcontrollers with small amounts of ROM and RAM, while constrained
networks such as IPv6 over Low-Power Wireless Personal Area Networks
(6LOWPANS) often have high packet error rates and a typical

throughput of 10s of kbit/s. The protocol is designed for machine-
to-machine (M2M) applications such as smart energy and building
automation.

CoAP provides a request/response interaction model between
application endpoints, supports built-in discovery of services and
resources, and includes key concepts of the Web such as URIs and
Internet media types. CoOAP is designed to easily interface with HTTP
for integration with the Web while meeting specialized requirements
such as multicast support, very low overhead, and simplicity for
constrained environments.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7252.

Shelby, et al. Standards Track [Page 1]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 5
1.1. Features 5
1.2. Terminologyt 6
2. Constrained Application Protocol 10
2.1. MessagingModel 11
2.2. Request/Response Model 12
2.3. Intermediaries and Caching 15
2.4. Resource Discovery 15
3. MessageFormat 15
3.1. OptionFormat 17
3.2. Option Value Formats 19
4. Message Transmission 20
4.1. Messages and Endpoints 20
4.2. Messages Transmitted Reliably 21
4.3. Messages Transmitted without Reliability 23
4.4, Message Correlation 24
4.5. Message Deduplication 24
4.6. Message Size 25
4.7. CongestionControl 26
4.8. Transmission Parameters................. 27
4.8.1. Changing the Parameters............... 27
4.8.2. Time Values Derived from Transmission Parameters .. 28
5. Request/Response Semantics 31
51. Requests 31
5.2. RESPONSES oo 31
5.2.1. Piggybacked 33
5.22. Separate 33
5.2.3. Non-confirmable 34
5.3. Request/Response Matching 34
531 Token............. 34
5.3.2. Request/Response MatchingRules 35

Shelby, et al. Standards Track [Page 2]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

54.0ptions 36
5.4.1. Critical/Elective 37
5.4.2. Proxy Unsafe or Safe-to-Forward and NoCacheKey ... 38
543. Length 38
5.4.4. DefaultValues 38
5.4.5. Repeatable Options 39
5.4.6. Option Numbers 39

5.5. Payloads and Representations 40
5.5.1. Representation 40
5.5.2. Diagnostic Payload 41
5.5.3. Selected Representation............... 41
5.5.4. Content Negotiation................. 41

56. Caching......................... 42
5.6.1. FreshnessModel................... 43
5.6.2. ValidationModel 43

5.7. Proxying ... 44
5.7.1. ProxyOperation................... 44
5.7.2. Forward-Proxies................... 46
5.7.3. Reverse-Proxies 46

5.8. Method Definitions 47
58.1. GET 47
58.2. POST i 47
583. PUT i 48
58.4. DELETE 48

5.9. Response Code Definitions 48
5.9.1. SUCCESS 2.XX v vi i 48
5.9.2. ClientError4.xx 50
5.9.3. ServerError 5.xx.................. 51

5.10. Option Definitions 52
5.10.1. Uri-Host, Uri-Port, Uri-Path, and Uri-Query 53
5.10.2. Proxy-Uri and Proxy-Scheme 54
5.10.3. Content-Format 55
5.104. Accept. ... 55
5.10.5. Max-Age ..., 55
5106. ETag........ccoviiiin.. 56
5.10.7. Location-Path and Location-Query 57
5.10.8. Conditional Request Options 57
5.10.9. SizelOption 59

6. COAPURIS 59

6.1. coapURIScheme 59

6.2. coaps URIScheme 60

6.3. Normalization and Comparison Rules 61
6.4. Decomposing URIs into Options 61
6.5. Composing URIs from Options 62

7. DisSCOVEY . ..o 64

7.1. Service Discovery 64

7.2. Resource Discovery 64
7.2.1. ‘ct’ Attribute L 64

Shelby, et al. Standards Track [Page 3]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

8. Multicast COAP 65
8.1. MessagingLayer..................... 65
8.2. Request/Response Layer 66
821 Caching....................... 67
8.2.2. Proxying 67
9. SecuringCoAP 68
9.1. DTLS-Secured COAP 69
9.1.1. MessaginglLayer................... 70
9.1.2. Request/Response Layer 71
9.1.3. Endpointidentity 71
10. Cross-Protocol Proxying between CoAP and HTTP 74
10.1. CoAP-HTTP Proxying................... 75
10.1.1. GET ... 76
10.1.2. PUT ... 77
10.1.3. DELETEo 77
10.14. POST . ..o 77
10.2. HTTP-CoAP Proxying 77
10.2.1. OPTIONS and TRACE 78
10.2.2. GET ... 78
1023. HEAD 79
10.24. POST i 79
10.25. PUT ... o 79
10.2.6. DELETE iint. 80
10.2.7. CONNECT i, 80
11. Security Considerations 80
11.1. Parsing the Protocol and Processing URIs 80
11.2. Proxyingand Caching.................. 81
11.3. Risk of Amplification 81
11.4. IP Address Spoofing Attacks 83
11.5. Cross-Protocol Attacks 84
11.6. Constrained-Node Considerations 86
12. IANA Considerations 86
12.1. CoAP Code Registries 86
12.1.1. MethodCodes 87
12.1.2. ResponseCodes 88
12.2. CoAP Option Numbers Registry 89
12.3. CoAP Content-Formats Registry 91
12.4. URI Scheme Registration 93
12.5. Secure URI Scheme Registration. 94
12.6. Service Name and Port Number Registration 95
12.7. Secure Service Name and Port Number Registration 96
12.8. Multicast Address Registration............. 97
13. Acknowledgements 97
14. References 98
14.1. Normative References 98
14.2. Informative References 100
Appendix A. Examples 104
Appendix B. URIExamples 110

Shelby, et al. Standards Track [Page 4]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

1. Introduction

The use of web services (web APIs) on the Internet has become
ubiquitous in most applications and depends on the fundamental
Representational State Transfer [REST] architecture of the Web.

The work on Constrained RESTful Environments (CoRE) aims at realizing
the REST architecture in a suitable form for the most constrained

nodes (e.g., 8-bit microcontrollers with limited RAM and ROM) and
networks (e.g., 6LOWPAN, [RFC4944]). Constrained networks such as
6LOoWPAN support the fragmentation of IPv6 packets into small link-

layer frames; however, this causes significant reduction in packet

delivery probability. One design goal of CoAP has been to keep
message overhead small, thus limiting the need for fragmentation.

One of the main goals of CoAP is to design a generic web protocol for
the special requirements of this constrained environment, especially
considering energy, building automation, and other machine-to-machine
(M2M) applications. The goal of CoAP is not to blindly compress HTTP
[RFC2616], but rather to realize a subset of REST common with HTTP
but optimized for M2M applications. Although CoAP could be used for
refashioning simple HTTP interfaces into a more compact protocol,
more importantly it also offers features for M2M such as built-in
discovery, multicast support, and asynchronous message exchanges.

This document specifies the Constrained Application Protocol (CoAP),
which easily translates to HTTP for integration with the existing Web
while meeting specialized requirements such as multicast support,
very low overhead, and simplicity for constrained environments and
M2M applications.

1.1. Features
CoAP has the following main features:

o Web protocol fulfilling M2M requirements in constrained
environments

o UDP [RFCO0768] binding with optional reliability supporting unicast
and multicast requests.

o Asynchronous message exchanges.
0 Low header overhead and parsing complexity.
o URI and Content-type support.

0 Simple proxy and caching capabilities.

Shelby, et al. Standards Track [Page 5]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

0 A stateless HTTP mapping, allowing proxies to be built providing
access to CoAP resources via HTTP in a uniform way or for HTTP
simple interfaces to be realized alternatively over CoAP.

0 Security binding to Datagram Transport Layer Security (DTLS)
[RFC6347].

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in

[RFC2119] when they appear in ALL CAPS. These words may also appear

in this document in lowercase, absent their normative meanings.

This specification requires readers to be familiar with all the terms

and concepts that are discussed in [RFC2616], including "resource”,
"representation”, "cache", and "fresh". (Having been completed

before the updated set of HTTP RFCs, RFC 7230 to RFC 7235, became
available, this specification specifically references the predecessor
version -- RFC 2616.) In addition, this specification defines the
following terminology:

Endpoint
An entity participating in the CoAP protocol. Colloquially, an
endpoint lives on a "Node", although "Host" would be more
consistent with Internet standards usage, and is further
identified by transport-layer multiplexing information that can
include a UDP port number and a security association
(Section 4.1).

Sender
The originating endpoint of a message. When the aspect of
identification of the specific sender is in focus, also "source
endpoint”.

Recipient
The destination endpoint of a message. When the aspect of
identification of the specific recipient is in focus, also
"destination endpoint".

Client
The originating endpoint of a request; the destination endpoint of
a response.

Server

The destination endpoint of a request; the originating endpoint of
aresponse.

Shelby, et al. Standards Track [Page 6]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Origin Server
The server on which a given resource resides or is to be created.

Intermediary
A CoAP endpoint that acts both as a server and as a client towards
an origin server (possibly via further intermediaries). A common
form of an intermediary is a proxy; several classes of such
proxies are discussed in this specification.

Proxy
An intermediary that mainly is concerned with forwarding requests
and relaying back responses, possibly performing caching,
namespace translation, or protocol translation in the process. As
opposed to intermediaries in the general sense, proxies generally
do not implement specific application semantics. Based on the
position in the overall structure of the request forwarding, there
are two common forms of proxy: forward-proxy and reverse-proxy.
In some cases, a single endpoint might act as an origin server,

forward-proxy, or reverse-proxy, switching behavior based on the
nature of each request.

Forward-Proxy
An endpoint selected by a client, usually via local configuration
rules, to perform requests on behalf of the client, doing any
necessary translations. Some translations are minimal, such as
for proxy requests for "coap" URIs, whereas other requests might
require translation to and from entirely different application-
layer protocols.

Reverse-Proxy
An endpoint that stands in for one or more other server(s) and
satisfies requests on behalf of these, doing any necessary
translations. Unlike a forward-proxy, the client may not be aware
that it is communicating with a reverse-proxy; a reverse-proxy

receives requests as if it were the origin server for the target
resource.

CoAP-to-CoAP Proxy

A proxy that maps from a CoAP request to a CoAP request, i.e.,
uses the CoAP protocol both on the server and the client side.
Contrast to cross-proxy.

Cross-Proxy
A cross-protocol proxy, or "cross-proxy" for short, is a proxy
that translates between different protocols, such as a CoAP-to-
HTTP proxy or an HTTP-to-CoAP proxy. While this specification
makes very specific demands of CoAP-to-CoAP proxies, there is more
variation possible in cross-proxies.

Shelby, et al. Standards Track [Page 7]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Confirmable Message
Some messages require an acknowledgement. These messages are
called "Confirmable". When no packets are lost, each Confirmable
message elicits exactly one return message of type Acknowledgement
or type Reset.

Non-confirmable Message
Some other messages do not require an acknowledgement. This is
particularly true for messages that are repeated regularly for
application requirements, such as repeated readings from a sensor.

Acknowledgement Message
An Acknowledgement message acknowledges that a specific
Confirmable message arrived. By itself, an Acknowledgement
message does not indicate success or failure of any request
encapsulated in the Confirmable message, but the Acknowledgement
message may also carry a Piggybacked Response (see below).

Reset Message
A Reset message indicates that a specific message (Confirmable or
Non-confirmable) was received, but some context is missing to
properly process it. This condition is usually caused when the
receiving node has rebooted and has forgotten some state that
would be required to interpret the message. Provoking a Reset
message (e.g., by sending an Empty Confirmable message) is also
useful as an inexpensive check of the liveness of an endpoint
("CoAP ping").

Piggybacked Response
A piggybacked Response is included right in a CoAP Acknowledgement
(ACK) message that is sent to acknowledge receipt of the Request
for this Response (Section 5.2.1).

Separate Response
When a Confirmable message carrying a request is acknowledged with
an Empty message (e.g., because the server doesn’t have the answer
right away), a Separate Response is sent in a separate message
exchange (Section 5.2.2).

Empty Message

A message with a Code of 0.00; neither a request nor a response.
An Empty message only contains the 4-byte header.

Shelby, et al. Standards Track [Page 8]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Critical Option
An option that would need to be understood by the endpoint
ultimately receiving the message in order to properly process the
message (Section 5.4.1). Note that the implementation of critical
options is, as the name "Option" implies, generally optional:
unsupported critical options lead to an error response or summary
rejection of the message.

Elective Option
An option that is intended to be ignored by an endpoint that does
not understand it. Processing the message even without
understanding the option is acceptable (Section 5.4.1).

Unsafe Option
An option that would need to be understood by a proxy receiving
the message in order to safely forward the message
(Section 5.4.2). Not every critical option is an unsafe option.

Safe-to-Forward Option
An option that is intended to be safe for forwarding by a proxy
that does not understand it. Forwarding the message even without
understanding the option is acceptable (Section 5.4.2).

Resource Discovery
The process where a CoAP client queries a server for its list of
hosted resources (i.e., links as defined in Section 7).

Content-Format
The combination of an Internet media type, potentially with
specific parameters given, and a content-coding (which is often
the identity content-coding), identified by a numeric identifier
defined by the "CoAP Content-Formats" registry. When the focus is
less on the numeric identifier than on the combination of these
characteristics of a resource representation, this is also called
"representation format".

Additional terminology for constrained nodes and constrained-node
networks can be found in [RFC7228].

In this specification, the term "byte" is used in its now customary
sense as a synonym for "octet".

All multi-byte integers in this protocol are interpreted in network
byte order.

Where arithmetic is used, this specification uses the notation

familiar from the programming language C, except that the operator
"**' stands for exponentiation.

Shelby, et al. Standards Track [Page 9]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

2. Constrained Application Protocol

The interaction model of CoOAP is similar to the client/server model

of HTTP. However, machine-to-machine interactions typically result

in a CoAP implementation acting in both client and server roles. A
CoAP request is equivalent to that of HTTP and is sent by a client to
request an action (using a Method Code) on a resource (identified by

a URI) on a server. The server then sends a response with a Response
Code; this response may include a resource representation.

Unlike HTTP, CoAP deals with these interchanges asynchronously over a
datagram-oriented transport such as UDP. This is done logically

using a layer of messages that supports optional reliability (with
exponential back-off). CoAP defines four types of messages:
Confirmable, Non-confirmable, Acknowledgement, Reset. Method Codes
and Response Codes included in some of these messages make them carry
requests or responses. The basic exchanges of the four types of
messages are somewhat orthogonal to the request/response

interactions; requests can be carried in Confirmable and Non-
confirmable messages, and responses can be carried in these as well

as piggybacked in Acknowledgement messages.

One could think of CoAP logically as using a two-layer approach, a
CoAP messaging layer used to deal with UDP and the asynchronous
nature of the interactions, and the request/response interactions

using Method and Response Codes (see Figure 1). CoAP is however a
single protocol, with messaging and request/response as just features
of the CoAP header.

+ +

| Application |

+ +

+ +\

| Requests/Responses | |
| | | CoAP
| Messages []

+ + /

+ +

| UDP |

4
T

Figure 1: Abstract Layering of CoAP

Shelby, et al. Standards Track [Page 10]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

2.1. Messaging Model

The CoAP messaging model is based on the exchange of messages over
UDP between endpoints.

CoAP uses a short fixed-length binary header (4 bytes) that may be
followed by compact binary options and a payload. This message
format is shared by requests and responses. The CoAP message format
is specified in Section 3. Each message contains a Message ID used

to detect duplicates and for optional reliability. (The Message ID

is compact; its 16-bit size enables up to about 250 messages per

second from one endpoint to another with default protocol

parameters.)

Reliability is provided by marking a message as Confirmable (CON). A
Confirmable message is retransmitted using a default timeout and
exponential back-off between retransmissions, until the recipient

sends an Acknowledgement message (ACK) with the same Message ID (in
this example, 0x7d34) from the corresponding endpoint; see Figure 2.
When a recipient is not at all able to process a Confirmable message

(i.e., not even able to provide a suitable error response), it

replies with a Reset message (RST) instead of an Acknowledgement
(ACK).

Client Server

| |
| CON [0x7d34] |

| |

| ACK [0x7d34] |
|

|

Figure 2: Reliable Message Transmission

A message that does not require reliable transmission (for example,

each single measurement out of a stream of sensor data) can be sent

as a Non-confirmable message (NON). These are not acknowledged, but
still have a Message ID for duplicate detection (in this example,

0x01a0); see Figure 3. When a recipient is not able to process a
Non-confirmable message, it may reply with a Reset message (RST).

Shelby, et al. Standards Track [Page 11]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Client Server

| |
| NON [0x01a0] |

Figure 3: Unreliable Message Transmission
See Section 4 for details of COAP messages.

As CoAP runs over UDP, it also supports the use of multicast IP
destination addresses, enabling multicast COAP requests. Section 8
discusses the proper use of COAP messages with multicast addresses
and precautions for avoiding response congestion.

Several security modes are defined for CoOAP in Section 9 ranging from
no security to certificate-based security. This document specifies a
binding to DTLS for securing the protocol; the use of IPsec with CoAP
is discussed in [IPsec-CoAP].

2.2. Request/Response Model

CoAP request and response semantics are carried in CoAP messages,
which include either a Method Code or Response Code, respectively.
Optional (or default) request and response information, such as the

URI and payload media type are carried as CoAP options. A Token is
used to match responses to requests independently from the underlying
messages (Section 5.3). (Note that the Token is a concept separate
from the Message ID.)

A request is carried in a Confirmable (CON) or Non-confirmable (NON)
message, and, if immediately available, the response to a request
carried in a Confirmable message is carried in the resulting
Acknowledgement (ACK) message. This is called a piggybacked
response, detailed in Section 5.2.1. (There is no need for

separately acknowledging a piggybacked response, as the client will
retransmit the request if the Acknowledgement message carrying the
piggybacked response is lost.) Two examples for a basic GET request
with piggybacked response are shown in Figure 4, one successful, one
resulting in a 4.04 (Not Found) response.

Shelby, et al. Standards Track [Page 12]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Client Server Client Server
I I

CON [0xbc90]		CON [0xbc91]
GET /temperature		GET /temperature
(Token Ox71)		(Token Ox72)
R > R >		
I I I		
ACK [0xbc90]		ACK [0xbc91]
2.05 Content		4.04 Not Found
(Token Ox71)		(Token 0x72)
"225C"		"Not found"
[<-mmmmmmm - + [<-mmmmmmm - +
I

Figure 4: Two GET Requests with Piggybacked Responses

If the server is not able to respond immediately to a request carried

in a Confirmable message, it simply responds with an Empty
Acknowledgement message so that the client can stop retransmitting

the request. When the response is ready, the server sends itin a

new Confirmable message (which then in turn needs to be acknowledged
by the client). This is called a "separate response", as illustrated

in Figure 5 and described in more detail in Section 5.2.2.

Client Server
I |
| CON [0x7a10] |

| GET /temperature |
| (Token 0x73) |

I I
| ACK [0x7al0] |
I
CON [0x23bb] |
2.05 Content |

|

|

| (Token 0x73) |
| "225C" |
|
|
|

|
ACK [0x23bb] |

Figure 5: A GET Request with a Separate Response

Shelby, et al. Standards Track [Page 13]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

If a request is sent in a Non-confirmable message, then the response

is sent using a new Non-confirmable message, although the server may
instead send a Confirmable message. This type of exchange is
illustrated in Figure 6.

Client Server

| |

| NON [0x7al1] |

| GET /temperature |
| (Token 0x74) |

| |

| NON [0x23bc] |
| 2.05 Content |
| (Token 0x74) |
| "225C" |

I

|

Figure 6: A Request and a Response Carried in Non-confirmable
Messages

CoAP makes use of GET, PUT, POST, and DELETE methods in a similar
manner to HTTP, with the semantics specified in Section 5.8. (Note

that the detailed semantics of CoAP methods are "almost, but not

entirely unlike" [HHGTTG] those of HTTP methods: intuition taken from
HTTP experience generally does apply well, but there are enough
differences that make it worthwhile to actually read the present
specification.)

Methods beyond the basic four can be added to CoAP in separate
specifications. New methods do not necessarily have to use requests
and responses in pairs. Even for existing methods, a single request
may yield multiple responses, e.g., for a multicast request

(Section 8) or with the Observe option [OBSERVE].

URI support in a server is simplified as the client already parses

the URI and splits it into host, port, path, and query components,
making use of default values for efficiency. Response Codes relate

to a small subset of HTTP status codes with a few CoAP-specific codes
added, as defined in Section 5.9.

Shelby, et al. Standards Track [Page 14]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

2.3. Intermediaries and Caching

The protocol supports the caching of responses in order to
efficiently fulfill requests. Simple caching is enabled using
freshness and validity information carried with CoAP responses. A
cache could be located in an endpoint or an intermediary. Caching
functionality is specified in Section 5.6.

Proxying is useful in constrained networks for several reasons,
including to limit network traffic, to improve performance, to access
resources of sleeping devices, and for security reasons. The
proxying of requests on behalf of another CoAP endpoint is supported
in the protocol. When using a proxy, the URI of the resource to
request is included in the request, while the destination IP address

is set to the address of the proxy. See Section 5.7 for more
information on proxy functionality.

As CoAP was designed according to the REST architecture [REST], and
thus exhibits functionality similar to that of the HTTP protocaol, it

is quite straightforward to map from CoAP to HTTP and from HTTP to
CoAP. Such a mapping may be used to realize an HTTP REST interface
using CoAP or to convert between HTTP and CoAP. This conversion can
be carried out by a cross-protocol proxy ("cross-proxy"), which

converts the Method or Response Code, media type, and options to the
corresponding HTTP feature. Section 10 provides more detail about
HTTP mapping.

2.4. Resource Discovery

Resource discovery is important for machine-to-machine interactions
and is supported using the CoRE Link Format [RFC6690] as discussed in
Section 7.

3. Message Format

CoAP is based on the exchange of compact messages that, by default,

are transported over UDP (i.e., each CoAP message occupies the data
section of one UDP datagram). CoAP may also be used over Datagram
Transport Layer Security (DTLS) (see Section 9.1). It could also be

used over other transports such as SMS, TCP, or SCTP, the

specification of which is out of this document’s scope. (UDP-lite

[RFC3828] and UDP zero checksum [RFC6936] are not supported by CoAP.)

CoAP messages are encoded in a simple binary format. The message

format starts with a fixed-size 4-byte header. This is followed by a
variable-length Token value, which can be between 0 and 8 bytes long.

Shelby, et al. Standards Track [Page 15]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Following the Token value comes a sequence of zero or more CoAP
Options in Type-Length-Value (TLV) format, optionally followed by a
payload that takes up the rest of the datagram.

0 1 2 3
01234567890123456789012345678901
A S s s st I S
[Ver| T| TKL | Code | Message ID |
s e S S L L A s S R S
| Token (if any, TKL bytes) ...

B s STt e St I S S e e e it
| Options (if any) ...

e e S s s i e S
11111111 Payload (if any) ...

e e T A o S L s s o ot s O SRR

Figure 7: Message Format
The fields in the header are defined as follows:

Version (Ver): 2-bit unsigned integer. Indicates the CoAP version
number. Implementations of this specification MUST set this field
to 1 (01 binary). Other values are reserved for future versions.
Messages with unknown version numbers MUST be silently ignored.

Type (T): 2-bit unsigned integer. Indicates if this message is of
type Confirmable (0), Non-confirmable (1), Acknowledgement (2), or
Reset (3). The semantics of these message types are defined in
Section 4.

Token Length (TKL): 4-bit unsigned integer. Indicates the length of
the variable-length Token field (0-8 bytes). Lengths 9-15 are
reserved, MUST NOT be sent, and MUST be processed as a message
format error.

Code: 8-bit unsigned integer, split into a 3-bit class (most
significant bits) and a 5-bit detail (least significant bits),
documented as "c.dd" where "c" is a digit from O to 7 for the
3-bit subfield and "dd" are two digits from 00 to 31 for the 5-bit
subfield. The class can indicate a request (0), a success
response (2), a client error response (4), or a server error
response (5). (All other class values are reserved.) As a
special case, Code 0.00 indicates an Empty message. In case of a
request, the Code field indicates the Request Method; in case of a
response, a Response Code. Possible values are maintained in the
CoAP Code Registries (Section 12.1). The semantics of requests
and responses are defined in Section 5.

Shelby, et al. Standards Track [Page 16]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Message ID: 16-bit unsigned integer in network byte order. Used to
detect message duplication and to match messages of type
Acknowledgement/Reset to messages of type Confirmable/Non-
confirmable. The rules for generating a Message ID and matching
messages are defined in Section 4.

The header is followed by the Token value, which may be 0 to 8 bytes,
as given by the Token Length field. The Token value is used to
correlate requests and responses. The rules for generating a Token
and correlating requests and responses are defined in Section 5.3.1.

Header and Token are followed by zero or more Options (Section 3.1).
An Option can be followed by the end of the message, by another
Option, or by the Payload Marker and the payload.

Following the header, token, and options, if any, comes the optional
payload. If present and of non-zero length, it is prefixed by a

fixed, one-byte Payload Marker (OxFF), which indicates the end of
options and the start of the payload. The payload data extends from
after the marker to the end of the UDP datagram, i.e., the Payload
Length is calculated from the datagram size. The absence of the
Payload Marker denotes a zero-length payload. The presence of a
marker followed by a zero-length payload MUST be processed as a
message format error.

Implementation Note: The byte value OxFF may also occur within an
option length or value, so simple byte-wise scanning for OxFF is
not a viable technique for finding the payload marker. The byte
OxFF has the meaning of a payload marker only where the beginning
of another option could occur.

3.1. Option Format

CoAP defines a number of options that can be included in a message.
Each option instance in a message specifies the Option Number of the
defined CoAP option, the length of the Option Value, and the Option
Value itself.

Instead of specifying the Option Number directly, the instances MUST
appear in order of their Option Numbers and a delta encoding is used
between them: the Option Number for each instance is calculated as
the sum of its delta and the Option Number of the preceding instance
in the message. For the first instance in a message, a preceding
option instance with Option Number zero is assumed. Multiple
instances of the same option can be included by using a delta of
zero.

Shelby, et al. Standards Track [Page 17]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Option Numbers are maintained in the "CoAP Option Numbers" registry
(Section 12.2). See Section 5.4 for the semantics of the options
defined in this document.

0123 45¢67

+ + +
| I |

| Option Delta | Option Length | 1 byte

| I |

\ \

/ Option Delta / 0-2 bytes

\ (extended) \

+ +

\ \

/ Option Length / 0-2 bytes

\ (extended) \

+ +

\ \

/ /

\ \

/ Option Value /0 or more bytes
\ \

/ /

\ \

+ +

Figure 8: Option Format
The fields in an option are defined as follows:
Option Delta: 4-bit unsigned integer. A value between 0 and 12
indicates the Option Delta. Three values are reserved for special

constructs:

13: An 8-bit unsigned integer follows the initial byte and
indicates the Option Delta minus 13.

14: A 16-bit unsigned integer in network byte order follows the
initial byte and indicates the Option Delta minus 269.

15: Reserved for the Payload Marker. If the field is set to this

value but the entire byte is not the payload marker, this MUST
be processed as a message format error.

Shelby, et al. Standards Track [Page 18]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

The resulting Option Delta is used as the difference between the
Option Number of this option and that of the previous option (or
zero for the first option). In other words, the Option Number is
calculated by simply summing the Option Delta values of this and
all previous options before it.

Option Length: 4-bit unsigned integer. A value between 0 and 12
indicates the length of the Option Value, in bytes. Three values
are reserved for special constructs:

13: An 8-bit unsigned integer precedes the Option Value and
indicates the Option Length minus 13.

14: A 16-bit unsigned integer in network byte order precedes the
Option Value and indicates the Option Length minus 269.

15: Reserved for future use. If the field is set to this value,
it MUST be processed as a message format error.

Value: A sequence of exactly Option Length bytes. The length and
format of the Option Value depend on the respective option, which
MAY define variable-length values. See Section 3.2 for the
formats used in this document; options defined in other documents
MAY make use of other option value formats.

3.2. Option Value Formats

The options defined in this document make use of the following option
value formats.

empty: A zero-length sequence of bytes.
opaque: An opaque sequence of bytes.

uint: A non-negative integer that is represented in network byte
order using the number of bytes given by the Option Length
field.

An option definition may specify a range of permissible
numbers of bytes; if it has a choice, a sender SHOULD
represent the integer with as few bytes as possible, i.e.,
without leading zero bytes. For example, the number 0 is
represented with an empty option value (a zero-length
sequence of bytes) and the number 1 by a single byte with
the numerical value of 1 (bit combination 00000001 in most
significant bit first notation). A recipient MUST be

prepared to process values with leading zero bytes.

Shelby, et al. Standards Track [Page 19]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Implementation Note: The exceptional behavior permitted
for the sender is intended for highly constrained,
templated implementations (e.g., hardware
implementations) that use fixed-size options in the
templates.

string: A Unicode string that is encoded using UTF-8 [RFC3629] in
Net-Unicode form [RFC5198].

Note that here, and in all other places where UTF-8
encoding is used in the CoAP protocol, the intention is

that the encoded strings can be directly used and compared
as opaque byte strings by CoAP protocol implementations.
There is no expectation and no need to perform
normalization within a CoAP implementation (except where
Unicode strings that are not known to be normalized are
imported from sources outside the CoAP protocol). Note
also that ASCII strings (that do not make use of special
control characters) are always valid UTF-8 Net-Unicode
strings.

4. Message Transmission

CoAP messages are exchanged asynchronously between CoAP endpoints.
They are used to transport CoAP requests and responses, the semantics
of which are defined in Section 5.

As CoAP is bound to unreliable transports such as UDP, CoAP messages
may arrive out of order, appear duplicated, or go missing without

notice. For this reason, CoAP implements a lightweight reliability
mechanism, without trying to re-create the full feature set of a

transport like TCP. It has the following features:

o0 Simple stop-and-wait retransmission reliability with exponential
back-off for Confirmable messages.

o Duplicate detection for both Confirmable and Non-confirmable
messages.

4.1. Messages and Endpoints

A CoAP endpoint is the source or destination of a CoAP message. The
specific definition of an endpoint depends on the transport being

used for CoAP. For the transports defined in this specification, the
endpoint is identified depending on the security mode used (see
Section 9): With no security, the endpoint is solely identified by an

IP address and a UDP port number. With other security modes, the
endpoint is identified as defined by the security mode.

Shelby, et al. Standards Track [Page 20]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

There are different types of messages. The type of a message is
specified by the Type field of the CoAP Header.

Separate from the message type, a message may carry a request, a
response, or be Empty. This is signaled by the Request/Response Code
field in the CoAP Header and is relevant to the request/response

model. Possible values for the field are maintained in the CoAP Code
Registries (Section 12.1).

An Empty message has the Code field set to 0.00. The Token Length
field MUST be set to 0 and bytes of data MUST NOT be present after

the Message ID field. If there are any bytes, they MUST be processed
as a message format error.

4.2. Messages Transmitted Reliably

The reliable transmission of a message is initiated by marking the

message as Confirmable in the CoAP header. A Confirmable message
always carries either a request or response, unless it is used only

to elicit a Reset message, in which case it is Empty. A recipient

MUST either (a) acknowledge a Confirmable message with an
Acknowledgement message or (b) reject the message if the recipient

lacks context to process the message properly, including situations

where the message is Empty, uses a code with a reserved class (1, 6,

or 7), or has a message format error. Rejecting a Confirmable

message is effected by sending a matching Reset message and otherwise
ignoring it. The Acknowledgement message MUST echo the Message ID of
the Confirmable message and MUST carry a response or be Empty (see
Sections 5.2.1 and 5.2.2). The Reset message MUST echo the Message
ID of the Confirmable message and MUST be Empty. Rejecting an
Acknowledgement or Reset message (including the case where the
Acknowledgement carries a request or a code with a reserved class, or

the Reset message is not Empty) is effected by silently ignoring it.

More generally, recipients of Acknowledgement and Reset messages MUST
NOT respond with either Acknowledgement or Reset messages.

The sender retransmits the Confirmable message at exponentially
increasing intervals, until it receives an acknowledgement (or Reset
message) or runs out of attempts.

Retransmission is controlled by two things that a CoAP endpoint MUST

keep track of for each Confirmable message it sends while waiting for

an acknowledgement (or reset): a timeout and a retransmission

counter. For a new Confirmable message, the initial timeout is set

to a random duration (often not an integral number of seconds)

between ACK_TIMEOUT and (ACK_TIMEOUT * ACK_RANDOM_FACTOR) (see
Section 4.8), and the retransmission counter is set to 0. When the

timeout is triggered and the retransmission counter is less than

Shelby, et al. Standards Track [Page 21]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

MAX_RETRANSMIT, the message is retransmitted, the retransmission
counter is incremented, and the timeout is doubled. If the

retransmission counter reaches MAX_RETRANSMIT on a timeout, or if the
endpoint receives a Reset message, then the attempt to transmit the
message is canceled and the application process informed of failure.

On the other hand, if the endpoint receives an acknowledgement in

time, transmission is considered successful.

This specification makes no strong requirements on the accuracy of

the clocks used to implement the above binary exponential back-off
algorithm. In particular, an endpoint may be late for a specific
retransmission due to its sleep schedule and may catch up on the next
one. However, the minimum spacing before another retransmission is
ACK_TIMEOUT, and the entire sequence of (re-)transmissions MUST stay
in the envelope of MAX_TRANSMIT_SPAN (see Section 4.8.2), even if
that means a sender may miss an opportunity to transmit.

A CoAP endpoint that sent a Confirmable message MAY give up in
attempting to obtain an ACK even before the MAX_RETRANSMIT counter
value is reached. For example, the application has canceled the
request as it no longer needs a response, or there is some other
indication that the CON message did arrive. In particular, a CoAP
request message may have elicited a separate response, in which case
it is clear to the requester that only the ACK was lost and a
retransmission of the request would serve no purpose. However, a
responder MUST NOT in turn rely on this cross-layer behavior from a
requester, i.e., it MUST retain the state to create the ACK for the
request, if needed, even if a Confirmable response was already
acknowledged by the requester.

Another reason for giving up retransmission MAY be the receipt of
ICMP errors. If it is desired to take account of ICMP errors, to

mitigate potential spoofing attacks, implementations SHOULD take care
to check the information about the original datagram in the ICMP
message, including port numbers and CoAP header information such as
message type and code, Message ID, and Token; if this is not possible
due to limitations of the UDP service API, ICMP errors SHOULD be
ignored. Packet Too Big errors [RFC4443] (“fragmentation needed and
DF set" for IPv4 [RFC0792]) cannot properly occur and SHOULD be
ignored if the implementation note in Section 4.6 is followed,;

otherwise, they SHOULD feed into a path MTU discovery algorithm
[RFC4821]. Source Quench and Time Exceeded ICMP messages SHOULD be
ignored. Host, network, port, or protocol unreachable errors or
parameter problem errors MAY, after appropriate vetting, be used to
inform the application of a failure in sending.

Shelby, et al. Standards Track [Page 22]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

4.3. Messages Transmitted without Reliability

Some messages do not require an acknowledgement. This is
particularly true for messages that are repeated regularly for
application requirements, such as repeated readings from a sensor
where eventual success is sufficient.

As a more lightweight alternative, a message can be transmitted less
reliably by marking the message as Non-confirmable. A Non-
confirmable message always carries either a request or response and
MUST NOT be Empty. A Non-confirmable message MUST NOT be
acknowledged by the recipient. A recipient MUST reject the message
if it lacks context to process the message properly, including the

case where the message is Empty, uses a code with a reserved class
(1, 6, or 7), or has a message format error. Rejecting a Non-
confirmable message MAY involve sending a matching Reset message, and
apart from the Reset message the rejected message MUST be silently
ignored.

At the CoAP level, there is no way for the sender to detect if a Non-
confirmable message was received or not. A sender MAY choose to
transmit multiple copies of a Non-confirmable message within
MAX_TRANSMIT_SPAN (limited by the provisions of Section 4.7, in
particular, by PROBING_RATE if no response is received), or the
network may duplicate the message in transit. To enable the receiver
to act only once on the message, Non-confirmable messages specify a
Message ID as well. (This Message ID is drawn from the same number
space as the Message IDs for Confirmable messages.)

Summarizing Sections 4.2 and 4.3, the four message types can be used
asin Table 1. ™" means that the combination is not used in normal
operation but only to elicit a Reset message ("CoAP ping").

ER— SR SR RN No— +
| | CON | NON | ACK | RST |
R — S — — S — E— +

| Request | X | X |- |- |
| Response | X | X | X |- |
|Empty [|* |- [X [X]
[S —— B — B — B — B — +

Table 1: Usage of Message Types

Shelby, et al. Standards Track [Page 23]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

4.4. Message Correlation

An Acknowledgement or Reset message is related to a Confirmable
message or Non-confirmable message by means of a Message ID along
with additional address information of the corresponding endpoint.

The Message ID is a 16-bit unsigned integer that is generated by the
sender of a Confirmable or Non-confirmable message and included in
the CoAP header. The Message ID MUST be echoed in the
Acknowledgement or Reset message by the recipient.

The same Message ID MUST NOT be reused (in communicating with the
same endpoint) within the EXCHANGE_LIFETIME (Section 4.8.2).

Implementation Note: Several implementation strategies can be
employed for generating Message IDs. In the simplest case, a CoAP
endpoint generates Message IDs by keeping a single Message ID
variable, which is changed each time a new Confirmable or Non-
confirmable message is sent, regardless of the destination address
or port. Endpoints dealing with large numbers of transactions
could keep multiple Message ID variables, for example, per prefix
or destination address. (Note that some receiving endpoints may
not be able to distinguish unicast and multicast packets addressed
to it, so endpoints generating Message IDs need to make sure these
do not overlap.) It is strongly recommended that the initial
value of the variable (e.g., on startup) be randomized, in order
to make successful off-path attacks on the protocol less likely.

For an Acknowledgement or Reset message to match a Confirmable or
Non-confirmable message, the Message ID and source endpoint of the

Acknowledgement or Reset message MUST match the Message ID and
destination endpoint of the Confirmable or Non-confirmable message.

4.5. Message Deduplication

A recipient might receive the same Confirmable message (as indicated
by the Message ID and source endpoint) multiple times within the
EXCHANGE_LIFETIME (Section 4.8.2), for example, when its
Acknowledgement went missing or didn’'t reach the original sender
before the first timeout. The recipient SHOULD acknowledge each
duplicate copy of a Confirmable message using the same
Acknowledgement or Reset message but SHOULD process any request or
response in the message only once. This rule MAY be relaxed in case
the Confirmable message transports a request that is idempotent (see
Section 5.1) or can be handled in an idempotent fashion. Examples
for relaxed message deduplication:

Shelby, et al. Standards Track [Page 24]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

0 A server might relax the requirement to answer all retransmissions
of an idempotent request with the same response (Section 4.2), so
that it does not have to maintain state for Message IDs. For
example, an implementation might want to process duplicate
transmissions of a GET, PUT, or DELETE request as separate
requests if the effort incurred by duplicate processing is less
expensive than keeping track of previous responses would be.

0 A constrained server might even want to relax this requirement for
certain non-idempotent requests if the application semantics make
this trade-off favorable. For example, if the result of a POST
request is just the creation of some short-lived state at the
server, it may be less expensive to incur this effort multiple
times for a request than keeping track of whether a previous
transmission of the same request already was processed.

A recipient might receive the same Non-confirmable message (as
indicated by the Message ID and source endpoint) multiple times
within NON_LIFETIME (Section 4.8.2). As a general rule that MAY be
relaxed based on the specific semantics of a message, the recipient
SHOULD silently ignore any duplicated Non-confirmable message and
SHOULD process any request or response in the message only once.

4.6. Message Size

While specific link layers make it beneficial to keep CoAP messages
small enough to fit into their link-layer packets (see Section 1),

this is a matter of implementation quality. The CoAP specification
itself provides only an upper bound to the message size. Messages
larger than an IP packet result in undesirable packet fragmentation.
A CoAP message, appropriately encapsulated, SHOULD fit within a
single IP packet (i.e., avoid IP fragmentation) and (by fitting into

one UDP payload) obviously needs to fit within a single IP datagram.
If the Path MTU is not known for a destination, an IP MTU of 1280
bytes SHOULD be assumed; if nothing is known about the size of the
headers, good upper bounds are 1152 bytes for the message size and
1024 bytes for the payload size.

Implementation Note: CoAP’s choice of message size parameters works
well with IPv6 and with most of today’s IPv4 paths. (However,
with IPv4, it is harder to absolutely ensure that there is no IP
fragmentation. If IPv4 support on unusual networks is a
consideration, implementations may want to limit themselves to
more conservative IPv4 datagram sizes such as 576 bytes; per
[RFCO0791], the absolute minimum value of the IP MTU for IPv4 is as
low as 68 bytes, which would leave only 40 bytes minus security
overhead for a UDP payload. Implementations extremely focused on
this problem set might also set the IPv4 DF bit and perform some

Shelby, et al. Standards Track [Page 25]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

form of path MTU discovery [RFC4821]; this should generally be
unnecessary in realistic use cases for CoAP, however.) A more
important kind of fragmentation in many constrained networks is

that on the adaptation layer (e.g., 6LOWPAN L2 packets are limited
to 127 bytes including various overheads); this may motivate
implementations to be frugal in their packet sizes and to move to
block-wise transfers [BLOCK] when approaching three-digit message
sizes.

Message sizes are also of considerable importance to
implementations on constrained nodes. Many implementations will
need to allocate a buffer for incoming messages. If an
implementation is too constrained to allow for allocating the
above-mentioned upper bound, it could apply the following
implementation strategy for messages not using DTLS security:
Implementations receiving a datagram into a buffer that is too
small are usually able to determine if the trailing portion of a
datagram was discarded and to retrieve the initial portion. So,

at least the CoAP header and options, if not all of the payload,

are likely to fit within the buffer. A server can thus fully

interpret a request and return a 4.13 (Request Entity Too Large;
see Section 5.9.2.9) Response Code if the payload was truncated.
A client sending an idempotent request and receiving a response
larger than would fit in the buffer can repeat the request with a
suitable value for the Block Option [BLOCK].

4.7. Congestion Control

Basic congestion control for CoOAP is provided by the exponential
back-off mechanism in Section 4.2.

In order not to cause congestion, clients (including proxies) MUST
strictly limit the number of simultaneous outstanding interactions

that they maintain to a given server (including proxies) to NSTART.

An outstanding interaction is either a CON for which an ACK has not
yet been received but is still expected (message layer) or a request

for which neither a response nor an Acknowledgment message has yet
been received but is still expected (which may both occur at the same
time, counting as one outstanding interaction). The default value of
NSTART for this specification is 1.

Further congestion control optimizations and considerations are
expected in the future, may for example provide automatic
initialization of the CoAP transmission parameters defined in

Section 4.8, and thus may allow a value for NSTART greater than one.

After EXCHANGE_LIFETIME, a client stops expecting a response to a
Confirmable request for which no acknowledgment message was received.

Shelby, et al. Standards Track [Page 26]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

The specific algorithm by which a client stops to "expect" a response

to a Confirmable request that was acknowledged, or to a Non-
confirmable request, is not defined. Unless this is modified by
additional congestion control optimizations, it MUST be chosen in

such a way that an endpoint does not exceed an average data rate of
PROBING_RATE in sending to another endpoint that does not respond.

Note: CoAP places the onus of congestion control mostly on the
clients. However, clients may malfunction or actually be
attackers, e.qg., to perform amplification attacks (Section 11.3).

To limit the damage (to the network and to its own energy
resources), a server SHOULD implement some rate limiting for its
response transmission based on reasonable assumptions about
application requirements. This is most helpful if the rate limit

can be made effective for the misbehaving endpoints, only.

4.8. Transmission Parameters

Message transmission is controlled by the following parameters:

+ + +
| name | default value |
+ + +

| ACK_TIMEOUT | 2 seconds |

| ACK_RANDOM_FACTOR | 1.5 [
| MAX_RETRANSMIT |4 |

| NSTART |1 |

| DEFAULT_LEISURE |5 seconds |
| PROBING_RATE |1 byte/second |

+ + +

Table 2: CoAP Protocol Parameters
4.8.1. Changing the Parameters

The values for ACK_TIMEOUT, ACK_RANDOM_FACTOR, MAX_RETRANSMIT,
NSTART, DEFAULT_LEISURE (Section 8.2), and PROBING_RATE may be
configured to values specific to the application environment

(including dynamically adjusted values); however, the configuration

method is out of scope of this document. It is RECOMMENDED that an
application environment use consistent values for these parameters;

the specific effects of operating with inconsistent values in an

application environment are outside the scope of the present

specification.

The transmission parameters have been chosen to achieve a behavior in

the presence of congestion that is safe in the Internet. If a
configuration desires to use different values, the onus is on the

Shelby, et al. Standards Track [Page 27]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

configuration to ensure these congestion control properties are not
violated. In particular, a decrease of ACK_TIMEOUT below 1 second
would violate the guidelines of [RFC5405]. ([RTO-CONSIDER] provides
some additional background.) CoAP was designed to enable
implementations that do not maintain round-trip-time (RTT)
measurements. However, where it is desired to decrease the
ACK_TIMEOUT significantly or increase NSTART, this can only be done
safely when maintaining such measurements. Configurations MUST NOT
decrease ACK_TIMEOUT or increase NSTART without using mechanisms that
ensure congestion control safety, either defined in the configuration

or in future standards documents.

ACK_RANDOM_FACTOR MUST NOT be decreased below 1.0, and it SHOULD have
a value that is sufficiently different from 1.0 to provide some
protection from synchronization effects.

MAX_RETRANSMIT can be freely adjusted, but a value that is too small
will reduce the probability that a Confirmable message is actually
received, while a larger value than given here will require further
adjustments in the time values (see Section 4.8.2).

If the choice of transmission parameters leads to an increase of
derived time values (see Section 4.8.2), the configuration mechanism
MUST ensure the adjusted value is also available to all the endpoints
with which these adjusted values are to be used to communicate.

4.8.2. Time Values Derived from Transmission Parameters

The combination of ACK_TIMEOUT, ACK_RANDOM_FACTOR, and MAX_RETRANSMIT
influences the timing of retransmissions, which in turn influences

how long certain information items need to be kept by an

implementation. To be able to unambiguously reference these derived

time values, we give them names as follows:

0 MAX_TRANSMIT_SPAN is the maximum time from the first transmission
of a Confirmable message to its last retransmission. For the
default transmission parameters, the value is (2+4+8+16)*1.5 = 45
seconds, or more generally:

ACK_TIMEOUT * ((2 ** MAX_RETRANSMIT) - 1) * ACK_RANDOM_FACTOR

Shelby, et al. Standards Track [Page 28]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

0 MAX_TRANSMIT_WAIT is the maximum time from the first transmission
of a Confirmable message to the time when the sender gives up on
receiving an acknowledgement or reset. For the default
transmission parameters, the value is (2+4+8+16+32)*1.5 = 93
seconds, or more generally:

ACK_TIMEOUT * ((2 ** (MAX_RETRANSMIT + 1)) - 1) *
ACK_RANDOM_FACTOR

In addition, some assumptions need to be made on the characteristics
of the network and the nodes.

0 MAX_LATENCY is the maximum time a datagram is expected to take
from the start of its transmission to the completion of its
reception. This constant is related to the MSL (Maximum Segment
Lifetime) of [RFC0793], which is "arbitrarily defined to be 2
minutes” ([RFC0793] glossary, page 81). Note that this is not
necessarily smaller than MAX_TRANSMIT_WAIT, as MAX_LATENCY is not
intended to describe a situation when the protocol works well, but
the worst-case situation against which the protocol has to guard.
We, also arbitrarily, define MAX_LATENCY to be 100 seconds. Apart
from being reasonably realistic for the bulk of configurations as
well as close to the historic choice for TCP, this value also
allows Message ID lifetime timers to be represented in 8 bits
(when measured in seconds). In these calculations, there is no
assumption that the direction of the transmission is irrelevant
(i.e., that the network is symmetric); there is just the
assumption that the same value can reasonably be used as a maximum
value for both directions. If that is not the case, the following
calculations become only slightly more complex.

0 PROCESSING_DELAY is the time a node takes to turn around a
Confirmable message into an acknowledgement. We assume the node
will attempt to send an ACK before having the sender time out, so
as a conservative assumption we set it equal to ACK_TIMEOUT.

0 MAX_RTT is the maximum round-trip time, or:
(2 * MAX_LATENCY) + PROCESSING_DELAY

From these values, we can derive the following values relevant to the
protocol operation:

0 EXCHANGE_LIFETIME is the time from starting to send a Confirmable
message to the time when an acknowledgement is no longer expected,
i.e., message-layer information about the message exchange can be
purged. EXCHANGE_LIFETIME includes a MAX_TRANSMIT_SPAN, a
MAX_LATENCY forward, PROCESSING_DELAY, and a MAX_LATENCY for the

Shelby, et al. Standards Track [Page 29]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

way back. Note that there is no need to consider

MAX_TRANSMIT_WAIT if the configuration is chosen such that the

last waiting period (ACK_TIMEOUT * (2 ** MAX_RETRANSMIT) or the
difference between MAX_TRANSMIT_SPAN and MAX_TRANSMIT_WAIT) is
less than MAX_LATENCY -- which is a likely choice, as MAX_LATENCY

is a worst-case value unlikely to be met in the real world. In

this case, EXCHANGE_LIFETIME simplifies to:

MAX_TRANSMIT_SPAN + (2 * MAX_LATENCY) + PROCESSING_DELAY
or 247 seconds with the default transmission parameters.

0o NON_LIFETIME is the time from sending a Non-confirmable message to
the time its Message ID can be safely reused. If multiple
transmission of a NON message is not used, its value is
MAX_LATENCY, or 100 seconds. However, a CoAP sender might send a
NON message multiple times, in particular for multicast
applications. While the period of reuse is not bounded by the
specification, an expectation of reliable detection of duplication
at the receiver is on the timescales of MAX_TRANSMIT_SPAN.
Therefore, for this purpose, it is safer to use the value:

MAX_TRANSMIT_SPAN + MAX_LATENCY

or 145 seconds with the default transmission parameters; however,
an implementation that just wants to use a single timeout value

for retiring Message IDs can safely use the larger value for
EXCHANGE_LIFETIME.

Table 3 lists the derived parameters introduced in this subsection
with their default values.

+ + +

| name | default value |

| MAX_TRANSMIT_SPAN | 45 s |
| MAX_TRANSMIT_WAIT | 93s|
| MAX_LATENCY [100 s |

| PROCESSING_DELAY | 2s]|

| MAX_RTT [202 s |

| EXCHANGE_LIFETIME | 247 s |
| NON_LIFETIME | 145 s |

+ + +

Table 3: Derived Protocol Parameters

Shelby, et al. Standards Track [Page 30]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

5. Request/Response Semantics

CoAP operates under a similar request/response model as HTTP: a CoAP
endpoint in the role of a "client" sends one or more CoAP requests to

a "server", which services the requests by sending CoAP responses.
Unlike HTTP, requests and responses are not sent over a previously
established connection but are exchanged asynchronously over CoAP
messages.

5.1. Requests

A CoAP request consists of the method to be applied to the resource,
the identifier of the resource, a payload and Internet media type (if
any), and optional metadata about the request.

CoAP supports the basic methods of GET, POST, PUT, and DELETE, which
are easily mapped to HTTP. They have the same properties of safe

(only retrieval) and idempotent (you can invoke it multiple times

with the same effects) as HTTP (see Section 9.1 of [RFC2616]). The

GET method is safe; therefore, it MUST NOT take any other action on a
resource other than retrieval. The GET, PUT, and DELETE methods MUST
be performed in such a way that they are idempotent. POST is not
idempotent, because its effect is determined by the origin server and
dependent on the target resource; it usually results in a new

resource being created or the target resource being updated.

A request is initiated by setting the Code field in the CoAP header
of a Confirmable or a Non-confirmable message to a Method Code and
including request information.

The methods used in requests are described in detail in Section 5.8.
5.2. Responses

After receiving and interpreting a request, a server responds with a

CoAP response that is matched to the request by means of a client-
generated token (Section 5.3); note that this is different from the

Message ID that matches a Confirmable message to its Acknowledgement.

A response is identified by the Code field in the CoAP header being
set to a Response Code. Similar to the HTTP Status Code, the CoAP
Response Code indicates the result of the attempt to understand and
satisfy the request. These codes are fully defined in Section 5.9.

The Response Code numbers to be set in the Code field of the CoAP
header are maintained in the CoAP Response Code Registry
(Section 12.1.2).

Shelby, et al. Standards Track [Page 31]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

0

01234567
ottt
[class| detail |
+ot -ttt b+

Figure 9: Structure of a Response Code

The upper three bits of the 8-bit Response Code number define the
class of response. The lower five bits do not have any
categorization role; they give additional detail to the overall class
(Figure 9).

As a human-readable notation for specifications and protocol
diagnostics, CoAP code numbers including the Response Code are
documented in the format "c.dd", where "c" is the class in decimal,
and "dd" is the detail as a two-digit decimal. For example,
"Forbidden" is written as 4.03 -- indicating an 8-bit code value of
hexadecimal 0x83 (4*0x20+3) or decimal 131 (4*32+3).

There are 3 classes of Response Codes:

2 - Success: The request was successfully received, understood, and
accepted.

4 - Client Error: The request contains bad syntax or cannot be
fulfilled.

5 - Server Error: The server failed to fulfill an apparently valid
request.

The Response Codes are designed to be extensible: Response Codes in
the Client Error or Server Error class that are unrecognized by an
endpoint are treated as being equivalent to the generic Response Code
of that class (4.00 and 5.00, respectively). However, there is no

generic Response Code indicating success, so a Response Code in the
Success class that is unrecognized by an endpoint can only be used to
determine that the request was successful without any further

details.

The possible Response Codes are described in detail in Section 5.9.

Responses can be sent in multiple ways, which are defined in the
following subsections.

Shelby, et al. Standards Track [Page 32]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

5.2.1. Piggybacked

In the most basic case, the response is carried directly in the
Acknowledgement message that acknowledges the request (which requires
that the request was carried in a Confirmable message). This is

called a "Piggybacked Response".

The response is returned in the Acknowledgement message, independent
of whether the response indicates success or failure. In effect, the
response is piggybacked on the Acknowledgement message, and no
separate message is required to return the response.

Implementation Note: The protocol leaves the decision whether to
piggyback a response or not (i.e., send a separate response) to
the server. The client MUST be prepared to receive either. On
the quality-of-implementation level, there is a strong expectation
that servers will implement code to piggyback whenever possible --
saving resources in the network and both at the client and at the
server.

5.2.2. Separate

It may not be possible to return a piggybacked response in all cases.
For example, a server might need longer to obtain the representation
of the resource requested than it can wait to send back the
Acknowledgement message, without risking the client repeatedly
retransmitting the request message (see also the discussion of
PROCESSING_DELAY in Section 4.8.2). The response to a request
carried in a Non-confirmable message is always sent separately (as
there is no Acknowledgement message).

One way to implement this in a server is to initiate the attempt to

obtain the resource representation and, while that is in progress,

time out an acknowledgement timer. A server may also immediately
send an acknowledgement if it knows in advance that there will be no
piggybacked response. In both cases, the acknowledgement effectively
is a promise that the request will be acted upon later.

When the server finally has obtained the resource representation, it
sends the response. When it is desired that this message is not

lost, it is sent as a Confirmable message from the server to the

client and answered by the client with an Acknowledgement, echoing
the new Message ID chosen by the server. (It may also be sent as a
Non-confirmable message; see Section 5.2.3.)

When the server chooses to use a separate response, it sends the

Acknowledgement to the Confirmable request as an Empty message. Once
the server sends back an Empty Acknowledgement, it MUST NOT send back

Shelby, et al. Standards Track [Page 33]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

the response in another Acknowledgement, even if the client

retransmits another identical request. If a retransmitted request is

received (perhaps because the original Acknowledgement was delayed),
another Empty Acknowledgement is sent, and any response MUST be sent
as a separate response.

If the server then sends a Confirmable response, the client’s
Acknowledgement to that response MUST also be an Empty message (one
that carries neither a request nor a response). The server MUST stop
retransmitting its response on any matching Acknowledgement (silently
ignoring any Response Code or payload) or Reset message.

Implementation Notes: Note that, as the underlying datagram
transport may not be sequence-preserving, the Confirmable message
carrying the response may actually arrive before or after the
Acknowledgement message for the request; for the purposes of
terminating the retransmission sequence, this also serves as an
acknowledgement. Note also that, while the CoAP protocol itself
does not make any specific demands here, there is an expectation
that the response will come within a time frame that is reasonable
from an application point of view. As there is no underlying
transport protocol that could be instructed to run a keep-alive
mechanism, the requester may want to set up a timeout that is
unrelated to CoAP’s retransmission timers in case the server is
destroyed or otherwise unable to send the response.

5.2.3. Non-confirmable

If the request message is Non-confirmable, then the response SHOULD
be returned in a Non-confirmable message as well. However, an
endpoint MUST be prepared to receive a Non-confirmable response
(preceded or followed by an Empty Acknowledgement message) in reply
to a Confirmable request, or a Confirmable response in reply to a
Non-confirmable request.

5.3. Request/Response Matching

Regardless of how a response is sent, it is matched to the request by
means of a token that is included by the client in the request, along
with additional address information of the corresponding endpoint.

5.3.1. Token

The Token is used to match a response with a request. The token
value is a sequence of 0 to 8 bytes. (Note that every message
carries a token, even if it is of zero length.) Every request

carries a client-generated token that the server MUST echo (without
modification) in any resulting response.

Shelby, et al. Standards Track [Page 34]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

A token is intended for use as a client-local identifier for
differentiating between concurrent requests (see Section 5.3); it
could have been called a "request ID".

The client SHOULD generate tokens in such a way that tokens currently
in use for a given source/destination endpoint pair are unique.

(Note that a client implementation can use the same token for any
request if it uses a different endpoint each time, e.g., a different

source port number.) An empty token value is appropriate e.g., when
no other tokens are in use to a destination, or when requests are

made serially per destination and receive piggybacked responses.
There are, however, multiple possible implementation strategies to

fulfill this.

A client sending a request without using Transport Layer Security
(Section 9) SHOULD use a nontrivial, randomized token to guard
against spoofing of responses (Section 11.4). This protective use of
tokens is the reason they are allowed to be up to 8 bytes in size.

The actual size of the random component to be used for the Token
depends on the security requirements of the client and the level of
threat posed by spoofing of responses. A client that is connected to
the general Internet SHOULD use at least 32 bits of randomness,
keeping in mind that not being directly connected to the Internet is
not necessarily sufficient protection against spoofing. (Note that

the Message ID adds little in protection as it is usually

sequentially assigned, i.e., guessable, and can be circumvented by
spoofing a separate response.) Clients that want to optimize the
Token length may further want to detect the level of ongoing attacks
(e.g., by tallying recent Token mismatches in incoming messages) and
adjust the Token length upwards appropriately. [RFC4086] discusses
randomness requirements for security.

An endpoint receiving a token it did not generate MUST treat the
token as opaque and make no assumptions about its content or
structure.

5.3.2. Request/Response Matching Rules
The exact rules for matching a response to a request are as follows:

1. The source endpoint of the response MUST be the same as the
destination endpoint of the original request.

2. In a piggybacked response, the Message ID of the Confirmable
request and the Acknowledgement MUST match, and the tokens of the
response and original request MUST match. In a separate
response, just the tokens of the response and original request
MUST match.

Shelby, et al. Standards Track [Page 35]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

In case a message carrying a response is unexpected (the client is
not waiting for a response from the identified endpoint, at the
endpoint addressed, and/or with the given token), the response is
rejected (Sections 4.2 and 4.3).

Implementation Note: A client that receives a response in a CON
message may want to clean up the message state right after sending
the ACK. If that ACK is lost and the server retransmits the CON,
the client may no longer have any state to which to correlate this
response, making the retransmission an unexpected message; the
client will likely send a Reset message so it does not receive any
more retransmissions. This behavior is normal and not an
indication of an error. (Clients that are not aggressively
optimized in their state memory usage will still have message
state that will identify the second CON as a retransmission.

Clients that actually expect more messages from the server
[OBSERVE] will have to keep state in any case.)
5.4. Options

Both requests and responses may include a list of one or more

options. For example, the URI in a request is transported in several

options, and metadata that would be carried in an HTTP header in HTTP
is supplied as options as well.

CoAP defines a single set of options that are used in both requests
and responses:

o Content-Format
o ETag

0 Location-Path
0 Location-Query
0 Max-Age

0 Proxy-Uri

o Proxy-Scheme
o Uri-Host

0 Uri-Path

o Uri-Port

Shelby, et al. Standards Track [Page 36]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

o Uri-Query

0 Accept

o If-Match

o If-None-Match
o Sizel

The semantics of these options along with their properties are
defined in detail in Section 5.10.

Not all options are defined for use with all methods and Response

Codes. The possible options for methods and Response Codes are
defined in Sections 5.8 and 5.9, respectively. In case an option is

not defined for a Method or Response Code, it MUST NOT be included by
a sender and MUST be treated like an unrecognized option by a

recipient.

5.4.1. Critical/Elective

Options fall into one of two classes: “critical" or "elective”. The
difference between these is how an option unrecognized by an endpoint
is handled:

o Upon reception, unrecognized options of class "elective" MUST be
silently ignored.

o Unrecognized options of class “critical" that occur in a
Confirmable request MUST cause the return of a 4.02 (Bad Option)
response. This response SHOULD include a diagnostic payload
describing the unrecognized option(s) (see Section 5.5.2).

0 Unrecognized options of class “critical” that occur in a
Confirmable response, or piggybacked in an Acknowledgement, MUST
cause the response to be rejected (Section 4.2).

0 Unrecognized options of class "critical" that occur in a Non-
confirmable message MUST cause the message to be rejected
(Section 4.3).

Note that, whether critical or elective, an option is never
"mandatory” (it is always optional): these rules are defined in order
to enable implementations to stop processing options they do not
understand or implement.

Shelby, et al. Standards Track [Page 37]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Critical/elective rules apply to non-proxying endpoints. A proxy
processes options based on Unsafe/Safe-to-Forward classes as defined
in Section 5.7.

5.4.2. Proxy Unsafe or Safe-to-Forward and NoCacheKey

In addition to an option being marked as critical or elective,
options are also classified based on how a proxy is to deal with the
option if it does not recognize it. For this purpose, an option can
either be considered Unsafe to forward (UnSafe is set) or Safe-to-
Forward (UnSafe is clear).

In addition, for an option that is marked Safe-to-Forward, the option
number indicates whether or not it is intended to be part of the
Cache-Key (Section 5.6) in a request. If some of the NoCacheKey bits
are 0, it is; if all NoCacheKey bits are 1, it is not (see

Section 5.4.6).

Note: The Cache-Key indication is relevant only for proxies that do
not implement the given option as a request option and instead
rely on the Unsafe/Safe-to-Forward indication only. For example,
for ETag, actually using the request option as a part of the
Cache-Key is grossly inefficient, but it is the best thing one can
do if ETag is not implemented by a proxy, as the response is going
to differ based on the presence of the request option. A more
useful proxy that does implement the ETag request option is not
using ETag as a part of the Cache-Key.

NoCacheKey is indicated in three bits so that only one out of
eight codepoints is qualified as NoCacheKey, leaving seven out of
eight codepoints for what appears to be the more likely case.

Proxy behavior with regard to these classes is defined in
Section 5.7.

5.4.3. Length

Option values are defined to have a specific length, often in the
form of an upper and lower bound. If the length of an option value
in a request is outside the defined range, that option MUST be
treated like an unrecognized option (see Section 5.4.1).

5.4.4. Default Values
Options may be defined to have a default value. If the value of an
option is intended to be this default value, the option SHOULD NOT be

included in the message. If the option is not present, the default
value MUST be assumed.

Shelby, et al. Standards Track [Page 38]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Where a critical option has a default value, this is chosen in such a
way that the absence of the option in a message can be processed
properly both by implementations unaware of the critical option and
by implementations that interpret this absence as the presence of the
default value for the option.

5.4.5. Repeatable Options

The definition of some options specifies that those options are
repeatable. An option that is repeatable MAY be included one or more
times in a message. An option that is not repeatable MUST NOT be
included more than once in a message.

If a message includes an option with more occurrences than the option
is defined for, each supernumerary option occurrence that appears
subsequently in the message MUST be treated like an unrecognized
option (see Section 5.4.1).

5.4.6. Option Numbers

An Option is identified by an option number, which also provides some
additional semantics information, e.g., odd numbers indicate a

critical option, while even numbers indicate an elective option.

Note that this is not just a convention, it is a feature of the

protocol: Whether an option is elective or critical is entirely

determined by whether its option number is even or odd.

More generally speaking, an Option number is constructed with a bit
mask to indicate if an option is Critical or Elective, Unsafe or
Safe-to-Forward, and, in the case of Safe-to-Forward, to provide a
Cache-Key indication as shown by the following figure. In the
following text, the bit mask is expressed as a single byte that is
applied to the least significant byte of the option number in

unsigned integer representation. When bit 7 (the least significant
bit) is 1, an option is Critical (and likewise Elective when 0).

When bit 6 is 1, an option is Unsafe (and likewise Safe-to-Forward
when 0). When bit 6 is 0, i.e., the option is not Unsafe, it is not

a Cache-Key (NoCacheKey) if and only if bits 3-5 are all setto 1;

all other bit combinations mean that it indeed is a Cache-Key. These
classes of options are explained in the next sections.

0123 45¢67

OSSR S S S S

| | NoCacheKey| U | C |
[S S S S S —

Figure 10: Option Number Mask (Least Significant Byte)

Shelby, et al. Standards Track [Page 39]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

An endpoint may use an equivalent of the C code in Figure 11 to
derive the characteristics of an option number "onum®.

Critical = (onum & 1);
UnSafe = (onum & 2);
NoCacheKey = ((onum & 0x1e) == 0x1c);

Figure 11: Determining Characteristics from an Option Number

The option numbers for the options defined in this document are
listed in the "CoAP Option Numbers" registry (Section 12.2).

5.5. Payloads and Representations

Both requests and responses may include a payload, depending on the
Method or Response Code, respectively. If a Method or Response Code
is not defined to have a payload, then a sender MUST NOT include one,
and a recipient MUST ignore it.

5.5.1. Representation

The payload of requests or of responses indicating success is
typically a representation of a resource ("resource representation”)
or the result of the requested action ("action result"). Its format

is specified by the Internet media type and content coding given by
the Content-Format Option. In the absence of this option, no default
value is assumed, and the format will need to be inferred by the
application (e.g., from the application context). Payload "sniffing"
SHOULD only be attempted if no content type is given.

Implementation Note: On a quality-of-implementation level, there is
a strong expectation that a Content-Format indication will be
provided with resource representations whenever possible. This is
not a "SHOULD" level requirement solely because it is not a
protocol requirement, and it also would be difficult to outline
exactly in what cases this expectation can be violated.

For responses indicating a client or server error, the payload is
considered a representation of the result of the requested action
only if a Content-Format Option is given. In the absence of this
option, the payload is a Diagnostic Payload (Section 5.5.2).

Shelby, et al. Standards Track [Page 40]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

5.5.2. Diagnostic Payload

If no Content-Format option is given, the payload of responses
indicating a client or server error is a brief human-readable

diagnostic message, explaining the error situation. This diagnostic
message MUST be encoded using UTF-8 [RFC3629], more specifically
using Net-Unicode form [RFC5198].

The message is similar to the Reason-Phrase on an HTTP status line.
It is not intended for end users but for software engineers that

during debugging need to interpret it in the context of the present,
English-language specification; therefore, no mechanism for language
tagging is needed or provided. In contrast to what is usual in HTTP,
the payload SHOULD be empty if there is no additional information
beyond the Response Code.

5.5.3. Selected Representation

Not all responses carry a payload that provides a representation of
the resource addressed by the request. It is, however, sometimes
useful to be able to refer to such a representation in relation to a
response, independent of whether it actually was enclosed.

We use the term "selected representation” to refer to the current
representation of a target resource that would have been selected in
a successful response if the corresponding request had used the
method GET and excluded any conditional request options

(Section 5.10.8).

Certain response options provide metadata about the selected
representation, which might differ from the representation included

in the message for responses to some state-changing methods. Of the
response options defined in this specification, only the ETag

response option (Section 5.10.6) is defined as metadata about the
selected representation.

5.5.4. Content Negotiation
A server may be able to supply a representation for a resource in one
of multiple representation formats. Without further information from
the client, it will provide the representation in the format it
prefers.

By using the Accept Option (Section 5.10.4) in a request, the client
can indicate which content-format it prefers to receive.

Shelby, et al. Standards Track [Page 41]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

5.6. Caching

CoAP endpoints MAY cache responses in order to reduce the response
time and network bandwidth consumption on future, equivalent
requests.

The goal of caching in CoAP is to reuse a prior response message to
satisfy a current request. In some cases, a stored response can be
reused without the need for a network request, reducing latency and
network round-trips; a "freshness" mechanism is used for this purpose
(see Section 5.6.1). Even when a new request is required, it is

often possible to reuse the payload of a prior response to satisfy

the request, thereby reducing network bandwidth usage; a "validation"
mechanism is used for this purpose (see Section 5.6.2).

Unlike HTTP, the cacheability of COAP responses does not depend on
the request method, but it depends on the Response Code. The
cacheability of each Response Code is defined along the Response Code
definitions in Section 5.9. Response Codes that indicate success and

are unrecognized by an endpoint MUST NOT be cached.

For a presented request, a CoAP endpoint MUST NOT use a stored
response, unless:

o the presented request method and that used to obtain the stored
response match,

o all options match between those in the presented request and those
of the request used to obtain the stored response (which includes
the request URI), except that there is no need for a match of any
request options marked as NoCacheKey (Section 5.4) or recognized
by the Cache and fully interpreted with respect to its specified
cache behavior (such as the ETag request option described in
Section 5.10.6; see also Section 5.4.2), and

o the stored response is either fresh or successfully validated as
defined below.

The set of request options that is used for matching the cache entry
is also collectively referred to as the "Cache-Key". For URI schemes
other than coap and coaps, matching of those options that constitute
the request URI may be performed under rules specific to the URI
scheme.

Shelby, et al. Standards Track [Page 42]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

5.6.1. Freshness Model

When a response is "fresh” in the cache, it can be used to satisfy
subsequent requests without contacting the origin server, thereby
improving efficiency.

The mechanism for determining freshness is for an origin server to
provide an explicit expiration time in the future, using the Max-Age
Option (see Section 5.10.5). The Max-Age Option indicates that the
response is to be considered not fresh after its age is greater than
the specified number of seconds.

The Max-Age Option defaults to a value of 60. Thus, if it is not
present in a cacheable response, then the response is considered not
fresh after its age is greater than 60 seconds. If an origin server
wishes to prevent caching, it MUST explicitly include a Max-Age
Option with a value of zero seconds.

If a client has a fresh stored response and makes a new request
matching the request for that stored response, the new response
invalidates the old response.

5.6.2. Validation Model

When an endpoint has one or more stored responses for a GET request,
but cannot use any of them (e.g., because they are not fresh), it can

use the ETag Option (Section 5.10.6) in the GET request to give the
origin server an opportunity both to select a stored response to be

used, and to update its freshness. This process is known as

"validating" or "revalidating" the stored response.

When sending such a request, the endpoint SHOULD add an ETag Option
specifying the entity-tag of each stored response that is applicable.

A 2.03 (Valid) response indicates the stored response identified by
the entity-tag given in the response’s ETag Option can be reused
after updating it as described in Section 5.9.1.3.

Any other Response Code indicates that none of the stored responses

nominated in the request is suitable. Instead, the response SHOULD
be used to satisfy the request and MAY replace the stored response.

Shelby, et al. Standards Track [Page 43]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

5.7. Proxying

A proxy is a CoAP endpoint that can be tasked by CoAP clients to
perform requests on their behalf. This may be useful, for example,
when the request could otherwise not be made, or to service the
response from a cache in order to reduce response time and network
bandwidth or energy consumption.

In an overall architecture for a Constrained RESTful Environment,
proxies can serve quite different purposes. Proxies can be

explicitly selected by clients, a role that we term "forward-proxy".
Proxies can also be inserted to stand in for origin servers, a role

that we term "reverse-proxy". Orthogonal to this distinction, a

proxy can map from a CoAP request to a CoAP request (CoAP-to-CoAP
proxy) or translate from or to a different protocol ("cross-proxy").

Full definitions of these terms are provided in Section 1.2.

Notes: The terminology in this specification has been selected to be
culturally compatible with the terminology used in the wider web
application environments, without necessarily matching it in every
detail (which may not even be relevant to Constrained RESTful
Environments). Not too much semantics should be ascribed to the
components of the terms (such as "forward", "reverse”, or
"cross").

HTTP proxies, besides acting as HTTP proxies, often offer a
transport-protocol proxying function (“CONNECT") to enable end-to-
end transport layer security through the proxy. No such function

is defined for CoAP-to-CoAP proxies in this specification, as
forwarding of UDP packets is unlikely to be of much value in
Constrained RESTful Environments. See also Section 10.2.7 for the
Cross-proxy case.

When a client uses a proxy to make a request that will use a secure
URI scheme (e.g., "coaps” or "https"), the request towards the proxy
SHOULD be sent using DTLS except where equivalent lower-layer
security is used for the leg between the client and the proxy.

5.7.1. Proxy Operation

A proxy generally needs a way to determine potential request
parameters for a request it places to a destination, based on the
request it received from its client. This way is fully specified for

a forward-proxy but may depend on the specific configuration for a
reverse-proxy. In particular, the client of a reverse-proxy
generally does not indicate a locator for the destination,

Shelby, et al. Standards Track [Page 44]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

necessitating some form of namespace translation in the reverse-
proxy. However, some aspects of the operation of proxies are common
to all its forms.

If a proxy does not employ a cache, then it simply forwards the
translated request to the determined destination. Otherwise, if it
does employ a cache but does not have a stored response that matches
the translated request and is considered fresh, then it needs to
refresh its cache according to Section 5.6. For options in the

request that the proxy recognizes, it knows whether the option is
intended to act as part of the key used in looking up the cached
value or not. For example, since requests for different Uri-Path
values address different resources, Uri-Path values are always part
of the Cache-Key, while, e.g., Token values are never part of the
Cache-Key. For options that the proxy does not recognize but that
are marked Safe-to-Forward in the option humber, the option also
indicates whether it is to be included in the Cache-Key (NoCacheKey
is not all set) or not (NoCacheKey is all set). (Options that are
unrecognized and marked Unsafe lead to 4.02 Bad Option.)

If the request to the destination times out, then a 5.04 (Gateway
Timeout) response MUST be returned. If the request to the

destination returns a response that cannot be processed by the proxy
(e.g, due to unrecognized critical options or message format errors),
then a 5.02 (Bad Gateway) response MUST be returned. Otherwise, the
proxy returns the response to the client.

If a response is generated out of a cache, the generated (or implied)
Max-Age Option MUST NOT extend the max-age originally set by the
server, considering the time the resource representation spent in the
cache. For example, the Max-Age Option could be adjusted by the
proxy for each response using the formula:

proxy-max-age = original-max-age - cache-age

For example, if a request is made to a proxied resource that was
refreshed 20 seconds ago and had an original Max-Age of 60 seconds,
then that resource’s proxied max-age is how 40 seconds. Considering
potential network delays on the way from the origin server, a proxy
should be conservative in the max-age values offered.

All options present in a proxy request MUST be processed at the

proxy. Unsafe options in a request that are not recognized by the

proxy MUST lead to a 4.02 (Bad Option) response being returned by the
proxy. A CoAP-to-CoAP proxy MUST forward to the origin server all
Safe-to-Forward options that it does not recognize. Similarly,

Shelby, et al. Standards Track [Page 45]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

Unsafe options in a response that are not recognized by the CoAP-to-
CoAP proxy server MUST lead to a 5.02 (Bad Gateway) response. Again,
Safe-to-Forward options that are not recognized MUST be forwarded.

Additional considerations for cross-protocol proxying between CoAP
and HTTP are discussed in Section 10.

5.7.2. Forward-Proxies

CoAP distinguishes between requests made (as if) to an origin server
and requests made through a forward-proxy. CoAP requests to a
forward-proxy are made as normal Confirmable or Non-confirmable
requests to the forward-proxy endpoint, but they specify the request

URI in a different way: The request URI in a proxy request is

specified as a string in the Proxy-Uri Option (see Section 5.10.2),

while the request URI in a request to an origin server is split into

the Uri-Host, Uri-Port, Uri-Path, and Uri-Query Options (see

Section 5.10.1). Alternatively, the URI in a proxy request can be
assembled from a Proxy-Scheme option and the split options mentioned.

When a proxy request is made to an endpoint and the endpoint is
unwilling or unable to act as proxy for the request URI, it MUST
return a 5.05 (Proxying Not Supported) response. If the authority
(host and port) is recognized as identifying the proxy endpoint
itself (see Section 5.10.2), then the request MUST be treated as a
local (non-proxied) request.

Unless a proxy is configured to forward the proxy request to another
proxy, it MUST translate the request as follows: the scheme of the
request URI defines the outgoing protocol and its details (e.g., CoOAP
is used over UDP for the "coap" scheme and over DTLS for the "coaps
scheme.) For a CoAP-to-CoAP proxy, the origin server’'s IP address
and port are determined by the authority component of the request
URI, and the request URI is decoded and split into the Uri-Host, Uri-
Port, Uri-Path and Uri-Query Options. This consumes the Proxy-Uri or
Proxy-Scheme option, which is therefore not forwarded to the origin
server.

5.7.3. Reverse-Proxies

Reverse-proxies do not make use of the Proxy-Uri or Proxy-Scheme
options but need to determine the destination (next hop) of a request
from information in the request and information in their

configuration. For example, a reverse-proxy might offer various
resources as if they were its own resources, after having learned of
their existence through resource discovery. The reverse-proxy is

free to build a namespace for the URIs that identify these resources.

A reverse-proxy may also build a namespace that gives the client more

Shelby, et al. Standards Track [Page 46]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

control over where the request goes, e.g., by embedding host
identifiers and port numbers into the URI path of the resources
offered.

In processing the response, a reverse-proxy has to be careful that

ETag option values from different sources are not mixed up on one
resource offered to its clients. In many cases, the ETag can be
forwarded unchanged. If the mapping from a resource offered by the
reverse-proxy to resources offered by its various origin servers is

not unique, the reverse-proxy may need to generate a new ETag, making
sure the semantics of this option are properly preserved.

5.8. Method Definitions

In this section, each method is defined along with its behavior. A
request with an unrecognized or unsupported Method Code MUST generate
a 4.05 (Method Not Allowed) piggybacked response.

5.8.1. GET

The GET method retrieves a representation for the information that
currently corresponds to the resource identified by the request URI.

If the request includes an Accept Option, that indicates the

preferred content-format of a response. If the request includes an

ETag Option, the GET method requests that ETag be validated and that
the representation be transferred only if validation failed. Upon
success, a 2.05 (Content) or 2.03 (Valid) Response Code SHOULD be
present in the response.

The GET method is safe and idempotent.
5.8.2. POST

The POST method requests that the representation enclosed in the
request be processed. The actual function performed by the POST
method is determined by the origin server and dependent on the target
resource. It usually results in a new resource being created or the
target resource being updated.

If a resource has been created on the server, the response returned

by the server SHOULD have a 2.01 (Created) Response Code and SHOULD
include the URI of the new resource in a sequence of one or more
Location-Path and/or Location-Query Options (Section 5.10.7). If the

POST succeeds but does not result in a new resource being created on

the server, the response SHOULD have a 2.04 (Changed) Response Code.
If the POST succeeds and results in the target resource being

deleted, the response SHOULD have a 2.02 (Deleted) Response Code.
POST is neither safe nor idempotent.

Shelby, et al. Standards Track [Page 47]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

5.8.3. PUT

The PUT method requests that the resource identified by the request
URI be updated or created with the enclosed representation. The
representation format is specified by the media type and content
coding given in the Content-Format Option, if provided.

If a resource exists at the request URI, the enclosed representation
SHOULD be considered a modified version of that resource, and a 2.04
(Changed) Response Code SHOULD be returned. If no resource exists,
then the server MAY create a new resource with that URI, resulting in

a 2.01 (Created) Response Code. If the resource could not be created
or modified, then an appropriate error Response Code SHOULD be sent.

Further restrictions to a PUT can be made by including the If-Match
(see Section 5.10.8.1) or If-None-Match (see Section 5.10.8.2)
options in the request.

PUT is not safe but is idempotent.

5.8.4. DELETE
The DELETE method requests that the resource identified by the
request URI be deleted. A 2.02 (Deleted) Response Code SHOULD be
used on success or in case the resource did not exist before the
request.
DELETE is not safe but is idempotent.

5.9. Response Code Definitions
Each Response Code is described below, including any options required
in the response. Where appropriate, some of the codes will be
specified in regards to related Response Codes in HTTP [RFC2616];
this does not mean that any such relationship modifies the HTTP
mapping specified in Section 10.

5.9.1. Success 2.xx

This class of Response Code indicates that the clients request was
successfully received, understood, and accepted.

5.9.1.1. 2.01 Created
Like HTTP 201 "Created", but only used in response to POST and PUT

requests. The payload returned with the response, if any, is a
representation of the action result.

Shelby, et al. Standards Track [Page 48]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

If the response includes one or more Location-Path and/or Location-
Query Options, the values of these options specify the location at
which the resource was created. Otherwise, the resource was created
at the request URI. A cache receiving this response MUST mark any
stored response for the created resource as not fresh.

This response is not cacheable.
5.9.1.2. 2.02 Deleted

This Response Code is like HTTP 204 "No Content" but only used in
response to requests that cause the resource to cease being
available, such as DELETE and, in certain circumstances, POST. The
payload returned with the response, if any, is a representation of

the action result.

This response is not cacheable. However, a cache MUST mark any
stored response for the deleted resource as not fresh.

5.9.1.3. 2.03 Valid
This Response Code is related to HTTP 304 "Not Modified" but only

used to indicate that the response identified by the entity-tag
identified by the included ETag Option is valid. Accordingly, the

response MUST include an ETag Option and MUST NOT include a payload.

When a cache that recognizes and processes the ETag response option
receives a 2.03 (Valid) response, it MUST update the stored response
with the value of the Max-Age Option included in the response
(explicitly, or implicitly as a default value; see also

Section 5.6.2). For each type of Safe-to-Forward option present in

the response, the (possibly empty) set of options of this type that

are present in the stored response MUST be replaced with the set of
options of this type in the response received. (Unsafe options may
trigger similar option-specific processing as defined by the option.)

5.9.1.4. 2.04 Changed
This Response Code is like HTTP 204 "No Content" but only used in
response to POST and PUT requests. The payload returned with the
response, if any, is a representation of the action result.

This response is not cacheable. However, a cache MUST mark any
stored response for the changed resource as not fresh.

Shelby, et al. Standards Track [Page 49]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

5.9.1.5. 2.05 Content

This Response Code is like HTTP 200 "OK" but only used in response to
GET requests.

The payload returned with the response is a representation of the
target resource.

This response is cacheable: Caches can use the Max-Age Option to
determine freshness (see Section 5.6.1) and (if present) the ETag
Option for validation (see Section 5.6.2).

5.9.2. Client Error 4.xx
This class of Response Code is intended for cases in which the client

seems to have erred. These Response Codes are applicable to any
request method.

The server SHOULD include a diagnostic payload under the conditions
detailed in Section 5.5.2.

Responses of this class are cacheable: Caches can use the Max-Age
Option to determine freshness (see Section 5.6.1). They cannot be
validated.

5.9.2.1. 4.00 Bad Request
This Response Code is Like HTTP 400 "Bad Request".

5.9.2.2. 4.01 Unauthorized
The client is not authorized to perform the requested action. The
client SHOULD NOT repeat the request without first improving its
authentication status to the server. Which specific mechanism can be
used for this is outside this document’s scope; see also Section 9.

5.9.2.3. 4.02 Bad Option
The request could not be understood by the server due to one or more
unrecognized or malformed options. The client SHOULD NOT repeat the
request without modification.

5.9.2.4. 4.03 Forbidden

This Response Code is like HTTP 403 "Forbidden".

Shelby, et al. Standards Track [Page 50]

RFC 7252 The Constrained Application Protocol (CoAP) June 2014

5.9.2.5. 4.04 Not Found
This Response Code is like HTTP 404 "Not Found".
5.9.2.6. 4.05 Method Not Allowed

This Response Code is like HTTP 405 "Method Not Allowed" but with no
parallel to the "Allow" header field.

5.9.2.7. 4.06 Not Acceptable

This Response Code is like HTTP 406 "Not Acceptable”, but with no
response entity.

5.9.2.8. 4.12 Precondition Failed
This Response Code is like HTTP 412 "Precondition Failed".
5.9.2.9. 4.13 Request Entity Too Large
This Response Code is like HTTP 413 "Request Entity Too Large".
The response SHOULD include a Sizel Option (Section 5.10.9) to
indicate the maximum size of request entity the server is able and
willing to handle, unless the server is not in a position to make
this information available.
5.9.2.10. 4.15 Unsupported Content-Format
This Response Code is like HTTP 415 "Unsupported Media Type".
5.9.3. Server Error 5.xx
This class of Response Code indicates cases in which the server is
aware that it has erred or is incapable of performing the request.

These Response Codes are applicable to any request method.

The server SHOULD include a diagnostic payload under the conditions
detailed in Section 5.5.2.

Responses of this class are cacheable: Caches can use the