
RFC 9635
Grant Negotiation and Authorization Protocol
(GNAP)

Abstract
The Grant Negotiation and Authorization Protocol (GNAP) defines a mechanism for delegating
authorization to a piece of software and conveying the results and artifacts of that delegation to
the software. This delegation can include access to a set of APIs as well as subject information
passed directly to the software.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9635
Standards Track
October 2024
2070-1721
J. Richer, Ed.
Bespoke Engineering

F. Imbault
acert.io

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9635

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Richer & Imbault Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9635
https://www.rfc-editor.org/info/rfc9635
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Terminology

1.2. Roles

1.3. Elements

1.4. Trust Relationships

1.5. Protocol Flow

1.6. Sequences

1.6.1. Overall Protocol Sequence

1.6.2. Redirect-Based Interaction

1.6.3. User Code Interaction

1.6.4. Asynchronous Authorization

1.6.5. Software-Only Authorization

1.6.6. Refreshing an Expired Access Token

1.6.7. Requesting Subject Information Only

1.6.8. Cross-User Authentication

2. Requesting Access

2.1. Requesting Access to Resources

2.1.1. Requesting a Single Access Token

2.1.2. Requesting Multiple Access Tokens

2.2. Requesting Subject Information

2.3. Identifying the Client Instance

2.3.1. Identifying the Client Instance by Reference

2.3.2. Providing Displayable Client Instance Information

2.3.3. Authenticating the Client Instance

2.4. Identifying the User

2.4.1. Identifying the User by Reference

2.5. Interacting with the User

2.5.1. Start Mode Definitions

9

9

10

13

13

15

17

18

20

22

24

26

27

28

29

31

33

33

35

37

37

39

40

40

41

42

42

44

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 2

2.5.2. Interaction Finish Methods

2.5.3. Hints

3. Grant Response

3.1. Request Continuation

3.2. Access Tokens

3.2.1. Single Access Token

3.2.2. Multiple Access Tokens

3.3. Interaction Modes

3.3.1. Redirection to an Arbitrary URI

3.3.2. Launch of an Application URI

3.3.3. Display of a Short User Code

3.3.4. Display of a Short User Code and URI

3.3.5. Interaction Finish

3.4. Returning Subject Information

3.4.1. Assertion Formats

3.5. Returning a Dynamically Bound Client Instance Identifier

3.6. Error Response

4. Determining Authorization and Consent

4.1. Starting Interaction with the End User

4.1.1. Interaction at a Redirected URI

4.1.2. Interaction at the Static User Code URI

4.1.3. Interaction at a Dynamic User Code URI

4.1.4. Interaction through an Application URI

4.2. Post-Interaction Completion

4.2.1. Completing Interaction with a Browser Redirect to the Callback URI

4.2.2. Completing Interaction with a Direct HTTP Request Callback

4.2.3. Calculating the Interaction Hash

5. Continuing a Grant Request

5.1. Continuing after a Completed Interaction

5.2. Continuing during Pending Interaction (Polling)

46

48

49

51

52

52

55

57

58

58

59

59

60

61

63

63

64

65

68

69

69

70

71

71

72

73

74

75

77

79

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 3

5.3. Modifying an Existing Request

5.4. Revoking a Grant Request

6. Token Management

6.1. Rotating the Access Token Value

6.1.1. Binding a New Key to the Rotated Access Token

6.2. Revoking the Access Token

7. Securing Requests from the Client Instance

7.1. Key Formats

7.1.1. Key References

7.1.2. Key Protection

7.2. Presenting Access Tokens

7.3. Proving Possession of a Key with a Request

7.3.1. HTTP Message Signatures

7.3.2. Mutual TLS

7.3.3. Detached JWS

7.3.4. Attached JWS

8. Resource Access Rights

8.1. Requesting Resources by Reference

9. Discovery

9.1. RS-First Method of AS Discovery

9.2. Dynamic Grant Endpoint Discovery

10. IANA Considerations

10.1. HTTP Authentication Scheme Registration

10.2. Media Type Registration

10.2.1. application/gnap-binding-jwsd

10.2.2. application/gnap-binding-jws

10.2.3. application/gnap-binding-rotation-jwsd

10.2.4. application/gnap-binding-rotation-jws

80

86

86

87

88

89

90

90

92

92

92

93

96

102

104

108

112

115

117

118

120

120

120

121

121

121

122

123

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 4

10.3. GNAP Grant Request Parameters

10.3.1. Registration Template

10.3.2. Initial Contents

10.4. GNAP Access Token Flags

10.4.1. Registration Template

10.4.2. Initial Contents

10.5. GNAP Subject Information Request Fields

10.5.1. Registration Template

10.5.2. Initial Contents

10.6. GNAP Assertion Formats

10.6.1. Registration Template

10.6.2. Initial Contents

10.7. GNAP Client Instance Fields

10.7.1. Registration Template

10.7.2. Initial Contents

10.8. GNAP Client Instance Display Fields

10.8.1. Registration Template

10.8.2. Initial Contents

10.9. GNAP Interaction Start Modes

10.9.1. Registration Template

10.9.2. Initial Contents

10.10. GNAP Interaction Finish Methods

10.10.1. Registration Template

10.10.2. Initial Contents

10.11. GNAP Interaction Hints

10.11.1. Registration Template

10.11.2. Initial Contents

10.12. GNAP Grant Response Parameters

10.12.1. Registration Template

124

124

125

125

125

126

126

126

126

127

127

127

127

128

128

128

128

129

129

129

130

130

130

131

131

131

131

132

132

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 5

10.12.2. Initial Contents

10.13. GNAP Interaction Mode Responses

10.13.1. Registration Template

10.13.2. Initial Contents

10.14. GNAP Subject Information Response Fields

10.14.1. Registration Template

10.14.2. Initial Contents

10.15. GNAP Error Codes

10.15.1. Registration Template

10.15.2. Initial Contents

10.16. GNAP Key Proofing Methods

10.16.1. Registration Template

10.16.2. Initial Contents

10.17. GNAP Key Formats

10.17.1. Registration Template

10.17.2. Initial Contents

10.18. GNAP Authorization Server Discovery Fields

10.18.1. Registration Template

10.18.2. Initial Contents

11. Security Considerations

11.1. TLS Protection in Transit

11.2. Signing Requests from the Client Software

11.3. MTLS Message Integrity

11.4. MTLS Deployment Patterns

11.5. Protection of Client Instance Key Material

11.6. Protection of Authorization Server

11.7. Symmetric and Asymmetric Client Instance Keys

11.8. Generation of Access Tokens

11.9. Bearer Access Tokens

11.10. Key-Bound Access Tokens

132

133

133

133

134

134

134

134

135

135

136

136

136

137

137

137

137

138

138

138

138

139

140

141

141

142

143

144

144

145

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 6

11.11. Exposure of End-User Credentials to Client Instance

11.12. Mixing Up Authorization Servers

11.13. Processing of Client-Presented User Information

11.14. Client Instance Pre-registration

11.15. Client Instance Impersonation

11.16. Client-Hosted Logo URI

11.17. Interception of Information in the Browser

11.18. Callback URI Manipulation

11.19. Redirection Status Codes

11.20. Interception of Responses from the AS

11.21. Key Distribution

11.22. Key Rotation Policy

11.23. Interaction Finish Modes and Polling

11.24. Session Management for Interaction Finish Methods

11.25. Calculating Interaction Hash

11.26. Storage of Information during Interaction and Continuation

11.27. Denial of Service (DoS) through Grant Continuation

11.28. Exhaustion of Random Value Space

11.29. Front-Channel URIs

11.30. Processing Assertions

11.31. Stolen Token Replay

11.32. Self-Contained Stateless Access Tokens

11.33. Network Problems and Token and Grant Management

11.34. Server-Side Request Forgery (SSRF)

11.35. Multiple Key Formats

11.36. Asynchronous Interactions

11.37. Compromised RS

11.38. AS-Provided Token Keys

146

146

147

148

149

149

150

150

150

151

151

152

152

153

154

156

156

157

157

158

159

159

160

160

161

162

163

163

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 7

12. Privacy Considerations

12.1. Surveillance

12.1.1. Surveillance by the Client

12.1.2. Surveillance by the Authorization Server

12.2. Stored Data

12.3. Intrusion

12.4. Correlation

12.4.1. Correlation by Clients

12.4.2. Correlation by Resource Servers

12.4.3. Correlation by Authorization Servers

12.5. Disclosure in Shared References

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Comparison with OAuth 2.0

Appendix B. Example Protocol Flows

B.1. Redirect-Based User Interaction

B.2. Secondary Device Interaction

B.3. No User Involvement

B.4. Asynchronous Authorization

B.5. Applying OAuth 2.0 Scopes and Client IDs

Appendix C. Interoperability Profiles

C.1. Web-Based Redirection

C.2. Secondary Device

Appendix D. Guidance for Extensions

Appendix E. JSON Structures and Polymorphism

Acknowledgements

Authors' Addresses

163

163

164

164

164

165

165

165

166

166

166

166

166

168

170

172

172

176

178

179

182

183

184

184

184

185

186

187

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 8

1. Introduction
GNAP allows a piece of software, the client instance, to request delegated authorization to
resource servers and subject information. The delegated access to the resource server can be
used by the client instance to access resources and APIs on behalf a resource owner, and
delegated access to subject information can in turn be used by the client instance to make
authentication decisions. This delegation is facilitated by an authorization server, usually on
behalf of a resource owner. The end user operating the software can interact with the
authorization server to authenticate, provide consent, and authorize the request as a resource
owner.

The process by which the delegation happens is known as a grant, and GNAP allows for the
negotiation of the grant process over time by multiple parties acting in distinct roles.

This specification focuses on the portions of the delegation process facing the client instance. In
particular, this specification defines interoperable methods for a client instance to request,
negotiate, and receive access to information facilitated by the authorization server. This
specification additionally defines methods for the client instance to access protected resources at
a resource server. This specification also discusses discovery mechanisms that enable the client
instance to configure itself dynamically. The means for an authorization server and resource
server to interoperate are discussed in .

The focus of this protocol is to provide interoperability between the different parties acting in
each role, not to specify implementation details of each. Where appropriate, GNAP may make
recommendations about internal implementation details, but these recommendations are to
ensure the security of the overall deployment rather than to be prescriptive in the
implementation.

This protocol solves many of the same use cases as OAuth 2.0 , OpenID Connect ,
and the family of protocols that have grown up around that ecosystem. However, GNAP is not an
extension of OAuth 2.0 and is not intended to be directly compatible with OAuth 2.0. GNAP seeks
to provide functionality and solve use cases that OAuth 2.0 cannot easily or cleanly address.
Appendix A further details the protocol rationale compared to OAuth 2.0. GNAP and OAuth 2.0
will likely exist in parallel for many deployments, and considerations have been taken to
facilitate the mapping and transition from existing OAuth 2.0 systems to GNAP. Some examples of
these can be found in Appendix B.5.

[GNAP-RS]

[RFC6749] [OIDC]

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 9

This document contains non-normative examples of partial and complete HTTP messages, JSON
structures, URIs, query components, keys, and other elements. Whenever possible, the document
uses URI as a generic term, since it aligns with the recommendations in and better
matches the intent that the identifier may be reachable through various/generic means
(compared to URLs). Some examples use a single trailing backslash (\) to indicate line wrapping
for long values, as per . The \ character and leading spaces on wrapped lines are not
part of the value.

This document uses the term "mutual TLS" as defined by . The shortened form "MTLS"
is used to mean the same thing.

For brevity, the term "signature" on its own is used in this document to refer to both digital
signatures (which use asymmetric cryptography) and keyed Message Authentication Codes
(MACs) (which use symmetric cryptography). Similarly, the verb "sign" refers to the generation of
either a digital signature or a keyed MAC over a given signature base. The qualified term "digital
signature" refers specifically to the output of an asymmetric cryptographic signing operation.

[RFC3986]

[RFC8792]

[RFC8705]

1.2. Roles
The parties in GNAP perform actions under different roles. Roles are defined by the actions taken
and the expectations leveraged on the role by the overall protocol.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 10

Authorization Server (AS):

Client:

Resource Server (RS):

Server that grants delegated privileges to a particular instance of
client software in the form of access tokens or other information (such as subject
information). The AS is uniquely defined by the grant endpoint URI, which is the absolute URI
where grant requests are started by clients.

Application that consumes resources from one or several resource servers, possibly
requiring access privileges from one or several ASes. The client is operated by the end user, or
it runs autonomously on behalf of a resource owner.

For example, a client can be a mobile application, a web application, a backend data
processor, etc.

Note: This specification differentiates between a specific instance (the client instance,
identified by its unique key) and the software running the instance (the client software). For
some kinds of client software, there could be many instances of that software, each instance
with a different key.

Server that provides an API on protected resources, where operations on
the API require a valid access token issued by a trusted AS.

Figure 1: Roles in GNAP

Authorization Resource
Server Server

Client
Instance

Resource End
Owner ~ ~ ~ ~ ~ ~ User

Legend:

indicates interaction between a human and computer
indicates interaction between two pieces of software

~ ~ ~ indicates a potential equivalence or out-of-band
communication between roles

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 11

Resource Owner (RO):

End user:

Subject entity that may grant or deny operations on resources it has
authority upon.

Note: The act of granting or denying an operation may be manual (i.e., through an interaction
with a physical person) or automatic (i.e., through predefined organizational rules).

Natural person that operates a client instance.

Note: That natural person may or may not be the same entity as the RO.

The design of GNAP does not assume any one deployment architecture but instead attempts to
define roles that can be fulfilled in a number of different ways for different use cases. As long as
a given role fulfills all of its obligations and behaviors as defined by the protocol, GNAP does not
make additional requirements on its structure or setup.

Multiple roles can be fulfilled by the same party, and a given party can switch roles in different
instances of the protocol. For example, in many instances, the RO and end user are the same
person, where a user authorizes the client instance to act on their own behalf at the RS. In this
case, one party fulfills the roles of both RO and end user, but the roles themselves are still
defined separately from each other to allow for other use cases where they are fulfilled by
different parties.

As another example, in some complex scenarios, an RS receiving requests from one client
instance can act as a client instance for a downstream secondary RS in order to fulfill the original
request. In this case, one piece of software is both an RS and a client instance from different
perspectives, and it fulfills these roles separately as far as the overall protocol is concerned.

A single role need not be deployed as a monolithic service. For example, a client instance could
have frontend components that are installed on the end user's device as well as a backend
system that the frontend communicates with. If both of these components participate in the
delegation protocol, they are both considered part of the client instance. If there are several
copies of the client software that run separately but all share the same key material, such as a
deployed cluster, then this cluster is considered a single client instance. In these cases, the
distinct components of what is considered a GNAP client instance may use any number of
different communication mechanisms between them, all of which would be considered an
implementation detail of the client instances and out of scope of GNAP.

As another example, an AS could likewise be built out of many constituent components in a
distributed architecture. The component that the client instance calls directly could be different
from the component that the RO interacts with to drive consent, since API calls and user
interaction have different security considerations in many environments. Furthermore, the AS
could need to collect identity claims about the RO from one system that deals with user attributes
while generating access tokens at another system that deals with security rights. From the
perspective of GNAP, all of these are pieces of the AS and together fulfill the role of the AS as
defined by the protocol. These pieces may have their own internal communications mechanisms,
which are considered out of scope of GNAP.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 12

Access Token:

Grant:

Privilege:

Protected Resource:

Right:

Subject:

Subject Information:

1.3. Elements
In addition to the roles above, the protocol also involves several elements that are acted upon by
the roles throughout the process.

A data artifact representing a set of rights and/or attributes.

Note: An access token can be first issued to a client instance (requiring authorization by the
RO) and subsequently rotated.

(verb): To permit an instance of client software to receive some attributes at a specific
time and with a specific duration of validity and/or to exercise some set of delegated rights to
access a protected resource.

(noun): The act of granting permission to a client instance.

Right or attribute associated with a subject.

Note: The RO defines and maintains the rights and attributes associated to the protected
resource and might temporarily delegate some set of those privileges to an end user. This
process is referred to as "privilege delegation".

Protected API that is served by an RS and that can be accessed by a client, if
and only if a valid and sufficient access token is provided.

Note: To avoid complex sentences, the specification document may simply refer to "resource"
instead of "protected resource".

Ability given to a subject to perform a given operation on a resource under the control of
an RS.

Person or organization. The subject decides whether and under which conditions its
attributes can be disclosed to other parties.

Set of statements and attributes asserted by an AS about a subject. These
statements can be used by the client instance as part of an authentication decision.

1.4. Trust Relationships
GNAP defines its trust objective as follows: the RO trusts the AS to ensure access validation and
delegation of protected resources to end users, through third party clients.

This trust objective can be decomposed into trust relationships between software elements and
roles, especially the pairs end user/RO, end user/client, client/AS, RS/RO, AS/RO, and AS/RS. Trust
of an agent by its pair can exist if the pair is informed that the agent has made a promise to
follow the protocol in the past (e.g., pre-registration and uncompromised cryptographic
components) or if the pair is able to infer by indirect means that the agent has made such a

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 13

end user/RO:

end user/client:

end user/AS:

client/AS:

RS/RO:

AS/RO:

promise (e.g., a compliant client request). Each agent defines its own valuation function of
promises given or received. Examples of such valuations can be the benefits from interacting
with other agents (e.g., safety in client access and interoperability with identity standards), the
cost of following the protocol (including its security and privacy requirements and
recommendations), a ranking of promise importance (e.g., a policy decision made by the AS), the
assessment of one's vulnerability or risk of not being able to defend against threats, etc. Those
valuations may depend on the context of the request. For instance, depending on the specific
case in which GNAP is used, the AS may decide to either take into account or discard hints
provided by the client, or the RS may refuse bearer tokens. Some promises can be affected by
previous interactions (e.g., repeated requests).

Below are details of each trust relationship:

This relationship exists only when the end user and the RO are different, in which
case the end user needs some out-of-band mechanism of getting the RO consent (see Section
4). GNAP generally assumes that humans can be authenticated, thanks to identity protocols
(for instance, through an id_token assertion as described in Section 2.2).

The client acts as a user agent. Depending on the technology used (browser,
single-page application (SPA), mobile application, Internet of Things (IoT) device, etc.), some
interactions may or may not be possible (as described in Section 2.5.1). Client developers
implement requirements and generally some recommendations or best practices, so that the
end users may confidently use their software. However, end users might also face an
attacker's client software or a poorly implemented client without even realizing it.

When the client supports the interaction feature (see Section 3.3), the end user
interacts with the AS through an AS-provided interface. In many cases, this happens through
a front-channel interaction through the end user's browser. See Section 11.29 for some
considerations in trusting these interactions.

An honest AS may face an attacker's client (as discussed just above), or the reverse,
and GNAP aims to make common attacks impractical. This specification makes access tokens
opaque to the client and defines the request/response scheme in detail, therefore avoiding
extra trust hypotheses from this critical piece of software. Yet, the AS may further define
cryptographic attestations or optional rules to simplify the access of clients it already trusts,
due to past behavior or organizational policies (see Section 2.3).

On behalf of the RO, the RS promises to protect its resources from unauthorized access
and only accepts valid access tokens issued by a trusted AS. In case tokens are key bound,
proper validation of the proofing method is expected from the RS.

The AS is expected to follow the decisions made by the RO, through either interactive
consent requests, repeated interactions, or automated rules (as described in Section 1.6).
Privacy considerations aim to reduce the risk of an honest but too-curious AS or the
consequences of an unexpected user data exposure.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 14

AS/RS: The AS promises to issue valid access tokens to legitimate client requests (i.e., after
carrying out appropriate due diligence, as defined in the GNAP). Some optional configurations
are covered by .

A global assumption made by GNAP is that authorization requests are security and privacy
sensitive, and appropriate measures are detailed in Sections 11 and 12, respectively.

A formal trust model is out of scope of this specification, but one could be developed using
techniques such as the Promise Theory .

[GNAP-RS]

[promise-theory]

1.5. Protocol Flow
GNAP is fundamentally designed to allow delegated access to APIs and other information, such as
subject information, using a multi-stage, stateful process. This process allows different parties to
provide information into the system to alter and augment the state of the delegated access and its
artifacts.

The underlying requested grant moves through several states as different actions take place
during the protocol, as shown in Figure 2.

Figure 2: State Diagram of a Grant Request in GNAP

Continue
Need Interaction

Pending
Finish Interaction

(approve/deny)

Cancel

Request Processing Finalize Finalized

Revoke or
Finalize

Update
Approved

No Interaction
Continue

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 15

Processing:

Pending:

Approved:

The state of the grant request is defined and managed by the AS, though the client instance also
needs to manage its view of the grant request over time. The means by which these roles manage
their state are outside the scope of this specification.

When a request for access (Section 2) is received by the AS, a new grant request is
created and placed in the processing state by the AS. This state is also entered when an
existing grant request is updated by the client instance and when interaction is completed. In
this state, the AS processes the context of the grant request to determine whether interaction
with the end user or RO is required for approval of the request. The grant request has to exit
this state before a response can be returned to the client instance. If approval is required, the
request moves to the pending state, and the AS returns a continuation response (Section 3.1)
along with any appropriate interaction responses (Section 3.3). If no such approval is
required, such as when the client instance is acting on its own behalf or the AS can determine
that access has been fulfilled, the request moves to the approved state where access tokens for
API access (Section 3.2) and subject information (Section 3.4) can be issued to the client
instance. If the AS determines that no additional processing can occur (such as a timeout or
an unrecoverable error), the grant request is moved to the finalized state and is terminated.

When a request needs to be approved by an RO, or interaction with the end user is
required, the grant request enters a state of pending. In this state, no access tokens can be
granted, and no subject information can be released to the client instance. While a grant
request is in this state, the AS seeks to gather the required consent and authorization (Section
4) for the requested access. A grant request in this state is always associated with a
continuation access token bound to the client instance's key (see Section 3.1 for details of the
continuation access token). If no interaction finish method (Section 2.5.2) is associated with
this request, the client instance can send a polling continuation request (Section 5.2) to the AS.
This returns a continuation response (Section 3.1) while the grant request remains in this
state, allowing the client instance to continue to check the state of the pending grant request.
If an interaction finish method (Section 2.5.2) is specified in the grant request, the client
instance can continue the request after interaction (Section 5.1) to the AS to move this request
to the processing state to be re-evaluated by the AS. Note that this occurs whether the grant
request has been approved or denied by the RO, since the AS needs to take into account the
full context of the request before determining the next step for the grant request. When other
information is made available in the context of the grant request, such as through the
asynchronous actions of the RO, the AS moves this request to the processing state to be re-
evaluated. If the AS determines that no additional interaction can occur, e.g., all the
interaction methods have timed out or a revocation request (Section 5.4) is received from the
client instance, the grant request can be moved to the finalized state.

When a request has been approved by an RO and no further interaction with the end
user is required, the grant request enters a state of approved. In this state, responses to the
client instance can include access tokens for API access (Section 3.2) and subject information
(Section 3.4). If continuation and updates are allowed for this grant request, the AS can
include the continuation response (Section 3.1). In this state, post-interaction continuation
requests (Section 5.1) are not allowed and will result in an error, since all interaction is
assumed to have been completed. If the client instance sends a polling continuation request

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 16

Finalized:

(Section 5.2) while the request is in this state, new access tokens (Section 3.2) can be issued in
the response. Note that this always creates a new access token, but any existing access tokens
could be rotated and revoked using the token management API (Section 6). The client instance
can send an update continuation request (Section 5.3) to modify the requested access, causing
the AS to move the request back to the processing state for re-evaluation. If the AS determines
that no additional tokens can be issued and that no additional updates are to be accepted (e.g.,
the continuation access tokens have expired), the grant is moved to the finalized state.

After the access tokens are issued, if the AS does not allow any additional updates on
the grant request, the grant request enters the finalized state. This state is also entered when
an existing grant request is revoked by the client instance (Section 5.4) or otherwise revoked
by the AS (such as through out-of-band action by the RO). This state can also be entered if the
AS determines that no additional processing is possible, for example, if the RO has denied the
requested access or if interaction is required but no compatible interaction methods are
available. Once in this state, no new access tokens can be issued, no subject information can
be returned, and no interactions can take place. Once in this state, the grant request is dead
and cannot be revived. If future access is desired by the client instance, a new grant request
can be created, unrelated to this grant request.

While it is possible to deploy an AS in a stateless environment, GNAP is a stateful protocol, and
such deployments will need a way to manage the current state of the grant request in a secure
and deterministic fashion without relying on other components, such as the client software, to
keep track of the current state.

1.6. Sequences
GNAP can be used in a variety of ways to allow the core delegation process to take place. Many
portions of this process are conditionally present depending on the context of the deployments,
and not every step in this overview will happen in all circumstances.

Note that a connection between roles in this process does not necessarily indicate that a specific
protocol message is sent across the wire between the components fulfilling the roles in question
or that a particular step is required every time. For example, for a client instance interested in
only getting subject information directly and not calling an RS, all steps involving the RS below
do not apply.

In some circumstances, the information needed at a given stage is communicated out of band or
is pre-configured between the components or entities performing the roles. For example, one
entity can fulfill multiple roles, so explicit communication between the roles is not necessary
within the protocol flow. Additionally, some components may not be involved in all use cases. For
example, a client instance could be calling the AS just to get direct user information and have no
need to get an access token to call an RS.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 17

1.6.1. Overall Protocol Sequence

The following diagram provides a general overview of GNAP, including many different optional
phases and connections. The diagrams in the following sections provide views of GNAP under
more specific circumstances. These additional diagrams use the same conventions as the overall
diagram below.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 18

(A) The end user interacts with the client instance to indicate a need for resources on behalf
of the RO. This could identify the RS that the client instance needs to call, the resources
needed, or the RO that is needed to approve the request. Note that the RO and end user are
often the same entity in practice, but GNAP makes no general assumption that they are.
(1) The client instance determines what access is needed and which AS to approach for
access. Note that for most situations, the client instance is pre-configured with which AS to
talk to and which kinds of access it needs, but some more dynamic processes are discussed
in Section 9.1.

Figure 3: Overall Sequence of GNAP

End User ~ ~ ~ ~ Resource
Owner (RO)

A B

Client (1) Resource
Instance Server

(RS)
2 Authorization
3 Server

(AS)
4
5

6
| | (7)

8

9
10

11
(12)

13

Legend:
indicates a possible interaction with a human
indicates an interaction between protocol roles

~ ~ ~ indicates a potential equivalence or out-of-band
communication between roles

•

•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 19

(2) The client instance requests access at the AS (Section 2).
(3) The AS processes the request and determines what is needed to fulfill the request (see
Section 4). The AS sends its response to the client instance (Section 3).
(B) If interaction is required, the AS interacts with the RO (Section 4) to gather authorization.
The interactive component of the AS can function using a variety of possible mechanisms,
including web page redirects, applications, challenge/response protocols, or other methods.
The RO approves the request for the client instance being operated by the end user. Note that
the RO and end user are often the same entity in practice, and many of GNAP's interaction
methods allow the client instance to facilitate the end user interacting with the AS in order to
fulfill the role of the RO.
(4) The client instance continues the grant at the AS (Section 5). This action could occur in
response to receiving a signal that interaction has finished (Section 4.2) or through a periodic
polling mechanism, depending on the interaction capabilities of the client software and the
options active in the grant request.
(5) If the AS determines that access can be granted, it returns a response to the client
instance (Section 3), including an access token (Section 3.2) for calling the RS and any directly
returned information (Section 3.4) about the RO.
(6) The client instance uses the access token (Section 7.2) to call the RS.
(7) The RS determines if the token is sufficient for the request by examining the token. The
means of the RS determining this access are out of scope of this specification, but some
options are discussed in .
(8) The client instance calls the RS (Section 7.2) using the access token until the RS or client
instance determines that the token is no longer valid.
(9) When the token no longer works, the client instance rotates the access token (Section 6.1).
(10) The AS issues a new access token (Section 3.2) to the client instance with the same rights
as the original access token returned in (5).
(11) The client instance uses the new access token (Section 7.2) to call the RS.
(12) The RS determines if the new token is sufficient for the request, as in (7).
(13) The client instance disposes of the token (Section 6.2) once the client instance has
completed its access of the RS and no longer needs the token.

The following sections and Appendix B contain specific guidance on how to use GNAP in
different situations and deployments. For example, it is possible for the client instance to never
request an access token and never call an RS, just as it is possible to have no end user involved in
the delegation process.

•
•

•

•

•

•
•

[GNAP-RS]
•

•
•

•
•
•

1.6.2. Redirect-Based Interaction

In this example flow, the client instance is a web application that wants access to resources on
behalf of the current user, who acts as both the end user and the RO. Since the client instance is
capable of directing the user to an arbitrary URI and receiving responses from the user's
browser, interaction here is handled through front-channel redirects using the user's browser.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 20

The redirection URI used for interaction is a service hosted by the AS in this example. The client
instance uses a persistent session with the user to ensure the same user that is starting the
interaction is the user that returns from the interaction.

(1) The client instance establishes a session with the user, in the role of the end user.
(2) The client instance requests access to the resource (Section 2). The client instance
indicates that it can redirect to an arbitrary URI (Section 2.5.1.1) and receive a redirect from
the browser (Section 2.5.2.1). The client instance stores verification information for its
redirect in the session created in (1).
(3) The AS determines that interaction is needed and responds (Section 3) with a URI to send
the user to (Section 3.3.1) and information needed to verify the redirect (Section 3.3.5) in (7).
The AS also includes information the client instance will need to continue the request
(Section 3.1) in (8). The AS associates this continuation information with an ongoing request
that will be referenced in (4), (6), and (8).

Figure 4: Diagram of a Redirect-Based Interaction

Client AS End
Instance User

1 Start Session

2 Request Access

3 Interaction Needed

4 Redirect for Interaction

5
AuthN RO

6
AuthZ

End
7 Redirect for Continuation User

8 Continue Request

9 Grant Access

10 Access API RS
| |

11 API Response

•
•

•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 21

(4) The client instance stores the verification and continuation information from (3) in the
session from (1). The client instance then redirects the user to the URI (Section 4.1.1) given by
the AS in (3). The user's browser loads the interaction redirect URI. The AS loads the pending
request based on the incoming URI generated in (3).
(5) The user authenticates at the AS, taking on the role of the RO.
(6) As the RO, the user authorizes the pending request from the client instance.
(7) When the AS is done interacting with the user, the AS redirects the user back (Section
4.2.1) to the client instance using the redirect URI provided in (2). The redirect URI is
augmented with an interaction reference that the AS associates with the ongoing request
created in (2) and referenced in (4). The redirect URI is also augmented with a hash of the
security information provided in (2) and (3). The client instance loads the verification
information from (2) and (3) from the session created in (1). The client instance calculates a
hash (Section 4.2.3) based on this information and continues only if the hash validates. Note
that the client instance needs to ensure that the parameters for the incoming request match
those that it is expecting from the session created in (1). The client instance also needs to be
prepared for the end user never being returned to the client instance and handle timeouts
appropriately.
(8) The client instance loads the continuation information from (3) and sends the interaction
reference from (7) in a request to continue the request (Section 5.1). The AS validates the
interaction reference, ensuring that the reference is associated with the request being
continued.
(9) If the request has been authorized, the AS grants access to the information in the form of
access tokens (Section 3.2) and direct subject information (Section 3.4) to the client instance.
(10) The client instance uses the access token (Section 7.2) to call the RS.
(11) The RS validates the access token and returns an appropriate response for the API.

An example set of protocol messages for this method can be found in Appendix B.1.

•

•
•
•

•

•

•
•

1.6.3. User Code Interaction

In this example flow, the client instance is a device that is capable of presenting a short, human-
readable code to the user and directing the user to enter that code at a known URI. The user
enters the code at a URI that is an interactive service hosted by the AS in this example. The client
instance is not capable of presenting an arbitrary URI to the user, nor is it capable of accepting
incoming HTTP requests from the user's browser. The client instance polls the AS while it is
waiting for the RO to authorize the request. The user's interaction is assumed to occur on a
secondary device. In this example, it is assumed that the user is both the end user and RO. Note
that since the user is not assumed to be interacting with the client instance through the same
web browser used for interaction at the AS, the user is not shown as being connected to the client
instance in this diagram.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 22

(1) The client instance requests access to the resource (Section 2). The client instance
indicates that it can display a user code (Section 2.5.1.3).
(2) The AS determines that interaction is needed and responds (Section 3) with a user code to
communicate to the user (Section 3.3.3). The AS also includes information the client instance
will need to continue the request (Section 3.1) in (8) and (10). The AS associates this
continuation information with an ongoing request that will be referenced in (4), (6), (8), and
(10).
(3) The client instance stores the continuation information from (2) for use in (8) and (10).
The client instance then communicates the code to the user (Section 4.1.2) given by the AS in
(2).

Figure 5: Diagram of a User-Code-Based Interaction

Client AS End
Instance 1 Request Access User

2 Interaction Needed

3 Display User Code

4
Open URI

5 RO
AuthN

9 Continue Request (A)
6

10 Not Yet Granted (Wait) Code

7
AuthZ

8
Complete

11 Continue Request (B) End
User

12 Grant Access

13 Access API RS
| |

14 API Response

•

•

•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 23

(4) The user directs their browser to the user code URI. This URI is stable and can be
communicated via the client software's documentation, the AS documentation, or the client
software itself. Since it is assumed that the RO will interact with the AS through a secondary
device, the client instance does not provide a mechanism to launch the RO's browser at this
URI.
(5) The end user authenticates at the AS, taking on the role of the RO.
(6) The RO enters the code communicated in (3) to the AS. The AS validates this code against
a current request in process.
(7) As the RO, the user authorizes the pending request from the client instance.
(8) When the AS is done interacting with the user, the AS indicates to the RO that the request
has been completed.
(9) Meanwhile, the client instance loads the continuation information stored at (3) and
continues the request (Section 5). The AS determines which ongoing access request is
referenced here and checks its state.
(10) If the access request has not yet been authorized by the RO in (6), the AS responds to the
client instance to continue the request (Section 3.1) at a future time through additional
polled continuation requests. This response can include updated continuation information
as well as information regarding how long the client instance should wait before calling
again. The client instance replaces its stored continuation information from the previous
response (2). Note that the AS may need to determine that the RO has not approved the
request in a sufficient amount of time and return an appropriate error to the client instance.
(11) The client instance continues to poll the AS (Section 5.2) with the new continuation
information in (9).
(12) If the request has been authorized, the AS grants access to the information in the form of
access tokens (Section 3.2) and direct subject information (Section 3.4) to the client instance.
(13) The client instance uses the access token (Section 7.2) to call the RS.
(14) The RS validates the access token and returns an appropriate response for the API.

An example set of protocol messages for this method can be found in Appendix B.2.

•

•
•

•
•

•

•

•

•

•
•

1.6.4. Asynchronous Authorization

In this example flow, the end user and RO roles are fulfilled by different parties, and the RO does
not interact with the client instance. The AS reaches out asynchronously to the RO during the
request process to gather the RO's authorization for the client instance's request. The client
instance polls the AS while it is waiting for the RO to authorize the request.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 24

(1) The client instance requests access to the resource (Section 2). The client instance does
not send any interaction modes to the server, indicating that it does not expect to interact
with the RO. The client instance can also signal which RO it requires authorization from, if
known, by using the subject request field (Section 2.2) and user request field (Section 2.4). It's
also possible for the AS to determine which RO needs to be contacted by the nature of what
access is being requested.
(2) The AS determines that interaction is needed, but the client instance cannot interact with
the RO. The AS responds (Section 3) with the information the client instance will need to
continue the request (Section 3.1) in (6) and (8), including a signal that the client instance
should wait before checking the status of the request again. The AS associates this
continuation information with an ongoing request that will be referenced in (3), (4), (5), (6),
and (8).
(3) The AS determines which RO to contact based on the request in (1), through a
combination of the user request (Section 2.4), the subject request (Section 2.2), the access
request (Section 2.1), and other policy information. The AS contacts the RO and authenticates
them.
(4) The RO authorizes the pending request from the client instance.
(5) When the AS is done interacting with the RO, the AS indicates to the RO that the request
has been completed.

Figure 6: Diagram of an Asynchronous Authorization Process, with No End-User Interaction

Client AS RO
Instance 1 Request Access

2 Not Yet Granted (Wait)
3

AuthN
6 Continue Request (A)

4
7 Not Yet Granted (Wait) AuthZ

5
Completed

8 Continue Request (B)

9 Grant Access

10 Access API RS
| |

11 API Response

•

•

•

•
•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 25

(6) Meanwhile, the client instance loads the continuation information stored at (2) and
continues the request (Section 5). The AS determines which ongoing access request is
referenced here and checks its state.
(7) If the access request has not yet been authorized by the RO in (6), the AS responds to the
client instance to continue the request (Section 3.1) at a future time through additional
polling. Note that this response is not an error message, since no error has yet occurred. This
response can include refreshed credentials as well as information regarding how long the
client instance should wait before calling again. The client instance replaces its stored
continuation information from the previous response (2). Note that the AS may need to
determine that the RO has not approved the request in a sufficient amount of time and
return an appropriate error to the client instance.
(8) The client instance continues to poll the AS (Section 5.2) with the new continuation
information from (7).
(9) If the request has been authorized, the AS grants access to the information in the form of
access tokens (Section 3.2) and direct subject information (Section 3.4) to the client instance.
(10) The client instance uses the access token (Section 7.2) to call the RS.
(11) The RS validates the access token and returns an appropriate response for the API.

An example set of protocol messages for this method can be found in Appendix B.4.

Additional considerations for asynchronous interactions like this are discussed in Section 11.36.

•

•

•

•

•
•

1.6.5. Software-Only Authorization

In this example flow, the AS policy allows the client instance to make a call on its own behalf,
without the need for an RO to be involved at runtime to approve the decision. Since there is no
explicit RO, the client instance does not interact with an RO.

(1) The client instance requests access to the resource (Section 2). The client instance does
not send any interaction modes to the server.

Figure 7: Diagram of a Software-Only Authorization, with No End User or Explicit Resource Owner

Client AS
Instance 1 Request Access

2 Grant Access

3 Access API RS
| |

4 API Response

•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 26

(2) The AS determines that the request has been authorized based on the identity of the
client instance making the request and the access requested (Section 2.1). The AS grants
access to the resource in the form of access tokens (Section 3.2) to the client instance. Note
that direct subject information (Section 3.4) is not generally applicable in this use case, as
there is no user involved.
(3) The client instance uses the access token (Section 7.2) to call the RS.
(4) The RS validates the access token and returns an appropriate response for the API.

An example set of protocol messages for this method can be found in Appendix B.3.

•

•
•

1.6.6. Refreshing an Expired Access Token

In this example flow, the client instance receives an access token to access an RS through some
valid GNAP process. The client instance uses that token at the RS for some time, but eventually
the access token expires. The client instance then gets a refreshed access token by rotating the
expired access token's value at the AS using the token management API.

(1) The client instance requests access to the resource (Section 2).
(2) The AS grants access to the resource (Section 3) with an access token (Section 3.2) usable
at the RS. The access token response includes a token management URI.
(3) The client instance uses the access token (Section 7.2) to call the RS.

Figure 8: Diagram of the Process of Refreshing an Expired Access Token

Client AS
Instance 1 Request Access

2 Grant Access

3 Access Resource RS

4 Success Response

(Time Passes)

5 Access Resource

6 Error Response

7 Rotate Token

8 Rotated Token

•
•

•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 27

(4) The RS validates the access token and returns an appropriate response for the API.
(5) Time passes and the client instance uses the access token to call the RS again.
(6) The RS validates the access token and determines that the access token is expired. The RS
responds to the client instance with an error.
(7) The client instance calls the token management URI returned in (2) to rotate the access
token (Section 6.1). The client instance uses the access token (Section 7.2) in this call as well
as the appropriate key; see Section 6.1 for details.
(8) The AS validates the rotation request, including the signature and keys presented in (7),
and refreshes the access token (Section 3.2.1). The response includes a new version of the
access token and can also include updated token management information, which the client
instance will store in place of the values returned in (2).

•
•
•

•

•

1.6.7. Requesting Subject Information Only

In this scenario, the client instance does not call an RS and does not request an access token.
Instead, the client instance only requests and is returned direct subject information (Section 3.4).
Many different interaction modes can be used in this scenario, so these are shown only in the
abstract as functions of the AS here.

(1) The client instance requests access to subject information (Section 2).

Figure 9: Diagram of the Process of Requesting and Releasing Subject Information apart from
Access Tokens

Client AS End
Instance User

1 Request Access

2 Interaction Needed

3 Facilitate Interaction

4 RO
AuthN

5
AuthZ

End
6 Signal Continuation User

7 Continue Request

8 Grant Access

•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 28

(2) The AS determines that interaction is needed and responds (Section 3) with appropriate
information for facilitating user interaction (Section 3.3).
(3) The client instance facilitates the user interacting with the AS (Section 4) as directed in
(2).
(4) The user authenticates at the AS, taking on the role of the RO.
(5) As the RO, the user authorizes the pending request from the client instance.
(6) When the AS is done interacting with the user, the AS returns the user to the client
instance and signals continuation.
(7) The client instance loads the continuation information from (2) and calls the AS to
continue the request (Section 5).
(8) If the request has been authorized, the AS grants access to the requested direct subject
information (Section 3.4) to the client instance. At this stage, the user is generally considered
"logged in" to the client instance based on the identifiers and assertions provided by the AS.
Note that the AS can restrict the subject information returned, and it might not match what
the client instance requested; see Section 3.4 for details.

•

•

•
•
•

•

•

1.6.8. Cross-User Authentication

In this scenario, the end user and RO are two different people. Here, the client instance already
knows who the end user is, likely through a separate authentication process. The end user,
operating the client instance, needs to get subject information about another person in the
system, the RO. The RO is given an opportunity to release this information using an
asynchronous interaction method with the AS. This scenario would apply, for instance, when the
end user is an agent in a call center and the RO is a customer authorizing the call-center agent to
access their account on their behalf.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 29

Precondition: The end user is authenticated to the client instance, and the client instance has an
identifier representing the end user that it can present to the AS. This identifier should be unique
to the particular session with the client instance and the AS. The client instance is also known to
the AS and allowed to access this advanced functionality where the information of someone
other than the end user is returned to the client instance.

(1) The RO communicates a human-readable identifier to the end user, such as an email
address or account number. This communication happens out of band from the protocol,
such as over the phone between parties. Note that the RO is not interacting with the client
instance.
(2) The end user communicates the identifier to the client instance. The means by which the
identifier is communicated to the client instance are out of scope for this specification.
(3) The client instance requests access to subject information (Section 2). The request
includes the RO's identifier in the sub_ids field of the subject information request (Section
2.2) and the end user's identifier in the user field (Section 2.4). The request includes no

Figure 10: Diagram of Cross-User Authorization, Where the End User and RO Are Different

End RO
User 1 Identify RO

2 Client AS
RO ID Instance

3 Req.

4 Res.
5

AuthN

6
AuthZ

7
8 Finish Completed

9 Cont.

10 Subj.
11 Info

Return
RO
Info

•

•

•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 30

interaction start methods, since the end user is not expected to be the one interacting with
the AS. The request does include the push-based interaction finish method (Section 2.5.2.2) to
allow the AS to signal to the client instance when the interaction with the RO has concluded.
(4) The AS sees that the identifiers for the end user and subject being requested are different.
The AS determines that it can reach out to the RO asynchronously for approval. While it is
doing so, the AS returns a continuation response (Section 3.1) with a finish nonce to allow
the client instance to continue the grant request after interaction with the RO has concluded.
(5) The AS contacts the RO and has them authenticate to the system. The means for doing this
are outside the scope of this specification, but the identity of the RO is known from the
Subject Identifier sent in (3).
(6) The RO is prompted to authorize the end user's request via the client instance. Since the
end user was identified in (3) via the user field, the AS can show this information to the RO
during the authorization request.
(7) The RO completes the authorization with the AS. The AS marks the request as approved.
(8) The RO pushes the interaction finish message (Section 4.2.2) to the client instance. Note
that in the case the RO cannot be reached or the RO denies the request, the AS still sends the
interaction finish message to the client instance, after which the client instance can negotiate
next steps if possible.
(9) The client instance validates the interaction finish message and continues the grant
request (Section 5.1).
(10) The AS returns the RO's subject information (Section 3.4) to the client instance.
(11) The client instance can display or otherwise utilize the RO's user information in its
session with the end user. Note that since the client instance requested different sets of user
information in (3), the client instance does not conflate the end user with the RO.

Additional considerations for asynchronous interactions like this are discussed in Section 11.36.

•

•

•

•
•

•

•
•

access_token (object / array of objects):

subject (object):

2. Requesting Access
To start a request, the client instance sends an HTTP POST with a JSON document to
the grant endpoint of the AS. The grant endpoint is a URI that uniquely identifies the AS to client
instances and serves as the identifier for the AS. The document is a JSON object where each field
represents a different aspect of the client instance's request. Each field is described in detail in a
subsection below.

Describes the rights and properties associated with the
requested access token. if requesting an access token. See Section 2.1.

Describes the information about the RO that the client instance is requesting
to be returned directly in the response from the AS. if requesting subject
information. See Section 2.2.

[RFC8259]

REQUIRED

REQUIRED

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 31

client (object / string):

user (object / string):

interact (object):

Describes the client instance that is making this request, including the
key that the client instance will use to protect this request, any continuation requests at the
AS, and any user-facing information about the client instance used in interactions. .
See Section 2.3.

Identifies the end user to the AS in a manner that the AS can verify, either
directly or by interacting with the end user to determine their status as the RO. . See
Section 2.4.

Describes the modes that the client instance supports for allowing the RO to
interact with the AS and modes for the client instance to receive updates when interaction is
complete. if interaction is supported. See Section 2.5.

Additional members of this request object can be defined by extensions using the "GNAP Grant
Request Parameters" registry (Section 10.3).

A non-normative example of a grant request is below:

REQUIRED

OPTIONAL

REQUIRED

{
 "access_token": {
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "dolphin-metadata"
]
 },
 "client": {
 "display": {
 "name": "My Client Display Name",
 "uri": "https://example.net/client"
 },
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeL...."
 }

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 32

Sending a request to the grant endpoint creates a grant request in the processing state. The AS
processes this request to determine whether interaction or authorization are necessary (moving
to the pending state) or if access can be granted immediately (moving to the approved state).

The request be sent as a JSON object in the content of the HTTP POST request with Content-
Type application/json. A key proofing mechanism define an alternative content type, as
long as the content is formed from the JSON object. For example, the attached JSON Web
Signature (JWS) key proofing mechanism (see Section 7.3.4) places the JSON object into the
payload of a JWS wrapper, which is in turn sent as the message content.

 }
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 },
 "subject": {
 "sub_id_formats": ["iss_sub", "opaque"],
 "assertion_formats": ["id_token"]
 }
}

MUST
MAY

2.1. Requesting Access to Resources
If the client instance is requesting one or more access tokens for the purpose of accessing an API,
the client instance include an access_token field. This field be an object (for a single
access token (Section 2.1.1)) or an array of these objects (for multiple access tokens (Section
2.1.2)), as described in the following subsections.

MUST MUST

access (array of objects/strings):

label (string):

flags (array of strings):

2.1.1. Requesting a Single Access Token

To request a single access token, the client instance sends an access_token object composed of
the following fields.

Describes the rights that the client instance is requesting for
the access token to be used at the RS. . See Section 8.

A unique name chosen by the client instance to refer to the resulting access
token. The value of this field is opaque to the AS and is not intended to be exposed to or used
by the end user. If this field is included in the request, the AS include the same label in
the token response (Section 3.2). if used as part of a request for multiple access
tokens (Section 2.1.2); otherwise.

A set of flags that indicate desired attributes or behavior to be attached
to the access token by the AS. .

REQUIRED

MUST
REQUIRED

OPTIONAL

OPTIONAL

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 33

"bearer":

The values of the flags field defined by this specification are as follows:

If this flag is included, the access token being requested is a bearer token. If this flag
is omitted, the access token is bound to the key used by the client instance in this request (or
that key's most recent rotation), and the access token be presented using the same key
and proofing method. Methods for presenting bound and bearer access tokens are described
in Section 7.2. See Section 11.9 for additional considerations on the use of bearer tokens.

Flag values be included more than once. If the request includes a flag value multiple
times, the AS return an invalid_flag error defined in Section 3.6.

Additional flags can be defined by extensions using the "GNAP Access Token Flags" registry
(Section 10.4).

In the following non-normative example, the client instance is requesting access to a complex
resource described by a pair of access request object.

MUST

MUST NOT
MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 34

If access is approved, the resulting access token is valid for the described resource. Since the
bearer flag is not provided in this example, the token is bound to the client instance's key (or its
most recent rotation). The token is labeled "token1-23". The token response structure is described
in Section 3.2.1.

"access_token": {
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "delete"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 {
 "type": "walrus-access",
 "actions": [
 "foo",
 "bar"
],
 "locations": [
 "https://resource.other/"
],
 "datatypes": [
 "data",
 "pictures",
 "walrus whiskers"
]
 }
],
 "label": "token1-23"
}

2.1.2. Requesting Multiple Access Tokens

To request that multiple access tokens be returned in a single response, the client instance sends
an array of objects as the value of the access_token parameter. Each object conform to the
request format for a single access token request, as specified in Section 2.1.1. Additionally, each
object in the array include the label field, and all values of these fields be unique
within the request. If the client instance does not include a label value for any entry in the array
or the values of the label field are not unique within the array, the AS return an
"invalid_request" error (Section 3.6).

MUST

MUST MUST

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 35

The following non-normative example shows a request for two separate access tokens: token1
and token2.

All approved access requests are returned in the response structure for multiple access tokens
(Section 3.2.2) using the values of the label fields in the request.

"access_token": [
 {
 "label": "token1",
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "dolphin-metadata"
]
 },
 {
 "label": "token2",
 "access": [
 {
 "type": "walrus-access",
 "actions": [
 "foo",
 "bar"
],
 "locations": [
 "https://resource.other/"
],
 "datatypes": [
 "data",
 "pictures",
 "walrus whiskers"
]
 }
],
 "flags": ["bearer"]
 }
]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 36

sub_id_formats (array of strings):

assertion_formats (array of strings):

sub_ids (array of objects):

2.2. Requesting Subject Information
If the client instance is requesting information about the RO from the AS, it sends a subject field
as a JSON object. This object contain the following fields.

An array of Subject Identifier subject formats requested for
the RO, as defined by . if Subject Identifiers are requested.

An array of requested assertion formats. Possible values
include id_token for an OpenID Connect ID Token and saml2 for a Security Assertion
Markup Language (SAML) 2 assertion . Additional assertion formats can be defined in
the "GNAP Assertion Formats" registry (Section 10.6). if assertions are requested.

An array of Subject Identifiers representing the subject for which
information is being requested. Each object is a Subject Identifier as defined by . All
identifiers in the sub_ids array identify the same subject. If omitted, the AS
assume that subject information requests are about the current user and require
direct interaction or proof of presence before releasing information. .

Additional fields can be defined in the "GNAP Subject Information Request Fields" registry
(Section 10.5).

The AS can determine the RO's identity and permission for releasing this information through
interaction with the RO (Section 4), AS policies, or assertions presented by the client instance
(Section 2.4). If this is determined positively, the AS return the RO's information in its
response (Section 3.4) as requested.

Subject Identifier types requested by the client instance serve only to identify the RO in the
context of the AS and can't be used as communication channels by the client instance, as
discussed in Section 3.4.

MAY

[RFC9493] REQUIRED

[OIDC]
[SAML2]

REQUIRED

[RFC9493]
MUST SHOULD

SHOULD
OPTIONAL

"subject": {
 "sub_id_formats": ["iss_sub", "opaque"],
 "assertion_formats": ["id_token", "saml2"]
}

MAY

2.3. Identifying the Client Instance
When sending a new grant request to the AS, the client instance identify itself by including
its client information in the client field of the request and by signing the request with its unique
key as described in Section 7.3. Note that once a grant has been created and is in either the
pending or the approved state, the AS can determine which client is associated with the grant by
dereferencing the continuation access token sent in the continuation request (Section 5). As a
consequence, the client field is not sent or accepted for continuation requests.

Client information is sent by value as an object or by reference as a string (see Section 2.3.1).

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 37

key (object / string):

class_id (string):

display (object):

When client instance information is sent by value, the client field of the request consists of a
JSON object with the following fields.

The public key of the client instance to be used in this request as described
in Section 7.1 or a reference to a key as described in Section 7.1.1. .

An identifier string that the AS can use to identify the client software
comprising this client instance. The contents and format of this field are up to the AS.

.

An object containing additional information that the AS display to the RO
during interaction, authorization, and management. . See Section 2.3.2.

Additional fields can be defined in the "GNAP Client Instance Fields" registry (Section 10.7).

Absent additional attestations, profiles, or trust mechanisms, both the display and class_id
fields are self-declarative, presented by the client instance. The AS needs to exercise caution in
their interpretation, taking them as a hint but not as absolute truth. The class_id field can be
used in a variety of ways to help the AS make sense of the particular context in which the client
instance is operating. In corporate environments, for example, different levels of trust might
apply depending on security policies. This field aims to help the AS adjust its own access
decisions for different classes of client software. It is possible to configure a set of values and
rules during a pre-registration and then have the client instances provide them later in runtime
as a hint to the AS. In other cases, the client runs with a specific AS in mind, so a single
hardcoded value would be acceptable (for instance, a set-top box with a class_id claiming to be
"FooBarTV version 4"). While the client instance may not have contacted the AS yet, the value of
this class_id field can be evaluated by the AS according to a broader context of dynamic use,
alongside other related information available elsewhere (for instance, corresponding fields in a
certificate). If the AS is not able to interpret or validate the class_id field, it either return an
invalid_client error (Section 3.6) or interpret the request as if the class_id were not present.
See additional discussion of client instance impersonation in Section 11.15.

REQUIRED

OPTIONAL

MAY
OPTIONAL

"client": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8..."
 }
 },
 "class_id": "web-server-1234",
 "display": {
 "name": "My Client Display Name",
 "uri": "https://example.net/client"
 }
}

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 38

The client instance prove possession of any presented key by the proofing mechanism
associated with the key in the request. Key proofing methods are defined in the "GNAP Key
Proofing Methods" registry (Section 10.16), and an initial set of methods is described in Section
7.3.

If the same public key is sent by value on different access requests, the AS treat these
requests as coming from the same client instance for purposes of identification, authentication,
and policy application.

If the AS does not know the client instance's public key ahead of time, the AS can choose how to
process the unknown key. Common approaches include:

Allowing the request and requiring RO authorization in a trust-on-first-use model
Limiting the client's requested access to only certain APIs and information
Denying the request entirely by returning an invalid_client error (Section 3.6)

The client instance send a symmetric key by value in the key field of the request, as
doing so would expose the key directly instead of simply proving possession of it. See
considerations on symmetric keys in Section 11.7. To use symmetric keys, the client instance can
send the key by reference (Section 7.1.1) or send the entire client identity by reference (Section
2.3.1).

The client instance's key can be pre-registered with the AS ahead of time and associated with a
set of policies and allowable actions pertaining to that client. If this pre-registration includes
other fields that can occur in the client request object described in this section, such as
class_id or display, the pre-registered values take precedence over any values given at
runtime. Additional fields sent during a request but not present in a pre-registered client
instance record at the AS be added to the client's pre-registered record. See
additional considerations regarding client instance impersonation in Section 11.15.

A client instance that is capable of talking to multiple ASes use a different key for each
AS to prevent a class of mix-up attacks as described in Section 11.31, unless other mechanisms
can be used to assure the identity of the AS for a given request.

MUST

MUST

•
•
•

MUST NOT

MUST

SHOULD NOT

SHOULD

2.3.1. Identifying the Client Instance by Reference

If the client instance has an instance identifier that the AS can use to determine appropriate key
information, the client instance can send this instance identifier as a direct reference value in
lieu of the client object. The instance identifier be assigned to a client instance at runtime
through a grant response (Section 3.5) or be obtained in another fashion, such as a static
registration process at the AS.

When the AS receives a request with an instance identifier, the AS ensure that the key used
to sign the request (Section 7.3) is associated with the instance identifier.

MAY
MAY

"client": "client-541-ab"

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 39

If the AS does not recognize the instance identifier, the request be rejected with an
invalid_client error (Section 3.6).

MUST

name (string):

uri (string):

logo_uri (string):

2.3.2. Providing Displayable Client Instance Information

If the client instance has additional information to display to the RO during any interactions at
the AS, it send that information in the "display" field. This field is a JSON object that declares
information to present to the RO during any interactive sequences.

Display name of the client software. .

User-facing information about the client software, such as a web page. This URI
 be an absolute URI. .

Display image to represent the client software. This URI be an absolute
URI. The logo be passed by value by using a data: URI referencing an image
media type. .

Additional display fields can be defined in the "GNAP Client Instance Display Fields" registry
(Section 10.8).

The AS use these values during interaction with the RO. The values are for informational
purposes only and be taken as authentic proof of the client instance's identity or
source. The AS restrict display values to specific client instances, as identified by their keys
in Section 2.3. See additional considerations for displayed client information in Section 11.15 and
for the logo_uri in particular in Section 11.16.

MAY

RECOMMENDED

MUST OPTIONAL

MUST
MAY [RFC2397]

OPTIONAL

"display": {
 "name": "My Client Display Name",
 "uri": "https://example.net/client",
 "logo_uri": "...="
}

SHOULD
MUST NOT

MAY

2.3.3. Authenticating the Client Instance

If the presented key is known to the AS and is associated with a single instance of the client
software, the process of presenting a key and proving possession of that key is sufficient to
authenticate the client instance to the AS. The AS associate policies with the client instance
identified by this key, such as limiting which resources can be requested and which interaction
methods can be used. For example, only specific client instances with certain known keys might
be trusted with access tokens without the AS interacting directly with the RO, as in Appendix B.3.

The presentation of a key allows the AS to strongly associate multiple successive requests from
the same client instance with each other. This is true when the AS knows the key ahead of time
and can use the key to authenticate the client instance, but it is also true if the key is ephemeral
and created just for this series of requests. As such, the AS allow for client instances to make
requests with unknown keys. This pattern allows for ephemeral client instances (such as single-
page applications) and client software with many individual long-lived instances (such as mobile

MAY

MAY

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 40

applications) to generate key pairs per instance and use the keys within the protocol without
having to go through a separate registration step. The AS limit which capabilities are made
available to client instances with unknown keys. For example, the AS could have a policy saying
that only previously registered client instances can request particular resources or that all client
instances with unknown keys have to be interactively approved by an RO.

MAY

sub_ids (array of objects):

assertions (array of objects):

2.4. Identifying the User
If the client instance knows the identity of the end user through one or more identifiers or
assertions, the client instance send that information to the AS in the user field. The client
instance pass this information by value or by reference (see Section 2.4.1).

An array of Subject Identifiers for the end user, as defined by
. .

An array containing assertions as objects, each containing the
assertion format and the assertion value as the JSON string serialization of the assertion, as
defined in Section 3.4. .

Subject Identifiers are hints to the AS in determining the RO and be taken as
authoritative statements that a particular RO is present at the client instance and acting as the
end user.

Assertions presented by the client instance be validated by the AS. While the details of
such validation are outside the scope of this specification, common validation steps include
verifying the signature of the assertion against a trusted signing key, verifying the audience and
issuer of the assertion map to expected values, and verifying the time window for the assertion
itself. However, note that in many use cases, some of these common steps are relaxed. For
example, an AS acting as an identity provider (IdP) could expect that assertions being presented
using this mechanism were issued by the AS to the client software. The AS would verify that the
AS is the issuer of the assertion, not the audience, and that the client instance is instead the
audience of the assertion. Similarly, an AS might accept a recently expired assertion in order to
help bootstrap a new session with a specific end user.

MAY
MAY

[RFC9493] OPTIONAL

OPTIONAL

"user": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }],
 "assertions": [{
 "format": "id_token",
 "value": "eyj..."
 }]
}

MUST NOT

SHOULD

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 41

If the identified end user does not match the RO present at the AS during an interaction step and
the AS is not explicitly allowing a cross-user authorization, the AS reject the request
with an unknown_user error (Section 3.6).

If the AS trusts the client instance to present verifiable assertions or known Subject Identifiers,
such as an opaque identifier issued by the AS for this specific client instance, the AS decide,
based on its policy, to skip interaction with the RO, even if the client instance provides one or
more interaction modes in its request.

See Section 11.30 for considerations for the AS when accepting and processing assertions from
the client instance.

SHOULD

MAY

2.4.1. Identifying the User by Reference

The AS can identify the current end user to the client instance with a reference that can be used
by the client instance to refer to the end user across multiple requests. If the client instance has a
reference for the end user at this AS, the client instance pass that reference as a string. The
format of this string is opaque to the client instance.

One means of dynamically obtaining such a user reference is from the AS returning an opaque
Subject Identifier as described in Section 3.4. Other means of configuring a client instance with a
user identifier are out of scope of this specification. The lifetime and validity of these user
references are determined by the AS, and this lifetime is not exposed to the client instance in
GNAP. As such, a client instance using such a user reference is likely to keep using that reference
until it stops working.

User reference identifiers are not intended to be human-readable user identifiers or structured
assertions. For the client instance to send either of these, the client can use the full user request
object (Section 2.4) instead.

If the AS does not recognize the user reference, it return an unknown_user error (Section
3.6).

MAY

"user": "XUT2MFM1XBIKJKSDU8QM"

MUST

2.5. Interacting with the User
Often, the AS will require interaction with the RO (Section 4) in order to approve a requested
delegation to the client instance for both access to resources and direct subject information.
Many times, the end user using the client instance is the same person as the RO, and the client
instance can directly drive interaction with the end user by facilitating the process through
means such as redirection to a URI or launching an application. Other times, the client instance
can provide information to start the RO's interaction on a secondary device, or the client instance
will wait for the RO to approve the request asynchronously. The client instance could also be
signaled that interaction has concluded through a callback mechanism.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 42

start (array of objects/strings):

finish (object):

hints (object):

The client instance declares the parameters for interaction methods that it can support using the
interact field.

The interact field is a JSON object with three keys whose values declare how the client can
initiate and complete the request, as well as provide hints to the AS about user preferences such
as locale. A client instance declare an interaction mode it does not support. The client
instance send multiple modes in the same request. There is no preference order specified in
this request. An AS respond to any, all, or none of the presented interaction modes (Section
3.3) in a request, depending on its capabilities and what is allowed to fulfill the request.

Indicates how the client instance can start an interaction.
. See Section 2.5.1.

Indicates how the client instance can receive an indication that interaction has
finished at the AS. . See Section 2.5.2.

Provides additional information to inform the interaction process at the AS.
. See Section 2.5.3.

In the following non-normative example, the client instance is indicating that it can redirect
(Section 2.5.1.1) the end user to an arbitrary URI and can receive a redirect (Section 2.5.2.1)
through a browser request. Note that the client instance does not accept a push-style callback.
The pattern of using a redirect for both interaction start and finish is common for web-based
client software.

In the following non-normative example, the client instance is indicating that it can display a
user code (Section 2.5.1.3) and direct the end user to an arbitrary URI (Section 2.5.1.1), but it
cannot accept a redirect or push-style callback. This pattern is common for devices that have
robust display capabilities but expect the use of a secondary device to facilitate end-user
interaction with the AS, such as a set-top box capable of displaying an interaction URL as a QR
code.

MUST NOT
MAY

MAY

REQUIRED

OPTIONAL

OPTIONAL

"interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
}

"interact": {
 "start": ["redirect", "user_code"]
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 43

In the following non-normative example, the client instance is indicating that it cannot start any
interaction with the end user but that the AS can push an interaction finish message (Section
2.5.2.2) when authorization from the RO is received asynchronously. This pattern is common for
scenarios where a service needs to be authorized, but the RO is able to be contacted separately
from the GNAP transaction itself, such as through a push notification or existing interactive
session on a secondary device.

If all of the following conditions are true, the AS return an invalid_interaction error
(Section 3.6) since the client instance will be unable to complete the request without
authorization:

The client instance does not provide a suitable interaction mechanism.
The AS cannot contact the RO asynchronously.
The AS determines that interaction is required.

"interact": {
 "start": [],
 "finish": {
 "method": "push",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
}

MUST

•
•
•

mode:

"redirect" (string):

"app" (string):

2.5.1. Start Mode Definitions

If the client instance is capable of starting interaction with the end user, the client instance
indicates this by sending an array of start modes under the start key. Each interaction start
mode has a unique identifying name. Interaction start modes are specified in the array either by
a string, which consists of the start mode name on its own, or by a JSON object with the required
field mode:

The interaction start mode. .

Interaction start modes defined as objects define additional parameters to be required in
the object.

The start array can contain both string-type and object-type modes.

This specification defines the following interaction start modes:

Indicates that the client instance can direct the end user to an arbitrary
URI for interaction. See Section 2.5.1.1.

Indicates that the client instance can launch an application on the end user's
device for interaction. See Section 2.5.1.2.

REQUIRED

MAY

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 44

"user_code" (string):

"user_code_uri" (string):

Indicates that the client instance can communicate a short, human-
readable code to the end user for use with a stable URI. See Section 2.5.1.3.

Indicates that the client instance can communicate a short, human-
readable code to the end user for use with a short, dynamic URI. See Section 2.5.1.4.

Additional start modes can be defined in the "GNAP Interaction Start Modes" registry (Section
10.9).

2.5.1.1. Redirect to an Arbitrary URI
If the client instance is capable of directing the end user to a URI defined by the AS at runtime,
the client instance indicates this by including redirect in the array under the start key. The
means by which the client instance will activate this URI are out of scope of this specification, but
common methods include an HTTP redirect, launching a browser on the end user's device,
providing a scannable image encoding, and printing out a URI to an interactive console. While
this URI is generally hosted at the AS, the client instance can make no assumptions about its
contents, composition, or relationship to the grant endpoint URI.

If this interaction mode is supported for this client instance and request, the AS returns a
redirect interaction response (Section 3.3.1). The client instance manages this interaction method
as described in Section 4.1.1.

See Section 11.29 for more considerations regarding the use of front-channel communication
techniques.

"interact": {
 "start": ["redirect"]
}

2.5.1.2. Open an Application-Specific URI
If the client instance can open a URI associated with an application on the end user's device, the
client instance indicates this by including app in the array under the start key. The means by
which the client instance determines the application to open with this URI are out of scope of this
specification.

If this interaction mode is supported for this client instance and request, the AS returns an app
interaction response with an app URI payload (Section 3.3.2). The client instance manages this
interaction method as described in Section 4.1.4.

"interact": {
 "start": ["app"]
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 45

2.5.1.3. Display a Short User Code
If the client instance is capable of displaying or otherwise communicating a short, human-
entered code to the RO, the client instance indicates this by including user_code in the array
under the start key. This code is to be entered at a static URI that does not change at runtime.
The client instance has no reasonable means to communicate a dynamic URI to the RO, so this
URI is usually communicated out of band to the RO through documentation or other messaging
outside of GNAP. While this URI is generally hosted at the AS, the client instance can make no
assumptions about its contents, composition, or relationship to the grant endpoint URI.

If this interaction mode is supported for this client instance and request, the AS returns a user
code as specified in Section 3.3.3. The client instance manages this interaction method as
described in Section 4.1.2.

"interact": {
 "start": ["user_code"]
}

2.5.1.4. Display a Short User Code and URI
If the client instance is capable of displaying or otherwise communicating a short, human-
entered code along with a short, human-entered URI to the RO, the client instance indicates this
by including user_code_uri in the array under the start key. This code is to be entered at the
dynamic URL given in the response. While this URL is generally hosted at the AS, the client
instance can make no assumptions about its contents, composition, or relationship to the grant
endpoint URI.

If this interaction mode is supported for this client instance and request, the AS returns a user
code and interaction URL as specified in Section 3.3.4. The client instance manages this
interaction method as described in Section 4.1.3.

"interact": {
 "start": ["user_code_uri"]
}

method (string):

uri (string):

2.5.2. Interaction Finish Methods

If the client instance is capable of receiving a message from the AS indicating that the RO has
completed their interaction, the client instance indicates this by sending the following members
of an object under the finish key.

The callback method that the AS will use to contact the client instance.
.

Indicates the URI that the AS will use to signal the client instance that interaction
has completed. This URI be unique per request and be hosted by or accessible to
the client instance. This URI be an absolute URI and contain any fragment

REQUIRED

MAY MUST
MUST MUST NOT

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 46

nonce (string):

hash_method (string):

"redirect":

"push":

component. If the client instance needs any state information to tie to the front-channel
interaction response, it use a unique callback URI to link to that ongoing state. The
allowable URIs and URI patterns be restricted by the AS based on the client instance's
presented key information. The callback URI be presented to the RO during the
interaction phase before redirect. for redirect and push methods.

Unique ASCII string value to be used in the calculation of the "hash" query
parameter sent to the callback URI. It must be sufficiently random to be unguessable by an
attacker. It be generated by the client instance as a unique value for this request.

.

An identifier of a hash calculation mechanism to be used for the callback
hash in Section 4.2.3, as defined in the IANA "Named Information Hash Algorithm Registry"

. If absent, the default value is sha-256. .

This specification defines the following values for the method parameter; additional values can
be defined in the "GNAP Interaction Finish Methods" registry (Section 10.10):

Indicates that the client instance can receive a redirect from the end user's device
after interaction with the RO has concluded. See Section 2.5.2.1.

Indicates that the client instance can receive an HTTP POST request from the AS after
interaction with the RO has concluded. See Section 2.5.2.2.

If interaction finishing is supported for this client instance and request, the AS will return a
nonce (Section 3.3.5) used by the client instance to validate the callback. All interaction finish
methods use this nonce to allow the client to verify the connection between the pending
interaction request and the callback. GNAP does this through the use of the interaction hash,
defined in Section 4.2.3. All requests to the callback URI be processed as described in
Section 4.2.

All interaction finish methods require presentation of an interaction reference for
continuing this grant request. This means that the interaction reference be returned by the
AS and be presented by the client as described in Section 5.1. The means by which the
interaction reference is returned to the client instance are specific to the interaction finish
method.

MUST
MAY

SHOULD
REQUIRED

MUST
REQUIRED

[HASH-ALG] OPTIONAL

MUST

MUST

MUST
MUST

MUST

2.5.2.1. Receive an HTTP Callback through the Browser
A finish method value of redirect indicates that the client instance will expect a request from
the RO's browser using the HTTP method GET as described in Section 4.2.1.

The client instance's URI be protected by HTTPS, be hosted on a server local to the RO's
browser ("localhost"), or use an application-specific URI scheme that is loaded on the end user's
device.

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 47

Requests to the callback URI be processed by the client instance as described in Section
4.2.1.

Since the incoming request to the callback URI is from the RO's browser, this method is usually
used when the RO and end user are the same entity. See Section 11.24 for considerations on
ensuring the incoming HTTP message matches the expected context of the request. See Section
11.29 for more considerations regarding the use of front-channel communication techniques.

"interact": {
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
}

MUST

2.5.2.2. Receive an HTTP Direct Callback
A finish method value of push indicates that the client instance will expect a request from the AS
directly using the HTTP method POST as described in Section 4.2.2.

The client instance's URI be protected by HTTPS, be hosted on a server local to the RO's
browser ("localhost"), or use an application-specific URI scheme that is loaded on the end user's
device.

Requests to the callback URI be processed by the client instance as described in Section
4.2.2.

Since the incoming request to the callback URI is from the AS and not from the RO's browser, this
request is not expected to have any shared session information from the start method. See
Sections 11.24 and 11.23 for more considerations regarding the use of back-channel and polling
mechanisms like this.

MUST

"interact": {
 "finish": {
 "method": "push",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
}

MUST

2.5.3. Hints

The hints key is an object describing one or more suggestions from the client instance that the
AS can use to help drive user interaction.

This specification defines the following property under the hints key:

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 48

ui_locales (array of strings): Indicates the end user's preferred locales that the AS can use
during interaction, particularly before the RO has authenticated. . Section 2.5.3.1

The following subsection details requests for interaction hints. Additional interaction hints can
be defined in the "GNAP Interaction Hints" registry (Section 10.11).

OPTIONAL

2.5.3.1. Indicate Desired Interaction Locales
If the client instance knows the end user's locale and language preferences, the client instance
can send this information to the AS using the ui_locales field with an array of locale strings as
defined by .

If possible, the AS use one of the locales in the array, with preference to the first item in
the array supported by the AS. If none of the given locales are supported, the AS use a
default locale.

[RFC5646]

"interact": {
 "hints": {
 "ui_locales": ["en-US", "fr-CA"]
 }
}

SHOULD
MAY

continue (object):

access_token (object / array of objects):

interact (object):

subject (object):

instance_id (string):

error (object or string):

3. Grant Response
In response to a client instance's request, the AS responds with a JSON object as the HTTP
content. Each possible field is detailed in the subsections below.

Indicates that the client instance can continue the request by making one or
more continuation requests. if continuation calls are allowed for this client
instance on this grant request. See Section 3.1.

A single access token or set of access tokens that the
client instance can use to call the RS on behalf of the RO. if an access token is
included. See Section 3.2.

Indicates that interaction through some set of defined mechanisms needs to
take place. if interaction is expected. See Section 3.3.

Claims about the RO as known and declared by the AS. if subject
information is included. See Section 3.4.

An identifier this client instance can use to identify itself when making
future requests. . See Section 3.5.

An error code indicating that something has gone wrong. for
an error condition. See Section 3.6.

REQUIRED

REQUIRED

REQUIRED

REQUIRED

OPTIONAL

REQUIRED

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 49

Additional fields can be defined by extensions to GNAP in the "GNAP Grant Response
Parameters" registry (Section 10.12).

In the following non-normative example, the AS is returning an interaction URI (Section 3.3.1), a
callback nonce (Section 3.3.5), and a continuation response (Section 3.1).

In the following non-normative example, the AS is returning a bearer access token (Section 3.2.1)
with a management URI and a Subject Identifier (Section 3.4) in the form of an opaque identifier.

In the following non-normative example, the AS is returning set of Subject Identifiers (Section
3.4), simultaneously as an opaque identifier, an email address, and a decentralized identifier
(DID), formatted as a set of Subject Identifiers as defined in .

NOTE: '\' line wrapping per RFC 8792

{
 "interact": {
 "redirect": "https://server.example.com/interact/4CF492ML\
 VMSW9MKMXKHQ",
 "finish": "MBDOFXG4Y5CVJCX821LH"
 },
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU",
 },
 "uri": "https://server.example.com/tx"
 }
}

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "flags": ["bearer"],
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 },
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
}

[RFC9493]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 50

The response be sent as a JSON object in the content of the HTTP response with Content-
Type application/json, unless otherwise specified by the specific response (e.g., an empty
response with no Content-Type).

The AS include the HTTP Cache-Control response header field with a value set to
"no-store".

{
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }, {
 "format": "email",
 "email": "user@example.com"
 }, {
 "format": "did",
 "url": "did:example:123456"
 }]
 }
}

MUST

MUST [RFC9111]

uri (string):

wait (integer):

access_token (object):

3.1. Request Continuation
If the AS determines that the grant request can be continued by the client instance, the AS
responds with the continue field. This field contains a JSON object with the following properties.

The URI at which the client instance can make continuation requests. This URI
vary per request or be stable at the AS. This URI be an absolute URI. The client
instance use this value exactly as given when making a continuation request (Section 5).

.

The amount of time in integer seconds the client instance wait after
receiving this request continuation response and calling the continuation URI. The value

 be less than five seconds, and omission of the value be interpreted as five
seconds. .

A unique access token for continuing the request, called the
"continuation access token". The value of this property be an object in the format
specified in Section 3.2.1. This access token be bound to the client instance's key used in
the request and be a bearer token. As a consequence, the flags array of this access
token contain the string bearer, and the key field be omitted. This access
token have a manage field. The client instance present the continuation
access token in all requests to the continuation URI as described in Section 7.2. .

MAY
MAY MUST

MUST
REQUIRED

MUST

SHOULD NOT MUST
RECOMMENDED

MUST
MUST

MUST NOT
MUST NOT MUST
MUST NOT MUST

REQUIRED

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 51

This field is if the grant request is in the pending state, as the field contains the
information needed by the client request to continue the request as described in Section 5. Note
that the continuation access token is bound to the client instance's key; therefore, the client
instance sign all continuation requests with its key as described in Section 7.3 and
present the continuation access token in its continuation request.

{
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 60
 }
}

REQUIRED

MUST MUST

3.2. Access Tokens
If the AS has successfully granted one or more access tokens to the client instance, the AS
responds with the access_token field. This field contains either a single access token as
described in Section 3.2.1 or an array of access tokens as described in Section 3.2.2.

The client instance uses any access tokens in this response to call the RS as described in Section
7.2.

The grant request be in the approved state to include this field in the response.MUST

value (string):

label (string):

manage (object):

3.2.1. Single Access Token

If the client instance has requested a single access token and the AS has granted that access
token, the AS responds with the "access_token" field. The value of this field is an object with the
following properties.

The value of the access token as a string. The value is opaque to the client
instance. The value be limited to the token68 character set defined in

 to facilitate transmission over HTTP headers and within other protocols without
requiring additional encoding. .

The value of the label the client instance provided in the associated token
request (Section 2.1), if present. for multiple access tokens or if a label was
included in the single access token request; for a single access token where no
label was included in the request.

Access information for the token management API for this access token. If
provided, the client instance manage its access token as described in Section 6. This
management API is a function of the AS and is separate from the RS the client instance is
requesting access to. .

MUST Section 11.2 of
[HTTP]

REQUIRED

REQUIRED
OPTIONAL

MAY

OPTIONAL

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 52

https://rfc-editor.org/rfc/rfc9110#section-11.2

access (array of objects/strings):

expires_in (integer):

key (object / string):

flags (array of strings):

uri (string):

access_token (object):

"bearer":

"durable":

A description of the rights associated with this access token, as
defined in Section 8. If included, this reflect the rights associated with the issued access
token. These rights vary from what was requested by the client instance. .

The number of seconds in which the access will expire. The client
instance use the access token past this time. Note that the access token be
revoked by the AS or RS at any point prior to its expiration. .

The key that the token is bound to, if different from the client instance's
presented key. The key be an object or string in a format described in Section 7.1. The
client instance be able to dereference or process the key information in order to be able
to sign subsequent requests using the access token (Section 7.2). When the key is provided by
value from the AS, the token shares some security properties with bearer tokens as discussed
in Section 11.38. It is that keys returned for use with access tokens be key
references as described in Section 7.1.1 that the client instance can correlate to its known
keys. .

A set of flags that represent attributes or behaviors of the access token
issued by the AS. .

The value of the manage field is an object with the following properties:

The URI of the token management API for this access token. This URI be an
absolute URI. This URI include the value of the access token being managed or the
value of the access token used to protect the URI. This URI be different for each
access token issued in a request. .

A unique access token for continuing the request, called the "token
management access token". The value of this property be an object in the format
specified in Section 3.2.1. This access token be bound to the client instance's key used in
the request (or its most recent rotation) and be a bearer token. As a consequence,
the flags array of this access token contain the string bearer, and the key field

 be omitted. This access token have a manage field. This access token
 have the same value as the token it is managing. The client instance present the

continuation access token in all requests to the continuation URI as described in Section 7.2.
.

The values of the flags field defined by this specification are as follows:

Flag indicating whether the token is a bearer token, not bound to a key and proofing
mechanism. If the bearer flag is present, the access token is a bearer token, and the key field
in this response be omitted. See Section 11.9 for additional considerations on the use of
bearer tokens.

Flag indicating a hint of AS behavior on token rotation. If this flag is present, then
the client instance can expect a previously issued access token to continue to work after it has
been rotated (Section 6.1) or the underlying grant request has been modified (Section 5.3),

MUST
MAY REQUIRED

MUST NOT MAY
OPTIONAL

MUST
MUST

RECOMMENDED

OPTIONAL

OPTIONAL

MUST
MUST NOT

SHOULD
REQUIRED

MUST
MUST

MUST NOT
MUST NOT

MUST MUST NOT MUST
NOT MUST

REQUIRED

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 53

resulting in the issuance of new access tokens. If this flag is omitted, the client instance can
anticipate a given access token could stop working after token rotation or grant request
modification. Note that a token flagged as durable can still expire or be revoked through any
normal means.

Flag values be included more than once.

Additional flags can be defined by extensions using the "GNAP Access Token Flags" registry
(Section 10.4).

If the bearer flag and the key field in this response are omitted, the token is bound to the key
used by the client instance (Section 2.3) in its request for access. If the bearer flag is omitted and
the key field is present, the token is bound to the key and proofing mechanism indicated in the
key field. The means by which the AS determines how to bind an access token to a key other than
that presented by the client instance are out of scope for this specification, but common practices
include pre-registering specific keys in a static fashion.

The client software reject any access token where the flags field contains the bearer flag
and the key field is present with any value.

The following non-normative example shows a single access token bound to the client instance's
key used in the initial request. The access token has a management URI and has access to three
described resources (one using an object and two described by reference strings).

MUST NOT

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 54

The following non-normative example shows a single bearer access token with access to two
described resources.

If the client instance requested a single access token (Section 2.1.1), the AS respond
with the structure for multiple access tokens.

NOTE: '\' line wrapping per RFC 8792

"access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read", "dolphin-metadata"
]
}

"access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "flags": ["bearer"],
 "access": [
 "finance", "medical"
]
}

MUST NOT

3.2.2. Multiple Access Tokens

If the client instance has requested multiple access tokens and the AS has granted at least one of
them, the AS responds with the "access_token" field. The value of this field is a JSON array, the
members of which are distinct access tokens as described in Section 3.2.1. Each object have
a unique label field, corresponding to the token labels chosen by the client instance in the
request for multiple access tokens (Section 2.1.2).

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 55

In the following non-normative example, two tokens are issued under the names token1 and
token2, and only the first token has a management URI associated with it.

Each access token corresponds to one of the objects in the access_token array of the client
instance's request (Section 2.1.2).

The AS refuse to issue one or more of the requested access tokens for any reason. In such
cases, the refused token is omitted from the response, and all of the other issued access tokens
are included in the response under their respective requested labels. If the client instance
requested multiple access tokens (Section 2.1.2), the AS respond with a single access
token structure, even if only a single access token is granted. In such cases, the AS respond
with a structure for multiple access tokens containing one access token.

NOTE: '\' line wrapping per RFC 8792

"access_token": [
 {
 "label": "token1",
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "access": ["finance"]
 },
 {
 "label": "token2",
 "value": "UFGLO2FDAFG7VGZZPJ3IZEMN21EVU71FHCARP4J1",
 "access": ["medical"]
 }
}

MAY

MUST NOT
MUST

"access_token": [
 {
 "label": "token2",
 "value": "8N6BW7OZB8CDFONP219-OS9M2PMHKUR64TBRP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "access": ["fruits"]
 }
]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 56

The parameters of each access token are separate. For example, each access token is expected to
have a unique value and (if present) label, and each access token likely has different access rights
associated with it. Each access token could also be bound to different keys with different proofing
mechanisms.

redirect (string):

app (string):

user_code (string):

user_code_uri (object):

finish (string):

expires_in (integer):

3.3. Interaction Modes
If the client instance has indicated a capability to interact with the RO in its request (Section 2.5)
and the AS has determined that interaction is both supported and necessary, the AS responds to
the client instance with any of the following values in the interact field of the response. There is
no preference order for interaction modes in the response, and it is up to the client instance to
determine which ones to use. All supported interaction methods are included in the same
interact object.

Redirect to an arbitrary URI. if the redirect interaction start
mode is possible for this request. See Section 3.3.1.

Launch of an application URI. if the app interaction start mode is
possible for this request. See Section 3.3.2.

Display a short user code. if the user_code interaction start
mode is possible for this request. See Section 3.3.3.

Display a short user code and URI. if the user_code_uri
interaction start mode is possible for this request. Section 3.3.4

A unique ASCII string value provided by the AS as a nonce. This is used by the
client instance to verify the callback after interaction is completed. if the
interaction finish method requested by the client instance is possible for this request. See
Section 3.3.5.

The number of integer seconds after which this set of interaction
responses will expire and no longer be usable by the client instance. If the interaction
methods expire, the client restart the interaction process for this grant request by
sending an update (Section 5.3) with a new interaction request field (Section 2.5). . If
omitted, the interaction response modes returned do not expire but be invalidated by the
AS at any time.

Additional interaction mode responses can be defined in the "GNAP Interaction Mode Responses"
registry (Section 10.13).

The AS respond with any interaction mode that the client instance did not indicate in
its request, and the AS respond with any interaction mode that the AS does not
support. Since interaction responses include secret or unique information, the AS
respond to each interaction mode only once in an ongoing request, particularly if the client
instance modifies its request (Section 5.3).

REQUIRED

REQUIRED

REQUIRED

REQUIRED

REQUIRED

MAY
OPTIONAL

MAY

MUST NOT
MUST NOT

SHOULD

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 57

The grant request be in the pending state to include this field in the response.MUST

3.3.1. Redirection to an Arbitrary URI

If the client instance indicates that it can redirect to an arbitrary URI (Section 2.5.1.1) and the AS
supports this mode for the client instance's request, the AS responds with the "redirect" field,
which is a string containing the URI for the end user to visit. This URI be unique for the
request and contain any security-sensitive information such as user identifiers or
access tokens.

The URI returned is a function of the AS, but the URI itself be completely distinct from the
grant endpoint URI that the client instance uses to request access (Section 2), allowing an AS to
separate its user-interaction functionality from its backend security functionality. The AS will
need to dereference the specific grant request and its information from the URI alone. If the AS
does not directly host the functionality accessed through the redirect URI, then the means for the
interaction functionality to communicate with the rest of the AS are out of scope for this
specification.

The client instance sends the end user to the URI to interact with the AS. The client instance
 alter the URI in any way. The means for the client instance to send the end user to this URI

are out of scope of this specification, but common methods include an HTTP redirect, launching
the system browser, displaying a scannable code, or printing out the URI in an interactive
console. See details of the interaction in Section 4.1.1.

MUST
MUST NOT

"interact": {
 "redirect": "https://interact.example.com/4CF492MLVMSW9MKMXKHQ"
}

MAY

MUST
NOT

3.3.2. Launch of an Application URI

If the client instance indicates that it can launch an application URI (Section 2.5.1.2) and the AS
supports this mode for the client instance's request, the AS responds with the "app" field, which
is a string containing the URI for the client instance to launch. This URI be unique for the
request and contain any security-sensitive information such as user identifiers or
access tokens.

The means for the launched application to communicate with the AS are out of scope for this
specification.

MUST
MUST NOT

"interact": {
 "app": "https://app.example.com/launch?tx=4CF492MLV"
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 58

The client instance launches the URI as appropriate on its platform; the means for the client
instance to launch this URI are out of scope of this specification. The client instance
alter the URI in any way. The client instance attempt to detect if an installed application will
service the URI being sent before attempting to launch the application URI. See details of the
interaction in Section 4.1.4.

MUST NOT
MAY

3.3.3. Display of a Short User Code

If the client instance indicates that it can display a short, user-typeable code (Section 2.5.1.3) and
the AS supports this mode for the client instance's request, the AS responds with a "user_code"
field. This field is string containing a unique short code that the user can type into a web page. To
facilitate usability, this string consist only of characters that can be easily typed by the end
user (such as ASCII letters or numbers) and be processed by the AS in a case-insensitive
manner (see Section 4.1.2). The string be randomly generated so as to be unguessable by an
attacker within the time it is accepted. The time in which this code will be accepted be
short lived, such as several minutes. It is that this code be between six and eight
characters in length.

The client instance communicate the "user_code" value to the end user in some fashion,
such as displaying it on a screen or reading it out audibly. This code is used by the interaction
component of the AS as a means of identifying the pending grant request and does not function
as an authentication factor for the RO.

The URI that the end user is intended to enter the code into be stable, since the client
instance is expected to have no means of communicating a dynamic URI to the end user at
runtime.

As this interaction mode is designed to facilitate interaction via a secondary device, it is not
expected that the client instance redirect the end user to the URI where the code is entered. If the
client instance is capable of communicating a short arbitrary URI to the end user for use with the
user code, the client instance instead use the "user_code_uri" mode (Section 2.5.1.4). If
the client instance is capable of communicating a long arbitrary URI to the end user, such as
through a scannable code, the client instance use the "redirect" mode (Section 2.5.1.1)
for this purpose, instead of or in addition to the user code mode.

See details of the interaction in Section 4.1.2.

MUST
MUST

MUST
SHOULD

RECOMMENDED

"interact": {
 "user_code": "A1BC3DFF"
}

MUST

MUST

SHOULD

SHOULD

3.3.4. Display of a Short User Code and URI

If the client instance indicates that it can display a short, user-typeable code (Section 2.5.1.3) and
the AS supports this mode for the client instance's request, the AS responds with a
"user_code_uri" object that contains the following members.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 59

code (string):

uri (string):

A unique short code that the end user can type into a provided URI. To facilitate
usability, this string consist only of characters that can be easily typed by the end user
(such as ASCII letters or numbers) and be processed by the AS in a case-insensitive
manner (see Section 4.1.3). The string be randomly generated so as to be unguessable by
an attacker within the time it is accepted. The time in which this code will be accepted

 be short lived, such as several minutes. It is that this code be
between six and eight characters in length. .

The interaction URI that the client instance will direct the RO to. This URI be
short enough to be communicated to the end user by the client instance. It is
that this URI be short enough for an end user to type in manually. The URI contain
the code value. This URI be an absolute URI. .

The client instance communicate the "code" to the end user in some fashion, such as
displaying it on a screen or reading it out audibly. This code is used by the interaction component
of the AS as a means of identifying the pending grant request and does not function as an
authentication factor for the RO.

The client instance also communicate the URI to the end user. Since it is expected that the
end user will continue interaction on a secondary device, the URI needs to be short enough to
allow the end user to type or copy it to a secondary device without mistakes.

The URI returned is a function of the AS, but the URI itself be completely distinct from the
grant endpoint URI that the client instance uses to request access (Section 2), allowing an AS to
separate its user-interaction functionality from its backend security functionality. If the AS does
not directly host the functionality accessed through the given URI, then the means for the
interaction functionality to communicate with the rest of the AS are out of scope for this
specification.

See details of the interaction in Section 4.1.2.

MUST
MUST

MUST

SHOULD RECOMMENDED
REQUIRED

MUST
RECOMMENDED

MUST NOT
MUST REQUIRED

"interact": {
 "user_code_uri": {
 "code": "A1BC3DFF",
 "uri": "https://s.example/device"
 }
}

MUST

MUST

MAY

3.3.5. Interaction Finish

If the client instance indicates that it can receive a post-interaction redirect or push at a URI
(Section 2.5.2) and the AS supports this mode for the client instance's request, the AS responds
with a finish field containing a nonce that the client instance will use in validating the callback
as defined in Section 4.2.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 60

When the interaction is completed, the interaction component of the AS contact the client
instance using the means defined by the finish method as described in Section 4.2.

If the AS returns the finish field, the client instance continue a grant request before it
receives the associated interaction reference on the callback URI. See details in Section 4.2.

"interact": {
 "finish": "MBDOFXG4Y5CVJCX821LH"
}

MUST

MUST NOT

sub_ids (array of objects):

assertions (array of objects):

updated_at (string):

format (string):

value (string):

3.4. Returning Subject Information
If information about the RO is requested and the AS grants the client instance access to that data,
the AS returns the approved information in the "subject" response field. The AS return the
subject field only in cases where the AS is sure that the RO and the end user are the same party.
This can be accomplished through some forms of interaction with the RO (Section 4).

This field is an object with the following properties.

An array of Subject Identifiers for the RO, as defined by .
 if returning Subject Identifiers.

An array containing assertions as objects, each containing the
assertion object described below. if returning assertions.

Timestamp as a date string as described in , indicating when the
identified account was last updated. The client instance use this value to determine if it
needs to request updated profile information through an identity API. The definition of such
an identity API is out of scope for this specification. .

Assertion objects contain the following fields:

The assertion format. Possible formats are listed in Section 3.4.1. Additional
assertion formats can be defined in the "GNAP Assertion Formats" registry (Section 10.6).

.

The assertion value as the JSON string serialization of the assertion. .

The following non-normative example contains an opaque identifier and an OpenID Connect ID
Token:

MUST

[RFC9493]
REQUIRED

REQUIRED

[RFC3339]
MAY

RECOMMENDED

REQUIRED

REQUIRED

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 61

Subject Identifiers returned by the AS uniquely identify the RO at the AS. Some forms of
Subject Identifiers are opaque to the client instance (such as the subject of an issuer and subject
pair), while other forms (such as email address and phone number) are intended to allow the
client instance to correlate the identifier with other account information at the client instance.
The client instance request or use any returned Subject Identifiers for communication
purposes (see Section 2.2). That is, a Subject Identifier returned in the format of an email address
or a phone number only identifies the RO to the AS and does not indicate that the AS has
validated that the represented email address or phone number in the identifier is suitable for
communication with the current user. To get such information, the client instance use an
identity protocol to request and receive additional identity claims. The details of an identity
protocol and associated schema are outside the scope of this specification.

The AS ensure that the returned subject information represents the RO. In most cases, the
AS will also ensure that the returned subject information represents the end user authenticated
interactively at the AS. The AS reuse Subject Identifiers for multiple different ROs.

The "sub_ids" and "assertions" response fields are independent of each other. That is, a returned
assertion use a different Subject Identifier than other assertions and Subject Identifiers in
the response. However, all Subject Identifiers and assertions returned refer to the same
party.

The client instance interpret all subject information in the context of the AS from which
the subject information is received, as is discussed in Section 6 of . For example, one
AS could return an email identifier of "user@example.com" for one RO, and a different AS could
return that same email identifier of "user@example.com" for a completely different RO. A client
instance talking to both ASes needs to differentiate between these two accounts by accounting
for the AS source of each identifier and not assuming that either has a canonical claim on the
identifier without additional configuration and trust agreements. Otherwise, a rogue AS could
exploit this to take over a targeted account asserted by a different AS.

Extensions to this specification define additional response properties in the "GNAP Subject
Information Response Fields" registry (Section 10.14).

The grant request be in the approved state to return this field in the response.

See Section 11.30 for considerations that the client instance has to make when accepting and
processing assertions from the AS.

"subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "XUT2MFM1XBIKJKSDU8QM"
 }],
 "assertions": [{
 "format": "id_token",
 "value": "eyj..."
 }]
}

SHOULD

MUST NOT

MUST

MUST

SHOULD NOT

MAY
MUST

MUST
[SP80063C]

MAY

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 62

id_token:

saml2:

3.4.1. Assertion Formats

The following assertion formats are defined in this specification:

An OpenID Connect ID Token , in JSON Web Token (JWT) compact format as a
single string.

A SAML 2.0 assertion , encoded as a single base64url string with no padding.

[OIDC]

[SAML2]

instance_id (string):

3.5. Returning a Dynamically Bound Client Instance Identifier
Many parts of the client instance's request can be passed as either a value or a reference. The use
of a reference in place of a value allows for a client instance to optimize requests to the AS.

Some references, such as for the client instance's identity (Section 2.3.1) or the requested
resources (Section 8.1), can be managed statically through an admin console or developer portal
provided by the AS or RS. The developer of the client software can include these values in their
code for a more efficient and compact request.

If desired, the AS also generate and return an instance identifier dynamically to the client
instance in the response to facilitate multiple interactions with the same client instance over
time. The client instance use this instance identifier in future requests in lieu of sending
the associated data values in the client field.

Dynamically generated client instance identifiers are string values that be protected by the
client instance as secrets. Instance identifier values be unguessable and contain
any information that would compromise any party if revealed. Instance identifier values are
opaque to the client instance, and their content is determined by the AS. The instance identifier

 be unique per client instance at the AS.

A string value used to represent the information in the client object that
the client instance can use in a future request, as described in Section 2.3.1. .

The following non-normative example shows an instance identifier alongside an issued access
token.

MAY

SHOULD

MUST
MUST MUST NOT

MUST

OPTIONAL

{
 "instance_id": "7C7C4AZ9KHRS6X63AJAO",
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0"
 }
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 63

code (string):

description (string):

"invalid_request":

"invalid_client":

"invalid_interaction":

"invalid_flag":

"invalid_rotation":

"key_rotation_not_supported":

"invalid_continuation":

"user_denied":

"request_denied":

"unknown_user":

"unknown_interaction":

"too_fast":

"too_many_attempts":

3.6. Error Response
If the AS determines that the request cannot be completed for any reason, it responds to the
client instance with an error field in the response message. This field is either an object or a
string.

When returned as an object, the object contains the following fields:

A single ASCII error code defining the error. The value be defined in the
"GNAP Error Codes" registry (Section 10.15). .

A human-readable string description of the error intended for the
developer of the client. The value is chosen by the implementation. .

This specification defines the following code values:

The request is missing a required parameter, includes an invalid
parameter value, or is otherwise malformed.

The request was made from a client that was not recognized or allowed by
the AS, or the client's signature validation failed.

The client instance has provided an interaction reference that is
incorrect for this request, or the interaction modes in use have expired.

The flag configuration is not valid.

The token rotation request is not valid.

The AS does not allow rotation of this access token's key.

The continuation of the referenced grant could not be processed.

The RO denied the request.

The request was denied for an unspecified reason.

The user presented in the request is not known to the AS or does not match
the user present during interaction.

The interaction integrity could not be established.

The client instance did not respect the timeout in the wait response before the
next call.

A limit has been reached in the total number of reasonable attempts.
This number is either defined statically or adjusted based on runtime conditions by the AS.

MUST
REQUIRED

OPTIONAL

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 64

Additional error codes can be defined in the "GNAP Error Codes" registry (Section 10.15).

For example, if the RO denied the request while interacting with the AS, the AS would return the
following error when the client instance tries to continue the grant request:

Alternatively, the AS choose to only return the error as codes and provide the error as a
string. Since the description field is not intended to be machine-readable, the following
response is considered functionally equivalent to the previous example for the purposes of the
client software's understanding:

If an error state is reached but the grant is in the pending state (and therefore the client instance
can continue), the AS include the continue field in the response along with the error, as
defined in Section 3.1. This allows the client instance to modify its request for access, potentially
leading to prompting the RO again. Other fields be included in the response.

{
 "error": {
 "code": "user_denied",
 "description": "The RO denied the request"
 }
}

MAY

{
 "error": "user_denied"
}

MAY

MUST NOT

4. Determining Authorization and Consent
When the client instance makes its initial request (Section 2) to the AS for delegated access, it is
capable of asking for several different kinds of information in response:

the access being requested, in the access_token request parameter
the subject information being requested, in the subject request parameter
any additional requested information defined by extensions of this protocol

When the grant request is in the processing state, the AS determines what authorizations and
consents are required to fulfill this requested delegation. The details of how the AS makes this
determination are out of scope for this document. However, there are several common patterns
defined and supported by GNAP for fulfilling these requirements, including information sent by
the client instance, information gathered through the interaction process, and information
supplied by external parties. An individual AS can define its own policies and processes for
deciding when and how to gather the necessary authorizations and consent and how those are
applied to the grant request.

•
•
•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 65

To facilitate the AS fulfilling this request, the client instance sends information about the actions
the client software can take, including:

starting interaction with the end user, in the interact request parameter
receiving notification that interaction with the RO has concluded, in the interact request
parameter
any additional capabilities defined by extensions of this protocol

The client instance can also supply information directly to the AS in its request. The client
instance can send several kinds of things, including:

the identity of the client instance, known from the keys or identifiers in the client request
parameter
the identity of the end user, in the user request parameter
any additional information presented by the client instance in the request defined by
extensions of this protocol

The AS will process this presented information in the context of the client instance's request and
can only trust the information as much as it trusts the presentation and context of that request. If
the AS determines that the information presented in the initial request is sufficient for granting
the requested access, the AS move the grant request to the approved state and return results

 with access tokens and subject information.

If the AS determines that additional runtime authorization is required, the AS can either deny
the request outright (if there is no possible recovery) or move the grant request to the pending
state and use a number of means at its disposal to gather that authorization from the appropriate
ROs, including:

starting interaction with the end user facilitated by the client software, such as a redirection
or user code
challenging the client instance through a challenge-response mechanism
requesting that the client instance present specific additional information, such as a user's
credential or an assertion
contacting an RO through an out-of-band mechanism, such as a push notification
executing an auxiliary software process through an out-of-band mechanism, such as
querying a digital wallet

The process of gathering authorization and consent in GNAP is left deliberately flexible to allow
for a wide variety of different deployments, interactions, and methodologies. In this process, the
AS can gather consent from the RO or apply the RO's policy as necessitated by the access that has
been requested. The AS can sometimes determine which RO needs to prompt for consent based
on what has been requested by the client instance, such as a specific RS record, an identified
subject, or a request requiring specific access such as approval by an administrator. In other
cases, the request is applied to whichever RO is present at the time of consent gathering. This

•
•

•

•

•
•

MAY
immediately in its response (Section 3)

•

•
•

•
•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 66

pattern is especially prevalent when the end user is sent to the AS for an interactive session,
during which the end user takes on the role of the RO. In these cases, the end user is delegating
their own access as RO to the client instance.

The client instance can indicate that it is capable of facilitating interaction with the end user,
another party, or another piece of software through its interaction start request (Section 2.5.1).
Here, the AS usually needs to interact directly with the end user to determine their identity,
determine their status as an RO, and collect their consent. If the AS has determined that
authorization is required and the AS can support one or more of the requested interaction start
methods, the AS returns the associated interaction start responses (Section 3.3). The client
instance initiate one or more of these interaction methods (Section 4.1) in order to
facilitate the granting of the request. If more than one interaction start method is available, the
means by which the client chooses which methods to follow are out of scope of this specification.

After starting interaction, the client instance can then make a continuation request (Section 5)
either in response to a signal indicating the finish of the interaction (Section 4.2), after a time-
based polling, or through some other method defined by an extension of this specification
through the "GNAP Interaction Mode Responses" registry (Section 10.13).

If the grant request is not in the approved state, the client instance can repeat the interaction
process by sending a grant update request (Section 5.3) with new interaction methods (Section
2.5).

The client instance use each interaction method once at most if a response can be detected.
The AS handle any interact request as a one-time-use mechanism and apply
suitable timeouts to any interaction start methods provided, including user codes and redirection
URIs. The client instance apply suitable timeouts to any interaction finish method.

In order to support client software deployed in disadvantaged network conditions, the AS
allow for processing of the same interaction method multiple times if the AS can determine that
the request is from the same party and the results are idempotent. For example, if a client
instance launches a redirect to the AS but does not receive a response within a reasonable time,
the client software can launch the redirect again, assuming that it never reached the AS in the
first place. However, if the AS in question receives both requests, it could mistakenly process
them separately, creating an undefined state for the client instance. If the AS can determine that
both requests come from the same origin or under the same session, and the requests both came
before any additional state change to the grant occurs, the AS can reasonably conclude that the
initial response was not received and the same response can be returned to the client instance.

If the AS instead has a means of contacting the RO directly, it could do so without involving the
client instance in its consent-gathering process. For example, the AS could push a notification to a
known RO and have the RO approve the pending request asynchronously. These interactions can
be through an interface of the AS itself (such as a hosted web page), through another application
(such as something installed on the RO's device), through a messaging fabric, or any other means.

SHOULD

MUST
MUST SHOULD

SHOULD

MAY

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 67

When interacting with an RO, the AS can use various strategies to determine the authorization of
the requested grant, including:

authenticate the RO through a local account or some other means, such as federated login
validate the RO through presentation of claims, attributes, or other information
prompt the RO for consent for the requested delegation
describe to the RO what information is being released, to whom, and for what purpose
provide warnings to the RO about potential attacks or negative effects of allowing the
information
allow the RO to modify the client instance's requested access, including limiting or
expanding that access
provide the RO with artifacts such as receipts to facilitate an audit trail of authorizations
allow the RO to deny the requested delegation

The AS is also allowed to request authorization from more than one RO, if the AS deems fit. For
example, a medical record might need to be released by both an attending nurse and a physician,
or both owners of a bank account need to sign off on a transfer request. Alternatively, the AS
could require N of M possible ROs to approve a given request. In some circumstances, the AS
could even determine that the end user present during the interaction is not the appropriate RO
for a given request and reach out to the appropriate RO asynchronously.

The RO is also allowed to define an automated policy at the AS to determine which kind of end
user can get access to the resource and under which conditions. For instance, such a condition
might require the end user to log in and accept the RO's legal provisions. Alternatively, client
software could be acting without an end user, and the RO's policy allows issuance of access
tokens to specific instances of that client software without human interaction.

While all of these cases are supported by GNAP, the details of their implementation and the
methods for determining which ROs or related policies are required for a given request are out
of scope for this specification.

•
•
•
•
•

•

•
•

4.1. Starting Interaction with the End User
When a grant request is in the pending state, the interaction start methods sent by the client
instance can be used to facilitate interaction with the end user. To initiate an interaction start
method indicated by the interaction start responses (Section 3.3) from the AS, the client instance
follows the steps defined by that interaction start mode. The actions of the client instance
required for the interaction start modes defined in this specification are described in the
following subsections. Interaction start modes defined in extensions to this specification
define the expected actions of the client software when that interaction start mode is used.

If the client instance does not start an interaction start mode within an AS-determined amount of
time, the AS reject attempts to use the interaction start modes. If the client instance has
already begun one interaction start mode and the interaction has been successfully completed,
the AS reject attempts to use other interaction start modes. For example, if a user code has

MUST

MUST

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 68

been successfully entered for a grant request, the AS will need to reject requests to an arbitrary
redirect URI on the same grant request in order to prevent an attacker from capturing and
altering an active authorization process.

4.1.1. Interaction at a Redirected URI

When the end user is directed to an arbitrary URI through the "redirect" mode (Section 3.3.1), the
client instance facilitates opening the URI through the end user's web browser. The client
instance could launch the URI through the system browser, provide a clickable link, redirect the
user through HTTP response codes, or display the URI in a form the end user can use to launch,
such as a multidimensional barcode. In all cases, the URI is accessed with an HTTP GET request,
and the resulting page is assumed to allow direct interaction with the end user through an HTTP
user agent. With this method, it is common (though not required) for the RO to be the same party
as the end user, since the client instance has to communicate the redirection URI to the end user.

In many cases, the URI indicates a web page hosted at the AS, allowing the AS to authenticate the
end user as the RO and interactively provide consent. The URI value is used to identify the grant
request being authorized. If the URI cannot be associated with a currently active request, the AS

 display an error to the RO and attempt to redirect the RO back to any client
instance, even if a redirect finish method is supplied (Section 2.5.2.1). If the URI is not hosted by
the AS directly, the means of communication between the AS and the service provided by this
URI are out of scope for this specification.

The client instance modify the URI when launching it; in particular, the client instance
 add any parameters to the URI. The URI be reachable from the end user's

browser, though the URI be opened on a separate device from the client instance itself. The
URI be accessible from an HTTP GET request, and it be protected by HTTPS, be
hosted on a server local to the RO's browser ("localhost"), or use an application-specific URI
scheme that is loaded on the end user's device.

MUST MUST NOT

MUST NOT
MUST NOT MUST

MAY
MUST MUST

4.1.2. Interaction at the Static User Code URI

When the end user is directed to enter a short code through the "user_code" mode (Section 3.3.3),
the client instance communicates the user code to the end user and directs the end user to enter
that code at an associated URI. The client instance format the user code in such a way as to
facilitate memorability and transfer of the code, so long as this formatting does not alter the
value as accepted at the user code URI. For example, a client instance receiving the user code
"A1BC3DFF" could choose to display this to the user as "A1BC 3DFF", breaking up the long string
into two shorter strings.

When processing input codes, the AS transform the input string to remove invalid
characters. In the above example, the space in between the two parts would be removed upon its
entry into the interactive form at the user code URI. Additionally, the AS treat user input as
case insensitive. For example, if the user inputs the string "a1bc 3DFF", the AS will treat the input
the same as "A1BC3DFF". To facilitate this, it is that the AS use only ASCII letters
and numbers as valid characters for the user code.

MAY

MUST

MUST

RECOMMENDED

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 69

It is that the AS choose from character values that are easily copied and typed
without ambiguity. For example, some glyphs have multiple Unicode code points for the same
visual character, and the end user could potentially type a different character than what the AS
has returned. For additional considerations of internationalized character strings, see .

This mode is designed to be used when the client instance is not able to communicate or facilitate
launching an arbitrary URI. The associated URI could be statically configured with the client
instance or in the client software's documentation. As a consequence, these URIs be
short. The user code URI be reachable from the end user's browser, though the URI is
usually opened on a separate device from the client instance itself. The URI be accessible
from an HTTP GET request, and it be protected by HTTPS, be hosted on a server local to the
RO's browser ("localhost"), or use an application-specific URI scheme that is loaded on the end
user's device.

In many cases, the URI indicates a web page hosted at the AS, allowing the AS to authenticate the
end user as the RO and interactively provide consent. The value of the user code is used to
identify the grant request being authorized. If the user code cannot be associated with a
currently active request, the AS display an error to the RO and attempt to
redirect the RO back to any client instance, even if a redirect finish method is supplied (Section
2.5.2.1). If the interaction component at the user code URI is not hosted by the AS directly, the
means of communication between the AS and this URI, including communication of the user
code itself, are out of scope for this specification.

When the RO enters this code at the user code URI, the AS uniquely identify the pending
request that the code was associated with. If the AS does not recognize the entered code, the
interaction component display an error to the user. If the AS detects too many
unrecognized code enter attempts, the interaction component display an error to the
user indicating too many attempts and take additional actions such as slowing down the
input interactions. The user should be warned as such an error state is approached, if possible.

RECOMMENDED

[RFC8264]

SHOULD
MUST

MUST
MUST

MUST MUST NOT

MUST

MUST
SHOULD

MAY

4.1.3. Interaction at a Dynamic User Code URI

When the end user is directed to enter a short code through the "user_code_uri" mode (Section
3.3.4), the client instance communicates the user code and associated URI to the end user and
directs the end user to enter that code at the URI. The client instance format the user code in
such a way as to facilitate memorability and transfer of the code, so long as this formatting does
not alter the value as accepted at the user code URI. For example, a client instance receiving the
user code "A1BC3DFF" could choose to display this to the user as "A1BC 3DFF", breaking up the
long string into two shorter strings.

When processing input codes, the AS transform the input string to remove invalid
characters. In the above example, the space in between the two parts would be removed upon its
entry into the interactive form at the user code URI. Additionally, the AS treat user input as
case insensitive. For example, if the user inputs the string "a1bc 3DFF", the AS will treat the input
the same as "A1BC3DFF". To facilitate this, it is that the AS use only ASCII letters
and numbers as valid characters for the user code.

MAY

MUST

MUST

RECOMMENDED

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 70

This mode is used when the client instance is not able to facilitate launching a complex arbitrary
URI but can communicate arbitrary values like URIs. As a consequence, these URIs be
short enough to allow the URI to be typed by the end user, such as a total length of 20 characters
or fewer. The client instance modify the URI when communicating it to the end user;
in particular the client instance add any parameters to the URI. The user code URI

 be reachable from the end user's browser, though the URI is usually be opened on a
separate device from the client instance itself. The URI be accessible from an HTTP GET
request, and it be protected by HTTPS, be hosted on a server local to the RO's browser
("localhost"), or use an application-specific URI scheme that is loaded on the end user's device.

In many cases, the URI indicates a web page hosted at the AS, allowing the AS to authenticate the
end user as the RO and interactively provide consent. The value of the user code is used to
identify the grant request being authorized. If the user code cannot be associated with a
currently active request, the AS display an error to the RO and attempt to
redirect the RO back to any client instance, even if a redirect finish method is supplied (Section
2.5.2.1). If the interaction component at the user code URI is not hosted by the AS directly, the
means of communication between the AS and this URI, including communication of the user
code itself, are out of scope for this specification.

When the RO enters this code at the given URI, the AS uniquely identify the pending
request that the code was associated with. If the AS does not recognize the entered code, the
interaction component display an error to the user. If the AS detects too many
unrecognized code enter attempts, the interaction component display an error to the
user indicating too many attempts and take additional actions such as slowing down the
input interactions. The user should be warned as such an error state is approached, if possible.

SHOULD

MUST NOT
MUST NOT

MUST
MUST

MUST

MUST MUST NOT

MUST

MUST
SHOULD

MAY

4.1.4. Interaction through an Application URI

When the client instance is directed to launch an application through the "app" mode (Section
3.3.2), the client launches the URI as appropriate to the system, such as through a deep link or
custom URI scheme registered to a mobile application. The means by which the AS and the
launched application communicate with each other and perform any of the required actions are
out of scope for this specification.

4.2. Post-Interaction Completion
If an interaction "finish" method (Section 3.3.5) is associated with the current request, the AS

 follow the appropriate method upon completion of interaction in order to signal the client
instance to continue, except for some limited error cases discussed below. If a finish method is
not available, the AS instruct the RO to return to the client instance upon completion. In
such cases, it is expected that the client instance will poll the continuation endpoint as described
in Section 5.2.

MUST

SHOULD

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 71

The AS create an interaction reference and associate that reference with the current
interaction and the underlying pending request. The interaction reference value is an ASCII
string consisting of only unreserved characters per . The interaction
reference value be sufficiently random so as not to be guessable by an attacker. The
interaction reference be one-time-use to prevent interception and replay attacks.

The AS calculate a hash value based on the client instance, AS nonces, and the interaction
reference, as described in Section 4.2.3. The client instance will use this value to validate the
"finish" call.

All interaction finish methods define a way to convey the hash and interaction reference
back to the client instance. When an interaction finish method is used, the client instance
present the interaction reference back to the AS as part of its continuation request (Section 5.1).

Note that in many error cases, such as when the RO has denied access, the "finish" method is still
enacted by the AS. This pattern allows the client instance to potentially recover from the error
state by modifying its request or providing additional information directly to the AS in a
continuation request. The AS follow the "finish" method in the following
circumstances:

The AS has determined that any URIs involved with the finish method are dangerous or
blocked.
The AS cannot determine which ongoing grant request is being referenced.
The ongoing grant request has been canceled or otherwise blocked.

MUST

Section 2.3 of [RFC3986]
MUST

MUST

MUST

MUST
MUST

MUST NOT

•

•
•

hash:

interact_ref:

4.2.1. Completing Interaction with a Browser Redirect to the Callback URI

When using the redirect interaction finish method defined in Sections 2.5.2.1 and 3.3.5, the AS
signals to the client instance that interaction is complete and the request can be continued by
directing the RO (in their browser) back to the client instance's redirect URI.

The AS secures this redirect by adding the hash and interaction reference as query parameters to
the client instance's redirect URI.

The interaction hash value as described in Section 4.2.3. .

The interaction reference generated for this interaction. .

The means of directing the RO to this URI are outside the scope of this specification, but common
options include redirecting the RO from a web page and launching the system browser with the
target URI. See Section 11.19 for considerations on which HTTP status code to use when
redirecting a request that potentially contains credentials.

REQUIRED

REQUIRED

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 72

https://rfc-editor.org/rfc/rfc3986#section-2.3

The client instance be able to process a request on the URI. If the URI is HTTP, the request
 be an HTTP GET.

When receiving the request, the client instance parse the query parameters to extract the
hash and interaction reference values. The client instance calculate and validate the hash
value as described in Section 4.2.3. If the hash validates, the client instance sends a continuation
request to the AS as described in Section 5.1, using the interaction reference value received here.
If the hash does not validate, the client instance send the interaction reference to the
AS.

NOTE: '\' line wrapping per RFC 8792

https://client.example.net/return/123455\
 ?hash=x-gguKWTj8rQf7d7i3w3UhzvuJ5bpOlKyAlVpLxBffY\
 &interact_ref=4IFWWIKYBC2PQ6U56NL1

MUST
MUST

MUST
MUST

MUST NOT

hash (string):

interact_ref (string):

4.2.2. Completing Interaction with a Direct HTTP Request Callback

When using the push interaction finish method defined in Sections 2.5.2.1 and 3.3.5, the AS
signals to the client instance that interaction is complete and the request can be continued by
sending an HTTP POST request to the client instance's callback URI.

The HTTP message content is a JSON object consisting of the following two fields:

The interaction hash value as described in Section 4.2.3. .

The interaction reference generated for this interaction. .

Since the AS is making an outbound connection to a URI supplied by an outside party (the client
instance), the AS protect itself against Server-Side Request Forgery (SSRF) attacks when
making this call, as discussed in Section 11.34.

When receiving the request, the client instance parse the JSON object and validate the hash
value as described in Section 4.2.3. If either fails, the client instance return an
unknown_interaction error (Section 3.6). If the hash validates, the client instance sends a
continuation request to the AS as described in Section 5.1, using the interaction reference value
received here.

REQUIRED

REQUIRED

POST /push/554321 HTTP/1.1
Host: client.example.net
Content-Type: application/json

{
 "hash": "pjdHcrti02HLCwGU3qhUZ3wZXt8IjrV_BtE3oUyOuKNk",
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

MUST

MUST
MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 73

4.2.3. Calculating the Interaction Hash

The "hash" parameter in the request to the client instance's callback URI ties the front-channel
response to an ongoing request by using values known only to the parties involved. This security
mechanism allows the client instance to protect itself against several kinds of session fixation
and injection attacks as discussed in Section 11.25. The AS always provide this hash, and
the client instance validate the hash when received.

To calculate the "hash" value, the party doing the calculation creates a hash base string by
concatenating the following values in the following order using a single newline (0x0A) character
to separate them:

the "nonce" value sent by the client instance in the interaction finish field of the initial
request (Section 2.5.2)
the AS's nonce value from the interaction finish response (Section 3.3.5)
the "interact_ref" returned from the AS as part of the interaction finish method (Section 4.2)
the grant endpoint URI the client instance used to make its initial request (Section 2)

There is no padding or whitespace before or after any of the lines and no trailing newline
character. The following non-normative example shows a constructed hash base string
consisting of these four elements.

The party then hashes the bytes of the ASCII encoding of this string with the appropriate
algorithm based on the "hash_method" parameter under the "finish" key of the interaction finish
request (Section 2.5.2). The resulting byte array from the hash function is then encoded using
URL-Safe base64 with no padding . The resulting string is the hash value.

If provided, the "hash_method" value be one of the hash name strings defined in the IANA
"Named Information Hash Algorithm Registry" . If the "hash_method" value is not
present in the client instance's request, the algorithm defaults to "sha-256".

For example, the "sha-256" hash method consists of hashing the input string with the 256-bit
SHA2 algorithm. The following is the encoded "sha-256" hash of the hash base string in the
example above.

As another example, the "sha3-512" hash method consists of hashing the input string with the
512-bit SHA3 algorithm. The following is the encoded "sha3-512" hash of the hash base string in
the example above.

MUST
MUST

•

•
•
•

VJLO6A4CATR0KRO
MBDOFXG4Y5CVJCX821LH
4IFWWIKYB2PQ6U56NL1
https://server.example.com/tx

[RFC4648]

MUST
[HASH-ALG]

x-gguKWTj8rQf7d7i3w3UhzvuJ5bpOlKyAlVpLxBffY

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 74

NOTE: '\' line wrapping per RFC 8792

pyUkVJSmpqSJMaDYsk5G8WCvgY91l-agUPe1wgn-cc5rUtN69gPI2-S_s-Eswed8iB4\
 PJ_a5Hg6DNi7qGgKwSQ

5. Continuing a Grant Request
While it is possible for the AS to return an approved grant response (Section 3) with all the client
instance's requested information (including access tokens (Section 3.2) and subject information
(Section 3.4)) immediately, it's more common that the AS will place the grant request into the
pending state and require communication with the client instance several times over the lifetime
of a grant request. This is often part of facilitating interaction (Section 4), but it could also be used
to allow the AS and client instance to continue negotiating the parameters of the original grant
request (Section 2) through modification of the request.

The ability to continue an already-started request allows the client instance to perform several
important functions, including presenting additional information from interaction, modifying
the initial request, and revoking a grant request in progress.

To enable this ongoing negotiation, the AS provides a continuation API to the client software. The
AS returns a continue field in the response (Section 3.1) that contains information the client
instance needs to access this API, including a URI to access as well as a special access token to use
during the requests, called the "continuation access token".

All requests to the continuation API are protected by a bound continuation access token. The
continuation access token is bound to the same key and method the client instance used to make
the initial request (or its most recent rotation). As a consequence, when the client instance makes
any calls to the continuation URI, the client instance present the continuation access token
as described in Section 7.2 and present proof of the client instance's key (or its most recent
rotation) by signing the request as described in Section 7.3. The AS validate the signature
and ensure that it is bound to the appropriate key for the continuation access token.

Access tokens other than the continuation access tokens be usable for continuation
requests. Conversely, continuation access tokens be usable to make authorized
requests to RSs, even if co-located within the AS.

In the following non-normative example, the client instance makes a POST request to a unique
URI and signs the request with HTTP message signatures:

MUST

MUST

MUST NOT
MUST NOT

POST /continue/KSKUOMUKM HTTP/1.1
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Host: server.example.com
Content-Length: 0
Signature-Input: sig1=...
Signature: sig1=...

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 75

The AS be able to tell from the client instance's request which specific ongoing request is
being accessed, using a combination of the continuation URI and the continuation access token. If
the AS cannot determine a single active grant request to map the continuation request to, the AS

 return an invalid_continuation error (Section 3.6).

In the following non-normative example, the client instance makes a POST request to a stable
continuation endpoint URI with the interaction reference (Section 5.1), includes the access token,
and signs with HTTP message signatures:

In the following non-normative alternative example, the client instance had been provided a
continuation URI unique to this ongoing grant request:

In both cases, the AS determines which grant is being asked for based on the URI and
continuation access token provided.

If a wait parameter was included in the continuation response (Section 3.1), the client instance
 call the continuation URI prior to waiting the number of seconds indicated. If no wait

period is indicated, the client instance poll immediately and wait at least 5
seconds. If the client instance does not respect the given wait period, the AS return the
too_fast error (Section 3.6).

The response from the AS is a JSON object of a grant response and contain any of the fields
described in Section 3, as described in more detail in the subsections below.

MUST

MUST

POST /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

POST /tx/rxgIIEVMBV-BQUO7kxbsp HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP eyJhbGciOiJub25lIiwidHlwIjoiYmFkIn0
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

MUST NOT
MUST NOT SHOULD

MUST

MAY

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 76

If the AS determines that the client instance can make further requests to the continuation API,
the AS include a new continuation response (Section 3.1). The new continuation response

 include a continuation access token as well, and this token be a new access token,
invalidating the previous access token. If the AS does not return a new continuation response,
the client instance make an additional continuation request. If a client instance does
so, the AS return an invalid_continuation error (Section 3.6).

For continuation functions that require the client instance to send message content, the content
 be a JSON object.

For all requests to the grant continuation API, the AS make use of long polling mechanisms
such as those discussed in . That is to say, instead of returning the current status
immediately, the long polling technique allows the AS additional time to process and fulfill the
request before returning the HTTP response to the client instance. For example, when the AS
receives a continuation request but the grant request is in the processing state, the AS could wait
until the grant request has moved to the pending or approved state before returning the response
message.

MUST
MUST SHOULD

MUST NOT
MUST

MUST

MAY
[RFC6202]

5.1. Continuing after a Completed Interaction
When the AS responds to the client instance's finish method as in Section 4.2.1, this response
includes an interaction reference. The client instance include that value as the field
interact_ref in a POST request to the continuation URI.

Since the interaction reference is a one-time-use value as described in Section 4.2.1, if the client
instance needs to make additional continuation calls after this request, the client instance

 include the interaction reference in subsequent calls. If the AS detects a client instance
submitting an interaction reference when the request is not in the pending state, the AS
return a too_many_attempts error (Section 3.6) and invalidate the ongoing request by
moving it to the finalized state.

If the grant request is in the approved state, the grant response (Section 3) contain any
newly created access tokens (Section 3.2) or newly released subject information (Section 3.4). The
response contain a new continuation response (Section 3.1) as described above. The
response contain any interaction responses (Section 3.3).

MUST

POST /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

MUST
NOT

MUST
SHOULD

MAY

MAY
SHOULD NOT

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 77

If the grant request is in the pending state, the grant response (Section 3) contain
access tokens or subject information and contain a new interaction response (Section 3.3) to
any interaction methods that have not been exhausted at the AS.

For example, if the request is successful in causing the AS to issue access tokens and release
opaque subject claims, the response could look like this:

With the above example, the client instance cannot make an additional continuation request
because a continue field is not included.

In the following non-normative example, the RO has denied the client instance's request, and the
AS responds with the following response:

In the preceding example, the AS includes the continue field in the response. Therefore, the
client instance can continue the grant negotiation process, perhaps modifying the request as
discussed in Section 5.3.

MUST NOT
MAY

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 },
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
}

{
 "error": "user_denied",
 "continue": {
 "access_token": {
 "value": "33OMUKMKSKU80UPRY5NM"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 }
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 78

5.2. Continuing during Pending Interaction (Polling)
When the client instance does not include a finish parameter, the client instance will often need
to poll the AS until the RO has authorized the request. To do so, the client instance makes a POST
request to the continuation URI as in Section 5.1 but does not include message content.

If the grant request is in the approved state, the grant response (Section 3) contain any
newly created access tokens (Section 3.2) or newly released subject claims (Section 3.4). The
response contain a new continuation response (Section 3.1) as described above. If a
continue field is included, it include a wait field to facilitate a reasonable polling rate
by the client instance. The response contain interaction responses (Section 3.3).

If the grant request is in the pending state, the grant response (Section 3) contain
access tokens or subject information and contain a new interaction response (Section 3.3) to
any interaction methods that have not been exhausted at the AS.

For example, if the request has not yet been authorized by the RO, the AS could respond by
telling the client instance to make another continuation request in the future. In the following
non-normative example, a new, unique access token has been issued for the call, which the client
instance will use in its next continuation request.

If the request is successful in causing the AS to issue access tokens and release subject
information, the response could look like the following non-normative example:

POST /continue HTTP/1.1
Host: server.example.com
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...

MAY

MAY
SHOULD

SHOULD NOT

MUST NOT
MAY

{
 "continue": {
 "access_token": {
 "value": "33OMUKMKSKU80UPRY5NM"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 }
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 79

See Section 11.23 for considerations on polling for continuation without an interaction finish
method.

In error conditions, the AS responds to the client instance with an error code as discussed in
Section 3.6. For example, if the client instance has polled too many times before the RO has
approved the request, the AS would respond with a message like the following:

Since this response does not include a continue field, the client instance cannot continue to poll
the AS for additional updates and the grant request is finalized. If the client instance still needs
access to the resource, it will need to start with a new grant request.

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 },
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
}

{
 "error": "too_many_attempts"
}

5.3. Modifying an Existing Request
The client instance might need to modify an ongoing request, whether or not tokens have
already been issued or subject information has already been released. In such cases, the client
instance makes an HTTP PATCH request to the continuation URI and includes any fields it needs
to modify. Fields that aren't included in the request are considered unchanged from the original
request.

A grant request associated with a modification request be in the approved or pending state.
When the AS receives a valid modification request, the AS place the grant request into the
processing state and re-evaluate the authorization in the new context created by the update
request, since the extent and context of the request could have changed.

MUST
MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 80

The client instance include the access_token and subject fields as described in Sections
2.1 and 2.2. Inclusion of these fields override any values in the initial request, which trigger
additional requirements and policies by the AS. For example, if the client instance is asking for
more access, the AS could require additional interaction with the RO to gather additional
consent. If the client instance is asking for more limited access, the AS could determine that
sufficient authorization has been granted to the client instance and return the more limited
access rights immediately. If the grant request was previously in the approved state, the AS could
decide to remember the larger scale of access rights associated with the grant request, allowing
the client instance to make subsequent requests of different subsets of granted access. The details
of this processing are out of scope for this specification, but a one possible approach is as follows:

A client instance requests access to Foo, and this is granted by the RO. This results in an
access token: AT1.
The client instance later modifies the grant request to include Foo and Bar together. Since
the client instance was previously granted Foo under this grant request, the RO is prompted
to allow the client instance access to Foo and Bar together. This results in a new access token:
AT2. This access token has access to both Foo and Bar. The rights of the original access token
AT1 are not modified.
The client instance makes another grant modification to ask only for Bar. Since the client
instance was previously granted Foo and Bar together under this grant request, the RO is not
prompted, and the access to Bar is granted in a new access token: AT3. This new access token
does not allow access to Foo.
The original access token AT1 expires, and the client seeks a new access token to replace it.
The client instance makes another grant modification to ask only for Foo. Since the client
instance was previously granted Foo and Bar together under this grant request, the RO is not
prompted, and the access to Foo is granted in a new access token: AT4. This new access token
does not allow access to Bar.

All four access tokens are independent of each other and associated with the same underlying
grant request. Each of these access tokens could possibly also be rotated using token
management, if available. For example, instead of asking for a new token to replace AT1, the
client instance could ask for a refresh of AT1 using the rotation method of the token management
API. This would result in a refreshed AT1 with a different token value and expiration from the
original AT1 but with the same access rights of allowing only access to Foo.

The client instance include the interact field as described in Section 2.5. Inclusion of this
field indicates that the client instance is capable of driving interaction with the end user, and this
field replaces any values from a previous request. The AS respond to any of the interaction
responses as described in Section 3.3, just like it would to a new request.

The client instance include the user field as described in Section 2.4 to present new
assertions or information about the end user. The AS check that this presented user
information is consistent with any user information previously presented by the client instance
or otherwise associated with this grant request.

MAY
MAY

1.

2.

3.

4.

MAY

MAY

MAY
SHOULD

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 81

The client instance include the client field of the request, since the client instance is
assumed not to have changed. Modification of client instance information, including rotation of
keys associated with the client instance, is outside the scope of this specification.

The client instance include post-interaction responses such as those described in
Section 5.1.

Modification requests alter previously issued access tokens. Instead, any access tokens
issued from a continuation are considered new, separate access tokens. The AS revoke
previously issued access tokens after a modification has occurred.

If the modified request can be granted immediately by the AS (the grant request is in the
approved state), the grant response (Section 3) contain any newly created access tokens
(Section 3.2) or newly released subject claims (Section 3.4). The response contain a new
continuation response (Section 3.1) as described above. If interaction can occur, the response

 contain interaction responses (Section 3.3) as well.

For example, a client instance initially requests a set of resources using references:

Access is granted by the RO, and a token is issued by the AS. In its final response, the AS includes
a continue field, which includes a separate access token for accessing the continuation API:

MUST NOT

MUST NOT

MUST NOT
MAY

MAY
MAY

SHOULD

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "read", "write"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 },
 "client": "987YHGRT56789IOLK"
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 82

This continue field allows the client instance to make an eventual continuation call. Some time
later, the client instance realizes that it no longer needs "write" access and therefore modifies its
ongoing request, here asking for just "read" access instead of both "read" and "write" as before.

The AS replaces the previous access from the first request, allowing the AS to determine if any
previously granted consent already applies. In this case, the AS would determine that reducing
the breadth of the requested access means that new access tokens can be issued to the client
instance without additional interaction or consent. The AS would likely revoke previously issued
access tokens that had the greater access rights associated with them, unless they had been
issued with the durable flag.

{
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 },
 "access_token": {
 "value": "RP1LT0-OS9M2P_R64TB",
 "access": [
 "read", "write"
]
 }
}

PATCH /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "read"
]
 }
 ...
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 83

As another example, the client instance initially requests read-only access but later needs to step
up its access. The initial request could look like the following HTTP message:

Access is granted by the RO, and a token is issued by the AS. In its final response, the AS includes
a continue field:

{
 "continue": {
 "access_token": {
 "value": "M33OMUK80UPRY5NMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 },
 "access_token": {
 "value": "0EVKC7-2ZKwZM_6N760",
 "access": [
 "read"
]
 }
}

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "read"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 },
 "client": "987YHGRT56789IOLK"
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 84

This allows the client instance to make an eventual continuation call. The client instance later
realizes that it now needs "write" access in addition to the "read" access. Since this is an
expansion of what it asked for previously, the client instance also includes a new interaction field
in case the AS needs to interact with the RO again to gather additional authorization. Note that
the client instance's nonce and callback are different from the initial request. Since the original
callback was already used in the initial exchange and the callback is intended for one-time use, a
new one needs to be included in order to use the callback again.

From here, the AS can determine that the client instance is asking for more than it was
previously granted, but since the client instance has also provided a mechanism to interact with
the RO, the AS can use that to gather the additional consent. The protocol continues as it would

{
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 },
 "access_token": {
 "value": "RP1LT0-OS9M2P_R64TB",
 "access": [
 "read"
]
 }
}

PATCH /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "read", "write"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/654321",
 "nonce": "K82FX4T4LKLTI25DQFZC"
 }
 }
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 85

with a new request. Since the old access tokens are good for a subset of the rights requested here,
the AS might decide to not revoke them. However, any access tokens granted after this update
process are new access tokens and do not modify the rights of existing access tokens.

5.4. Revoking a Grant Request
If the client instance wishes to cancel an ongoing grant request and place it into the finalized
state, the client instance makes an HTTP DELETE request to the continuation URI.

If the request is successfully revoked, the AS responds with HTTP status code 204 (No Content).
The AS revoke all associated access tokens, if possible. The AS disable all token
rotation and other token management functions on such access tokens, if possible. Once the
grant request is in the finalized state, it be moved to any other state.

If the request is not revoked, the AS responds with an invalid_continuation error (Section 3.6).

DELETE /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...

SHOULD SHOULD

MUST NOT

6. Token Management
If an access token response includes the manage field as described in Section 3.2.1, the client
instance call this URI to manage the access token with the rotate and revoke actions defined
in the following subsections. Other actions are undefined by this specification.

The token management access token issued under the manage field is used to protect all calls to
the token management API. The client instance present proof of the key associated with the
token along with the value of the token management access token.

The AS validate the proof and ensure that it is associated with the token management
access token.

MAY

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "flags": ["bearer"],
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 }
}

MUST

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 86

The AS uniquely identify the token being managed from the token management URI, the
token management access token, or a combination of both.

MUST

6.1. Rotating the Access Token Value
If the client instance has an access token and that access token expires, the client instance might
want to rotate the access token to a new value without expiration. Rotating an access token
consists of issuing a new access token in place of an existing access token, with the same rights
and properties as the original token, apart from an updated token value and expiration time.

To rotate an access token, the client instance makes an HTTP POST to the token management URI
with no message content, sending the access token in the authorization header as described in
Section 7.2 and signing the request with the appropriate key.

The client instance cannot request to alter the access rights associated with the access token
during a rotation request. To get an access token with different access rights for this grant
request, the client instance has to call the continuation API's update functionality (Section 5.3) to
get a new access token. The client instance can also create a new grant request with the required
access rights.

The AS validates that the token management access token presented is associated with the
management URI, that the AS issued the token to the given client instance, and that the presented
key is the correct key for the token management access token. The AS determines which access
token is being rotated from the token management URI, the token management access token, or
both.

If the token is validated and the key is appropriate for the request, the AS invalidate the
current access token value associated with this URI, if possible. Note that stateless access tokens
can make proactive revocation difficult within a system; see Section 11.32.

For successful rotations, the AS responds with an HTTP status code 200 (OK) with JSON-formatted
message content consisting of the rotated access token in the access_token field described in
Section 3.2.1. The value of the access token be the same as the current value of the
access token used to access the management API. The response include an access token
management URI, and the value of this URI be different from the URI used by the client
instance to make the rotation call. The client instance use this new URI to manage the
rotated access token.

The access rights in the access array for the rotated access token be included in the
response and be the same as the token before rotation.

POST /token/PRY5NM33O HTTP/1.1
Host: server.example.com
Authorization: GNAP B8CDFONP21-4TB8N6.BW7ONM
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

MUST

MUST NOT
MUST

MAY
MUST

MUST
MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 87

If the AS is unable or unwilling to rotate the value of the access token, the AS responds with an
invalid_rotation error (Section 3.6). Upon receiving such an error, the client instance
consider the access token to not have changed its state.

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "value": "FP6A8H6HY37MH13CK76LBZ6Y1UADG6VEUPEER5H2",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "expires_in": 3600,
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read", "dolphin-metadata"
]
 }
}

MUST

key:

6.1.1. Binding a New Key to the Rotated Access Token

If the client instance wishes to bind a new presentation key to an access token, the client instance
 present both the new key and the proof of previous key material in the access token

rotation request. The client instance makes an HTTP POST as a JSON object with the following
field:

The new key value or reference in the format described in Section 7.1. Note that keys
passed by value are always public keys. when doing key rotation.

The proofing method and parameters for the new key be the same as those established for
the previous key.

MUST

REQUIRED

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 88

The client instance prove possession of both the currently bound key and the newly
requested key simultaneously in the rotation request. Specifically, the signature from the
previous key cover the value or reference of the new key, and the signature of the new key

 cover the signature value of the old key. The means of doing so vary depending on the
proofing method in use. For example, the HTTP message signatures proofing method uses
multiple signatures in the request as described in Section 7.3.1.1. This is shown in the following
example.

Failure to present the appropriate proof of either the new key or the previous key for the access
token, as defined by the proofing method, result in an invalid_rotation error code from
the AS (Section 3.6).

An attempt to change the proofing method or parameters, including an attempt to rotate the key
of a bearer token (which has no key), result in an invalid_rotation error code returned
from the AS (Section 3.6).

If the AS does not allow rotation of the access token's key for any reason, including but not
limited to lack of permission for this client instance or lack of capability by the AS, the AS
return a key_rotation_not_supported error code (Section 3.6).

MUST

MUST
MUST

POST /token/PRY5NM33O HTTP/1.1
Host: server.example.com
Authorization: GNAP B8CDFONP21-4TB8N6.BW7ONM
Signature-Input: \
 sig1=("@method" "@target-uri" "content-digest" \
 "authorization"),\
 sig2=("@method" "@target-uri" "content-digest" \
 "authorization" "signature";key="sig1" \
 "signature-input";key="sig1")
Signature: sig1=..., sig2=...
Content-Digest: sha-256=...

{
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-2",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
 }
}

MUST

MUST

MUST

6.2. Revoking the Access Token
If the client instance wishes to revoke the access token proactively, such as when a user indicates
to the client instance that they no longer wish for it to have access or the client instance
application detects that it is being uninstalled, the client instance can use the token management
URI to indicate to the AS that the AS invalidate the access token for all purposes.SHOULD

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 89

The client instance makes an HTTP DELETE request to the token management URI, presenting
the access token and signing the request with the appropriate key.

If the key presented is associated with the token (or the client instance, in the case of a bearer
token), the AS invalidate the access token, if possible, and return an HTTP response code
204.

Though the AS revoke an access token at any time for any reason, the token management
function is specifically for the client instance's use. If the access token has already expired or has
been revoked through other means, the AS honor the revocation request to the token
management URI as valid, since the end result is that the token is still not usable.

DELETE /token/PRY5NM33O HTTP/1.1
Host: server.example.com
Authorization: GNAP B8CDFONP21-4TB8N6.BW7ONM
Signature-Input: sig1=...
Signature: sig1=...

MUST

204 No Content

MAY

SHOULD

7. Securing Requests from the Client Instance
In GNAP, the client instance secures its requests to an AS and RS by presenting an access token,
proof of a key that it possesses (aka, a "key proof"), or both an access token and key proof
together.

When an access token is used with a key proof, this is a bound token request. This type of
request is used for calls to the RS as well as the AS during grant negotiation.
When a key proof is used with no access token, this is a non-authorized signed request. This
type of request is used for calls to the AS to initiate a grant negotiation.
When an access token is used with no key proof, this is a bearer token request. This type of
request is used only for calls to the RS and only with access tokens that are not bound to any
key as described in Section 3.2.1.
When neither an access token nor key proof are used, this is an unsecured request. This type
of request is used optionally for calls to the RS as part of an RS-first discovery process as
described in Section 9.1.

•

•

•

•

7.1. Key Formats
Several different places in GNAP require the presentation of key material by value or by
reference. Key material sent by value is sent using a JSON object with several fields described in
this section.

All keys are associated with a specific key proofing method. The proofing method associated with
the key is indicated using the proof field of the key object.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 90

proof (string or object):

jwk (object):

cert (string):

cert#S256 (string):

The form of proof that the client instance will use when presenting the
key. The valid values of this field and the processing requirements for each are detailed in
Section 7.3. .

A key presented by value be a public key and be presented in only one supported
format, as discussed in Section 11.35. Note that while most formats present the full value of the
public key, some formats present a value cryptographically derived from the public key. See
additional discussion of the presentation of public keys in Section 11.7.

The public key and its properties represented as a JSON Web Key (JWK) .
A JWK contain the alg (Algorithm) and kid (Key ID) parameters. The alg parameter

 be "none". The x5c (X.509 Certificate Chain) parameter be used to provide the
X.509 representation of the provided public key. .

The Privacy-Enhanced Mail (PEM) serialized value of the certificate used to sign
the request, with optional internal whitespace per . The PEM header and footer are
optionally removed. .

The certificate thumbprint calculated as per MTLS for OAuth in
base64url encoding. Note that this format does not include the full public key. .

Additional key formats can be defined in the "GNAP Key Formats" registry (Section 10.17).

The following non-normative example shows a single key presented in two different formats.
The example key is intended to be used with the HTTP message signatures proofing mechanism
(Section 7.3.1), as indicated by the httpsig value of the proof field.

As a JWK:

As a certificate in PEM format:

REQUIRED

MUST MUST

[RFC7517]
MUST

MUST NOT MAY
OPTIONAL

[RFC7468]
OPTIONAL

[RFC8705]
OPTIONAL

"key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
}

"key": {
 "proof": "httpsig",
 "cert": "MIIEHDCCAwSgAwIBAgIBATANBgkqhkiG9w0BAQsFA..."
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 91

When the key is presented in GNAP, proof of this key material be used to bind the request,
the nature of which varies with the location in the protocol where the key is used. For a key used
as part of a client instance's initial request in Section 2.3, the key value represents the client
instance's public key, and proof of that key be presented in that request. For a key used as
part of an access token response in Section 3.2.1, the proof of that key be used when the
client instance later presents the access token to the RS.

MUST

MUST
MUST

7.1.1. Key References

Keys in GNAP can also be passed by reference such that the party receiving the reference will be
able to determine the appropriate keying material for use in that part of the protocol. A key
reference is a single opaque string.

Keys referenced in this manner be shared symmetric keys. See the additional considerations
for symmetric keys in Section 11.7. The key reference contain any unencrypted
private or shared symmetric key information.

Keys referenced in this manner be bound to a single proofing mechanism.

The means of dereferencing this reference to a key value and proofing mechanism are out of
scope for this specification. Commonly, key references are created by the AS and do not
necessarily need to be understood by the client. These types of key references are an internal
reference to the AS, such as an identifier of a record in a database. In other applications, it can be
useful to use key references that are resolvable by both clients and the AS, which could be
accomplished by a client publishing a public key at a URI, for example. For interoperability, this
method could later be described as an extension, but doing so is out of scope for this
specification.

 "key": "S-P4XJQ_RYJCRTSU1.63N3E"

MAY
MUST NOT

MUST

7.1.2. Key Protection

The security of GNAP relies on the cryptographic security of the keys themselves. When
symmetric keys are used in GNAP, a key management system or secure key derivation
mechanism be used to supply the keys. Symmetric keys be a human-memorable
password or a value derived from one. Symmetric keys be passed by value from the
client instance to the AS.

Additional security considerations apply when rotating keys (see Section 11.22).

MUST MUST NOT
MUST NOT

7.2. Presenting Access Tokens
Access tokens are issued to client instances in GNAP to allow the client instance to make an
authorized call to an API. The method the client instance uses to send an access token depends on
whether the token is bound to a key and, if so, which proofing method is associated with the key.
This information is conveyed by the key parameter and the bearer flag in the access token
response structure (Section 3.2.1).

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 92

If the flags field does not contain the bearer flag and the key is absent, the access token
be sent using the same key and proofing mechanism that the client instance used in its initial
request (or its most recent rotation).

If the flags field does not contain the bearer flag and the key value is an object as described in
Section 7.1, the access token be sent using the key and proofing mechanism defined by the
value of the proof field within the key object.

The access token be sent using the HTTP Authorization request header field and the
"GNAP" authorization scheme along with a key proof as described in Section 7.3 for the key
bound to the access token. For example, an access token bound using HTTP message signatures
would be sent as follows:

If the flags field contains the bearer flag, the access token is a bearer token that be sent
using the Authorization request header field method defined in .

The Form-Encoded Body Parameter and URI Query Parameter methods of
 be used for GNAP access tokens.

MUST

MUST

MUST

NOTE: '\' line wrapping per RFC 8792

GET /stuff HTTP/1.1
Host: resource.example.com
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=("@method" "@target-uri" "authorization")\
 ;created=1618884473;keyid="gnap-rsa";nonce="NAOEJF12ER2";tag="gnap"
Signature: sig1=:FQ+EjWqc38uLFByKa5y+c4WyYYwCTGUhidWKfr5L1Cha8FiPEw\
 DxG7nWttpBLS/B6VLfkZJogPbclySs9MDIsAIJwHnzlcJjwXWR2lfvm2z3X7EkJHm\
 Zp4SmyKOS34luAiKR1xwf32NYFolHmZf/SbHZJuWvQuS4U33C+BbsXz8MflFH1Dht\
 H/C1E5i244gSbdLCPxzABc/Q0NHVSLo1qaouYIvnxXB8OT3K7mwWjsLh1GC5vFThb\
 3XQ363r6f0OPRa4qWHhubR/d/J/lNOjbBdjq9AJ69oqNJ+A2XT+ZCrVasEJE0OBvD\
 auQoiywhb8BMB7+PEINsPk5/8UvaNxbw==:

MUST
[RFC6750]

Authorization: Bearer OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0

[RFC6750] MUST
NOT

method:

7.3. Proving Possession of a Key with a Request
Any keys presented by the client instance to the AS or RS be validated as part of the request
in which they are presented. The type of binding used is indicated by the proof parameter of the
key object in Section 7.1. Key proofing methods are specified either by a string, which consists of
the key proofing method name on its own, or by a JSON object with the required field method:

The name of the key proofing method to be used. .

Individual methods defined as objects define additional parameters as members in this
object.

MUST

REQUIRED

MAY

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 93

"httpsig" (string or object):

"mtls" (string):

"jwsd" (string):

"jws" (string):

Values for the method defined by this specification are as follows:

HTTP message signing. See Section 7.3.1.

MTLS certificate verification. See Section 7.3.2.

A detached JWS signature header. See Section 7.3.3.

Attached JWS Payload. See Section 7.3.4.

Additional proofing methods can be defined in the "GNAP Key Proofing Methods" registry
(Section 10.16).

Proofing methods be defined as both an object and a string. For example, the httpsig
method can be specified as an object with its parameters explicitly declared, such as:

The httpsig method also defines default behavior when it is passed as a string form, using the
signature algorithm specified by the associated key material and the content digest is calculated
using sha-256. This configuration can be selected using the following shortened form:

All key binding methods used by this specification cover all relevant portions of the
request, including anything that would change the nature of the request, to allow for secure
validation of the request. Relevant aspects include the URI being called, the HTTP method being
used, any relevant HTTP headers and values, and the HTTP message content itself. The verifier of
the signed message validate all components of the signed message to ensure that nothing
has been tampered with or substituted in a way that would change the nature of the request.
Definitions of key binding methods enumerate how these requirements are fulfilled.

When a key proofing mechanism is bound to an access token, the key being presented be
the key associated with the access token, and the access token be covered by the signature
method of the proofing mechanism.

The key binding methods in this section be used by other components making calls as part
of GNAP, such as the extensions allowing the RS to make calls to the AS defined in . To
facilitate this extended use, "signer" and "verifier" are used as generic terms in the subsections

MAY

{
 "proof": {
 "method": "httpsig",
 "alg": "ecdsa-p384-sha384",
 "content-digest-alg": "sha-256"
 }
}

{
 "proof": "httpsig"
}

MUST

MUST

MUST

MUST
MUST

MAY
[GNAP-RS]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 94

below. In the core functions of GNAP specified in this document, the "signer" is the client
instance, and the "verifier" is the AS (for grant requests) or RS (for resource requests), as
appropriate.

When used for delegation in GNAP, these key binding mechanisms allow the AS to ensure that
the keys presented by the client instance in the initial request are in control of the party calling
any follow-up or continuation requests. To facilitate this requirement, the continuation response
(Section 3.1) includes an access token bound to the client instance's key (Section 2.3), and that key
(or its most recent rotation) be proved in all continuation requests (Section 5). Token
management requests (Section 6) are similarly bound to either the access token's own key or, in
the case of bearer tokens, the client instance's key.

In the following subsections, unless otherwise noted, the RS256 JSON Object Signing and
Encryption (JOSE) signature algorithm (defined in) is applied using the
following RSA key (presented here in JWK format):

MUST

Section 3.3 of [RFC7518]

NOTE: '\' line wrapping per RFC 8792

{
 "kid": "gnap-rsa",
 "p": "xS4-YbQ0SgrsmcA7xDzZKuVNxJe3pCYwdAe6efSy4hdDgF9-vhC5gjaRk\
 i1wWuERSMW4Tv44l5HNrL-Bbj_nCJxr_HAOaesDiPn2PnywwEfg3Nv95Nn-\
 eilhqXRaW-tJKEMjDHu_fmJBeemHNZI412gBnXdGzDVo22dvYoxd6GM",
 "kty": "RSA",
 "q": "rVdcT_uy-CD0GKVLGpEGRR7k4JO6Tktc8MEHkC6NIFXihk_6vAIOCzCD6\
 LMovMinOYttpRndKoGTNdJfWlDFDScAs8C5n2y1STCQPRximBY-bw39-aZq\
 JXMxOLyPjzuVgiTOCBIvLD6-8-mvFjXZk_eefD0at6mQ5qV3U1jZt88",
 "d": "FHlhdTF0ozTliDxMBffT6aJVKZKmbbFJOVNten9c3lXKB3ux3NAb_D2dB\
 7inp9EV23oWrDspFtvCvD9dZrXgRKMHofkEpo_SSvBZfgtH-OTkbY_TqtPF\
 FLPKAw0JX5cFPnn4Q2xE4n-dQ7tpRCKl59vZLHBrHShr90zqzFp0AKXU5fj\
 b1gC9LPwsFA2Fd7KXmI1drQQEVq9R-o18Pnn4BGQNQNjO_VkcJTiBmEIVT_\
 KJRPdpVJAmbgnYWafL_hAfeb_dK8p85yurEVF8nCK5oO3EPrqB7IL4UqaEn\
 5Sl3u0j8x5or-xrrAoNz-gdOv7ONfZY6NFoa-3f8q9wBAHUuQ",
 "e": "AQAB",
 "qi": "ogpNEkDKg22Rj9cDV_-PJBZaXMk66Fp557RT1tafIuqJRHEufSOYnsto\
 bWPJ0gHxv1gVJw3gm-zYvV-wTMNgr2wVsBSezSJjPSjxWZtmT2z68W1DuvK\
 kZy15vz7Jd85hmDlriGcXNCoFEUsGLWkpHH9RwPIzguUHWmTt8y0oXyI",
 "dp": "dvCKGI2G7RLh3WyjoJ_Dr6hZ3LhXweB3YcY3qdD9BnxZ71mrLiMQg4c_\
 EBnwqCETN_5sStn2cRc2JXnvLP3G8t7IFKHTT_i_TSTacJ7uT04MSa053Y3\
 RfwbvLjRNPR0UKAE3ZxROUoIaVNuU_6-QMf8-2ilUv2GIOrCN87gP_Vk",
 "alg": "RS256",
 "dq": "iMZmELaKgT9_W_MRT-UfDWtTLeFjIGRW8aFeVmZk9R7Pnyt8rNzyN-IQ\
 M40ql8u8J6vc2GmQGfokLlPQ6XLSCY68_xkTXrhoU1f-eDntkhP7L6XawSK\
 Onv5F2H7wyBQ75HUmHTg8AK2B_vRlMyFKjXbVlzKf4kvqChSGEz4IjQ",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8BfYdHsFzAt\
 YKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZGYX\
 jHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZx\
 e0jRETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0\
 bunS0K3bA_3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kO\
 zywzwPTuq-cVQDyEN7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 95

https://rfc-editor.org/rfc/rfc7518#section-3.3

Key proofing methods define a mechanism to allow the rotation of keys discussed in
Section 6.1.1. Key rotation mechanisms define a way for presenting proof of two keys
simultaneously with the following attributes:

The value of or reference to the new key material be signed by the existing key.
Generally speaking, this amounts to using the existing key to sign the content of the message
that contains the new key.
The signature of the old key be signed by the new key. Generally speaking, this means
including the signature value of the old key under the coverage of the new key.

SHOULD
MUST

• MUST

• MUST

alg:

content-digest-alg:

"@method":

"@target-uri":

7.3.1. HTTP Message Signatures

This method is indicated by the method value httpsig and can be declared in either object form
or string form.

When the proofing method is specified in object form, the following parameters are defined:

The HTTP signature algorithm, from the "HTTP Signature Algorithms" registry. .

The algorithm used for the Content-Digest field, used to protect the
content when present in the message. .

This example uses the Elliptic Curve Digital Signature Algorithm (ECDSA) signing algorithm over
the P384 curve and the SHA-512 hashing algorithm for the content digest.

When the proofing method is specified in string form, the signing algorithm be derived
from the key material (such as using the JWS algorithm in a JWK formatted key), and the content
digest algorithm be sha-256.

When using this method, the signer creates an HTTP message signature as described in
. The covered components of the signature include the following:

The method used in the HTTP request.

The full request URI of the HTTP request.

REQUIRED

REQUIRED

{
 "proof": {
 "method": "httpsig",
 "alg": "ecdsa-p384-sha384",
 "content-digest-alg": "sha-512"
 }
}

MUST

MUST

{
 "proof": "httpsig"
}

[RFC9421] MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 96

"content-digest":

"authorization":

When the message contains request content, the covered components also include the
following:

The Content-Digest header as defined in . When the request
message has content, the signer calculate this field value and include the field in the
request. The verifier validate this field value. when the message request
contains message content.

When the request is bound to an access token, the covered components also include the
following:

The Authorization header used to present the access token as discussed in
Section 7.2.

Other message components also be included.

The signer include the tag signature parameter with the value gnap, and the verifier
verify that the parameter exists with this value. The signer include the created signature
parameter with a timestamp of when the signature was created, and the verifier ensure
that the creation timestamp is sufficiently close to the current time given expected network delay
and clock skew. The signer include the nonce parameter with a unique and unguessable
value. When included, the verifier determine that the nonce value is unique within a
reasonably short time period such as several minutes.

If the signer's key presented is a JWK, the keyid parameter of the signature be set to the
kid value of the JWK, and the signing algorithm used be the JWS algorithm denoted by the
key's alg field of the JWK.

The explicit alg signature parameter be included in the signature, since the algorithm
will be derived from either the key material or the proof value.

In the following non-normative example, the message content is a JSON object:

MUST

[RFC9530]
MUST

MUST REQUIRED

MUST

MAY

MUST MUST
MUST

MUST

SHOULD
MUST

MUST
MUST

MUST NOT

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 97

This content is hashed for the Content-Digest header using sha-256 into the following encoded
value:

The HTTP message signature input string is calculated to be the following:

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "PS512",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
}

sha-256=:q2XBmzRDCREcS2nWo/6LYwYyjrlN1bRfv+HKLbeGAGg=:

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 98

This leads to the following full HTTP message request:

NOTE: '\' line wrapping per RFC 8792

"@method": POST
"@target-uri": https://server.example.com/gnap
"content-digest": \
 sha-256=:q2XBmzRDCREcS2nWo/6LYwYyjrlN1bRfv+HKLbeGAGg=:
"content-length": 988
"content-type": application/json
"@signature-params": ("@method" "@target-uri" "content-digest" \
 "content-length" "content-type");created=1618884473\
 ;keyid="gnap-rsa";nonce="NAOEJF12ER2";tag="gnap"

NOTE: '\' line wrapping per RFC 8792

POST /gnap HTTP/1.1
Host: server.example.com
Content-Type: application/json
Content-Length: 988
Content-Digest: sha-256=:q2XBmzRDCREcS2nWo/6LYwYyjrlN1bRfv+HKLbeGAG\
 g=:
Signature-Input: sig1=("@method" "@target-uri" "content-digest" \
 "content-length" "content-type");created=1618884473\
 ;keyid="gnap-rsa";nonce="NAOEJF12ER2";tag="gnap"
Signature: sig1=:c2uwTa6ok3iHZsaRKl1ediKlgd5cCAYztbym68XgX8gSOgK0Bt\
 +zLJ19oGjSAHDjJxX2gXP2iR6lh9bLMTfPzbFVn4Eh+5UlceP+0Z5mES7v0R1+eHe\
 OqBl0YlYKaSQ11YT7n+cwPnCSdv/6+62m5zwXEEftnBeA1ECorfTuPtau/yrTYEvD\
 9A/JqR2h9VzAE17kSlSSsDHYA6ohsFqcRJavX29duPZDfYgkZa76u7hJ23yVxoUpu\
 2J+7VUdedN/72N3u3/z2dC8vQXbzCPTOiLru12lb6vnBZoDbUGsRR/zHPauxhj9T+\
 218o5+tgwYXw17othJSxIIOZ9PkIgz4g==:

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "PS512",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 99

The verifier ensure that the signature covers all required message components. If the HTTP
message includes content, the verifier calculate and verify the value of the Content-
Digest header. The verifier validate the signature against the expected key of the signer.

A received message include multiple signatures, each with its own label. The verifier
examine all included signatures until it finds (at least) one that is acceptable according to its
policy and meets the requirements in this section.

 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
}

MUST
MUST

MUST

MAY MUST

7.3.1.1. Key Rotation Using HTTP Message Signatures
When rotating a key using HTTP message signatures, the message, which includes the new public
key value or reference, is first signed with the old key following all of the requirements in
Section 7.3.1. The message is then signed again with the new key by following all of the
requirements in Section 7.3.1 again, with the following additional requirements:

The covered components include the Signature and Signature-Input values from the
signature generated with the old key.
The tag value be gnap-rotate.

For example, the following request to the token management endpoint for rotating a token value
contains the new key in the request. The message is first signed using the old key, and the
resulting signature is placed in "old-key":

• MUST

• MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 100

The signer then creates a new signature using the new key, adding the signature input and value
to the signature base.

This signature is then added to the message:

NOTE: '\' line wrapping per RFC 8792

POST /token/PRY5NM33 HTTP/1.1
Host: server.example.com
Authorization: GNAP 4398.34-12-asvDa.a
Content-Digest: sha-512=:Fb/A5vnawhuuJ5xk2RjGrbbxr6cvinZqd4+JPY85u/\
 JNyTlmRmCOtyVhZ1Oz/cSS4tsYen6fzpCwizy6UQxNBQ==:
Signature-Input: old-key=("@method" "@target-uri" "content-digest" \
 "authorization");created=1618884475;keyid="test-key-ecc-p256"\
 ;tag="gnap"
Signature: old-key=:vN4IKYsJl2RLFe+tYEm4dHM4R4BToqx5D2FfH4ge5WOkgxo\
 dI2QRrjB8rysvoSEGvAfiVJOWsGcPD1lU639Amw==:

{
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-2",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
 }
}

NOTE: '\' line wrapping per RFC 8792

"@method": POST
"@target-uri": https://server.example.com/token/PRY5NM33
"content-digest": sha-512=:Fb/A5vnawhuuJ5xk2RjGrbbxr6cvinZqd4+JPY85\
 u/JNyTlmRmCOtyVhZ1Oz/cSS4tsYen6fzpCwizy6UQxNBQ==:
"authorization": GNAP 4398.34-12-asvDa.a
"signature";key="old-key": :YdDJjDn2Sq8FR82e5IcOLWmmf6wILoswlnRcz+n\
 M+e8xjFDpWS2YmiMYDqUdri2UiJsZx63T1z7As9Kl6HTGkQ==:
"signature-input";key="old-key": ("@method" "@target-uri" \
 "content-digest" "authorization");created=1618884475\
 ;keyid="test-key-ecc-p256";tag="gnap"
"@signature-params": ("@method" "@target-uri" "content-digest" \
 "authorization" "signature";key="old-key" "signature-input"\
 ;key="old-key");created=1618884480;keyid="xyz-2"
 ;tag="gnap-rotate"

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 101

The verifier validate both signatures before processing the request for key rotation.

NOTE: '\' line wrapping per RFC 8792

POST /token/PRY5NM33 HTTP/1.1
Host: server.example.com
Authorization: GNAP 4398.34-12-asvDa.a
Content-Digest: sha-512=:Fb/A5vnawhuuJ5xk2RjGrbbxr6cvinZqd4+JPY85u/\
 JNyTlmRmCOtyVhZ1Oz/cSS4tsYen6fzpCwizy6UQxNBQ==:
Signature-Input: old-key=("@method" "@target-uri" "content-digest" \
 "authorization");created=1618884475;keyid="test-key-ecc-p256"\
 ;tag="gnap", \
 new-key=("@method" "@target-uri" "content-digest" \
 "authorization" "signature";key="old-key" "signature-input"\
 ;key="old-key");created=1618884480;keyid="xyz-2"
 ;tag="gnap-rotate"
Signature: old-key=:vN4IKYsJl2RLFe+tYEm4dHM4R4BToqx5D2FfH4ge5WOkgxo\
 dI2QRrjB8rysvoSEGvAfiVJOWsGcPD1lU639Amw==:, \
 new-key=:VWUExXQ0geWeTUKhCfDT7WJyT++OHSVbfPA1ukW0o7mmstdbvIz9iOuH\
 DRFzRBm0MQPFVMpLDFXQdE3vi2SL3ZjzcX2qLwzAtyRB9+RsV2caAA80A5ZGMoo\
 gUsKPk4FFDN7KRUZ0vT9Mo9ycx9Dq/996TOWtAmq5z0YUYEwwn+T6+NcW8rFtms\
 s1ZfXG0EoAfV6ve25p+x40Y1rvDHsfkakTRB4J8jWVDybSe39tjIKQBo3uicDVw\
 twewBMNidIa+66iF3pWj8w9RSb0cncEgvbkHgASqaZeXmxxG4gM8p1HH9v/OqQT\
 Oggm5gTWmCQs4oxEmWsfTOxefunfh3X+Qw==:

{
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-2",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
 }
}

MUST

7.3.2. Mutual TLS

This method is indicated by the method value mtls in string form.

The signer presents its TLS client certificate during TLS negotiation with the verifier.

In the following non-normative example, the certificate is communicated to the application
through the Client-Cert header field from a TLS reverse proxy as per , leading to the
following full HTTP request message:

{
 "proof": "mtls"
}

[RFC9440]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 102

POST /gnap HTTP/1.1
Host: server.example.com
Content-Type: application/jose
Content-Length: 1567
Client-Cert: \
 :MIIC6jCCAdKgAwIBAgIGAXjw74xPMA0GCSqGSIb3DQEBCwUAMDYxNDAyBgNVBAMM\
 K05JWU15QmpzRGp5QkM5UDUzN0Q2SVR6a3BEOE50UmppOXlhcEV6QzY2bVEwHhcN\
 MjEwNDIwMjAxODU0WhcNMjIwMjE0MjAxODU0WjA2MTQwMgYDVQQDDCtOSVlNeUJq\
 c0RqeUJDOVA1MzdENklUemtwRDhOdFJqaTl5YXBFekM2Nm1RMIIBIjANBgkqhkiG\
 9w0BAQEFAAOCAQ8AMIIBCgKCAQEAhYOJ+XOKISdMMShn/G4W9m20mT0VWtQBsmBB\
 kI2cmRt4Ai8BfYdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8I\
 kZ8NMwSrcUIBZGYXjHpwjzvfGvXH/5KJlnR3/uRUp4Z4Ujk2bCaKegDn11V2vxE4\
 1hqaPUnhRZxe0jRETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo+\
 uv4BC0bunS0K3bA/3UgVp7zBlQFoFnLTO2uWp/muLEWGl67gBq9MO3brKXfGhi3k\
 OzywzwPTuq+cVQDyEN7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQIDAQABMA0GCSqG\
 SIb3DQEBCwUAA4IBAQBnYFK0eYHy+hVf2D58usj39lhL5znb/q9G35GBd/XsWfCE\
 wHuLOSZSUmG71bZtrOcx0ptle9bp2kKl4HlSTTfbtpuG5onSa3swRNhtKtUy5NH9\
 W/FLViKWfoPS3kwoEpC1XqKY6l7evoTCtS+kTQRSrCe4vbNprCAZRxz6z1nEeCgu\
 NMk38yTRvx8ihZpVOuU+Ih+dOtVe/ex5IAPYxlQsvtfhsUZqc7IyCcy72WHnRHlU\
 fn3pJm0S5270+Yls3Iv6h3oBAP19i906UjiUTNH3g0xMW+V4uLxgyckt4wD4Mlyv\
 jnaQ7Z3sR6EsXMocAbXHIAJhwKdtU/fLgdwL5vtx:

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "mtls",
 "cert": "MIIC6jCCAdKgAwIBAgIGAXjw74xPMA0GCSqGSIb3DQEBCwUAMD\
 YxNDAyBgNVBAMMK05JWU15QmpzRGp5QkM5UDUzN0Q2SVR6a3BEOE50UmppOXlhcEV\
 6QzY2bVEwHhcNMjEwNDIwMjAxODU0WhcNMjIwMjE0MjAxODU0WjA2MTQwMgYDVQQD\
 DCtOSVlNeUJqc0RqeUJDOVA1MzdENklUemtwRDhOdFJqaTl5YXBFekM2Nm1RMIIBI\
 jANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAhYOJ+XOKISdMMShn/G4W9m20mT\
 0VWtQBsmBBkI2cmRt4Ai8BfYdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8\
 KowlyVy8IkZ8NMwSrcUIBZGYXjHpwjzvfGvXH/5KJlnR3/uRUp4Z4Ujk2bCaKegDn\
 11V2vxE41hqaPUnhRZxe0jRETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDad\
 z8BkPo+uv4BC0bunS0K3bA/3UgVp7zBlQFoFnLTO2uWp/muLEWGl67gBq9MO3brKX\
 fGhi3kOzywzwPTuq+cVQDyEN7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQIDAQABMA0\
 GCSqGSIb3DQEBCwUAA4IBAQBnYFK0eYHy+hVf2D58usj39lhL5znb/q9G35GBd/Xs\
 WfCEwHuLOSZSUmG71bZtrOcx0ptle9bp2kKl4HlSTTfbtpuG5onSa3swRNhtKtUy5\
 NH9W/FLViKWfoPS3kwoEpC1XqKY6l7evoTCtS+kTQRSrCe4vbNprCAZRxz6z1nEeC\
 guNMk38yTRvx8ihZpVOuU+Ih+dOtVe/ex5IAPYxlQsvtfhsUZqc7IyCcy72WHnRHl\
 Ufn3pJm0S5270+Yls3Iv6h3oBAP19i906UjiUTNH3g0xMW+V4uLxgyckt4wD4Mlyv\
 jnaQ7Z3sR6EsXMocAbXHIAJhwKdtU/fLgdwL5vtx"
 }

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 103

The verifier compares the TLS client certificate presented during MTLS negotiation to the
expected key of the signer. Since the TLS connection covers the entire message, there are no
additional requirements to check.

Note that in many instances, the verifier will not do a full certificate chain validation of the
presented TLS client certificate, as the means of trust for this certificate could be in something
other than a PKI system, such as a static registration or trust-on-first-use. See Sections 11.3 and
11.4 for some additional considerations for this key proofing method.

 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 },
 "subject": {
 "formats": ["iss_sub", "opaque"]
 }
}

7.3.2.1. Key Rotation Using MTLS
Since it is not possible to present two client authenticated certificates to a MTLS connection
simultaneously, dynamic key rotation for this proofing method is not defined. Instead, key
rotation for MTLS-based client instances is expected to be managed through deployment
practices, as discussed in Section 11.4.

kid (string):

alg (string):

typ (string):

htm (string):

7.3.3. Detached JWS

This method is indicated by the method value jwsd in string form.

The signer creates a JSON Web Signature (JWS) object as follows.

To protect the request, the JOSE header of the signature contains the following claims:

The key identifier. if the key is presented in JWK format. This be
the value of the kid field of the key.

The algorithm used to sign the request. The algorithm be appropriate to the
key presented. If the key is presented as a JWK, this be equal to the alg parameter of the
key. The algorithm be none. .

The type header, value "gnap-binding-jwsd". .

The HTTP method used to make this request, as a case-sensitive ASCII string. Note
that most public HTTP methods are in uppercase ASCII by convention. .

{
 "proof": "jwsd"
}

[RFC7515]

REQUIRED MUST

MUST
MUST

MUST NOT REQUIRED

REQUIRED

REQUIRED

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 104

uri (string):

created (integer):

ath (string):

The HTTP URI used for this request. This value be an absolute URI, including
all path and query components and no fragment components. .

A timestamp of when the signature was created, in integer seconds since
UNIX Epoch. .

When the request is bound to an access token, the JOSE header also include the following:

The hash of the access token. The value be the result of base64url encoding
(with no padding) the SHA-256 digest of the ASCII encoding of the associated access token's
value. .

If the HTTP request has content (such as an HTTP POST or PUT method), the payload of the JWS
object is the base64url encoding (without padding) of the SHA-256 digest of the bytes of the
content. If the request being made does not have content (such as an HTTP GET, OPTIONS, or
DELETE method), the JWS signature is calculated over an empty payload.

The signer presents the signed object in compact form in the Detached-JWS header
field.

In the following non-normative example, the JOSE header contains the following parameters:

The request content is the following JSON object:

MUST
REQUIRED

REQUIRED

MUST

MUST

REQUIRED

[RFC7515]

{
 "alg": "RS256",
 "kid": "gnap-rsa",
 "uri": "https://server.example.com/gnap",
 "htm": "POST",
 "typ": "gnap-binding-jwsd",
 "created": 1618884475
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 105

This is hashed to the following base64-encoded value:

This leads to the following full HTTP request message:

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "jwsd",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "RS256",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
}

PGiVuOZUcN1tRtUS6tx2b4cBgw9mPgXG3IPB3wY7ctc

NOTE: '\' line wrapping per RFC 8792

POST /gnap HTTP/1.1
Host: server.example.com
Content-Type: application/json
Content-Length: 983
Detached-JWS: eyJhbGciOiJSUzI1NiIsImNyZWF0ZWQiOjE2MTg4ODQ0NzUsImh0b\
 SI6IlBPU1QiLCJraWQiOiJnbmFwLXJzYSIsInR5cCI6ImduYXAtYmluZGluZytqd3\

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 106

When the verifier receives the Detached-JWS header, it parse and validate the JWS object.
The signature be validated against the expected key of the signer. If the HTTP message
request contains content, the verifier calculate the hash of the content just as the signer
does, with no normalization or transformation of the request. All required fields be
present, and their values be valid. All fields match the corresponding portions of the
HTTP message. For example, the htm field of the JWS header has to be the same as the HTTP verb
used in the request.

 NkIiwidXJpIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20vZ25hcCJ9.PGiVuO\
 ZUcN1tRtUS6tx2b4cBgw9mPgXG3IPB3wY7ctc.fUq-SV-A1iFN2MwCRW_yolVtT2_\
 TZA2h5YeXUoi5F2Q2iToC0Tc4drYFOSHIX68knd68RUA7yHqCVP-ZQEd6aL32H69e\
 9zuMiw6O_s4TBKB3vDOvwrhYtDH6fX2hP70cQoO-47OwbqP-ifkrvI3hVgMX9TfjV\
 eKNwnhoNnw3vbu7SNKeqJEbbwZfpESaGepS52xNBlDNMYBQQXxM9OqKJaXffzLFEl\
 -Xe0UnfolVtBraz3aPrPy1C6a4uT7wLda3PaTOVtgysxzii3oJWpuz0WP5kRujzDF\
 wX_EOzW0jsjCSkL-PXaKSpZgEjNjKDMg9irSxUISt1C1T6q3SzRgfuQ

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "jwsd",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "RS256",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
}

MUST
MUST

MUST
MUST

MUST MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 107

Note that this proofing method depends on a specific cryptographic algorithm, SHA-256, in two
ways: 1) the ath hash algorithm is hardcoded and 2) the payload of the detached/attached
signature is computed using a hardcoded hash. A future version of this document may address
crypto-agility for both these uses by replacing ath with a new header that upgrades the algorithm
and possibly defining a new JWS header that indicates the HTTP content's hash method.

7.3.3.1. Key Rotation Using Detached JWS
When rotating a key using detached JWS, the message, which includes the new public key value
or reference, is first signed with the old key as described above using a JWS object with typ
header value "gnap-binding-rotation-jwsd". The value of the JWS object is then taken as the
payload of a new JWS object, to be signed by the new key using the parameters above.

The value of the new JWS object is sent in the Detached-JWS header.

kid (string):

alg (string):

typ (string):

htm (string):

uri (string):

created (integer):

ath (string):

7.3.4. Attached JWS

This method is indicated by the method value jws in string form.

The signer creates a JWS object as follows.

To protect the request, the JWS header contains the following claims:

The key identifier. if the key is presented in JWK format. This be
the value of the kid field of the key.

The algorithm used to sign the request. be appropriate to the key presented.
If the key is presented as a JWK, this be equal to the alg parameter of the key.
be none. .

The type header, value "gnap-binding-jws". .

The HTTP method used to make this request, as a case-sensitive ASCII string. (Note
that most public HTTP methods are in uppercase.) .

The HTTP URI used for this request, including all path and query components and
no fragment components. .

A timestamp of when the signature was created, in integer seconds since
UNIX Epoch. .

When the request is bound to an access token, the JOSE header also include the following:

{
 "proof": "jws"
}

[RFC7515]

REQUIRED MUST

MUST
MUST MUST NOT

REQUIRED

REQUIRED

REQUIRED

REQUIRED

REQUIRED

MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 108

The hash of the access token. The value be the result of base64url encoding (with no
padding) the SHA-256 digest of the ASCII encoding of the associated access token's value.

.

If the HTTP request has content (such as an HTTP POST or PUT method), the payload of the JWS
object is the JSON serialized content of the request, and the object is signed according to JWS and
serialized into compact form . The signer presents the JWS as the content of the request
along with a content type of application/jose. The verifier extract the payload of the JWS
and treat it as the request content for further processing.

If the request being made does not have content (such as an HTTP GET, OPTIONS, or DELETE
method), the JWS signature is calculated over an empty payload and passed in the Detached-JWS
header as described in Section 7.3.3.

In the following non-normative example, the JOSE header contains the following parameters:

The request content, used as the JWS Payload, is the following JSON object:

MUST

REQUIRED

[RFC7515]
MUST

{
 "alg": "RS256",
 "kid": "gnap-rsa",
 "uri": "https://server.example.com/gnap",
 "htm": "POST",
 "typ": "gnap-binding-jws",
 "created": 1618884475
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 109

This leads to the following full HTTP request message:

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "jws",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "RS256",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 },
 "subject": {
 "formats": ["iss_sub", "opaque"]
 }
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 110

When the verifier receives an attached JWS request, it parse and validate the JWS object.
The signature be validated against the expected key of the signer. All required fields
be present, and their values be valid. All fields match the corresponding portions of
the HTTP message. For example, the htm field of the JWS header has to be the same as the HTTP
verb used in the request.

Note that this proofing method depends on a specific cryptographic algorithm, SHA-256, in two
ways: the ath hash algorithm is hardcoded, and computing the payload of the detached/attached
signature also uses a hardcoded hash. A future version of this document may address crypto-
agility for both these uses by replacing ath with a new header that upgrades the algorithm and
possibly defining a new header that indicates the HTTP content's hash method.

NOTE: '\' line wrapping per RFC 8792

POST /gnap HTTP/1.1
Host: server.example.com
Content-Type: application/jose
Content-Length: 1047

eyJhbGciOiJSUzI1NiIsImNyZWF0ZWQiOjE2MTg4ODQ0NzUsImh0bSI6IlBPU1QiLCJ\
raWQiOiJnbmFwLXJzYSIsInR5cCI6ImduYXAtYmluZGluZytqd3NkIiwidXJpIjoiaH\
R0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20vZ25hcCJ9.CnsKICAgICJhY2Nlc3NfdG9r\
ZW4iOiB7CiAgICAgICAgImFjY2VzcyI6IFsKICAgICAgICAgICAgImRvbHBoaW4tbWV\
0YWRhdGEiCiAgICAgICAgXQogICAgfSwKICAgICJpbnRlcmFjdCI6IHsKICAgICAgIC\
Aic3RhcnQiOiBbInJlZGlyZWN0Il0sCiAgICAgICAgImZpbmlzaCI6IHsKICAgICAgI\
CAgICAgIm1ldGhvZCI6ICJyZWRpcmVjdCIsCiAgICAgICAgICAgICJ1cmkiOiAiaHR0\
cHM6Ly9jbGllbnQuZm9vL2NhbGxiYWNrIiwKICAgICAgICAgICAgIm5vbmNlIjogIlZ\
KTE82QTRDQVlMQlhIVFIwS1JPIgogICAgICAgIH0KICAgIH0sCiAgICAiY2xpZW50Ij\
ogewogICAgICAicHJvb2YiOiAiandzIiwKICAgICAgImtleSI6IHsKICAgICAgICAia\
ndrIjogewogICAgICAgICAgICAia2lkIjogImduYXAtcnNhIiwKICAgICAgICAgICAg\
Imt0eSI6ICJSU0EiLAogICAgICAgICAgICAiZSI6ICJBUUFCIiwKICAgICAgICAgICA\
gImFsZyI6ICJSUzI1NiIsCiAgICAgICAgICAgICJuIjogImhZT0otWE9LSVNkTU1TaG\
5fRzRXOW0yMG1UMFZXdFFCc21CQmtJMmNtUnQ0QWk4QmZZZEhzRnpBdFlLT2pwQlIxU\
nBLcEptVkt4SUdOeTBnNlozYWQyWFlzaDhLb3dseVZ5OElrWjhOTXdTcmNVSUJaR1lY\
akhwd2p6dmZHdlhIXzVLSmxuUjNfdVJVcDRaNFVqazJiQ2FLZWdEbjExVjJ2eEU0MWh\
xYVBVbmhSWnhlMGpSRVRkZHpzRTNtdTFTSzhkVENST2p3VWwxNG1VTm84aVRyVG00bj\
BxRGFkejhCa1BvLXV2NEJDMGJ1blMwSzNiQV8zVWdWcDd6QmxRRm9GbkxUTzJ1V3Bfb\
XVMRVdHbDY3Z0JxOU1PM2JyS1hmR2hpM2tPenl3endQVHVxLWNWUUR5RU43YUwwU3hD\
YjNIYzRJZHFEYU1nOHFIVXlPYnBQaXREUSIKICAgICAgICB9CiAgICAgIH0KICAgICA\
gImRpc3BsYXkiOiB7CiAgICAgICAgIm5hbWUiOiAiTXkgQ2xpZW50IERpc3BsYXkgTm\
FtZSIsCiAgICAgICAgInVyaSI6ICJodHRwczovL2NsaWVudC5mb28vIgogICAgICB9L\
AogICAgfSwKICAgICJzdWJqZWN0IjogewogICAgICAgICJmb3JtYXRzIjogWyJpc3Nf\
c3ViIiwgIm9wYXF1ZSJdCiAgICB9Cn0K.MwNoVMQp5hVxI0mCs9LlOUdFtkDXaA1_eT\
vOXq7DOGrtDKH7q4vP2xUq3fH2jRAZqnobo0WdPP3eM3NH5QUjW8pa6_QpwdIWkK7r-\
u_52puE0lPBp7J4U2w4l9gIbg8iknsmWmXeY5F6wiGT8ptfuEYGgmloAJd9LIeNvD3U\
LW2h2dz1Pn2eDnbyvgB0Ugae0BoZB4f69fKWj8Z9wvTIjk1LZJN1PcL7_zT8Lrlic9a\
PyzT7Q9ovkd1s-4whE7TrnGUzFc5mgWUn_gsOpsP5mIIljoEEv-FqOW2RyNYulOZl0Q\
8EnnDHV_vPzrHlUarbGg4YffgtwkQhdK72-JOxYQ

MUST
MUST MUST

MUST MUST

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 111

7.3.4.1. Key Rotation Using Attached JWS
When rotating a key using attached JWS, the message, which includes the new public key value
or reference, is first signed with the old key using a JWS object with typ header value "gnap-
binding-rotation-jws". The value of the JWS object is then taken as the payload of a new JWS
object, to be signed by the new key.

type (string):

actions (array of strings):

8. Resource Access Rights
GNAP provides a rich structure for describing the protected resources hosted by RSs and
accessed by client software. This structure is used when the client instance requests an access
token (Section 2.1) and when an access token is returned (Section 3.2). GNAP's structure is
designed to be analogous to the OAuth 2.0 Rich Authorization Requests data structure defined in

.

The root of this structure is a JSON array. The elements of the JSON array represent rights of
access that are associated with the access token. Individual rights of access can be defined by the
RS as either an object or a string. The resulting access is the union of all elements within the
array.

The access associated with the access token is described using objects that each contain multiple
dimensions of access. Each object contains a type property that determines the type of
API that the token is used for and the structure of the rest of the object. There is no expected
interoperability between different type definitions.

The type of resource request as a string. This field define which other fields
are allowed in the request object. .

The value of the type field is under the control of the AS. This field be compared using an
exact byte match of the string value against known types by the AS. The AS ensure that
there is no collision between different authorization data types that it supports. The AS

 do any collation or normalization of data types during comparison. It is that
designers of general-purpose APIs use a URI for this field to avoid collisions between multiple API
types protected by a single AS.

While it is expected that many APIs will have their own properties, this specification defines a set
of common data fields that are designed to be usable across different types of APIs. This
specification does not require the use of these common fields by an API definition but, instead,
provides them as reusable generic components for API designers to make use of. The allowable
values of all fields are determined by the API being protected, as defined by a particular type
value.

The types of actions the client instance will take at the RS as an array
of strings (for example, a client instance asking for a combination of "read" and "write"
access).

[RFC9396]

REQUIRED

MAY
REQUIRED

MUST
MUST

MUST
NOT RECOMMENDED

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 112

locations (array of strings):

datatypes (array of strings):

identifier (string):

privileges (array of strings):

The location of the RS as an array of strings. These strings are
typically URIs identifying the location of the RS.

The kinds of data available to the client instance at the RS's API as
an array of strings (for example, a client instance asking for access to raw "image" data and
"metadata" at a photograph API).

A string identifier indicating a specific resource at the RS (for example, a
patient identifier for a medical API or a bank account number for a financial API).

The types or levels of privilege being requested at the resource
(for example, a client instance asking for administrative-level access or access when the RO is
no longer online).

The following non-normative example describes three kinds of access (read, write, and delete) to
each of two different locations and two different data types (metadata and images) for a single
access token using the fictitious photo-api type definition.

While the exact semantics of interpreting the fields of an access request object are subject to the
definition of the type, it is expected that the access requested for each object in the array is the
cross-product of all fields of the object. That is to say, the object represents a request for all
actions listed to be used at all locations listed for all possible datatypes listed within the
object. Assuming the request above was granted, the client instance could assume that it would
be able to do a read action against the images on the first server as well as a delete action on
the metadata of the second server, or any other combination of these fields, using the same
access token.

To request a different combination of access, such as requesting one of the possible actions
against one of the possible locations and a different choice of possible actions against a
different one of the possible locations, the client instance can include multiple separate objects
in the resources array. The total access rights for the resulting access token are the union of all

"access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "delete"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 }
]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 113

objects. The following non-normative example uses the same fictitious photo-api type definition
to request a single access token with more specifically targeted access rights by using two
discrete objects within the request.

The access requested here is for read access to images on one server as well as write and delete
access for metadata on a different server (importantly, without requesting write or delete
access to images on the first server).

It is anticipated that API designers will use a combination of common fields defined in this
specification as well as fields specific to the API itself. The following non-normative example
shows the use of both common and API-specific fields as part of two different fictitious API type
values. The first access request includes the actions, locations, and datatypes fields specified
here as well as the API-specific geolocation field. The second access request includes the
actions and identifier fields specified here as well as the API-specific currency field.

"access": [
 {
 "type": "photo-api",
 "actions": [
 "read"
],
 "locations": [
 "https://server.example.net/"
],
 "datatypes": [
 "images"
]
 },
 {
 "type": "photo-api",
 "actions": [
 "write",
 "delete"
],
 "locations": [
 "https://resource.local/other"
],
 "datatypes": [
 "metadata"
]
 }
]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 114

If this request is approved, the resulting access token's access rights will be the union of the
requested types of access for each of the two APIs, just as above.

"access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
],
 "geolocation": [
 { lat: -32.364, lng: 153.207 },
 { lat: -35.364, lng: 158.207 }
]
 },
 {
 "type": "financial-transaction",
 "actions": [
 "withdraw"
],
 "identifier": "account-14-32-32-3",
 "currency": "USD"
 }
]

8.1. Requesting Resources by Reference
Instead of sending an object describing the requested resource (Section 8), access rights be
communicated as a string known to the AS representing the access being requested. Just like
access rights communicated as an object, access rights communicated as reference strings
indicate a specific access at a protected resource. In the following non-normative example, three
distinct resource access rights are being requested.

This value is opaque to the client instance and be any valid JSON string; therefore, it could
include spaces, Unicode characters, and properly escaped string sequences. However, in some
situations, the value is intended to be seen and understood by the client software's developer. In
such cases, the API designer choosing any such human-readable strings take steps to
ensure the string values are not easily confused by a developer, such as by limiting the strings to
easily disambiguated characters.

MAY

"access": [
 "read", "dolphin-metadata", "some other thing"
]

MAY

SHOULD

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 115

This functionality is similar in practice to OAuth 2.0's scope parameter , where a single
string represents the set of access rights requested by the client instance. As such, the reference
string could contain any valid OAuth 2.0 scope value, as in Appendix B.5. Note that the reference
string here is not bound to the same character restrictions as OAuth 2.0's scope definition.

A single access array include both object-type and string-type resource items. In this non-
normative example, the client instance is requesting access to a photo-api and financial-
transaction API type as well as the reference values of read, dolphin-metadata, and some
other thing.

The requested access is the union of all elements of the array, including both objects and
reference strings.

In order to facilitate the use of both object and reference strings to access the same kind of APIs,
the API designer can define a clear mapping between these forms. One possible approach for
choosing reference string values is to use the same value as the type parameter from the fully
specified object, with the API defining a set of default behaviors in this case. For example, an API
definition could declare the following string:

[RFC6749]

MAY

"access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "delete"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read",
 "dolphin-metadata",
 {
 "type": "financial-transaction",
 "actions": [
 "withdraw"
],
 "identifier": "account-14-32-32-3",
 "currency": "USD"
 },
 "some other thing"
]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 116

As being equivalent to the following fully defined object:

The exact mechanisms for relating reference strings is up to the API designer. These are enforced
by the AS, and the details are out of scope for this specification.

"access": [
 "photo-api"
]

"access": [
 {
 "type": "photo-api",
 "actions": ["read", "write", "delete"],
 "datatypes": ["metadata", "image"]
 }
]

grant_request_endpoint (string):

interaction_start_modes_supported (array of strings):

interaction_finish_methods_supported (array of strings):

9. Discovery
By design, GNAP minimizes the need for any pre-flight discovery. To begin a request, the client
instance only needs to know the grant endpoint of the AS (a single URI) and which keys it will use
to sign the request. Everything else can be negotiated dynamically in the course of the protocol.

However, the AS can have limits on its allowed functionality. If the client instance wants to
optimize its calls to the AS before making a request, it send an HTTP OPTIONS request to the
grant request endpoint to retrieve the server's discovery information. The AS respond with
a JSON document with Content-Type application/json containing a single object with the
following fields:

The location of the AS's grant request endpoint. The location
 be an absolute URL with a scheme component (which be "https"), a

host component, and optionally port, path, and query components and no fragment
components. This URL match the URL the client instance used to make the discovery
request. .

A list of the AS's interaction start
methods. The values of this list correspond to the possible values for the interaction start field
of the request (Section 2.5.1) and be values from the "GNAP Interaction Start Modes"
registry (Section 10.9). .

A list of the AS's interaction finish
methods. The values of this list correspond to the possible values for the method element of
the interaction finish field of the request (Section 2.5.2) and be values from the "GNAP
Interaction Finish Methods" registry (Section 10.10). .

MAY
MUST

MUST [RFC3986] MUST

MUST
REQUIRED

MUST
OPTIONAL

MUST
OPTIONAL

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 117

key_proofs_supported (array of strings):

sub_id_formats_supported (array of strings):

assertion_formats_supported (array of strings):

key_rotation_supported (boolean):

A list of the AS's supported key proofing
mechanisms. The values of this list correspond to possible values of the proof field of the key
section of the request (Section 7.1) and be values from the "GNAP Key Proofing
Methods" registry (Section 10.16). .

A list of the AS's supported Subject Identifier
formats. The values of this list correspond to possible values of the Subject Identifier field of
the request (Section 2.2) and be values from the "Subject Identifier Formats" registry

. .

A list of the AS's supported assertion
formats. The values of this list correspond to possible values of the subject assertion field of
the request (Section 2.2) and be values from the "GNAP Assertion Formats" registry
(Section 10.6). .

The boolean "true" indicates that rotation of access token
bound keys by the client (Section 6.1.1) is supported by the AS. The absence of this field or a
boolean "false" value indicates that this feature is not supported.

The information returned from this method is for optimization purposes only. The AS deny
any request, or any portion of a request, even if it lists a capability as supported. For example, if
a given client instance can be registered with the mtls key proofing mechanism but the AS also
returns other proofing methods from the discovery document, then the AS will still deny a
request from that client instance using a different proofing mechanism. Similarly, an AS with
key_rotation_supported set to "true" can still deny any request for rotating any access token's
key for a variety of reasons.

Additional fields can be defined in the "GNAP Authorization Server Discovery Fields" registry
(Section 10.18).

MUST
OPTIONAL

MUST
[Subj-ID-Formats] OPTIONAL

MUST
OPTIONAL

MAY

as_uri:

referrer:

9.1. RS-First Method of AS Discovery
If the client instance calls an RS without an access token or with an invalid access token, the RS

 be explicit about the fact that GNAP needs to be used to access the resource by
responding with the WWW-Authenticate header field and a GNAP challenge.

In some situations, the client instance might want to know with which specific AS it needs to
negotiate for access to that RS. The RS additionally return the following
parameters:

The URI of the grant endpoint of the GNAP AS. Used by the client instance to call the AS
to request an access token.

The URI of the GNAP RS. Sent by the client instance in the Referer header as part of
the grant request.

SHOULD

MAY OPTIONAL

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 118

access: An opaque access reference as defined in Section 8.1. be sufficient for at least the
action the client instance was attempting to take at the RS and allow additional access
rights as well. Sent by the client as an access right in the grant request.

The client instance then use both the referrer and access parameters in its access
token request. The client instance check that the referrer parameter is equal to the URI of
the RS using the simple string comparison method in .

The means for the RS to determine the value for the access reference are out of scope of this
specification, but some dynamic methods are discussed in .

When receiving the following response from the RS:

The client instance then makes a request to the as_uri as described in Section 2, with the value
of referrer passed as an HTTP Referer header field and the access reference passed unchanged
into the access array in the access_token portion of the request. The client instance
request additional resources and other information.

In the following non-normative example, the client instance is requesting a single access token
using the opaque access reference FWWIKYBQ6U56NL1 received from the RS in addition to the
dolphin-metadata that the client instance has been configured with out of band.

The client instance includes the Referer header field as a way for the AS to know that the process
is initiated through a discovery process at the RS.

MUST
MAY

SHOULD
MUST

Section 6.2.1 of [RFC3986]

[GNAP-RS]

NOTE: '\' line wrapping per RFC 8792

WWW-Authenticate: \
 GNAP as_uri=https://as.example/tx\
 ;access=FWWIKYBQ6U56NL1\
 ;referrer=https://rs.example

MAY

POST /tx HTTP/1.1
Host: as.example
Referer: https://rs.example/resource
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "FWWIKYBQ6U56NL1",
 "dolphin-metadata"
]
 },
 "client": "KHRS6X63AJ7C7C4AZ9AO"
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 119

https://rfc-editor.org/rfc/rfc3986#section-6.2.1

If issued, the resulting access token would contain sufficient access to be used at both referenced
resources.

Security considerations, especially related to the potential of a compromised RS (Section 11.37)
redirecting the requests of an otherwise properly authenticated client, need to be carefully
considered when allowing such a discovery process. This risk can be mitigated by an alternative
pre-registration process so that the client knows which AS protects which RS. There are also
privacy considerations related to revealing which AS is protecting a given resource; these are
discussed in Section 12.4.1.

9.2. Dynamic Grant Endpoint Discovery
Additional methods of discovering the appropriate grant endpoint for a given application are
outside the scope of this specification. This limitation is intentional, as many applications rely on
static configuration between the client instance and AS, as is common in OAuth 2.0. However, the
dynamic nature of GNAP makes it a prime candidate for other extensions defining methods for
discovery of the appropriate AS grant endpoint at runtime. Advanced use cases could define
contextual methods for securely providing this endpoint to the client instance. Furthermore,
GNAP's design intentionally requires the client instance to only know the grant endpoint and not
additional parameters, since other functions and values can be disclosed and negotiated during
the grant process.

10. IANA Considerations
IANA has added values to existing registries as well as created 16 registries for GNAP

 and populated those registries with initial values as described in this section.

All use of value typing is based on data types in and be one of the following:
number, object, string, boolean, or array. When the type is array, the contents of the array
be specified, as in "array of objects" when one subtype is allowed or "array of strings/objects"
when multiple simultaneous subtypes are allowed. When the type is object, the structure of the
object be specified in the definition. If a parameter is available in different types, each type

 be registered separately.

General guidance for extension parameters is found in Appendix D.

[GNAP-
REG]

[RFC8259] MUST
MUST

MUST
SHOULD

Authentication Scheme Name:

Reference:

10.1. HTTP Authentication Scheme Registration
IANA has registered of the following scheme in the "HTTP Authentication Schemes" registry

 defined in :

GNAP

Section 7.2 of RFC 9635

[Auth-Schemes] Section 18.5 of [HTTP]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 120

https://rfc-editor.org/rfc/rfc9110#section-18.5

10.2. Media Type Registration
Per this section, IANA has registered the following media types in the "Media Types"
registry as described in .

[RFC2046]
[MediaTypes] [RFC6838]

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:
Magic number(s):
File extension(s):
Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change Controller:

10.2.1. application/gnap-binding-jwsd

This media type indicates that the content is a GNAP message to be bound with a detached JWS
mechanism.

application

gnap-binding-jwsd

N/A

N/A

binary

See Section 11 of RFC 9635.

N/A

RFC 9635

GNAP

N/A

N/A
N/A

N/A
N/A

IETF GNAP Working Group
(txauth@ietf.org)

COMMON

none

IETF GNAP Working Group (txauth@ietf.org)

IETF

10.2.2. application/gnap-binding-jws

This media type indicates that the content is a GNAP message to be bound with an attached JWS
mechanism.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 121

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:
Magic number(s):
File extension(s):
Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change Controller:

application

gnap-binding-jws

N/A

N/A

binary

See Section 11 of RFC 9635.

N/A

RFC 9635

GNAP

N/A

N/A
N/A

N/A
N/A

IETF GNAP Working Group
(txauth@ietf.org)

COMMON

none

IETF GNAP Working Group (txauth@ietf.org)

IETF

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

10.2.3. application/gnap-binding-rotation-jwsd

This media type indicates that the content is a GNAP token rotation message to be bound with a
detached JWS mechanism.

application

gnap-binding-rotation-jwsd

N/A

N/A

binary

See Section 11 of RFC 9635.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 122

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:
Magic number(s):
File extension(s):
Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change Controller:

N/A

RFC 9635

GNAP

N/A

N/A
N/A

N/A
N/A

IETF GNAP Working Group
(txauth@ietf.org)

COMMON

none

IETF GNAP Working Group (txauth@ietf.org)

IETF

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

10.2.4. application/gnap-binding-rotation-jws

This media type indicates that the content is a GNAP token rotation message to be bound with an
attached JWS mechanism.

application

gnap-binding-rotation-jws

N/A

N/A

binary

See Section 11 of RFC 9635.

N/A

RFC 9635

GNAP

N/A

N/A

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 123

Magic number(s):
File extension(s):
Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change Controller:

N/A
N/A

N/A

IETF GNAP Working Group
(txauth@ietf.org)

COMMON

none

IETF GNAP Working Group (txauth@ietf.org)

IETF

10.3. GNAP Grant Request Parameters
This document defines a GNAP grant request, for which IANA has created and maintains a new
registry titled "GNAP Grant Request Parameters". Initial values for this registry are given in
Section 10.3.2. Future assignments and modifications to existing assignments are to be made
through the Specification Required registration policy .

The designated expert (DE) is expected to ensure the following:

All registrations follow the template presented in Section 10.3.1.
The request parameter's definition is sufficiently orthogonal to existing functionality
provided by existing parameters.
Registrations for the same name with different types are sufficiently close in functionality so
as not to cause confusion for developers.
The request parameter's definition specifies the expected behavior of the AS in response to
the request parameter for each potential state of the grant request.

[RFC8126]

•
•

•

•

10.3.1. Registration Template

Name:
An identifier for the parameter.

Type:
The JSON type allowed for the value.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 124

10.3.2. Initial Contents

Name Type Reference

access_token object Section 2.1.1 of RFC 9635

access_token array of objects Section 2.1.2 of RFC 9635

subject object Section 2.2 of RFC 9635

client object Section 2.3 of RFC 9635

client string Section 2.3.1 of RFC 9635

user object Section 2.4 of RFC 9635

user string Section 2.4.1 of RFC 9635

interact object Section 2.5 of RFC 9635

interact_ref string Section 5.1 of RFC 9635

Table 1

10.4. GNAP Access Token Flags
This document defines GNAP access token flags, for which IANA has created and maintains a
new registry titled "GNAP Access Token Flags". Initial values for this registry are given in Section
10.4.2. Future assignments and modifications to existing assignments are to be made through the
Specification Required registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.4.1.
The flag specifies whether it applies to requests for tokens to the AS, responses with tokens
from the AS, or both.

[RFC8126]

•
•

10.4.1. Registration Template

Name:
An identifier for the parameter.

Allowed Use:
Where the flag is allowed to occur. Possible values are "Request", "Response", and "Request,
Response".

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 125

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.4.2. Initial Contents

Name Allowed Use Reference

bearer Request, Response Sections 2.1.1 and 3.2.1 of RFC 9635

durable Response Section 3.2.1 of RFC 9635

Table 2

10.5. GNAP Subject Information Request Fields
This document defines a means to request subject information from the AS to the client instance,
for which IANA has created and maintains a new registry titled "GNAP Subject Information
Request Fields". Initial values for this registry are given in Section 10.5.2. Future assignments and
modifications to existing assignments are to be made through the Specification Required
registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.5.1.
Registrations for the same name with different types are sufficiently close in functionality so
as not to cause confusion for developers.

[RFC8126]

•
•

10.5.1. Registration Template

Name:
An identifier for the parameter.

Type:
The JSON type allowed for the value.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.5.2. Initial Contents

Name Type Reference

sub_id_formats array of strings Section 2.2 of RFC 9635

assertion_formats array of strings Section 2.2 of RFC 9635

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 126

Name Type Reference

sub_ids array of objects Section 2.2 of RFC 9635

Table 3

10.6. GNAP Assertion Formats
This document defines a means to pass identity assertions between the AS and client instance,
for which IANA has created and maintains a new registry titled "GNAP Assertion Formats". Initial
values for this registry are given in Section 10.6.2. Future assignments and modifications to
existing assignments are to be made through the Specification Required registration policy

.

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.6.1.
The definition specifies the serialization format of the assertion value as used within GNAP.

[RFC8126]

•
•

10.6.1. Registration Template

Name:
An identifier for the assertion format.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.6.2. Initial Contents

Name Reference

id_token Section 3.4.1 of RFC 9635

saml2 Section 3.4.1 of RFC 9635

Table 4

10.7. GNAP Client Instance Fields
This document defines a means to send information about the client instance, for which IANA
has created and maintains a new registry titled "GNAP Client Instance Fields". Initial values for
this registry are given in Section 10.7.2. Future assignments and modifications to existing
assignments are to be made through the Specification Required registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.7.1.

[RFC8126]

•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 127

Registrations for the same name with different types are sufficiently close in functionality so
as not to cause confusion for developers.

•

10.7.1. Registration Template

Name:
An identifier for the parameter.

Type:
The JSON type allowed for the value.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.7.2. Initial Contents

Name Type Reference

key object Section 7.1 of RFC 9635

key string Section 7.1.1 of RFC 9635

class_id string Section 2.3 of RFC 9635

display object Section 2.3.2 of RFC 9635

Table 5

10.8. GNAP Client Instance Display Fields
This document defines a means to send end-user-facing displayable information about the client
instance, for which IANA has created and maintains a new registry titled "GNAP Client Instance
Display Fields". Initial values for this registry are given in Section 10.8.2. Future assignments and
modifications to existing assignments are to be made through the Specification Required
registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.8.1.
Registrations for the same name with different types are sufficiently close in functionality so
as not to cause confusion for developers.

[RFC8126]

•
•

10.8.1. Registration Template

Name:
An identifier for the parameter.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 128

Type:
The JSON type allowed for the value.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.8.2. Initial Contents

Name Type Reference

name string Section 2.3.2 of RFC 9635

uri string Section 2.3.2 of RFC 9635

logo_uri string Section 2.3.2 of RFC 9635

Table 6

10.9. GNAP Interaction Start Modes
This document defines a means for the client instance to begin interaction between the end user
and the AS, for which IANA has created and maintains a new registry titled "GNAP Interaction
Start Modes". Initial values for this registry are given in Section 10.9.2. Future assignments and
modifications to existing assignments are to be made through the Specification Required
registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.9.1.
Registrations for the same name with different types are sufficiently close in functionality so
as not to cause confusion for developers.
Any registration using an "object" type declares all additional parameters, their optionality,
and their purpose.
The start mode clearly defines what actions the client is expected to take to begin interaction,
what the expected user experience is, and any security considerations for this
communication from either party.
The start mode documents incompatibilities with other start modes or finish methods, if
applicable.
The start mode provides enough information to uniquely identify the grant request during
the interaction. For example, in the redirect and app modes, this is done using a unique URI
(including its parameters). In the user_code and user_code_uri modes, this is done using
the value of the user code.

[RFC8126]

•
•

•

•

•

•

10.9.1. Registration Template

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 129

Mode:
An identifier for the interaction start mode.

Type:
The JSON type for the value, either "string" or "object", as described in Section 2.5.1.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.9.2. Initial Contents

Mode Type Reference

redirect string Section 2.5.1.1 of RFC 9635

app string Section 2.5.1.2 of RFC 9635

user_code string Section 2.5.1.3 of RFC 9635

user_code_uri string Section 2.5.1.4 of RFC 9635

Table 7

10.10. GNAP Interaction Finish Methods
This document defines a means for the client instance to be notified of the end of interaction
between the end user and the AS, for which IANA has created and maintains a new registry titled
"GNAP Interaction Finish Methods". Initial values for this registry are given in Section 10.10.2.
Future assignments and modifications to existing assignments are to be made through the
Specification Required registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.10.1.
All finish methods clearly define what actions the AS is expected to take, what listening
methods the client instance needs to enable, and any security considerations for this
communication from either party.
All finish methods document incompatibilities with any start modes, if applicable.

[RFC8126]

•
•

•

10.10.1. Registration Template

Method:
An identifier for the interaction finish method.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 130

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.10.2. Initial Contents

Method Reference

redirect Section 2.5.2.1 of RFC 9635

push Section 2.5.2.2 of RFC 9635

Table 8

10.11. GNAP Interaction Hints
This document defines a set of hints that a client instance can provide to the AS to facilitate
interaction with the end user, for which IANA has created and maintains a new registry titled
"GNAP Interaction Hints". Initial values for this registry are given in Section 10.11.2. Future
assignments and modifications to existing assignments are to be made through the Specification
Required registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.11.1.
All interaction hints clearly document the expected behaviors of the AS in response to the
hint, and an AS not processing the hint does not impede the operation of the AS or client
instance.

[RFC8126]

•
•

10.11.1. Registration Template

Name:
An identifier for the parameter.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.11.2. Initial Contents

Name Reference

ui_locales Section 2.5.3 of RFC 9635

Table 9

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 131

10.12. GNAP Grant Response Parameters
This document defines a GNAP grant response, for which IANA has created and maintains a new
registry titled "GNAP Grant Response Parameters". Initial values for this registry are given in
Section 10.12.2. Future assignments and modifications to existing assignments are to be made
through the Specification Required registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.12.1.
The response parameter's definition is sufficiently orthogonal to existing functionality
provided by existing parameters.
Registrations for the same name with different types are sufficiently close in functionality so
as not to cause confusion for developers.
The response parameter's definition specifies grant states for which the client instance can
expect this parameter to appear in a response message.

[RFC8126]

•
•

•

•

10.12.1. Registration Template

Name:
An identifier for the parameter.

Type:
The JSON type allowed for the value.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.12.2. Initial Contents

Name Type Reference

continue object Section 3.1 of RFC 9635

access_token object Section 3.2.1 of RFC 9635

access_token array of objects Section 3.2.2 of RFC 9635

interact object Section 3.3 of RFC 9635

subject object Section 3.4 of RFC 9635

instance_id string Section 3.5 of RFC 9635

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 132

Name Type Reference

error object Section 3.6 of RFC 9635

Table 10

10.13. GNAP Interaction Mode Responses
This document defines a means for the AS to provide the client instance with information that is
required to complete a particular interaction mode, for which IANA has created and maintains a
new registry titled "GNAP Interaction Mode Responses". Initial values for this registry are given
in Section 10.13.2. Future assignments and modifications to existing assignments are to be made
through the Specification Required registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.13.1.
If the name of the registration matches the name of an interaction start mode, the response
parameter is unambiguously associated with the interaction start mode of the same name.

[RFC8126]

•
•

10.13.1. Registration Template

Name:
An identifier for the parameter.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.13.2. Initial Contents

Name Reference

redirect Section 3.3 of RFC 9635

app Section 3.3 of RFC 9635

user_code Section 3.3 of RFC 9635

user_code_uri Section 3.3 of RFC 9635

finish Section 3.3 of RFC 9635

expires_in Section 3.3 of RFC 9635

Table 11

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 133

10.14. GNAP Subject Information Response Fields
This document defines a means to return subject information from the AS to the client instance,
for which IANA has created and maintains a new registry titled "GNAP Subject Information
Response Fields". Initial values for this registry are given in Section 10.14.2. Future assignments
and modifications to existing assignments are to be made through the Specification Required
registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.14.1.
Registrations for the same name with different types are sufficiently close in functionality so
as not to cause confusion for developers.

[RFC8126]

•
•

10.14.1. Registration Template

Name:
An identifier for the parameter.

Type:
The JSON type allowed for the value.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.14.2. Initial Contents

Name Type Reference

sub_ids array of objects Section 3.4 of RFC 9635

assertions array of objects Section 3.4 of RFC 9635

updated_at string Section 3.4 of RFC 9635

Table 12

10.15. GNAP Error Codes
This document defines a set of errors that the AS can return to the client instance, for which
IANA has created and maintains a new registry titled "GNAP Error Codes". Initial values for this
registry are given in Section 10.15.2. Future assignments and modifications to existing
assignments are to be made through the Specification Required registration policy .[RFC8126]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 134

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.15.1.
The error response is sufficiently unique from other errors to provide actionable
information to the client instance.
The definition of the error response specifies all conditions in which the error response is
returned and the client instance's expected action.

•
•

•

10.15.1. Registration Template

Error:
A unique string code for the error.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.15.2. Initial Contents

Error Reference

invalid_request Section 3.6 of RFC 9635

invalid_client Section 3.6 of RFC 9635

invalid_interaction Section 3.6 of RFC 9635

invalid_flag Section 3.6 of RFC 9635

invalid_rotation Section 3.6 of RFC 9635

key_rotation_not_supported Section 3.6 of RFC 9635

invalid_continuation Section 3.6 of RFC 9635

user_denied Section 3.6 of RFC 9635

request_denied Section 3.6 of RFC 9635

unknown_user Section 3.6 of RFC 9635

unknown_interaction Section 3.6 of RFC 9635

too_fast Section 3.6 of RFC 9635

too_many_attempts Section 3.6 of RFC 9635

Table 13

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 135

10.16. GNAP Key Proofing Methods
This document defines methods that the client instance can use to prove possession of a key, for
which IANA has created and maintains a new registry titled "GNAP Key Proofing Methods".
Initial values for this registry are given in Section 10.16.2. Future assignments and modifications
to existing assignments are to be made through the Specification Required registration policy

.

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.16.1.
Registrations for the same name with different types are sufficiently close in functionality so
as not to cause confusion for developers.
The proofing method provides sufficient coverage of and binding to the protocol messages to
which it is applied.
The proofing method definition clearly enumerates how all requirements in Section 7.3 are
fulfilled by the definition.

[RFC8126]

•
•

•

•

10.16.1. Registration Template

Method:
A unique string code for the key proofing method.

Type:
The JSON type allowed for the value.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.16.2. Initial Contents

Method Type Reference

httpsig string Section 7.3.1 of RFC 9635

httpsig object Section 7.3.1 of RFC 9635

mtls string Section 7.3.2 of RFC 9635

jwsd string Section 7.3.3 of RFC 9635

jws string Section 7.3.4 of RFC 9635

Table 14

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 136

10.17. GNAP Key Formats
This document defines formats for a public key value, for which IANA has created and maintains
a new registry titled "GNAP Key Formats". Initial values for this registry are given in Section
10.17.2. Future assignments and modifications to existing assignments are to be made through
the Specification Required registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.17.1.
The key format specifies the structure and serialization of the key material.

[RFC8126]

•
•

10.17.1. Registration Template

Format:
A unique string code for the key format.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.17.2. Initial Contents

Format Reference

jwk Section 7.1 of RFC 9635

cert Section 7.1 of RFC 9635

cert#S256 Section 7.1 of RFC 9635

Table 15

10.18. GNAP Authorization Server Discovery Fields
This document defines a discovery document for an AS, for which IANA has created and
maintains a new registry titled "GNAP Authorization Server Discovery Fields". Initial values for
this registry are given in Section 10.18.2. Future assignments and modifications to existing
assignments are to be made through the Specification Required registration policy .

The DE is expected to ensure the following:

All registrations follow the template presented in Section 10.18.1.
Registrations for the same name with different types are sufficiently close in functionality so
as not to cause confusion for developers.

[RFC8126]

•
•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 137

The values in the discovery document are sufficient to provide optimization and hints to the
client instance, but knowledge of the discovered value is not required for starting a
transaction with the AS.

•

10.18.1. Registration Template

Name:
An identifier for the parameter.

Type:
The JSON type allowed for the value.

Reference:
Reference to one or more documents that specify the value, preferably including a URI that
can be used to retrieve a copy of the document(s). An indication of the relevant sections may
also be included but is not required.

10.18.2. Initial Contents

Name Type Reference

grant_request_endpoint string Section 9 of RFC 9635

interaction_start_modes_supported array of strings Section 9 of RFC 9635

interaction_finish_methods_supported array of strings Section 9 of RFC 9635

key_proofs_supported array of strings Section 9 of RFC 9635

sub_id_formats_supported array of strings Section 9 of RFC 9635

assertion_formats_supported array of strings Section 9 of RFC 9635

key_rotation_supported boolean Section 9 of RFC 9635

Table 16

11. Security Considerations
In addition to the normative requirements in this document, implementors are strongly
encouraged to consider these additional security considerations in implementations and
deployments of GNAP.

11.1. TLS Protection in Transit
All requests in GNAP made over untrusted network connections have to be made over TLS as
outlined in to protect the contents of the request and response from manipulation and
interception by an attacker. This includes all requests from a client instance to the AS, all
requests from the client instance to an RS, and any requests back to a client instance such as the

[BCP195]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 138

push-based interaction finish method. Additionally, all requests between a browser and other
components, such as during redirect-based interaction, need to be made over TLS or use
equivalent protection such as a network connection local to the browser ("localhost").

Even though requests from the client instance to the AS are signed, the signature method alone
does not protect the request from interception by an attacker. TLS protects the response as well
as the request, preventing an attacker from intercepting requested information as it is returned.
This is particularly important in this specification for security artifacts such as nonces and for
personal information such as subject information.

The use of key-bound access tokens does not negate the requirement for protecting calls to the RS
with TLS. The keys and signatures associated with a bound access token will prevent an attacker
from using a stolen token; however, without TLS, an attacker would be able to watch the data
being sent to the RS and returned from the RS during legitimate use of the client instance under
attack. Additionally, without TLS, an attacker would be able to profile the calls made between the
client instance and RS, possibly gaining information about the functioning of the API between
the client software and RS software that would otherwise be unknown to the attacker.

Note that connections from the end user and RO's browser also need to be protected with TLS.
This applies during initial redirects to an AS's components during interaction, during any
interaction with the RO, and during any redirect back to the client instance. Without TLS
protection on these portions of the process, an attacker could wait for a valid request to start and
then take over the RO's interaction session.

11.2. Signing Requests from the Client Software
Even though all requests in GNAP need to be transmitted over TLS or its equivalent, the use of
TLS alone is not sufficient to protect all parts of a multi-party and multi-stage protocol like GNAP,
and TLS is not targeted at tying multiple requests to each other over time. To account for this,
GNAP makes use of message-level protection and key presentation mechanisms that strongly
associate a request with a key held by the client instance (see Section 7).

During the initial request from a client instance to the AS, the client instance has to identify and
prove possession of a cryptographic key. If the key is known to the AS, e.g., previously registered
or dereferenceable to a trusted source, the AS can associate a set of policies to the client instance
identified by the key. Without the requirement that the client instance prove that it holds that
key, the AS could not trust that the connection came from any particular client and could not
apply any associated policies.

Even more importantly, the client instance proving possession of a key on the first request allows
the AS to associate future requests with each other by binding all future requests in that
transaction to the same key. The access token used for grant continuation is bound to the same
key and proofing mechanism used by the client instance in its initial request; this means that the
client instance needs to prove possession of that same key in future requests, which allows the
AS to be sure that the same client instance is executing the follow-ups for a given ongoing grant
request. Therefore, the AS has to ensure that all subsequent requests for a grant are associated
with the same key that started the grant or with the most recent rotation of that key. This need

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 139

holds true even if the initial key is previously unknown to the AS, such as would be the case
when a client instance creates an ephemeral key for its request. Without this ongoing
association, an attacker would be able to impersonate a client instance in the midst of a grant
request, potentially stealing access tokens and subject information with impunity.

Additionally, all access tokens in GNAP default to be associated with the key that was presented
during the grant request that created the access token. This association allows an RS to know that
the presenter of the access token is the same party that the token was issued to, as identified by
their keys. While non-bound bearer tokens are an option in GNAP, these types of tokens have
their own trade-offs, which are discussed in Section 11.9.

TLS functions at the transport layer, ensuring that only the parties on either end of that
connection can read the information passed along that connection. Each time a new connection
is made, such as for a new HTTP request, a new trust that is mostly unrelated to previous
connections is re-established. While modern TLS does make use of session resumption, this still
needs to be augmented with authentication methods to determine the identity of parties on the
connections. In other words, it is not possible with TLS alone to know that the same party is
making a set of calls over time, since each time a new TLS connection is established, both the
client and the server (or the server only when using MTLS (Section 7.3.2)) have to validate the
other party's identity. Such a verification can be achieved via methods described in ,
but these are not enough to establish the identity of the client instance in many cases.

To counter this, GNAP defines a set of key binding methods in Section 7.3 that allows
authentication and proof of possession by the caller, which is usually the client instance. These
methods are intended to be used in addition to TLS on all connections.

[RFC9525]

11.3. MTLS Message Integrity
The MTLS key proofing mechanism (Section 7.3.2) provides a means for a client instance to
present a key using a certificate at the TLS layer. Since TLS protects the entire HTTP message in
transit, verification of the TLS client certificate presented with the message provides a sufficient
binding between the two. However, since TLS is functioning at a separate layer from HTTP, there
is no direct connection between the TLS key presentation and the message itself, other than the
fact that the message was presented over the TLS channel. That is to say, any HTTP message can
be presented over the TLS channel in question with the same level of trust. The verifier is
responsible for ensuring the key in the TLS client certificate is the one expected for a particular
request. For example, if the request is a grant request (Section 2), the AS needs to compare the
TLS client certificate presented at the TLS layer to the key identified in the request content itself
(either by value or through a referenced identifier).

Furthermore, the prevalence of the TLS terminating reverse proxy (TTRP) pattern in
deployments adds a wrinkle to the situation. In this common pattern, the TTRP validates the TLS
connection and then forwards the HTTP message contents onward to an internal system for
processing. The system processing the HTTP message no longer has access to the original TLS
connection's information and context. To compensate for this, the TTRP could inject the TLS
client certificate into the forwarded request using the HTTP Client-Cert header field ,
giving the downstream system access to the certificate information. The TTRP has to be trusted to

[RFC9111]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 140

provide accurate certificate information, and the connection between the TTRP and the
downstream system also has to be protected. The TTRP could provide some additional assurance,
for example, by adding its own signature to the Client-Cert header field using HTTP message
signatures . This signature would be effectively ignored by GNAP (since it would not
use GNAP's tag parameter value) but would be understood by the downstream service as part of
its deployment.

Additional considerations for different types of deployment patterns and key distribution
mechanisms for MTLS are found in Section 11.4.

[RFC9421]

11.4. MTLS Deployment Patterns
GNAP does not specify how a client instance's keys could be made known to the AS ahead of time.
The Public Key Infrastructure (PKI) can be used to manage the keys used by client instances
when calling the AS, allowing the AS to trust a root key from a trusted authority. This method is
particularly relevant to the MTLS key proofing method, where the client instance presents its
certificate to the AS as part of the TLS connection. An AS using PKI to validate the MTLS
connection would need to ensure that the presented certificate was issued by a trusted certificate
authority before allowing the connection to continue. PKI-based certificates would allow a key to
be revoked and rotated through management at the certificate authority without requiring
additional registration or management at the AS. The PKI required to manage mutually
authenticated TLS has historically been difficult to deploy, especially at scale, but it remains an
appropriate solution for systems where the required management overhead is not an
impediment.

MTLS in GNAP need not use a PKI backing, as self-signed certificates and certificates from
untrusted authorities can still be presented as part of a TLS connection. In this case, the verifier
would validate the connection but accept whatever certificate was presented by the client
software. This specific certificate can then be bound to all future connections from that client
software by being bound to the resulting access tokens, in a trust-on-first-use pattern. See Section
11.3 for more considerations on MTLS as a key proofing mechanism.

11.5. Protection of Client Instance Key Material
Client instances are identified by their unique keys, and anyone with access to a client instance's
key material will be able to impersonate that client instance to all parties. This is true for both
calls to the AS as well as calls to an RS using an access token bound to the client instance's unique
key. As a consequence, it is of utmost importance for a client instance to protect its private key
material.

Different types of client software have different methods for creating, managing, and registering
keys. GNAP explicitly allows for ephemeral clients such as single-page applications (SPAs) and
single-user clients (such as mobile applications) to create and present their own keys during the
initial grant request without any explicit pre-registration step. The client software can securely
generate a key pair on the device and present the public key, along with proof of holding the
associated private key, to the AS as part of the initial request. To facilitate trust in these
ephemeral keys, GNAP further allows for an extensible set of client information to be passed

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 141

with the request. This information can include device posture and third-party attestations of the
client software's provenance and authenticity, depending on the needs and capabilities of the
client software and its deployment.

From GNAP's perspective, each distinct key is a different client instance. However, multiple client
instances can be grouped together by an AS policy and treated similarly to each other. For
instance, if an AS knows of several different keys for different servers within a cluster, the AS
can decide that authorization of one of these servers applies to all other servers within the
cluster. An AS that chooses to do this needs to be careful with how it groups different client keys
together in its policy, since the breach of one instance would have direct effects on the others in
the cluster.

Additionally, if an end user controls multiple instances of a single type of client software, such as
having an application installed on multiple devices, each of these instances is expected to have a
separate key and be issued separate access tokens. However, if the AS is able to group these
separate instances together as described above, it can streamline the authorization process for
new instances of the same client software. For example, if two client instances can present proof
of a valid installation of a piece of client software, the AS would be able to associate the approval
of the first instance of this software to all related instances. The AS could then choose to bypass
an explicit prompt of the RO for approval during authorization, since such approval has already
been given. An AS doing such a process would need to take assurance measures that the different
instances are in fact correlated and authentic, as well as ensure that the expected RO is in control
of the client instance.

Finally, if multiple instances of client software each have the same key, then from GNAP's
perspective, these are functionally the same client instance as GNAP has no reasonable way to
differentiate between them. This situation could happen if multiple instances within a cluster
can securely share secret information among themselves. Even though there are multiple copies
of the software, the shared key makes these copies all present as a single instance. It is
considered bad practice to share keys between copies of software unless they are very tightly
integrated with each other and can be closely managed. It is particularly bad practice to allow an
end user to copy keys between client instances and to willingly use the same key in multiple
instances.

11.6. Protection of Authorization Server
The AS performs critical functions in GNAP, including authenticating client software, managing
interactions with end users to gather consent and provide notice, and issuing access tokens for
client instances to present to RSs. As such, protecting the AS is central to any GNAP deployment.

If an attacker is able to gain control over an AS, they would be able to create fraudulent tokens
and manipulate registration information to allow for malicious clients. These tokens and clients
would be trusted by other components in the ecosystem under the protection of the AS.

If the AS uses signed access tokens, an attacker in control of the AS's signing keys would be able
to manufacture fraudulent tokens for use at RSs under the protection of the AS.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 142

If an attacker is able to impersonate an AS, they would be able to trick legitimate client instances
into making signed requests for information that could potentially be proxied to a real AS. To
combat this, all communications to the AS need to be made over TLS or its equivalent, and the
software making the connection has to validate the certificate chain of the host it is connecting
to.

Consequently, protecting, monitoring, and auditing the AS is paramount to preserving the
security of a GNAP-protected ecosystem. The AS presents attackers with a valuable target for
attack. Fortunately, the core focus and function of the AS is to provide security for the ecosystem,
unlike the RS whose focus is to provide an API or the client software whose focus is to access the
API.

11.7. Symmetric and Asymmetric Client Instance Keys
Many of the cryptographic methods used by GNAP for key proofing can support both asymmetric
and symmetric cryptography, and they can be extended to use a wide variety of mechanisms.
Implementors will find the available guidelines on cryptographic key management provided in

 useful. While symmetric cryptographic systems have some benefits in speed and
simplicity, they have a distinct drawback -- both parties need access to the same key in order to
do both signing and verification of the message. When more than two parties share the same
symmetric key, data origin authentication is not provided. Any party that knows the symmetric
key can compute a valid MAC; therefore, the contents could originate from any one of the parties.

Use of symmetric cryptography means that when the client instance calls the AS to request a
token, the AS needs to know the exact value of the client instance's key (or be able to derive it) in
order to validate the key proof signature. With asymmetric keys, the client needs to only send its
public key to the AS to allow for verification that the client holds the associated private key,
regardless of whether or not that key was pre-registered with the AS.

Symmetric keys also have the expected advantage of providing better protection against
quantum threats in the future. Also, these types of keys (and their secure derivations) are widely
supported among many cloud-based key management systems.

When used to bind to an access token, a key value must be known by the RS in order to validate
the proof signature on the request. Common methods for communicating these proofing keys
include putting information in a structured access token and allowing the RS to look up the
associated key material against the value of the access token. With symmetric cryptography, both
of these methods would expose the signing key to the RS and, in the case of a structured access
token, potentially to any party that can see the access token itself unless the token's payload has
been encrypted. Any of these parties would then be able to make calls using the access token by
creating a valid signature using the shared key. With asymmetric cryptography, the RS needs to
only know the public key associated with the token in order to validate the request; therefore,
the RS cannot create any new signed calls.

While both signing approaches are allowed, GNAP treats these two classes of keys somewhat
differently. Only the public portion of asymmetric keys are allowed to be sent by value in
requests to the AS when establishing a connection. Since sending a symmetric key (or the private

[RFC4107]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 143

portion of an asymmetric key) would expose the signing material to any parties on the request
path, including any attackers, sending these kinds of keys by value is prohibited. Symmetric keys
can still be used by client instances, but only if the client instance can send a reference to the key
and not its value. This approach allows the AS to use pre-registered symmetric keys as well as
key derivation schemes to take advantage of symmetric cryptography without requiring key
distribution at runtime, which would expose the keys in transit.

Both the AS and client software can use systems such as hardware security modules to
strengthen their key security storage and generation for both asymmetric and symmetric keys
(see also Section 7.1.2).

11.8. Generation of Access Tokens
The contents of access tokens need to be such that only the generating AS would be able to create
them, and the contents cannot be manipulated by an attacker to gain different or additional
access rights.

One method for accomplishing this is to use a cryptographically random value for the access
token, generated by the AS using a secure randomization function with sufficiently high entropy.
The odds of an attacker guessing the output of the randomization function to collide with a valid
access token are exceedingly small, and even then, the attacker would not have any control over
what the access token would represent since that information would be held close by the AS.

Another method for accomplishing this is to use a structured token that is cryptographically
signed. In this case, the payload of the access token declares to the RS what the token is good for,
but the signature applied by the AS during token generation covers this payload. Only the AS can
create such a signature; therefore, only the AS can create such a signed token. The odds of an
attacker being able to guess a signature value with a useful payload are exceedingly small. This
technique only works if all targeted RSs check the signature of the access token. Any RS that does
not validate the signature of all presented tokens would be susceptible to injection of a modified
or falsified token. Furthermore, an AS has to carefully protect the keys used to sign access tokens,
since anyone with access to these signing keys would be able to create seemingly valid access
tokens using them.

11.9. Bearer Access Tokens
Bearer access tokens can be used by any party that has access to the token itself, without any
additional information. As a natural consequence, any RS that a bearer token is presented to has
the technical capability of presenting that bearer token to another RS, as long as the token is
valid. It also means that any party that is able to capture the token value in storage or in transit is
able to use the access token. While bearer tokens are inherently simpler, this simplicity has been
misapplied and abused in making needlessly insecure systems. The downsides of bearer tokens
have become more pertinent lately as stronger authentication systems have caused some attacks
to shift to target tokens and APIs.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 144

In GNAP, key-bound access tokens are the default due to their higher security properties. While
bearer tokens can be used in GNAP, their use should be limited to cases where the simplicity
benefits outweigh the significant security downsides. One common deployment pattern is to use
a gateway that takes in key-bound tokens on the outside and verifies the signatures on the
incoming requests but translates the requests to a bearer token for use by trusted internal
systems. The bearer tokens are never issued or available outside of the internal systems, greatly
limiting the exposure of the less-secure tokens but allowing the internal deployment to benefit
from the advantages of bearer tokens.

11.10. Key-Bound Access Tokens
Key-bound access tokens, as the name suggests, are bound to a specific key and must be
presented along with proof of that key during use. The key itself is not presented at the same
time as the token, so even if a token value is captured, it cannot be used to make a new request.
This is particularly true for an RS, which will see the token value but will not see the keys used to
make the request (assuming asymmetric cryptography is in use, see Section 11.7).

Key-bound access tokens provide this additional layer of protection only when the RS checks the
signature of the message presented with the token. Acceptance of an invalid presentation
signature, or failure to check the signature entirely, would allow an attacker to make calls with a
captured access token without having access to the related signing key material.

In addition to validating the signature of the presentation message itself, the RS also needs to
ensure that the signing key used is appropriate for the presented token. If an RS does not ensure
that the right keys were used to sign a message with a specific token, an attacker would be able to
capture an access token and sign the request with their own keys, thereby negating the benefits
of using key-bound access tokens.

The RS also needs to ensure that sufficient portions of the message are covered by the signature.
Any items outside the signature could still affect the API's processing decisions, but these items
would not be strongly bound to the token presentation. As such, an attacker could capture a valid
request and then manipulate portions of the request outside of the signature envelope in order
to cause unwanted actions at the protected API.

Some key-bound tokens are susceptible to replay attacks, depending on the details of the signing
method used. Therefore, key proofing mechanisms used with access tokens need to use replay-
protection mechanisms covered under the signature such as a per-message nonce, a reasonably
short time validity window, or other uniqueness constraints. The details of using these will vary
depending on the key proofing mechanism in use. For example, HTTP message signatures have
both a created and nonce signature parameter as well as the ability to cover significant portions
of the HTTP message. All of these can be used to limit the attack surface.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 145

11.11. Exposure of End-User Credentials to Client Instance
As a delegation protocol, one of the main goals of GNAP is to prevent the client software from
being exposed to any credentials or information about the end user or RO as a requirement of
the delegation process. By using the variety of interaction mechanisms, the RO can interact with
the AS without ever authenticating to the client software and without the client software having
to impersonate the RO through replay of their credentials.

Consequently, no interaction methods defined in this specification require the end user to enter
their credentials, but it is technologically possible for an extension to be defined to carry such
values. Such an extension would be dangerous as it would allow rogue client software to directly
collect, store, and replay the end user's credentials outside of any legitimate use within a GNAP
request.

The concerns of such an extension could be mitigated through use of a challenge and response
unlocked by the end user's credentials. For example, the AS presents a challenge as part of an
interaction start method, and the client instance signs that challenge using a key derived from a
password presented by the end user. It would be possible for the client software to collect this
password in a secure software enclave without exposing the password to the rest of the client
software or putting it across the wire to the AS. The AS can validate this challenge response
against a known password for the identified end user. While an approach such as this does not
remove all of the concerns surrounding such a password-based scheme, it is at least possible to
implement in a more secure fashion than simply collecting and replaying the password. Even so,
such schemes should only ever be used by trusted clients due to the ease of abusing them.

11.12. Mixing Up Authorization Servers
If a client instance is able to work with multiple ASes simultaneously, it is possible for an attacker
to add a compromised AS to the client instance's configuration and cause the client software to
start a request at the compromised AS. This AS could then proxy the client's request to a valid AS
in order to attempt to get the RO to approve access for the legitimate client instance.

A client instance needs to always be aware of which AS it is talking to throughout a grant process
and ensure that any callback for one AS does not get conflated with the callback to different AS.
The interaction finish hash calculation in Section 4.2.3 allows a client instance to protect against
this kind of substitution, but only if the client instance validates the hash. If the client instance
does not use an interaction finish method or does not check the interaction finish hash value, the
compromised AS can be granted a valid access token on behalf of the RO. See Sections 4.5.5 and
5.5 of for details of one such attack, which has been addressed in this document
by including the grant endpoint in the interaction hash calculation. Note that the client instance
still needs to validate the hash for the attack to be prevented.

[AXELAND2021]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 146

11.13. Processing of Client-Presented User Information
GNAP allows the client instance to present assertions and identifiers of the current user to the AS
as part of the initial request. This information should only ever be taken by the AS as a hint, since
the AS has no way to tell if the represented person is present at the client software without using
an interaction mechanism. This information does not guarantee the given user is there, but it
does constitute a statement by the client software that the AS can take into account.

For example, if a specific user is claimed to be present prior to interaction, but a different user is
shown to be present during interaction, the AS can either determine this to be an error or signal
to the client instance through returned subject information that the current user has changed
from what the client instance thought. This user information can also be used by the AS to
streamline the interaction process when the user is present. For example, instead of having the
user type in their account identifier during interaction at a redirected URI, the AS can
immediately challenge the user for their account credentials. Alternatively, if an existing session
is detected, the AS can determine that it matches the identifier provided by the client and
subsequently skip an explicit authentication event by the RO.

In cases where the AS trusts the client software more completely, due to policy or previous
approval of a given client instance, the AS can take this user information as a statement that the
user is present and could issue access tokens and release subject information without
interaction. The AS should only take such action in very limited circumstances, as a client
instance could assert whatever it likes for the user's identifiers in its request. The AS can limit the
possibility of this by issuing randomized opaque identifiers to client instances to represent
different end-user accounts after an initial login.

When a client instance presents an assertion to the AS, the AS needs to evaluate that assertion.
Since the AS is unlikely to be the intended audience of an assertion held by the client software,
the AS will need to evaluate the assertion in a different context. Even in this case, the AS can still
evaluate that the assertion was generated by a trusted party, was appropriately signed, and is
within any time validity windows stated by the assertion. If the client instance's audience
identifier is known to the AS and can be associated with the client instance's presented key, the
AS can also evaluate that the appropriate client instance is presenting the claimed assertion. All
of this will prevent an attacker from presenting a manufactured assertion or one captured from
an untrusted system. However, without validating the audience of the assertion, a captured
assertion could be presented by the client instance to impersonate a given end user. In such
cases, the assertion offers little more protection than a simple identifier would.

A special case exists where the AS is the generator of the assertion being presented by the client
instance. In these cases, the AS can validate that it did issue the assertion and it is associated with
the client instance presenting the assertion.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 147

11.14. Client Instance Pre-registration
Each client instance is identified by its own unique key, and for some kinds of client software
such as a web server or backend system, this identification can be facilitated by registering a
single key for a piece of client software ahead of time. This registration can be associated with a
set of display attributes to be used during the authorization process to identify the client
software to the user. In these cases, it can be assumed that only one instance of client software
will exist, likely to serve many different users.

A client's registration record needs to include its identifying key. Furthermore, it is the case that
any clients using symmetric cryptography for key proofing mechanisms need to have their keys
pre-registered. The registration should also include any information that would aid in the
authorization process, such as a display name and logo. The registration record can also limit a
given client to ask for certain kinds of information or use specific interaction mechanisms at
runtime.

It also is sensible to pre-register client instances when the software is acting autonomously,
without the need for a runtime approval by an RO or any interaction with an end user. In these
cases, an AS needs to rely on the trust decisions that have been determined prior to runtime to
determine what rights and tokens to grant to a given client instance.

However, it does not make sense to pre-register many types of clients. Single-page applications
(SPAs) and mobile/desktop applications in particular present problems with pre-registration. For
SPAs, the instances are ephemeral in nature, and long-term registration of a single instance leads
to significant storage and management overhead at the AS. For mobile applications, each
installation of the client software is a separate instance, and sharing a key among all instances
would be detrimental to security as the compromise of any single installation would compromise
all copies for all users.

An AS can treat these classes of client software differently from each other, perhaps by allowing
access to certain high-value APIs only to pre-registered known clients or by requiring an active
end-user delegation of authority to any client software not pre-registered.

An AS can also provide warnings and caveats to ROs during the authorization process, allowing
the user to make an informed decision regarding the software they are authorizing. For example,
if the AS has vetted the client software and this specific instance, it can present a different
authorization screen compared to a client instance that is presenting all of its information at
runtime.

Finally, an AS can use platform attestations and other signals from the client instance at runtime
to determine whether or not the software making the request is legitimate. The details of such
attestations are outside the scope of this specification, but the client portion of a grant request
provides a natural extension point to such information through the "GNAP Client Instance Fields"
registry (Section 10.7).

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 148

11.15. Client Instance Impersonation
If client instances are allowed to set their own user-facing display information, such as a display
name and website URL, a malicious client instance could impersonate legitimate client software
for the purposes of tricking users into authorizing the malicious client.

Requiring clients to pre-register does not fully mitigate this problem since many pre-registration
systems have self-service portals for management of client registration, allowing authenticated
developers to enter self-asserted information into the management portal.

An AS can mitigate this by actively filtering all self-asserted values presented by client software,
both dynamically as part of GNAP and through a registration portal, to limit the kinds of
impersonation that could be done.

An AS can also warn the RO about the provenance of the information it is displaying, allowing
the RO to make a more informed delegation decision. For example, an AS can visually
differentiate between a client instance that can be traced back to a specific developer's
registration and an instance that has self-asserted its own display information.

11.16. Client-Hosted Logo URI
The logo_uri client display field defined in Section 2.3.2 allows the client instance to specify a
URI from which an image can be fetched for display during authorization decisions. When the
URI points to an externally hosted resource (as opposed to a data: URI), the logo_uri field
presents challenges in addition to the considerations in Section 11.15.

When a logo_uri is externally hosted, the client software (or the host of the asset) can change
the contents of the logo without informing the AS. Since the logo is considered an aspect of the
client software's identity, this flexibility allows for a more dynamically managed client instance
that makes use of the distributed systems.

However, this same flexibility allows the host of the asset to change the hosted file in a malicious
way, such as replacing the image content with malicious software for download or imitating a
different piece of client software. Additionally, the act of fetching the URI could accidentally leak
information to the image host in the HTTP Referer header field, if one is sent. Even though GNAP
intentionally does not include security parameters in front-channel URIs wherever possible, the
AS still should take steps to ensure that this information does not leak accidentally, such as
setting a referrer policy on image links or displaying images only from pages served from a URI
with no sensitive security or identity information.

To avoid these issues, the AS can insist on the use of data: URIs, though that might not be
practical for all types of client software. Alternatively, the AS could pre-fetch the content of the
URI and present its own copy to the RO instead. This practice opens the AS to potential SSRF
attacks, as discussed in Section 11.34.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 149

11.17. Interception of Information in the Browser
Most information passed through the web browser is susceptible to interception and possible
manipulation by elements within the browser such as scripts loaded within pages. Information
in the URI is exposed through browser and server logs, and it can also leak to other parties
through HTTP Referer headers.

GNAP's design limits the information passed directly through the browser, allowing for opaque
URIs in most circumstances. For the redirect-based interaction finish mechanism, named query
parameters are used to carry unguessable opaque values. For these, GNAP requires creation and
validation of a cryptographic hash to protect the query parameters added to the URI and
associate them with an ongoing grant process and values not passed in the URI. The client
instance has to properly validate this hash to prevent an attacker from injecting an interaction
reference intended for a different AS or client instance.

Several interaction start mechanisms use URIs created by the AS and passed to the client
instance. While these URIs are opaque to the client instance, it's possible for the AS to include
parameters, paths, and other pieces of information that could leak security data or be
manipulated by a party in the middle of the transaction. An AS implementation can avoid this
problem by creating URIs using unguessable values that are randomized for each new grant
request.

11.18. Callback URI Manipulation
The callback URI used in interaction finish mechanisms is defined by the client instance. This URI
is opaque to the AS but can contain information relevant to the client instance's operations. In
particular, the client instance can include state information to allow the callback request to be
associated with an ongoing grant request.

Since this URI is exposed to the end user's browser, it is susceptible to both logging and
manipulation in transit before the request is made to the client software. As such, a client
instance should never put security-critical or private information into the callback URI in a
cleartext form. For example, if the client software includes a post-redirect target URI in its
callback URI to the AS, this target URI could be manipulated by an attacker, creating an open
redirector at the client. Instead, a client instance can use an unguessable identifier in the URI
that can then be used by the client software to look up the details of the pending request. Since
this approach requires some form of statefulness by the client software during the redirection
process, clients that are not capable of holding state through a redirect should not use redirect-
based interaction mechanisms.

11.19. Redirection Status Codes
As described in , a server should never use HTTP status code 307
(Temporary Redirect) to redirect a request that potentially contains user credentials. If an HTTP
redirect is used for such a request, HTTP status code 303 (See Other) should be used instead.

[OAUTH-SEC-TOPICS]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 150

Status code 307 (Temporary Redirect), as defined in the HTTP standard , requires the user
agent to preserve the method and content of a request, thus submitting the content of the POST
request to the redirect target. In the HTTP standard , only status code 303 (See Other)
unambiguously enforces rewriting the HTTP POST request to an HTTP GET request, which
eliminates the POST content from the redirected request. For all other status codes, including
status code 302 (Found), user agents are allowed to keep a redirected POST request as a POST and
thus can resubmit the content.

The use of status code 307 (Temporary Redirect) results in a vulnerability when using the
redirect interaction finish method (Section 3.3.5). With this method, the AS potentially prompts
the RO to enter their credentials in a form that is then submitted back to the AS (using an HTTP
POST request). The AS checks the credentials and, if successful, may immediately redirect the RO
to the client instance's redirect URI. Due to the use of status code 307 (Temporary Redirect), the
RO's user agent now transmits the RO's credentials to the client instance. A malicious client
instance can then use the obtained credentials to impersonate the RO at the AS.

Redirection away from the initial URI in an interaction session could also leak information found
in that initial URI through the HTTP Referer header field, which would be sent by the user agent
to the redirect target. To avoid such leakage, a server can first redirect to an internal interstitial
page without any identifying or sensitive information on the URI before processing the request.
When the user agent is ultimately redirected from this page, no part of the original interaction
URI will be found in the Referer header.

[HTTP]

[HTTP]

11.20. Interception of Responses from the AS
Responses from the AS contain information vital to both the security and privacy operations of
GNAP. This information includes nonces used in cryptographic calculations, Subject Identifiers,
assertions, public keys, and information about what client software is requesting and was
granted.

In addition, if bearer tokens are used or keys are issued alongside a bound access token, the
response from the AS contains all information necessary for use of the contained access token.
Any party that is capable of viewing such a response, such as an intermediary proxy, would be
able to exfiltrate and use this token. If the access token is instead bound to the client instance's
presented key, intermediaries no longer have sufficient information to use the token. They can
still, however, gain information about the end user as well as the actions of the client software.

11.21. Key Distribution
GNAP does not define ways for the client instances keys to be provided to the client instances,
particularly in light of how those keys are made known to the AS. These keys could be generated
dynamically on the client software or pre-registered at the AS in a static developer portal. The
keys for client instances could also be distributed as part of the deployment process of instances
of the client software. For example, an application installation framework could generate a key
pair for each copy of client software and then both install it into the client software upon
installation and register that instance with the AS.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 151

Alternatively, it's possible for the AS to generate keys to be used with access tokens that are
separate from the keys used by the client instance to request tokens. In this method, the AS
would generate the asymmetric key pair or symmetric key and return the public key or key
reference to the client instance alongside the access token itself. The means for the AS to return
generated key values to the client instance are out of scope, since GNAP does not allow the
transmission of private or shared key information within the protocol itself.

Additionally, if the token is bound to a key other than the client instance's presented key, this
opens a possible attack surface for an attacker's AS to request an access token and then substitute
their own key material in the response to the client instance. The attacker's AS would need to be
able to use the same key as the client instance, but this setup would allow an attacker's AS to
make use of a compromised key within a system. This attack can be prevented by only binding
access tokens to the client instance's presented keys and by having client instances have a strong
association between which keys they expect to use and the AS they expect to use them on. This
attack is also only able to be propagated on client instances that talk to more than one AS at
runtime, which can be limited by the client software.

11.22. Key Rotation Policy
When keys are rotated, there could be a delay in the propagation of that rotation to various
components in the AS's ecosystem. The AS can define its own policy regarding the timeout of the
previously bound key, either making it immediately obsolete or allowing for a limited grace
period during which both the previously bound key and the current key can be used for signing
requests. Such a grace period can be useful when there are multiple running copies of the client
that are coordinated with each other. For example, the client software could be deployed as a
cloud service with multiple orchestrated nodes. Each of these copies is deployed using the same
key; therefore, all the nodes represent the same client instance to the AS. In such cases, it can be
difficult, or even impossible, to update the keys on all these copies in the same instant.

The need to accommodate such known delays in the system needs to be balanced with the risk of
allowing an old key to still be used. Narrowly restricting the exposure opportunities for exploit at
the AS in terms of time, place, and method makes exploit significantly more difficult, especially if
the exception happens only once. For example, the AS can reject requests from the previously
bound key (or any previous one before it) to cause rotation to a new key or at least ensure that
the rotation happens in an idempotent way to the same new key.

See also the related considerations for token values in Section 11.33.

11.23. Interaction Finish Modes and Polling
During the interaction process, the client instance usually hands control of the user experience
over to another component, be it the system browser, another application, or some action the RO
is instructed to take on another device. By using an interaction finish method, the client instance
can be securely notified by the AS when the interaction is completed and the next phase of the
protocol should occur. This process includes information that the client instance can use to
validate the finish call from the AS and prevent some injection, session hijacking, and phishing
attacks.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 152

Some types of client deployment are unable to receive an interaction finish message. Without an
interaction finish method to notify it, the client instance will need to poll the grant continuation
API while waiting for the RO to approve or deny the request. An attacker could take advantage of
this situation by capturing the interaction start parameters and phishing a legitimate user into
authorizing the attacker's waiting client instance, which would in turn have no way of
associating the completed interaction from the targeted user with the start of the request from
the attacker.

However, it is important to note that this pattern is practically indistinguishable from some
legitimate use cases. For example, a smart device emits a code for the RO to enter on a separate
device. The smart device has to poll because the expected behavior is that the interaction will
take place on the separate device, without a way to return information to the original device's
context.

As such, developers need to weigh the risks of forgoing an interaction finish method against the
deployment capabilities of the client software and its environment. Due to the increased security,
an interaction finish method should be employed whenever possible.

11.24. Session Management for Interaction Finish Methods
When using an interaction finish method such as redirect or push, the client instance receives
an unsolicited inbound request from an unknown party over HTTPS. The client instance needs to
be able to successfully associate this incoming request with a specific pending grant request
being managed by the client instance. If the client instance is not careful and precise about this,
an attacker could associate their own session at the client instance with a stolen interaction
response. The means of preventing this vary by the type of client software and interaction
methods in use. Some common patterns are enumerated here.

If the end user interacts with the client instance through a web browser and the redirect
interaction finish method is used, the client instance can ensure that the incoming HTTP request
from the finish method is presented in the same browser session that the grant request was
started in. This technique is particularly useful when the redirect interaction start mode is used
as well, since in many cases, the end user will follow the redirection with the same browser that
they are using to interact with the client instance. The client instance can then store the relevant
pending grant information in the session, either in the browser storage directly (such as with a
single-page application) or in an associated session store on a backend server. In both cases,
when the incoming request reaches the client instance, the session information can be used to
ensure that the same party that started the request is present as the request finishes.

Ensuring that the same party that started a request is present when that request finishes can
prevent phishing attacks, where an attacker starts a request at an honest client instance and
tricks an honest RO into authorizing it. For example, if an honest end user (that also acts as the
RO) wants to start a request through a client instance controlled by the attacker, the attacker can
start a request at an honest client instance and then redirect the honest end user to the
interaction URI from the attackers session with the honest client instance. If the honest end user
then fails to realize that they are not authorizing the attacker-controlled client instance (with
which it started its request) but instead the honest client instance when interacting with the AS,

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 153

the attacker's session with the honest client instance would be authorized. This would give the
attacker access to the honest end user's resources that the honest client instance is authorized to
access. However, if after the interaction, the AS redirects the honest end user back to the client
instance whose grant request the end user just authorized, the honest end user is redirected to
the honest client instance. The honest client instance can then detect that the end user is not the
party that started the request, since the request at the honest client instance was started by the
attacker. This detection can prevent the attack. This is related to the discussion in Section 11.15,
because again the attack can be prevented by the AS informing the user as much as possible
about the client instance that is to be authorized.

If the end user does not interact with the client instance through a web browser or the
interaction start method does not use the same browser or device that the end user is interacting
through (such as the launch of a second device through a scannable code or presentation of a
user code), the client instance will not be able to strongly associate an incoming HTTP request
with an established session with the end user. This is also true when the push interaction finish
method is used, since the HTTP request comes directly from the interaction component of the AS.
In these circumstances, the client instance can at least ensure that the incoming HTTP request
can be uniquely associated with an ongoing grant request by making the interaction finish
callback URI unique for the grant when making the interaction request (Section 2.5.2). Mobile
applications and other client instances that generally serve only a single end user at a time can
use this unique incoming URL to differentiate between a legitimate incoming request and an
attacker's stolen request.

11.25. Calculating Interaction Hash
While the use of GNAP's signing mechanisms and token-protected grant API provides significant
security protections to the protocol, the interaction reference mechanism is susceptible to
monitoring, capture, and injection by an attacker. To combat this, GNAP requires the calculation
and verification of an interaction hash. A client instance might be tempted to skip this step, but
doing so leaves the client instance open to injection and manipulation by an attacker that could
lead to additional issues.

The calculation of the interaction hash value provides defense in depth, allowing a client
instance to protect itself from spurious injection of interaction references when using an
interaction finish method. The AS is protected during this attack through the continuation access
token being bound to the expected interaction reference, but without hash calculation, the
attacker could cause the client to make an HTTP request on command, which could itself be
manipulated -- for example, by including a malicious value in the interaction reference designed
to attack the AS. With both of these in place, an attacker attempting to substitute the interaction
reference is stopped in several places.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 154

Prerequisites: The client instance can allow multiple end users to access the same AS. The
attacker is attempting to associate their rights with the target user's session.

(1) The attacker starts a session at the client instance.
(2) The client instance creates a grant request with nonce CN1.
(3) The AS responds to the grant request with a need to interact, nonce SN1, and a
continuation token, CT1.
(4) The client instructs the attacker to interact at the AS.
(5) The attacker interacts at the AS.
(6) The AS completes the interact finish with interact reference IR1 and interact hash IH1
calculated from (CN1 + SN1 + IR1 + AS). The attacker prevents IR1 from returning to the
client instance.
(A) The target user starts a session at the client instance.
(B) The client instance creates a grant request with nonce CN2.
(C) The AS responds to the grant request with a need to interact, nonce SN2, and a
continuation token, CT2.
(D) The client instance instructs the user to interact at the AS.

Figure 11: Interaction Hash Attack

User Attacker Client AS
Instance

1
2
3

4

5
| |

6

A
B
C

D
| |

E

7

F
G

•
•
•

•
•
•

•
•
•

•

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 155

(E) The target user interacts at the AS.
(7) Before the target user can complete their interaction, the attacker delivers their own
interact reference IR1 into the user's session. The attacker cannot calculate the appropriate
hash because the attacker does not have access to CN2 and SN2.
(F) The target user triggers the interaction finish in their own session with the attacker's IR1.
(G) If the client instance is checking the interaction hash, the attack stops here because the
hash calculation of (CN2 + SN2 + IR1 + AS) will fail. If the client instance does not check the
interaction hash, the client instance will be tricked into submitting the interaction reference
to the AS. Here, the AS will reject the interaction request because it is presented against CT2
and not CT1 as expected. However, an attacker who has potentially injected CT1 as the value
of CT2 would be able to continue the attack.

Even with additional checks in place, client instances using interaction finish mechanisms are
responsible for checking the interaction hash to provide security to the overall system.

•
•

•
•

11.26. Storage of Information during Interaction and Continuation
When starting an interactive grant request, a client application has a number of protocol
elements that it needs to manage, including nonces, references, keys, access tokens, and other
elements. During the interaction process, the client instance usually hands control of the user
experience over to another component, be it the system browser, another application, or some
action the RO is instructed to take on another device. In order for the client instance to make its
continuation call, it will need to recall all of these protocol elements at a future time. Usually, this
means the client instance will need to store these protocol elements in some retrievable fashion.

If the security protocol elements are stored on the end user's device, such as in browser storage
or in local application data stores, capture and exfiltration of this information could allow an
attacker to continue a pending transaction instead of the client instance. Client software can
make use of secure storage mechanisms, including hardware-based key and data storage, to
prevent such exfiltration.

Note that in GNAP, the client instance has to choose its interaction finish URI prior to making the
first call to the AS. As such, the interaction finish URI will often have a unique identifier for the
ongoing request, allowing the client instance to access the correct portion of its storage. Since this
URI is passed to other parties and often used through a browser, this URI should not contain any
security-sensitive information that would be valuable to an attacker, such as any token identifier,
nonce, or user information. Instead, a cryptographically random value is suggested, and that
value should be used to index into a secure session or storage mechanism.

11.27. Denial of Service (DoS) through Grant Continuation
When a client instance starts off an interactive process, it will eventually need to continue the
grant request in a subsequent message to the AS. It's possible for a naive client implementation
to continuously send continuation requests to the AS while waiting for approval, especially if no
interaction finish method is used. Such constant requests could overwhelm the AS's ability to
respond to both these and other requests.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 156

To mitigate this for well-behaved client software, the continuation response contains a wait
parameter that is intended to tell the client instance how long it should wait until making its next
request. This value can be used to back off client software that is checking too quickly by
returning increasing wait times for a single client instance.

If client software ignores the wait value and makes its continuation calls too quickly or if the
client software assumes the absence of the wait values means it should poll immediately, the AS
can choose to return errors to the offending client instance, including possibly canceling the
ongoing grant request. With well-meaning client software, these errors can indicate a need to
change the client software's programmed behavior.

11.28. Exhaustion of Random Value Space
Several parts of the GNAP process make use of unguessable randomized values, such as nonces,
tokens, user codes, and randomized URIs. Since these values are intended to be unique, a
sufficiently powerful attacker could make a large number of requests to trigger generation of
randomized values in an attempt to exhaust the random number generation space. While this
attack is particularly applicable to the AS, client software could likewise be targeted by an
attacker triggering new grant requests against an AS.

To mitigate this, software can ensure that its random values are chosen from a significantly large
pool so that exhaustion of that pool is prohibitive for an attacker. Additionally, the random
values can be time-boxed in such a way that their validity windows are reasonably short. Since
many of the random values used within GNAP are used within limited portions of the protocol, it
is reasonable for a particular random value to be valid for only a small amount of time. For
example, the nonces used for interaction finish hash calculation need only to be valid while the
client instance is waiting for the finish callback and can be functionally expired when the
interaction has completed. Similarly, artifacts like access tokens and the interaction reference
can be limited to have lifetimes tied to their functional utility. Finally, each different category of
artifact (nonce, token, reference, identifier, etc.) can be generated from a separate random pool
of values instead of a single global value space.

11.29. Front-Channel URIs
Some interaction methods in GNAP make use of URIs accessed through the end user's browser,
known collectively as front-channel communication. These URIs are most notably present in the
redirect interaction start method and the redirect interaction finish mode. Since these URIs
are intended to be given to the end user, the end user and their browser will be subjected to
anything hosted at that URI including viruses, malware, and phishing scams. This kind of risk is
inherent to all redirection-based protocols, including GNAP, when used in this way.

When talking to a new or unknown AS, a client instance might want to check the URI from the
interaction start against a blocklist and warn the end user before redirecting them. Many client
instances will provide an interstitial message prior to redirection in order to prepare the user for
control of the user experience being handed to the domain of the AS, and such a method could be

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 157

used to warn the user of potential threats (for instance, a rogue AS impersonating a well-known
service provider). Client software can also prevent this by managing an allowlist of known and
trusted ASes.

Alternatively, an attacker could start a GNAP request with a known and trusted AS but include
their own attack site URI as the callback for the redirect finish method. The attacker would then
send the interaction start URI to the victim and get them to click on it. Since the URI is at the
known AS, the victim is inclined to do so. The victim will then be prompted to approve the
attacker's application, and in most circumstances, the victim will then be redirected to the
attacker's site whether or not the user approved the request. The AS could mitigate this partially
by using a blocklist and allowlist of interaction finish URIs during the client instance's initial
request, but this approach can be especially difficult if the URI has any dynamic portion chosen
by the client software. The AS can couple these checks with policies associated with the client
instance that has been authenticated in the request. If the AS has any doubt about the interaction
finish URI, the AS can provide an interstitial warning to the end user before processing the
redirect.

Ultimately, all protocols that use redirect-based communication through the user's browser are
susceptible to having an attacker try to co-opt one or more of those URIs in order to harm the
user. It is the responsibility of the AS and the client software to provide appropriate warnings,
education, and mitigation to protect end users.

11.30. Processing Assertions
Identity assertions can be used in GNAP to convey subject information, both from the AS to the
client instance in a response (Section 3.4) and from the client instance to the AS in a request
(Section 2.2). In both of these circumstances, when an assertion is passed in GNAP, the receiver of
the assertion needs to parse and process the assertion. As assertions are complex artifacts with
their own syntax and security, special care needs to be taken to prevent the assertion values
from being used as an attack vector.

All assertion processing needs to account for the security aspects of the assertion format in use.
In particular, the processor needs to parse the assertion from a JSON string object and apply the
appropriate cryptographic processes to ensure the integrity of the assertion.

For example, when SAML 2.0 assertions are used, the receiver has to parse an XML document.
There are many well-known security vulnerabilities in XML parsers, and the XML standard itself
can be attacked through the use of processing instructions and entity expansions to cause
problems with the processor. Therefore, any system capable of processing SAML 2.0 assertions
also needs to have a secure and correct XML parser. In addition to this, the SAML 2.0
specification uses XML Signatures, which have their own implementation problems that need to
be accounted for. Similar requirements exist for OpenID Connect ID Token, which is based on the
JWT format and the related JOSE cryptography suite.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 158

11.31. Stolen Token Replay
If a client instance can request tokens at multiple ASes and the client instance uses the same keys
to make its requests across those different ASes, then it is possible for an attacker to replay a
stolen token issued by an honest AS from a compromised AS, thereby binding the stolen token to
the client instance's key in a different context. The attacker can manipulate the client instance
into using the stolen token at an RS, particularly at an RS that is expecting a token from the
honest AS. Since the honest AS issued the token and the client instance presents the token with
its expected bound key, the attack succeeds.

This attack has several preconditions. In this attack, the attacker does not need access to the
client instance's key and cannot use the stolen token directly at the RS, but the attacker is able to
get the access token value in some fashion. The client instance also needs to be configured to talk
to multiple ASes, including the attacker's controlled AS. Finally, the client instance needs to be
able to be manipulated by the attacker to call the RS while using a token issued from the stolen
AS. The RS does not need to be compromised or made to trust the attacker's AS.

To protect against this attack, the client instance can use a different key for each AS that it talks
to. Since the replayed token will be bound to the key used at the honest AS, the uncompromised
RS will reject the call since the client instance will be using the key used at the attacker's AS
instead with the same token. When the MTLS key proofing method is used, a client instance can
use self-signed certificates to use a different key for each AS that it talks to, as discussed in
Section 11.4.

Additionally, the client instance can keep a strong association between the RS and a specific AS
that it trusts to issue tokens for that RS. This strong binding also helps against some forms of AS
mix-up attacks (Section 11.12). Managing this binding is outside the scope of this specification,
but it can be managed either as a configuration element for the client instance or dynamically
through discovering the AS from the RS (Section 9.1).

The details of this attack, with additional discussion and considerations, are available in Section
3.2 of .[HELMSCHMIDT2022]

11.32. Self-Contained Stateless Access Tokens
The contents and format of the access token are at the discretion of the AS and are opaque to the
client instance within GNAP. As discussed in , the AS and RS can make use of stateless
access tokens with an internal structure and format. These access tokens allow an RS to validate
the token without having to make any external calls at runtime, allowing for benefits in some
deployments, the discussion of which is outside the scope of this specification.

However, the use of such self-contained access tokens has an effect on the ability of the AS to
provide certain functionality defined within this specification. Specifically, since the access token
is self-contained, it is difficult or impossible for an AS to signal to all RSs within an ecosystem
when a specific access token has been revoked. Therefore, an AS in such an ecosystem should
probably not offer token revocation functionality to client instances, since the client instance's

[GNAP-RS]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 159

calls to such an endpoint are effectively meaningless. However, a client instance calling the token
revocation function will also throw out its copy of the token, so such a placebo endpoint might
not be completely meaningless. Token rotation is similarly difficult because the AS has to revoke
the old access token after a rotation call has been made. If the access tokens are completely self-
contained and non-revocable, this means that there will be a period of time during which both
the old and new access tokens are valid and usable, which is an increased security risk for the
environment.

These problems can be mitigated by keeping the validity time windows of self-contained access
tokens reasonably short, limiting the time after a revocation event that a revoked token could be
used. Additionally, the AS could proactively signal to RSs under its control identifiers for revoked
tokens that have yet to expire. This type of information push would be expected to be relatively
small and infrequent, and its implementation is outside the scope of this specification.

11.33. Network Problems and Token and Grant Management
If a client instance makes a call to rotate an access token but the network connection is dropped
before the client instance receives the response with the new access token, the system as a whole
can end up in an inconsistent state, where the AS has already rotated the old access token and
invalidated it, but the client instance only has access to the invalidated access token and not the
newly rotated token value. If the client instance retries the rotation request, it would fail because
the client is no longer presenting a valid and current access token. A similar situation can occur
during grant continuation, where the same client instance calls to continue or update a grant
request without successfully receiving the results of the update.

To combat this, both grant management (Section 5) and token management (Section 6) can be
designed to be idempotent, where subsequent calls to the same function with the same
credentials are meant to produce the same results. For example, multiple calls to rotate the same
access token need to result in the same rotated token value, within a reasonable time window.

In practice, an AS can hold onto an old token value for such limited purposes. For example, to
support rotating access tokens over unreliable networks, the AS receives the initial request to
rotate an access token and creates a new token value and returns it. The AS also marks the old
token value as having been used to create the newly rotated token value. If the AS sees the old
token value within a small enough time window, such as a few seconds since the first rotation
attempt, the AS can return the same rotated access token value. Furthermore, once the system
has seen the newly rotated token in use, the original token can be discarded because the client
instance has proved that it did receive the token. The result of this is a system that is eventually
self-consistent without placing an undue complexity burden on the client instance to manage
problematic networks.

11.34. Server-Side Request Forgery (SSRF)
There are several places within GNAP where a URI can be given to a party, causing it to fetch that
URI during normal operation of the protocol. If an attacker is able to control the value of one of
these URIs within the protocol, the attacker could cause the target system to execute a request on
a URI that is within reach of the target system but normally unavailable to the attacker.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 160

Examples include an attacker sending a URL of http://localhost/admin to cause the server to
access an internal function on itself or https://192.168.0.14/ to call a service behind a
firewall. Even if the attacker does not gain access to the results of the call, the side effects of such
requests coming from a trusted host can be problematic to the security and sanctity of such
otherwise unexposed endpoints. This can be particularly problematic if such a URI is used to call
non-HTTP endpoints, such as remote code execution services local to the AS.

The most vulnerable place in this specification is the push-based post-interaction finish method
(Section 4.2.2), as the client instance is less trusted than the AS and can use this method to make
the AS call an arbitrary URI. While it is not required by the protocol, the AS can fetch other URIs
provided by the client instance, such as the logo image or home page, for verification or privacy-
preserving purposes before displaying them to the RO as part of a consent screen. Even if the AS
does not fetch these URIs, their use in GNAP's normal operation could cause an attack against the
end user's browser as it fetches these same attack URIs. Furthermore, extensions to GNAP that
allow or require URI fetch could also be similarly susceptible, such as a system for having the AS
fetch a client instance's keys from a presented URI instead of the client instance presenting the
key by value. Such extensions are outside the scope of this specification, but any system
deploying such an extension would need to be aware of this issue.

To help mitigate this problem, similar approaches that protect parties against malicious redirects
(Section 11.29) can be used. For example, all URIs that can result in a direct request being made
by a party in the protocol can be filtered through an allowlist or blocklist. For example, an AS
that supports the push-based interaction finish method can compare the callback URI in the
interaction request to a known URI for a pre-registered client instance, or it can ensure that the
URI is not on a blocklist of sensitive URLs such as internal network addresses. However, note that
because these types of calls happen outside of the view of human interaction, it is not usually
feasible to provide notification and warning to someone before the request needs to be executed,
as is the case with redirection URLs. As such, SSRF is somewhat more difficult to manage at
runtime, and systems should generally refuse to fetch a URI if unsure.

11.35. Multiple Key Formats
All keys presented by value are only allowed to be in a single format. While it would seem
beneficial to allow keys to be sent in multiple formats in case the receiver doesn't understand
one or more of the formats used, there are security issues with such a feature. If multiple keys
formats are allowed, receivers of these key definitions would need to be able to make sure that
it's the same key represented in each field and not simply use one of the key formats without
checking for equivalence. If equivalence is not carefully checked, it is possible for an attacker to
insert their own key into one of the formats without needing to have control over the other
formats. This could potentially lead to a situation where one key is used by part of the system
(such as identifying the client instance) and a different key in a different format in the same
message is used for other things (such as calculating signature validity). However, in such cases,
it is impossible for the receiver to ensure that all formats contain the same key information since
it is assumed that the receiver cannot understand all of the formats.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 161

To combat this, all keys presented by value have to be in exactly one supported format known by
the receiver as discussed in Section 7.1. In most cases, a client instance is going to be configured
with its keys in a single format, and it will simply present that format as is to the AS in its
request. A client instance capable of multiple formats can use AS discovery (Section 9) to
determine which formats are supported, if desired. An AS should be generous in supporting
many different key formats to allow different types of client software and client instance
deployments. An AS implementation should try to support multiple formats to allow a variety of
client software to connect.

11.36. Asynchronous Interactions
GNAP allows the RO to be contacted by the AS asynchronously, outside the regular flow of the
protocol. This allows for some advanced use cases, such as cross-user authentication or
information release, but such advanced use cases have some distinct issues that implementors
need to be fully aware of before using these features.

First, in many applications, the return of subject information to the client instance could indicate
to the client instance that the end user is the party represented by that information, functionally
allowing the end user to authenticate to the client application. While the details of a fully
functional authentication protocol are outside the scope of GNAP, it is a common exercise for a
client instance to request information about the end user. This is facilitated by several
interaction methods (Section 4.1) defined in GNAP that allow the end user to begin interaction
directly with the AS. However, when the subject of the information is intentionally not the end
user, the client application will need some way to differentiate between requests for
authentication of the end user and requests for information about a different user. Confusing
these states could lead to an attacker having their account associated with a privileged user.
Client instances can mitigate this by having distinct code paths for primary end-user
authentication and for requesting subject information about secondary users, such as in a call
center. In such use cases, the client software used by the RO (the caller) and the end user (the
agent) are generally distinct, allowing the AS to differentiate between the agent's corporate
device making the request and the caller's personal device approving the request.

Second, ROs that interact asynchronously do not usually have the same context as an end user in
an application attempting to perform the task needing authorization. As such, the asynchronous
requests for authorization coming to the RO from the AS might have very little to do with what
the RO is doing at the time. This situation can consequently lead to authorization fatigue on the
part of the RO, where any incoming authorization request is quickly approved and dispatched
without the RO making a proper verification of the request. An attacker can exploit this fatigue
and get the RO to authorize the attacker's system for access. To mitigate this, AS systems
deploying asynchronous authorization should only prompt the RO when the RO is expecting such
a request, and significant user experience engineering efforts need to be employed to ensure that
the RO can clearly make the appropriate security decision. Furthermore, audit capability and the
ability to undo access decisions that may be ongoing are particularly important in the
asynchronous case.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 162

11.37. Compromised RS
An attacker may aim to gain access to confidential or sensitive resources. The measures for
hardening and monitoring RS systems (beyond protection with access tokens) are out of the
scope of this document, but the use of GNAP to protect a system does not absolve the RS of
following best practices. GNAP generally considers that a breach can occur and therefore advises
to prefer key-bound tokens whenever possible, which at least limits the impact of access token
leakage by a compromised or malicious RS.

11.38. AS-Provided Token Keys
While the most common token-issuance pattern is to bind the access token to the client instance's
presented key, it is possible for the AS to provide a binding key along with an access token, as
shown by the key field of the token response in Section 3.2.1. This practice allows for an AS to
generate and manage the keys associated with tokens independently of the keys known to client
instances.

If the key material is returned by value from the AS, then the client instance will simply use this
key value when presenting the token. This can be exploited by an attacker to issue a
compromised token to an unsuspecting client, assuming that the client instance trusts the
attacker's AS to issue tokens for the target RS. In this attack, the attacker first gets a token bound
to a key under the attacker's control. This token is likely bound to an authorization or account
controlled by the attacker. The attacker then reissues that same token to the client instance, this
time acting as an AS. The attacker can return their own key to the client instance, tricking the
client instance into using the attacker's token. Such an attack is also possible when the key is
returned by reference, if the attacker is able to provide a reference meaningful to the client
instance that references a key under the attacker's control. This substitution attack is similar to
some of the main issues found with bearer tokens as discussed in Section 11.9.

Returning a key with an access token should be limited to circumstances where both the client
and AS can be verified to be honest and when the trade-off of not using a client instance's own
keys is worth the additional risk.

12. Privacy Considerations
The privacy considerations in this section are modeled after the list of privacy threats in "Privacy
Considerations for Internet Protocols" and either explain how these threats are
mitigated or advise how the threats relate to GNAP.

[RFC6973]

12.1. Surveillance
Surveillance is the observation or monitoring of an individual's communications or activities.
Surveillance can be conducted by observers or eavesdroppers at any point along the
communications path.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 163

GNAP assumes the TLS protection used throughout the spec is intact. Without the protection of
TLS, there are many points throughout the use of GNAP that could lead to possible surveillance.
Even with the proper use of TLS, surveillance could occur by several parties outside of the TLS-
protected channels, as discussed in the subsections below.

12.1.1. Surveillance by the Client

The purpose of GNAP is to authorize clients to be able to access information on behalf of a user.
So while it is expected that the client may be aware of the user's identity as well as data being
fetched for that user, in some cases, the extent of the client may be beyond what the user is
aware of. For example, a client may be implemented as multiple distinct pieces of software, such
as a logging service or a mobile application that reports usage data to an external backend
service. Each of these pieces could gain information about the user without the user being aware
of this action.

When the client software uses a hosted asset for its components, such as its logo image, the fetch
of these assets can reveal user actions to the host. If the AS presents the logo URI to the RO in a
browser page, the browser will fetch the logo URL from the authorization screen. This fetch will
tell the host of the logo image that someone is accessing an instance of the client software and
requesting access for it. This is particularly problematic when the host of the asset is not the
client software itself, such as when a content delivery network is used.

12.1.2. Surveillance by the Authorization Server

The role of the AS is to manage the authorization of client instances to protect access to the user's
data. In this role, the AS is by definition aware of each authorization of a client instance by a
user. When the AS shares user information with the client instance, it needs to make sure that it
has the permission from that user to do so.

Additionally, as part of the authorization grant process, the AS may be aware of which RSs the
client intends to use an access token at. However, it is possible to design a system using GNAP in
which this knowledge is not made available to the AS, such as by avoiding the use of the
locations object in the authorization request.

If the AS's implementation of access tokens is such that it requires an RS callback to the AS to
validate them, then the AS will be aware of which RSs are actively in use and by which users and
clients. To avoid this possibility, the AS would need to structure access tokens in such a way that
they can be validated by the RS without notifying the AS that the token is being validated.

12.2. Stored Data
Several parties in the GNAP process are expected to persist data at least temporarily, if not semi-
permanently, for the normal functioning of the system. If compromised, this could lead to
exposure of sensitive information. This section documents the potentially sensitive information
each party in GNAP is expected to store for normal operation. Naturally, it is possible for any
party to store information related to protocol mechanics (such as audit logs, etc.) for longer than
is technically necessary.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 164

The AS is expected to store Subject Identifiers for users indefinitely, in order to be able to include
them in the responses to clients. The AS is also expected to store client key identifiers associated
with display information about the client, such as its name and logo.

The client is expected to store its client instance key indefinitely, in order to authenticate to the
AS for the normal functioning of the GNAP flows. Additionally, the client will be temporarily
storing artifacts issued by the AS during a flow, and these artifacts ought to be discarded by the
client when the transaction is complete.

The RS is not required to store any state for its normal operation, as far as its part in
implementing GNAP. Depending on the implementation of access tokens, the RS may need to
cache public keys from the AS in order to validate access tokens.

12.3. Intrusion
Intrusion refers to the ability of various parties to send unsolicited messages or cause denial of
service for unrelated parties.

If the RO is different from the end user, there is an opportunity for the end user to cause
unsolicited messages to be sent to the RO if the system prompts the RO for consent when an end
user attempts to access their data.

The format and contents of Subject Identifiers are intentionally not defined by GNAP. If the AS
uses values for Subject Identifiers that are also identifiers for communication channels (e.g., an
email address or phone number), this opens up the possibility for a client to learn this
information when it was not otherwise authorized to access this kind of data about the user.

12.4. Correlation
The threat of correlation is the combination of various pieces of information related to an
individual in a way that defies their expectations of what others know about them.

12.4.1. Correlation by Clients

The biggest risk of correlation in GNAP is when an AS returns stable, consistent user identifiers
to multiple different applications. In this case, applications created by different parties would be
able to correlate these user identifiers out of band in order to know which users they have in
common.

The most common example of this in practice is tracking for advertising purposes, such that a
client shares their list of user IDs with an ad platform that is then able to retarget ads to
applications created by other parties. In contrast, a positive example of correlation is a corporate
acquisition where two previously unrelated clients now do need to be able to identify the same
user between the two clients, such as when software systems are intentionally connected by the
end user.

Another means of correlation comes from the use of RS-first discovery (Section 9.1). A client
instance that knows nothing other than an RS's URL could make an unauthenticated call to the
RS and learn which AS protects the resources there. If the client instance knows something about

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 165

13. References

the AS, such as it being a single-user AS or belonging to a specific organization, the client instance
could, through association, learn things about the resource without ever gaining access to the
resource itself.

12.4.2. Correlation by Resource Servers

Unrelated RSs also have an opportunity to correlate users if the AS includes stable user
identifiers in access tokens or in access token introspection responses.

In some cases, an RS may not actually need to be able to identify users (such as an RS providing
access to a company cafeteria menu, which only needs to validate whether the user is a current
employee), so ASes should be thoughtful of when user identifiers are actually necessary to
communicate to RSs for the functioning of the system.

However, note that the lack of inclusion of a user identifier in an access token may be a risk if
there is a concern that two users may voluntarily share access tokens between them in order to
access protected resources. For example, if a website wants to limit access to only people over 18,
and such does not need to know any user identifiers, an access token may be issued by an AS
contains only the claim "over 18". If the user is aware that this access token doesn't reference
them individually, they may be willing to share the access token with a user who is under 18 in
order to let them get access to the website. (Note that the binding of an access token to a non-
extractable client instance key also prevents the access token from being voluntarily shared.)

12.4.3. Correlation by Authorization Servers

Clients are expected to be identified by their client instance key. If a particular client instance key
is used at more than one AS, this could open up the possibility for multiple unrelated ASes to
correlate client instances. This is especially a problem in the common case where a client
instance is used by a single individual, as it would allow the ASes to correlate that individual
between them. If this is a concern of a client, the client should use distinct keys with each AS.

12.5. Disclosure in Shared References
Throughout many parts of GNAP, the parties pass shared references between each other,
sometimes in place of the values themselves (for example, the interact_ref value used
throughout the flow). These references are intended to be random strings and should not contain
any private or sensitive data that could potentially leak information between parties.

[BCP195]

13.1. Normative References

Best Current Practice 195, .<https://www.rfc-editor.org/info/bcp195>
At the time of writing, this BCP comprises the following:

 and , , , ,
, March 2021, .

Moriarty, K. S. Farrell "Deprecating TLS 1.0 and TLS 1.1" BCP 195 RFC 8996
DOI 10.17487/RFC8996 <https://www.rfc-editor.org/info/rfc8996>

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 166

https://www.rfc-editor.org/info/bcp195
https://www.rfc-editor.org/info/rfc8996

[HASH-ALG]

[HTTP]

[OIDC]

[RFC2119]

[RFC2397]

[RFC3339]

[RFC3986]

[RFC4648]

[RFC5646]

[RFC6749]

[RFC6750]

[RFC7468]

, ,
.

, , and , ,
, , , June 2022,

.

, , , , and ,
, December 2023,

.

, , ,
, , March 1997,
.

, , , , August
1998, .

 and , ,
, , July 2002,

.

, , and ,
, , , , January 2005,

.

, , ,
, October 2006, .

 and , , ,
, , September 2009,

.

, , ,
, October 2012, .

 and ,
, , , October 2012,

.

 and ,
, , , April 2015,

.

, , and ,
,

, , , November 2022,
.

Sheffer, Y. Saint-Andre, P. T. Fossati "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 9325 DOI 10.17487/RFC9325 <https://www.rfc-
editor.org/info/rfc9325>

IANA "Named Information Hash Algorithm Registry" <https://www.iana.org/
assignments/named-information/>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/
rfc9110>

Sakimura, N. Bradley, J. Jones, M. de Medeiros, B. C. Mortimore "OpenID
Connect Core 1.0 incorporating errata set 2" <https://
openid.net/specs/openid-connect-core-1_0.html>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Masinter, L. "The "data" URL scheme" RFC 2397 DOI 10.17487/RFC2397
<https://www.rfc-editor.org/info/rfc2397>

Klyne, G. C. Newman "Date and Time on the Internet: Timestamps" RFC
3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/
rfc3339>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Phillips, A., Ed. M. Davis, Ed. "Tags for Identifying Languages" BCP 47 RFC
5646 DOI 10.17487/RFC5646 <https://www.rfc-editor.org/info/
rfc5646>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI
10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Jones, M. D. Hardt "The OAuth 2.0 Authorization Framework: Bearer Token
Usage" RFC 6750 DOI 10.17487/RFC6750 <https://www.rfc-
editor.org/info/rfc6750>

Josefsson, S. S. Leonard "Textual Encodings of PKIX, PKCS, and CMS
Structures" RFC 7468 DOI 10.17487/RFC7468 <https://www.rfc-
editor.org/info/rfc7468>

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 167

https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9325
https://www.iana.org/assignments/named-information/
https://www.iana.org/assignments/named-information/
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2397
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7468
https://www.rfc-editor.org/info/rfc7468

[RFC7515]

[RFC7517]

[RFC8174]

[RFC8259]

[RFC8705]

[RFC9111]

[RFC9421]

[RFC9493]

[RFC9530]

[SAML2]

, , and , , ,
, May 2015, .

, , , , May 2015,
.

, ,
, , , May 2017,

.

, ,
, , , December 2017,

.

, , , and ,
, ,

, February 2020, .

, , and , ,
, , , June 2022,

.

, , and , ,
, , February 2024,

.

, , and ,
, , , December 2023,

.

 and , , , ,
February 2024, .

, , , and ,
,

, March 2005,
.

Jones, M. Bradley, J. N. Sakimura "JSON Web Signature (JWS)" RFC 7515
DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. "JSON Web Key (JWK)" RFC 7517 DOI 10.17487/RFC7517
<https://www.rfc-editor.org/info/rfc7517>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Campbell, B. Bradley, J. Sakimura, N. T. Lodderstedt "OAuth 2.0 Mutual-
TLS Client Authentication and Certificate-Bound Access Tokens" RFC 8705 DOI
10.17487/RFC8705 <https://www.rfc-editor.org/info/rfc8705>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Caching" STD
98 RFC 9111 DOI 10.17487/RFC9111 <https://www.rfc-editor.org/info/
rfc9111>

Backman, A., Ed. Richer, J., Ed. M. Sporny "HTTP Message Signatures" RFC
9421 DOI 10.17487/RFC9421 <https://www.rfc-editor.org/info/
rfc9421>

Backman, A., Ed. Scurtescu, M. P. Jain "Subject Identifiers for Security
Event Tokens" RFC 9493 DOI 10.17487/RFC9493 <https://
www.rfc-editor.org/info/rfc9493>

Polli, R. L. Pardue "Digest Fields" RFC 9530 DOI 10.17487/RFC9530
<https://www.rfc-editor.org/info/rfc9530>

Cantor, S., Ed. Kemp, J., Ed. Philpott, R., Ed. E. Maler, Ed. "Assertions and
Protocol for the OASIS Security Assertion Markup Language (SAML) V2.0" OASIS
Standard <https://docs.oasis-open.org/security/saml/v2.0/saml-
core-2.0-os.pdf>

[Auth-Schemes]

[AXELAND2021]

[GNAP-REG]

13.2. Informative References

, ,
.

 and ,
,

, 2021, .

, ,
.

IANA "HTTP Authentication Schemes" <https://www.iana.org/assignments/
http-authschemes>

Axeland, Å. O. Oueidat "Security Analysis of Attack Surfaces on the Grant
Negotiation and Authorization Protocol" Master's thesis, Department of
Computer Science and Engineering, Chalmers University of Technology and
University of Gothenburg <https://hdl.handle.net/20.500.12380/304105>

IANA "Grant Negotiation and Authorization Protocol (GNAP)" <https://
www.iana.org/assignments/gnap>

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 168

https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc9421
https://www.rfc-editor.org/info/rfc9421
https://www.rfc-editor.org/info/rfc9493
https://www.rfc-editor.org/info/rfc9493
https://www.rfc-editor.org/info/rfc9530
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/http-authschemes
https://hdl.handle.net/20.500.12380/304105
https://www.iana.org/assignments/gnap
https://www.iana.org/assignments/gnap

[GNAP-RS]

[HELMSCHMIDT2022]

[MediaTypes]

[OAUTH-SEC-TOPICS]

[promise-theory]

[RFC2046]

[RFC4107]

[RFC6202]

[RFC6838]

[RFC6973]

[RFC7518]

[RFC8126]

 and ,
, ,

, 23 September 2024,
.

,
,

, , 2022,
.

, , .

, , , and ,
, ,

, 3 June 2024,
.

 and , ,
, 2019, .

 and ,
, , , November 1996,

.

 and , ,
, , , June 2005,

.

, , , and ,
,

, , April 2011,
.

, , and ,
, , , , January 2013,

.

, , , , , , and
, , ,

, July 2013, .

, , , , May
2015, .

, , and ,
, , , , June

2017, .

Richer, J., Ed. F. Imbault "Grant Negotiation and Authorization Protocol
Resource Server Connections" Work in Progress Internet-Draft, draft-ietf-gnap-
resource-servers-09 <https://datatracker.ietf.org/doc/html/
draft-ietf-gnap-resource-servers-09>

Helmschmidt, F. "Security Analysis of the Grant Negotiation and
Authorization Protocol" Master's thesis, Institute of Information Security,
University of Stuggart DOI 10.18419/opus-12203 <http://dx.doi.org/
10.18419/opus-12203>

IANA "Media Types" <https://www.iana.org/assignments/media-types>

Lodderstedt, T. Bradley, J. Labunets, A. D. Fett "OAuth 2.0 Security
Best Current Practice" Work in Progress Internet-Draft, draft-ietf-oauth-
security-topics-29 <https://datatracker.ietf.org/doc/html/draft-ietf-
oauth-security-topics-29>

Bergstra, J. M. Burgess "Promise Theory: Principles and Applications"
Second Edition, XtAxis Press <http://markburgess.org/promises.html>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types" RFC 2046 DOI 10.17487/RFC2046
<https://www.rfc-editor.org/info/rfc2046>

Bellovin, S. R. Housley "Guidelines for Cryptographic Key Management"
BCP 107 RFC 4107 DOI 10.17487/RFC4107 <https://www.rfc-
editor.org/info/rfc4107>

Loreto, S. Saint-Andre, P. Salsano, S. G. Wilkins "Known Issues and Best
Practices for the Use of Long Polling and Streaming in Bidirectional HTTP" RFC
6202 DOI 10.17487/RFC6202 <https://www.rfc-editor.org/info/
rfc6202>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration
Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://
www.rfc-editor.org/info/rfc6838>

Cooper, A. Tschofenig, H. Aboba, B. Peterson, J. Morris, J. Hansen, M. R.
Smith "Privacy Considerations for Internet Protocols" RFC 6973 DOI 10.17487/
RFC6973 <https://www.rfc-editor.org/info/rfc6973>

Jones, M. "JSON Web Algorithms (JWA)" RFC 7518 DOI 10.17487/RFC7518
<https://www.rfc-editor.org/info/rfc7518>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 169

https://datatracker.ietf.org/doc/html/draft-ietf-gnap-resource-servers-09
https://datatracker.ietf.org/doc/html/draft-ietf-gnap-resource-servers-09
http://dx.doi.org/10.18419/opus-12203
http://dx.doi.org/10.18419/opus-12203
https://www.iana.org/assignments/media-types
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-29
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-29
http://markburgess.org/promises.html
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc4107
https://www.rfc-editor.org/info/rfc4107
https://www.rfc-editor.org/info/rfc6202
https://www.rfc-editor.org/info/rfc6202
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc8126

[RFC8264]

[RFC8707]

[RFC8792]

[RFC9396]

[RFC9440]

[RFC9525]

[SP80063C]

[Subj-ID-Formats]

 and ,
,

, , October 2017,
.

, , and , ,
, , February 2020,

.

, , , and ,
, , , June

2020, .

, , and ,
, , , May 2023,

.

 and , , ,
, July 2023, .

 and , , ,
, November 2023, .

, , , , , , ,
, , and ,

, , , June
2017,

.

, ,
.

Saint-Andre, P. M. Blanchet "PRECIS Framework: Preparation, Enforcement,
and Comparison of Internationalized Strings in Application Protocols" RFC
8264 DOI 10.17487/RFC8264 <https://www.rfc-editor.org/info/
rfc8264>

Campbell, B. Bradley, J. H. Tschofenig "Resource Indicators for OAuth 2.0"
RFC 8707 DOI 10.17487/RFC8707 <https://www.rfc-editor.org/
info/rfc8707>

Watsen, K. Auerswald, E. Farrel, A. Q. Wu "Handling Long Lines in
Content of Internet-Drafts and RFCs" RFC 8792 DOI 10.17487/RFC8792

<https://www.rfc-editor.org/info/rfc8792>

Lodderstedt, T. Richer, J. B. Campbell "OAuth 2.0 Rich Authorization
Requests" RFC 9396 DOI 10.17487/RFC9396 <https://www.rfc-
editor.org/info/rfc9396>

Campbell, B. M. Bishop "Client-Cert HTTP Header Field" RFC 9440 DOI
10.17487/RFC9440 <https://www.rfc-editor.org/info/rfc9440>

Saint-Andre, P. R. Salz "Service Identity in TLS" RFC 9525 DOI 10.17487/
RFC9525 <https://www.rfc-editor.org/info/rfc9525>

Grassi, P. Richer, J. Squire, S. Fenton, J. Nadeau, E. Lefkovitz, N. Danker, J.
Choong, Y. Greene, K. M. Theofanos "Digital Identity Guidelines:
Federation and Assertions" NIST SP 800-63C DOI 10.6028/NIST.SP.800-63c

<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-63c.pdf>

IANA "Subject Identifier Formats" <https://www.iana.org/assignments/
secevent>

Appendix A. Comparison with OAuth 2.0
GNAP's protocol design differs from OAuth 2.0's in several fundamental ways:

Consent and authorization flexibility:

OAuth 2.0 generally assumes the user has access to a web browser. The type of interaction
available is fixed by the grant type, and the most common interactive grant types start in the
browser. OAuth 2.0 assumes that the user using the client software is the same user that will
interact with the AS to approve access.

GNAP allows various patterns to manage authorizations and consents required to fulfill this
requested delegation, including information sent by the client instance, information supplied
by external parties, and information gathered through the interaction process. GNAP allows
a client instance to list different ways that it can start and finish an interaction, and these can
be mixed together as needed for different use cases. GNAP interactions can use a browser,
but they don't have to. Methods can use inter-application messaging protocols, out-of-band
data transfer, or anything else. GNAP allows extensions to define new ways to start and

1.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 170

https://www.rfc-editor.org/info/rfc8264
https://www.rfc-editor.org/info/rfc8264
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8792
https://www.rfc-editor.org/info/rfc9396
https://www.rfc-editor.org/info/rfc9396
https://www.rfc-editor.org/info/rfc9440
https://www.rfc-editor.org/info/rfc9525
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63c.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63c.pdf
https://www.iana.org/assignments/secevent
https://www.iana.org/assignments/secevent

finish an interaction, as new methods and platforms are expected to become available over
time. GNAP is designed to allow the end user and the RO to be two different people, but it still
works in the optimized case of them being the same party.

Intent registration and inline negotiation:

OAuth 2.0 uses different "grant types" that start at different endpoints for different purposes.
Many of these require discovery of several interrelated parameters.

GNAP requests all start with the same type of request to the same endpoint at the AS. Next
steps are negotiated between the client instance and AS based on software capabilities,
policies surrounding requested access, and the overall context of the ongoing request. GNAP
defines a continuation API that allows the client instance and AS to request and send
additional information from each other over multiple steps. This continuation API uses the
same access token protection that other GNAP-protected APIs use. GNAP allows discovery to
optimize the requests, but it isn't required thanks to the negotiation capabilities.

GNAP is able to handle the life cycle of an authorization request and therefore simplifies the
mental model surrounding OAuth2. For instance, there's no need for refresh tokens when
the API enables proper rotation of access tokens.

Client instances:

OAuth 2.0 requires all clients to be registered at the AS and to use a client_id known to the AS
as part of the protocol. This client_id is generally assumed to be assigned by a trusted
authority during a registration process, and OAuth places a lot of trust on the client_id as a
result. Dynamic registration allows different classes of clients to get a client_id at runtime,
even if they only ever use it for one request.

GNAP allows the client instance to present an unknown key to the AS and use that key to
protect the ongoing request. GNAP's client instance identifier mechanism allows for pre-
registered clients and dynamically registered clients to exist as an optimized case without
requiring the identifier as part of the protocol at all times.

Expanded delegation:

OAuth 2.0 defines the "scope" parameter for controlling access to APIs. This parameter has
been coopted to mean a number of different things in different protocols, including flags for
turning special behavior on and off and the return of data apart from the access token. The
"resource" indicator (defined in) and Rich Authorization Request (RAR) extensions
(as defined in) expand on the "scope" concept in similar but different ways.

GNAP defines a rich structure for requesting access (analogous to RAR), with string
references as an optimization (analogous to scopes). GNAP defines methods for requesting
directly returned user information, separate from API access. This information includes
identifiers for the current user and structured assertions. GNAP makes no assumptions or
demands on the format or contents of the access token, but the RS extension allows a
negotiation of token formats between the AS and RS.

Cryptography-based security:

2.

3.

4.

[RFC8707]
[RFC9396]

5.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 171

OAuth 2.0 uses shared bearer secrets, including the client_secret and access token, and
advanced authentication and sender constraints have been built on after the fact in
inconsistent ways.

In GNAP, all communication between the client instance and AS is bound to a key held by the
client instance. GNAP uses the same cryptographic mechanisms for both authenticating the
client (to the AS) and binding the access token (to the RS and the AS). GNAP allows extensions
to define new cryptographic protection mechanisms, as new methods are expected to
become available over time. GNAP does not have the notion of "public clients" because key
information can always be sent and used dynamically.

Privacy and usable security:

OAuth 2.0's deployment model assumes a strong binding between the AS and the RS.

GNAP is designed to be interoperable with decentralized identity standards and to provide a
human-centric authorization layer. In addition to this specification, GNAP supports various
patterns of communication between RSs and ASes through extensions. GNAP tries to limit
the odds of a consolidation to just a handful of popular AS services.

6.

Appendix B. Example Protocol Flows
The protocol defined in this specification provides a number of features that can be combined to
solve many different kinds of authentication scenarios. This section seeks to show examples of
how the protocol could be applied for different situations.

Some longer fields, particularly cryptographic information, have been truncated for display
purposes in these examples.

B.1. Redirect-Based User Interaction
In this scenario, the user is the RO and has access to a web browser, and the client instance can
take front-channel callbacks on the same device as the user. This combination is analogous to the
OAuth 2.0 Authorization Code grant type.

The client instance initiates the request to the AS. Here, the client instance identifies itself using
its public key.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 172

The AS processes the request and determines that the RO needs to interact. The AS returns the
following response that gives the client instance the information it needs to connect. The AS has
also indicated to the client instance that it can use the given instance identifier to identify itself in
future requests (Section 2.3.1).

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 {
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 }
],
 },
 "client": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8..."
 }
 }
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 }
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 173

The client instance saves the response and redirects the user to the interaction start mode's
"redirect" URI by sending the following HTTP message to the user's browser.

The user's browser fetches the AS's interaction URI. The user logs in, is identified as the RO for
the resource being requested, and approves the request. Since the AS has a callback parameter
that was sent in the initial request's interaction finish method, the AS generates the interaction
reference, calculates the hash, and redirects the user back to the client instance with these
additional values added as query parameters.

The client instance receives this request from the user's browser. The client instance ensures that
this is the same user that was sent out by validating session information and retrieves the stored
pending request. The client instance uses the values in this to validate the hash parameter. The
client instance then calls the continuation URI using the associated continuation access token and
presents the interaction reference in the request content. The client instance signs the request as
above.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "interact": {
 "redirect":
 "https://server.example.com/interact/4CF492MLVMSW9MKM",
 "finish": "MBDOFXG4Y5CVJCX821LH"
 }
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue"
 },
 "instance_id": "7C7C4AZ9KHRS6X63AJAO"
}

HTTP 303 Found
Location: https://server.example.com/interact/4CF492MLVMSW9MKM

NOTE: '\' line wrapping per RFC 8792

HTTP 302 Found
Location: https://client.example.net/return/123455\
 ?hash=x-gguKWTj8rQf7d7i3w3UhzvuJ5bpOlKyAlVpLxBffY\
 &interact_ref=4IFWWIKYBC2PQ6U56NL1

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 174

The AS retrieves the pending request by looking up the pending grant request associated with the
presented continuation access token. Seeing that the grant is approved, the AS issues an access
token and returns this to the client instance.

POST /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token/PRY5NM33O\
 M4TB8N6BW7OZB8CDFONP219RP1L",
 "access": [{
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 }]
 },
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue"
 }
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 175

B.2. Secondary Device Interaction
In this scenario, the user does not have access to a web browser on the device and must use a
secondary device to interact with the AS. The client instance can display a user code or a
printable QR code. The client instance is not able to accept callbacks from the AS and needs to
poll for updates while waiting for the user to authorize the request.

The client instance initiates the request to the AS.

The AS processes this and determines that the RO needs to interact. The AS supports both
redirect URIs and user codes for interaction, so it includes both. Since there is no interaction
finish mode, the AS does not include a nonce but does include a "wait" parameter on the
continuation section because it expects the client instance to poll for results.

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "dolphin-metadata", "some other thing"
],
 },
 "client": "7C7C4AZ9KHRS6X63AJAO",
 "interact": {
 "start": ["redirect", "user_code"]
 }
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 176

The client instance saves the response and displays the user code visually on its screen along
with the static device URI. The client instance also displays the short interaction URI as a QR code
to be scanned.

If the user scans the code, they are taken to the interaction endpoint, and the AS looks up the
current pending request based on the incoming URI. If the user instead goes to the static page
and enters the code manually, the AS looks up the current pending request based on the value of
the user code. In both cases, the user logs in, is identified as the RO for the resource being
requested, and approves the request. Once the request has been approved, the AS displays to the
user a message to return to their device.

Meanwhile, the client instance polls the AS every 60 seconds at the continuation URI. The client
instance signs the request using the same key and method that it did in the first request.

The AS retrieves the pending request based on the pending grant request associated with the
continuation access token and determines that it has not yet been authorized. The AS indicates to
the client instance that no access token has yet been issued but it can continue to call after
another 60-second timeout.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "interact": {
 "redirect": "https://srv.ex/MXKHQ",
 "user_code": {
 "code": "A1BC3DFF"
 }
 },
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue/VGJKPTKC50",
 "wait": 60
 }
}

POST /continue/VGJKPTKC50 HTTP/1.1
Host: server.example.com
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 177

Note that the continuation URI and access token have been rotated since they were used by the
client instance to make this call. The client instance polls the continuation URI after a 60-second
timeout using this new information.

The AS retrieves the pending request based on the URI and access token, determines that it has
been approved, and issues an access token for the client to use at the RS.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "continue": {
 "access_token": {
 "value": "G7YQT4KQQ5TZY9SLSS5E"
 },
 "uri": "https://server.example.com/continue/ATWHO4Q1WV",
 "wait": 60
 }
}

POST /continue/ATWHO4Q1WV HTTP/1.1
Host: server.example.com
Authorization: GNAP G7YQT4KQQ5TZY9SLSS5E
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token/PRY5NM33O\
 M4TB8N6BW7OZB8CDFONP219RP1L",
 "access": [
 "dolphin-metadata", "some other thing"
]
 }
}

B.3. No User Involvement
In this scenario, the client instance is requesting access on its own behalf, with no user to interact
with.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 178

The client instance creates a request to the AS, identifying itself with its public key and using
MTLS to make the request.

The AS processes this, determines that the client instance can ask for the requested resources,
and issues an access token.

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json

{
 "access_token": {
 "access": [
 "backend service", "nightly-routine-3"
],
 },
 "client": {
 "key": {
 "proof": "mtls",
 "cert#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token",
 "access": [
 "backend service", "nightly-routine-3"
]
 }
}

B.4. Asynchronous Authorization
In this scenario, the client instance is requesting on behalf of a specific RO but has no way to
interact with the user. The AS can asynchronously reach out to the RO for approval in this
scenario.

The client instance starts the request at the AS by requesting a set of resources. The client
instance also identifies a particular user.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 179

The AS processes this and determines that the RO needs to interact. The AS determines that it can
reach the identified user asynchronously and that the identified user does have the ability to
approve this request. The AS indicates to the client instance that it can poll for continuation.

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read", "dolphin-metadata",
 {
 "type": "financial-transaction",
 "actions": [
 "withdraw"
],
 "identifier": "account-14-32-32-3",
 "currency": "USD"
 },
 "some other thing"
],
 },
 "client": "7C7C4AZ9KHRS6X63AJAO",
 "user": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 180

The AS reaches out to the RO and prompts them for consent. In this example scenario, the AS has
an application that it can push notifications to for the specified account.

Meanwhile, the client instance periodically polls the AS every 60 seconds at the continuation URI.

The AS retrieves the pending request based on the continuation access token and determines
that it has not yet been authorized. The AS indicates to the client instance that no access token
has yet been issued but it can continue to call after another 60-second timeout.

Note that the continuation access token value has been rotated since it was used by the client
instance to make this call. The client instance polls the continuation URI after a 60-second
timeout using the new token.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 60
 }
}

POST /continue HTTP/1.1
Host: server.example.com
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "continue": {
 "access_token": {
 "value": "BI9QNW6V9W3XFJK4R02D"
 },
 "uri": "https://server.example.com/continue",
 "wait": 60
 }
}

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 181

The AS retrieves the pending request based on the handle, determines that it has been approved,
and issues an access token.

POST /continue HTTP/1.1
Host: server.example.com
Authorization: GNAP BI9QNW6V9W3XFJK4R02D
Signature-Input: sig1=...
Signature: sig1=...

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token/PRY5NM33O\
 M4TB8N6BW7OZB8CDFONP219RP1L",
 "access": [
 "dolphin-metadata", "some other thing"
]
 }
}

B.5. Applying OAuth 2.0 Scopes and Client IDs
While GNAP is not designed to be directly compatible with OAuth 2.0 , considerations
have been made to enable the use of OAuth 2.0 concepts and constructs more smoothly within
GNAP.

In this scenario, the client developer has a client_id and set of scope values from their OAuth
2.0 system and wants to apply them to the new protocol. In OAuth 2.0, the client developer would
put their client_id and scope values as parameters into a redirect request to the authorization
endpoint.

Now the developer wants to make an analogous request to the AS using GNAP. To do so, the client
instance makes an HTTP POST and places the OAuth 2.0 values in the appropriate places.

[RFC6749]

NOTE: '\' line wrapping per RFC 8792

HTTP 302 Found
Location: https://server.example.com/authorize\
 ?client_id=7C7C4AZ9KHRS6X63AJAO\
 &scope=read%20write%20dolphin\
 &redirect_uri=https://client.example.net/return\
 &response_type=code\
 &state=123455

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 182

The client_id can be used to identify the client instance's keys that it uses for authentication,
the scopes represent resources that the client instance is requesting, and the redirect_uri and
state value are pre-combined into a finish URI that can be unique per request. The client
instance additionally creates a nonce to protect the callback, separate from the state parameter
that it has added to its return URI.

From here, the protocol continues as above.

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "read", "write", "dolphin"
],
 "flags": ["bearer"]
 },
 "client": "7C7C4AZ9KHRS6X63AJAO",
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return?state=123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 }
}

Appendix C. Interoperability Profiles
The GNAP specification has many different modes, options, and mechanisms, allowing it to solve
a wide variety of problems in a wide variety of deployments. The wide applicability of GNAP
makes it difficult, if not impossible, to define a set of mandatory-to-implement features, since one
environment's required feature would be impossible to do in another environment. While this is
a large problem in many systems, GNAP's back-and-forth negotiation process allows parties to
declare at runtime everything that they support and then have the other party select from that
the subset of items that they also support, leading to functional compatibility in many parts of
the protocol even in an open world scenario.

In addition, GNAP defines a set of interoperability profiles that gather together core
requirements to fix options into common configurations that are likely to be useful to large
populations of similar applications.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 183

Conformant AS implementations of these profiles implement at least the features as
specified in the profile and implement additional features or profiles. Conformant client
implementations of these profiles implement at least the features as specified, except
where a subset of the features allows the protocol to function (such as using polling instead of a
push finish method for the Secondary Device profile).

MUST
MAY

MUST

C.1. Web-Based Redirection
Implementations conformant to the web-based redirection profile of GNAP implement all
of the following features:

Interaction Start Methods: redirect
Interaction Finish Methods: redirect
Interaction Hash Algorithms: sha-256
Key Proofing Methods: httpsig with no additional parameters
Key Formats: jwks with signature algorithm included in the key's alg parameter
JOSE Signature Algorithm: PS256
Subject Identifier Formats: opaque
Assertion Formats: id_token

MUST

•
•
•
•
•
•
•
•

C.2. Secondary Device
Implementations conformant to the Secondary Device profile of GNAP implement all of the
following features:

Interaction Start Methods: user_code and user_code_uri
Interaction Finish Methods: push
Interaction Hash Algorithms: sha-256
Key Proofing Methods: httpsig with no additional parameters
Key Formats: jwks with signature algorithm included in the key's alg parameter
JOSE Signature Algorithm: PS256
Subject Identifier Formats: opaque
Assertion Formats: id_token

MUST

•
•
•
•
•
•
•
•

Appendix D. Guidance for Extensions
Extensions to this specification have a variety of places to alter the protocol, including many
fields and objects that can have additional values in a registry (Section 10) established by this
specification. For interoperability and to preserve the security of the protocol, extensions should
register new values with IANA by following the specified mechanism. While it may technically be
possible to extend the protocol by adding elements to JSON objects that are not governed by an
IANA registry, a recipient may ignore such values but is also allowed to reject them.

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 184

Most object fields in GNAP are specified with types, and those types can allow different but
related behavior. For example, the access array can include either strings or objects, as
discussed in Section 8. The use of JSON polymorphism (Appendix E) within GNAP allows
extensions to define new fields by not only choosing a new name but also by using an existing
name with a new type. However, the extension's definition of a new type for a field needs to fit
the same kind of item being extended. For example, a hypothetical extension could define a
string value for the access_token request field, with a URL to download a hosted access token
request. Such an extension would be appropriate as the access_token field still defines the
access tokens being requested. However, if an extension were to define a string value for the
access_token request field, with the value instead being something unrelated to the access
token request such as a value or key format, this would not be an appropriate means of
extension. (Note that this specific extension example would create another form of SSRF attack
surface as discussed in Section 11.34.)

As another example, both interaction start modes (Section 2.5.1) and key proofing methods
(Section 7.3) can be defined as either strings or objects. An extension could take a method defined
as a string, such as app, and define an object-based version with additional parameters. This
extension should still define a method to launch an application on the end user's device, just like
app does when specified as a string.

Additionally, the ability to deal with different types for a field is not expected to be equal
between an AS and client software, with the client software being assumed to be both more
varied and more simplified than the AS. Furthermore, the nature of the negotiation process in
GNAP allows the AS more chance of recovery from unknown situations and parameters. As such,
any extensions that change the type of any field returned to a client instance should only do so
when the client instance has indicated specific support for that extension through some kind of
request parameter.

Appendix E. JSON Structures and Polymorphism
GNAP makes use of polymorphism within the structures used for the protocol.
Each portion of this protocol is defined in terms of the JSON data type that its values can take,
whether it's a string, object, array, boolean, or number. For some fields, different data types offer
different descriptive capabilities and are used in different situations for the same field. Each data
type provides a different syntax to express the same underlying semantic protocol element,
which allows for optimization and simplification in many common cases.

Even though JSON is often used to describe strongly typed structures, JSON on its own is
naturally polymorphic. In JSON, the named members of an object have no type associated with
them, and any data type can be used as the value for any member. In practice, each member has
a semantic type that needs to make sense to the parties creating and consuming the object.
Within this protocol, each object member is defined in terms of its semantic content, and this
semantic content might have expressions in different concrete data types for different specific
purposes. Since each object member has exactly one value in JSON, each data type for an object
member field is naturally mutually exclusive with other data types within a single JSON object.

JSON [RFC8259]

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 185

For example, a resource request for a single access token is composed of an object of resource
request descriptions, while a request for multiple access tokens is composed of an array whose
member values are all objects. Both of these represent requests for access, but the difference in
syntax allows the client instance and AS to differentiate between the two request types in the
same request.

Another form of polymorphism in JSON comes from the fact that the values within JSON arrays
need not all be of the same JSON data type. However, within this protocol, each element within
the array needs to be of the same kind of semantic element for the collection to make sense, even
when the data types are different from each other.

For example, each aspect of a resource request can be described using an object with multiple
dimensional components, or the aspect can be requested using a string. In both cases, the
resource request is being described in a way that the AS needs to interpret, but with different
levels of specificity and complexity for the client instance to deal with. An API designer can
provide a set of common access scopes as simple strings but still allow client software developers
to specify custom access when needed for more complex APIs.

Extensions to this specification can use different data types for defined fields, but each extension
needs to not only declare what the data type means but also provide justification for the data
type representing the same basic kind of thing it extends. For example, an extension declaring an
"array" representation for a field would need to explain how the array represents something
akin to the non-array element that it is replacing. See additional discussion in Appendix D.

Acknowledgements
The authors would like to thank the following individuals for their reviews, implementations,
and contributions: , , , ,

, , , , , ,
, , , , ,

, , , , , ,
, and .

The authors would also like to thank the GNAP Working Group design team (,
, , and the authors), who incorporated elements from the XAuth and XYZ

proposals to create the first draft version of this document.

In addition, the authors would like to thank and for insights into how
to integrate identity and authentication systems into the core protocol. Both and

 developed the use cases, diagrams, and insights provided in the XYZ and XAuth
proposals that have been incorporated here. The authors would like to especially thank

 and the team at SecureKey for feedback and development of early versions of the XYZ
protocol that fed into this standards work.

Finally, the authors want to acknowledge the immense contributions of to the
content of this document. We thank him for his insight, input, and hard work, without which
GNAP would not have grown to what it is.

Åke Axeland Aaron Parecki Adam Omar Oueidat Andrii Deinega Annabelle
Backman Dick Hardt Dmitri Zagidulin Dmitry Barinov Florian Helmschmidt Francis Pouatcha
George Fletcher Haardik Haardik Hamid Massaoud Jacky Yuan Joseph Heenan Kathleen
Moriarty Leif Johansson Mike Jones Mike Varley Nat Sakimura Takahiko Kawasaki Takahiro
Tsuchiya Yaron Sheffer

Kathleen Moriarty
Dick Hardt Mike Jones

Aaron Parecki Mike Jones
Justin Richer

Dick Hardt
Mike

Varley

Aaron Parecki

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 186

Authors' Addresses
Justin Richer ()editor
Bespoke Engineering

ietf@justin.richer.orgEmail:
https://bspk.io/URI:

Fabien Imbault
acert.io

fabien.imbault@acert.ioEmail:
https://acert.io/URI:

RFC 9635 Grant Negotiation and Authorization Protocol (GNAP) October 2024

Richer & Imbault Standards Track Page 187

mailto:ietf@justin.richer.org
https://bspk.io/
mailto:fabien.imbault@acert.io
https://acert.io/

	RFC 9635
	Grant Negotiation and Authorization Protocol (GNAP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Roles
	1.3. Elements
	1.4. Trust Relationships
	1.5. Protocol Flow
	1.6. Sequences
	1.6.1. Overall Protocol Sequence
	1.6.2. Redirect-Based Interaction
	1.6.3. User Code Interaction
	1.6.4. Asynchronous Authorization
	1.6.5. Software-Only Authorization
	1.6.6. Refreshing an Expired Access Token
	1.6.7. Requesting Subject Information Only
	1.6.8. Cross-User Authentication

	2. Requesting Access
	2.1. Requesting Access to Resources
	2.1.1. Requesting a Single Access Token
	2.1.2. Requesting Multiple Access Tokens

	2.2. Requesting Subject Information
	2.3. Identifying the Client Instance
	2.3.1. Identifying the Client Instance by Reference
	2.3.2. Providing Displayable Client Instance Information
	2.3.3. Authenticating the Client Instance

	2.4. Identifying the User
	2.4.1. Identifying the User by Reference

	2.5. Interacting with the User
	2.5.1. Start Mode Definitions
	2.5.1.1. Redirect to an Arbitrary URI
	2.5.1.2. Open an Application-Specific URI
	2.5.1.3. Display a Short User Code
	2.5.1.4. Display a Short User Code and URI

	2.5.2. Interaction Finish Methods
	2.5.2.1. Receive an HTTP Callback through the Browser
	2.5.2.2. Receive an HTTP Direct Callback

	2.5.3. Hints
	2.5.3.1. Indicate Desired Interaction Locales

	3. Grant Response
	3.1. Request Continuation
	3.2. Access Tokens
	3.2.1. Single Access Token
	3.2.2. Multiple Access Tokens

	3.3. Interaction Modes
	3.3.1. Redirection to an Arbitrary URI
	3.3.2. Launch of an Application URI
	3.3.3. Display of a Short User Code
	3.3.4. Display of a Short User Code and URI
	3.3.5. Interaction Finish

	3.4. Returning Subject Information
	3.4.1. Assertion Formats

	3.5. Returning a Dynamically Bound Client Instance Identifier
	3.6. Error Response

	4. Determining Authorization and Consent
	4.1. Starting Interaction with the End User
	4.1.1. Interaction at a Redirected URI
	4.1.2. Interaction at the Static User Code URI
	4.1.3. Interaction at a Dynamic User Code URI
	4.1.4. Interaction through an Application URI

	4.2. Post-Interaction Completion
	4.2.1. Completing Interaction with a Browser Redirect to the Callback URI
	4.2.2. Completing Interaction with a Direct HTTP Request Callback
	4.2.3. Calculating the Interaction Hash

	5. Continuing a Grant Request
	5.1. Continuing after a Completed Interaction
	5.2. Continuing during Pending Interaction (Polling)
	5.3. Modifying an Existing Request
	5.4. Revoking a Grant Request

	6. Token Management
	6.1. Rotating the Access Token Value
	6.1.1. Binding a New Key to the Rotated Access Token

	6.2. Revoking the Access Token

	7. Securing Requests from the Client Instance
	7.1. Key Formats
	7.1.1. Key References
	7.1.2. Key Protection

	7.2. Presenting Access Tokens
	7.3. Proving Possession of a Key with a Request
	7.3.1. HTTP Message Signatures
	7.3.1.1. Key Rotation Using HTTP Message Signatures

	7.3.2. Mutual TLS
	7.3.2.1. Key Rotation Using MTLS

	7.3.3. Detached JWS
	7.3.3.1. Key Rotation Using Detached JWS

	7.3.4. Attached JWS
	7.3.4.1. Key Rotation Using Attached JWS

	8. Resource Access Rights
	8.1. Requesting Resources by Reference

	9. Discovery
	9.1. RS-First Method of AS Discovery
	9.2. Dynamic Grant Endpoint Discovery

	10. IANA Considerations
	10.1. HTTP Authentication Scheme Registration
	10.2. Media Type Registration
	10.2.1. application/gnap-binding-jwsd
	10.2.2. application/gnap-binding-jws
	10.2.3. application/gnap-binding-rotation-jwsd
	10.2.4. application/gnap-binding-rotation-jws

	10.3. GNAP Grant Request Parameters
	10.3.1. Registration Template
	10.3.2. Initial Contents

	10.4. GNAP Access Token Flags
	10.4.1. Registration Template
	10.4.2. Initial Contents

	10.5. GNAP Subject Information Request Fields
	10.5.1. Registration Template
	10.5.2. Initial Contents

	10.6. GNAP Assertion Formats
	10.6.1. Registration Template
	10.6.2. Initial Contents

	10.7. GNAP Client Instance Fields
	10.7.1. Registration Template
	10.7.2. Initial Contents

	10.8. GNAP Client Instance Display Fields
	10.8.1. Registration Template
	10.8.2. Initial Contents

	10.9. GNAP Interaction Start Modes
	10.9.1. Registration Template
	10.9.2. Initial Contents

	10.10. GNAP Interaction Finish Methods
	10.10.1. Registration Template
	10.10.2. Initial Contents

	10.11. GNAP Interaction Hints
	10.11.1. Registration Template
	10.11.2. Initial Contents

	10.12. GNAP Grant Response Parameters
	10.12.1. Registration Template
	10.12.2. Initial Contents

	10.13. GNAP Interaction Mode Responses
	10.13.1. Registration Template
	10.13.2. Initial Contents

	10.14. GNAP Subject Information Response Fields
	10.14.1. Registration Template
	10.14.2. Initial Contents

	10.15. GNAP Error Codes
	10.15.1. Registration Template
	10.15.2. Initial Contents

	10.16. GNAP Key Proofing Methods
	10.16.1. Registration Template
	10.16.2. Initial Contents

	10.17. GNAP Key Formats
	10.17.1. Registration Template
	10.17.2. Initial Contents

	10.18. GNAP Authorization Server Discovery Fields
	10.18.1. Registration Template
	10.18.2. Initial Contents

	11. Security Considerations
	11.1. TLS Protection in Transit
	11.2. Signing Requests from the Client Software
	11.3. MTLS Message Integrity
	11.4. MTLS Deployment Patterns
	11.5. Protection of Client Instance Key Material
	11.6. Protection of Authorization Server
	11.7. Symmetric and Asymmetric Client Instance Keys
	11.8. Generation of Access Tokens
	11.9. Bearer Access Tokens
	11.10. Key-Bound Access Tokens
	11.11. Exposure of End-User Credentials to Client Instance
	11.12. Mixing Up Authorization Servers
	11.13. Processing of Client-Presented User Information
	11.14. Client Instance Pre-registration
	11.15. Client Instance Impersonation
	11.16. Client-Hosted Logo URI
	11.17. Interception of Information in the Browser
	11.18. Callback URI Manipulation
	11.19. Redirection Status Codes
	11.20. Interception of Responses from the AS
	11.21. Key Distribution
	11.22. Key Rotation Policy
	11.23. Interaction Finish Modes and Polling
	11.24. Session Management for Interaction Finish Methods
	11.25. Calculating Interaction Hash
	11.26. Storage of Information during Interaction and Continuation
	11.27. Denial of Service (DoS) through Grant Continuation
	11.28. Exhaustion of Random Value Space
	11.29. Front-Channel URIs
	11.30. Processing Assertions
	11.31. Stolen Token Replay
	11.32. Self-Contained Stateless Access Tokens
	11.33. Network Problems and Token and Grant Management
	11.34. Server-Side Request Forgery (SSRF)
	11.35. Multiple Key Formats
	11.36. Asynchronous Interactions
	11.37. Compromised RS
	11.38. AS-Provided Token Keys

	12. Privacy Considerations
	12.1. Surveillance
	12.1.1. Surveillance by the Client
	12.1.2. Surveillance by the Authorization Server

	12.2. Stored Data
	12.3. Intrusion
	12.4. Correlation
	12.4.1. Correlation by Clients
	12.4.2. Correlation by Resource Servers
	12.4.3. Correlation by Authorization Servers

	12.5. Disclosure in Shared References

	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Comparison with OAuth 2.0
	Appendix B. Example Protocol Flows
	B.1. Redirect-Based User Interaction
	B.2. Secondary Device Interaction
	B.3. No User Involvement
	B.4. Asynchronous Authorization
	B.5. Applying OAuth 2.0 Scopes and Client IDs

	Appendix C. Interoperability Profiles
	C.1. Web-Based Redirection
	C.2. Secondary Device

	Appendix D. Guidance for Extensions
	Appendix E. JSON Structures and Polymorphism
	Acknowledgements
	Authors' Addresses

 Grant Negotiation and Authorization Protocol (GNAP)

 Bespoke Engineering

 ietf@justin.richer.org
 https://bspk.io/

 acert.io

 fabien.imbault@acert.io
 https://acert.io/

 SEC
 gnap

 The Grant Negotiation and Authorization Protocol (GNAP) defines a mechanism for delegating authorization to a piece of
 software and conveying the results and artifacts of that delegation to
 the software. This delegation can include access to a set of APIs as
 well as subject information passed directly to the software.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Roles

 . Elements

 . Trust Relationships

 . Protocol Flow

 . Sequences

 . Overall Protocol Sequence

 . Redirect-Based Interaction

 . User Code Interaction

 . Asynchronous Authorization

 . Software-Only Authorization

 . Refreshing an Expired Access Token

 . Requesting Subject Information Only

 . Cross-User Authentication

 . Requesting Access

 . Requesting Access to Resources

 . Requesting a Single Access Token

 . Requesting Multiple Access Tokens

 . Requesting Subject Information

 . Identifying the Client Instance

 . Identifying the Client Instance by Reference

 . Providing Displayable Client Instance Information

 . Authenticating the Client Instance

 . Identifying the User

 . Identifying the User by Reference

 . Interacting with the User

 . Start Mode Definitions

 . Interaction Finish Methods

 . Hints

 . Grant Response

 . Request Continuation

 . Access Tokens

 . Single Access Token

 . Multiple Access Tokens

 . Interaction Modes

 . Redirection to an Arbitrary URI

 . Launch of an Application URI

 . Display of a Short User Code

 . Display of a Short User Code and URI

 . Interaction Finish

 . Returning Subject Information

 . Assertion Formats

 . Returning a Dynamically Bound Client Instance Identifier

 . Error Response

 . Determining Authorization and Consent

 . Starting Interaction with the End User

 . Interaction at a Redirected URI

 . Interaction at the Static User Code URI

 . Interaction at a Dynamic User Code URI

 . Interaction through an Application URI

 . Post-Interaction Completion

 . Completing Interaction with a Browser Redirect to the Callback URI

 . Completing Interaction with a Direct HTTP Request Callback

 . Calculating the Interaction Hash

 . Continuing a Grant Request

 . Continuing after a Completed Interaction

 . Continuing during Pending Interaction (Polling)

 . Modifying an Existing Request

 . Revoking a Grant Request

 . Token Management

 . Rotating the Access Token Value

 . Binding a New Key to the Rotated Access Token

 . Revoking the Access Token

 . Securing Requests from the Client Instance

 . Key Formats

 . Key References

 . Key Protection

 . Presenting Access Tokens

 . Proving Possession of a Key with a Request

 . HTTP Message Signatures

 . Mutual TLS

 . Detached JWS

 . Attached JWS

 . Resource Access Rights

 . Requesting Resources by Reference

 . Discovery

 . RS-First Method of AS Discovery

 . Dynamic Grant Endpoint Discovery

 . IANA Considerations

 . HTTP Authentication Scheme Registration

 . Media Type Registration

 . application/gnap-binding-jwsd

 . application/gnap-binding-jws

 . application/gnap-binding-rotation-jwsd

 . application/gnap-binding-rotation-jws

 . GNAP Grant Request Parameters

 . Registration Template

 . Initial Contents

 . GNAP Access Token Flags

 . Registration Template

 . Initial Contents

 . GNAP Subject Information Request Fields

 . Registration Template

 . Initial Contents

 . GNAP Assertion Formats

 . Registration Template

 . Initial Contents

 . GNAP Client Instance Fields

 . Registration Template

 . Initial Contents

 . GNAP Client Instance Display Fields

 . Registration Template

 . Initial Contents

 . GNAP Interaction Start Modes

 . Registration Template

 . Initial Contents

 . GNAP Interaction Finish Methods

 . Registration Template

 . Initial Contents

 . GNAP Interaction Hints

 . Registration Template

 . Initial Contents

 . GNAP Grant Response Parameters

 . Registration Template

 . Initial Contents

 . GNAP Interaction Mode Responses

 . Registration Template

 . Initial Contents

 . GNAP Subject Information Response Fields

 . Registration Template

 . Initial Contents

 . GNAP Error Codes

 . Registration Template

 . Initial Contents

 . GNAP Key Proofing Methods

 . Registration Template

 . Initial Contents

 . GNAP Key Formats

 . Registration Template

 . Initial Contents

 . GNAP Authorization Server Discovery Fields

 . Registration Template

 . Initial Contents

 . Security Considerations

 . TLS Protection in Transit

 . Signing Requests from the Client Software

 . MTLS Message Integrity

 . MTLS Deployment Patterns

 . Protection of Client Instance Key Material

 . Protection of Authorization Server

 . Symmetric and Asymmetric Client Instance Keys

 . Generation of Access Tokens

 . Bearer Access Tokens

 . Key-Bound Access Tokens

 . Exposure of End-User Credentials to Client Instance

 . Mixing Up Authorization Servers

 . Processing of Client-Presented User Information

 . Client Instance Pre-registration

 . Client Instance Impersonation

 . Client-Hosted Logo URI

 . Interception of Information in the Browser

 . Callback URI Manipulation

 . Redirection Status Codes

 . Interception of Responses from the AS

 . Key Distribution

 . Key Rotation Policy

 . Interaction Finish Modes and Polling

 . Session Management for Interaction Finish Methods

 . Calculating Interaction Hash

 . Storage of Information during Interaction and Continuation

 . Denial of Service (DoS) through Grant Continuation

 . Exhaustion of Random Value Space

 . Front-Channel URIs

 . Processing Assertions

 . Stolen Token Replay

 . Self-Contained Stateless Access Tokens

 . Network Problems and Token and Grant Management

 . Server-Side Request Forgery (SSRF)

 . Multiple Key Formats

 . Asynchronous Interactions

 . Compromised RS

 . AS-Provided Token Keys

 . Privacy Considerations

 . Surveillance

 . Surveillance by the Client

 . Surveillance by the Authorization Server

 . Stored Data

 . Intrusion

 . Correlation

 . Correlation by Clients

 . Correlation by Resource Servers

 . Correlation by Authorization Servers

 . Disclosure in Shared References

 . References

 . Normative References

 . Informative References

 . Comparison with OAuth 2.0

 . Example Protocol Flows

 . Redirect-Based User Interaction

 . Secondary Device Interaction

 . No User Involvement

 . Asynchronous Authorization

 . Applying OAuth 2.0 Scopes and Client IDs

 . Interoperability Profiles

 . Web-Based Redirection

 . Secondary Device

 . Guidance for Extensions

 . JSON Structures and Polymorphism

 Acknowledgements

 Authors' Addresses

 Introduction
 GNAP allows a piece of software, the client instance, to request delegated
authorization to resource servers and subject information. The delegated access to
the resource server can be used by the client instance to access resources and APIs
on behalf a resource owner, and delegated access to
subject information can in turn be used by the client instance to make authentication decisions.
This delegation is facilitated by an authorization server, usually on
behalf of a resource owner. The end user operating the software can interact
with the authorization server to authenticate, provide consent, and
authorize the request as a resource owner.
 The process by which the delegation happens is known as a grant, and
GNAP allows for the negotiation of the grant process
over time by multiple parties acting in distinct roles.
 This specification focuses on the portions of the delegation process facing the client instance.
In particular, this specification defines interoperable methods for a client instance to request, negotiate,
and receive access to information facilitated by the authorization server.
This specification additionally defines methods for the client instance to access
protected resources at a resource server.
This specification also discusses discovery mechanisms that enable the client instance to
configure itself dynamically.
The means for an authorization server and resource server to interoperate are
discussed in .
 The focus of this protocol is to provide interoperability between the different
parties acting in each role, not to specify implementation details of each.
Where appropriate, GNAP may make recommendations about internal implementation
details, but these recommendations are to ensure the security of the overall
deployment rather than to be prescriptive in the implementation.
 This protocol solves many of the same use cases as OAuth 2.0 ,
OpenID Connect , and the family of protocols that have grown up
around that ecosystem. However, GNAP is not an extension of OAuth 2.0
and is not intended to be directly compatible with OAuth 2.0. GNAP seeks to
provide functionality and solve use cases that OAuth 2.0 cannot easily
or cleanly address. further details the protocol rationale compared to OAuth 2.0.
GNAP and OAuth 2.0 will likely exist in parallel
for many deployments, and considerations have been taken to facilitate
the mapping and transition from existing OAuth 2.0 systems to GNAP. Some examples
of these can be found in .

 Terminology

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 This document contains non-normative examples of partial and complete HTTP messages, JSON structures, URIs, query components, keys, and other elements. Whenever possible, the document uses URI as a generic term, since it aligns with the recommendations in and better matches the intent that the identifier may be reachable through various/generic means (compared to URLs). Some examples use a single trailing backslash (\) to indicate line wrapping for long values, as per . The \ character and leading spaces on wrapped lines are not part of the value.
 This document uses the term "mutual TLS" as defined by . The shortened form "MTLS" is used to mean the same thing.
 For brevity, the term "signature" on its own is used in this document to refer to both digital signatures (which use asymmetric cryptography) and keyed Message Authentication Codes (MACs) (which use symmetric cryptography). Similarly, the verb "sign" refers to the generation of either a digital signature or a keyed MAC over a given signature base. The qualified term "digital signature" refers specifically to the output of an asymmetric cryptographic signing operation.

 Roles
 The parties in GNAP perform actions under different roles.
Roles are defined by the actions taken and the expectations leveraged
on the role by the overall protocol.

 Roles in GNAP

 Authorization
 Resource
 Server
 Server
 Client
 Instance
 Resource
 End
 Owner
 ~
 ~
 ~
 ~
 ~
 ~
 User
 Legend:
 indicates
 interaction
 between
 a
 human
 and
 computer
 indicates
 interaction
 between
 two
 pieces
 of
 software
 ~
 ~
 ~
 indicates
 a
 potential
 equivalence
 or
 out-of-band
 communication
 between
 roles

+-------------+ +------------+
Authorization		Resource
Server		Server
	<--+ +--->	
+-----+-------+ | | +------------+
 ║ | |
 ║ +--+---+---+
 ║ | Client |
 ║ | Instance |
 ║ +----+-----+
 ║ ║
 .----+----. ║ .----------.
	+=====+	
Resource		End
Owner	~ ~ ~ ~ ~ ~	User
 `---------` `----------`

Legend:
===== indicates interaction between a human and computer
----- indicates interaction between two pieces of software
~ ~ ~ indicates a potential equivalence or out-of-band
 communication between roles

 Authorization Server (AS):

 Server that grants delegated privileges to a particular instance of client software in the form of access tokens or other information (such as subject information). The AS is uniquely defined by the grant endpoint URI, which is the absolute URI where grant requests are started by clients.

 Client:

 Application that consumes resources from one or several resource servers, possibly requiring access privileges from one or several ASes. The client is operated by the end user, or it runs autonomously on behalf of a resource owner.

 For example, a client can be a mobile application, a web application, a backend data processor, etc.
 Note: This specification differentiates between a specific instance (the client instance, identified by its unique key) and the software running the instance (the client software). For some kinds of client software, there could be many instances of that software, each instance with a different key.

 Resource Server (RS):

 Server that provides an API on protected resources, where operations on the API require a valid access token issued by a trusted AS.

 Resource Owner (RO):

 Subject entity that may grant or deny operations on resources it has authority upon.

 Note: The act of granting or denying an operation may be manual (i.e., through an interaction with a physical person) or automatic (i.e., through predefined organizational rules).

 End user:

 Natural person that operates a client instance.

 Note: That natural person may or may not be the same entity as the RO.

 The design of GNAP does not assume any one deployment architecture
but instead attempts to define roles that can be fulfilled in a number
of different ways for different use cases. As long as a given role fulfills
all of its obligations and behaviors as defined by the protocol, GNAP does
not make additional requirements on its structure or setup.
 Multiple roles can be fulfilled by the same party, and a given party
can switch roles in different instances of the protocol. For example, in many instances,
the RO and end user are the same person, where a user
authorizes the client instance to act on their own behalf at the RS. In this case,
one party fulfills the roles of both RO and end user, but the roles themselves
are still defined separately from each other to allow for other
use cases where they are fulfilled by different parties.
 As another example,
in some complex scenarios, an RS receiving requests from one client instance can act as
a client instance for a downstream secondary RS in order to fulfill the
original request. In this case, one piece of software is both an
RS and a client instance from different perspectives, and it fulfills these
roles separately as far as the overall protocol is concerned.
 A single role need not be deployed as a monolithic service. For example,
a client instance could have frontend components that are installed on the end user's device as
well as a backend system that the frontend communicates with. If both of these
components participate in the delegation protocol, they are both considered
part of the client instance. If there are several copies of the client software
that run separately but all share the same key material, such as a
deployed cluster, then this cluster is considered a single client instance.
In these cases, the distinct components of what is considered a GNAP client instance
may use any number of different communication mechanisms between them, all of which
would be considered an implementation detail of the client instances and out of scope of GNAP.
 As another example, an AS could likewise be built out of many constituent
components in a distributed architecture. The component that the client instance
calls directly could be different from the component that the
RO interacts with to drive consent, since API calls and user interaction
have different security considerations in many environments. Furthermore,
the AS could need to collect identity claims about the RO from one system
that deals with user attributes while generating access tokens at
another system that deals with security rights. From the perspective of
GNAP, all of these are pieces of the AS and together fulfill the
role of the AS as defined by the protocol. These pieces may have their own internal
communications mechanisms, which are considered out of scope of GNAP.

 Elements
 In addition to the roles above, the protocol also involves several
elements that are acted upon by the roles throughout the process.

 Access Token:

 A data artifact representing a set of rights and/or attributes.

 Note: An access token can be first issued to a client instance (requiring authorization by the RO) and subsequently rotated.

 Grant:

 (verb): To permit an instance of client software to receive some attributes at a specific time and with a specific duration of validity and/or to exercise some set of delegated rights to access a protected resource.

 (noun): The act of granting permission to a client instance.

 Privilege:

 Right or attribute associated with a subject.

 Note: The RO defines and maintains the rights and attributes associated to the protected resource and might temporarily delegate some set of those privileges to an end user. This process is referred to as "privilege delegation".

 Protected Resource:

 Protected API that is served by an RS and that can be accessed by a client, if and only if a valid and sufficient access token is provided.

 Note: To avoid complex sentences, the specification document may simply refer to "resource" instead of "protected resource".

 Right:

 Ability given to a subject to perform a given operation on a resource under the control of an RS.

 Subject:

 Person or organization. The subject decides whether and under which conditions its attributes can be disclosed to other parties.

 Subject Information:

 Set of statements and attributes asserted by an AS about a subject. These statements can be used by the client instance as part of an authentication decision.

 Trust Relationships
 GNAP defines its trust objective as follows: the RO trusts the AS to ensure access validation and delegation of protected resources to end users, through third party clients.
 This trust objective can be decomposed into trust relationships between software elements and roles, especially the pairs end user/RO, end user/client, client/AS, RS/RO, AS/RO, and AS/RS. Trust of an agent by its pair can exist if the pair is informed that the agent has made a promise to follow the protocol in the past (e.g., pre-registration and uncompromised cryptographic components) or if the pair is able to infer by indirect means that the agent has made such a promise (e.g., a compliant client request). Each agent defines its own valuation function of promises given or received. Examples of such valuations can be the benefits from interacting with other agents (e.g., safety in client access and interoperability with identity standards), the cost of following the protocol (including its security and privacy requirements and recommendations), a ranking of promise importance (e.g., a policy decision made by the AS), the assessment of one's vulnerability or risk of not being able to defend against threats, etc. Those valuations may depend on the context of the request. For instance, depending on the specific case in which GNAP is used, the AS may decide to either take into account or discard hints provided by the client, or the RS may refuse bearer tokens. Some promises can be affected by previous interactions (e.g., repeated requests).
 Below are details of each trust relationship:

 end user/RO:
 This relationship exists only when the end user and the RO are different, in which case the end user needs some out-of-band mechanism of getting the RO consent (see). GNAP generally assumes that humans can be authenticated, thanks to identity protocols (for instance, through an id_token assertion as described in).
 end user/client:
 The client acts as a user agent. Depending on the technology used (browser, single-page application (SPA), mobile application, Internet of Things (IoT) device, etc.), some interactions may or may not be possible (as described in). Client developers implement requirements and generally some recommendations or best practices, so that the end users may confidently use their software. However, end users might also face an attacker's client software or a poorly implemented client without even realizing it.
 end user/AS:
 When the client supports the interaction feature (see), the end user interacts with the AS through an AS-provided interface. In many cases, this happens through a front-channel interaction through the end user's browser. See for some considerations in trusting these interactions.
 client/AS:
 An honest AS may face an attacker's client (as discussed just above), or the reverse, and GNAP aims to make common attacks impractical. This specification makes access tokens opaque to the client and defines the request/response scheme in detail, therefore avoiding extra trust hypotheses from this critical piece of software. Yet, the AS may further define cryptographic attestations or optional rules to simplify the access of clients it already trusts, due to past behavior or organizational policies (see).
 RS/RO:
 On behalf of the RO, the RS promises to protect its resources from unauthorized access and only accepts valid access tokens issued by a trusted AS. In case tokens are key bound, proper validation of the proofing method is expected from the RS.
 AS/RO:
 The AS is expected to follow the decisions made by the RO, through either interactive consent requests, repeated interactions, or automated rules (as described in). Privacy considerations aim to reduce the risk of an honest but too-curious AS or the consequences of an unexpected user data exposure.
 AS/RS:
 The AS promises to issue valid access tokens to legitimate client requests (i.e., after carrying out appropriate due diligence, as defined in the GNAP). Some optional configurations are covered by .

 A global assumption made by GNAP is that authorization requests are security and privacy sensitive, and appropriate measures are detailed in Sections and , respectively.
 A formal trust model is out of scope of this specification, but one could be developed using techniques such as the Promise Theory .

 Protocol Flow
 GNAP is fundamentally designed to allow delegated access to APIs and other information, such as subject information, using a multi-stage, stateful process. This process allows different parties to provide information into the system to alter and augment the state of the delegated access and its artifacts.
 The underlying requested grant moves through several states as different actions take place during the protocol, as shown in .

 State Diagram of a Grant Request in GNAP

 Continue
 Need
 Interaction
 Pending
 Finish
 Interaction
 (approve/deny)
 Cancel
 Request
 Processing
 Finalize
 Finalized
 Revoke
 or
 Finalize
 Update
 Approved
 No
 Interaction
 Continue

 .-----.
 | |
 +------+--+ | Continue
 .---Need Interaction---->| | |
 / | Pending |<--`
 / .--Finish Interaction--+ |
 / / (approve/deny) +----+----+
 / / |
 / / | Cancel
 / v v
 +-+----------+ +===========+
 | | ║ ║
---Request-->| Processing +------Finalize---->║ Finalized ║
 | | ║ ║
 +-+----------+ +===========+
 \ ^ ^
 \ \ | Revoke or
 \ \ | Finalize
 \ \ +-----+----+
 \ `-----Update---------+ |
 \ | Approved |<--.
 `-----No Interaction--->| | |
 +-------+--+ | Continue
 | |
 `-----`

 The state of the grant request is defined and managed by the AS, though the client instance also needs to manage its view of the grant request over time. The means by which these roles manage their state are outside the scope of this specification.

 Processing:
 When a request for access () is received by the AS, a new grant request is created and placed in the processing state by the AS. This state is also entered when an existing grant request is updated by the client instance and when interaction is completed. In this state, the AS processes the context of the grant request to determine whether interaction with the end user or RO is required for approval of the request. The grant request has to exit this state before a response can be returned to the client instance. If approval is required, the request moves to the pending state, and the AS returns a continuation response () along with any appropriate interaction responses (). If no such approval is required, such as when the client instance is acting on its own behalf or the AS can determine that access has been fulfilled, the request moves to the approved state where access tokens for API access () and subject information () can be issued to the client instance. If the AS determines that no additional processing can occur (such as a timeout or an unrecoverable error), the grant request is moved to the finalized state and is terminated.
 Pending:
 When a request needs to be approved by an RO, or interaction with the end user is required, the grant request enters a state of pending. In this state, no access tokens can be granted, and no subject information can be released to the client instance. While a grant request is in this state, the AS seeks to gather the required consent and authorization () for the requested access. A grant request in this state is always associated with a continuation access token bound to the client instance's key (see for details of the continuation access token). If no interaction finish method () is associated with this request, the client instance can send a polling continuation request () to the AS. This returns a continuation response () while the grant request remains in this state, allowing the client instance to continue to check the state of the pending grant request. If an interaction finish method () is specified in the grant request, the client instance can continue the request after interaction () to the AS to move this request to the processing state to be re-evaluated by the AS. Note that this occurs whether the grant request has been approved or denied by the RO, since the AS needs to take into account the full context of the request before determining the next step for the grant request. When other information is made available in the context of the grant request, such as through the asynchronous actions of the RO, the AS moves this request to the processing state to be re-evaluated. If the AS determines that no additional interaction can occur, e.g., all the interaction methods have timed out or a revocation request () is received from the client instance, the grant request can be moved to the finalized state.
 Approved:
 When a request has been approved by an RO and no further interaction with the end user is required, the grant request enters a state of approved. In this state, responses to the client instance can include access tokens for API access () and subject information (). If continuation and updates are allowed for this grant request, the AS can include the continuation response (). In this state, post-interaction continuation requests () are not allowed and will result in an error, since all interaction is assumed to have been completed. If the client instance sends a polling continuation request () while the request is in this state, new access tokens () can be issued in the response. Note that this always creates a new access token, but any existing access tokens could be rotated and revoked using the token management API (). The client instance can send an update continuation request () to modify the requested access, causing the AS to move the request back to the processing state for re-evaluation. If the AS determines that no additional tokens can be issued and that no additional updates are to be accepted (e.g., the continuation access tokens have expired), the grant is moved to the finalized state.
 Finalized:
 After the access tokens are issued, if the AS does not allow any additional updates on the grant request, the grant request enters the finalized state. This state is also entered when an existing grant request is revoked by the client instance () or otherwise revoked by the AS (such as through out-of-band action by the RO). This state can also be entered if the AS determines that no additional processing is possible, for example, if the RO has denied the requested access or if interaction is required but no compatible interaction methods are available. Once in this state, no new access tokens can be issued, no subject information can be returned, and no interactions can take place. Once in this state, the grant request is dead and cannot be revived. If future access is desired by the client instance, a new grant request can be created, unrelated to this grant request.

 While it is possible to deploy an AS in a stateless environment, GNAP is a stateful protocol, and such deployments will need a way to manage the current state of the grant request in a secure and deterministic fashion without relying on other components, such as the client software, to keep track of the current state.

 Sequences
 GNAP can be used in a variety of ways to allow the core
delegation process to take place. Many portions of this process are
conditionally present depending on the context of the deployments,
and not every step in this overview will happen in all circumstances.
 Note that a connection between roles in this process does not necessarily
indicate that a specific protocol message is sent across the wire
between the components fulfilling the roles in question or that a
particular step is required every time. For example, for a client instance interested
in only getting subject information directly and not calling an RS,
all steps involving the RS below do not apply.
 In some circumstances,
the information needed at a given stage is communicated out of band
or is pre-configured between the components or entities performing
the roles. For example, one entity can fulfill multiple roles, so
explicit communication between the roles is not necessary within the
protocol flow. Additionally, some components may not be involved
in all use cases. For example, a client instance could be calling the
AS just to get direct user information and have no need to get
an access token to call an RS.

 Overall Protocol Sequence
 The following diagram provides a general overview of GNAP, including many
different optional phases and connections. The diagrams in the following sections
provide views of GNAP under more specific circumstances. These additional diagrams
use the same conventions as the overall diagram below.

 Overall Sequence of GNAP

 End
 User
 ~
 ~
 ~
 ~
 Resource
 Owner
 (RO)
 A
 B
 Client
 (1)
 Resource
 Instance
 Server
 (RS)
 2
 Authorization
 3
 Server
 (AS)
 4
 5
 6
 |
 |
 (7)
 8
 9
 10
 11
 (12)
 13
 Legend:
 indicates
 a
 possible
 interaction
 with
 a
 human
 indicates
 an
 interaction
 between
 protocol
 roles
 ~
 ~
 ~
 indicates
 a
 potential
 equivalence
 or
 out-of-band
 communication
 between
 roles

 .----------. .----------.
| End user | ~ ~ ~ ~ | Resource |
| | | Owner (RO) |
 `----+-----` `-----+----`
 ║ ║
 ║ ║
 (A) (B)
 ║ ║
 ║ ║
+-----+--+ ║ +------------+
Client	(1) ║	Resource		
Instance	║	Server		
	+-----------+---+	(RS)		
+--(2)-->	Authorization			
	<-(3)---+ Server			
		(AS)		
+--(4)-->				
	<-(5)---+			
+---------------(6)------------->				
			(7)	
	<--------------(8)------------->			
+--(9)-->				
	<-(10)--+			
+---------------(11)------------>				
			(12)	
+--(13)->				
+--------+ +---------------+ +------------+

Legend:
===== indicates a possible interaction with a human
----- indicates an interaction between protocol roles
~ ~ ~ indicates a potential equivalence or out-of-band
 communication between roles

 (A) The end user interacts with the client instance to indicate a need for resources on
 behalf of the RO. This could identify the RS that the client instance needs to call,
 the resources needed, or the RO that is needed to approve the
 request. Note that the RO and end user are often
 the same entity in practice, but GNAP makes no general assumption that they are.

 (1) The client instance determines what access is needed and which AS to approach for access. Note that
 for most situations, the client instance is pre-configured with which AS to talk to and which
 kinds of access it needs, but some more dynamic processes are discussed in
 .

 (2) The client instance requests access at the AS ().

 (3) The AS processes the request and determines what is needed to fulfill
 the request (see).
 The AS sends its response to the client instance ().

 (B) If interaction is required, the
 AS interacts with the RO () to gather authorization.
 The interactive component of the AS can function
 using a variety of possible mechanisms, including web page
 redirects, applications, challenge/response protocols, or
 other methods. The RO approves the request for the client instance
 being operated by the end user. Note that the RO and end user are often
 the same entity in practice, and many of GNAP's interaction methods allow
 the client instance to facilitate the end user interacting with the AS
 in order to fulfill the role of the RO.

 (4) The client instance continues the grant at the AS (). This action could
 occur in response to receiving a signal that interaction has finished () or
 through a periodic polling mechanism, depending on the interaction capabilities of the client
 software and the options active in the grant request.

 (5) If the AS determines that access can be granted, it returns a
 response to the client instance (), including an access token () for
 calling the RS and any directly returned information () about the RO.

 (6) The client instance uses the access token () to call the RS.

 (7) The RS determines if the token is sufficient for the request by
 examining the token. The means of the RS determining this access are
 out of scope of this specification, but some options are discussed in
 .

 (8) The client instance calls the RS () using the access token
 until the RS or client instance determines that the token is no longer valid.

 (9) When the token no longer works, the client instance
 rotates the access token ().

 (10) The AS issues a new access token () to the client instance
 with the same rights as the original access token returned in (5).

 (11) The client instance uses the new access token () to call the RS.

 (12) The RS determines if the new token is sufficient for the request, as in (7).

 (13) The client instance disposes of the token () once the client instance
 has completed its access of the RS and no longer needs the token.

 The following sections and contain specific guidance on how to use
GNAP in different situations and deployments. For example, it is possible for the
client instance to never request an access token and never call an RS, just as it is
possible to have no end user involved in the delegation process.

 Redirect-Based Interaction
 In this example flow, the client instance is a web application that wants access to resources on behalf
of the current user, who acts as both the end user and the RO. Since the client instance is capable of directing the user to an arbitrary URI and
receiving responses from the user's browser, interaction here is handled through
front-channel redirects using the user's browser. The redirection URI used for interaction is
a service hosted by the AS in this example. The client instance uses a persistent session
with the user to ensure the same user that is starting the interaction is the user
that returns from the interaction.

 Diagram of a Redirect-Based Interaction

 Client
 AS
 End
 Instance
 User
 1
 Start
 Session
 2
 Request
 Access
 3
 Interaction
 Needed
 4
 Redirect
 for
 Interaction
 5
 AuthN
 RO
 6
 AuthZ
 End
 7
 Redirect
 for
 Continuation
 User
 8
 Continue
 Request
 9
 Grant
 Access
 10
 Access
 API
 RS
 |
 |
 11
 API
 Response

+--------+ +--------+ .----.
Client		AS		End
Instance				User
	<=(1)== Start Session ===============================+			
+--(2)--- Request Access --------->				
	<-(3)-- Interaction Needed -------+			
+==(4)== Redirect for Interaction ===================>				
			+------+	
			<==(5)==>	
			AuthN	RO
			<==(6)==>	
			AuthZ +------+	
				End
	<=(7)== Redirect for Continuation ===================+ User			
			`----`	
+--(8)--- Continue Request ------->				
	<-(9)----- Grant Access ----------+			
			+--------+	
+--(10)-- Access API ---------------------------->	RS			
	<-(11)-- API Response ---------------------------			
			+--------+	
+--------+ +--------+

 (1) The client instance establishes a session with the user, in the role of the end user.

 (2) The client instance requests access to the resource (). The client instance indicates that
 it can redirect to an arbitrary URI () and
 receive a redirect from the browser (). The client instance
 stores verification information for its redirect in the session created
 in (1).

 (3) The AS determines that interaction is needed and responds () with
 a URI to send the user to () and
 information needed to verify the redirect () in (7).
 The AS also includes information the client instance will need to
 continue the request () in (8). The AS associates this
 continuation information with an ongoing request that will be referenced in (4), (6), and (8).

 (4) The client instance stores the verification and continuation information from (3) in the session from (1). The client instance
 then redirects the user to the URI () given by the AS in (3).
 The user's browser loads the interaction redirect URI. The AS loads the pending
 request based on the incoming URI generated in (3).

 (5) The user authenticates at the AS, taking on the role of the RO.

 (6) As the RO, the user authorizes the pending request from the client instance.

 (7) When the AS is done interacting with the user, the AS
 redirects the user back () to the
 client instance using the redirect URI provided in (2). The redirect URI is augmented with
 an interaction reference that the AS associates with the ongoing
 request created in (2) and referenced in (4). The redirect URI is also
 augmented with a hash of the security information provided
 in (2) and (3). The client instance loads the verification information from (2) and (3) from
 the session created in (1). The client instance calculates a hash ()
 based on this information and continues only if the hash validates.
 Note that the client instance needs to ensure that the parameters for the incoming
 request match those that it is expecting from the session created
 in (1). The client instance also needs to be prepared for the end user never being returned
 to the client instance and handle timeouts appropriately.

 (8) The client instance loads the continuation information from (3) and sends the
 interaction reference from (7) in a request to
 continue the request (). The AS
 validates the interaction reference, ensuring that the reference
 is associated with the request being continued.

 (9) If the request has been authorized, the AS grants access to the information
 in the form of access tokens () and
 direct subject information () to the client instance.

 (10) The client instance uses the access token () to call the RS.

 (11) The RS validates the access token and returns an appropriate response for the
API.

 An example set of protocol messages for this method can be found in .

 User Code Interaction
 In this example flow, the client instance is a device that is capable of presenting a short,
human-readable code to the user and directing the user to enter that code at
a known URI. The user enters the code at a URI that is an interactive service hosted by the
AS in this example. The client instance is not capable of presenting an arbitrary URI to the user,
nor is it capable of accepting incoming HTTP requests from the user's browser.
The client instance polls the AS while it is waiting for the RO to authorize the request.
The user's interaction is assumed to occur on a secondary device. In this example,
it is assumed that the user is both the end user and RO. Note that since the user is not assumed
to be interacting with the client instance through the same web browser used for interaction at
the AS, the user is not shown as being connected to the client instance in this diagram.

 Diagram of a User-Code-Based Interaction

 Client
 AS
 End
 Instance
 1
 Request
 Access
 User
 2
 Interaction
 Needed
 3
 Display
 User
 Code
 4
 Open
 URI
 5
 RO
 AuthN
 9
 Continue
 Request
 (A)
 6
 10
 Not
 Yet
 Granted
 (Wait)
 Code
 7
 AuthZ
 8
 Complete
 11
 Continue
 Request
 (B)
 End
 User
 12
 Grant
 Access
 13
 Access
 API
 RS
 |
 |
 14
 API
 Response

+--------+ +--------+ .----.
Client		AS		End
Instance+--(1)--- Request Access --------->			User	
	<-(2)-- Interaction Needed -------+			
+==(3)==== Display User Code ========================>				
			<==(4)===+	
			Open URI	
			+------+	
			<==(5)==>	RO
			AuthN	
+--(9)--- Continue Request (A) --->				
			<==(6)==>	
	<-(10)-- Not Yet Granted (Wait) --+	Code		
			<==(7)==>	
			AuthZ	
			<==(8)==>	
			Complete	
			+------+	
+--(11)-- Continue Request (B) --->			End	
				User
	<-(12)----- Grant Access ---------+	`----`		
			+--------+	
+--(13)-- Access API ---------------------------->	RS			
	<-(14)-- API Response ---------------------------+			
			+--------+	
+--------+ +--------+

 (1) The client instance requests access to the resource (). The client instance indicates that
 it can display a user code ().

 (2) The AS determines that interaction is needed and responds () with
 a user code to communicate to the user ().
 The AS also includes information the client instance will need to
 continue the request () in (8) and (10). The AS associates this
 continuation information with an ongoing request that will be referenced in (4), (6), (8), and (10).

 (3) The client instance stores the continuation information from (2) for use in (8) and (10). The client instance
 then communicates the code to the user () given by the AS in (2).

 (4) The user directs their browser to the user code URI. This URI is stable and
 can be communicated via the client software's documentation, the AS documentation, or
 the client software itself. Since it is assumed that the RO will interact
 with the AS through a secondary device, the client instance does not provide a mechanism to
 launch the RO's browser at this URI.

 (5) The end user authenticates at the AS, taking on the role of the RO.

 (6) The RO enters the code communicated in (3) to the AS. The AS validates this code
against a current request in process.

 (7) As the RO, the user authorizes the pending request from the client instance.

 (8) When the AS is done interacting with the user, the AS
 indicates to the RO that the request has been completed.

 (9) Meanwhile, the client instance loads the continuation information stored at (3) and
 continues the request (). The AS determines which
 ongoing access request is referenced here and checks its state.

 (10) If the access request has not yet been authorized by the RO in (6),
the AS responds to the client instance to continue the request ()
at a future time through additional polled continuation requests. This response can include
updated continuation information as well as information regarding how long the
client instance should wait before calling again. The client instance replaces its stored
continuation information from the previous response (2).
Note that the AS may need to determine that the RO has not approved
the request in a sufficient amount of time and return an appropriate
error to the client instance.

 (11) The client instance continues to poll the AS () with the new
continuation information in (9).

 (12) If the request has been authorized, the AS grants access to the information
in the form of access tokens () and
direct subject information () to the client instance.

 (13) The client instance uses the access token () to call the RS.

 (14) The RS validates the access token and returns an appropriate response for the
API.

 An example set of protocol messages for this method can be found in .

 Asynchronous Authorization
 In this example flow, the end user and RO roles are fulfilled by different parties, and
the RO does not interact with the client instance. The AS reaches out asynchronously to the RO
during the request process to gather the RO's authorization for the client instance's request.
The client instance polls the AS while it is waiting for the RO to authorize the request.

 Diagram of an Asynchronous Authorization Process, with No End-User Interaction

 Client
 AS
 RO
 Instance
 1
 Request
 Access
 2
 Not
 Yet
 Granted
 (Wait)
 3
 AuthN
 6
 Continue
 Request
 (A)
 4
 7
 Not
 Yet
 Granted
 (Wait)
 AuthZ
 5
 Completed
 8
 Continue
 Request
 (B)
 9
 Grant
 Access
 10
 Access
 API
 RS
 |
 |
 11
 API
 Response

+--------+ +--------+ .----.
Client		AS		RO
Instance+--(1)--- Request Access --------->				
	<-(2)-- Not Yet Granted (Wait) ---+			
			<==(3)==>	
			AuthN	
+--(6)--- Continue Request (A) --->				
			<==(4)==>	
	<-(7)-- Not Yet Granted (Wait) ---+	AuthZ		
			<==(5)==>	
			Completed	
+--(8)--- Continue Request (B) --->		`----`		
	<-(9)------ Grant Access ---------+			
			+--------+	
+--(10)-- Access API ---------------------------->	RS			
	<-(11)-- API Response ---------------------------+			
			+--------+	
+--------+ +--------+

 (1) The client instance requests access to the resource (). The client instance does not
 send any interaction modes to the server, indicating that
 it does not expect to interact with the RO. The client instance can also signal
 which RO it requires authorization from, if known, by using the
 subject request field () and
 user request field (). It's also possible for the AS to determine which
 RO needs to be contacted by the nature of what access is being requested.

 (2) The AS determines that interaction is needed, but the client instance cannot interact
 with the RO. The AS responds () with the information the client instance
 will need to continue the request () in (6) and (8), including
 a signal that the client instance should wait before checking the status of the request again.
 The AS associates this continuation information with an ongoing request that will be
 referenced in (3), (4), (5), (6), and (8).

 (3) The AS determines which RO to contact based on the request in (1), through a
 combination of the user request (), the
 subject request (), the
 access request (), and other policy information. The AS
 contacts the RO and authenticates them.

 (4) The RO authorizes the pending request from the client instance.

 (5) When the AS is done interacting with the RO, the AS
 indicates to the RO that the request has been completed.

 (6) Meanwhile, the client instance loads the continuation information stored at (2) and
 continues the request (). The AS determines which
 ongoing access request is referenced here and checks its state.

 (7) If the access request has not yet been authorized by the RO in (6),
 the AS responds to the client instance to continue the request ()
 at a future time through additional polling. Note that this response is not
 an error message, since no error has yet occurred. This response can include
 refreshed credentials as well as information regarding how long the
 client instance should wait before calling again. The client instance replaces its stored
 continuation information from the previous response (2).
 Note that the AS may need to determine that the RO has not approved
 the request in a sufficient amount of time and return an appropriate
 error to the client instance.

 (8) The client instance continues to poll the AS () with the new
 continuation information from (7).

 (9) If the request has been authorized, the AS grants access to the information
 in the form of access tokens () and
 direct subject information () to the client instance.

 (10) The client instance uses the access token () to call the RS.

 (11) The RS validates the access token and returns an appropriate response for the
API.

 An example set of protocol messages for this method can be found in .
 Additional considerations for asynchronous interactions like this are discussed in
 .

 Software-Only Authorization
 In this example flow, the AS policy allows the client instance to make a call on its own behalf,
without the need for an RO to be involved at runtime to approve the decision.
Since there is no explicit RO, the client instance does not interact with an RO.

 Diagram of a Software-Only Authorization, with No End User or Explicit Resource Owner

 Client
 AS
 Instance
 1
 Request
 Access
 2
 Grant
 Access
 3
 Access
 API
 RS
 |
 |
 4
 API
 Response

+--------+ +--------+
Client		AS
Instance+--(1)--- Request Access --->		
	<-(2)---- Grant Access -----+	
+--(3)--- Access API ------------------->	RS	
	<-(4)--- API Response ------------------+	
+--------+ +--------+

 (1) The client instance requests access to the resource (). The client instance does not
 send any interaction modes to the server.

 (2) The AS determines that the request has been authorized based on the identity of
 the client instance making the request and the access requested ().
 The AS grants access to the resource
 in the form of access tokens () to the client instance.
 Note that direct subject information () is not
 generally applicable in this use case, as there is no user involved.

 (3) The client instance uses the access token () to call the RS.

 (4) The RS validates the access token and returns an appropriate response for the
 API.

 An example set of protocol messages for this method can be found in .

 Refreshing an Expired Access Token
 In this example flow, the client instance receives an access token to access an RS through
some valid GNAP process. The client instance uses that token at the RS for some time, but eventually
the access token expires. The client instance then gets a refreshed access token by rotating the
	 expired access token's value at the AS using the token management API.

 Diagram of the Process of Refreshing an Expired Access Token

 Client
 AS
 Instance
 1
 Request
 Access
 2
 Grant
 Access
 3
 Access
 Resource
 RS
 4
 Success
 Response
 (
 Time
 Passes
)
 5
 Access
 Resource
 6
 Error
 Response
 7
 Rotate
 Token
 8
 Rotated
 Token

+--------+ +--------+
Client		AS		
Instance+--(1)--- Request Access ----------------->				
	<-(2)--- Grant Access --------------------+			
	+--------+			
+--(3)--- Access Resource --->	RS			
	<-(4)--- Success Response ---+			
	(Time Passes)			
+--(5)--- Access Resource --->				
	<-(6)--- Error Response -----+			
	+--------+			
+--(7)--- Rotate Token ------------------->				
	<-(8)--- Rotated Token -------------------+			
+--------+ +--------+

 (1) The client instance requests access to the resource ().

 (2) The AS grants access to the resource () with an
 access token () usable at the RS. The access token
 response includes a token management URI.

 (3) The client instance uses the access token () to call the RS.

 (4) The RS validates the access token and returns an appropriate response for the
 API.

 (5) Time passes and the client instance uses the access token to call the RS again.

 (6) The RS validates the access token and determines that the access token is expired.
 The RS responds to the client instance with an error.

 (7) The client instance calls the token management URI returned in (2) to
 rotate the access token (). The client instance
 uses the access token () in this call as well as the appropriate key;
 see for details.

 (8) The AS validates the rotation request, including the signature
 and keys presented in (7), and refreshes the
 access token (). The response includes
 a new version of the access token and can also include updated token management
 information, which the client instance will store in place of the values
 returned in (2).

 Requesting Subject Information Only
 In this scenario, the client instance does not call an RS and does not
request an access token. Instead, the client instance only requests
and is returned direct subject information (). Many different
interaction modes can be used in this scenario, so these are shown only in
the abstract as functions of the AS here.

 Diagram of the Process of Requesting and Releasing Subject Information apart from Access Tokens

 Client
 AS
 End
 Instance
 User
 1
 Request
 Access
 2
 Interaction
 Needed
 3
 Facilitate
 Interaction
 4
 RO
 AuthN
 5
 AuthZ
 End
 6
 Signal
 Continuation
 User
 7
 Continue
 Request
 8
 Grant
 Access

+--------+ +--------+ .----.
Client		AS		End
Instance				User
+--(1)--- Request Access --------->				
	<-(2)-- Interaction Needed -------+			
+==(3)== Facilitate Interaction =====================>				
			+------+	
			<==(4)==>	RO
			AuthN	
			<==(5)==>	
			AuthZ +------+	
				End
	<=(6)== Signal Continuation =========================+ User			
			`----`	
+--(7)--- Continue Request ------->				
	<-(8)----- Grant Access ----------+			
+--------+ +--------+

 (1) The client instance requests access to subject information ().

 (2) The AS determines that interaction is needed and responds () with
 appropriate information for facilitating user interaction ().

 (3) The client instance facilitates the user interacting with the AS () as directed in (2).

 (4) The user authenticates at the AS, taking on the role of the RO.

 (5) As the RO, the user authorizes the pending request from the client instance.

 (6) When the AS is done interacting with the user, the AS
 returns the user to the client instance and signals continuation.

 (7) The client instance loads the continuation information from (2) and
 calls the AS to continue the request ().

 (8) If the request has been authorized, the AS grants access to the requested
 direct subject information () to the client instance.
 At this stage, the user is generally considered "logged in" to the client
 instance based on the identifiers and assertions provided by the AS.
 Note that the AS can restrict the subject information returned, and it
 might not match what the client instance requested; see for details.

 Cross-User Authentication
 In this scenario, the end user and RO are two different people.
Here, the client instance already knows who the end user
is, likely through a separate authentication process. The
end user, operating the client instance, needs to get subject information
about another person in the system, the RO. The RO is given an opportunity
to release this information using an asynchronous interaction method
with the AS. This scenario would apply, for instance, when the end user
is an agent in a call center and the RO is a customer
authorizing the call-center agent to access their account on their behalf.

 Diagram of Cross-User Authorization, Where the End User and RO Are Different

 End
 RO
 User
 1
 Identify
 RO
 2
 Client
 AS
 RO
 ID
 Instance
 3
 Req.
 4
 Res.
 5
 AuthN
 6
 AuthZ
 7
 8
 Finish
 Completed
 9
 Cont.
 10
 Subj.
 11
 Info
 Return
 RO
 Info

 .----. .----.
End		RO				
User	<=================(1)== Identify RO ==================>					
	+--------+ +--------+					
+==(2)==>	Client		AS			
	RO ID	Instance				
		+--(3)-- Req. ---->				
			<-(4)-- Res. -----+			
					<==(5)==>	
					AuthN	
					<==(6)==>	
					AuthZ	
					<==(7)==>	
			<-(8)--- Finish --+	Completed		
		+--(9)--- Cont. -->				
			<-(10)-- Subj. ---+			
	<=(11)==+	Info				
	Return					
	RO					
	Info					
 `----` +--------+ +--------+ `----`

 Precondition: The end user is authenticated to the client instance, and the client
instance has an identifier representing the end user that it can present to the AS.
This identifier should be unique to the particular session with the client instance
and the AS.
The client instance is also known to the AS and allowed to access this
advanced functionality where the information of someone other than
the end user is returned to the client instance.

 (1) The RO communicates a human-readable
identifier to the end user, such as an email address or account number. This communication
happens out of band from the protocol, such as over the phone between parties. Note that the
RO is not interacting with the client instance.

 (2) The end user communicates the identifier to the client instance. The means by which the
 identifier is communicated to the client instance are out of scope for this specification.

 (3) The client instance requests access to subject information ().
 The request includes the RO's identifier in the
 sub_ids field of the subject information request
	 ()
 and the end user's identifier in the user field ().
 The request includes no interaction start methods, since the end user is not expected to
 be the one interacting with the AS. The request does include the
 push-based interaction finish method () to allow the AS
 to signal to the client instance when the interaction with the RO has concluded.

 (4) The AS sees that the identifiers for the end user and subject being requested are different.
 The AS determines that it can reach out to the RO asynchronously for approval. While it
 is doing so, the AS returns a continuation response () with a finish nonce
 to allow the client instance to continue the grant request after interaction with the RO has concluded.

 (5) The AS contacts the RO and has them authenticate to the system. The means for doing this are
 outside the scope of this specification, but the identity of the RO is known from the Subject
 Identifier sent in (3).

 (6) The RO is prompted to authorize the end user's request via the client instance. Since the end
 user was identified in (3) via the user field, the AS can show this information to the
 RO during the authorization request.

 (7) The RO completes the authorization with the AS. The AS marks the request as approved.

 (8) The RO pushes the interaction finish message () to the client instance.
 Note that in the case the RO cannot be reached or the RO denies the request, the AS still sends the interaction
 finish message to the client instance, after which the client instance can negotiate next steps if possible.

 (9) The client instance validates the interaction finish message and
 continues the grant request ().

 (10) The AS returns the RO's subject information () to the client instance.

 (11) The client instance can display or otherwise utilize the RO's user information in its session
with the end user. Note that since the client instance requested different sets of user
information in (3), the client instance does not conflate the end user with the RO.

 Additional considerations for asynchronous interactions like this are discussed in
 .

 Requesting Access
 To start a request, the client instance sends an HTTP POST with a JSON document
to the grant endpoint of the AS. The grant endpoint is a URI that uniquely identifies
the AS to client instances and serves as the identifier for the AS. The document is a JSON object
where each field represents a different aspect of the
client instance's request. Each field is described in detail in a subsection below.

 access_token (object / array of objects):

 Describes the rights and properties associated with the requested access token. REQUIRED if requesting an access token. See .

 subject (object):

 Describes the information about the RO that the client instance is requesting to be returned
 directly in the response from the AS. REQUIRED if requesting subject information. See .

 client (object / string):

 Describes the client instance that is making this request, including
 the key that the client instance will use to protect this request, any continuation
 requests at the AS, and any user-facing information about the client instance used in
 interactions. REQUIRED. See .

 user (object / string):

 Identifies the end user to the AS in a manner that the AS can verify, either directly or
 by interacting with the end user to determine their status as the RO. OPTIONAL. See .

 interact (object):

 Describes the modes that the client instance supports for allowing the RO to interact with the
 AS and modes for the client instance to receive updates when interaction is complete. REQUIRED if interaction is supported. See .

 Additional members of this request object can be defined by extensions using the "GNAP Grant Request Parameters" registry ().
 A non-normative example of a grant request is below:

{
 "access_token": {
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "dolphin-metadata"
]
 },
 "client": {
 "display": {
 "name": "My Client Display Name",
 "uri": "https://example.net/client"
 },
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeL...."
 }
 }
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 },
 "subject": {
 "sub_id_formats": ["iss_sub", "opaque"],
 "assertion_formats": ["id_token"]
 }
}

 Sending a request to the grant endpoint creates a grant request in the processing state. The AS processes this request to determine whether interaction or authorization are necessary (moving to the pending state) or if access can be granted immediately (moving to the approved state).
 The request MUST be sent as a JSON object in the content of the HTTP
POST request with Content-Type application/json. A key proofing mechanism MAY
define an alternative content type, as long as the content is formed from
the JSON object. For example, the attached JSON Web Signature (JWS) key proofing mechanism (see) places the JSON object
into the payload of a JWS wrapper, which is in turn sent as the message content.

 Requesting Access to Resources
 If the client instance is requesting one or more access tokens for the
purpose of accessing an API, the client instance MUST include an access_token
field. This field MUST be an object (for a single access token ()) or
an array of these objects (for multiple access tokens ()),
as described in the following subsections.

 Requesting a Single Access Token
 To request a single access token, the client instance sends an access_token object
composed of the following fields.

 access (array of objects/strings):

 Describes the rights that the client instance is requesting for the access token to be
 used at the RS. REQUIRED. See .

 label (string):

 A unique name chosen by the client instance to refer to the resulting access token. The value of this
 field is opaque to the AS and is not intended to be exposed to or used by the end user. If this field
 is included in the request, the AS MUST include the same label in the token response ().
 REQUIRED if used as part of a request for multiple access tokens ();
 OPTIONAL otherwise.

 flags (array of strings):

 A set of flags that indicate desired attributes or behavior to be attached to the access token by the
 AS. OPTIONAL.

 The values of the flags field defined by this specification are as follows:

 "bearer":

 If this flag is included, the access token being requested is a bearer token.
 If this flag is omitted, the access token is bound to the key used
 by the client instance in this request (or that key's most recent rotation),
 and the access token MUST be presented using the same key and proofing method.
 Methods for presenting bound and bearer access tokens are described
 in . See for additional
 considerations on the use of bearer tokens.

 Flag values MUST NOT be included more than once. If the request includes a flag value multiple times, the AS MUST return an invalid_flag error defined in .
 Additional flags can be defined by extensions using the "GNAP Access Token Flags" registry ().
 In the following non-normative example, the client instance is requesting access to a complex resource
described by a pair of access request object.

"access_token": {
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "delete"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 {
 "type": "walrus-access",
 "actions": [
 "foo",
 "bar"
],
 "locations": [
 "https://resource.other/"
],
 "datatypes": [
 "data",
 "pictures",
 "walrus whiskers"
]
 }
],
 "label": "token1-23"
}

 If access is approved, the resulting access token is valid for the described resource.
Since the bearer flag is not provided in this example, the token is bound to the client instance's key (or its most recent rotation). The token
is labeled "token1-23". The token response structure is described in .

 Requesting Multiple Access Tokens
 To request that multiple access tokens be returned in a single response, the
client instance sends an array of objects as the value of the access_token
parameter. Each object MUST conform to the request format for a single
access token request, as specified in
 .
Additionally, each object in the array MUST include the label field, and
all values of these fields MUST be unique within the request. If the
client instance does not include a label value for any entry in the
array or the values of the label field are not unique within the array,
the AS MUST return an "invalid_request" error ().
 The following non-normative example shows a request for two
separate access tokens: token1 and token2.

"access_token": [
 {
 "label": "token1",
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "dolphin-metadata"
]
 },
 {
 "label": "token2",
 "access": [
 {
 "type": "walrus-access",
 "actions": [
 "foo",
 "bar"
],
 "locations": [
 "https://resource.other/"
],
 "datatypes": [
 "data",
 "pictures",
 "walrus whiskers"
]
 }
],
 "flags": ["bearer"]
 }
]

 All approved access requests are returned in the response structure for
multiple access tokens () using
the values of the label fields in the request.

 Requesting Subject Information
 If the client instance is requesting information about the RO from
the AS, it sends a subject field as a JSON object. This object MAY
contain the following fields.

 sub_id_formats (array of strings):

 An array of Subject Identifier subject formats
 requested for the RO, as defined by .
 REQUIRED if Subject Identifiers are requested.

 assertion_formats (array of strings):

 An array of requested assertion formats. Possible values include
 id_token for an OpenID Connect ID Token and saml2 for a Security Assertion Markup Language (SAML) 2 assertion . Additional
 assertion formats can be defined in the "GNAP Assertion Formats" registry ().
 REQUIRED if assertions are requested.

 sub_ids (array of objects):

 An array of Subject Identifiers representing the subject for which information
 is being requested. Each object is a Subject Identifier as defined by
 . All identifiers in the sub_ids array MUST identify
 the same subject. If omitted, the AS SHOULD assume
 that subject information requests are about the current user and SHOULD
 require direct interaction or proof of presence before releasing information. OPTIONAL.

 Additional fields can be defined in the "GNAP Subject Information Request Fields" registry ().

"subject": {
 "sub_id_formats": ["iss_sub", "opaque"],
 "assertion_formats": ["id_token", "saml2"]
}

 The AS can determine the RO's identity and permission for releasing
this information through interaction with the RO (),
AS policies, or assertions presented by the client instance (). If
this is determined positively, the AS MAY return the RO's information in its response ()
as requested.
 Subject Identifier types requested by the client instance serve only to identify
the RO in the context of the AS and can't be used as communication
channels by the client instance, as discussed in .

 Identifying the Client Instance
 When sending a new grant request to the AS, the client instance MUST identify
itself by including its client information in the client field of the request and by signing the
request with its unique key as described in . Note that once a
grant has been created and is in either the pending or the approved state, the AS can
determine which client is associated with the grant by dereferencing the
continuation access token sent in the continuation request ().
As a consequence, the client field is not sent or accepted for continuation requests.
 Client information is sent by value as an object or by reference as a string (see).
 When client instance information is sent
by value, the client field of the request consists of a JSON
object with the following fields.

 key (object / string):

 The public key of the client instance to be used in this request as
 described in or a reference to a key as
 described in . REQUIRED.

 class_id (string):

 An identifier string that the AS can use to identify the
 client software comprising this client instance. The contents
 and format of this field are up to the AS. OPTIONAL.

 display (object):

 An object containing additional information that the AS
 MAY display to the RO during interaction, authorization,
 and management. OPTIONAL. See .

"client": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8..."
 }
 },
 "class_id": "web-server-1234",
 "display": {
 "name": "My Client Display Name",
 "uri": "https://example.net/client"
 }
}

 Additional fields can be defined in the "GNAP Client Instance Fields" registry ().
 Absent additional attestations, profiles, or trust mechanisms, both the display and class_id fields are self-declarative, presented by the client instance. The AS needs to exercise caution in their interpretation, taking them as a hint but not as absolute truth. The class_id field can be used in a variety of ways to help the AS make sense of the particular context in which the client instance is operating. In corporate environments, for example, different levels of trust might apply depending on security policies. This field aims to help the AS adjust its own access decisions for different classes of client software. It is possible to configure a set of values and rules during a pre-registration and then have the client instances provide them later in runtime as a hint to the AS. In other cases, the client runs with a specific AS in mind, so a single hardcoded value would be acceptable (for instance, a set-top box with a class_id claiming to be "FooBarTV version 4"). While the client instance may not have contacted the AS yet, the value of this class_id field can be evaluated by the AS according to a broader context of dynamic use, alongside other related information available elsewhere (for instance, corresponding fields in a certificate). If the AS is not able to interpret or validate the class_id field, it MUST either return an invalid_client error () or interpret the request as if the class_id were not present. See additional discussion of client instance impersonation in .
 The client instance MUST prove possession of any presented key by the proofing mechanism
associated with the key in the request. Key proofing methods
are defined in the "GNAP Key Proofing Methods" registry (), and an initial set of methods
is described in .
 If the same public key is sent by value on different access requests, the AS MUST
treat these requests as coming from the same client instance for purposes
of identification, authentication, and policy application.
 If the AS does not know the client instance's public key ahead of time, the AS
can choose how to process the unknown key. Common approaches include:

 Allowing the request and requiring RO authorization in a trust-on-first-use model

 Limiting the client's requested access to only certain APIs and information

 Denying the request entirely by returning an invalid_client error ()

 The client instance MUST NOT send a symmetric key by value in the key field of the request, as doing so would expose
the key directly instead of simply proving possession of it. See considerations on symmetric keys
in . To use symmetric keys, the client instance can send the key by reference () or
send the entire client identity by reference ().
 The client instance's key can be pre-registered with the AS ahead of time and associated
with a set of policies and allowable actions pertaining to that client. If this pre-registration
includes other fields that can occur in the client request object described in this section,
such as class_id or display, the pre-registered values MUST take precedence over any values
given at runtime. Additional fields sent during a request but not present in a pre-registered
client instance record at the AS SHOULD NOT be added to the client's pre-registered record.
See additional considerations regarding client instance impersonation in .
 A client instance that is capable of talking to multiple ASes SHOULD use a different key for each
AS to prevent a class of mix-up attacks as described in , unless other mechanisms
can be used to assure the identity of the AS for a given request.

 Identifying the Client Instance by Reference
 If the client instance has an instance identifier that the AS can use to determine
appropriate key information, the client instance can send this instance
identifier as a direct reference value in lieu of the client object.
The instance identifier MAY be assigned to a client instance at runtime
through a grant response () or MAY be obtained in another fashion,
such as a static registration process at the AS.

"client": "client-541-ab"

 When the AS receives a request with an instance identifier, the AS MUST
ensure that the key used to sign the request () is
associated with the instance identifier.
 If the AS does not recognize the instance identifier, the request MUST be rejected
with an invalid_client error ().

 Providing Displayable Client Instance Information
 If the client instance has additional information to display to the RO
during any interactions at the AS, it MAY send that information in the
"display" field. This field is a JSON object that declares information
to present to the RO during any interactive sequences.

 name (string):

 Display name of the client software. RECOMMENDED.

 uri (string):

 User-facing information about the client software, such as a web page. This URI MUST be an absolute URI. OPTIONAL.

 logo_uri (string):

 Display image to represent the client software. This URI MUST be an absolute URI. The logo MAY be passed by value by using a data: URI referencing an image media type. OPTIONAL.

"display": {
 "name": "My Client Display Name",
 "uri": "https://example.net/client",
 "logo_uri": "...="
}

 Additional display fields can be defined in the "GNAP Client Instance Display Fields" registry ().
 The AS SHOULD use these values during interaction with the RO.
The values are for informational purposes only and MUST NOT
be taken as authentic proof of the client instance's identity or source.
The AS MAY restrict display values to specific client instances, as identified
by their keys in . See additional considerations for displayed
client information in and for the logo_uri in
particular in .

 Authenticating the Client Instance
 If the presented key is known to the AS and is associated with a single instance
of the client software, the process of presenting a key and proving possession of that key
is sufficient to authenticate the client instance to the AS. The AS MAY associate policies
with the client instance identified by this key, such as limiting which resources
can be requested and which interaction methods can be used. For example, only
specific client instances with certain known keys might be trusted with access tokens without the
AS interacting directly with the RO, as in .
 The presentation of a key allows the AS to strongly associate multiple
successive requests from the same client instance with each other. This
is true when the AS knows the key ahead of time and can use the key to
authenticate the client instance, but it is also true if the key is
ephemeral and created just for this series of requests. As such, the
AS MAY allow for client instances to make requests with unknown keys. This pattern allows
for ephemeral client instances (such as single-page applications) and client software with many individual long-lived instances
(such as mobile applications) to generate key pairs per instance and use the keys within
the protocol without having to go through a separate registration step.
The AS MAY limit which capabilities are made available to client instances
with unknown keys. For example, the AS could have a policy saying that only
previously registered client instances can request particular resources or that all
client instances with unknown keys have to be interactively approved by an RO.

 Identifying the User
 If the client instance knows the identity of the end user through one or more
identifiers or assertions, the client instance MAY send that information to the
AS in the user field. The client instance MAY pass this information by value
or by reference (see).

 sub_ids (array of objects):

 An array of Subject Identifiers for the
 end user, as defined by .
 OPTIONAL.

 assertions (array of objects):

 An array containing assertions as objects, each containing the assertion
 format and the assertion value as the JSON string serialization of the assertion,
 as defined in .
 OPTIONAL.

"user": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }],
 "assertions": [{
 "format": "id_token",
 "value": "eyj..."
 }]
}

 Subject Identifiers are hints to the AS in determining the
RO and MUST NOT be taken as authoritative statements that a particular
RO is present at the client instance and acting as the end user.
 Assertions presented by the client instance SHOULD be validated by the AS. While the details of
such validation are outside the scope of this specification, common validation steps include
verifying the signature of the assertion against a trusted signing key, verifying the audience
and issuer of the assertion map to expected values, and verifying the time window for the
assertion itself. However, note that in many use cases, some of these common steps are relaxed.
For example, an AS acting as an identity provider (IdP) could expect that assertions being presented using this
mechanism were issued by the AS to the client software. The AS would verify that the AS is the
issuer of the assertion, not the audience, and that the client instance is instead the audience of
the assertion. Similarly, an AS might accept a recently expired assertion in order to help
bootstrap a new session with a specific end user.
 If the identified end user does not match the RO present at the AS
during an interaction step and the AS is not explicitly allowing a cross-user
authorization, the AS SHOULD reject the request with an unknown_user error ().
 If the AS trusts the client instance to present verifiable assertions or known Subject Identifiers,
such as an opaque identifier issued by the AS for this specific client instance, the AS MAY
decide, based on its policy, to skip interaction with the RO, even
if the client instance provides one or more interaction modes in its request.
 See for considerations for the AS when accepting and
processing assertions from the client instance.

 Identifying the User by Reference
 The AS can identify the current end user to the client instance with a reference
that can be used by the client instance to refer to the end user across
multiple requests.
If the client instance has a reference for the end user at this AS, the
client instance MAY pass that reference as a string. The format of this string
is opaque to the client instance.

"user": "XUT2MFM1XBIKJKSDU8QM"

 One means of dynamically obtaining such a user reference is from the AS returning
an opaque Subject Identifier as described in .
Other means of configuring a client instance with a user identifier are out
of scope of this specification.
The lifetime and validity of these user references are determined by the AS, and
this lifetime is not exposed to the client instance in GNAP. As such, a client instance
using such a user reference is likely to keep using that reference until
it stops working.
 User reference identifiers are not intended to be human-readable
user identifiers or structured assertions. For the client instance to send
either of these, the client can use the full user request object () instead.
 If the AS does not recognize the user reference, it MUST
return an unknown_user error ().

 Interacting with the User
 Often, the AS will require interaction with the RO () in order to
approve a requested delegation to the client instance for both access to resources and direct
subject information. Many times, the end user using the client instance is the same person as
the RO, and the client instance can directly drive interaction with the end user by facilitating
the process through means such as redirection to a URI or launching an application. Other times, the
client instance can provide information to start the RO's interaction on a secondary
device, or the client instance will wait for the RO to approve the request asynchronously.
The client instance could also be signaled that interaction has concluded through a
callback mechanism.
 The client instance declares the parameters for interaction methods that it can support
using the interact field.
 The interact field is a JSON object with three keys whose values declare how the client can initiate
and complete the request, as well as provide hints to the AS about user preferences such as locale.
A client instance MUST NOT declare an interaction mode it does not support.
The client instance MAY send multiple modes in the same request.
There is no preference order specified in this request. An AS MAY
 respond to any, all, or none of the presented interaction modes () in a request, depending on
its capabilities and what is allowed to fulfill the request.

 start (array of objects/strings):

 Indicates how the client instance can start an interaction. REQUIRED. See .

 finish (object):

 Indicates how the client instance can receive an indication that interaction has finished at the AS. OPTIONAL. See .

 hints (object):

 Provides additional information to inform the interaction process at the AS. OPTIONAL. See .

 In the following non-normative example, the client instance is indicating that it can redirect ()
the end user to an arbitrary URI and can receive a redirect () through
a browser request. Note that the client instance does not accept a push-style callback.
The pattern of using a redirect for both interaction start and finish is common for web-based client software.

"interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
}

 In the following non-normative example, the client instance is indicating that it can
display a user code () and direct the end user
to an arbitrary URI (), but it cannot accept a redirect or push-style callback.
This pattern is common for devices that have robust display capabilities but expect
the use of a secondary device to facilitate end-user interaction with the AS, such
as a set-top box capable of displaying an interaction URL as a QR code.

"interact": {
 "start": ["redirect", "user_code"]
}

 In the following non-normative example, the client instance is indicating that it cannot start any interaction with the end user but that the AS can
push an interaction finish message () when
authorization from the RO is received asynchronously. This pattern is
common for scenarios where a service needs to be authorized, but the RO is
able to be contacted separately from the GNAP transaction itself, such as through a push
notification or existing interactive session on a secondary device.

"interact": {
 "start": [],
 "finish": {
 "method": "push",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
}

 If all of the following conditions are true, the AS
	 MUST return an invalid_interaction error
	() since the client instance will be
	unable to complete the request without authorization:

 The client instance does not provide a suitable interaction mechanism.
	
 The AS cannot contact the RO asynchronously.
	
 The AS determines that
 interaction is required.
	

 Start Mode Definitions
 If the client instance is capable of starting interaction with the end user, the client instance
indicates this by sending an array of start modes under the start key.
Each interaction start mode has a unique identifying name.
Interaction start modes are specified in the array either by a string, which consists of the start
mode name on its own, or by a JSON object with the required field mode:

 mode:

 The interaction start mode. REQUIRED.

 Interaction start modes defined as objects MAY define additional parameters to be required in the object.
 The start array can contain both string-type and object-type modes.
 This specification defines the following interaction start modes:

 "redirect" (string):

 Indicates that the client instance can direct the end user to an arbitrary URI
 for interaction. See .

 "app" (string):

 Indicates that the client instance can launch an application on the end user's
 device for interaction. See .

 "user_code" (string):

 Indicates that the client instance can communicate a short, human-readable
 code to the end user for use with a stable URI. See .

 "user_code_uri" (string):

 Indicates that the client instance can communicate a short, human-readable
 code to the end user for use with a short, dynamic URI. See .

 Additional start modes can be defined in the "GNAP Interaction Start Modes" registry ().

 Redirect to an Arbitrary URI
 If the client instance is capable of directing the end user to a URI defined
by the AS at runtime, the client instance indicates this by including
 redirect in the array under the start key. The means by which
the client instance will activate this URI are out of scope of this
specification, but common methods include an HTTP redirect,
launching a browser on the end user's device, providing a scannable
image encoding, and printing out a URI to an interactive
console. While this URI is generally hosted at the AS, the client
instance can make no assumptions about its contents, composition,
or relationship to the grant endpoint URI.

"interact": {
 "start": ["redirect"]
}

 If this interaction mode is supported for this client instance and
request, the AS returns a redirect interaction response ().
The client instance manages this interaction method as described in .
 See for more considerations regarding the use of front-channel
communication techniques.

 Open an Application-Specific URI
 If the client instance can open a URI associated with an application on
the end user's device, the client instance indicates this by including app
in the array under the start key. The means by which the client instance
determines the application to open with this URI are out of scope of
this specification.

"interact": {
 "start": ["app"]
}

 If this interaction mode is supported for this client instance and
request, the AS returns an app interaction response with an app URI
payload (). The client instance manages
this interaction method as described in .

 Display a Short User Code
 If the client instance is capable of displaying or otherwise communicating
a short, human-entered code to the RO, the client instance indicates this
by including user_code in the array under the start key. This
code is to be entered at a static URI that does not change at
runtime. The client instance has no reasonable means to communicate a dynamic
URI to the RO, so this URI is usually communicated out of band to the
RO through documentation or other messaging outside of GNAP.
While this URI is generally hosted at the AS, the client
instance can make no assumptions about its contents, composition,
or relationship to the grant endpoint URI.

"interact": {
 "start": ["user_code"]
}

 If this interaction mode is supported for this client instance and
request, the AS returns a user code as specified
in . The client instance manages this interaction
method as described in .

 Display a Short User Code and URI
 If the client instance is capable of displaying or otherwise communicating
a short, human-entered code along with a short, human-entered URI to the RO,
the client instance indicates this
by including user_code_uri in the array under the start key. This
code is to be entered at the dynamic URL given in the response.
While this URL is generally hosted at the AS, the client
instance can make no assumptions about its contents, composition,
or relationship to the grant endpoint URI.

"interact": {
 "start": ["user_code_uri"]
}

 If this interaction mode is supported for this client instance and
request, the AS returns a user code and interaction URL as specified
in . The client instance manages this interaction
method as described in .

 Interaction Finish Methods
 If the client instance is capable of receiving a message from the AS indicating
that the RO has completed their interaction, the client instance
indicates this by sending the following members of an object under the finish key.

 method (string):

 The callback method that the AS will use to contact the client instance.
 REQUIRED.

 uri (string):

 Indicates the URI that the AS will use to signal the client
 instance that interaction has completed. This URI
 MAY be unique per request and MUST
 be hosted by or accessible to the client instance. This URI
 MUST be an absolute URI and MUST NOT contain any fragment component. If the client
 instance needs any state information to tie to the front-channel
 interaction response, it MUST use a unique
 callback URI to link to that ongoing state. The allowable URIs
 and URI patterns MAY be restricted by the AS
 based on the client instance's presented key information. The
 callback URI SHOULD be presented to the RO during
 the interaction phase before redirect. REQUIRED
 for redirect and push methods.

 nonce (string):

 Unique ASCII string value to be used in the
 calculation of the "hash" query parameter sent to the callback URI. It
 must be sufficiently random to be unguessable by an attacker. It
 MUST be generated by the client instance as a unique value for this
 request. REQUIRED.

 hash_method (string):

 An identifier of a hash calculation mechanism to be used for the callback hash in ,
 as defined in the IANA "Named Information Hash Algorithm Registry" .
 If absent, the default value is sha-256. OPTIONAL.

 This specification defines the following values for the method parameter; additional values can be
defined in the "GNAP Interaction Finish Methods" registry ():

 "redirect":

 Indicates that the client instance can receive a redirect from the end user's device
 after interaction with the RO has concluded. See .

 "push":

 Indicates that the client instance can receive an HTTP POST request from the AS
 after interaction with the RO has concluded. See .

 If interaction finishing is supported for this client instance and
request, the AS will return a nonce () used by the client
instance to validate the callback.
All interaction finish methods MUST use this nonce to allow the client to verify the connection
between the pending interaction request and the callback. GNAP does this through the use of the
interaction hash, defined in .
All requests to the callback URI MUST be processed as described in
 .
 All interaction finish methods MUST require presentation of an interaction reference for continuing
this grant request. This means that the interaction
reference MUST be returned by the AS and MUST be presented by the client as described in
 . The means by which the interaction reference is returned to the
client instance are specific to the interaction finish method.

 Receive an HTTP Callback through the Browser
 A finish method value of redirect indicates that the client instance
will expect a request from the RO's browser using the HTTP method
GET as described in .
 The client instance's URI MUST be protected by HTTPS, be
hosted on a server local to the RO's browser ("localhost"), or
use an application-specific URI scheme that is loaded on the
end user's device.

"interact": {
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
}

 Requests to the callback URI MUST be processed by the client instance as described in
 .
 Since the incoming request to the callback URI is from the RO's
browser, this method is usually used when the RO and end user are the
same entity. See for considerations on ensuring the incoming HTTP message
matches the expected context of the request.
See for more considerations regarding the use of front-channel
communication techniques.

 Receive an HTTP Direct Callback
 A finish method value of push indicates that the client instance will
expect a request from the AS directly using the HTTP method POST
as described in .
 The client instance's URI MUST be protected by HTTPS, be
hosted on a server local to the RO's browser ("localhost"), or
use an application-specific URI scheme that is loaded on the end user's device.

"interact": {
 "finish": {
 "method": "push",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
}

 Requests to the callback URI MUST be processed by the client instance as described in
 .
 Since the incoming request to the callback URI is from the AS and
not from the RO's browser, this request is not expected to have any shared
session information from the start method. See Sections and for
more considerations regarding the use of back-channel and polling mechanisms like this.

 Hints
 The hints key is an object describing one or more suggestions from the client
instance that the AS can use to help drive user interaction.
 This specification defines the following property under the hints key:

 ui_locales (array of strings):

 Indicates the end user's preferred locales that the AS can use
 during interaction, particularly before the RO has
 authenticated. OPTIONAL.

 The following subsection details requests for interaction
hints. Additional interaction hints can be defined in
the "GNAP Interaction Hints" registry ().

 Indicate Desired Interaction Locales
 If the client instance knows the end user's locale and language preferences, the
client instance can send this information to the AS using the ui_locales field
with an array of locale strings as defined by .

"interact": {
 "hints": {
 "ui_locales": ["en-US", "fr-CA"]
 }
}

 If possible, the AS SHOULD use one of the locales in the array, with
preference to the first item in the array supported by the AS. If none
of the given locales are supported, the AS MAY use a default locale.

 Grant Response
 In response to a client instance's request, the AS responds with a JSON object
as the HTTP content. Each possible field is detailed in the subsections below.

 continue (object):

 Indicates that the client instance can continue the request by making one or
 more continuation requests. REQUIRED if continuation calls are allowed for this client instance on this grant request. See .

 access_token (object / array of objects):

 A single access token or set of access tokens that the client instance can use to call the RS on
 behalf of the RO. REQUIRED if an access token is included. See .

 interact (object):

 Indicates that interaction through some set of defined mechanisms
 needs to take place. REQUIRED if interaction is expected. See .

 subject (object):

 Claims about the RO as known and declared by the AS. REQUIRED if subject information is included. See .

 instance_id (string):

 An identifier this client instance can use to identify itself when making
 future requests. OPTIONAL. See .

 error (object or string):

 An error code indicating that something has gone wrong. REQUIRED for an error condition. See .

 Additional fields can be defined by extensions to GNAP in the "GNAP Grant Response Parameters" registry ().
 In the following non-normative example, the AS is returning an interaction URI (),
a callback nonce (), and a continuation response ().

NOTE: '\' line wrapping per RFC 8792

{
 "interact": {
 "redirect": "https://server.example.com/interact/4CF492ML\
 VMSW9MKMXKHQ",
 "finish": "MBDOFXG4Y5CVJCX821LH"
 },
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU",
 },
 "uri": "https://server.example.com/tx"
 }
}

 In the following non-normative example, the AS is returning a bearer access token () with a management URI and a Subject Identifier () in the form of
an opaque identifier.

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "flags": ["bearer"],
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 },
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
}

 In the following non-normative example, the AS is returning set of Subject Identifiers (),
simultaneously as an opaque identifier, an email address, and a decentralized identifier (DID), formatted as a set of Subject Identifiers as defined in .

{
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }, {
 "format": "email",
 "email": "user@example.com"
 }, {
 "format": "did",
 "url": "did:example:123456"
 }]
 }
}

 The response MUST be sent as a JSON object in the content of the HTTP response with Content-Type application/json, unless otherwise specified by the specific response (e.g., an empty response with no Content-Type).
 The AS MUST include the HTTP Cache-Control response header field with a value set to "no-store".

 Request Continuation
 If the AS determines that the grant request can be continued by the
client instance, the AS responds with the continue field. This field
contains a JSON object with the following properties.

 uri (string):

 The URI at which the client instance can make
 continuation requests. This URI MAY vary per
 request or MAY be stable at the AS. This URI MUST be an absolute URI.
 The client instance MUST use this
 value exactly as given when making a continuation request ().
 REQUIRED.

 wait (integer):

 The amount of time in integer
 seconds the client instance MUST wait after receiving this request continuation
 response and calling the continuation URI. The value SHOULD NOT be less than five seconds,
 and omission of the value MUST be interpreted as five seconds.
 RECOMMENDED.

 access_token (object):

 A unique access token for continuing the request, called the "continuation access token".
 The value of this property MUST be an object in the format specified
 in . This access token MUST be bound to the
 client instance's key used in the request and MUST NOT be a bearer token. As a consequence,
 the flags array of this access token MUST NOT contain the string bearer, and the
 key field MUST be omitted.
 This access token MUST NOT have a manage field.
 The client instance MUST present the continuation access token in all requests to the continuation URI as described in .
 REQUIRED.

{
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 60
 }
}

 This field is REQUIRED if the grant request is in the pending state, as
the field contains the information needed by the client request to continue the
request as described in . Note that the
continuation access token is bound to the client instance's key; therefore, the
client instance MUST sign all continuation requests with its key as described
in and
 MUST present the continuation access token in its continuation request.

 Access Tokens
 If the AS has successfully granted one or more access tokens to the client instance,
the AS responds with the access_token field. This field contains either a single
access token as described in or an array of access tokens
as described in .
 The client instance uses any access tokens in this response to call the RS as
described in .
 The grant request MUST be in the approved state to include this field in the response.

 Single Access Token
 If the client instance has requested a single access token and the AS has
granted that access token, the AS responds with the "access_token"
field. The value of this field is an object with the following
properties.

 value (string):

 The value of the access token as a
 string. The value is opaque to the client instance. The value MUST be
 limited to the token68 character set defined in to facilitate transmission over HTTP
 headers and within other protocols without requiring additional encoding.
 REQUIRED.

 label (string):

 The value of the label the client instance provided in the associated
 token request (), if present.
 REQUIRED for multiple access tokens or if a label was included in the single access token request; OPTIONAL for a single access token where no label was included in the request.

 manage (object):

 Access information for the token management API for
 this access token.
 If provided, the client instance MAY manage its access
 token as described in .
 This management API is a function of the AS and is separate from the RS
 the client instance is requesting access to.
 OPTIONAL.

 access (array of objects/strings):

 A description of the rights
 associated with this access token, as defined in
 . If included, this MUST reflect the rights
 associated with the issued access token. These rights MAY vary
 from what was requested by the client instance.
 REQUIRED.

 expires_in (integer):

 The number of seconds in
 which the access will expire. The client instance MUST NOT use the access
 token past this time. Note that the access token MAY be revoked by the
 AS or RS at any point prior to its expiration.
 OPTIONAL.

 key (object / string):

 The key that the token is bound to, if different from the
 client instance's presented key. The key MUST be an object or string in a format
 described in . The client instance MUST be able to
 dereference or process the key information in order to be able
 to sign subsequent requests using the access token ().
 When the key is provided by value from the AS, the token shares some security properties
 with bearer tokens as discussed in .
 It is RECOMMENDED that keys returned for use with access tokens be key references
 as described in that the client instance can correlate to
 its known keys.
 OPTIONAL.

 flags (array of strings):

 A set of flags that represent attributes or behaviors of the access token
 issued by the AS.
 OPTIONAL.

 The value of the manage field is an object with the following properties:

 uri (string):
 The URI of the token management API for this access token.
 This URI MUST be an absolute URI.

 This URI MUST NOT include the value of the access token being managed
 or the value of the access token used to protect the URI.
 This URI SHOULD be different for each access
 token issued in a request.
 REQUIRED.
 access_token (object):

 A unique access token for continuing the request, called the "token management access token".
 The value of this property MUST be an object in the format specified
 in . This access token MUST be bound to the
 client instance's key used in the request (or its most recent rotation) and MUST NOT be a bearer token. As a consequence,
 the flags array of this access token MUST NOT contain the string bearer, and the
 key field MUST be omitted.
 This access token MUST NOT have a manage field.
 This access token MUST NOT have the same value as the token it is managing.
 The client instance MUST present the continuation access token in all requests to the continuation URI as described in .
 REQUIRED.

 The values of the flags field defined by this specification are as follows:

 "bearer":

 Flag indicating whether the token is a bearer token, not bound to a key and proofing mechanism.
 If the bearer flag is present, the access token is a bearer token, and the key
 field in this response MUST be omitted.
 See for additional considerations on the use of bearer tokens.

 "durable":

 Flag indicating a hint of AS behavior on token rotation.
 If this flag is present, then the client instance can expect
 a previously issued access token to continue to work after it has been rotated ()
 or the underlying grant request has been modified (), resulting
 in the issuance of new access tokens. If this flag is omitted, the client
 instance can anticipate a given access token
 could stop working after token rotation or grant request modification.
 Note that a token flagged as durable can still expire or be revoked through
 any normal means.

 Flag values MUST NOT be included more than once.
 Additional flags can be defined by extensions using the "GNAP Access Token Flags" registry ().
 If the bearer flag and the key field
in this response are omitted, the token is bound to the key used by the client instance ()
in its request for access. If the bearer flag is omitted and the key field is present,
the token is bound to the key and proofing mechanism indicated in the key field.
The means by which the AS determines how to bind an access token to a key
other than that presented by the client instance are out of scope for this
specification, but common practices include pre-registering specific keys in a static fashion.
 The client software MUST reject any access token where the flags field contains the bearer flag
and the key field is present with any value.
 The following non-normative example shows a single access token bound to
the client instance's key used in the initial request. The access token has a
management URI and has access to three described resources (one using an
object and two described by reference strings).

NOTE: '\' line wrapping per RFC 8792

"access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read", "dolphin-metadata"
]
}

 The following non-normative example shows a single bearer access token
with access to two described resources.

"access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "flags": ["bearer"],
 "access": [
 "finance", "medical"
]
}

 If the client instance requested a single access token (), the AS MUST NOT respond with the structure for multiple access
 tokens.

 Multiple Access Tokens
 If the client instance has requested multiple access tokens and the AS has
granted at least one of them, the AS responds with the
"access_token" field. The value of this field is a JSON
array, the members of which are distinct access
tokens as described in .
Each object MUST have a unique label field, corresponding to the token labels
chosen by the client instance in the request for multiple access tokens ().
 In the following non-normative example, two tokens are issued under the
names token1 and token2, and only the first token has a management
URI associated with it.

NOTE: '\' line wrapping per RFC 8792

"access_token": [
 {
 "label": "token1",
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "access": ["finance"]
 },
 {
 "label": "token2",
 "value": "UFGLO2FDAFG7VGZZPJ3IZEMN21EVU71FHCARP4J1",
 "access": ["medical"]
 }
}

 Each access token corresponds to one of the objects in the access_token array of
the client instance's request ().
 The AS MAY refuse to issue one or more of the
requested access tokens for any reason. In such cases, the refused token is omitted
from the response, and all of the other issued access
tokens are included in the response under their respective requested labels.
If the client instance requested multiple access tokens (), the AS MUST NOT respond with a
single access token structure, even if only a single access token is granted. In such cases, the AS MUST respond
with a structure for multiple access tokens containing one access token.

"access_token": [
 {
 "label": "token2",
 "value": "8N6BW7OZB8CDFONP219-OS9M2PMHKUR64TBRP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "access": ["fruits"]
 }
]

 The parameters of each access token are separate. For example, each access token is expected to
have a unique value and (if present) label, and each access token likely has different access rights associated with
it. Each access token could also be bound to different keys with different proofing mechanisms.

 Interaction Modes
 If the client instance has indicated a capability to interact with the RO in its request ()
and the AS has determined that interaction is both
supported and necessary, the AS responds to the client instance with any of the
following values in the interact field of the response. There is
no preference order for interaction modes in the response,
and it is up to the client instance to determine which ones to use. All supported
interaction methods are included in the same interact object.

 redirect (string):

 Redirect to an arbitrary URI. REQUIRED if the redirect interaction start mode is possible for this request. See .

 app (string):

 Launch of an application URI. REQUIRED if the app interaction start mode is possible for this request. See .

 user_code (string):

 Display a short user code. REQUIRED if the user_code interaction start mode is possible for this request. See .

 user_code_uri (object):

 Display a short user code and URI. REQUIRED if the user_code_uri interaction start mode is possible for this request.

 finish (string):

 A unique ASCII string value provided by the AS as a nonce. This is used by the client instance to verify the callback after interaction is completed. REQUIRED if the interaction finish method requested by the client instance is possible for this request. See .

 expires_in (integer):

 The number of integer seconds after which this set of interaction responses will expire and no longer be usable by the client instance. If the interaction methods expire, the client MAY restart the interaction process for this grant request by sending an update () with a new interaction request field (). OPTIONAL. If omitted, the interaction response modes returned do not expire but MAY be invalidated by the AS at any time.

 Additional interaction mode responses can be defined in the "GNAP Interaction Mode Responses" registry ().
 The AS MUST NOT respond with any interaction mode that the
client instance did not indicate in its request, and the AS MUST NOT respond with
any interaction mode that the AS does not support. Since interaction
responses include secret or unique information, the AS SHOULD
respond to each interaction mode only once in an ongoing request,
particularly if the client instance modifies its request ().
 The grant request MUST be in the pending state to include this field in the response.

 Redirection to an Arbitrary URI
 If the client instance indicates that it can redirect to an arbitrary URI () and the AS supports this mode for the client instance's
request, the AS responds with the "redirect" field, which is
a string containing the URI for the end user to visit. This URI MUST be
unique for the request and MUST NOT contain any security-sensitive
information such as user identifiers or access tokens.

"interact": {
 "redirect": "https://interact.example.com/4CF492MLVMSW9MKMXKHQ"
}

 The URI returned is a function of the AS, but the URI itself MAY be completely
distinct from the grant endpoint URI that the client instance uses to request access (), allowing an
AS to separate its user-interaction functionality from its backend security
functionality. The AS will need to dereference the specific grant
request and its information from the URI alone. If the AS does not directly host the functionality accessed through
the redirect URI, then the means for the interaction functionality to communicate
with the rest of the AS are out of scope for this specification.
 The client instance sends the end user to the URI to interact with the AS. The
client instance MUST NOT alter the URI in any way. The means for the client instance
to send the end user to this URI are out of scope of this specification,
but common methods include an HTTP redirect, launching the system
browser, displaying a scannable code, or printing out the URI in an
interactive console. See details of the interaction in .

 Launch of an Application URI
 If the client instance indicates that it can launch an application URI () and
the AS supports this mode for the client instance's request, the AS
responds with the "app" field, which is a string containing the URI
for the client instance to launch. This URI MUST be unique for the request and
 MUST NOT contain any security-sensitive information such as user identifiers or access tokens.

"interact": {
 "app": "https://app.example.com/launch?tx=4CF492MLV"
}

 The means for the launched application to communicate with the AS are out of
scope for this specification.
 The client instance launches the URI as appropriate on its platform; the means for the client instance to launch this URI are out of scope of this
specification. The client instance MUST NOT alter the URI in any way. The
client instance MAY attempt to detect if an installed application will
service the URI being sent before attempting to launch the
application URI. See details of the interaction in .

 Display of a Short User Code
 If the client instance indicates that it can
display a short, user-typeable code ()
and the AS supports this mode for the client instance's
request, the AS responds with a "user_code" field. This field is string
containing a unique short code that the user
can type into a web page. To facilitate usability, this string MUST consist only of characters
that can be easily typed by the end user
(such as ASCII letters or numbers) and
 MUST be processed by the AS in a case-insensitive manner (see).
The string MUST be randomly generated
so as to be unguessable by an attacker within the time it is accepted. The time in which this
code will be accepted SHOULD be short lived, such as several
minutes. It is RECOMMENDED that this code be between six and eight
characters in length.

"interact": {
 "user_code": "A1BC3DFF"
}

 The client instance MUST communicate the "user_code" value to the end user in some
fashion, such as displaying it on a screen or reading it out
audibly. This code is used by the interaction component of the AS as a means
of identifying the pending grant request and does not function as an
	 authentication factor for the RO.
 The URI that the end user is intended to enter the code into MUST be stable,
since the client instance is expected to have no means of communicating a
dynamic URI to the end user at runtime.
 As this interaction mode is designed to facilitate interaction
via a secondary device, it is not expected that the client instance redirect
the end user to the URI where the code is entered.
If the client instance is capable of communicating a
short arbitrary URI to the end user for use with the user code, the client
instance SHOULD instead use the "user_code_uri" mode ().
If the client instance is capable of communicating a long arbitrary URI to the end user,
such as through a scannable code, the
client instance SHOULD use the "redirect" mode ()
for this purpose, instead of or in addition to the user code mode.
 See details of the interaction in .

 Display of a Short User Code and URI
 If the client instance indicates that it can
display a short, user-typeable code ()
and the AS supports this mode for the client instance's
request, the AS responds with a "user_code_uri"
object that contains the following members.

 code (string):

 A unique short code that the end user
 can type into a provided URI. To facilitate usability, this string MUST consist only of characters
 that can be easily typed by the end user
 (such as ASCII letters or numbers) and
 MUST be processed by the AS in a case-insensitive manner (see).
 The string MUST be randomly generated
 so as to be unguessable by an attacker within the time it is accepted. The time in which this
 code will be accepted SHOULD be short lived, such as several
 minutes. It is RECOMMENDED that this code be between six and eight
 characters in length.
 REQUIRED.

 uri (string):

 The interaction URI that the client instance
 will direct the RO to. This URI MUST be short enough to be
 communicated to the end user by the client instance. It is RECOMMENDED that this URI
 be short enough for an end user to type in manually. The URI
 MUST NOT contain the code value. This URI MUST be an absolute URI.
 REQUIRED.

"interact": {
 "user_code_uri": {
 "code": "A1BC3DFF",
 "uri": "https://s.example/device"
 }
}

 The client instance MUST communicate the "code" to the end user in some
fashion, such as displaying it on a screen or reading it out
audibly. This code is used by the interaction component of the AS as a means
of identifying the pending grant request and does not function as an
authentication factor for the RO.
 The client instance MUST also communicate the URI to the end user. Since it is expected
that the end user will continue interaction on a secondary device,
the URI needs to be short enough to allow the end user to type or copy it to a secondary
device without mistakes.
 The URI returned is a function of the AS, but the URI itself MAY be completely
distinct from the grant endpoint URI that the client instance uses to request access (), allowing an
AS to separate its user-interaction functionality from its backend security
functionality. If the AS does not directly host the functionality accessed through
the given URI, then the means for the interaction functionality to communicate
with the rest of the AS are out of scope for this specification.
 See details of the interaction in .

 Interaction Finish
 If the client instance indicates that it can receive a post-interaction redirect or push at a URI ()
and the AS supports this mode for the
client instance's request, the AS responds with a finish field containing a nonce
that the client instance will use in validating the callback as defined in
 .

"interact": {
 "finish": "MBDOFXG4Y5CVJCX821LH"
}

 When the interaction is completed, the interaction component of the AS MUST contact the client instance using the means defined by the finish method
as described in .
 If the AS returns the finish field, the client instance MUST NOT
continue a grant request before it receives the associated
interaction reference on the callback URI. See details in .

 Returning Subject Information
 If information about the RO is requested and the AS
grants the client instance access to that data, the AS returns the approved
information in the "subject" response field. The AS MUST return the subject field only in cases where the AS is sure that
the RO and the end user are the same party. This can be accomplished through some forms of
interaction with the RO ().
 This field is an object with the following properties.

 sub_ids (array of objects):

 An array of Subject Identifiers for the
 RO, as defined by
 .
 REQUIRED if returning Subject Identifiers.

 assertions (array of objects):

 An array containing assertions as objects, each containing the assertion
 object described below.
 REQUIRED if returning assertions.

 updated_at (string):

 Timestamp as a date string as described in , indicating
 when the identified account was last updated. The client instance MAY use
 this value to determine if it needs to request updated profile
 information through an identity API. The definition of such an
 identity API is out of scope for this specification.
 RECOMMENDED.

 Assertion objects contain the following fields:

 format (string):

 The assertion format.
 Possible formats are listed in .
 Additional assertion formats can be defined in the "GNAP Assertion Formats" registry ().
 REQUIRED.

 value (string):

 The assertion value as the JSON string serialization of the assertion.
 REQUIRED.

 The following non-normative example contains an opaque identifier and an OpenID Connect ID Token:

"subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "XUT2MFM1XBIKJKSDU8QM"
 }],
 "assertions": [{
 "format": "id_token",
 "value": "eyj..."
 }]
}

 Subject Identifiers returned by the AS SHOULD uniquely identify the RO at the
AS. Some forms of Subject Identifiers are opaque to the client instance (such as the subject of an
issuer and subject pair), while other forms (such as email address and phone number) are
intended to allow the client instance to correlate the identifier with other account information
at the client instance. The client instance MUST NOT request or use any returned Subject Identifiers for communication
purposes (see). That is, a Subject Identifier returned in the format of an email address or
a phone number only identifies the RO to the AS and does not indicate that the
AS has validated that the represented email address or phone number in the identifier
is suitable for communication with the current user. To get such information,
the client instance MUST use an identity protocol to request and receive additional identity
claims. The details of an identity protocol and associated schema
are outside the scope of this specification.
 The AS MUST ensure that the returned subject information represents the RO. In most cases,
the AS will also ensure that the returned subject information represents the end user authenticated
interactively at the AS.
The AS SHOULD NOT reuse Subject Identifiers for multiple different ROs.
 The "sub_ids" and "assertions" response fields are independent of each other. That is, a
returned assertion MAY use a different Subject Identifier than other assertions and
Subject Identifiers in the response. However, all Subject Identifiers and assertions returned
 MUST refer to the same party.
 The client instance MUST interpret all subject information in the context of the AS from which the
subject information is received, as is discussed in Section 6 of . For example, one AS could
return an email identifier of "user@example.com" for one RO, and a different AS could return that
same email identifier of "user@example.com" for a completely different RO. A client instance talking to
both ASes needs to differentiate between these two accounts by accounting for the AS source
of each identifier and not assuming that either has a canonical claim on the identifier without
additional configuration and trust agreements. Otherwise, a rogue AS could exploit this to
take over a targeted account asserted by a different AS.
 Extensions to this specification MAY define additional response
properties in the "GNAP Subject Information Response Fields" registry ().
 The grant request MUST be in the approved state to return this field in the response.
 See for considerations that the client instance has to make when accepting
and processing assertions from the AS.

 Assertion Formats
 The following assertion formats are defined in this specification:

 id_token:

 An OpenID Connect ID Token , in JSON Web
 Token (JWT) compact format as a single string.

 saml2:

 A SAML 2.0 assertion , encoded as a single base64url string with no padding.

 Returning a Dynamically Bound Client Instance Identifier
 Many parts of the client instance's request can be passed as either a value
or a reference. The use of a reference in place of a value allows
for a client instance to optimize requests to the AS.
 Some references, such as for the client instance's identity ()
or the requested resources (), can be managed statically through an
admin console or developer portal provided by the AS or RS. The developer
of the client software can include these values in their code for a more
efficient and compact request.
 If desired, the AS MAY also generate and return an instance identifier
dynamically to the client instance in the response to facilitate multiple
interactions with the same client instance over time. The client instance SHOULD use this
instance identifier in future requests in lieu of sending the associated data
values in the client field.
 Dynamically generated client instance identifiers are string values that MUST be
protected by the client instance as secrets. Instance identifier values MUST be unguessable
and MUST NOT contain any information that would compromise any party if revealed. Instance identifier values are
opaque to the client instance, and their content is determined by the AS. The instance
identifier MUST be unique per client instance at the AS.

 instance_id (string):

 A string value used to represent the information
 in the client object that the client instance can use in a future request, as
 described in .
 OPTIONAL.

 The following non-normative example shows an instance identifier alongside an issued access token.

{
 "instance_id": "7C7C4AZ9KHRS6X63AJAO",
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0"
 }
}

 Error Response
 If the AS determines that the request cannot be completed for any reason, it responds to the client instance with an error field in the response message. This field is either an object or a string.
 When returned as an object, the object contains the following fields:

 code (string):

 A single ASCII error code defining the error.
The value MUST be defined in the "GNAP Error Codes" registry ().
 REQUIRED.

 description (string):

 A human-readable string description of the error intended for the
developer of the client. The value is chosen by the implementation.
 OPTIONAL.

 This specification defines the following code values:

 "invalid_request":

 The request is missing a required parameter, includes an
 invalid parameter value, or is otherwise malformed.

 "invalid_client":

 The request was made from a client that was not recognized
 or allowed by the AS, or the client's signature validation failed.

 "invalid_interaction":

 The client instance has provided an interaction reference that is incorrect
 for this request, or the interaction modes in use have expired.

 "invalid_flag":

 The flag configuration is not valid.

 "invalid_rotation":

 The token rotation request is not valid.

 "key_rotation_not_supported":

 The AS does not allow rotation of this access token's key.

 "invalid_continuation":

 The continuation of the referenced grant could not be processed.

 "user_denied":

 The RO denied the request.

 "request_denied":

 The request was denied for an unspecified reason.

 "unknown_user":

 The user presented in the request is not known to the AS or does not match the user present during interaction.

 "unknown_interaction":

 The interaction integrity could not be established.

 "too_fast":

 The client instance did not respect the timeout in the wait response before the next call.

 "too_many_attempts":

 A limit has been reached in the total number of reasonable attempts. This number is either defined statically or adjusted based on runtime conditions by the AS.

 Additional error codes can be defined in the "GNAP Error Codes" registry ().
 For example, if the RO denied the request while interacting with the AS,
the AS would return the following error when the client instance tries to
continue the grant request:

{
 "error": {
 "code": "user_denied",
 "description": "The RO denied the request"
 }
}

 Alternatively, the AS MAY choose to only return the error as codes and provide the error as a string. Since the description field is not intended to be machine-readable, the following response is considered functionally equivalent to the previous example for the purposes of the client software's understanding:

{
 "error": "user_denied"
}

 If an error state is reached but the grant is in the pending state (and therefore the client instance can continue), the AS MAY include the continue field in the response along with the error, as defined in . This allows the client instance to modify its request for access, potentially leading to prompting the RO again. Other fields MUST NOT be included in the response.

 Determining Authorization and Consent
 When the client instance makes its initial request () to the AS for delegated access, it
is capable of asking for several different kinds of information in response:

 the access being requested, in the access_token request parameter

 the subject information being requested, in the subject request parameter

 any additional requested information defined by extensions of this protocol

 When the grant request is in the processing state, the AS determines what authorizations and
consents are required to fulfill this requested delegation. The details of how the
AS makes this determination are out of scope for this document. However, there are several common
patterns defined and supported by GNAP for fulfilling these requirements, including information
sent by the client instance, information gathered through the interaction process, and information
supplied by external parties. An individual AS can define its own policies and processes for
deciding when and how to gather the necessary authorizations and consent and how those are applied
to the grant request.
 To facilitate the AS fulfilling this request, the client instance sends information about the
actions the client software can take, including:

 starting interaction with the end user, in the interact request parameter

 receiving notification that interaction with the RO has concluded, in the interact request parameter

 any additional capabilities defined by extensions of this protocol

 The client instance can also supply information directly to the AS in its request. The client instance can send several kinds of things, including:

 the identity of the client instance, known from the keys or identifiers in the client request parameter

 the identity of the end user, in the user request parameter

 any additional information presented by the client instance in the request defined by extensions of this protocol

 The AS will process this presented information in the context of the client instance's request and
can only trust the information as much as it trusts the presentation and context of that request.
If the AS determines that the information presented in the initial request is sufficient for granting the requested
access, the AS MAY move the grant request to the approved state and return results immediately in its response with
access tokens and subject information.
 If the AS determines that additional runtime authorization is required, the AS can either deny the
request outright (if there is no possible recovery) or move the grant request to the pending
state and use a number of means at its disposal to gather that authorization from the appropriate ROs, including:

 starting interaction with the end user facilitated by the client software, such as a redirection or user code

 challenging the client instance through a challenge-response mechanism

 requesting that the client instance present specific additional information, such as a user's credential or an assertion

 contacting an RO through an out-of-band mechanism, such as a push notification

 executing an auxiliary software process through an out-of-band mechanism, such as querying a digital wallet

 The process of gathering authorization and consent in GNAP is left deliberately flexible to allow for a
wide variety of different deployments, interactions, and methodologies.
In this process, the AS can gather consent from the RO or apply the RO's policy as necessitated by the access that has
been requested. The AS can sometimes determine which RO needs to prompt for consent based on what has been requested
by the client instance, such as a specific RS record, an identified subject, or a request requiring specific
access such as approval by an administrator. In other cases, the request is applied to whichever RO is present at the time of consent gathering. This pattern is especially prevalent when the
end user is sent to the AS for an interactive session, during which the end user takes on the role of the RO. In these cases, the end user is delegating their own access as RO to the client instance.
 The client instance can indicate that it is capable of facilitating interaction with the end user,
another party, or another piece of software through its interaction start request (). Here, the
AS usually needs to interact directly with
the end user to determine their identity, determine their status as an RO, and collect their consent. If the AS has determined
that authorization is required and the AS can support one or more of the requested interaction start
methods, the AS returns the associated interaction start responses (). The client
instance SHOULD initiate one or more of these interaction methods () in order to
facilitate the granting of the request. If more than one interaction start method is available,
the means by which the client chooses which methods to follow are out of scope of this specification.
 After starting interaction, the client instance can then make a continuation request ()
either in response to a signal indicating the finish of the interaction (), after a time-based
polling, or through some other method defined by an extension of this specification through the "GNAP Interaction Mode Responses" registry ().
 If the grant request is not in the approved state, the
client instance can repeat the interaction process by sending a grant update request () with new interaction methods ().
 The client instance MUST use each interaction method once at most if a response can be detected.
The AS MUST handle any interact request as a one-time-use mechanism and SHOULD apply suitable
timeouts to any interaction start methods provided, including user codes and redirection URIs.
The client instance SHOULD apply suitable timeouts to any interaction finish method.
 In order to support client software deployed in disadvantaged network conditions, the AS MAY
allow for processing of the same interaction method multiple times if the AS can determine
that the request is from the same party and the results are idempotent.
For example, if a client instance launches a redirect to the AS but does not receive a response
within a reasonable time, the client software can launch the redirect again, assuming that it never
reached the AS in the first place. However, if the AS in question
receives both requests, it could mistakenly process them separately, creating an undefined state for the
client instance. If the AS can determine that both requests come from the same origin or under the same session,
and the requests both came before any additional state change to the grant occurs, the AS can reasonably
conclude that the initial response was not received and the same response can be returned to the client instance.
 If the AS instead has a means of contacting the RO directly, it could
do so without involving the client instance in its consent-gathering process. For example, the AS could
push a notification to a known RO and have the RO approve the pending request asynchronously. These interactions
can be through an interface of the AS itself (such as a hosted web page), through another application (such as
something installed on the RO's device), through a messaging fabric, or any other means.
 When interacting with an RO, the AS can use various strategies to determine
the authorization of the requested grant, including:

 authenticate the RO through a local account or some other means, such as federated login

 validate the RO through presentation of claims, attributes, or other information

 prompt the RO for consent for the requested delegation

 describe to the RO what information is being released, to whom, and for what purpose

 provide warnings to the RO about potential attacks or negative effects of allowing the information

 allow the RO to modify the client instance's requested access, including limiting or expanding that access

 provide the RO with artifacts such as receipts to facilitate an audit trail of authorizations

 allow the RO to deny the requested delegation

 The AS is also allowed to request authorization from more than one RO, if the AS deems fit. For example, a medical
record might need to be released by both an attending nurse and a physician, or both owners of a bank account
need to sign off on a transfer request. Alternatively, the AS could require N of M possible ROs
to approve a given request. In some circumstances, the AS could even determine that the end user
present during the interaction is not the appropriate RO
for a given request and reach out to the appropriate RO asynchronously.
 The RO is also allowed to define an automated policy at the AS to determine which kind of end user can get access to the resource and under which conditions. For instance, such a condition might require the end user to log in and accept the RO's legal provisions. Alternatively, client software could be acting without an end user, and the RO's policy allows issuance of access tokens to specific instances of that client software without human interaction.
 While all of these cases are supported by GNAP, the details of their
implementation and the methods for determining which ROs or related policies
are required for a given request are out of scope for this specification.

 Starting Interaction with the End User
 When a grant request is in the pending state, the interaction start methods sent by
the client instance can be used to facilitate interaction with the end user.
To initiate an interaction start method indicated by the
interaction start responses () from the AS, the client instance
follows the steps defined by that interaction start mode. The actions of the client instance
required for the interaction start modes defined in this specification are described
in the following subsections. Interaction start modes defined in extensions to this specification
 MUST define the expected actions of the client software when that interaction start mode is used.
 If the client instance does not start an interaction start mode within an AS-determined amount of
time, the AS MUST reject attempts to use the interaction start modes. If the client instance has
already begun one interaction start mode and the interaction has been successfully completed, the AS MUST reject attempts to use other interaction
start modes. For example, if a user code has been successfully entered for a grant request, the AS
will need to reject requests to an arbitrary redirect URI on the same grant request in order to prevent an
attacker from capturing and altering an active authorization process.

 Interaction at a Redirected URI
 When the end user is directed to an arbitrary URI through the "redirect" mode (), the client instance facilitates opening the URI through the end user's web browser.
The client instance could launch the URI through the system browser, provide a clickable
link, redirect the user through HTTP response codes, or display the URI in a form
the end user can use to launch, such as a multidimensional barcode. In all cases, the URI
is accessed with an HTTP GET request, and the resulting page is assumed to allow direct interaction
with the end user through an HTTP user agent.
With this method, it is common (though not required) for the RO to be the same party as the end user, since
the client instance has to communicate the redirection URI to the end user.
 In many cases, the URI indicates a web page hosted at the AS, allowing the
AS to authenticate the end user as the RO and interactively provide consent.
The URI value is used to identify the grant request being authorized.
If the URI cannot be associated with a currently active
request, the AS MUST display an error to the RO and MUST NOT attempt
to redirect the RO back to any client instance, even if a redirect finish method is supplied ().
If the URI is not hosted by the AS directly, the means of communication between
the AS and the service provided by this URI are out of scope for this specification.
 The client instance MUST NOT modify the URI when launching it;
in particular, the client instance MUST NOT add any parameters to the URI.
The URI MUST be reachable from the end user's browser, though
the URI MAY be opened on a separate device from the client instance
itself. The URI MUST be accessible from an HTTP GET
request, and it MUST be protected by HTTPS, be
hosted on a server local to the RO's browser ("localhost"), or
use an application-specific URI scheme that is loaded on the end user's device.

 Interaction at the Static User Code URI
 When the end user is directed to enter a short code through the "user_code" mode (), the client instance communicates the user code to the end user and
directs the end user to enter that code at an associated URI.
The client instance MAY
format the user code in such a way as to facilitate memorability and transfer of the
code, so long as this formatting does not alter the value as accepted at the user code
URI. For example, a client instance receiving the user code "A1BC3DFF" could choose to
display this to the user as "A1BC 3DFF", breaking up the long string into two shorter
strings.
 When processing input codes, the AS MUST transform the input string to remove invalid characters.
In the above example, the space in between the two parts would be removed upon its
entry into the interactive form at the user code URI. Additionally, the AS MUST treat
user input as case insensitive. For example, if the user inputs the string "a1bc 3DFF", the
AS will treat the input the same as "A1BC3DFF". To facilitate this, it is RECOMMENDED
that the AS use only ASCII letters and numbers as valid characters for the user code.
 It is RECOMMENDED that the AS choose from character values that are easily copied and typed without ambiguity.
For example, some glyphs have multiple Unicode code points for the same visual character, and the end user
could potentially type a different character than what the AS has returned.
For additional considerations of internationalized character strings, see .
 This mode is designed to be used when the client instance is not able to communicate or facilitate launching
an arbitrary URI. The associated URI could be statically configured with the client instance or
in the client software's documentation. As a consequence, these URIs SHOULD be short.
The user code URI MUST be reachable from the end user's browser, though
the URI is usually opened on a separate device from the client instance
itself. The URI MUST be accessible from an HTTP GET
request, and it MUST be protected by HTTPS, be
hosted on a server local to the RO's browser ("localhost"), or
use an application-specific URI scheme that is loaded on the end user's device.
 In many cases, the URI indicates a web page hosted at the AS, allowing the
AS to authenticate the end user as the RO and interactively provide consent.
The value of the user code is used to identify the grant request being authorized.
If the user code cannot be associated with a currently active
request, the AS MUST display an error to the RO and MUST NOT attempt
to redirect the RO back to any client instance, even if a redirect finish method is supplied ().
If the interaction component at the user code URI is not hosted by the AS directly, the means of communication between
the AS and this URI, including communication of the user code itself, are out of scope for this specification.
 When the RO enters this code at the user code URI,
the AS MUST uniquely identify the pending request that the code was associated
with. If the AS does not recognize the entered code, the interaction component MUST
display an error to the user. If the AS detects too many unrecognized code
enter attempts, the interaction component SHOULD display an error to the user indicating too many attempts and
 MAY take additional actions such as slowing down the input interactions.
The user should be warned as such an error state is approached, if possible.

 Interaction at a Dynamic User Code URI
 When the end user is directed to enter a short code through the "user_code_uri" mode (), the client instance communicates the user code and associated URI to the end user and
directs the end user to enter that code at the URI.
The client instance MAY
format the user code in such a way as to facilitate memorability and transfer of the
code, so long as this formatting does not alter the value as accepted at the user code
URI. For example, a client instance receiving the user code "A1BC3DFF" could choose to
display this to the user as "A1BC 3DFF", breaking up the long string into two shorter
strings.
 When processing input codes, the AS MUST transform the input string to remove invalid characters.
In the above example, the space in between the two parts would be removed upon its
entry into the interactive form at the user code URI. Additionally, the AS MUST treat
user input as case insensitive. For example, if the user inputs the string "a1bc 3DFF", the
AS will treat the input the same as "A1BC3DFF". To facilitate this, it is RECOMMENDED
that the AS use only ASCII letters and numbers as valid characters for the user code.
 This mode is used when the client instance is not able to facilitate launching
a complex arbitrary URI but can communicate arbitrary values like URIs. As a consequence, these URIs
 SHOULD be short enough to allow the URI to be typed by the end user,
such as a total length of 20 characters or fewer.
The client instance MUST NOT modify the URI when communicating it to the end user;
in particular the client instance MUST NOT add any parameters to the URI.
The user code URI MUST be reachable from the end user's browser, though
the URI is usually be opened on a separate device from the client instance
itself. The URI MUST be accessible from an HTTP GET
request, and it MUST be protected by HTTPS, be
hosted on a server local to the RO's browser ("localhost"), or
use an application-specific URI scheme that is loaded on the end user's device.
 In many cases, the URI indicates a web page hosted at the AS, allowing the
AS to authenticate the end user as the RO and interactively provide consent.
The value of the user code is used to identify the grant request being authorized.
If the user code cannot be associated with a currently active
request, the AS MUST display an error to the RO and MUST NOT attempt
to redirect the RO back to any client instance, even if a redirect finish method is supplied ().
If the interaction component at the user code URI is not hosted by the AS directly, the means of communication between
the AS and this URI, including communication of the user code itself, are out of scope for this specification.
 When the RO enters this code at the given URI,
the AS MUST uniquely identify the pending request that the code was associated
with. If the AS does not recognize the entered code, the interaction component MUST
display an error to the user. If the AS detects too many unrecognized code
enter attempts, the interaction component SHOULD display an error to the user indicating too many attempts and
 MAY take additional actions such as slowing down the input interactions.
The user should be warned as such an error state is approached, if possible.

 Interaction through an Application URI
 When the client instance is directed to launch an application through the
"app" mode (), the client launches the
URI as appropriate to the system, such as through a deep link or custom URI
scheme registered to a mobile application. The means by which the AS and the
launched application communicate with each other and perform any
of the required actions are out of scope for this specification.

 Post-Interaction Completion
 If an interaction "finish" method () is
associated with the current request, the AS MUST follow the appropriate
method upon completion of interaction in order to signal the client
instance to continue, except for some limited error cases discussed below.
If a finish method is not available, the AS SHOULD instruct the RO to
return to the client instance upon completion. In such cases, it is expected
that the client instance will poll the continuation endpoint as described in .
 The AS MUST create an interaction reference and associate that
reference with the current interaction and the underlying pending
request. The interaction reference value is an ASCII string consisting of only
unreserved characters per .
The interaction reference value MUST be sufficiently random so as not to be
guessable by an attacker. The interaction reference MUST be
one-time-use to prevent interception and replay attacks.
 The AS MUST calculate a hash value based on the client instance, AS nonces, and the
interaction reference, as described in
 . The client instance will use this value to
validate the "finish" call.
 All interaction finish methods MUST define a way
to convey the hash and interaction reference back to the client instance. When an
interaction finish method is used, the client instance MUST present the interaction
reference back to the AS as part of its continuation request ().
 Note that in many error cases, such as when the RO has denied
access, the "finish" method is still enacted by the AS.
This pattern allows the client instance to potentially recover from the error
state by modifying its request or providing additional information directly to the AS in a
continuation request. The AS MUST NOT follow the "finish" method in the
following circumstances:

 The AS has determined that any URIs involved with the finish method are dangerous or blocked.

 The AS cannot determine which ongoing grant request is being referenced.

 The ongoing grant request has been canceled or otherwise blocked.

 Completing Interaction with a Browser Redirect to the Callback URI
 When using the redirect interaction finish method defined in Sections and ,
the AS signals to the client instance that interaction is
complete and the request can be continued by directing the RO (in
their browser) back to the client instance's redirect URI.
 The AS secures this redirect by adding the hash and interaction
reference as query parameters to the client instance's redirect URI.

 hash:

 The interaction hash value as
 described in .
 REQUIRED.

 interact_ref:

 The interaction reference
 generated for this interaction.
 REQUIRED.

 The means of directing the RO to this URI are outside the scope
of this specification, but common options include redirecting the
RO from a web page and launching the system browser with the
target URI. See for considerations on
which HTTP status code to use when redirecting a request that
potentially contains credentials.

NOTE: '\' line wrapping per RFC 8792

https://client.example.net/return/123455\
 ?hash=x-gguKWTj8rQf7d7i3w3UhzvuJ5bpOlKyAlVpLxBffY\
 &interact_ref=4IFWWIKYBC2PQ6U56NL1

 The client instance MUST be able to process a request on the URI. If the URI is
HTTP, the request MUST be an HTTP GET.
 When receiving the request, the client instance MUST parse the query
parameters to extract the hash and interaction reference values.
The client instance MUST calculate and validate the hash value as described in
 . If the hash validates, the client instance
sends a continuation request to the AS as described in
 , using the interaction
reference value received here. If the hash does not validate, the client instance
 MUST NOT send the interaction reference to the AS.

 Completing Interaction with a Direct HTTP Request Callback
 When using the push interaction finish method defined in Sections and ,
the AS signals to the client instance that interaction is
complete and the request can be continued by sending an HTTP POST
request to the client instance's callback URI.
 The HTTP message content is a JSON object consisting of the
following two fields:

 hash (string):

 The interaction hash value as
 described in .
 REQUIRED.

 interact_ref (string):

 The interaction reference
 generated for this interaction.
 REQUIRED.

POST /push/554321 HTTP/1.1
Host: client.example.net
Content-Type: application/json

{
 "hash": "pjdHcrti02HLCwGU3qhUZ3wZXt8IjrV_BtE3oUyOuKNk",
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

 Since the AS is making an outbound connection to a URI supplied by an outside party (the client
instance), the AS MUST protect itself against Server-Side Request Forgery (SSRF) attacks when making this call, as discussed in
 .
 When receiving the request, the client instance MUST parse the JSON object
and validate the hash value as described in
 . If either fails, the client instance MUST return an unknown_interaction error (). If the hash validates, the client instance sends
a continuation request to the AS as described in , using the interaction
reference value received here.

 Calculating the Interaction Hash
 The "hash" parameter in the request to the client instance's callback URI ties
the front-channel response to an ongoing request by using values
known only to the parties involved. This security mechanism allows the client instance to protect itself against
several kinds of session fixation and injection attacks as discussed in . The AS MUST
always provide this hash, and the client instance MUST validate the hash when received.
 To calculate the "hash" value, the party doing the calculation
creates a hash base string by concatenating the following values in the following order
using a single newline (0x0A) character to separate them:

 the "nonce" value sent by the client instance in the interaction finish field of the initial request ()

 the AS's nonce value from the interaction finish response ()

 the "interact_ref" returned from the AS as part of the interaction finish method ()

 the grant endpoint URI the client instance used to make its initial request ()

 There is no padding or whitespace before or after any of the lines
and no trailing newline character. The following non-normative example shows a constructed
hash base string consisting of these four elements.

VJLO6A4CATR0KRO
MBDOFXG4Y5CVJCX821LH
4IFWWIKYB2PQ6U56NL1
https://server.example.com/tx

 The party then hashes the bytes of the ASCII encoding of this string with the appropriate algorithm
based on the "hash_method" parameter under the "finish" key of the interaction finish request (). The resulting
byte array from the hash function is then encoded using URL-Safe base64
with no padding . The resulting string is the hash value.
 If provided, the "hash_method" value MUST be one of the hash name strings defined in the
IANA "Named Information Hash Algorithm Registry" .
If the "hash_method" value is not present in the client instance's
request, the algorithm defaults to "sha-256".
 For example, the "sha-256" hash method consists of hashing the input string
with the 256-bit SHA2 algorithm. The following is the encoded "sha-256" hash of the hash base string in the example above.

x-gguKWTj8rQf7d7i3w3UhzvuJ5bpOlKyAlVpLxBffY

 As another example, the "sha3-512" hash method consists of hashing the input string
with the 512-bit SHA3 algorithm. The following is the encoded "sha3-512" hash of the hash base string in the example above.

NOTE: '\' line wrapping per RFC 8792

pyUkVJSmpqSJMaDYsk5G8WCvgY91l-agUPe1wgn-cc5rUtN69gPI2-S_s-Eswed8iB4\
 PJ_a5Hg6DNi7qGgKwSQ

 Continuing a Grant Request
 While it is possible for the AS to return an approved grant response () with all the
client instance's requested information (including access tokens () and
subject information ()) immediately, it's more common that the AS will
place the grant request into the pending state and require communication with
the client instance several times over the lifetime of a grant request.
This is often part of facilitating interaction (), but it could
also be used to allow the AS and client instance to continue negotiating the parameters of
the original grant request () through modification of the request.
 The ability to continue an already-started request allows the client instance to perform several
important functions, including presenting additional information from interaction,
modifying the initial request, and revoking a grant request in progress.
 To enable this ongoing negotiation, the AS provides a continuation API to the client software.
The AS returns a continue field
in the response () that contains information the client instance needs to
access this API, including a URI to access
as well as a special access token to use during the requests, called the "continuation access token".
 All requests to the continuation API are protected by a bound continuation access token.
The continuation access token is bound to the same key and method the client instance used to make
the initial request (or its most recent rotation). As a consequence,
when the client instance makes any calls to the continuation URI, the client instance MUST present
the continuation access token as described in and present
proof of the client instance's key (or its most recent rotation)
by signing the request as described in .
The AS MUST validate the signature and ensure that it is bound to the appropriate key for
the continuation access token.
 Access tokens other than the continuation access tokens MUST NOT be usable for continuation
requests. Conversely, continuation access tokens MUST NOT be usable to make authorized requests to
RSs, even if co-located within the AS.
 In the following non-normative example, the client instance makes a POST request to a unique URI and signs
the request with HTTP message signatures:

POST /continue/KSKUOMUKM HTTP/1.1
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Host: server.example.com
Content-Length: 0
Signature-Input: sig1=...
Signature: sig1=...

 The AS MUST be able to tell from the client instance's request which specific ongoing request
is being accessed, using a combination of the continuation URI and
the continuation access token.
If the AS cannot determine a single active grant request to map the
continuation request to, the AS MUST return an invalid_continuation error ().
 In the following non-normative example, the client instance makes a POST request to a stable continuation endpoint
URI with the interaction reference (),
includes the access token, and signs with HTTP message signatures:

POST /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

 In the following non-normative alternative example, the client instance had been provided a continuation URI unique to this ongoing grant request:

POST /tx/rxgIIEVMBV-BQUO7kxbsp HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP eyJhbGciOiJub25lIiwidHlwIjoiYmFkIn0
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

 In both cases, the AS determines which grant is being asked for based on the URI and continuation access token provided.
 If a wait parameter was included in the continuation response (), the
client instance MUST NOT call the continuation URI prior to waiting the number of
seconds indicated. If no wait period is indicated, the client instance
 MUST NOT poll immediately and SHOULD
wait at least 5 seconds. If the client instance does not respect the
given wait period, the AS MUST return the too_fast error ().
 The response from the AS is a JSON object of a grant response and MAY contain any of the
fields described in , as described in more detail in the
subsections below.
 If the AS determines that the client instance can
make further requests to the continuation API, the AS MUST include a new
continuation response ().
The new continuation response MUST include a continuation access token as well, and
this token SHOULD be a new access token, invalidating the previous access token.
If the AS does not return a new continuation response, the client instance
 MUST NOT make an additional continuation request. If a client instance does so,
the AS MUST return an invalid_continuation error ().
 For continuation functions that require the client instance to send message content, the content MUST be
a JSON object.
 For all requests to the grant continuation API, the AS MAY make use of long polling mechanisms such as those discussed in . That is to say, instead of
returning the current status immediately, the long polling technique
allows the AS additional time to process and fulfill the request before returning the HTTP response
to the client instance. For example, when the AS receives a continuation request but the
grant request is in the processing state, the AS could wait until the grant request has moved
to the pending or approved state before returning the response message.

 Continuing after a Completed Interaction
 When the AS responds to the client instance's finish method as in , this
response includes an interaction reference. The client instance MUST include that value as the field
 interact_ref in a POST request to the continuation URI.

POST /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

 Since the interaction reference is a one-time-use value as described in ,
if the client instance needs to make additional continuation calls after this request, the client instance
 MUST NOT include the interaction reference in subsequent calls. If the AS detects a client instance
submitting an interaction reference when the request is not in the pending state, the AS MUST
return a too_many_attempts error () and SHOULD invalidate
the ongoing request by moving it to the finalized state.
 If the grant request is in the approved state, the grant response () MAY contain any
newly created access tokens () or
newly released subject information (). The response MAY contain
a new continuation response () as described above. The response
 SHOULD NOT contain any interaction responses ().
 If the grant request is in the pending state, the grant response () MUST NOT contain access tokens or subject information and MAY contain a new interaction response () to any interaction methods that have not been exhausted at the AS.
 For example, if the request is successful in causing the AS to issue access tokens and
release opaque subject claims, the response could look like this:

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 },
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
}

 With the above example, the client instance cannot make an additional continuation request because
a continue field is not included.
 In the following non-normative example, the RO has denied the client instance's request, and the AS responds with the following response:

{
 "error": "user_denied",
 "continue": {
 "access_token": {
 "value": "33OMUKMKSKU80UPRY5NM"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 }
}

 In the preceding example, the AS includes the continue field in the response. Therefore, the client instance can continue the grant negotiation process, perhaps modifying the request as discussed in .

 Continuing during Pending Interaction (Polling)
 When the client instance does not include a finish parameter, the client instance will often need to
poll the AS until the RO has authorized the request. To do so, the client instance makes a POST
request to the continuation URI as in but does not
include message content.

POST /continue HTTP/1.1
Host: server.example.com
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...

 If the grant request is in the approved state, the grant response () MAY contain any
newly created access tokens () or
newly released subject claims (). The response MAY contain
a new continuation response () as described above. If a continue
field is included, it SHOULD include a wait field to facilitate a reasonable polling rate by
the client instance. The response SHOULD NOT contain interaction responses ().
 If the grant request is in the pending state, the grant response () MUST NOT contain access tokens or subject information and MAY contain a new interaction response () to any interaction methods that have not been exhausted at the AS.
 For example, if the request has not yet been authorized by the RO, the AS could respond
by telling the client instance to make another continuation request in the future. In the following non-normative example,
a new, unique access token has been issued for the call, which the client instance will use in its
next continuation request.

{
 "continue": {
 "access_token": {
 "value": "33OMUKMKSKU80UPRY5NM"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 }
}

 If the request is successful in causing the AS to issue access tokens and
release subject information, the response could look like the following non-normative example:

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 },
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
}

 See for considerations on polling for continuation without an interaction
 finish method.
 In error conditions, the AS responds to the client instance with an error code as discussed in .
For example, if the client instance has polled too many times before the RO has approved the request, the AS would respond with a message like the following:

{
 "error": "too_many_attempts"
}

 Since this response does not include a continue field, the client instance cannot continue to
poll the AS for additional updates and the grant request is finalized. If the client instance
still needs access to the resource, it will need to start with a new grant request.

 Modifying an Existing Request
 The client instance might need to modify an ongoing request, whether or not tokens have already been
issued or subject information has already been released. In such cases, the client instance makes an HTTP PATCH
request to the continuation URI and includes any fields it needs to modify. Fields
that aren't included in the request are considered unchanged from the original request.
 A grant request associated with a modification request MUST be in the approved or pending state.
When the AS receives a valid modification request, the AS MUST place the grant request into the
 processing state and re-evaluate the authorization in the new context created by the update
request, since the extent and context of the request could have changed.
 The client instance MAY include the access_token and subject fields as described in Sections
and . Inclusion of these fields override any values in the initial request,
which MAY trigger additional requirements and policies by the AS. For example, if the client instance is asking for
more access, the AS could require additional interaction with the RO to gather additional consent.
If the client instance is asking for more limited access, the AS could determine that sufficient authorization
has been granted to the client instance and return the more limited access rights immediately.
If the grant request was previously in the approved state, the AS could decide to remember the larger scale of access rights associated
with the grant request, allowing the client instance to make subsequent requests of different
subsets of granted access. The details of this processing are out of scope for this specification,
but a one possible approach is as follows:

 A client instance requests access to Foo, and this is granted by the RO. This results in an access token: AT1.

 The client instance later modifies the grant request to include Foo and Bar together. Since the client instance was previously granted Foo under this grant request, the RO is prompted to allow the client instance access to Foo and Bar together. This results in a new access token: AT2. This access token has access to both Foo and Bar. The rights of the original access token AT1 are not modified.

 The client instance makes another grant modification to ask only for Bar. Since the client instance was previously granted Foo and Bar together under this grant request, the RO is not prompted, and the access to Bar is granted in a new access token: AT3. This new access token does not allow access to Foo.

 The original access token AT1 expires, and the client seeks a new access token to replace it. The client instance makes another grant modification to ask only for Foo. Since the client instance was previously granted Foo and Bar together under this grant request, the RO is not prompted, and the access to Foo is granted in a new access token: AT4. This new access token does not allow access to Bar.

 All four access tokens are independent of each other and associated with the same underlying grant request. Each of these access tokens could possibly also be rotated using token management, if available. For example, instead of asking for a new token to replace AT1, the client instance could ask for a refresh of AT1 using the rotation method of the token management API. This would result in a refreshed AT1 with a different token value and expiration from the original AT1 but with the same access rights of allowing only access to Foo.
 The client instance MAY include the interact field as described in .
Inclusion of this field indicates that the client instance is capable of driving interaction with
the end user, and this field replaces any values from a previous request. The AS MAY respond to any
of the interaction responses as described in , just like it would to a new
request.
 The client instance MAY include the user field as described in to present new assertions
or information about the end user. The AS SHOULD check that this presented user information is
consistent with any user information previously presented by the client instance or otherwise
associated with this grant request.
 The client instance MUST NOT include the client field of the request, since the client
instance is assumed not to have changed. Modification of client instance information, including
rotation of keys associated with the client instance, is outside the
scope of this specification.
 The client instance MUST NOT include post-interaction responses such as those described in .
 Modification requests MUST NOT alter previously issued access tokens. Instead, any access
tokens issued from a continuation are considered new, separate access tokens. The AS
 MAY revoke previously issued access tokens after a modification has occurred.
 If the modified request can be granted immediately by the AS (the grant request is in the approved state),
the grant response () MAY contain any newly created access tokens () or
newly released subject claims (). The response MAY contain
a new continuation response () as described above. If interaction
can occur, the response SHOULD contain interaction responses () as well.
 For example, a client instance initially requests a set of resources using references:

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "read", "write"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 },
 "client": "987YHGRT56789IOLK"
}

 Access is granted by the RO, and a token is issued by the AS.
In its final response, the AS includes a continue field, which includes
a separate access token for accessing the continuation API:

{
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 },
 "access_token": {
 "value": "RP1LT0-OS9M2P_R64TB",
 "access": [
 "read", "write"
]
 }
}

 This continue field allows the client instance to make an eventual continuation call.
Some time later, the client instance realizes that it no longer needs
"write" access and therefore modifies its ongoing request, here asking for just "read" access
instead of both "read" and "write" as before.

PATCH /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "read"
]
 }
 ...
}

 The AS replaces the previous access from the first request, allowing the AS to
determine if any previously granted consent already applies. In this case, the AS would
determine that reducing the breadth of the requested access means that new access
tokens can be issued to the client instance without additional interaction or consent. The AS would likely revoke previously issued access tokens
that had the greater access rights associated with them, unless they had been issued
with the durable flag.

{
 "continue": {
 "access_token": {
 "value": "M33OMUK80UPRY5NMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 },
 "access_token": {
 "value": "0EVKC7-2ZKwZM_6N760",
 "access": [
 "read"
]
 }
}

 As another example, the client instance initially requests read-only access but later
needs to step up its access. The initial request could look like the following HTTP message:

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "read"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 },
 "client": "987YHGRT56789IOLK"
}

 Access is granted by the RO, and a token is issued by the AS.
In its final response, the AS includes a continue field:

{
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 },
 "access_token": {
 "value": "RP1LT0-OS9M2P_R64TB",
 "access": [
 "read"
]
 }
}

 This allows the client instance to make an eventual continuation call. The client instance later realizes that it now
needs "write" access in addition to the "read" access. Since this is an expansion of what
it asked for previously, the client instance also includes a new interaction field in case the AS needs
to interact with the RO again to gather additional authorization. Note that the client instance's
nonce and callback are different from the initial request. Since the original callback was
already used in the initial exchange and the callback is intended for one-time use, a new one
needs to be included in order to use the callback again.

PATCH /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "read", "write"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/654321",
 "nonce": "K82FX4T4LKLTI25DQFZC"
 }
 }
}

 From here, the AS can determine that the client instance is asking for more than it was previously granted,
but since the client instance has also provided a mechanism to interact with the RO, the AS can use that
to gather the additional consent. The protocol continues as it would with a new request.
Since the old access tokens are good for a subset of the rights requested here, the
AS might decide to not revoke them. However, any access tokens granted after this update
process are new access tokens and do not modify the rights of existing access tokens.

 Revoking a Grant Request
 If the client instance wishes to cancel an ongoing grant request and place it into the finalized
state, the client instance makes an
HTTP DELETE request to the continuation URI.

DELETE /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...

 If the request is successfully revoked, the AS responds with HTTP status code 204 (No Content).
The AS SHOULD revoke all associated access tokens, if possible. The AS SHOULD disable all
token rotation and other token management functions on such access tokens, if possible.
Once the grant request is in the finalized state, it MUST NOT be moved to any other state.
 If the request is not revoked, the AS responds with an invalid_continuation error ().

 Token Management
 If an access token response includes the manage field as
described in , the client instance MAY call
this URI to manage the access token with the rotate and revoke actions defined in
the following subsections. Other actions are undefined by this
specification.

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "flags": ["bearer"],
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 }
}

 The token management access token issued under the manage field is used to protect
all calls to the token management API.
The client instance MUST present proof of the key associated with the token
along with the value of the token management access token.
 The AS MUST validate the proof and ensure that it is associated with the
token management access token.
 The AS MUST uniquely identify the token being managed from the token management URI,
the token management access token, or a combination of both.

 Rotating the Access Token Value
 If the client instance has an access token and that access token expires, the
client instance might want to rotate the access token to a new value without expiration.
Rotating an access token consists of issuing a new access token in place of an
existing access token, with the same rights and properties as the original token,
apart from an updated token value and expiration time.
 To rotate an access token, the client instance makes an HTTP POST to the token management URI
with no message content,
sending the access token in the authorization header as described in and signing the request
with the appropriate key.

POST /token/PRY5NM33O HTTP/1.1
Host: server.example.com
Authorization: GNAP B8CDFONP21-4TB8N6.BW7ONM
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

 The client instance cannot request to alter the access rights
associated with the access token during a rotation request. To get an access token with different
access rights for this grant request, the client instance has to call the continuation API's update functionality ()
to get a new access token. The client instance can also create a new grant request
with the required access rights.
 The AS validates that the token management access token presented is associated with the management
URI, that the AS issued the token to the given client instance, and that
the presented key is the correct key for the token management access token. The AS determines
which access token is being rotated from the token management URI, the token management access token, or both.
 If the token is validated and the key is appropriate for the
request, the AS MUST invalidate the current access token value associated
with this URI, if possible. Note that stateless access tokens can make proactive
revocation difficult within a system; see .
 For successful rotations, the AS responds with an HTTP status code 200 (OK) with JSON-formatted message content consisting of the rotated access token
in the access_token field described in . The value of the
access token MUST NOT be the same as the current value of the access
token used to access the management API. The response MUST include an
access token management URI, and the value of this URI MAY be different
from the URI used by the client instance to make the rotation call. The client instance
 MUST use this new URI to manage the rotated access token.
 The access rights in the access array for the rotated access token MUST
be included in the response and MUST be the same
as the token before rotation.

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "value": "FP6A8H6HY37MH13CK76LBZ6Y1UADG6VEUPEER5H2",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "expires_in": 3600,
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read", "dolphin-metadata"
]
 }
}

 If the AS is unable or unwilling to rotate the value of the access token, the AS responds with an invalid_rotation error (). Upon receiving such an error, the client instance MUST consider the access token to not have changed its state.

 Binding a New Key to the Rotated Access Token
 If the client instance wishes to bind a new presentation key to an access token, the client
instance MUST present both the new key and the proof of previous key material in the access token rotation request.
The client instance makes an HTTP POST as a JSON object with the following field:

 key:

 The new key value or reference in the format described in . Note that keys
 passed by value are always public keys. REQUIRED when doing key rotation.

 The proofing method and parameters for the new key MUST be the same as those established for the
previous key.
 The client instance MUST prove possession of both the currently bound key and the newly requested
key simultaneously in the rotation request. Specifically, the signature from the previous key MUST
cover the value or reference of the new key, and the signature of the new key MUST cover the
signature value of the old key. The
means of doing so vary depending on the proofing method in use. For example, the HTTP message
signatures proofing method uses multiple signatures in the request as described in
 . This is shown in the following example.

POST /token/PRY5NM33O HTTP/1.1
Host: server.example.com
Authorization: GNAP B8CDFONP21-4TB8N6.BW7ONM
Signature-Input: \
 sig1=("@method" "@target-uri" "content-digest" \
 "authorization"),\
 sig2=("@method" "@target-uri" "content-digest" \
 "authorization" "signature";key="sig1" \
 "signature-input";key="sig1")
Signature: sig1=..., sig2=...
Content-Digest: sha-256=...

{
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-2",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
 }
}

 Failure to present the appropriate proof of either the new key or the previous key for the access token, as defined by the proofing method, MUST result in an invalid_rotation error code from the AS ().
 An attempt to change the proofing method or parameters, including an attempt to rotate the key of a bearer token (which has no key), MUST result in an invalid_rotation error code returned from the AS ().
 If the AS does not allow rotation of the access token's key for any reason, including but not limited to lack of permission for this client instance or lack of capability by the AS, the AS MUST return a key_rotation_not_supported error code ().

 Revoking the Access Token
 If the client instance wishes to revoke the access token proactively, such as when
a user indicates to the client instance that they no longer wish for it to have
access or the client instance application detects that it is being uninstalled,
the client instance can use the token management URI to indicate to the AS that
the AS SHOULD invalidate the access token for all purposes.
 The client instance makes an HTTP DELETE request to the token management
URI, presenting the access token and signing the request with
the appropriate key.

DELETE /token/PRY5NM33O HTTP/1.1
Host: server.example.com
Authorization: GNAP B8CDFONP21-4TB8N6.BW7ONM
Signature-Input: sig1=...
Signature: sig1=...

 If the key presented is associated with the token (or the client instance, in
the case of a bearer token), the AS MUST invalidate the access token, if
possible, and return an HTTP response code 204.

204 No Content

 Though the AS MAY revoke an access token at any time for
any reason, the token management function is specifically for the client instance's use.
If the access token has already expired or has been revoked through other
means, the AS SHOULD honor the revocation request to
the token management URI as valid, since the end result is
 that the token is still not usable.

 Securing Requests from the Client Instance
 In GNAP, the client instance secures its requests to an AS and RS by presenting an access
token, proof of a key that it possesses (aka, a "key proof"), or both an access token and
key proof together.

 When an access token is used with a key proof, this is a bound token request. This type of
 request is used for calls to the RS as well as the AS during grant negotiation.

 When a key proof is used with no access token, this is a non-authorized signed request. This
 type of request is used for calls to the AS to initiate a grant negotiation.

 When an access token is used with no key proof, this is a bearer token request. This type of
 request is used only for calls to the RS and only with access tokens that are
 not bound to any key as described in .

 When neither an access token nor key proof are used, this is an unsecured request. This type
 of request is used optionally for calls to the RS as part of an RS-first discovery
 process as described in .

 Key Formats
 Several different places in GNAP require the presentation of key material
by value or by reference. Key material sent by value is sent using a JSON object with several fields described in this section.
 All keys are associated with a specific key proofing method.
The proofing method associated with the key
is indicated using the proof field of the key object.

 proof (string or object):

 The form of proof that the client instance will use when
 presenting the key. The valid values of this field and
 the processing requirements for each are detailed in
 . REQUIRED.

 A key presented by value MUST be a public key and MUST be presented in only one
supported format, as discussed in . Note that
while most formats present the full value of the public key, some
formats present a value cryptographically derived from the public key. See
additional discussion of the presentation of public keys in .

 jwk (object):

 The public key and its properties represented as a JSON Web Key (JWK) .
 A JWK MUST contain the alg (Algorithm) and kid (Key ID) parameters. The alg
 parameter MUST NOT be "none". The x5c (X.509 Certificate Chain) parameter MAY
 be used to provide the X.509 representation of the provided public key.
 OPTIONAL.

 cert (string):

 The Privacy-Enhanced Mail (PEM) serialized value of the certificate used to
 sign the request, with optional internal whitespace per . The
 PEM header and footer are optionally removed.
 OPTIONAL.

 cert#S256 (string):

 The certificate thumbprint calculated as
 per MTLS for OAuth in base64url
 encoding. Note that this format does not include
 the full public key.
 OPTIONAL.

 Additional key formats can be defined in the "GNAP Key Formats" registry ().
 The following non-normative example shows a single key presented in two different formats. The example key is intended to be used with the HTTP message signatures proofing mechanism (), as indicated by the httpsig value of the proof field.
 As a JWK:

"key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
}

 As a certificate in PEM format:

"key": {
 "proof": "httpsig",
 "cert": "MIIEHDCCAwSgAwIBAgIBATANBgkqhkiG9w0BAQsFA..."
}

 When the key is presented in GNAP, proof of this key material MUST be used to bind the request, the nature of which varies with
the location in the protocol where the key is used. For a key used as part of a client instance's initial request
in , the key value represents the client instance's public key, and
proof of that key MUST be presented in that request. For a key used as part of an
access token response in , the proof of that key MUST
be used when the client instance later presents the access token to the RS.

 Key References
 Keys in GNAP can also be passed by reference such that the party receiving
the reference will be able to determine the appropriate keying material for
use in that part of the protocol. A key reference is a single opaque string.

 "key": "S-P4XJQ_RYJCRTSU1.63N3E"

 Keys referenced in this manner MAY be shared symmetric keys. See the additional considerations for symmetric keys in .
The key reference MUST NOT contain any unencrypted private or shared symmetric key information.
 Keys referenced in this manner MUST be bound to a single proofing mechanism.
 The means of dereferencing this reference to a key value and proofing mechanism are out of scope for this specification.
Commonly, key references are created by the AS and do not necessarily need
to be understood by the client. These types of key references are an
internal reference to the AS, such as an identifier of a record in a database.
In other applications, it can be useful to use key references that are resolvable
by both clients and the AS, which could be accomplished by a client publishing
a public key at a URI, for example. For interoperability, this method could later be described
as an extension, but doing so is out of scope for this specification.

 Key Protection
 The security of GNAP relies on the cryptographic security of the keys themselves.
When symmetric keys are used in GNAP, a key management system or secure key derivation mechanism MUST be used to supply the keys. Symmetric keys MUST NOT be a human-memorable password or a value derived from one. Symmetric keys MUST NOT be passed by value from the client instance to the AS.
 Additional security considerations apply when rotating keys (see).

 Presenting Access Tokens
 Access tokens are issued to client instances in GNAP to allow the client instance to make
an authorized call to an API.
The method the client instance uses to send an access token depends on whether
the token is bound to a key and, if so, which proofing method is associated
with the key. This information is conveyed by the
 key parameter and the bearer flag in the access token response structure ().
 If the flags field does not contain the bearer flag and the key is absent, the access token
 MUST be sent using the same key and proofing mechanism that the client instance used
in its initial request (or its most recent rotation).
 If the flags field does not contain the bearer flag and the key value is an object as
described in , the access token MUST be sent using the key and proofing
mechanism defined by the value of the proof field within the key object.
 The access token MUST be sent using the HTTP Authorization request header field and
the "GNAP" authorization scheme along with a key proof as described in
for the key bound to the access token. For example, an access token bound using HTTP message signatures would be sent as follows:

NOTE: '\' line wrapping per RFC 8792

GET /stuff HTTP/1.1
Host: resource.example.com
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=("@method" "@target-uri" "authorization")\
 ;created=1618884473;keyid="gnap-rsa";nonce="NAOEJF12ER2";tag="gnap"
Signature: sig1=:FQ+EjWqc38uLFByKa5y+c4WyYYwCTGUhidWKfr5L1Cha8FiPEw\
 DxG7nWttpBLS/B6VLfkZJogPbclySs9MDIsAIJwHnzlcJjwXWR2lfvm2z3X7EkJHm\
 Zp4SmyKOS34luAiKR1xwf32NYFolHmZf/SbHZJuWvQuS4U33C+BbsXz8MflFH1Dht\
 H/C1E5i244gSbdLCPxzABc/Q0NHVSLo1qaouYIvnxXB8OT3K7mwWjsLh1GC5vFThb\
 3XQ363r6f0OPRa4qWHhubR/d/J/lNOjbBdjq9AJ69oqNJ+A2XT+ZCrVasEJE0OBvD\
 auQoiywhb8BMB7+PEINsPk5/8UvaNxbw==:

 If the flags field contains the bearer flag, the access token is a bearer token
that MUST be sent using the Authorization request header field method defined in .

Authorization: Bearer OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0

 The Form-Encoded Body Parameter and URI Query Parameter methods of MUST NOT
be used for GNAP access tokens.

 Proving Possession of a Key with a Request
 Any keys presented by the client instance to the AS or RS MUST be validated as
part of the request in which they are presented. The type of binding
used is indicated by the proof parameter of the key object in .
Key proofing methods are specified either by a string, which consists of the key proofing
method name on its own, or by a JSON object with the required field method:

 method:

 The name of the key proofing method to be used.
 REQUIRED.

 Individual methods defined as objects MAY define additional parameters as members in this object.
 Values for the method defined by this specification are as follows:

 "httpsig" (string or object):

 HTTP message signing. See .

 "mtls" (string):

 MTLS certificate verification. See .

 "jwsd" (string):

 A detached JWS signature header. See .

 "jws" (string):

 Attached JWS Payload. See .

 Additional proofing methods can be defined in the "GNAP Key Proofing Methods" registry ().
 Proofing methods MAY be defined as both an object and a string. For example, the httpsig method can be specified as an
object with its parameters explicitly declared, such as:

{
 "proof": {
 "method": "httpsig",
 "alg": "ecdsa-p384-sha384",
 "content-digest-alg": "sha-256"
 }
}

 The httpsig method also defines default behavior when it is passed as a string form,
using the signature algorithm specified by the associated key
material and the content digest is calculated using sha-256. This configuration can be selected
using the following shortened form:

{
 "proof": "httpsig"
}

 All key binding methods used by this specification MUST cover all relevant portions
of the request, including anything that would change the nature of the request, to allow
for secure validation of the request. Relevant aspects include
the URI being called, the HTTP method being used, any relevant HTTP headers and
values, and the HTTP message content itself. The verifier of the signed message
 MUST validate all components of the signed message to ensure that nothing
has been tampered with or substituted in a way that would change the nature of
the request. Definitions of key binding methods MUST enumerate how these
requirements are fulfilled.
 When a key proofing mechanism is bound to an access token, the key being presented MUST
be the key associated with the access token, and the access token MUST be covered
by the signature method of the proofing mechanism.
 The key binding methods in this section MAY be used by other
components making calls as part of GNAP, such as the extensions allowing the
RS to make calls to the AS defined in . To facilitate this extended use,
"signer" and "verifier" are used as generic terms in the subsections below.
In the core functions of GNAP specified in this document, the "signer" is the
client instance, and the "verifier" is the AS (for grant requests) or RS (for
resource requests), as appropriate.
 When used for delegation in GNAP, these key binding mechanisms allow
the AS to ensure that the keys presented by the client instance in the initial request are in
control of the party calling any follow-up or continuation requests. To facilitate
this requirement, the continuation response () includes
an access token bound to the client instance's key (), and that key (or its most recent rotation)
 MUST be proved in all continuation requests
(). Token management requests () are similarly bound
to either the access token's own key or, in the case of bearer tokens, the client instance's key.
 In the following subsections, unless otherwise noted, the RS256 JSON Object Signing and Encryption (JOSE) signature algorithm (defined in) is applied
using the following RSA key (presented here in JWK format):

NOTE: '\' line wrapping per RFC 8792

{
 "kid": "gnap-rsa",
 "p": "xS4-YbQ0SgrsmcA7xDzZKuVNxJe3pCYwdAe6efSy4hdDgF9-vhC5gjaRk\
 i1wWuERSMW4Tv44l5HNrL-Bbj_nCJxr_HAOaesDiPn2PnywwEfg3Nv95Nn-\
 eilhqXRaW-tJKEMjDHu_fmJBeemHNZI412gBnXdGzDVo22dvYoxd6GM",
 "kty": "RSA",
 "q": "rVdcT_uy-CD0GKVLGpEGRR7k4JO6Tktc8MEHkC6NIFXihk_6vAIOCzCD6\
 LMovMinOYttpRndKoGTNdJfWlDFDScAs8C5n2y1STCQPRximBY-bw39-aZq\
 JXMxOLyPjzuVgiTOCBIvLD6-8-mvFjXZk_eefD0at6mQ5qV3U1jZt88",
 "d": "FHlhdTF0ozTliDxMBffT6aJVKZKmbbFJOVNten9c3lXKB3ux3NAb_D2dB\
 7inp9EV23oWrDspFtvCvD9dZrXgRKMHofkEpo_SSvBZfgtH-OTkbY_TqtPF\
 FLPKAw0JX5cFPnn4Q2xE4n-dQ7tpRCKl59vZLHBrHShr90zqzFp0AKXU5fj\
 b1gC9LPwsFA2Fd7KXmI1drQQEVq9R-o18Pnn4BGQNQNjO_VkcJTiBmEIVT_\
 KJRPdpVJAmbgnYWafL_hAfeb_dK8p85yurEVF8nCK5oO3EPrqB7IL4UqaEn\
 5Sl3u0j8x5or-xrrAoNz-gdOv7ONfZY6NFoa-3f8q9wBAHUuQ",
 "e": "AQAB",
 "qi": "ogpNEkDKg22Rj9cDV_-PJBZaXMk66Fp557RT1tafIuqJRHEufSOYnsto\
 bWPJ0gHxv1gVJw3gm-zYvV-wTMNgr2wVsBSezSJjPSjxWZtmT2z68W1DuvK\
 kZy15vz7Jd85hmDlriGcXNCoFEUsGLWkpHH9RwPIzguUHWmTt8y0oXyI",
 "dp": "dvCKGI2G7RLh3WyjoJ_Dr6hZ3LhXweB3YcY3qdD9BnxZ71mrLiMQg4c_\
 EBnwqCETN_5sStn2cRc2JXnvLP3G8t7IFKHTT_i_TSTacJ7uT04MSa053Y3\
 RfwbvLjRNPR0UKAE3ZxROUoIaVNuU_6-QMf8-2ilUv2GIOrCN87gP_Vk",
 "alg": "RS256",
 "dq": "iMZmELaKgT9_W_MRT-UfDWtTLeFjIGRW8aFeVmZk9R7Pnyt8rNzyN-IQ\
 M40ql8u8J6vc2GmQGfokLlPQ6XLSCY68_xkTXrhoU1f-eDntkhP7L6XawSK\
 Onv5F2H7wyBQ75HUmHTg8AK2B_vRlMyFKjXbVlzKf4kvqChSGEz4IjQ",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8BfYdHsFzAt\
 YKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZGYX\
 jHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZx\
 e0jRETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0\
 bunS0K3bA_3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kO\
 zywzwPTuq-cVQDyEN7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
}

 Key proofing methods SHOULD define a mechanism to allow the rotation of keys discussed
in . Key rotation mechanisms MUST define a way for presenting
proof of two keys simultaneously with the following attributes:

 The value of or reference to the new key material MUST be signed by the existing key.
 Generally speaking, this amounts to using the existing key to sign the content of the
 message that contains the new key.

 The signature of the old key MUST be signed by the new key.
 Generally speaking, this means including the signature value of the old key under the
 coverage of the new key.

 HTTP Message Signatures
 This method is indicated by the method value httpsig and can be declared in either object
form or string form.
 When the proofing method is specified in object form, the following parameters are defined:

 alg:

 The HTTP signature algorithm, from the "HTTP Signature Algorithms" registry. REQUIRED.

 content-digest-alg:

 The algorithm used for the Content-Digest field, used to protect the content when present in the message. REQUIRED.

 This example uses the Elliptic Curve Digital Signature Algorithm (ECDSA) signing algorithm over the P384 curve and the SHA-512 hashing
algorithm for the content digest.

{
 "proof": {
 "method": "httpsig",
 "alg": "ecdsa-p384-sha384",
 "content-digest-alg": "sha-512"
 }
}

 When the proofing method is specified in string form, the signing algorithm MUST be derived from the
key material (such as using the JWS algorithm in a JWK formatted key), and the content digest
algorithm MUST be sha-256.

{
 "proof": "httpsig"
}

 When using this method, the signer creates an HTTP message signature as described in
 . The covered components of the signature MUST include the
following:

 "@method":

 The method used in the HTTP request.

 "@target-uri":

 The full request URI of the HTTP request.

 When the message contains request content, the covered components MUST also include the following:

 "content-digest":

 The Content-Digest header as defined in . When the
 request message has content, the signer MUST calculate this field value and include
 the field in the request. The verifier
 MUST validate this field value. REQUIRED when the message request contains message content.

 When the request is bound to an access token, the covered components
 MUST also include the following:

 "authorization":

 The Authorization header used to present the access token as discussed in
 .

 Other message components MAY also be included.
 The signer MUST include the tag signature parameter with the value gnap, and the verifier MUST verify that the parameter exists with this value. The signer MUST include the created signature parameter with a timestamp of when the signature was created, and the verifier MUST ensure that the creation timestamp is sufficiently close to the current time given expected network delay and clock skew. The signer SHOULD include the nonce parameter with a unique and unguessable value. When included, the verifier MUST determine that the nonce value is unique within a reasonably short time period such as several minutes.
 If the signer's key presented is a JWK, the keyid parameter of the signature MUST be set
to the kid value of the JWK, and the signing algorithm used MUST be the JWS
algorithm denoted by the key's alg field of the JWK.
 The explicit alg signature parameter MUST NOT be included in the signature, since the algorithm
	 will be derived from either the key material or the proof value.
 In the following non-normative example, the message content is a JSON object:

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "PS512",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
}

 This content is hashed for the Content-Digest header using sha-256 into the following encoded value:

sha-256=:q2XBmzRDCREcS2nWo/6LYwYyjrlN1bRfv+HKLbeGAGg=:

 The HTTP message signature input string is calculated to be the following:

NOTE: '\' line wrapping per RFC 8792

"@method": POST
"@target-uri": https://server.example.com/gnap
"content-digest": \
 sha-256=:q2XBmzRDCREcS2nWo/6LYwYyjrlN1bRfv+HKLbeGAGg=:
"content-length": 988
"content-type": application/json
"@signature-params": ("@method" "@target-uri" "content-digest" \
 "content-length" "content-type");created=1618884473\
 ;keyid="gnap-rsa";nonce="NAOEJF12ER2";tag="gnap"

 This leads to the following full HTTP message request:

NOTE: '\' line wrapping per RFC 8792

POST /gnap HTTP/1.1
Host: server.example.com
Content-Type: application/json
Content-Length: 988
Content-Digest: sha-256=:q2XBmzRDCREcS2nWo/6LYwYyjrlN1bRfv+HKLbeGAG\
 g=:
Signature-Input: sig1=("@method" "@target-uri" "content-digest" \
 "content-length" "content-type");created=1618884473\
 ;keyid="gnap-rsa";nonce="NAOEJF12ER2";tag="gnap"
Signature: sig1=:c2uwTa6ok3iHZsaRKl1ediKlgd5cCAYztbym68XgX8gSOgK0Bt\
 +zLJ19oGjSAHDjJxX2gXP2iR6lh9bLMTfPzbFVn4Eh+5UlceP+0Z5mES7v0R1+eHe\
 OqBl0YlYKaSQ11YT7n+cwPnCSdv/6+62m5zwXEEftnBeA1ECorfTuPtau/yrTYEvD\
 9A/JqR2h9VzAE17kSlSSsDHYA6ohsFqcRJavX29duPZDfYgkZa76u7hJ23yVxoUpu\
 2J+7VUdedN/72N3u3/z2dC8vQXbzCPTOiLru12lb6vnBZoDbUGsRR/zHPauxhj9T+\
 218o5+tgwYXw17othJSxIIOZ9PkIgz4g==:

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "PS512",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
}

 The verifier MUST ensure that the signature covers all required message components.
If the HTTP message includes content, the verifier MUST
calculate and verify the value of the Content-Digest header. The verifier MUST validate
the signature against the expected key of the signer.
 A received message MAY include multiple signatures, each with its own label. The verifier MUST examine all included signatures until it finds (at least) one that is acceptable according to its policy and meets the requirements in this section.

 Key Rotation Using HTTP Message Signatures
 When rotating a key using HTTP message signatures, the message, which includes the new public key
value or reference, is first signed with the old key following all of the requirements in .
The message is then signed again with the new key by following all of the requirements in again,
with the following additional requirements:

 The covered components MUST include the Signature and Signature-Input values from the signature generated with the old key.

 The tag value MUST be gnap-rotate.

 For example, the following request to the token management endpoint for rotating a token value
contains the new key in the request. The message is first signed using the old key,
and the resulting signature is placed in "old-key":

NOTE: '\' line wrapping per RFC 8792

POST /token/PRY5NM33 HTTP/1.1
Host: server.example.com
Authorization: GNAP 4398.34-12-asvDa.a
Content-Digest: sha-512=:Fb/A5vnawhuuJ5xk2RjGrbbxr6cvinZqd4+JPY85u/\
 JNyTlmRmCOtyVhZ1Oz/cSS4tsYen6fzpCwizy6UQxNBQ==:
Signature-Input: old-key=("@method" "@target-uri" "content-digest" \
 "authorization");created=1618884475;keyid="test-key-ecc-p256"\
 ;tag="gnap"
Signature: old-key=:vN4IKYsJl2RLFe+tYEm4dHM4R4BToqx5D2FfH4ge5WOkgxo\
 dI2QRrjB8rysvoSEGvAfiVJOWsGcPD1lU639Amw==:

{
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-2",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
 }
}

 The signer then creates a new signature using the new key, adding the signature
input and value to the signature base.

NOTE: '\' line wrapping per RFC 8792

"@method": POST
"@target-uri": https://server.example.com/token/PRY5NM33
"content-digest": sha-512=:Fb/A5vnawhuuJ5xk2RjGrbbxr6cvinZqd4+JPY85\
 u/JNyTlmRmCOtyVhZ1Oz/cSS4tsYen6fzpCwizy6UQxNBQ==:
"authorization": GNAP 4398.34-12-asvDa.a
"signature";key="old-key": :YdDJjDn2Sq8FR82e5IcOLWmmf6wILoswlnRcz+n\
 M+e8xjFDpWS2YmiMYDqUdri2UiJsZx63T1z7As9Kl6HTGkQ==:
"signature-input";key="old-key": ("@method" "@target-uri" \
 "content-digest" "authorization");created=1618884475\
 ;keyid="test-key-ecc-p256";tag="gnap"
"@signature-params": ("@method" "@target-uri" "content-digest" \
 "authorization" "signature";key="old-key" "signature-input"\
 ;key="old-key");created=1618884480;keyid="xyz-2"
 ;tag="gnap-rotate"

 This signature is then added to the message:

NOTE: '\' line wrapping per RFC 8792

POST /token/PRY5NM33 HTTP/1.1
Host: server.example.com
Authorization: GNAP 4398.34-12-asvDa.a
Content-Digest: sha-512=:Fb/A5vnawhuuJ5xk2RjGrbbxr6cvinZqd4+JPY85u/\
 JNyTlmRmCOtyVhZ1Oz/cSS4tsYen6fzpCwizy6UQxNBQ==:
Signature-Input: old-key=("@method" "@target-uri" "content-digest" \
 "authorization");created=1618884475;keyid="test-key-ecc-p256"\
 ;tag="gnap", \
 new-key=("@method" "@target-uri" "content-digest" \
 "authorization" "signature";key="old-key" "signature-input"\
 ;key="old-key");created=1618884480;keyid="xyz-2"
 ;tag="gnap-rotate"
Signature: old-key=:vN4IKYsJl2RLFe+tYEm4dHM4R4BToqx5D2FfH4ge5WOkgxo\
 dI2QRrjB8rysvoSEGvAfiVJOWsGcPD1lU639Amw==:, \
 new-key=:VWUExXQ0geWeTUKhCfDT7WJyT++OHSVbfPA1ukW0o7mmstdbvIz9iOuH\
 DRFzRBm0MQPFVMpLDFXQdE3vi2SL3ZjzcX2qLwzAtyRB9+RsV2caAA80A5ZGMoo\
 gUsKPk4FFDN7KRUZ0vT9Mo9ycx9Dq/996TOWtAmq5z0YUYEwwn+T6+NcW8rFtms\
 s1ZfXG0EoAfV6ve25p+x40Y1rvDHsfkakTRB4J8jWVDybSe39tjIKQBo3uicDVw\
 twewBMNidIa+66iF3pWj8w9RSb0cncEgvbkHgASqaZeXmxxG4gM8p1HH9v/OqQT\
 Oggm5gTWmCQs4oxEmWsfTOxefunfh3X+Qw==:

{
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-2",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
 }
}

 The verifier MUST validate both signatures before processing the request for key rotation.

 Mutual TLS
 This method is indicated by the method value mtls in string form.

{
 "proof": "mtls"
}

 The signer presents its TLS client certificate during TLS negotiation with the verifier.
 In the following non-normative example, the certificate is communicated to the application
through the Client-Cert header field from a TLS reverse proxy as per , leading
to the following full HTTP request message:

POST /gnap HTTP/1.1
Host: server.example.com
Content-Type: application/jose
Content-Length: 1567
Client-Cert: \
 :MIIC6jCCAdKgAwIBAgIGAXjw74xPMA0GCSqGSIb3DQEBCwUAMDYxNDAyBgNVBAMM\
 K05JWU15QmpzRGp5QkM5UDUzN0Q2SVR6a3BEOE50UmppOXlhcEV6QzY2bVEwHhcN\
 MjEwNDIwMjAxODU0WhcNMjIwMjE0MjAxODU0WjA2MTQwMgYDVQQDDCtOSVlNeUJq\
 c0RqeUJDOVA1MzdENklUemtwRDhOdFJqaTl5YXBFekM2Nm1RMIIBIjANBgkqhkiG\
 9w0BAQEFAAOCAQ8AMIIBCgKCAQEAhYOJ+XOKISdMMShn/G4W9m20mT0VWtQBsmBB\
 kI2cmRt4Ai8BfYdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8I\
 kZ8NMwSrcUIBZGYXjHpwjzvfGvXH/5KJlnR3/uRUp4Z4Ujk2bCaKegDn11V2vxE4\
 1hqaPUnhRZxe0jRETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo+\
 uv4BC0bunS0K3bA/3UgVp7zBlQFoFnLTO2uWp/muLEWGl67gBq9MO3brKXfGhi3k\
 OzywzwPTuq+cVQDyEN7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQIDAQABMA0GCSqG\
 SIb3DQEBCwUAA4IBAQBnYFK0eYHy+hVf2D58usj39lhL5znb/q9G35GBd/XsWfCE\
 wHuLOSZSUmG71bZtrOcx0ptle9bp2kKl4HlSTTfbtpuG5onSa3swRNhtKtUy5NH9\
 W/FLViKWfoPS3kwoEpC1XqKY6l7evoTCtS+kTQRSrCe4vbNprCAZRxz6z1nEeCgu\
 NMk38yTRvx8ihZpVOuU+Ih+dOtVe/ex5IAPYxlQsvtfhsUZqc7IyCcy72WHnRHlU\
 fn3pJm0S5270+Yls3Iv6h3oBAP19i906UjiUTNH3g0xMW+V4uLxgyckt4wD4Mlyv\
 jnaQ7Z3sR6EsXMocAbXHIAJhwKdtU/fLgdwL5vtx:

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "mtls",
 "cert": "MIIC6jCCAdKgAwIBAgIGAXjw74xPMA0GCSqGSIb3DQEBCwUAMD\
 YxNDAyBgNVBAMMK05JWU15QmpzRGp5QkM5UDUzN0Q2SVR6a3BEOE50UmppOXlhcEV\
 6QzY2bVEwHhcNMjEwNDIwMjAxODU0WhcNMjIwMjE0MjAxODU0WjA2MTQwMgYDVQQD\
 DCtOSVlNeUJqc0RqeUJDOVA1MzdENklUemtwRDhOdFJqaTl5YXBFekM2Nm1RMIIBI\
 jANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAhYOJ+XOKISdMMShn/G4W9m20mT\
 0VWtQBsmBBkI2cmRt4Ai8BfYdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8\
 KowlyVy8IkZ8NMwSrcUIBZGYXjHpwjzvfGvXH/5KJlnR3/uRUp4Z4Ujk2bCaKegDn\
 11V2vxE41hqaPUnhRZxe0jRETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDad\
 z8BkPo+uv4BC0bunS0K3bA/3UgVp7zBlQFoFnLTO2uWp/muLEWGl67gBq9MO3brKX\
 fGhi3kOzywzwPTuq+cVQDyEN7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQIDAQABMA0\
 GCSqGSIb3DQEBCwUAA4IBAQBnYFK0eYHy+hVf2D58usj39lhL5znb/q9G35GBd/Xs\
 WfCEwHuLOSZSUmG71bZtrOcx0ptle9bp2kKl4HlSTTfbtpuG5onSa3swRNhtKtUy5\
 NH9W/FLViKWfoPS3kwoEpC1XqKY6l7evoTCtS+kTQRSrCe4vbNprCAZRxz6z1nEeC\
 guNMk38yTRvx8ihZpVOuU+Ih+dOtVe/ex5IAPYxlQsvtfhsUZqc7IyCcy72WHnRHl\
 Ufn3pJm0S5270+Yls3Iv6h3oBAP19i906UjiUTNH3g0xMW+V4uLxgyckt4wD4Mlyv\
 jnaQ7Z3sR6EsXMocAbXHIAJhwKdtU/fLgdwL5vtx"
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 },
 "subject": {
 "formats": ["iss_sub", "opaque"]
 }
}

 The verifier compares the TLS client certificate presented during
MTLS negotiation to the expected key of the signer. Since the
TLS connection covers the entire message, there are no additional
requirements to check.
 Note that in many instances, the verifier will not do a full
 certificate chain validation of the presented TLS client
 certificate, as the means of trust for this certificate could be in
 something other than a PKI system, such as a static registration or
 trust-on-first-use. See Sections and for some additional considerations for this key
 proofing method.

 Key Rotation Using MTLS
 Since it is not possible to present two client authenticated certificates to a MTLS
connection simultaneously, dynamic key rotation for this proofing method is not defined.
Instead, key rotation for MTLS-based client instances is expected to be managed through
deployment practices, as discussed in .

 Detached JWS
 This method is indicated by the method value jwsd in string form.

{
 "proof": "jwsd"
}

 The signer creates a JSON Web Signature (JWS) object as follows.
 To protect the request, the JOSE header of the signature contains the following
claims:

 kid (string):

 The key identifier. REQUIRED if the key is presented in JWK format. This
 MUST be the value of the kid field of the key.

 alg (string):

 The algorithm used to sign the request. The algorithm MUST be appropriate to the key presented.
If the key is presented as a JWK, this MUST be equal to the alg parameter of the key. The algorithm MUST NOT be none.
 REQUIRED.

 typ (string):

 The type header, value "gnap-binding-jwsd". REQUIRED.

 htm (string):

 The HTTP method used to make this request, as a case-sensitive ASCII string. Note that most public HTTP methods are in uppercase ASCII by convention. REQUIRED.

 uri (string):

 The HTTP URI used for this request. This value MUST be an absolute URI, including all path and query components and no fragment components. REQUIRED.

 created (integer):

 A timestamp of when the signature was created, in integer seconds since UNIX Epoch. REQUIRED.

 When the request is bound to an access token, the JOSE header MUST also include the following:

 ath (string):

 The hash of the access token. The value MUST be the
result of base64url encoding (with no padding) the SHA-256 digest
of the ASCII encoding of the associated access token's value. REQUIRED.

 If the HTTP request has content (such as an HTTP POST or PUT method),
the payload of the JWS object is the base64url encoding (without padding)
of the SHA-256 digest of the bytes of the content.
If the request being made does not have content (such as
an HTTP GET, OPTIONS, or DELETE method), the JWS signature is
calculated over an empty payload.
 The signer presents the signed object in compact form
 in the Detached-JWS header field.
 In the following non-normative example, the JOSE header contains the following parameters:

{
 "alg": "RS256",
 "kid": "gnap-rsa",
 "uri": "https://server.example.com/gnap",
 "htm": "POST",
 "typ": "gnap-binding-jwsd",
 "created": 1618884475
}

 The request content is the following JSON object:

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "jwsd",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "RS256",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
}

 This is hashed to the following base64-encoded value:

PGiVuOZUcN1tRtUS6tx2b4cBgw9mPgXG3IPB3wY7ctc

 This leads to the following full HTTP request message:

NOTE: '\' line wrapping per RFC 8792

POST /gnap HTTP/1.1
Host: server.example.com
Content-Type: application/json
Content-Length: 983
Detached-JWS: eyJhbGciOiJSUzI1NiIsImNyZWF0ZWQiOjE2MTg4ODQ0NzUsImh0b\
 SI6IlBPU1QiLCJraWQiOiJnbmFwLXJzYSIsInR5cCI6ImduYXAtYmluZGluZytqd3\
 NkIiwidXJpIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20vZ25hcCJ9.PGiVuO\
 ZUcN1tRtUS6tx2b4cBgw9mPgXG3IPB3wY7ctc.fUq-SV-A1iFN2MwCRW_yolVtT2_\
 TZA2h5YeXUoi5F2Q2iToC0Tc4drYFOSHIX68knd68RUA7yHqCVP-ZQEd6aL32H69e\
 9zuMiw6O_s4TBKB3vDOvwrhYtDH6fX2hP70cQoO-47OwbqP-ifkrvI3hVgMX9TfjV\
 eKNwnhoNnw3vbu7SNKeqJEbbwZfpESaGepS52xNBlDNMYBQQXxM9OqKJaXffzLFEl\
 -Xe0UnfolVtBraz3aPrPy1C6a4uT7wLda3PaTOVtgysxzii3oJWpuz0WP5kRujzDF\
 wX_EOzW0jsjCSkL-PXaKSpZgEjNjKDMg9irSxUISt1C1T6q3SzRgfuQ

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "jwsd",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "RS256",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
}

 When the verifier receives the Detached-JWS header, it MUST parse and
validate the JWS object. The signature MUST be validated against the
expected key of the signer. If the HTTP message request contains
content, the verifier MUST calculate the hash of the content just as
the signer does, with no normalization or transformation of the request.
All required fields MUST be present,
and their values MUST be valid. All fields MUST match the corresponding portions of the HTTP
message. For example, the htm field of the JWS header has to be the same as the HTTP verb
	 used in the request.
 Note that this proofing method depends on a specific cryptographic
 algorithm, SHA-256, in two ways: 1) the ath hash algorithm
 is hardcoded and 2) the payload of the detached/attached signature
 is computed using a hardcoded hash.
	 A future version of this
 document may address crypto-agility for both these uses by replacing
 ath with a new header that upgrades the algorithm and possibly
 defining a new JWS header that indicates the HTTP content's hash
 method.

 Key Rotation Using Detached JWS
 When rotating a key using detached JWS, the message, which includes the new public key value or
reference, is first signed with the old key as described above using a JWS object with typ header value
"gnap-binding-rotation-jwsd". The value of the JWS object is then taken as the payload of a new JWS
object, to be signed by the new key using the parameters above.
 The value of the new JWS object is sent in the Detached-JWS header.

 Attached JWS
 This method is indicated by the method value jws in string form.

{
 "proof": "jws"
}

 The signer creates a JWS object as follows.
 To protect the request, the JWS header contains the following claims:

 kid (string):

 The key identifier. REQUIRED if the key is presented in JWK format. This
 MUST be the value of the kid field of the key.

 alg (string):

 The algorithm used to sign the request. MUST be appropriate to the key presented.
If the key is presented as a JWK, this MUST be equal to the alg parameter of the key. MUST NOT be none.
 REQUIRED.

 typ (string):

 The type header, value "gnap-binding-jws". REQUIRED.

 htm (string):

 The HTTP method used to make this request, as a case-sensitive ASCII string. (Note that most public HTTP methods are in uppercase.) REQUIRED.

 uri (string):

 The HTTP URI used for this request, including all path and query components and no fragment components. REQUIRED.

 created (integer):

 A timestamp of when the signature was created, in integer seconds since UNIX Epoch. REQUIRED.

 When the request is bound to an access token, the JOSE header MUST also include the following:

 ath (string):

 The hash of the access token. The value MUST be the
result of base64url encoding (with no padding) the SHA-256 digest
of the ASCII encoding of the associated access token's value. REQUIRED.

 If the HTTP request has content (such as an HTTP POST or PUT method),
the payload of the JWS object is the JSON serialized content of the request, and
the object is signed according to JWS and serialized into compact form .
The signer presents the JWS as the content of the request along with a
content type of application/jose. The verifier
 MUST extract the payload of the JWS and treat it as the request content
for further processing.
 If the request being made does not have content (such as
an HTTP GET, OPTIONS, or DELETE method), the JWS signature is
calculated over an empty payload and passed in the Detached-JWS
header as described in .
 In the following non-normative example, the JOSE header contains the following parameters:

{
 "alg": "RS256",
 "kid": "gnap-rsa",
 "uri": "https://server.example.com/gnap",
 "htm": "POST",
 "typ": "gnap-binding-jws",
 "created": 1618884475
}

 The request content, used as the JWS Payload, is the following JSON object:

NOTE: '\' line wrapping per RFC 8792

{
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "jws",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "RS256",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 },
 "subject": {
 "formats": ["iss_sub", "opaque"]
 }
}

 This leads to the following full HTTP request message:

NOTE: '\' line wrapping per RFC 8792

POST /gnap HTTP/1.1
Host: server.example.com
Content-Type: application/jose
Content-Length: 1047

eyJhbGciOiJSUzI1NiIsImNyZWF0ZWQiOjE2MTg4ODQ0NzUsImh0bSI6IlBPU1QiLCJ\
raWQiOiJnbmFwLXJzYSIsInR5cCI6ImduYXAtYmluZGluZytqd3NkIiwidXJpIjoiaH\
R0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20vZ25hcCJ9.CnsKICAgICJhY2Nlc3NfdG9r\
ZW4iOiB7CiAgICAgICAgImFjY2VzcyI6IFsKICAgICAgICAgICAgImRvbHBoaW4tbWV\
0YWRhdGEiCiAgICAgICAgXQogICAgfSwKICAgICJpbnRlcmFjdCI6IHsKICAgICAgIC\
Aic3RhcnQiOiBbInJlZGlyZWN0Il0sCiAgICAgICAgImZpbmlzaCI6IHsKICAgICAgI\
CAgICAgIm1ldGhvZCI6ICJyZWRpcmVjdCIsCiAgICAgICAgICAgICJ1cmkiOiAiaHR0\
cHM6Ly9jbGllbnQuZm9vL2NhbGxiYWNrIiwKICAgICAgICAgICAgIm5vbmNlIjogIlZ\
KTE82QTRDQVlMQlhIVFIwS1JPIgogICAgICAgIH0KICAgIH0sCiAgICAiY2xpZW50Ij\
ogewogICAgICAicHJvb2YiOiAiandzIiwKICAgICAgImtleSI6IHsKICAgICAgICAia\
ndrIjogewogICAgICAgICAgICAia2lkIjogImduYXAtcnNhIiwKICAgICAgICAgICAg\
Imt0eSI6ICJSU0EiLAogICAgICAgICAgICAiZSI6ICJBUUFCIiwKICAgICAgICAgICA\
gImFsZyI6ICJSUzI1NiIsCiAgICAgICAgICAgICJuIjogImhZT0otWE9LSVNkTU1TaG\
5fRzRXOW0yMG1UMFZXdFFCc21CQmtJMmNtUnQ0QWk4QmZZZEhzRnpBdFlLT2pwQlIxU\
nBLcEptVkt4SUdOeTBnNlozYWQyWFlzaDhLb3dseVZ5OElrWjhOTXdTcmNVSUJaR1lY\
akhwd2p6dmZHdlhIXzVLSmxuUjNfdVJVcDRaNFVqazJiQ2FLZWdEbjExVjJ2eEU0MWh\
xYVBVbmhSWnhlMGpSRVRkZHpzRTNtdTFTSzhkVENST2p3VWwxNG1VTm84aVRyVG00bj\
BxRGFkejhCa1BvLXV2NEJDMGJ1blMwSzNiQV8zVWdWcDd6QmxRRm9GbkxUTzJ1V3Bfb\
XVMRVdHbDY3Z0JxOU1PM2JyS1hmR2hpM2tPenl3endQVHVxLWNWUUR5RU43YUwwU3hD\
YjNIYzRJZHFEYU1nOHFIVXlPYnBQaXREUSIKICAgICAgICB9CiAgICAgIH0KICAgICA\
gImRpc3BsYXkiOiB7CiAgICAgICAgIm5hbWUiOiAiTXkgQ2xpZW50IERpc3BsYXkgTm\
FtZSIsCiAgICAgICAgInVyaSI6ICJodHRwczovL2NsaWVudC5mb28vIgogICAgICB9L\
AogICAgfSwKICAgICJzdWJqZWN0IjogewogICAgICAgICJmb3JtYXRzIjogWyJpc3Nf\
c3ViIiwgIm9wYXF1ZSJdCiAgICB9Cn0K.MwNoVMQp5hVxI0mCs9LlOUdFtkDXaA1_eT\
vOXq7DOGrtDKH7q4vP2xUq3fH2jRAZqnobo0WdPP3eM3NH5QUjW8pa6_QpwdIWkK7r-\
u_52puE0lPBp7J4U2w4l9gIbg8iknsmWmXeY5F6wiGT8ptfuEYGgmloAJd9LIeNvD3U\
LW2h2dz1Pn2eDnbyvgB0Ugae0BoZB4f69fKWj8Z9wvTIjk1LZJN1PcL7_zT8Lrlic9a\
PyzT7Q9ovkd1s-4whE7TrnGUzFc5mgWUn_gsOpsP5mIIljoEEv-FqOW2RyNYulOZl0Q\
8EnnDHV_vPzrHlUarbGg4YffgtwkQhdK72-JOxYQ

 When the verifier receives an attached JWS request, it MUST parse and
validate the JWS object. The signature MUST be validated against the
expected key of the signer. All required fields MUST be present,
and their values MUST be valid. All fields MUST match the corresponding portions of the HTTP
message. For example, the htm field of the JWS header has to be the same as the HTTP verb
used in the request.
 Note that this proofing method depends on a specific cryptographic algorithm, SHA-256, in two ways:
the ath hash algorithm is hardcoded, and computing the payload of the detached/attached signature
also uses a hardcoded hash. A future version of this document may address crypto-agility for both
these uses by replacing ath with a new header that upgrades the algorithm and possibly defining a
new header that indicates the HTTP content's hash method.

 Key Rotation Using Attached JWS
 When rotating a key using attached JWS, the message, which includes the new public key value or reference, is first signed with the old key using a JWS object with typ header value "gnap-binding-rotation-jws". The value of the JWS object is then taken as the payload of a new JWS object, to be signed by the new key.

 Resource Access Rights
 GNAP provides a rich structure for describing the protected resources
hosted by RSs and accessed by client software. This structure is used when
the client instance requests an access token () and when
an access token is returned (). GNAP's structure is
designed to be analogous to the OAuth 2.0 Rich Authorization Requests
data structure defined in .
 The root of this structure is a JSON array. The elements of the JSON
array represent rights of access that are associated with the
access token. Individual rights of access can be defined by the RS as
either an object or a string. The resulting access is the union of all elements
within the array.
 The access associated with the access token is described
using objects that each contain multiple
dimensions of access. Each object contains a REQUIRED type
property that determines the type of API that the token is used for and
the structure of the rest of the object. There is no expected
interoperability between different type definitions.

 type (string):

 The type of resource request as a string. This field MAY
 define which other fields are allowed in the request object.
 REQUIRED.

 The value of the type field is under the control of the AS.
This field MUST be compared using an exact byte match of the string
value against known types by the AS. The AS MUST ensure that there
is no collision between different authorization data types that it
supports. The AS MUST NOT do any collation or normalization of data
types during comparison. It is RECOMMENDED that designers of general-purpose
APIs use a URI for this field to avoid collisions between multiple
API types protected by a single AS.
 While it is expected that many APIs will have their own properties,
this specification defines a set of common data fields that are designed to be
usable across different types of APIs. This specification does not require the
use of these common fields by an API definition but, instead, provides them as
reusable generic components for API designers to make use of. The allowable
values of all fields are determined by the API being protected, as defined
by a particular type value.

 actions (array of strings):

 The types of actions the client instance will take at the RS as
 an array of strings (for example, a client instance asking for a
 combination of "read" and "write" access).

 locations (array of strings):

 The location of the RS as an array of
 strings. These strings are typically URIs identifying the
 location of the RS.

 datatypes (array of strings):

 The kinds of data available to the client instance at the RS's API as an
 array of strings (for example, a client instance asking for access to
 raw "image" data and "metadata" at a photograph API).

 identifier (string):

 A string identifier indicating a specific resource at the RS
 (for example, a patient identifier for a medical API or
 a bank account number for a financial API).

 privileges (array of strings):

 The types or levels of privilege being requested at the resource (for example, a client
 instance asking for administrative-level access or access when the RO
 is no longer online).

 The following non-normative example describes three kinds of access (read, write, and delete) to each of
two different locations and two different data types (metadata and images) for a single access token
using the fictitious photo-api type definition.

"access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "delete"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 }
]

 While the exact semantics of interpreting the fields of an access
request object are subject to the definition of the type,
it is expected that the access requested for each object in the array
is the cross-product of all fields of the object. That is to
say, the object represents a request for all actions listed
to be used at all locations listed for all possible datatypes
listed within the object. Assuming the request above was granted,
the client instance could assume that it
would be able to do a read action against the images on the first server
as well as a delete action on the metadata of the second server, or any other
combination of these fields, using the same access token.
 To request a different combination of access,
such as requesting one of the possible actions against one of the possible locations
and a different choice of possible actions against a different one of the possible locations, the
client instance can include multiple separate objects in the resources array.
The total access rights for the resulting access
token are the union of all objects. The following non-normative example uses the same fictitious photo-api
type definition to request a single access token with more specifically
targeted access rights by using two discrete objects within the request.

"access": [
 {
 "type": "photo-api",
 "actions": [
 "read"
],
 "locations": [
 "https://server.example.net/"
],
 "datatypes": [
 "images"
]
 },
 {
 "type": "photo-api",
 "actions": [
 "write",
 "delete"
],
 "locations": [
 "https://resource.local/other"
],
 "datatypes": [
 "metadata"
]
 }
]

 The access requested here is for read access to images on one server
as well as write and delete access for metadata on a different
server (importantly, without requesting write or delete access to images on the
first server).
 It is anticipated that API designers will use a combination
of common fields defined in this specification as well as
fields specific to the API itself. The following non-normative
example shows the use of both common and API-specific fields as
part of two different fictitious API type values. The first
access request includes the actions, locations, and datatypes
fields specified here as well as the API-specific geolocation
field. The second access request includes the actions and
 identifier fields specified here as well as the API-specific
 currency field.

"access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
],
 "geolocation": [
 { lat: -32.364, lng: 153.207 },
 { lat: -35.364, lng: 158.207 }
]
 },
 {
 "type": "financial-transaction",
 "actions": [
 "withdraw"
],
 "identifier": "account-14-32-32-3",
 "currency": "USD"
 }
]

 If this request is approved,
the resulting access token's access rights will be
the union of the requested types of access for each of the two APIs, just as above.

 Requesting Resources by Reference
 Instead of sending an object describing the requested resource (),
access rights MAY be communicated as a string known to
the AS representing the access being requested. Just like access rights communicated
as an object, access rights communicated as reference strings indicate a specific
access at a protected resource. In the following non-normative example,
three distinct resource access rights are being requested.

"access": [
 "read", "dolphin-metadata", "some other thing"
]

 This value is opaque to the client instance and MAY be any
valid JSON string; therefore, it could include spaces, Unicode
characters, and properly escaped string sequences. However, in some
situations, the value is intended to be
seen and understood by the client software's developer. In such cases, the
API designer choosing any such human-readable strings SHOULD take steps
to ensure the string values are not easily confused by a developer,
such as by limiting the strings to easily disambiguated characters.
 This functionality is similar in practice to OAuth 2.0's scope parameter , where a single string
represents the set of access rights requested by the client instance. As such, the reference
string could contain any valid OAuth 2.0 scope value, as in . Note that the reference
string here is not bound to the same character restrictions as OAuth 2.0's scope definition.
 A single access array MAY include both object-type and
string-type resource items. In this non-normative example,
the client instance is requesting access to a photo-api and financial-transaction API type
as well as the reference values of read, dolphin-metadata, and some other thing.

"access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "delete"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read",
 "dolphin-metadata",
 {
 "type": "financial-transaction",
 "actions": [
 "withdraw"
],
 "identifier": "account-14-32-32-3",
 "currency": "USD"
 },
 "some other thing"
]

 The requested access is the union of all elements of the array, including both objects and
reference strings.
 In order to facilitate the use of both object and reference strings to access the same
kind of APIs, the API designer can define a clear mapping between these forms.
One possible approach for choosing reference string values is to use the same value as the
 type parameter from the fully specified object, with the API defining a set of default
behaviors in this case. For example, an API definition could declare the following string:

"access": [
 "photo-api"
]

 As being equivalent to the following fully defined object:

"access": [
 {
 "type": "photo-api",
 "actions": ["read", "write", "delete"],
 "datatypes": ["metadata", "image"]
 }
]

 The exact mechanisms for relating reference strings is up to the API designer. These are enforced
by the AS, and the details are out of scope for this specification.

 Discovery
 By design, GNAP minimizes the need for any pre-flight
discovery. To begin a request, the client instance only needs to know the grant endpoint of
the AS (a single URI) and which keys it will use to sign the request. Everything else
can be negotiated dynamically in the course of the protocol.
 However, the AS can have limits on its allowed functionality. If the
client instance wants to optimize its calls to the AS before making a request, it MAY
send an HTTP OPTIONS request to the grant request endpoint to retrieve the
server's discovery information. The AS MUST respond with a JSON document with Content-Type
 application/json containing a single object with the following fields:

 grant_request_endpoint (string):

 The location of the
 AS's grant request endpoint. The location MUST be an absolute URL
 with a scheme component (which MUST be "https"), a host component, and optionally
 port, path, and query components and no fragment components. This URL MUST
 match the URL the client instance used to make the discovery request.
 REQUIRED.

 interaction_start_modes_supported (array of strings):

 A list of the AS's interaction start methods. The values of this list correspond to the
 possible values for the interaction start field of the request () and
 MUST be values from the "GNAP Interaction Start Modes" registry ().
 OPTIONAL.

 interaction_finish_methods_supported (array of strings):

 A list of the AS's interaction finish methods. The values of this list correspond to the
 possible values for the method element of the interaction finish field of the request () and MUST be values from
 the "GNAP Interaction Finish Methods" registry ().
 OPTIONAL.

 key_proofs_supported (array of strings):

 A list of the AS's supported key
 proofing mechanisms. The values of this list correspond to possible
 values of the proof field of the
 key section of the request () and MUST be values from the
 "GNAP Key Proofing Methods" registry ().
 OPTIONAL.

 sub_id_formats_supported (array of strings):

 A list of the AS's supported Subject Identifier formats. The
 values of this list correspond to possible values of the Subject
 Identifier field of the
 request () and MUST be values from the "Subject
 Identifier Formats" registry . OPTIONAL.

 assertion_formats_supported (array of strings):

 A list of the AS's supported
 assertion formats. The values of this list correspond to possible
 values of the subject assertion field of the request () and MUST
 be values from the "GNAP Assertion Formats" registry ().
 OPTIONAL.

 key_rotation_supported (boolean):

 The boolean "true" indicates that rotation of access token bound keys by the client () is supported by the AS.
 The absence of this field or a boolean "false" value indicates that this feature is not supported.

 The information returned from this method is for optimization
purposes only. The AS MAY deny any request, or any portion of a request,
even if it lists a capability as supported. For example, if a given client instance
can be registered with the mtls key proofing
mechanism but the AS also returns other proofing methods from the discovery document, then the AS
will still deny a request from that client instance using a different proofing
mechanism. Similarly, an AS with key_rotation_supported set to "true" can still deny
any request for rotating any access token's key for a variety of reasons.
 Additional fields can be defined in the "GNAP Authorization Server Discovery Fields" registry ().

 RS-First Method of AS Discovery
 If the client instance calls an RS without an access token or with an invalid access token, the RS SHOULD be explicit about the fact that GNAP needs to be used to access the resource by responding with the WWW-Authenticate header field and a GNAP challenge.
 In some situations, the client instance might want to know with which specific AS it needs to negotiate for access to that RS.
The RS MAY additionally return the following OPTIONAL parameters:

 as_uri:

 The URI of the grant endpoint of the GNAP AS. Used by the client instance to call the AS to request an access token.

 referrer:

 The URI of the GNAP RS. Sent by the client instance in the Referer header as part of the grant request.

 access:

 An opaque access reference as defined in .
 MUST be sufficient for at least the action the client instance was attempting to take at the RS and MAY allow additional access rights as well.
 Sent by the client as an access right in the grant request.

 The client instance SHOULD then use both the referrer and access parameters in its access token request. The client instance MUST check that the referrer parameter is equal to the URI of the RS using the simple string comparison method in .
 The means for the RS to determine the value for the access reference are out of scope of this specification, but some dynamic methods are discussed in
 .
 When receiving the following response from the RS:

NOTE: '\' line wrapping per RFC 8792

WWW-Authenticate: \
 GNAP as_uri=https://as.example/tx\
 ;access=FWWIKYBQ6U56NL1\
 ;referrer=https://rs.example

 The client instance then makes a request to the as_uri as described in , with the value of referrer passed as an HTTP Referer header field and the access reference passed unchanged into the access array in the access_token portion of the request. The client instance MAY request additional resources and other information.
 In the following non-normative example, the client instance is requesting a single access token using the opaque access reference FWWIKYBQ6U56NL1 received from the RS in addition to the dolphin-metadata that the client instance has been configured with out of band.

POST /tx HTTP/1.1
Host: as.example
Referer: https://rs.example/resource
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "FWWIKYBQ6U56NL1",
 "dolphin-metadata"
]
 },
 "client": "KHRS6X63AJ7C7C4AZ9AO"
}

 The client instance includes the Referer header field as a way for the AS to know that the process is initiated through a discovery process at the RS.
 If issued, the resulting access token would contain sufficient access to be used at both referenced resources.
 Security considerations, especially related to the potential of a compromised RS () redirecting the requests of an otherwise properly authenticated client, need to be carefully considered when allowing such a discovery process. This risk can be mitigated by an alternative pre-registration process so that the client knows which AS protects which RS. There are also privacy considerations related to revealing which AS is protecting a given resource; these are discussed in .

 Dynamic Grant Endpoint Discovery
 Additional methods of discovering the appropriate grant endpoint for a given application
are outside the scope of this specification. This limitation is intentional, as many applications
rely on static configuration between the client instance and AS, as is common in OAuth 2.0.
However, the dynamic nature of GNAP makes it a prime candidate for other extensions defining methods
for discovery of the appropriate AS grant endpoint at runtime. Advanced use cases could define
contextual methods for securely providing this endpoint to the client instance.
Furthermore, GNAP's design intentionally requires the client instance to only know the grant
endpoint and not additional parameters, since other functions and values can be disclosed
and negotiated during the grant process.

 IANA Considerations
 IANA has added values to existing registries as well as created 16 registries for GNAP and populated those registries with initial values as described in this section.
 All use of value typing is based on data types in and MUST be one of the following: number, object, string, boolean, or array. When the type is array, the contents of the array MUST be specified, as in "array of objects" when one subtype is allowed or "array of strings/objects" when multiple simultaneous subtypes are allowed. When the type is object, the structure of the object MUST be specified in the definition. If a parameter is available in different types, each type SHOULD be registered separately.
 General guidance for extension parameters is found in .

 HTTP Authentication Scheme Registration
 IANA has registered of the following scheme in the
"HTTP Authentication Schemes" registry defined in :

 Authentication Scheme Name:
 GNAP
 Reference:

 of RFC 9635

 Media Type Registration
 Per this section, IANA has registered the following media types in
the "Media Types" registry as described
in .

 application/gnap-binding-jwsd
 This media type indicates that the content is a GNAP message to be bound with a detached JWS mechanism.

 Type name:
 application
 Subtype name:
 gnap-binding-jwsd
 Required parameters:
 N/A
 Optional parameters:
 N/A
 Encoding considerations:
 binary
 Security considerations:
 See of RFC 9635.
 Interoperability considerations:
 N/A
 Published specification:
 RFC 9635
 Applications that use this media type:
 GNAP
 Fragment identifier considerations:
 N/A
 Additional information:

 Deprecated alias names for this type:
 N/A
 Magic number(s):
 N/A
 File extension(s):
 N/A
 Macintosh file type code(s):
 N/A

 Person & email address to contact for further information:
 IETF GNAP Working Group (txauth@ietf.org)
 Intended usage:
 COMMON
 Restrictions on usage:
 none
 Author:
 IETF GNAP Working Group (txauth@ietf.org)
 Change Controller:
 IETF

 application/gnap-binding-jws
 This media type indicates that the content is a GNAP message to be bound with an attached JWS mechanism.

 Type name:
 application
 Subtype name:
 gnap-binding-jws
 Required parameters:
 N/A
 Optional parameters:
 N/A
 Encoding considerations:
 binary
 Security considerations:
 See of RFC 9635.
 Interoperability considerations:
 N/A
 Published specification:
 RFC 9635
 Applications that use this media type:
 GNAP
 Fragment identifier considerations:
 N/A
 Additional information:

 Deprecated alias names for this type:
 N/A
 Magic number(s):
 N/A
 File extension(s):
 N/A
 Macintosh file type code(s):
 N/A

 Person & email address to contact for further information:
 IETF GNAP Working Group (txauth@ietf.org)
 Intended usage:
 COMMON
 Restrictions on usage:
 none
 Author:
 IETF GNAP Working Group (txauth@ietf.org)
 Change Controller:
 IETF

 application/gnap-binding-rotation-jwsd
 This media type indicates that the content is a GNAP token rotation message to be bound with a detached JWS mechanism.

 Type name:
 application
 Subtype name:
 gnap-binding-rotation-jwsd
 Required parameters:
 N/A
 Optional parameters:
 N/A
 Encoding considerations:
 binary
 Security considerations:
 See of RFC 9635.
 Interoperability considerations:
 N/A
 Published specification:
 RFC 9635
 Applications that use this media type:
 GNAP
 Fragment identifier considerations:
 N/A
 Additional information:

 Deprecated alias names for this type:
 N/A
 Magic number(s):
 N/A
 File extension(s):
 N/A
 Macintosh file type code(s):
 N/A

 Person & email address to contact for further information:
 IETF GNAP Working Group (txauth@ietf.org)
 Intended usage:
 COMMON
 Restrictions on usage:
 none
 Author:
 IETF GNAP Working Group (txauth@ietf.org)
 Change Controller:
 IETF

 application/gnap-binding-rotation-jws
 This media type indicates that the content is a GNAP token rotation message to be bound with an attached JWS mechanism.

 Type name:
 application
 Subtype name:
 gnap-binding-rotation-jws
 Required parameters:
 N/A
 Optional parameters:
 N/A
 Encoding considerations:
 binary
 Security considerations:
 See of RFC 9635.
 Interoperability considerations:
 N/A
 Published specification:
 RFC 9635
 Applications that use this media type:
 GNAP
 Fragment identifier considerations:
 N/A
 Additional information:

 Deprecated alias names for this type:
 N/A
 Magic number(s):
 N/A
 File extension(s):
 N/A
 Macintosh file type code(s):
 N/A

 Person & email address to contact for further information:
 IETF GNAP Working Group (txauth@ietf.org)
 Intended usage:
 COMMON
 Restrictions on usage:
 none
 Author:
 IETF GNAP Working Group (txauth@ietf.org)
 Change Controller:
 IETF

 GNAP Grant Request Parameters
 This document defines a GNAP grant request, for which IANA has created and maintains a new registry titled "GNAP Grant Request Parameters". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The designated expert (DE) is expected to ensure the following:

 All registrations follow the template presented in .
 The request parameter's definition is sufficiently orthogonal to existing functionality provided by existing parameters.
 Registrations for the same name with different types are sufficiently close in functionality so as not to cause confusion for developers.
 The request parameter's definition specifies the expected behavior of the AS in response to the request parameter for each potential state of the grant request.

 Registration Template

 Name:

 An identifier for the parameter.

 Type:

 The JSON type allowed for the value.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Type
 Reference

 access_token
 object

 of RFC 9635

 access_token
 array of objects

 of RFC 9635

 subject
 object

 of RFC 9635

 client
 object

 of RFC 9635

 client
 string

 of RFC 9635

 user
 object

 of RFC 9635

 user
 string

 of RFC 9635

 interact
 object

 of RFC 9635

 interact_ref
 string

 of RFC 9635

 GNAP Access Token Flags
 This document defines GNAP access token flags, for which IANA has created and maintains a new registry titled "GNAP Access Token Flags". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 The flag specifies whether it applies to requests for tokens to the AS, responses with tokens from the AS, or both.

 Registration Template

 Name:

 An identifier for the parameter.

 Allowed Use:

 Where the flag is allowed to occur. Possible values are
 "Request", "Response", and "Request, Response".

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Allowed Use
 Reference

 bearer
 Request, Response

 Sections and of RFC 9635

 durable
 Response

 of RFC 9635

 GNAP Subject Information Request Fields
 This document defines a means to request subject information from the AS to the client instance, for which IANA has created and maintains a new registry titled "GNAP Subject Information Request Fields". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 Registrations for the same name with different types are sufficiently close in functionality so as not to cause confusion for developers.

 Registration Template

 Name:

 An identifier for the parameter.

 Type:

 The JSON type allowed for the value.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Type
 Reference

 sub_id_formats
 array of strings

 of RFC 9635

 assertion_formats
 array of strings

 of RFC 9635

 sub_ids
 array of objects

 of RFC 9635

 GNAP Assertion Formats
 This document defines a means to pass identity assertions between the AS and client instance, for which IANA has created and maintains a new registry titled "GNAP Assertion Formats". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 The definition specifies the serialization format of the assertion value as used within GNAP.

 Registration Template

 Name:

 An identifier for the assertion format.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Reference

 id_token

 of RFC 9635

 saml2

 of RFC 9635

 GNAP Client Instance Fields
 This document defines a means to send information about the client instance, for which IANA has created and maintains a new registry titled "GNAP Client Instance Fields". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 Registrations for the same name with different types are sufficiently close in functionality so as not to cause confusion for developers.

 Registration Template

 Name:

 An identifier for the parameter.

 Type:

 The JSON type allowed for the value.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Type
 Reference

 key
 object

 of RFC 9635

 key
 string

 of RFC 9635

 class_id
 string

 of RFC 9635

 display
 object

 of RFC 9635

 GNAP Client Instance Display Fields
 This document defines a means to send end-user-facing displayable information about the client instance, for which IANA has created and maintains a new registry titled "GNAP Client Instance Display Fields". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 Registrations for the same name with different types are sufficiently close in functionality so as not to cause confusion for developers.

 Registration Template

 Name:

 An identifier for the parameter.

 Type:

 The JSON type allowed for the value.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Type
 Reference

 name
 string

 of RFC 9635

 uri
 string

 of RFC 9635

 logo_uri
 string

 of RFC 9635

 GNAP Interaction Start Modes
 This document defines a means for the client instance to begin interaction between the end user and the AS, for which IANA has created and maintains a new registry titled "GNAP Interaction Start Modes". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 Registrations for the same name with different types are sufficiently close in functionality so as not to cause confusion for developers.
 Any registration using an "object" type declares all additional parameters, their optionality, and their purpose.
 The start mode clearly defines what actions the client is expected to take to begin interaction, what the expected user experience is, and any security considerations for this communication from either party.
 The start mode documents incompatibilities with other start modes or finish methods, if applicable.
 The start mode provides enough information to uniquely identify the grant request during the interaction. For example, in the redirect and app modes, this is done using a unique URI (including its parameters). In the user_code and user_code_uri modes, this is done using the value of the user code.

 Registration Template

 Mode:

 An identifier for the interaction start mode.

 Type:

 The JSON type for the value, either "string" or "object", as described in .

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Mode
 Type
 Reference

 redirect
 string

 of RFC 9635

 app
 string

 of RFC 9635

 user_code
 string

 of RFC 9635

 user_code_uri
 string

 of RFC 9635

 GNAP Interaction Finish Methods
 This document defines a means for the client instance to be notified of the end of interaction between the end user and the AS, for which IANA has created and maintains a new registry titled "GNAP Interaction Finish Methods". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 All finish methods clearly define what actions the AS is expected to take, what listening methods the client instance needs to enable, and any security considerations for this communication from either party.
 All finish methods document incompatibilities with any start modes, if applicable.

 Registration Template

 Method:

 An identifier for the interaction finish method.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Method
 Reference

 redirect

 of RFC 9635

 push

 of RFC 9635

 GNAP Interaction Hints
 This document defines a set of hints that a client instance can provide to the AS to facilitate interaction with the end user, for which IANA has created and maintains a new registry titled "GNAP Interaction Hints". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 All interaction hints clearly document the expected behaviors of the AS in response to the hint, and an AS not processing the hint does not impede the operation of the AS or client instance.

 Registration Template

 Name:

 An identifier for the parameter.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Reference

 ui_locales

 of RFC 9635

 GNAP Grant Response Parameters
 This document defines a GNAP grant response, for which IANA has created and maintains a new registry titled "GNAP Grant Response Parameters". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 The response parameter's definition is sufficiently orthogonal to existing functionality provided by existing parameters.
 Registrations for the same name with different types are sufficiently close in functionality so as not to cause confusion for developers.
 The response parameter's definition specifies grant states for which the client instance can expect this parameter to appear in a response message.

 Registration Template

 Name:

 An identifier for the parameter.

 Type:

 The JSON type allowed for the value.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Type
 Reference

 continue
 object

 of RFC 9635

 access_token
 object

 of RFC 9635

 access_token
 array of objects

 of RFC 9635

 interact
 object

 of RFC 9635

 subject
 object

 of RFC 9635

 instance_id
 string

 of RFC 9635

 error
 object

 of RFC 9635

 GNAP Interaction Mode Responses
 This document defines a means for the AS to provide the client instance with information that is required to complete a particular interaction mode, for which IANA has created and maintains a new registry titled "GNAP Interaction Mode Responses". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 If the name of the registration matches the name of an interaction start mode, the response parameter is unambiguously associated with the interaction start mode of the same name.

 Registration Template

 Name:

 An identifier for the parameter.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Reference

 redirect

 of RFC 9635

 app

 of RFC 9635

 user_code

 of RFC 9635

 user_code_uri

 of RFC 9635

 finish

 of RFC 9635

 expires_in

 of RFC 9635

 GNAP Subject Information Response Fields
 This document defines a means to return subject information from the AS to the client instance, for which IANA has created and maintains a new registry titled "GNAP Subject Information Response Fields". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 Registrations for the same name with different types are sufficiently close in functionality so as not to cause confusion for developers.

 Registration Template

 Name:

 An identifier for the parameter.

 Type:

 The JSON type allowed for the value.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Type
 Reference

 sub_ids
 array of objects

 of RFC 9635

 assertions
 array of objects

 of RFC 9635

 updated_at
 string

 of RFC 9635

 GNAP Error Codes
 This document defines a set of errors that the AS can return to the client instance, for which IANA has created and maintains a new registry titled "GNAP Error Codes". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 The error response is sufficiently unique from other errors to provide actionable information to the client instance.
 The definition of the error response specifies all conditions in which the error response is returned and the client instance's expected action.

 Registration Template

 Error:

 A unique string code for the error.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Error
 Reference

 invalid_request

 of RFC 9635

 invalid_client

 of RFC 9635

 invalid_interaction

 of RFC 9635

 invalid_flag

 of RFC 9635

 invalid_rotation

 of RFC 9635

 key_rotation_not_supported

 of RFC 9635

 invalid_continuation

 of RFC 9635

 user_denied

 of RFC 9635

 request_denied

 of RFC 9635

 unknown_user

 of RFC 9635

 unknown_interaction

 of RFC 9635

 too_fast

 of RFC 9635

 too_many_attempts

 of RFC 9635

 GNAP Key Proofing Methods
 This document defines methods that the client instance can use to prove possession of a key, for which IANA has created and maintains a new registry titled "GNAP Key Proofing Methods". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 Registrations for the same name with different types are sufficiently close in functionality so as not to cause confusion for developers.
 The proofing method provides sufficient coverage of and binding to the protocol messages to which it is applied.
 The proofing method definition clearly enumerates how all requirements in are fulfilled by the definition.

 Registration Template

 Method:

 A unique string code for the key proofing method.

 Type:

 The JSON type allowed for the value.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Method
 Type
 Reference

 httpsig
 string

 of RFC 9635

 httpsig
 object

 of RFC 9635

 mtls
 string

 of RFC 9635

 jwsd
 string

 of RFC 9635

 jws
 string

 of RFC 9635

 GNAP Key Formats
 This document defines formats for a public key value, for which IANA has created and maintains a new registry titled "GNAP Key Formats". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 The key format specifies the structure and serialization of the key material.

 Registration Template

 Format:

 A unique string code for the key format.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Format
 Reference

 jwk

 of RFC 9635

 cert

 of RFC 9635

 cert#S256

 of RFC 9635

 GNAP Authorization Server Discovery Fields
 This document defines a discovery document for an AS, for which IANA has created and maintains a new registry titled "GNAP Authorization Server Discovery Fields". Initial values for this registry are given in . Future assignments and modifications to existing assignments are to be made through the Specification Required registration policy .
 The DE is expected to ensure the following:

 All registrations follow the template presented in .
 Registrations for the same name with different types are sufficiently close in functionality so as not to cause confusion for developers.
 The values in the discovery document are sufficient to provide optimization and hints to the client instance, but knowledge of the discovered value is not required for starting a transaction with the AS.

 Registration Template

 Name:

 An identifier for the parameter.

 Type:

 The JSON type allowed for the value.

 Reference:

 Reference to one or more documents that specify the
 value, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

 Initial Contents

 Name
 Type
 Reference

 grant_request_endpoint
 string

 of RFC 9635

 interaction_start_modes_supported
 array of strings

 of RFC 9635

 interaction_finish_methods_supported
 array of strings

 of RFC 9635

 key_proofs_supported
 array of strings

 of RFC 9635

 sub_id_formats_supported
 array of strings

 of RFC 9635

 assertion_formats_supported
 array of strings

 of RFC 9635

 key_rotation_supported
 boolean

 of RFC 9635

 Security Considerations
 In addition to the normative requirements in this document, implementors are strongly encouraged to consider these additional security considerations in implementations and deployments of GNAP.

 TLS Protection in Transit
 All requests in GNAP made over untrusted network connections have to be made over TLS as outlined in
to protect the contents of the request and response from manipulation and interception by an attacker.
This includes all requests from a client instance to the AS, all requests from the client instance to
an RS, and any requests back to a client instance such as the push-based interaction finish method.
Additionally, all requests between a browser and other components, such as during redirect-based
interaction, need to be made over TLS or use equivalent protection such as a network connection local to the browser ("localhost").
 Even though requests from the client instance to the AS are signed, the signature method alone does not protect
the request from interception by an attacker. TLS protects the response as well as the request,
preventing an attacker from intercepting requested information as it is returned. This is particularly
important in this specification for security artifacts such as nonces and for
personal information such as subject information.
 The use of key-bound access tokens does not negate the requirement for protecting calls to the RS with TLS.
The keys and signatures associated with a bound access token will prevent an attacker from using a stolen
token; however, without TLS, an attacker would be able to watch the data being sent to the RS and returned from the RS
during legitimate use of the client instance under attack. Additionally, without TLS, an attacker would be
able to profile the calls made between the client instance and RS, possibly gaining information about the functioning
of the API between the client software and RS software that would otherwise be unknown to the attacker.
 Note that connections from the end user and RO's browser also need to be protected with TLS. This applies during initial
redirects to an AS's components during interaction, during any interaction with the RO, and during
any redirect back to the client instance. Without TLS protection on these portions of the process, an
attacker could wait for a valid request to start and then take over the RO's interaction session.

 Signing Requests from the Client Software
 Even though all requests in GNAP need to be transmitted over TLS or its equivalent, the use of TLS
alone is not sufficient to protect all parts of a multi-party and multi-stage protocol like GNAP,
and TLS is not targeted at tying multiple requests to each other over time.
To account for this, GNAP makes use of message-level protection and key presentation mechanisms
that strongly associate a request with a key held by the client instance (see).
 During the initial request from a client instance to the AS, the client instance has to identify and
prove possession of a cryptographic key. If the key is known to the AS, e.g., previously
registered or dereferenceable to a trusted source, the AS can associate a set of policies to the
client instance identified by the key. Without the requirement that the client instance prove that it holds
that key, the AS could not trust that the connection came from any particular client and could
not apply any associated policies.
 Even more importantly, the client instance proving possession of a
 key on the first request allows the AS to associate future requests
 with each other by binding all future requests in that transaction to
 the same key. The access token used for grant continuation is bound to
 the same key and proofing mechanism used by the client instance in its
 initial request; this means that the client instance needs to prove
 possession of that same key in future requests, which allows the AS to
 be sure that the same client instance is executing the follow-ups for
 a given ongoing grant request. Therefore, the AS has to ensure that
 all subsequent requests for a grant are associated with the same key
 that started the grant or with the most recent rotation of that key. This
 need holds true even if the initial key is previously unknown to the
 AS, such as would be the case when a client instance creates an
 ephemeral key for its request. Without this ongoing association, an
 attacker would be able to impersonate a client instance in the midst
 of a grant request, potentially stealing access tokens and subject
 information with impunity.
 Additionally, all access tokens in GNAP default to be associated with the key that was presented
during the grant request that created the access token. This association allows an RS to know that
the presenter of the access token is the same party that the token was issued to, as identified
by their keys. While non-bound bearer tokens are an option in GNAP, these types of tokens
have their own trade-offs, which are discussed in .
 TLS functions at the transport layer, ensuring that only the parties on either end of that
connection can read the information passed along that connection. Each time a new connection
is made, such as for a new HTTP request, a new trust that is mostly unrelated to previous
connections is re-established. While modern TLS does make use of session resumption, this still needs to be augmented
with authentication methods to determine the identity of parties on the
connections. In other words, it is not possible with TLS alone to know that the same party is making
a set of calls over time, since each time a new TLS connection is established, both the client and the server (or the server only when using MTLS ()) have to validate
the other party's identity. Such a verification can be achieved via methods described in , but these are not enough to establish the identity of the client instance in many cases.
 To counter this, GNAP defines a set of key binding methods in that allows authentication and
proof of possession by the caller, which is usually the client instance. These methods are intended to be used in
addition to TLS on all connections.

 MTLS Message Integrity
 The MTLS key proofing mechanism () provides a means for a client instance to present a key
using a certificate at the TLS layer. Since TLS protects the entire HTTP message in transit,
verification of the TLS client certificate presented with the message provides a sufficient binding
between the two. However, since TLS is functioning at a separate layer from HTTP, there is no
direct connection between the TLS key presentation and the message itself, other than the fact that
the message was presented over the TLS channel. That is to say, any HTTP message can be presented
over the TLS channel in question with the same level of trust. The verifier is responsible for
ensuring the key in the TLS client certificate is the one expected for a particular request. For
example, if the request is a grant request (), the AS needs to compare the TLS client
certificate presented at the TLS layer to the key identified in the request content itself (either
by value or through a referenced identifier).
 Furthermore, the prevalence of the TLS terminating reverse proxy (TTRP) pattern in deployments adds
a wrinkle to the situation. In this common pattern, the TTRP validates the TLS connection and then forwards the HTTP message contents onward to an internal system for processing. The system
processing the HTTP message no longer has access to the original TLS connection's information and
context.

To compensate for this, the TTRP could inject the TLS client certificate into
the forwarded request using the HTTP Client-Cert header field , giving the downstream system access to the certificate
information. The TTRP has to be trusted to provide accurate certificate
information, and the connection between the TTRP and the downstream system
also has to be protected. The TTRP could provide some additional assurance,
for example, by adding its own signature to the Client-Cert header field using
HTTP message signatures . This signature would be
effectively ignored by GNAP (since it would not use GNAP's tag
parameter value) but would be understood by the downstream service as part of
its deployment.
 Additional considerations for different types of deployment patterns and key distribution
mechanisms for MTLS are found in .

 MTLS Deployment Patterns
 GNAP does not specify how a client instance's keys could be made known to the AS ahead of time.
The Public Key Infrastructure (PKI) can be used to manage the keys used by client instances when calling
the AS, allowing the AS to trust a root key from a trusted authority. This method is particularly
relevant to the MTLS key proofing method, where the client instance
presents its certificate to the AS as part of the TLS connection. An AS using PKI to validate the
MTLS connection would need to ensure that the presented certificate was issued by a trusted certificate
authority before allowing the connection to continue. PKI-based certificates would allow a key to be revoked
and rotated through management at the certificate authority without requiring additional registration
or management at the AS. The PKI required to manage mutually authenticated TLS has historically been
difficult to deploy, especially at scale, but it remains an appropriate solution for systems where
the required management overhead is not an impediment.
 MTLS in GNAP need not use a PKI backing, as self-signed certificates and certificates from untrusted
authorities can still be presented as part of a TLS connection. In this case, the verifier would
validate the connection but accept whatever certificate was presented by the client software. This
specific certificate can then be bound to all future connections from that client software by
being bound to the resulting access tokens, in a trust-on-first-use pattern. See
for more considerations on MTLS as a key proofing mechanism.

 Protection of Client Instance Key Material
 Client instances are identified by their unique keys, and anyone with access to a client instance's key material
will be able to impersonate that client instance to all parties. This is true for both calls to the AS
as well as calls to an RS using an access token bound to the client instance's unique key. As a consequence, it is of utmost importance for a client instance to protect its private key material.
 Different types of client software have different methods for creating, managing, and registering
keys. GNAP explicitly allows for ephemeral clients such as single-page applications (SPAs) and single-user clients (such as
mobile applications) to create and present their own keys during the initial grant request without any explicit pre-registration step. The client
software can securely generate a key pair on the device and present the public key, along with proof of holding the associated
private key, to the AS as part of the initial request. To facilitate trust in these ephemeral keys,
GNAP further allows for an extensible set of client information to be passed with the request. This
information can include device posture and third-party attestations of the client software's provenance
and authenticity, depending on the needs and capabilities of the client software and its deployment.
 From GNAP's perspective, each distinct key is a different client instance. However, multiple client
instances can be grouped together by an AS policy and treated similarly to each other. For instance,
if an AS knows of several different keys for different servers within a cluster, the AS can
decide that authorization of one of these servers applies to all other servers within the cluster. An AS
that chooses to do this needs to be careful with how it groups different client keys together in its policy,
since the breach of one instance would have direct effects on the others in the cluster.
 Additionally, if an end user controls multiple instances of a single type of client software, such as
having an application installed on multiple devices, each of these instances is expected to have a
separate key and be issued separate access tokens. However, if the AS is able to group these separate
instances together as described above, it can streamline the authorization process for new instances
of the same client software. For example, if two client instances can present proof of a valid installation
of a piece of client software, the AS would be able to associate the approval of the first instance of this
software to all related instances. The AS could then choose to bypass an explicit prompt of the RO for approval during authorization, since such approval has already been given. An AS doing such
a process would need to take assurance measures that the different instances are in fact correlated
and authentic, as well as ensure that the expected RO is in control of the client instance.
 Finally, if multiple instances of client software each have the same key, then from GNAP's perspective,
these are functionally the same client instance as GNAP has no reasonable way to differentiate between
them. This situation could happen if multiple instances within a cluster can securely share secret
information among themselves. Even though there are multiple copies of the software, the shared key
makes these copies all present as a single instance. It is considered bad practice to share keys between
copies of software unless they are very tightly integrated with each other and can be closely managed.
It is particularly bad practice to allow an end user to copy keys between client instances and to
willingly use the same key in multiple instances.

 Protection of Authorization Server
 The AS performs critical functions in GNAP, including authenticating client software, managing interactions
with end users to gather consent and provide notice, and issuing access tokens for client instances
to present to RSs. As such, protecting the AS is central to any GNAP deployment.
 If an attacker is able to gain control over an AS, they would be able to create fraudulent tokens and
manipulate registration information to allow for malicious clients. These tokens and clients would
be trusted by other components in the ecosystem under the protection of the AS.
 If the AS uses signed access tokens, an attacker in control of the AS's signing keys would
be able to manufacture fraudulent tokens for use at RSs under the protection of the AS.
 If an attacker is able to impersonate an AS, they would be able to trick legitimate client instances
into making signed requests for information that could potentially be proxied to a real AS. To combat
this, all communications to the AS need to be made over TLS or its equivalent, and the software
making the connection has to validate the certificate chain of the host it is connecting to.
 Consequently, protecting, monitoring, and auditing the AS is paramount to preserving the security
of a GNAP-protected ecosystem. The AS presents attackers with a valuable target for attack.
Fortunately, the core focus and function of the AS is to provide security for the ecosystem, unlike
the RS whose focus is to provide an API or the client software whose focus is to access the API.

 Symmetric and Asymmetric Client Instance Keys
 Many of the cryptographic methods used by GNAP for key proofing can support both asymmetric and symmetric
cryptography, and they can be extended to use a wide variety of mechanisms.
Implementors will find the available guidelines on cryptographic key management provided in useful. While symmetric
cryptographic systems have some benefits in speed and simplicity, they have a distinct drawback --
both parties need access to the same key in order to do both signing and verification of
the message.
When more than two parties share the same symmetric key,
data origin authentication is not provided. Any party that knows the
symmetric key can compute a valid MAC; therefore, the
contents could originate from any one of the parties.
 Use of symmetric cryptography means that when the client instance calls the AS to request a token, the
AS needs to know the exact value of the client instance's key (or be able to derive it) in
order to validate the key proof signature. With asymmetric keys, the client needs to only
send its public key to the AS to allow for verification that the client holds the associated
private key, regardless of whether or not that key was pre-registered with the AS.
 Symmetric keys also have the expected advantage of providing better protection against quantum
threats in the future. Also, these types of keys (and their secure derivations) are widely
supported among many cloud-based key management systems.
 When used to bind to an access token, a key value must be known by the RS in order
to validate the proof signature on the request. Common methods for communicating these proofing
keys include putting information in a structured access token and allowing the RS to look
up the associated key material against the value of the access token. With symmetric cryptography,
both of these methods would expose the signing key to the RS and, in the case of a structured
access token, potentially to any party that can see the access token itself unless the token's
payload has been encrypted. Any of these parties would then be able to make calls using the
access token by creating a valid signature using the shared key. With asymmetric cryptography, the RS needs
to only know the public key associated with the token in order to validate the request; therefore, the RS cannot
create any new signed calls.
 While both signing approaches are allowed, GNAP treats these two classes of keys somewhat
differently. Only the public portion of asymmetric keys are allowed to be sent by value
in requests to the AS when establishing a connection. Since sending a symmetric key (or
the private portion of an asymmetric key) would expose the signing material to any parties
on the request path, including any attackers, sending these kinds of keys by value is prohibited.
Symmetric keys can still be used by client instances, but only if the client instance can send a reference to the key and
not its value. This approach allows the AS to use pre-registered symmetric keys as well
as key derivation schemes to take advantage of symmetric cryptography without requiring
key distribution at runtime, which would expose the keys in transit.
 Both the AS and client software can use systems such as hardware security modules to strengthen
their key security storage and generation for both asymmetric and symmetric keys (see also).

 Generation of Access Tokens
 The contents of access tokens need to be such that only the generating AS would be able to
create them, and the contents cannot be manipulated by an attacker to gain different or additional
access rights.
 One method for accomplishing this is to use a cryptographically random value for the access token,
generated by the AS using a secure randomization function with sufficiently high entropy. The odds of
an attacker guessing the output of the randomization function to collide with a valid access token
are exceedingly small, and even then, the attacker would not have any control over what the
access token would represent since that information would be held close by the AS.
 Another method for accomplishing this is to use a structured token that is cryptographically signed.
In this case, the payload of the access token declares to the RS what the token is good for, but
the signature applied by the AS during token generation covers this payload. Only the AS can create
such a signature; therefore, only the AS can create such a signed token. The odds of an attacker
being able to guess a signature value with a useful payload are exceedingly small. This technique
only works if all targeted RSs check the signature of the access token. Any RS that does not
validate the signature of all presented tokens would be susceptible to injection of a modified
or falsified token. Furthermore, an AS has to carefully protect the keys used to sign access
tokens, since anyone with access to these signing keys would be able to create seemingly valid
access tokens using them.

 Bearer Access Tokens
 Bearer access tokens can be used by any party that has access to the token itself, without any additional
information. As a natural consequence, any RS that a bearer token is presented to has the technical
capability of presenting that bearer token to another RS, as long as the token is valid. It also
means that any party that is able to capture the token value in storage or in transit is able to
use the access token. While bearer tokens are inherently simpler, this simplicity has been misapplied
and abused in making needlessly insecure systems. The downsides of bearer tokens have become more
pertinent lately as stronger authentication systems have caused some attacks to shift to target
tokens and APIs.
 In GNAP, key-bound access tokens are the default due to their higher security properties. While
bearer tokens can be used in GNAP, their use should be limited to cases where the simplicity
benefits outweigh the significant security downsides. One common deployment pattern is to use a
gateway that takes in key-bound tokens on the outside and verifies the signatures on the incoming
requests but translates the requests to a bearer token for use by trusted internal systems. The
bearer tokens are never issued or available outside of the internal systems, greatly limiting the
exposure of the less-secure tokens but allowing the internal deployment to benefit from the
advantages of bearer tokens.

 Key-Bound Access Tokens
 Key-bound access tokens, as the name suggests, are bound to a specific key and must be
presented along with proof of that key during use. The key itself is not presented at the same
time as the token, so even if a token value is captured, it cannot be used to make a new request. This
is particularly true for an RS, which will see the token value but will not see the keys used
to make the request (assuming asymmetric cryptography is in use, see).
 Key-bound access tokens provide this additional layer of protection only when the RS checks the
signature of the message presented with the token. Acceptance of an invalid presentation signature,
or failure to check the signature entirely, would allow an attacker to make calls with a captured
access token without having access to the related signing key material.
 In addition to validating the signature of the presentation message itself,
the RS also needs to ensure that the signing key used is appropriate for the presented token.
If an RS does not ensure that the right keys were used to sign a message with a specific
token, an attacker would be able to capture an access token and sign the request with their own
keys, thereby negating the benefits of using key-bound access tokens.
 The RS also needs to ensure that sufficient portions of the message are covered by the
signature. Any items outside the signature could still affect the API's processing decisions,
but these items would not be strongly bound to the token presentation. As such, an attacker
could capture a valid request and then manipulate portions of the request outside of the
signature envelope in order to cause unwanted actions at the protected API.
 Some key-bound tokens are susceptible to replay attacks, depending on the details of the signing method
used. Therefore, key proofing mechanisms used with access tokens need
to use replay-protection mechanisms covered under the signature such as a per-message nonce, a
reasonably short time validity window, or other uniqueness constraints. The details of using these
will vary depending on the key proofing mechanism in use. For example, HTTP message signatures
have both a created and nonce signature parameter as well as the ability to cover significant
portions of the HTTP message. All of these can be used to limit the attack surface.

 Exposure of End-User Credentials to Client Instance
 As a delegation protocol, one of the main goals of GNAP is to prevent the client software from being
exposed to any credentials or information about the end user or RO as a requirement
of the delegation process. By using the variety of interaction mechanisms, the RO can
interact with the AS without ever authenticating to the client software and without the client
software having to impersonate the RO through replay of their credentials.
 Consequently, no interaction methods defined in this specification require the end user to enter their
credentials, but it is technologically possible for an extension to be defined to carry such values.
Such an extension would be dangerous as it would allow rogue client software to directly collect, store,
and replay the end user's credentials outside of any legitimate use within a GNAP request.
 The concerns of such an extension could be mitigated through use of a challenge and response
unlocked by the end user's credentials. For example, the AS presents a challenge as part of
an interaction start method, and the client instance signs that challenge using a key derived
from a password presented by the end user. It would be possible for the client software to
collect this password in a secure software enclave without exposing the password to the rest
of the client software or putting it across the wire to the AS. The AS can validate this challenge
response against a known password for the identified end user. While an approach such as this does
not remove all of the concerns surrounding such a password-based scheme, it is at least
possible to implement in a more secure fashion than simply collecting and replaying
the password. Even so, such schemes should only ever be used by trusted clients due to
the ease of abusing them.

 Mixing Up Authorization Servers
 If a client instance is able to work with multiple ASes simultaneously, it is possible
for an attacker to add a compromised AS to the client instance's configuration and cause the
client software to start a request at the compromised AS. This AS could then proxy the client's
request to a valid AS in order to attempt to get the RO to approve access for
the legitimate client instance.
 A client instance needs to always be aware of which AS it is talking to throughout a grant process and ensure
that any callback for one AS does not get conflated with the callback to different AS. The interaction finish
hash calculation in allows a client instance to protect against this kind of substitution, but only if
the client instance validates the hash. If the client instance does not use an interaction finish method
or does not check the interaction finish hash value, the compromised AS can be granted a valid
access token on behalf of the RO. See Sections 4.5.5 and 5.5 of for details
of one such attack, which has been addressed in this document by including the grant endpoint
in the interaction hash calculation. Note that the client instance still needs to validate the hash for
the attack to be prevented.

 Processing of Client-Presented User Information
 GNAP allows the client instance to present assertions and identifiers of the current user to the AS as
part of the initial request. This information should only ever be taken by the AS as a hint, since the
AS has no way to tell if the represented person is present at the client software without using
an interaction mechanism. This information does not guarantee the given user is there, but it does
constitute a statement by the client software that the AS can take into account.
 For example, if a specific user is claimed to be present prior to interaction, but a different user
is shown to be present during interaction, the AS can either determine this to be an error or signal
to the client instance through returned subject information that the current user has changed from
what the client instance thought. This user information can also be used by the AS to streamline the
interaction process when the user is present. For example, instead of having the user type in their
account identifier during interaction at a redirected URI, the AS can immediately challenge the user
for their account credentials. Alternatively, if an existing session is detected, the AS can
determine that it matches the identifier provided by the client and subsequently skip an explicit
authentication event by the RO.
 In cases where the AS trusts the client software more completely, due to policy
or previous approval of a given client instance, the AS can take this user information as a
statement that the user is present and could issue access tokens and release subject information
without interaction. The AS should only take such action in very limited circumstances, as a
client instance could assert whatever it likes for the user's identifiers in its request. The AS
can limit the possibility of this by issuing randomized opaque identifiers to client instances to
represent different end-user accounts after an initial login.
 When a client instance presents an assertion to the AS, the AS needs to evaluate that assertion. Since
the AS is unlikely to be the intended audience of an assertion held by the client software, the AS will
need to evaluate the assertion in a different context. Even in this case, the AS can still evaluate
that the assertion was generated by a trusted party, was appropriately signed, and is within
any time validity windows stated by the assertion. If the client instance's audience identifier
is known to the AS and can be associated with the client instance's presented key, the AS can also
evaluate that the appropriate client instance is presenting the claimed assertion. All of this
will prevent an attacker from presenting a manufactured assertion or one captured from an
untrusted system. However, without validating the audience of the assertion, a captured assertion
could be presented by the client instance to impersonate a given end user. In such cases, the assertion
offers little more protection than a simple identifier would.
 A special case exists where the AS is the generator of the assertion being presented by the
client instance. In these cases, the AS can validate that it did issue the assertion and
it is associated with the client instance presenting the assertion.

 Client Instance Pre-registration
 Each client instance is identified by its own unique key, and for some kinds of client software such as a
web server or backend system, this identification can be facilitated by registering a single key for a piece
of client software ahead of time. This registration can be associated with a set of display attributes to
be used during the authorization process to identify the client software to the user. In these cases,
it can be assumed that only one instance of client software will exist, likely to serve many different
users.
 A client's registration record needs to include its identifying key. Furthermore, it is the case that
any clients using symmetric cryptography for key proofing mechanisms need to have their keys pre-registered.
The registration should also include any information that would aid in the authorization process, such as
a display name and logo.
The registration record can also limit a given client to
ask for certain kinds of information or use
specific interaction mechanisms at runtime.

 It also is sensible to pre-register client instances when the software is acting autonomously, without
the need for a runtime approval by an RO or any interaction with an end user. In these cases,
an AS needs to rely on the trust decisions that have been determined prior to runtime to determine
what rights and tokens to grant to a given client instance.
 However, it does not make sense to pre-register many types of clients. Single-page applications (SPAs) and
mobile/desktop applications in particular present problems with pre-registration. For SPAs, the instances
are ephemeral in nature, and long-term registration of a single instance leads to significant storage and
management overhead at the AS. For mobile applications, each installation of the client software is
a separate instance, and sharing a key among all instances would be detrimental to security as the
compromise of any single installation would compromise all copies for all users.
 An AS can treat these classes of client software differently from each other, perhaps by allowing access
to certain high-value APIs only to pre-registered known clients or by requiring an active end-user
delegation of authority to any client software not pre-registered.
 An AS can also provide warnings and caveats to ROs during the authorization process, allowing
the user to make an informed decision regarding the software they are authorizing. For example, if the AS
has vetted the client software and this specific instance, it can present a different authorization
screen compared to a client instance that is presenting all of its information at runtime.
 Finally, an AS can use platform attestations and other signals from the client instance at runtime
to determine whether or not the software making the request is legitimate. The details of such
attestations are outside the scope of this specification, but the client portion of a grant request
provides a natural extension point to such information through the "GNAP Client Instance Fields" registry ().

 Client Instance Impersonation
 If client instances are allowed to set their own user-facing display information, such as a display name and website
URL, a malicious client instance could impersonate legitimate client software for the purposes of tricking
users into authorizing the malicious client.
 Requiring clients to pre-register does not fully mitigate this problem since many pre-registration
systems have self-service portals for management of client registration, allowing authenticated developers
to enter self-asserted information into the management portal.
 An AS can mitigate this by actively filtering all self-asserted values presented by client software,
both dynamically as part of GNAP and through a registration portal, to limit the kinds of impersonation that
	could be done.
 An AS can also warn the RO about the provenance of the information it is displaying, allowing
the RO to make a more informed delegation decision. For example, an AS can visually differentiate
between a client instance that can be traced back to a specific developer's registration and an
instance that has self-asserted its own display information.

 Client-Hosted Logo URI
 The logo_uri client display field defined in allows the client instance to specify
a URI from which an image can be fetched for display during authorization decisions. When the URI points to
an externally hosted resource (as opposed to a data: URI), the logo_uri field presents challenges in addition to the
considerations in .
 When a logo_uri is externally hosted, the client software (or the host of the asset) can change the contents of
the logo without informing the AS. Since the logo is considered an aspect of the client software's identity,
this flexibility allows for a more dynamically managed client instance that makes use of the distributed systems.
 However, this same flexibility allows the host of the asset to change the hosted file in a malicious way,
such as replacing the image content with malicious software for download or imitating a different piece
of client software. Additionally, the act of fetching the URI could accidentally leak information to the image host
in the HTTP Referer header field, if one is sent. Even though GNAP intentionally does not include security
parameters in front-channel URIs wherever possible, the AS still should take steps to ensure that
this information does not leak accidentally, such as setting a referrer policy on image links or
displaying images only from pages served from a URI with no sensitive security or identity information.
 To avoid these issues, the AS can insist on the use of data: URIs, though that might not be practical for all
types of client software. Alternatively, the AS could pre-fetch the content of the URI and present its own copy
to the RO instead. This practice opens the AS to potential SSRF attacks, as discussed in .

 Interception of Information in the Browser
 Most information passed through the web browser is susceptible to interception and possible manipulation by
elements within the browser such as scripts loaded within pages. Information in the URI is exposed
through browser and server logs, and it can also leak to other parties through HTTP Referer headers.
 GNAP's design limits the information passed directly through the browser, allowing for opaque URIs in most circumstances.
For the redirect-based interaction finish mechanism, named query parameters are used to carry
unguessable opaque values. For these, GNAP requires creation and validation of a cryptographic
hash to protect the query parameters added to the URI and associate them with an ongoing grant
process and values not passed in the URI. The client instance has to properly validate this hash to prevent an attacker from
injecting an interaction reference intended for a different AS or client instance.
 Several interaction start mechanisms use URIs created by the AS and passed to the client instance.
While these URIs are opaque to the client instance, it's possible for the AS to include parameters,
paths, and other pieces of information that could leak security data or be manipulated by a party
in the middle of the transaction. An AS implementation can avoid this problem by creating URIs
using unguessable values that are randomized for each new grant request.

 Callback URI Manipulation
 The callback URI used in interaction finish mechanisms is defined by the client instance. This URI is
opaque to the AS but can contain information relevant to the client instance's operations. In
particular, the client instance can include state information to allow the callback request to
be associated with an ongoing grant request.
 Since this URI is exposed to the end user's browser, it is susceptible to both logging and manipulation
in transit before the request is made to the client software. As such, a client instance should
never put security-critical or private information into the callback URI in a cleartext form. For example,
if the client software includes a post-redirect target URI in its callback URI to the AS, this target URI
could be manipulated by an attacker, creating an open redirector at the client. Instead,
a client instance can use an unguessable identifier in the URI that can then be used by the client
software to look up the details of the pending request. Since this approach requires some form of statefulness
by the client software during the redirection process, clients that are not capable of holding state
through a redirect should not use redirect-based interaction mechanisms.

 Redirection Status Codes
 As described in , a server should never use
 HTTP status code 307 (Temporary Redirect) to redirect a request that potentially
 contains user credentials. If an HTTP redirect is used for such a
 request, HTTP status code 303 (See Other) should be used
 instead.
 Status code 307 (Temporary Redirect), as defined in the HTTP
	standard , requires the user agent to preserve
	the method and content of a request, thus submitting the content of
	the POST request to the redirect target. In the HTTP standard , only status code 303 (See Other) unambiguously
	enforces rewriting the HTTP POST request to an HTTP GET request, which
	eliminates the POST content from the redirected request. For all
	other status codes, including status code 302 (Found), user agents are
	allowed to keep a redirected POST request as a POST and thus can
	resubmit the content.

 The use of status code 307 (Temporary Redirect) results in a vulnerability when using the
 redirect interaction finish method (). With this method, the AS
potentially prompts the RO to enter their credentials in a form that is then submitted back to the
AS (using an HTTP POST request). The AS checks the credentials and, if successful, may immediately
redirect the RO to the client instance's redirect URI. Due to the use of status code 307 (Temporary Redirect), the RO's
user agent now transmits the RO's credentials to the client instance. A malicious client instance
can then use the obtained credentials to impersonate the RO at the AS.
 Redirection away from the initial URI in an interaction session could also leak information found in that
initial URI through the HTTP Referer header field, which would be sent by the user agent to the redirect
target. To avoid such leakage, a server can first redirect to an internal interstitial page without any identifying
or sensitive information on the URI before processing the request. When the user agent is ultimately
redirected from this page, no part of the original interaction URI will be found in the Referer header.

 Interception of Responses from the AS
 Responses from the AS contain information vital to both the security and privacy operations of
GNAP. This information includes nonces used in cryptographic calculations, Subject Identifiers,
assertions, public keys, and information about what client software is requesting and was granted.
 In addition, if bearer tokens are used or keys are issued alongside a bound access token, the
response from the AS contains all information necessary for use of the contained access token. Any
party that is capable of viewing such a response, such as an intermediary proxy, would be able
to exfiltrate and use this token. If the access token is instead bound to the client instance's
presented key, intermediaries no longer have sufficient information to use the token. They can
still, however, gain information about the end user as well as the actions of the client software.

 Key Distribution
 GNAP does not define ways for the client instances keys to be provided to the client instances,
particularly in light of how those keys are made known to the AS. These keys could be
generated dynamically on the client software or pre-registered at the AS in a static developer portal.
The keys for client instances could also be distributed as part of the deployment process of instances
of the client software. For example, an application installation framework could generate
a key pair for each copy of client software and then both install it into the client software
upon installation and register that instance with the AS.
 Alternatively, it's possible for the AS to generate keys to be used with access tokens that
are separate from the keys used by the client instance to request tokens. In this method,
the AS would generate the asymmetric key pair or symmetric key and return the public key or key
reference to the client instance alongside the access
token itself. The means for the AS to return generated key values to the client instance
are out of scope, since GNAP does not allow the transmission of private or shared key
information within the protocol itself.
 Additionally, if the token is bound to a key other than the client instance's presented key, this
opens a possible attack surface for an attacker's AS to request an access token and then substitute
their own key material in the response to the client instance. The attacker's AS would need to
be able to use the same key as the client instance, but this setup would allow an attacker's AS
to make use of a compromised key within a system. This attack can be prevented by only binding
access tokens to the client instance's presented keys and by having client instances have a strong
association between which keys they expect to use and the AS they expect to use them on.
This attack is also only able to be propagated on client instances that talk to more than
one AS at runtime, which can be limited by the client software.

 Key Rotation Policy
 When keys are rotated, there could be a delay in the propagation of that rotation to various components in the AS's ecosystem. The AS can define its own policy regarding the timeout of the previously bound key, either making it immediately obsolete or allowing for a limited grace period during which both the previously bound key and the current key can be used for signing requests. Such a grace period can be useful when there are multiple running copies of the client that are coordinated with each other. For example, the client software could be deployed as a cloud service with multiple orchestrated nodes. Each of these copies is deployed using the same key; therefore, all the nodes represent the same client instance to the AS. In such cases, it can be difficult, or even impossible, to update the keys on all these copies in the same instant.
 The need to accommodate such known delays in the system needs to be balanced with the risk of allowing an old key to still be used. Narrowly restricting the exposure opportunities for exploit at the AS in terms of time, place, and method makes exploit significantly more difficult, especially if the exception happens only once. For example, the AS can reject requests from the previously bound key (or any previous one before it) to cause rotation to a new key or at least ensure that the rotation happens in an idempotent way to the same new key.
 See also the related considerations for token values in .

 Interaction Finish Modes and Polling
 During the interaction process, the client instance usually hands control of the user experience
over to another component, be it the system browser, another application, or some action
the RO is instructed to take on another device. By using an interaction finish
method, the client instance can be securely notified by the AS when the interaction is completed
and the next phase of the protocol should occur. This process includes information that the
client instance can use to validate the finish call from the AS and prevent some injection,
session hijacking, and phishing attacks.
 Some types of client deployment are unable to receive an interaction finish message.
Without an interaction finish method to notify it, the client instance will need to poll the
grant continuation API while waiting for the RO to approve or deny the request.
An attacker could take advantage of this situation by capturing the interaction start
parameters and phishing a legitimate user into authorizing the attacker's waiting
client instance, which would in turn have no way of associating the completed interaction
from the targeted user with the start of the request from the attacker.
 However, it is important to note that this pattern is practically indistinguishable
from some legitimate use cases. For example, a smart device emits a code for
the RO to enter on a separate device. The smart device has to poll
because the expected behavior is that the interaction will take place on the separate
device, without a way to return information to the original device's context.
 As such, developers need to weigh the risks of forgoing an interaction finish
method against the deployment capabilities of the client software and its
environment. Due to the increased security, an interaction finish method should
be employed whenever possible.

 Session Management for Interaction Finish Methods
 When using an interaction finish method such as redirect or push, the client instance receives
an unsolicited inbound request from an unknown party over HTTPS. The client
instance needs to be able to successfully associate this incoming request with a specific pending
grant request being managed by the client instance. If the client instance is not careful and precise about
this, an attacker could associate their own session at the client instance with a stolen interaction
response. The means of preventing this vary by the type of client software and interaction methods in use.
Some common patterns are enumerated here.
 If the end user interacts with the client instance through a web browser and the redirect
interaction finish method is used, the client instance can ensure that the incoming HTTP request
from the finish method is presented in the same browser session that the grant request was
started in. This technique is particularly useful when the redirect interaction start mode
is used as well, since in many cases, the end user will follow the redirection with the
same browser that they are using to interact with the client instance.
The client instance can then store the relevant pending grant information in the
session, either in the browser storage directly (such as with a single-page application) or
in an associated session store on a backend server. In both cases, when the incoming request
reaches the client instance, the session information can be used to ensure that the same party
that started the request is present as the request finishes.
 Ensuring that the same party that started a request is present when that request finishes can
prevent phishing attacks, where an attacker starts a request at an honest client instance and
tricks an honest RO into authorizing it. For example, if an honest end user (that also acts as the
RO) wants to start a request through a client instance controlled by the attacker, the attacker can
start a request at an honest client instance and then redirect the honest end user to the
interaction URI from the attackers session with the honest client instance. If the honest end user
then fails to realize that they are not authorizing the attacker-controlled client instance (with which
it started its request) but instead the honest client instance when interacting with the AS, the attacker's
session with the honest client instance would be authorized. This would give the attacker access to
the honest end user's resources that the honest client instance is authorized to access. However,
if after the interaction, the AS redirects the honest end user back to the client instance whose
grant request the end user just authorized, the honest end user is redirected to the honest client
instance. The honest client instance can then detect that the end user is not the party that started the
request, since the request at the honest client instance was started by the
attacker. This detection can prevent the attack. This is related to the discussion in , because again
the attack can be prevented by the AS informing the user as much as possible about the client
instance that is to be authorized.
 If the end user does not interact with the client instance through a web browser or the interaction
start method does not use the same browser or device that the end user is interacting through
(such as the launch of a second device through a scannable code or presentation of a user code), the
client instance will not be able to strongly associate an incoming HTTP request with an established
session with the end user. This is also true when the push interaction finish method is used,
since the HTTP request comes directly from the interaction component of the AS. In these
circumstances, the client instance can at least ensure that the incoming HTTP
request can be uniquely associated with an ongoing grant request by making the interaction finish
callback URI unique for the grant when making the interaction request ().
Mobile applications and other client instances that generally serve only a single end user at a time
can use this unique incoming URL to differentiate between a legitimate incoming request and
an attacker's stolen request.

 Calculating Interaction Hash
 While the use of GNAP's signing mechanisms and token-protected grant API provides
significant security protections to the protocol, the interaction reference mechanism
is susceptible to monitoring, capture, and injection by an attacker. To combat this, GNAP
requires the calculation and verification of an interaction hash. A client instance
might be tempted to skip this step, but doing so leaves the client instance open to
injection and manipulation by an attacker that could lead to additional issues.
 The calculation of the interaction hash value provides defense in depth, allowing a client
instance to protect itself from spurious injection of interaction references when using an
interaction finish method. The AS is protected during this attack through the
continuation access token being bound to the expected interaction reference,
but without hash calculation, the attacker could cause the client to make an
HTTP request on command, which could itself be manipulated -- for example, by including
a malicious value in the interaction reference designed to attack the AS.
With both of these in place, an attacker attempting to substitute the interaction reference
is stopped in several places.

 Interaction Hash Attack

 User
 Attacker
 Client
 AS
 Instance
 1
 2
 3
 4
 5
 |
 |
 6
 A
 B
 C
 D
 |
 |
 E
 7
 F
 G

 .----. .------. +--------+ +--------+
User		Attacker		Client		AS
				Instance		
		+=(1)=>				
				+-(2)->		
					<-(3)-+	
			<=(4)=+			
		+==(5)================>				
			<================(6)==+			
+==(A)================>						
				+-(B)->		
					<-(C)-+	
	<=================(D)=+					
+==(E)================================>						
	<=(7)=+					
+==(F)================>						
				+-(G)->		
 `----` `------` +--------+ +--------+

 Prerequisites: The client instance can allow multiple end users to
 access the same AS. The attacker is attempting to associate their rights
 with the target user's session.

 (1) The attacker starts a session at the client instance.

 (2) The client instance creates a grant request with nonce CN1.

 (3) The AS responds to the grant request with a
 need to interact, nonce SN1, and a continuation token, CT1.

 (4) The client instructs the attacker to interact at the AS.

 (5) The attacker interacts at the AS.

 (6) The AS completes the interact finish with interact reference IR1 and
 interact hash IH1 calculated from (CN1 + SN1 + IR1 + AS).
 The attacker prevents IR1 from returning to the client instance.

 (A) The target user starts a session at the client instance.

 (B) The client instance creates a grant request with nonce CN2.

 (C) The AS responds to the grant request with a
 need to interact, nonce SN2, and a continuation token, CT2.

 (D) The client instance instructs the user to interact at the AS.

 (E) The target user interacts at the AS.

 (7) Before the target user can complete their interaction, the attacker
 delivers their own interact reference IR1 into the user's session. The attacker
 cannot calculate the appropriate hash because the attacker does not have
 access to CN2 and SN2.

 (F) The target user triggers the interaction finish in their own session
 with the attacker's IR1.

 (G) If the client instance is checking the interaction hash, the attack
 stops here because the hash calculation of (CN2 + SN2 + IR1 + AS) will fail.
 If the client instance does not check the interaction hash, the client instance
 will be tricked into submitting the interaction reference to the AS. Here, the AS will
 reject the interaction request because it is presented against CT2 and not
 CT1 as expected. However, an attacker who has potentially injected CT1 as
 the value of CT2 would be able to continue the attack.

 Even with additional checks in place, client instances using interaction finish mechanisms are responsible
for checking the interaction hash to provide security to the overall system.

 Storage of Information during Interaction and Continuation
 When starting an interactive grant request, a client application has a number of protocol elements
that it needs to manage, including nonces, references, keys, access tokens, and other elements.
During the interaction process, the client instance usually hands control of the user experience
over to another component, be it the system browser, another application, or some action
the RO is instructed to take on another device. In order for the client instance
to make its continuation call, it will need to recall all of these protocol elements at a future time. Usually,
this means the client instance will need to store these protocol elements in some retrievable
fashion.
 If the security protocol elements are stored on the end user's device, such as in browser
storage or in local application data stores, capture and exfiltration of this information could
allow an attacker to continue a pending transaction instead of the client instance. Client
software can make use of secure storage mechanisms, including hardware-based key and data
storage, to prevent such exfiltration.
 Note that in GNAP, the client instance has to choose its interaction finish URI prior to making
the first call to the AS. As such, the interaction finish URI will often have a unique identifier
for the ongoing request, allowing the client instance to access the correct portion of its
storage. Since this URI is passed to other parties and often used through a browser,
this URI should not contain any security-sensitive information that would be
valuable to an attacker, such as any token identifier, nonce, or user information. Instead, a
cryptographically random value is suggested, and that value should be used to index into
a secure session or storage mechanism.

 Denial of Service (DoS) through Grant Continuation
 When a client instance starts off an interactive process, it will eventually need to continue the grant
request in a subsequent message to the AS. It's possible for a naive client implementation to continuously
send continuation requests to the AS while waiting for approval, especially if no interaction
finish method is used. Such constant requests could overwhelm the AS's ability to respond to both
these and other requests.
 To mitigate this for well-behaved client software, the continuation response contains a wait parameter
that is intended to tell the client instance how long it should wait until making its next request.
This value can be used to back off client software that is checking too quickly by returning increasing
wait times for a single client instance.
 If client software ignores the wait value and makes its continuation calls too quickly or if the
client software assumes the absence of the wait values means it should poll immediately, the AS
can choose to return errors to the offending client instance, including possibly canceling the
ongoing grant request. With well-meaning client software, these errors can indicate a need to change
the client software's programmed behavior.

 Exhaustion of Random Value Space
 Several parts of the GNAP process make use of unguessable randomized values, such as nonces,
tokens, user codes, and randomized URIs. Since these values are intended to be unique, a sufficiently
powerful attacker could make a large number of requests to trigger generation of randomized
values in an attempt to exhaust the random number generation space. While this attack is
particularly applicable to the AS, client software could likewise be targeted by an attacker
triggering new grant requests against an AS.
 To mitigate this, software can ensure that its random values are chosen from a significantly
large pool so that exhaustion of that pool is prohibitive for an attacker. Additionally, the
random values can be time-boxed in such a way that their validity windows are reasonably short.
Since many of the random values used within GNAP are used within limited portions of the protocol,
it is reasonable for a particular random value to be valid for only a small amount of time.
For example, the nonces used for interaction finish hash calculation need only to be valid while
the client instance is waiting for the finish callback and can be functionally expired
when the interaction has completed. Similarly, artifacts like access tokens and the interaction
reference can be limited to have lifetimes tied to their functional utility. Finally, each
different category of artifact (nonce, token, reference, identifier, etc.) can be
generated from a separate random pool of values instead of a single global value space.

 Front-Channel URIs
 Some interaction methods in GNAP make use of URIs accessed through the end user's browser,
known collectively as front-channel communication. These URIs are most notably present in
the redirect interaction start method and the redirect interaction finish mode. Since
these URIs are intended to be given to the end user, the end user and their browser will be
subjected to anything hosted at that URI including viruses, malware, and phishing scams. This
kind of risk is inherent to all redirection-based protocols, including GNAP, when used in this way.
 When talking to a new or unknown AS, a client instance might want to check the URI from the
interaction start against a blocklist and warn the end user before redirecting them. Many
client instances will provide an interstitial message prior to redirection in order to prepare
the user for control of the user experience being handed to the domain of the AS, and such a
method could be used to warn the user of potential threats (for instance, a rogue AS impersonating
a well-known service provider). Client software can also prevent this by managing an allowlist
of known and trusted ASes.
 Alternatively, an attacker could start a GNAP request with a known and trusted AS but include
their own attack site URI as the callback for the redirect finish method. The attacker would then send
the interaction start URI to the victim and get them to click on it. Since the URI is at
the known AS, the victim is inclined to do so. The victim will then be prompted to approve the
attacker's application, and in most circumstances, the victim will then be redirected to the
attacker's site whether or not the user approved the request. The AS could mitigate this partially
by using a blocklist and allowlist of interaction finish URIs during the client instance's
initial request, but this approach can be especially difficult if the URI has any dynamic portion
chosen by the client software. The AS can couple these checks with policies associated with the
client instance that has been authenticated in the request. If the AS has any doubt about the
interaction finish URI, the AS can provide an interstitial warning to the end user before
processing the redirect.
 Ultimately, all protocols that use redirect-based communication through the user's browser are
susceptible to having an attacker try to co-opt one or more of those URIs in order to harm the
user. It is the responsibility of the AS and the client software to provide appropriate warnings,
education, and mitigation to protect end users.

 Processing Assertions
 Identity assertions can be used in GNAP to convey subject information, both from the AS to the
client instance in a response () and from the client instance to the AS in
a request (). In both of these circumstances, when an assertion is passed in
GNAP, the receiver of the assertion needs to parse and process the assertion. As assertions are
complex artifacts with their own syntax and security, special care needs to be taken to prevent the
assertion values from being used as an attack vector.
 All assertion processing needs to account for the security aspects of the assertion format in
use. In particular, the processor needs to parse the assertion from a JSON string object
and apply the appropriate cryptographic processes to ensure the integrity of the assertion.
 For example, when SAML 2.0 assertions are used, the receiver has to parse an XML document. There are
many well-known security vulnerabilities in XML parsers, and the XML standard itself can be
attacked through the use of processing instructions and entity expansions to cause problems
with the processor. Therefore, any system capable of processing SAML 2.0 assertions also needs to
have a secure and correct XML parser. In addition to this, the SAML 2.0 specification uses XML
Signatures, which have their own implementation problems that need to be accounted for. Similar
requirements exist for OpenID Connect ID Token, which is based on the JWT format
and the related JOSE cryptography suite.

 Stolen Token Replay
 If a client instance can request tokens at multiple ASes and the client instance uses the same keys
to make its requests across those different ASes, then it is possible for an attacker to replay a
stolen token issued by an honest AS from a compromised AS, thereby binding the stolen token to
the client instance's key in a different context. The attacker can manipulate the client instance
into using the stolen token at an RS, particularly at an RS that is expecting a token from the
honest AS. Since the honest AS issued the token and the client instance presents the token with
its expected bound key, the attack succeeds.
 This attack has several preconditions. In this attack, the attacker does not need access to the
client instance's key and cannot use the stolen token directly at the RS, but the attacker is able
to get the access token value in some fashion. The client instance also needs to be configured to
talk to multiple ASes, including the attacker's controlled AS. Finally, the client instance needs
to be able to be manipulated by the attacker to call the RS while using a token issued from the
stolen AS. The RS does not need to be compromised or made to trust the attacker's AS.
 To protect against this attack, the client instance can use a different key for each AS that it
talks to. Since the replayed token will be bound to the key used at the honest AS, the
uncompromised RS will reject the call since the client instance will be using the key used at
the attacker's AS instead with the same token.
When the MTLS key proofing method is used, a client instance can use self-signed
certificates to use a different key for each AS that it talks to, as discussed in
 .
 Additionally, the client instance can keep a strong association between the RS and a specific AS
that it trusts to issue tokens for that RS. This strong binding also helps against some forms of
AS mix-up attacks (). Managing this binding is outside the scope of this specification,
but it can be managed either as a configuration element for the client instance or dynamically
through discovering the AS from the RS ().
 The details of this attack, with additional discussion and considerations, are available in Section 3.2 of .

 Self-Contained Stateless Access Tokens
 The contents and format of the access token are at the discretion of the AS and are opaque
to the client instance within GNAP. As discussed in
 , the AS and RS can make use of stateless access tokens
with an internal structure and format. These access tokens allow an RS to validate the token without
having to make any external calls at runtime, allowing for benefits in some deployments, the
discussion of which is outside the scope of this specification.
 However, the use of such self-contained access tokens has an effect on the ability of the AS to
provide certain functionality defined within this specification. Specifically, since the access
token is self-contained, it is difficult or impossible for an AS to signal to all RSs within an
ecosystem when a specific access token has been revoked. Therefore, an AS in such an ecosystem
should probably not offer token revocation functionality to client instances, since the client
instance's calls to such an endpoint are effectively meaningless. However, a client instance calling
the token revocation function will also throw out its copy of the token, so such a placebo endpoint
might not be completely meaningless. Token rotation is similarly difficult because the AS has to
revoke the old access token after a rotation call has been made. If the access tokens are
completely self-contained and non-revocable, this means that there will be a period of time during
which both the old and new access tokens are valid and usable, which is an increased security risk
for the environment.
 These problems can be mitigated by keeping the validity time windows of self-contained access tokens
reasonably short, limiting the time after a revocation event that a revoked token could be used.
Additionally, the AS could proactively signal to RSs under its control identifiers for revoked
tokens that have yet to expire. This type of information push would be expected to be relatively
small and infrequent, and its implementation is outside the scope of this specification.

 Network Problems and Token and Grant Management
 If a client instance makes a call to rotate an access token but the network connection is dropped
before the client instance receives the response with the new access token, the system as a whole
can end up in an inconsistent state, where the AS has already rotated the old access token and
invalidated it, but the client instance only has access to the invalidated access token and not the
newly rotated token value. If the client instance retries the rotation request, it would fail
because the client is no longer presenting a valid and current access token. A similar situation
can occur during grant continuation, where the same client instance calls to continue or update
a grant request without successfully receiving the results of the update.
 To combat this, both
grant management () and token management () can be designed to be
idempotent, where subsequent calls to the same function with the same credentials are meant to
produce the same results. For example, multiple calls to rotate the same access token need to
result in the same rotated token value, within a reasonable time window.
 In practice, an AS can hold onto an old token value for such limited purposes. For example, to
support rotating access tokens over unreliable networks, the AS receives the initial request to
rotate an access token and creates a new token value and returns it. The AS also marks the old
token value as having been used to create the newly rotated token value. If the AS sees the old
token value within a small enough time window, such as a few seconds since the first rotation
attempt, the AS can return the same rotated access token value. Furthermore, once the system has seen the
newly rotated token in use, the original token can be discarded because the client instance has
proved that it did receive the token. The result of this is a system that is
eventually self-consistent without placing an undue complexity burden on the client instance
to manage problematic networks.

 Server-Side Request Forgery (SSRF)
 There are several places within GNAP where a URI can be given to a party, causing it to fetch that
URI during normal operation of the protocol. If an attacker is able to control the value of one of
these URIs within the protocol, the attacker could cause the target system to execute a request on
a URI that is within reach of the target system but normally unavailable to the attacker.
Examples include an attacker sending a URL of http://localhost/admin to cause the server to access an
internal function on itself or https://192.168.0.14/ to call a service behind a firewall.
Even if the attacker does not gain access to the results of the call, the side effects of such
requests coming from a trusted host can be problematic to the security and sanctity of such
otherwise unexposed endpoints. This can be particularly problematic if such a URI is used to
call non-HTTP endpoints, such as remote code execution services local to the AS.
 The most vulnerable place in this specification is the
push-based post-interaction finish method (), as the client instance is
less trusted than the AS and can use this method to make the AS call an arbitrary URI. While it is
not required by the protocol, the AS can fetch other URIs provided by the client instance, such as the logo
image or home page, for verification or privacy-preserving purposes before displaying them to the
RO as part of a consent screen. Even if the AS does not fetch these URIs, their use in
GNAP's normal operation could cause an attack against the end user's browser as it fetches these
same attack URIs. Furthermore, extensions to GNAP that allow or require
URI fetch could also be similarly susceptible, such as a system for having the AS fetch a client
instance's keys from a presented URI instead of the client instance presenting the key by value.
Such extensions are outside the scope of this specification, but any system deploying such an
extension would need to be aware of this issue.
 To help mitigate this problem, similar approaches that protect parties against
malicious redirects () can be used. For example, all URIs that can result
in a direct request being made by a party in the protocol can be filtered through an allowlist or
blocklist. For example, an AS that supports the push-based interaction finish method can compare the
callback URI in the interaction request to a known URI for a pre-registered client instance, or it
can ensure that the URI is not on a blocklist of sensitive URLs such as internal network addresses.
However, note that because these types of calls happen outside of the view of human interaction,
it is not usually feasible to provide notification and warning to someone before the request
needs to be executed, as is the case with redirection URLs. As such, SSRF is somewhat more difficult
to manage at runtime, and systems should generally refuse to fetch a URI if unsure.

 Multiple Key Formats
 All keys presented by value are only allowed to be in a single format. While it would seem
beneficial to allow keys to be sent in multiple formats in case the receiver doesn't understand
one or more of the formats used, there are security issues with such a feature.
If multiple keys formats are allowed,
receivers of these key definitions would need to be able to make sure that it's the same
key represented in each field and not simply use one of the key formats without checking for
equivalence. If equivalence is not carefully checked, it is possible for an attacker to insert
their own key into one of the formats without needing to have control over the other formats. This
could potentially lead to a situation where one key is used by part of the system (such as
identifying the client instance) and a different key in a different format in the same message is
used for other things (such as calculating signature validity). However, in such cases, it is
impossible for the receiver to ensure that all formats contain the same key information since it is
assumed that the receiver cannot understand all of the formats.
 To combat this, all keys presented by value have to be in exactly one supported format known
by the receiver as discussed in . In most cases, a client instance is going to be configured with its keys in a
single format, and it will simply present that format as is to the AS in its request. A client
instance capable of multiple formats can use AS discovery () to determine which formats
are supported, if desired. An AS should be generous in supporting many different key formats to
allow different types of client software and client instance deployments. An AS implementation
should try to support multiple formats to allow a variety of client software to connect.

 Asynchronous Interactions
 GNAP allows the RO to be contacted by the AS asynchronously, outside the regular flow of the
protocol. This allows for some advanced use cases, such as cross-user authentication or information
release, but such advanced use cases have some distinct issues that implementors need to be fully
aware of before using these features.
 First, in many applications, the return of subject information to the client instance could
indicate to the client instance that the end user is the party represented by that information,
functionally allowing the end user to authenticate to the client application. While the details of
a fully functional authentication protocol are outside the scope of GNAP, it is a common
exercise for a client instance to request information about the end user. This is facilitated
by several interaction methods () defined in GNAP that allow the end user
to begin interaction directly with the AS. However, when the subject of the information is
intentionally not the end user, the client application will need some way to differentiate between
requests for authentication of the end user and requests for information about a different user.
Confusing these states could lead to an attacker having their account associated with a privileged
user. Client instances can mitigate this by having distinct code paths for primary end-user
authentication and for requesting subject information about secondary users, such as in a call center.
In such use cases, the client software used by the RO (the caller) and the end user
(the agent) are generally distinct, allowing the AS to differentiate between the agent's corporate device
making the request and the caller's personal device approving the request.
 Second, ROs that interact asynchronously do not usually have the same context as an end user in an
application attempting to perform the task needing authorization. As such, the asynchronous requests
for authorization coming to the RO from the AS might have very little to do with what the RO is
doing at the time. This situation can consequently lead to authorization fatigue on the part of the
RO, where any incoming authorization request is quickly approved and dispatched without the RO
making a proper verification of the request. An attacker can exploit this fatigue and get the RO
to authorize the attacker's system for access. To mitigate this, AS systems deploying asynchronous
authorization should only prompt the RO when the RO is expecting such a request, and significant
user experience engineering efforts need to be employed to ensure that the RO can clearly make the
appropriate security decision. Furthermore, audit capability and the ability to undo access
decisions that may be ongoing are particularly important in the asynchronous case.

 Compromised RS
 An attacker may aim to gain access to confidential or sensitive resources. The measures for hardening and monitoring RS systems (beyond protection with access tokens) are out of the scope of this document, but the use of GNAP to protect a system does not absolve the RS of following best practices.
GNAP generally considers that a breach can occur and therefore advises to prefer key-bound tokens whenever possible, which at least limits the impact of access token leakage by a compromised or malicious RS.

 AS-Provided Token Keys
 While the most common token-issuance pattern is to bind the access token to the client instance's
presented key, it is possible for the AS to provide a binding key along with an access token, as
shown by the key field of the token response in . This practice allows
for an AS to generate and manage the keys associated with tokens independently of the keys known
to client instances.
 If the key material is returned by value from the AS, then the client instance will simply use this
key value when presenting the token. This can be exploited by an attacker to issue a compromised token
to an unsuspecting client, assuming that the client instance trusts the attacker's AS to issue tokens
for the target RS. In this attack, the attacker first gets a token bound to a key under the attacker's
control. This token is likely bound to an authorization or account controlled by the attacker.
The attacker then reissues that same token to the client instance, this time acting as an AS. The attacker
can return their own key to the client instance, tricking the client instance into using the attacker's
token. Such an attack is also possible when the key is returned by reference, if the attacker
is able to provide a reference meaningful to the client instance that references a key under the attacker's
control. This substitution attack is similar to some of the main issues found with bearer tokens
as discussed in .
 Returning a key with an access token should be limited to circumstances where both the client and AS
can be verified to be honest and when the trade-off of not using a client instance's own keys
is worth the additional risk.

 Privacy Considerations
 The privacy considerations in this section are modeled after the list of privacy threats in "Privacy Considerations for Internet Protocols" and either explain how these threats are mitigated or advise how the threats relate to GNAP.

 Surveillance
 Surveillance is the observation or monitoring of an individual's communications or activities. Surveillance can be conducted by observers or eavesdroppers at any point along the communications path.
 GNAP assumes the TLS protection used throughout the spec is intact. Without the protection of TLS, there are many points throughout the use of GNAP that could lead to possible surveillance. Even with the proper use of TLS, surveillance could occur by several parties outside of the TLS-protected channels, as discussed in the subsections below.

 Surveillance by the Client
 The purpose of GNAP is to authorize clients to be able to access information on behalf of a user. So while it is expected that the client may be aware of the user's identity as well as data being fetched for that user, in some cases, the extent of the client may be beyond what the user is aware of. For example, a client may be implemented as multiple distinct pieces of software, such as a logging service or a mobile application that reports usage data to an external backend service. Each of these pieces could gain information about the user without the user being aware of this action.
 When the client software uses a hosted asset for its components, such as its logo image, the fetch of these assets can reveal user actions to the host. If the AS presents the logo URI to the RO in a browser page, the browser will fetch the logo URL from the authorization screen. This fetch will tell the host of the logo image that someone is accessing an instance of the client software and requesting access for it. This is particularly problematic when the host of the asset is not the client software itself, such as when a content delivery network is used.

 Surveillance by the Authorization Server
 The role of the AS is to manage the authorization of client instances to protect access to the user's data. In this role, the AS is by definition aware of each authorization of a client instance by a user. When the AS shares user information with the client instance, it needs to make sure that it has the permission from that user to do so.
 Additionally, as part of the authorization grant process, the AS may be aware of which RSs the client intends to use an access token at. However, it is possible to design a system using GNAP in which this knowledge is not made available to the AS, such as by avoiding the use of the locations object in the authorization request.
 If the AS's implementation of access tokens is such that it requires an RS callback to the AS to validate them, then the AS will be aware of which RSs are actively in use and by which users and clients. To avoid this possibility, the AS would need to structure access tokens in such a way that they can be validated by the RS without notifying the AS that the token is being validated.

 Stored Data
 Several parties in the GNAP process are expected to persist data at least
temporarily, if not semi-permanently, for the normal functioning of the
system. If compromised, this could lead to exposure of sensitive
information. This section documents the potentially sensitive information each
party in GNAP is expected to store for normal operation. Naturally, it is
possible for any party to store information related to protocol mechanics
(such as audit logs, etc.) for longer than is technically necessary.

 The AS is expected to store Subject Identifiers for users indefinitely, in order to be able to include them in the responses to clients. The AS is also expected to store client key identifiers associated with display information about the client, such as its name and logo.
 The client is expected to store its client instance key indefinitely, in order to authenticate to the AS for the normal functioning of the GNAP flows. Additionally, the client will be temporarily storing artifacts issued by the AS during a flow, and these artifacts ought to be discarded by the client when the transaction is complete.
 The RS is not required to store any state for its normal operation, as far as its part in implementing GNAP. Depending on the implementation of access tokens, the RS may need to cache public keys from the AS in order to validate access tokens.

 Intrusion
 Intrusion refers to the ability of various parties to send unsolicited messages or cause denial of service for unrelated parties.
 If the RO is different from the end user, there is an opportunity for the end user to cause unsolicited messages to be sent to the RO if the system prompts the RO for consent when an end user attempts to access their data.
 The format and contents of Subject Identifiers are intentionally not defined by GNAP. If the AS uses values for Subject Identifiers that are also identifiers for communication channels (e.g., an email address or phone number), this opens up the possibility for a client to learn this information when it was not otherwise authorized to access this kind of data about the user.

 Correlation
 The threat of correlation is the combination of various pieces of information related to an individual in a way that defies their expectations of what others know about them.

 Correlation by Clients
 The biggest risk of correlation in GNAP is when an AS returns stable, consistent user identifiers to multiple different applications. In this case, applications created by different parties would be able to correlate these user identifiers out of band in order to know which users they have in common.
 The most common example of this in practice is tracking for advertising purposes, such that a client shares their list of user IDs with an ad platform that is then able to retarget ads to applications created by other parties. In contrast, a positive example of correlation is a corporate acquisition where two previously unrelated clients now do need to be able to identify the same user between the two clients, such as when software systems are intentionally connected by the end user.
 Another means of correlation comes from the use of RS-first discovery (). A client instance that knows nothing other than an RS's URL could make an unauthenticated call to the RS and learn which AS protects the resources there. If the client instance knows something about the AS, such as it being a single-user AS or belonging to a specific organization, the client instance could, through association, learn things about the resource without ever gaining access to the resource itself.

 Correlation by Resource Servers
 Unrelated RSs also have an opportunity to correlate users if the AS includes stable user identifiers in access tokens or in access token introspection responses.
 In some cases, an RS may not actually need to be able to identify users (such as an RS providing access to a company cafeteria menu, which only needs to validate whether the user is a current employee), so ASes should be thoughtful of when user identifiers are actually necessary to communicate to RSs for the functioning of the system.
 However, note that the lack of inclusion of a user identifier in an access token may be a risk if there is a concern that two users may voluntarily share access tokens between them in order to access protected resources. For example, if a website wants to limit access to only people over 18, and such does not need to know any user identifiers, an access token may be issued by an AS contains only the claim "over 18". If the user is aware that this access token doesn't reference them individually, they may be willing to share the access token with a user who is under 18 in order to let them get access to the website. (Note that the binding of an access token to a non-extractable client instance key also prevents the access token from being voluntarily shared.)

 Correlation by Authorization Servers
 Clients are expected to be identified by their client instance key. If a particular client instance key is used at more than one AS, this could open up the possibility for multiple unrelated ASes to correlate client instances. This is especially a problem in the common case where a client instance is used by a single individual, as it would allow the ASes to correlate that individual between them. If this is a concern of a client, the client should use distinct keys with each AS.

 Disclosure in Shared References
 Throughout many parts of GNAP, the parties pass shared references between each other, sometimes in place of the values themselves (for example, the interact_ref value used throughout the flow). These references are intended to be random strings and should not contain any private or sensitive data that could potentially leak information between parties.

 References

 Normative References

 Deprecating TLS 1.0 and TLS 1.1

 This document formally deprecates Transport Layer Security (TLS) versions 1.0 (RFC 2246) and 1.1 (RFC 4346). Accordingly, those documents have been moved to Historic status. These versions lack support for current and recommended cryptographic algorithms and mechanisms, and various government and industry profiles of applications using TLS now mandate avoiding these old TLS versions. TLS version 1.2 became the recommended version for IETF protocols in 2008 (subsequently being obsoleted by TLS version 1.3 in 2018), providing sufficient time to transition away from older versions. Removing support for older versions from implementations reduces the attack surface, reduces opportunity for misconfiguration, and streamlines library and product maintenance.
 This document also deprecates Datagram TLS (DTLS) version 1.0 (RFC 4347) but not DTLS version 1.2, and there is no DTLS version 1.1.
 This document updates many RFCs that normatively refer to TLS version 1.0 or TLS version 1.1, as described herein. This document also updates the best practices for TLS usage in RFC 7525; hence, it is part of BCP 195.

 Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide range of application protocols and can also form the basis for secure transport protocols. Over the years, the industry has witnessed several serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation. This document provides the latest recommendations for ensuring the security of deployed services that use TLS and DTLS. These recommendations are applicable to the majority of use cases.
 RFC 7525, an earlier version of the TLS recommendations, was published when the industry was transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely available. This document updates the guidance given the new environment and obsoletes RFC 7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.

 Named Information Hash Algorithm Registry

 IANA

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 OpenID Connect Core 1.0 incorporating errata set 2

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The "data" URL scheme

 A new URL scheme, "data", is defined. It allows inclusion of small data items as "immediate" data, as if it had been included externally. [STANDARDS-TRACK]

 Date and Time on the Internet: Timestamps

 This document defines a date and time format for use in Internet protocols that is a profile of the ISO 8601 standard for representation of dates and times using the Gregorian calendar.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 The Base16, Base32, and Base64 Data Encodings

 This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. [STANDARDS-TRACK]

 Tags for Identifying Languages

 This document describes the structure, content, construction, and semantics of language tags for use in cases where it is desirable to indicate the language used in an information object. It also describes how to register values for use in language tags and the creation of user-defined extensions for private interchange. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The OAuth 2.0 Authorization Framework

 The OAuth 2.0 authorization framework enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction between the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf. This specification replaces and obsoletes the OAuth 1.0 protocol described in RFC 5849. [STANDARDS-TRACK]

 The OAuth 2.0 Authorization Framework: Bearer Token Usage

 This specification describes how to use bearer tokens in HTTP requests to access OAuth 2.0 protected resources. Any party in possession of a bearer token (a "bearer") can use it to get access to the associated resources (without demonstrating possession of a cryptographic key). To prevent misuse, bearer tokens need to be protected from disclosure in storage and in transport. [STANDARDS-TRACK]

 Textual Encodings of PKIX, PKCS, and CMS Structures

 This document describes and discusses the textual encodings of the Public-Key Infrastructure X.509 (PKIX), Public-Key Cryptography Standards (PKCS), and Cryptographic Message Syntax (CMS). The textual encodings are well-known, are implemented by several applications and libraries, and are widely deployed. This document articulates the de facto rules by which existing implementations operate and defines them so that future implementations can interoperate.

 JSON Web Signature (JWS)

 JSON Web Signature (JWS) represents content secured with digital signatures or Message Authentication Codes (MACs) using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and an IANA registry defined by that specification. Related encryption capabilities are described in the separate JSON Web Encryption (JWE) specification.

 JSON Web Key (JWK)

 A JSON Web Key (JWK) is a JavaScript Object Notation (JSON) data structure that represents a cryptographic key. This specification also defines a JWK Set JSON data structure that represents a set of JWKs. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries established by that specification.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens

 This document describes OAuth client authentication and certificate-bound access and refresh tokens using mutual Transport Layer Security (TLS) authentication with X.509 certificates. OAuth clients are provided a mechanism for authentication to the authorization server using mutual TLS, based on either self-signed certificates or public key infrastructure (PKI). OAuth authorization servers are provided a mechanism for binding access tokens to a client's mutual-TLS certificate, and OAuth protected resources are provided a method for ensuring that such an access token presented to it was issued to the client presenting the token.

 HTTP Caching

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document defines HTTP caches and the associated header fields that control cache behavior or indicate cacheable response messages.
 This document obsoletes RFC 7234.

 HTTP Message Signatures

 This document describes a mechanism for creating, encoding, and verifying digital signatures or message authentication codes over components of an HTTP message. This mechanism supports use cases where the full HTTP message may not be known to the signer and where the message may be transformed (e.g., by intermediaries) before reaching the verifier. This document also describes a means for requesting that a signature be applied to a subsequent HTTP message in an ongoing HTTP exchange.

 Subject Identifiers for Security Event Tokens

 Security events communicated within Security Event Tokens may support a variety of identifiers to identify subjects related to the event. This specification formalizes the notion of Subject Identifiers as structured information that describes a subject and named formats that define the syntax and semantics for encoding Subject Identifiers as JSON objects. It also establishes a registry for defining and allocating names for such formats as well as the JSON Web Token (JWT) "sub_id" Claim.

 Digest Fields

 This document defines HTTP fields that support integrity digests. The Content-Digest field can be used for the integrity of HTTP message content. The Repr-Digest field can be used for the integrity of HTTP representations. Want-Content-Digest and Want-Repr-Digest can be used to indicate a sender's interest and preferences for receiving the respective Integrity fields.
 This document obsoletes RFC 3230 and the Digest and Want-Digest HTTP fields.

 Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) V2.0

 OASIS Standard

 Informative References

 HTTP Authentication Schemes

 IANA

 Security Analysis of Attack Surfaces on the Grant Negotiation and Authorization Protocol

 Master's thesis, Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg

 Grant Negotiation and Authorization Protocol (GNAP)

 IANA

 Grant Negotiation and Authorization Protocol Resource Server Connections

 Bespoke Engineering

 acert.io

 Work in Progress

 Security Analysis of the Grant Negotiation and Authorization Protocol

 Master's thesis, Institute of Information Security, University of Stuggart

 Media Types

 OAuth 2.0 Security Best Current Practice

 SPRIND

 Yubico

 Independent Researcher

 Authlete

 This document describes best current security practice for OAuth 2.0.
 It updates and extends the threat model and security advice given in
 RFC 6749, RFC 6750, and RFC 6819 to incorporate practical experiences
 gathered since OAuth 2.0 was published and covers new threats
 relevant due to the broader application of OAuth 2.0. Further, it
 deprecates some modes of operation that are deemed less secure or
 even insecure.

 Work in Progress

 Promise Theory: Principles and Applications

 Second Edition, XtAxis Press

 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

 This second document defines the general structure of the MIME media typing system and defines an initial set of media types. [STANDARDS-TRACK]

 Guidelines for Cryptographic Key Management

 The question often arises of whether a given security system requires some form of automated key management, or whether manual keying is sufficient. This memo provides guidelines for making such decisions. When symmetric cryptographic mechanisms are used in a protocol, the presumption is that automated key management is generally but not always needed. If manual keying is proposed, the burden of proving that automated key management is not required falls to the proposer. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP

 On today's Internet, the Hypertext Transfer Protocol (HTTP) is often used (some would say abused) to enable asynchronous, "server- initiated" communication from a server to a client as well as communication from a client to a server. This document describes known issues and best practices related to such "bidirectional HTTP" applications, focusing on the two most common mechanisms: HTTP long polling and HTTP streaming. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Media Type Specifications and Registration Procedures

 This document defines procedures for the specification and registration of media types for use in HTTP, MIME, and other Internet protocols. This memo documents an Internet Best Current Practice.

 Privacy Considerations for Internet Protocols

 This document offers guidance for developing privacy considerations for inclusion in protocol specifications. It aims to make designers, implementers, and users of Internet protocols aware of privacy-related design choices. It suggests that whether any individual RFC warrants a specific privacy considerations section will depend on the document's content.

 JSON Web Algorithms (JWA)

 This specification registers cryptographic algorithms and identifiers to be used with the JSON Web Signature (JWS), JSON Web Encryption (JWE), and JSON Web Key (JWK) specifications. It defines several IANA registries for these identifiers.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 PRECIS Framework: Preparation, Enforcement, and Comparison of Internationalized Strings in Application Protocols

 Application protocols using Unicode code points in protocol strings need to properly handle such strings in order to enforce internationalization rules for strings placed in various protocol slots (such as addresses and identifiers) and to perform valid comparison operations (e.g., for purposes of authentication or authorization). This document defines a framework enabling application protocols to perform the preparation, enforcement, and comparison of internationalized strings ("PRECIS") in a way that depends on the properties of Unicode code points and thus is more agile with respect to versions of Unicode. As a result, this framework provides a more sustainable approach to the handling of internationalized strings than the previous framework, known as Stringprep (RFC 3454). This document obsoletes RFC 7564.

 Resource Indicators for OAuth 2.0

 This document specifies an extension to the OAuth 2.0 Authorization Framework defining request parameters that enable a client to explicitly signal to an authorization server about the identity of the protected resource(s) to which it is requesting access.

 Handling Long Lines in Content of Internet-Drafts and RFCs

 This document defines two strategies for handling long lines in width-bounded text content. One strategy, called the "single backslash" strategy, is based on the historical use of a single backslash ('\') character to indicate where line-folding has occurred, with the continuation occurring with the first character that is not a space character (' ') on the next line. The second strategy, called the "double backslash" strategy, extends the first strategy by adding a second backslash character to identify where the continuation begins and is thereby able to handle cases not supported by the first strategy. Both strategies use a self-describing header enabling automated reconstitution of the original content.

 OAuth 2.0 Rich Authorization Requests

 This document specifies a new parameter that is used to carry fine-grained authorization data in OAuth messages.

 Client-Cert HTTP Header Field

 This document describes HTTP extension header fields that allow a TLS terminating reverse proxy (TTRP) to convey the client certificate information of a mutually authenticated TLS connection to the origin server in a common and predictable manner.

 Service Identity in TLS

 Many application technologies enable secure communication between two entities by means of Transport Layer Security (TLS) with Internet Public Key Infrastructure using X.509 (PKIX) certificates. This document specifies procedures for representing and verifying the identity of application services in such interactions.
 This document obsoletes RFC 6125.

 Digital Identity Guidelines: Federation and Assertions

 Subject Identifier Formats

 IANA

 Comparison with OAuth 2.0
 GNAP's protocol design differs from OAuth 2.0's in several fundamental ways:

 Consent and authorization flexibility:

OAuth 2.0 generally assumes the user has access to a web browser. The type of interaction available is fixed by the grant type, and the most common interactive grant types start in the browser. OAuth 2.0 assumes that the user using the client software is the same user that will interact with the AS to approve access.

GNAP allows various patterns to manage authorizations and consents required to fulfill this requested delegation, including information sent by the client instance, information supplied by external parties, and information gathered through the interaction process. GNAP allows a client instance to list different ways that it can start and finish an interaction, and these can be mixed together as needed for different use cases. GNAP interactions can use a browser, but they don't have to. Methods can use inter-application messaging protocols, out-of-band data transfer, or anything else. GNAP allows extensions to define new ways to start and finish an interaction, as new methods and platforms are expected to become available over time. GNAP is designed to allow the end user and the RO to be two different people, but it still works in the optimized case of them being the same party.

 Intent registration and inline negotiation:

OAuth 2.0 uses different "grant types" that start at different endpoints for different purposes. Many of these require discovery of several interrelated parameters.

GNAP requests all start with the same type of request to the same endpoint at the AS. Next steps are negotiated between the client instance and AS based on software capabilities, policies surrounding requested access, and the overall context of the ongoing request. GNAP defines a continuation API that allows the client instance and AS to request and send additional information from each other over multiple steps. This continuation API uses the same access token protection that other GNAP-protected APIs use. GNAP allows discovery to optimize the requests, but it isn't required thanks to the negotiation capabilities.

GNAP is able to handle the life cycle of an authorization request and therefore simplifies the mental model surrounding OAuth2. For instance, there's no need for refresh tokens when the API enables proper rotation of access tokens.

 Client instances:

OAuth 2.0 requires all clients to be registered at the AS and to use a client_id known to the AS as part of the protocol. This client_id is generally assumed to be assigned by a trusted authority during a registration process, and OAuth places a lot of trust on the client_id as a result. Dynamic registration allows different classes of clients to get a client_id at runtime, even if they only ever use it for one request.

GNAP allows the client instance to present an unknown key to the AS and use that key to protect the ongoing request. GNAP's client instance identifier mechanism allows for pre-registered clients and dynamically registered clients to exist as an optimized case without requiring the identifier as part of the protocol at all times.

 Expanded delegation:

	 OAuth 2.0 defines the "scope" parameter for controlling access to APIs.
 This parameter has been coopted to mean a number of
 different things in different protocols, including flags for
 turning special behavior on and off and the return of data
 apart from the access token.
	 The "resource" indicator (defined in) and Rich Authorization Request (RAR) extensions (as defined in) expand on the "scope" concept in similar but different ways.

GNAP defines a rich structure for requesting access (analogous to RAR), with string references as an optimization (analogous to scopes). GNAP defines methods for requesting directly returned user information, separate from API access. This information includes identifiers for the current user and structured assertions. GNAP makes no assumptions or demands on the format or contents of the access token, but the RS extension allows a negotiation of token formats between the AS and RS.

 Cryptography-based security:

OAuth 2.0 uses shared bearer secrets, including the client_secret and access token, and advanced authentication and sender constraints have been built on after the fact in inconsistent ways.

In GNAP, all communication between the client instance and AS is bound to a key held by the client instance. GNAP uses the same cryptographic mechanisms for both authenticating the client (to the AS) and binding the access token (to the RS and the AS). GNAP allows extensions to define new cryptographic protection mechanisms, as new methods are expected to become available over time. GNAP does not have the notion of "public clients" because key information can always be sent and used dynamically.

 Privacy and usable security:

OAuth 2.0's deployment model assumes a strong binding between the AS and the RS.

GNAP is designed to be interoperable with decentralized identity standards and to provide a human-centric authorization layer. In addition to this specification, GNAP supports various patterns of communication between RSs and ASes through extensions. GNAP tries to limit the odds of a consolidation to just a handful of popular AS services.

 Example Protocol Flows
 The protocol defined in this specification provides a number of
features that can be combined to solve many different kinds of
authentication scenarios. This section seeks to show examples of how the
protocol could be applied for different situations.
 Some longer fields, particularly cryptographic information, have been
truncated for display purposes in these examples.

 Redirect-Based User Interaction
 In this scenario, the user is the RO and has access to a web
browser, and the client instance can take front-channel callbacks on the same
device as the user. This combination is analogous to the OAuth 2.0
Authorization Code grant type.
 The client instance initiates the request to the AS. Here, the client instance
identifies itself using its public key.

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 {
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 }
],
 },
 "client": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8..."
 }
 }
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 }
}

 The AS processes the request and determines that the RO needs to
interact. The AS returns the following response that gives the client instance the
information it needs to connect. The AS has also indicated to the
client instance that it can use the given instance identifier to identify itself in
future requests ().

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "interact": {
 "redirect":
 "https://server.example.com/interact/4CF492MLVMSW9MKM",
 "finish": "MBDOFXG4Y5CVJCX821LH"
 }
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue"
 },
 "instance_id": "7C7C4AZ9KHRS6X63AJAO"
}

 The client instance saves the response and redirects the user to the
interaction start mode's "redirect" URI by sending the following HTTP message to the user's
browser.

HTTP 303 Found
Location: https://server.example.com/interact/4CF492MLVMSW9MKM

 The user's browser fetches the AS's interaction URI. The user logs
in, is identified as the RO for the resource being requested, and
approves the request. Since the AS has a callback parameter that was sent in the initial request's interaction finish method, the AS
generates the interaction reference, calculates the hash, and
redirects the user back to the client instance with these additional values
added as query parameters.

NOTE: '\' line wrapping per RFC 8792

HTTP 302 Found
Location: https://client.example.net/return/123455\
 ?hash=x-gguKWTj8rQf7d7i3w3UhzvuJ5bpOlKyAlVpLxBffY\
 &interact_ref=4IFWWIKYBC2PQ6U56NL1

 The client instance receives this request from the user's browser. The
client instance ensures that this is the same user that was sent out by
validating session information and retrieves the stored pending
request. The client instance uses the values in this to validate the hash
parameter. The client instance then calls the continuation URI using the associated continuation access token and presents the
interaction reference in the request content. The client instance signs
the request as above.

POST /continue HTTP/1.1
Host: server.example.com
Content-Type: application/json
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

 The AS retrieves the pending request by looking up the pending grant request associated with the presented continuation access token. Seeing that the grant is approved, the AS issues
an access token and returns this to the client instance.

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token/PRY5NM33O\
 M4TB8N6BW7OZB8CDFONP219RP1L",
 "access": [{
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 }]
 },
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue"
 }
}

 Secondary Device Interaction
 In this scenario, the user does not have access to a web browser on
the device and must use a secondary device to interact with the AS.
The client instance can display a user code or a printable QR code.
The client instance is not able to accept callbacks from the AS and needs to poll
for updates while waiting for the user to authorize the request.
 The client instance initiates the request to the AS.

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "dolphin-metadata", "some other thing"
],
 },
 "client": "7C7C4AZ9KHRS6X63AJAO",
 "interact": {
 "start": ["redirect", "user_code"]
 }
}

 The AS processes this and determines that the RO needs to interact.
The AS supports both redirect URIs and user codes for interaction, so
it includes both. Since there is no interaction finish mode, the AS does not include
a nonce but does include a "wait" parameter on the continuation
section because it expects the client instance to poll for results.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "interact": {
 "redirect": "https://srv.ex/MXKHQ",
 "user_code": {
 "code": "A1BC3DFF"
 }
 },
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue/VGJKPTKC50",
 "wait": 60
 }
}

 The client instance saves the response and displays the user code visually
on its screen along with the static device URI. The client instance also
displays the short interaction URI as a QR code to be scanned.
 If the user scans the code, they are taken to the interaction
endpoint, and the AS looks up the current pending request based on the
incoming URI. If the user instead goes to the static page and enters
the code manually, the AS looks up the current pending request based
on the value of the user code. In both cases, the user logs in, is
identified as the RO for the resource being requested, and approves
the request. Once the request has been approved, the AS displays to
the user a message to return to their device.
 Meanwhile, the client instance polls the AS every 60 seconds at
the continuation URI. The client instance signs the request using the
same key and method that it did in the first request.

POST /continue/VGJKPTKC50 HTTP/1.1
Host: server.example.com
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

 The AS retrieves the pending request based on the pending grant request associated with the continuation access token and
determines that it has not yet been authorized. The AS indicates to
the client instance that no access token has yet been issued but it can
continue to call after another 60-second timeout.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "continue": {
 "access_token": {
 "value": "G7YQT4KQQ5TZY9SLSS5E"
 },
 "uri": "https://server.example.com/continue/ATWHO4Q1WV",
 "wait": 60
 }
}

 Note that the continuation URI and access token have been rotated since they were
used by the client instance to make this call. The client instance polls the
continuation URI after a 60-second timeout using this new information.

POST /continue/ATWHO4Q1WV HTTP/1.1
Host: server.example.com
Authorization: GNAP G7YQT4KQQ5TZY9SLSS5E
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

 The AS retrieves the pending request based on the URI and access token,
determines that it has been approved, and issues an access
token for the client to use at the RS.

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token/PRY5NM33O\
 M4TB8N6BW7OZB8CDFONP219RP1L",
 "access": [
 "dolphin-metadata", "some other thing"
]
 }
}

 No User Involvement
 In this scenario, the client instance is requesting access on its own
behalf, with no user to interact with.
 The client instance creates a request to the AS, identifying itself with its
public key and using MTLS to make the request.

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json

{
 "access_token": {
 "access": [
 "backend service", "nightly-routine-3"
],
 },
 "client": {
 "key": {
 "proof": "mtls",
 "cert#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
 }
}

 The AS processes this, determines that the client instance can ask for
the requested resources, and issues an access token.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token",
 "access": [
 "backend service", "nightly-routine-3"
]
 }
}

 Asynchronous Authorization
 In this scenario, the client instance is requesting on behalf of a specific
RO but has no way to interact with the user. The AS can
asynchronously reach out to the RO for approval in this scenario.
 The client instance starts the request at the AS by requesting a set of
resources. The client instance also identifies a particular user.

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read", "dolphin-metadata",
 {
 "type": "financial-transaction",
 "actions": [
 "withdraw"
],
 "identifier": "account-14-32-32-3",
 "currency": "USD"
 },
 "some other thing"
],
 },
 "client": "7C7C4AZ9KHRS6X63AJAO",
 "user": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
}

 The AS processes this and determines that the RO needs to interact.
The AS determines that it can reach the identified user asynchronously
and that the identified user does have the ability to approve this
request. The AS indicates to the client instance that it can poll for
continuation.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 60
 }
}

 The AS reaches out to the RO and prompts them for consent. In this
example scenario, the AS has an application that it can push notifications to for the specified account.
 Meanwhile, the client instance periodically polls the AS every 60 seconds at
the continuation URI.

POST /continue HTTP/1.1
Host: server.example.com
Authorization: GNAP 80UPRY5NM33OMUKMKSKU
Signature-Input: sig1=...
Signature: sig1=...

 The AS retrieves the pending request based on the continuation access token and
determines that it has not yet been authorized. The AS indicates to
the client instance that no access token has yet been issued but it can
continue to call after another 60-second timeout.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "continue": {
 "access_token": {
 "value": "BI9QNW6V9W3XFJK4R02D"
 },
 "uri": "https://server.example.com/continue",
 "wait": 60
 }
}

 Note that the continuation access token value has been rotated since it was
used by the client instance to make this call. The client instance polls the
continuation URI after a 60-second timeout using the new token.

POST /continue HTTP/1.1
Host: server.example.com
Authorization: GNAP BI9QNW6V9W3XFJK4R02D
Signature-Input: sig1=...
Signature: sig1=...

 The AS retrieves the pending request based on the handle,
determines that it has been approved, and issues an access
token.

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token/PRY5NM33O\
 M4TB8N6BW7OZB8CDFONP219RP1L",
 "access": [
 "dolphin-metadata", "some other thing"
]
 }
}

 Applying OAuth 2.0 Scopes and Client IDs
 While GNAP is not designed to be directly compatible with
OAuth 2.0 , considerations have been made to enable the use of
OAuth 2.0 concepts and constructs more smoothly within GNAP.
 In this scenario, the client developer has a client_id and set of
 scope values from their OAuth 2.0 system and wants to apply them to the
new protocol. In OAuth 2.0, the client developer would put
their client_id and scope values as parameters into a redirect request
to the authorization endpoint.

NOTE: '\' line wrapping per RFC 8792

HTTP 302 Found
Location: https://server.example.com/authorize\
 ?client_id=7C7C4AZ9KHRS6X63AJAO\
 &scope=read%20write%20dolphin\
 &redirect_uri=https://client.example.net/return\
 &response_type=code\
 &state=123455

 Now the developer wants to make an analogous request to the AS
using GNAP. To do so, the client instance makes an HTTP POST and
places the OAuth 2.0 values in the appropriate places.

POST /tx HTTP/1.1
Host: server.example.com
Content-Type: application/json
Signature-Input: sig1=...
Signature: sig1=...
Content-Digest: sha-256=...

{
 "access_token": {
 "access": [
 "read", "write", "dolphin"
],
 "flags": ["bearer"]
 },
 "client": "7C7C4AZ9KHRS6X63AJAO",
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return?state=123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 }
}

 The client_id can be used to identify the client instance's keys that it
uses for authentication, the scopes represent resources that the
client instance is requesting, and the redirect_uri and state value are
pre-combined into a finish URI that can be unique per request. The
client instance additionally creates a nonce to protect the callback, separate
from the state parameter that it has added to its return URI.
 From here, the protocol continues as above.

 Interoperability Profiles
 The GNAP specification has many different modes, options, and mechanisms, allowing it
to solve a wide variety of problems in a wide variety of deployments. The wide applicability
of GNAP makes it difficult, if not impossible, to define a set of mandatory-to-implement
features, since one environment's required feature would be impossible to do in another environment.
While this is a large problem in many systems, GNAP's back-and-forth negotiation process
allows parties to declare at runtime everything that they support and then have the other party
select from that the subset of items that they also support, leading to functional compatibility
in many parts of the protocol even in an open world scenario.
 In addition, GNAP defines a set of interoperability profiles that gather together core requirements
to fix options into common configurations that are likely to be useful to large populations of
similar applications.
 Conformant AS implementations of these profiles MUST implement at least the features as specified
in the profile and MAY implement additional features or profiles. Conformant client implementations
of these profiles MUST implement at least the features as specified, except where a subset of the
features allows the protocol to function (such as using polling instead of a push finish method for
the Secondary Device profile).

 Web-Based Redirection
 Implementations conformant to the web-based redirection profile of GNAP MUST implement all of the following features:

 Interaction Start Methods: redirect
 Interaction Finish Methods: redirect
 Interaction Hash Algorithms: sha-256
 Key Proofing Methods: httpsig with no additional parameters
 Key Formats: jwks with signature algorithm included in the key's alg parameter
 JOSE Signature Algorithm: PS256
 Subject Identifier Formats: opaque
 Assertion Formats: id_token

 Secondary Device
 Implementations conformant to the Secondary Device profile of GNAP MUST implement all of the following features:

 Interaction Start Methods: user_code and user_code_uri
 Interaction Finish Methods: push
 Interaction Hash Algorithms: sha-256
 Key Proofing Methods: httpsig with no additional parameters
 Key Formats: jwks with signature algorithm included in the key's alg parameter
 JOSE Signature Algorithm: PS256
 Subject Identifier Formats: opaque
 Assertion Formats: id_token

 Guidance for Extensions
 Extensions to this specification have a variety of places to alter the protocol, including many
fields and objects that can have additional values in a registry () established by this
specification. For interoperability and to preserve the security of the protocol, extensions should
register new values with IANA by following the specified mechanism. While it may technically be
possible to extend the protocol by adding elements to JSON objects that are not governed by an
IANA registry, a recipient may ignore such values but is also allowed to reject them.
 Most object fields in GNAP are specified with types, and those types can allow different but
related behavior. For example, the access array can include either strings or objects, as
discussed in . The use of JSON polymorphism ()
within GNAP allows extensions to define new fields by not only choosing a new name but also by
using an existing name with a new type. However, the extension's definition
of a new type for a field needs to fit the same kind of item being extended. For example, a
hypothetical extension could define a string value for the access_token request field,
with a URL to download a hosted access token request. Such an extension would be appropriate as
the access_token field still defines the access tokens being requested. However, if an extension
were to define a string value for the access_token request field, with the value instead
being something unrelated to the access token request such as a value or key format, this would
not be an appropriate means of extension. (Note that this specific extension example would create
another form of SSRF attack surface as discussed in .)
 As another example, both interaction start modes () and
key proofing methods () can be defined as either strings or objects. An extension
could take a method defined as a string, such as app, and define an object-based version with
additional parameters. This extension should still define a method to launch an application on the
end user's device, just like app does when specified as a string.
 Additionally, the ability to deal with different types for a field is not expected to be equal
between an AS and client software, with the client software being assumed to be both more varied
and more simplified than the AS. Furthermore, the nature of the negotiation process in GNAP allows
the AS more chance of recovery from unknown situations and parameters. As such, any extensions that
change the type of any field returned to a client instance should only do so when the client
instance has indicated specific support for that extension through some kind of request parameter.

 JSON Structures and Polymorphism
 GNAP makes use of polymorphism within the JSON structures used for
the protocol. Each portion of this protocol is defined in terms of the JSON data type
that its values can take, whether it's a string, object, array, boolean, or number. For some
fields, different data types offer different descriptive capabilities and are used in different
situations for the same field. Each data type provides a different syntax to express
the same underlying semantic protocol element, which allows for optimization and
simplification in many common cases.
 Even though JSON is often used to describe strongly typed structures, JSON on its own is naturally polymorphic.
In JSON, the named members of an object have no type associated with them, and any
data type can be used as the value for any member. In practice, each member
has a semantic type that needs to make sense to the parties creating and
consuming the object. Within this protocol, each object member is defined in terms
of its semantic content, and this semantic content might have expressions in
different concrete data types for different specific purposes. Since each object
member has exactly one value in JSON, each data type for an object member field
is naturally mutually exclusive with other data types within a single JSON object.
 For example, a resource request for a single access token is composed of an object
of resource request descriptions, while a request for multiple access tokens is
composed of an array whose member values are all objects. Both of these represent requests
for access, but the difference in syntax allows the client instance and AS to differentiate
between the two request types in the same request.
 Another form of polymorphism in JSON comes from the fact that the values within JSON
arrays need not all be of the same JSON data type. However, within this protocol,
each element within the array needs to be of the same kind of semantic element for
the collection to make sense, even when the data types are different from each other.
 For example, each aspect of a resource request can be described using an object with multiple
dimensional components, or the aspect can be requested using a string. In both cases, the resource
request is being described in a way that the AS needs to interpret, but with different
levels of specificity and complexity for the client instance to deal with. An API designer
can provide a set of common access scopes as simple strings but still allow
client software developers to specify custom access when needed for more complex APIs.
 Extensions to this specification can use different data types for defined fields, but
each extension needs to not only declare what the data type means but also provide
justification for the data type representing the same basic kind of thing it extends.
For example, an extension declaring an "array" representation for a field would need
to explain how the array represents something akin to the non-array element that it
is replacing. See additional discussion in .

 Acknowledgements
 The authors would like to thank the following
 individuals for their reviews, implementations, and contributions:
 , , ,
 , , , , , ,
 , , , , , ,
 , , , , , , , and
 .
 The authors would also like to thank the GNAP Working Group design
 team (, , , and the authors), who
 incorporated elements from the XAuth and XYZ proposals to create the
 first draft version of this document.
 In addition, the authors would like to thank and for insights into how to
 integrate identity and authentication systems into the core
 protocol. Both and
 developed the use cases, diagrams, and
 insights provided in the XYZ and XAuth proposals that have been
 incorporated here. The authors would like to especially thank and the team at SecureKey for feedback and
 development of early versions of the XYZ protocol that fed into this
 standards work.
 Finally, the authors want to acknowledge the immense contributions of
 to the content of this document. We
 thank him for his insight, input, and hard work, without which GNAP
 would not have grown to what it is.

 Authors' Addresses

 Bespoke Engineering

 ietf@justin.richer.org
 https://bspk.io/

 acert.io

 fabien.imbault@acert.io
 https://acert.io/

