Stream: Internet Engineering Task Force (IETF)

RFC: 9645

Category: Standards Track

Published: October 2024

ISSN: 2070-1721

Author: K. Watsen
Watsen Networks

RFC 9645
YANG Groupings for TLS Clients and TLS Servers

Abstract

This document presents four YANG 1.1 modules -- three IETF modules and one supporting IANA
module.

The three IETF modules are "ietf-tls-common", "ietf-tls-client", and "ietf-tls-server". The "ietf-tls-
client" and "ietf-tls-server" modules are the primary productions of this work, supporting the
configuration and monitoring of TLS clients and servers.

The TANA module is "iana-tls-cipher-suite-algs". This module defines YANG enumerations that
provide support for an IANA-maintained algorithm registry.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9645.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

Watsen Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9645
https://www.rfc-editor.org/info/rfc9645
https://trustee.ietf.org/license-info

RFC 9645 Groupings for TLS Clients and Servers October 2024

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction 3
1.1. Regarding the Three IETF Modules 3
1.2. Relation to Other RFCs 4
1.3. Specification Language 5
1.4. Adherence to the NMDA 6
1.5. Conventions 6

2. The "ietf-tls-common" Module
2.1. Data Model Overview
2.2. Example Usage 9
2.3. YANG Module 11

3. The "ietf-tls-client" Module 17
3.1. Data Model Overview 17
3.2. Example Usage 19
3.3. YANG Module 22

4. The "ietf-tls-server" Module 31
4.1. Data Model Overview 31
4.2. Example Usage 33
4.3. YANG Module 35

5. Security Considerations 45
5.1. Considerations for the "iana-tls-cipher-suite-algs" YANG Module 45
5.2. Considerations for the "ietf-tls-common" YANG Module 45
5.3. Considerations for the "ietf-tls-client" YANG Module 46
5.4. Considerations for the "ietf-tls-server" YANG Module 47

6. IANA Considerations 47
6.1. The IETF XML Registry 47
6.2. The YANG Module Names Registry 48

Watsen Standards Track Page 2

RFC 9645 Groupings for TLS Clients and Servers October 2024

6.3. Considerations for the "iana-tls-cipher-suite-algs" YANG Module 49
7. References 50
7.1. Normative References 50
7.2. Informative References 52
Appendix A. Script to Generate IANA-Maintained YANG Modules 54
Acknowledgements 58
Contributors 59
Author's Address 59

1. Introduction

This document presents four YANG 1.1 [RFC7950] modules -- three IETF modules and one IANA
module.

The three IETF modules are "ietf-tls-common" (Section 2), "ietf-tls-client" (Section 3), and "ietf-tls-
server" (Section 4). The "ietf-tls-client" and "ietf-tls-server" modules are the primary productions
of this work, supporting the configuration and monitoring of TLS clients and servers.

The groupings defined in this document are expected to be used in conjunction with the
groupings defined in an underlying transport-level module, such as the groupings defined in
[RFC9643]. The transport-level data model enables the configuration of transport-level values
such as a remote address, a remote port, a local address, and a local port.

The IANA module is "iana-tls-cipher-suite-algs". This module defines YANG enumerations that
provide support for an IANA-maintained algorithm registry.

IANA used the script in Appendix A to generate the "iana-tls-cipher-suite-algs" YANG module.
This document does not publish the initial version of the module; it is published and maintained
by IANA.

1.1. Regarding the Three IETF Modules

The three IETF modules define features and groupings to model "generic" TLS clients and TLS
servers, where "generic" should be interpreted as "least common denominator"” rather than
"complete." Basic TLS protocol support is afforded by these modules, leaving configuration of
advance features to augmentations made by consuming modules.

Watsen Standards Track Page 3

RFC 9645 Groupings for TLS Clients and Servers October 2024

It is intended that the YANG groupings will be used by applications needing to configure TLS
client and server protocol stacks. For instance, these groupings are used to help define the data
model for HTTPS [RFC9110] and clients and servers based on the Network Configuration Protocol
(NETCONF) over TLS [RFC7589] in [HTTP-CLIENT-SERVER] and [NETCONF-CLIENT-SERVER],
respectively.

The "ietf-tls-client" and "ietf-tls-server" YANG modules each define one grouping, which is
focused on just TLS-specific configuration, and specifically avoid any transport-level
configuration, such as what ports to listen on or connect to. This affords applications the
opportunity to define their own strategy for how the underlying TCP connection is established.
For instance, applications supporting NETCONF Call Home [RFC8071] could use the "tls-server-
grouping" grouping for the TLS parts it provides, while adding data nodes for the TCP-level call-
home configuration.

Both TLS 1.2 and TLS 1.3 may be configured. TLS 1.2 [RFC5246] is obsoleted by TLS 1.3 [RFC8446]
but is still in common use, and hence its "feature" statement is marked "status deprecated".

1.2. Relation to Other RFCs

This document presents four YANG modules [RFC7950] that are part of a collection of RFCs that
work together to ultimately support the configuration of both the clients and servers of the
NETCONF [RFC6241] and RESTCONF [RFC8040] protocols.

The dependency relationship between the primary YANG groupings defined in the various RFCs
is presented in the diagram below. In some cases, a document may define secondary groupings
that introduce dependencies not illustrated in the diagram. The labels in the diagram are
shorthand names for the defining RFCs. The citation references for the shorthand names are
provided below the diagram.

Please note that the arrows in the diagram point from referencer to referenced. For example, the
"crypto-types" RFC does not have any dependencies, whilst the "keystore" RFC depends on the
"crypto-types" RFC.

Watsen Standards Track Page 4

RFC 9645 Groupings for TLS Clients and Servers
crypto-types
A A
/ \
/ \
truststore keystore
A A A A
I Hommm oo +
I I |
| S S +
tcp-client-server [/ | |
& 2 ssh-client-server | |
| | & tls-client-server
[| | & 2 http-client-server
I I I I I "
| | | +---== + B it + |
I I I I I I
I tommmm oo |-===---- | === + I I
I I I I I
oo + I I I I
I I I I

netconf-client-server

Label in Diagram Originating RFC
crypto-types [RFC9640]
truststore [RFC9641]
keystore [RFC9642]
tcp-client-server [RFC9643]
ssh-client-server [RFC9644]
tls-client-server RFC 9645

http-client-server

[HTTP-CLIENT-SERVER]

netconf-client-server [NETCONF-CLIENT-SERVER]

restconf-client-server [RESTCONF-CLIENT-SERVER]

Table 1: Labels in Diagram to RFC Mapping

1.3. Specification Language

restconf-client-server

October 2024

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

Watsen

Standards Track

Page 5

RFC 9645 Groupings for TLS Clients and Servers October 2024

1.4. Adherence to the NMDA

This document is compliant with the Network Management Datastore Architecture (NMDA)
[RFC8342]. For instance, as described in [RFC9641] and [RFC9642], trust anchors and keys
installed during manufacturing are expected to appear in <operational> (Section 5.3 of
[RFC8342]) and <system> [SYSTEM-CONFIG] if implemented.

1.5. Conventions

Various examples in this document use "BASE64VALUE=" as a placeholder value for binary data
that has been base64 encoded (per Section 9.8 of [RFC7950]). This placeholder value is used
because real base64-encoded structures are often many lines long and hence distracting to the
example being presented.

Various examples in this document use the XML [W3C.REC-xml-20081126] encoding. Other
encodings, such as JSON [RFC8259], could alternatively be used.

Various examples in this document contain long lines that may be folded, as described in
[RFC8792].

2. The "ietf-tls-common" Module

The TLS common model presented in this section contains features and groupings common to
both TLS clients and TLS servers. The "hello-params-grouping" grouping can be used to configure
the list of TLS algorithms permitted by the TLS client or TLS server. The lists of algorithms are
ordered such that, if multiple algorithms are permitted by the client, the algorithm that appears
first in its list and that is also permitted by the server is used for the TLS transport layer
connection. The ability to restrict the algorithms allowed is provided in this grouping for TLS
clients and TLS servers that are capable of doing so and that may serve to make TLS clients and
TLS servers compliant with local security policies. This model supports both TLS 1.2 [RFC5246]
and TLS 1.3 [RFC8446].

Thus, in order to support both TLS 1.2 and TLS 1.3, the cipher suites part of the "hello-params-
grouping" grouping should include the following three parameters for configuring its permitted
TLS algorithms: TLS Cipher Suites, TLS SignatureScheme, and TLS Supported Groups.

2.1. Data Model Overview

This section provides an overview of the "ietf-tls-common" module in terms of its features,
identities, and groupings.

2.1.1. Features

The following diagram lists all the "feature" statements defined in the "ietf-tls-common" module:

Watsen Standards Track Page 6

https://rfc-editor.org/rfc/rfc8342#section-5.3
https://rfc-editor.org/rfc/rfc7950#section-9.8

RFC 9645 Groupings for TLS Clients and Servers October 2024

Features:
+-- tlsi12
+-- tls13

+-- hello-params
+-- asymmetric-key-pair-generation
+-- supported-algorithms

The diagram above uses syntax that is similar to but not defined in [RFC8340].
Please refer to the YANG module for a description of each feature.

2.1.2. Identities

The following diagram illustrates the relationship amongst the "identity" statements defined in
the "ietf-tls-common" module:

Identities:
+-- tls-version-base
+-- tls12
+-- tls13

The diagram above uses syntax that is similar to but not defined in [RFC8340].
Comments:

* The diagram shows that there are two base identities.

* One base identity is used to specify TLS versions. This base identity is "abstract” in the object-
oriented programming sense because it defines a "class" of things rather than a specific
thing.

* These base identities are "abstract" in the object-oriented programming sense because they
only define a "class" of things rather than a specific thing.

2.1.3. Groupings

The "ietf-tls-common" module defines the following "grouping" statement:
* hello-params-grouping

This grouping is presented in the following subsection.

2.1.3.1. The "hello-params-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "hello-params-grouping" grouping:

Watsen Standards Track Page 7

RFC 9645 Groupings for TLS Clients and Servers October 2024

grouping hello-params-grouping:
+-- tls-versions
| +-- min? identityref
| +-- max? identityref
+-- cipher-suites
+-- cipher-suite* tlscsa:tls-cipher-suite-algorithm

Comments:

* This grouping is used by both the "tls-client-grouping" and the "tls-server-grouping"
groupings defined in Sections 3.1.2.1 and 4.1.2.1, respectively.

* This grouping enables client and server configurations to specify the TLS versions and cipher
suites that are to be used when establishing TLS sessions.

* The "cipher-suites" list is "ordered-by user".

2.1.4. Protocol-Accessible Nodes

The following tree diagram [RFC8340] lists all the protocol-accessible nodes defined in the "ietf-
tls-common" module, without expanding the "grouping" statements:

module: ietf-tls-common
+--ro supported-algorithms {algorithm-discovery}?
+--ro supported-algorithm#* tlscsa:tls-cipher-suite-algorithm

rpcs:
+---X generate-asymmetric-key-pair
{asymmetric-key-pair-generation}?

+---w input
| +---w algorithm
|] tlscsa:tls-cipher-suite-algorithm
| +---w num-bits? uint16
| +---w private-key-encoding
| +---w (private-key-encoding)
| +--:(cleartext) {ct:cleartext-private-keys}?
[| +---w cleartext? empty
| +--:(encrypted) {ct:encrypted-private-keys}?
| | +---w encrypted

[+---w ks:encrypted-by-grouping

| +--:(hidden) {ct:hidden-private-keys}?

:

+---w hidden? empty
--ro output
+--ro (key-or-hidden)?
+--:(key)
| +---u ct:asymmetric-key-pair-grouping
+--:(hidden)

+--ro location?
instance-identifier

Watsen Standards Track Page 8

RFC 9645 Groupings for TLS Clients and Servers October 2024

Comments:

* Protocol-accessible nodes are nodes that are accessible when the module is "implemented",
as described in Section 5.6.5 of [RFC7950].

* The protocol-accessible nodes for the "ietf-tls-common" module are limited to the "supported-
algorithms" container, which is constrained by the "algorithm-discovery" feature, and the
"generate-asymmetric-key-pair" RPC, which is constrained by the "asymmetric-key-pair-
generation" feature.

* The "encrypted-by-grouping" grouping is discussed in Section 2.1.3.1 of [RFC9642].
* The "asymmetric-key-pair-grouping"” grouping is discussed in Section 2.1.4.6 of [RFC9640].

2.2. Example Usage

The following example illustrates the "hello-params-grouping" grouping when populated with
some data.

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping"” were a "container" instead. -->

<hello-params
xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common"
xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf-tls-common">
<tls-versions>
<min>tlscmn:tls12</min>
<max>tlscmn:tls13</max>
</tls-versions>
<cipher-suites>
<cipher-suite>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA</cipher-suite>
<cipher-suite>TLS_DHE_RSA_WITH_AES_128_CBC_SHA256</cipher-suite>
<cipher-suite>TLS_RSA_WITH_3DES_EDE_CBC_SHA</cipher-suite>
</cipher-suites>
</hello-params>

The following example illustrates operational state data indicating the TLS algorithms supported
by the server.

Watsen Standards Track Page 9

https://rfc-editor.org/rfc/rfc7950#section-5.6.5
https://rfc-editor.org/rfc/rfc9642#section-2.1.3.1
https://rfc-editor.org/rfc/rfc9640#section-2.1.4.6

RFC 9645 Groupings for TLS Clients and Servers October 2024

S === === NOTE: l\I 1ine Wr’apping per RFC 8792 S === =]

<supported-algorithms
xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common">
<supported-algorithm>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA</support\
ed-algorithm>
<supported-algorithm>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384</supp\
orted-algorithm>
<supported-algorithm>TLS_DHE_RSA_WITH_AES_128_CBC_SHA256</supporte\
d-algorithm>
<supported-algorithm>TLS_RSA_WITH_3DES_EDE_CBC_SHA</supported-algo\
rithm>
<supported-algorithm>TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384</suppor\
ted-algorithm>
<supported-algorithm>TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256</su\
pported-algorithm>
<supported-algorithm>TLS_ECCPWD_WITH_AES_256_GCM_SHA384</supported\
-algorithm>
<supported-algorithm>TLS_PSK_WITH_AES_256_CCM</supported-algorithm>
<supported-algorithm>TLS_PSK_WITH_AES_256_CCM_8</supported-algorit\
hm>
<supported-algorithm>TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384</sup\
ported-algorithm>
<supported-algorithm>TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384</support\
ed-algorithm>
<supported-algorithm>TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA</supported\
-algorithm>
<supported-algorithm>TLS_DH_DSS_WITH_AES_128_GCM_SHA256</supported\
-algorithm>
</supported-algorithms>

The following example illustrates the "generate-asymmetric-key-pair" RPC.

REQUEST

=============== NOTE: '\' line Wrapping per RFC 8792 ================

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<generate-asymmetric-key-pair
xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common">
<algorithm>TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256</algorithm>
<num-bits>521</num-bits>
<private-key-encoding>
<encrypted>
<asymmetric-key-ref>hidden-asymmetric-key</asymmetric-key-re\
f>
</encrypted>
</private-key-encoding>
</generate-asymmetric-key-pair>
</rpc>

Watsen Standards Track Page 10

RFC 9645 Groupings for TLS Clients and Servers October 2024

RESPONSE

e e e NOTE: I\I llne Wrapping per RFC 8792 e S e e

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types”
xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf-tls-common">
<tlscmn:public-key-format>ct:subject-public-key-info-format</tlscm\

n:public-key-format>
<tlscmn:public-key>BASE64VALUE=</tlscmn:public-key>
<tlscmn:private-key-format>ct:ec-private-key-format</tlscmn:privat\

e-key-format>
<tlscmn:cleartext-private-key>BASE64VALUE=</tlscmn:cleartext-priva\

te-key>

</rpc-reply>

2.3. YANG Module

This YANG module has normative references to [RFC5288], [RFC5289], [RFC8422], [RFC9640],
[RFC9642], [FIPS180-4], and [FIPS186-5].

This YANG module has informative references to [RFC5246] and [RFC8446].

<CODE BEGINS> file "ietf-tls-common@2024-10-10.yang"

module ietf-tls-common {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-tls-common";
prefix tlscmn;

import iana-tls-cipher-suite-algs {
prefix tlscsa;
reference
"RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
}

import ietf-crypto-types {
prefix ct;
reference
"RFC 9640: YANG Data Types and Groupings for Cryptography"”;
}

import ietf-keystore {
prefix ks;
reference
"RFC 9642: A YANG Data Model for a Keystore";
}

organization
"IETF NETCONF (Network Configuration) Working Group";

contact
"WG List: NETCONF WG list <mailto:netconf@ietf.org>

Watsen Standards Track Page 11

RFC 9645 Groupings for TLS Clients and Servers October 2024

WG Web: https://datatracker.ietf.org/wg/netconf

Author: Kent Watsen <mailto:kent+ietf@watsen.net>
Author: Jeff Hartley <mailto:intensifysecurity@gmail.com>
Author: Gary Wu <mailto:garywu@cisco.com>";

description

"This module defines common features and groupings for
Transport Layer Security (TLS).

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
"SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

"NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
are to be interpreted as described in BCP 14 (RFC 2119)
(RFC 8174) when, and only when, they appear in all
capitals, as shown here.

Copyright (c) 2024 IETF Trust and the persons identified
as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with
or without modification, is permitted pursuant to, and
subject to the license terms contained in, the Revised
BSD License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 9645
(https://www.rfc-editor.org/info/rfc9645); see the RFC
itself for full legal notices.";

revision 2024-10-10 {
description
"Initial version.";
reference
"RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
}

// Features

feature tls12 {
description
"TLS Protocol Version 1.2 is supported. TLS 1.2 is obsolete,
and thus it is NOT RECOMMENDED to enable this feature.";
reference
"RFC 5246: The Transport Layer Security (TLS) Protocol
Version 1.2";

}
feature tls13 {
description
"TLS Protocol Version 1.3 is supported.”;
reference
"RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3";
}
feature hello-params {
description

Watsen Standards Track Page 12

RFC 9645 Groupings for TLS Clients and Servers October 2024

"TLS hello message parameters are configurable.";

}

feature algorithm-discovery {
description
"Indicates that the server implements the
'supported-algorithms' container.";

feature asymmetric-key-pair-generation {
description
"Indicates that the server implements the
‘generate-asymmetric-key-pair' RPC.";

}

// Identities

identity tls-version-base {
description
"Base identity used to identify TLS protocol versions.";
}

identity tls12 {
if-feature "tls12";
base tls-version-base;
description
"TLS Protocol Version 1.2.";
reference
"RFC 5246: The Transport Layer Security (TLS) Protocol
Version 1.2";

}

identity tls13 {
if-feature "tl1ls13";
base tls-version-base;
description
"TLS Protocol Version 1.3.";
reference
"RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3";

}
// Typedefs

typedef epsk-supported-hash {
type enumeration {
enum sha-256 {
description
"The SHA-256 hash.";

}
enum sha-384 {
description
"The SHA-384 hash.";
}
}

description
"As per Section 4.2.11 of RFC 8446, the hash algorithm
supported by an instance of an External Pre-Shared

Watsen Standards Track Page 13

RFC 9645 Groupings for TLS Clients and Servers October 2024

Key (EPSK).";
reference
"RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3";

// Groupings

grouping hello-params-grouping {
description
"A reusable grouping for TLS hello message parameters.";
reference
"RFC 5246: The Transport Layer Security (TLS) Protocol
Version 1.2
RFC 8446: The Transport Layer Security (TLS) Protocol
Version 1.3";
container tls-versions {
description
"Parameters limiting which TLS versions, amongst
those enabled by 'features', are presented during
the TLS handshake.";
leaf min {
type identityref {
base tls-version-base;
}
description
"If not specified, then there is no configured
minimum version.";

leaf max {
type identityref {
base tls-version-base;
}
description
"If not specified, then there is no configured
maximum version.";
}
}
container cipher-suites {
description
"Parameters regarding cipher suites.";
leaf-1list cipher-suite {
type tlscsa:tls-cipher-suite-algorithm;
ordered-by user;
description
"Acceptable cipher suites in order of descending
preference. The configured host key algorithms should
be compatible with the algorithm used by the configured
private key. Please see Section 5 of RFC 9645 for
valid combinations.

If this leaf-1list is not configured (has zero elements),
the acceptable cipher suites are implementation-
defined.";

reference
"RFC 9645: YANG Groupings for TLS Clients and TLS Servers";

Watsen Standards Track Page 14

RFC 9645 Groupings for TLS Clients and Servers October 2024

}
} // hello-params-grouping

// Protocol-accessible Nodes

container supported-algorithms {

if-feature "algorithm-discovery"”;
config false;
description

"A container for a list of cipher suite algorithms supported

by the server.";
leaf-1ist supported-algorithm {

type tlscsa:tls-cipher-suite-algorithm;

description

"A cipher suite algorithm supported by the server.";

}

}

rpc generate-asymmetric-key-pair {
if-feature "asymmetric-key-pair-generation";
description
"Requests the device to generate an 'asymmetric-key-pair'
key using the specified key algorithm.";
input {
leaf algorithm {
type tlscsa:tls-cipher-suite-algorithm;
mandatory true;
description
"The cipher suite algorithm that the generated key
works with. Implementations derive the public key
algorithm from the cipher suite algorithm. For
example, cipher suite
"tls-rsa-with-aes-256-cbc-sha256' maps to the RSA
public key.";

leaf num-bits {
type uint16;
description
"Specifies the number of bits to create in the key.
For RSA keys, the minimum size is 1024 bits, and
the default is 3072 bits. Generally, 3072 bits is
considered sufficient. DSA keys must be exactly
1024 bits as specified by FIPS 186-2. For
elliptical keys, the 'num-bits' value determines
the key length of the curve (e.g., 256, 384, or 521),
where valid values supported by the server are
conveyed via an unspecified mechanism. For some
public algorithms, the keys have a fixed length, and
thus the 'num-bits' value is not specified.”;
}
container private-key-encoding {
description
"Indicates how the private key is to be encoded.";
choice private-key-encoding {
mandatory true;
description
"A choice amongst optional private key handling.";

Watsen Standards Track Page 15

RFC 9645 Groupings for TLS Clients and Servers October 2024

case cleartext {
if-feature "ct:cleartext-private-keys";
leaf cleartext {
type empty;
description
"Indicates that the private key is to be returned
as a cleartext value.";
}
}
case encrypted {
if-feature "ct:encrypted-private-keys";
container encrypted {
description
"Indicates that the key is to be encrypted using
the specified symmetric or asymmetric key.";
uses ks:encrypted-by-grouping;

}

case hidden {
if-feature "ct:hidden-private-keys";
leaf hidden {
type empty;
description
"Indicates that the private key is to be hidden.

Unlike the 'cleartext' and 'encrypt' options, the
key returned is a placeholder for an internally
stored key. See Section 3 of RFC 9642 ('Support
for Built-In Keys') for information about hidden
keys.";
}
}
}
}
}
output {
choice key-or-hidden {
case key {
uses ct:asymmetric-key-pair-grouping;

case hidden {
leaf location {
type instance-identifier;
description
"The location to where a hidden key was created.";

}
}
description
"The output can be either a key (for cleartext and
encrypted keys) or the location to where the key
was created (for hidden keys).";
}
} // end generate-asymmetric-key-pair

Watsen Standards Track Page 16

RFC 9645 Groupings for TLS Clients and Servers October 2024

<CODE ENDS>

3. The "ietf-tls-client"” Module

This section defines a YANG 1.1 [RFC7950] module called "ietf-tls-client". A high-level overview of
the module is provided in Section 3.1. Examples illustrating the module's use are provided in
Section 3.2 ("Example Usage"). The YANG module itself is defined in Section 3.3.

3.1. Data Model Overview

This section provides an overview of the "ietf-tls-client” module in terms of its features and
groupings.

3.1.1. Features

The following diagram lists all the "feature” statements defined in the "ietf-tls-client” module:

Features:

+-- tls-client-keepalives

+-- client-ident-x509-cert

+-- client-ident-raw-public-key
+-- client-ident-psk

+-- server-auth-x509-cert

+-- server-auth-raw-public-key
+-- server-auth-psk

The diagram above uses syntax that is similar to but not defined in [RFC8340].
Please refer to the YANG module for a description of each feature.

3.1.2. Groupings

The "ietf-tIs-client" module defines the following "grouping" statement:
* tls-client-grouping

This grouping is presented in the following subsection.

3.1.2.1. The "tls-client-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "tls-client-grouping" grouping:

Watsen Standards Track Page 17

RFC 9645 Groupings for TLS Clients and Servers October 2024

S === === NOTE: l\I 1ine Wr’apping per RFC 8792 S === =]

grouping tls-client-grouping:
+-- client-identity!
| +-- (auth-type)
| +--:(certificate) {client-ident-x509-cert}?
| | +-- certificate
| | +---u ks:inline-or-keystore-end-entity-cert-with-key\
-grouping
| +--:(raw-public-key) {client-ident-raw-public-key}?
| +-- raw-private-key
| +---u ks:inline-or-keystore-asymmetric-key-grouping
+--:(tls12-psk) {client-ident-tls12-psk}?
| +-- tls12-psk
| +---u ks:inline-or-keystore-symmetric-key-grouping
| +-- id?
| string
+--:(tls13-epsk) {client-ident-tls13-epsk}?
+-- tls13-epsk
+---u ks:inline-or-keystore-symmetric-key-grouping
+-- external-identity
| string
+-- hash?
| tlscmn:epsk-supported-hash
+-- context?

| string
| uint16
+-- target-kdf?
uint16
- server-authentication

+-- ca-certs! {server-auth-x509-cert}?
| +---u ts:inline-or-truststore-certs-grouping
+-- ee-certs! {server-auth-x509-cert}?
| +---u ts:inline-or-truststore-certs-grouping
+-- raw-public-keys! {server-auth-raw-public-key}?
| +---u ts:inline-or-truststore-public-keys-grouping
+-- tls12-psks? empty {server-auth-tls12-psk}?
+-- tls13-epsks? empty {server-auth-tls13-epsk}?
+-- hello-params {tlscmn:hello-params}?
| +---u tlscmn:hello-params-grouping
+-- keepalives {tls-client-keepalives}?
+-- peer-allowed-to-send? empty
+-- test-peer-aliveness!
+-- max-wait? uint16
+-- max-attempts? uint8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| +-- target-protocol?
I
I
+_
I
I
I
I
I
I
I
I

Comments:

* The "client-identity" node, which is optionally configured (as client authentication MAY occur
at a higher protocol layer), configures identity credentials, each enabled by a "feature"
statement defined in Section 3.1.1.

* The "server-authentication" node configures trust anchors for authenticating the TLS server,
with each option enabled by a "feature” statement.

Watsen Standards Track Page 18

RFC 9645 Groupings for TLS Clients and Servers October 2024

 The "hello-params” node, which must be enabled by a feature, configures parameters for the
TLS sessions established by this configuration.

* The "keepalives" node, which must be enabled by a feature, configures a "presence"
container to test the aliveness of the TLS server. The aliveness-test occurs at the TLS protocol
layer.

* For the referenced grouping statement(s):

° The "inline-or-keystore-end-entity-cert-with-key-grouping" grouping is discussed in
Section 2.1.3.6 of [RFC9642].

> The "inline-or-keystore-asymmetric-key-grouping" grouping is discussed in Section
2.1.3.4 of [RFC9642].

> The "inline-or-keystore-symmetric-key-grouping" grouping is discussed in Section 2.1.3.3
of [RFC9642].

o The "inline-or-truststore-certs-grouping" grouping is discussed in Section 2.1.3.3 of
[RFC9641].

° The "inline-or-truststore-public-keys-grouping" grouping is discussed in Section 2.1.3.4 of
[RFC9641].

> The "hello-params-grouping"” grouping is discussed in Section 2.1.3.1 in this document.

3.1.3. Protocol-Accessible Nodes

The "ietf-tls-client" module defines only "grouping" statements that are used by other modules to
instantiate protocol-accessible nodes. Thus, this module does not itself define any protocol-
accessible nodes when implemented.

3.2. Example Usage

This section presents two examples showing the "tls-client-grouping" grouping populated with
some data. These examples are effectively the same except the first configures the client identity
using a local key while the second uses a key configured in a keystore. Both examples are
consistent with the examples presented in Section 2.2.1 of [RFC9641] and Section 2.2.1 of
[RFC9642].

The following configuration example uses inline-definitions for the client identity and server
authentication:

SE52SsEs=Sass5= NOTE: I\I llne Wrapping per RFC 8792 e S e e e e

<l-- The outermost element below doesn't exist in the data model. -->
<!-- Tt simulates if the "grouping" were a "container" instead. -->

<tls-client
xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client"
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

<l-- how this client will authenticate itself to the server -->
<client-identity>
<certificate>

<inline-definition>

Watsen Standards Track Page 19

https://rfc-editor.org/rfc/rfc9642#section-2.1.3.6
https://rfc-editor.org/rfc/rfc9642#section-2.1.3.4
https://rfc-editor.org/rfc/rfc9642#section-2.1.3.4
https://rfc-editor.org/rfc/rfc9642#section-2.1.3.3
https://rfc-editor.org/rfc/rfc9641#section-2.1.3.3
https://rfc-editor.org/rfc/rfc9641#section-2.1.3.4
https://rfc-editor.org/rfc/rfc9641#section-2.2.1
https://rfc-editor.org/rfc/rfc9642#section-2.2.1

RFC 9645 Groupings for TLS Clients and Servers October 2024

<private-key-format>ct:rsa-private-key-format</priva\
te-key-format>
<cleartext-private-key>BASE64VALUE=</cleartext-priva\
te-key>
<cert-data>BASE64VALUE=</cert-data>
</inline-definition>
</certificate>
</client-identity>

<!l-- which certificates will this client trust -->
<server-authentication>
<ca-certs>
<inline-definition>
<certificate>
<name>Server Cert Issuer #1</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate>
<name>Server Cert Issuer #2</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</inline-definition>
</ca-certs>
<ee-certs>
<inline-definition>
<certificate>
<name>My Application #1</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate>
<name>My Application #2</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</inline-definition>
</ee-certs>
<raw-public-keys>
<inline-definition>
<public-key>
<name>corp-fwl</name>
<public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
<public-key>BASE64VALUE=</public-key>
</public-key>
<public-key>
<name>corp-fw2</name>
<public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
<public-key>BASE64VALUE=</public-key>
</public-key>
</inline-definition>
</raw-public-keys>
<tls12-psks/>
<tls13-epsks/>
</server-authentication>

<keepalives>

<test-peer-aliveness>
<max-wait>30</max-wait>

Watsen Standards Track Page 20

RFC 9645 Groupings for TLS Clients and Servers October 2024

<max-attempts>3</max-attempts>
</test-peer-aliveness>
</keepalives>

</tls-client>

The following configuration example uses central-keystore-references for the client identity and
central-truststore-references for server authentication from the keystore:

S === === —— NOTE: l\I line Wr’apping per RFC 8792 S === =]

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<tls-client xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client">

<l-- how this client will authenticate itself to the server -->
<client-identity>
<certificate>

<central-keystore-reference>
<asymmetric-key>rsa-asymmetric-key</asymmetric-key>
<certificate>ex-rsa-cert</certificate>
</central-keystore-reference>
</certificate>
</client-identity>

<!-- which certificates will this client trust -->
<server-authentication>
<ca-certs>
<central-truststore-reference>trusted-server-ca-certs</c\
entral-truststore-reference>
</ca-certs>
<ee-certs>
<central-truststore-reference>trusted-server-ee-certs</c\
entral-truststore-reference>
</ee-certs>
<raw-public-keys>
<central-truststore-reference>Raw Public Keys for TLS Se\
rvers</central-truststore-reference>
</raw-public-keys>
<tls12-psks/>
<tls13-epsks/>
</server-authentication>

<keepalives>
<test-peer-aliveness>
<max-wait>30</max-wait>
<max-attempts>3</max-attempts>
</test-peer-aliveness>
</keepalives>

</tls-client>

Watsen Standards Track Page 21

RFC 9645 Groupings for TLS Clients and Servers October 2024

3.3.
This

YANG Module
YANG module has normative references to [RFC4279], [RFC5280], [RFC6520], [RFC7250],

[RFC9640], [RFC9641], and [RFC9642] and informative references to [RFC5056], [RFC5246],
[RFC8446], [RFC9258], and [RFC9257].

<C
mo

Watsen

ODE BEGINS> file "ietf-tls-client@26024-10-10.yang"

dule jetf-tls-client {

yang-version 1.1;

namespace "urn:ietf:params:xml:ns:yang:ietf-tls-client";
prefix tlsc;

import ietf-netconf-acm {
prefix nacm;
reference
"RFC 8341: Network Configuration Access Control Model";

}
import ietf-crypto-types {
prefix ct;
reference
"RFC 9640: YANG Data Types and Groupings for Cryptography"”;
}
import ietf-truststore {
prefix ts;
reference
"RFC 9641: A YANG Data Model for a Truststore":
}
import ietf-keystore {
prefix ks;
reference

"RFC 9642: A YANG Data Model for a Keystore";

import ietf-tls-common {
prefix tlscmn;
reference
"RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
}

organization
"IETF NETCONF (Network Configuration) Working Group";
contact
"WG List: NETCONF WG list <mailto:netconf@ietf.org>
WG Web: https://datatracker.ietf.org/wg/netconf

Author: Kent Watsen <mailto:kent+ietf@watsen.net>
Author: Jeff Hartley <mailto:intensifysecurity@gmail.com>";
description

"This module defines reusable groupings for TLS clients that
can be used as a basis for specific TLS client instances.

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
"SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

"NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
are to be interpreted as described in BCP 14 (RFC 2119)
(RFC 8174) when, and only when, they appear in all
capitals, as shown here.

Standards Track Page 22

RFC 9645 Groupings for TLS Clients and Servers October 2024

Copyright (c) 2024 IETF Trust and the persons identified
as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with
or without modification, is permitted pursuant to, and
subject to the license terms contained in, the Revised
BSD License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 9645
(https://www.rfc-editor.org/info/rfc9645); see the RFC
itself for full legal notices."”;

revision 2024-10-10 {
description
"Initial version";
reference
"RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
}

// Features

feature tls-client-keepalives {
description
"Per-socket TLS keepalive parameters are configurable for
TLS clients on the server implementing this feature.";

}

feature client-ident-x509-cert {
description
"Indicates that the client supports identifying itself
using X.509 certificates.";
reference
"RFC 5280:
Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile";

}

feature client-ident-raw-public-key {
description
"Indicates that the client supports identifying itself
using raw public keys.";
reference
"RFC 7250:
Using Raw Public Keys in Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS)";
}

feature client-ident-tls12-psk {

if-feature "tlscmn:tls12";
description

"Indicates that the client supports identifying itself

using TLS 1.2 PSKs (pre-shared or pairwise symmetric keys).";
reference

"RFC 4279:

Pre-Shared Key Ciphersuites for Transport Layer Security

Watsen Standards Track Page 23

RFC 9645 Groupings for TLS Clients and Servers October 2024

(TLS)";

feature client-ident-tls13-epsk {
if-feature "tlscmn:tls13";
description
"Indicates that the client supports identifying itself
using TLS 1.3 External PSKs (pre-shared keys).";
reference
"RFC 8446:
The Transport Layer Security (TLS) Protocol Version 1.3";
}

feature server-auth-x509-cert {
description
"Indicates that the client supports authenticating servers
using X.509 certificates."”;
reference
"RFC 5280:
Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile";

}

feature server-auth-raw-public-key {
description
"Indicates that the client supports authenticating servers
using raw public keys.";
reference
"RFC 7250:
Using Raw Public Keys in Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS)";
}

feature server-auth-tls12-psk {
description
"Indicates that the client supports authenticating servers
using PSKs (pre-shared or pairwise symmetric keys).";
reference
"RFC 4279:
Pre-Shared Key Ciphersuites for Transport Layer Security
(TLS)";

feature server-auth-tls13-epsk {
description
"Indicates that the client supports authenticating servers
using TLS 1.3 External PSKs (pre-shared keys).";
reference
"RFC 8446:
The Transport Layer Security (TLS) Protocol Version 1.3";
}

// Groupings
grouping tls-client-grouping {
description

"A reusable grouping for configuring a TLS client without
any consideration for how an underlying TCP session is

Watsen Standards Track Page 24

RFC 9645 Groupings for TLS Clients and Servers October 2024

established.

Note that this grouping uses fairly typical descendant
node names such that a stack of 'uses' statements will
have name conflicts. It is intended that the consuming
data model will resolve the issue (e.g., by wrapping
the 'uses' statement in a container called
"tls-client-parameters'). This model purposely does
not do this itself so as to provide maximum flexibility
to consuming models.";
container client-identity {
nacm:default-deny-write;
presence "Indicates that a TLS-level client identity has been
configured. This statement is present so the
mandatory descendant nodes do not imply that this
node must be configured.";
description
"Identity credentials the TLS client MAY present when
establishing a connection to a TLS server. If not
configured, then client authentication is presumed to
occur in a protocol layer above TLS. When configured,
and requested by the TLS server when establishing a
TLS session, these credentials are passed in the
Certificate message defined in Section 7.4.2 of
RFC 5246 and Section 4.4.2 of RFC 8446.";
reference
"RFC 5246: The Transport Layer Security (TLS)
Protocol Version 1.2
RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3
RFC 9642: A YANG Data Model for a Keystore";
choice auth-type {
mandatory true;
description
"A choice amongst authentication types, of which one must
be enabled (via its associated 'feature') and selected.";
case certificate {
if-feature "client-ident-x509-cert";
container certificate {
description
"Specifies the client identity using a certificate.";
uses "ks:inline-or-keystore-end-entity-cert-with-key-"
+ "grouping” {
refine "inline-or-keystore/inline/inline-definition" {
must 'not(public-key-format) or derived-from-or-self'
+ '(public-key-format, "ct:subject-public-key-'
+ 'info-format")"';
}
refine "inline-or-keystore/central-keystore/"
+ "central-keystore-reference/asymmetric-key" {
must 'not(deref(.)/../ks:public-key-format) or '
+ 'derived-from-or-self(deref(.)/../ks:public-"
+ 'key-format, "ct:subject-public-key-info-'
+ 'format")';

Watsen Standards Track Page 25

RFC 9645 Groupings for TLS Clients and Servers October 2024

case raw-public-key {
if-feature "client-ident-raw-public-key";
container raw-private-key {
description
"Specifies the client identity using a raw
private key.";
uses ks:inline-or-keystore-asymmetric-key-grouping {
refine "inline-or-keystore/inline/inline-definition" {
must 'not(public-key-format) or derived-from-or-self'
+ '(public-key-format, "ct:subject-public-key-'
+ 'info-format")"';
}
refine "inline-or-keystore/central-keystore/"
+ "central-keystore-reference"” {
must 'not(deref(.)/../ks:public-key-format) or '
+ 'derived-from-or-self(deref(.)/../ks:public-'
+ 'key-format, "ct:subject-public-key-info-'
+ 'format")';
}
}
}

case tls12-psk {
if-feature "client-ident-tls12-psk";
container tlsi12-psk {
description
"Specifies the client identity using a PSK (pre-shared
or pairwise symmetric key).";
uses ks:inline-or-keystore-symmetric-key-grouping;
leaf id {
type string;
description
"The key 'psk_identity' value used in the TLS
'ClientKeyExchange' message.";
reference
"RFC 4279: Pre-Shared Key Ciphersuites for
Transport Layer Security (TLS)";
}
}

case tls13-epsk {
if-feature "client-ident-tls13-epsk";
container tls13-epsk {
description

"An External Pre-Shared Key (EPSK) is established
or provisioned out of band, i.e., not from a TLS
connection. An EPSK is a tuple of (Base Key,
External Identity, Hash). EPSKs MUST NOT be
imported for (D)TLS 1.2 or prior versions. When
PSKs are provisioned out of band, the PSK identity
and the Key Derivation Function (KDF) hash algorithm
to be used with the PSK MUST also be provisioned.

The structure of this container is designed to satisfy
the requirements in Section 4.2.11 of RFC 8446, the
recommendations from Section 6 of RFC 9257, and the
EPSK input fields detailed in Section 5.1 of RFC 9258.
The base-key is based upon

Watsen Standards Track Page 26

RFC 9645 Groupings for TLS Clients and Servers October 2024

'ks:inline-or-keystore-symmetric-key-grouping' in
order to provide users with flexible and secure
storage options.";
reference
"RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3
RFC 9257: Guidance for External Pre-Shared Key
(PSK) Usage in TLS
RFC 9258: Importing External Pre-Shared Keys
(PSKs) for TLS 1.3";
uses ks:inline-or-keystore-symmetric-key-grouping;
leaf external-identity {
type string;
mandatory true;
description
"As per Section 4.2.11 of RFC 8446 and Section 4.1
of RFC 9257, a sequence of bytes used to identify
an EPSK. A label for a pre-shared key established
externally.";
reference
"RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3
RFC 9257: Guidance for External Pre-Shared Key
(PSK) Usage in TLS";

}
leaf hash {
type tlscmn:epsk-supported-hash;
default "sha-256";
description
"As per Section 4.2.11 of RFC 8446, for EPSKs,
the hash algorithm MUST be set when the PSK is
established; otherwise, default to SHA-256 if
no such algorithm is defined. The server MUST
ensure that it selects a compatible PSK (if any)
and cipher suite. Each PSK MUST only be used
with a single hash function.";
reference
"RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3";

leaf context

type string;

description
"As per Section 5.1 of RFC 9258, context MUST
include the context used to determine the EPSK,
if any exists. For example, context may include
information about peer roles or identities
to mitigate Selfie-style reflection attacks.
Since the EPSK is a key derived from an external
protocol or a sequence of protocols, context MUST
include a channel binding for the deriving
protocols (see RFC 5056). The details of this
binding are protocol specific and out of scope
for this document.";

reference
"RFC 9258: Importing External Pre-Shared Keys

(PSKs) for TLS 1.3";

Watsen Standards Track Page 27

RFC 9645 Groupings for TLS Clients and Servers October 2024

leaf target-protocol {

type uint16;

description
"As per Section 3 of RFC 9258, the protocol
for which a PSK is imported for use.";

reference
"RFC 9258: Importing External Pre-Shared Keys

(PSKs) for TLS 1.3";

}
leaf target-kdf {
type uint16;
description
"As per Section 3 of RFC 9258, the Key Derivation
Function (KDF) for which a PSK is imported for
use.";
reference
"RFC 9258: Importing External Pre-Shared Keys
(PSKs) for TLS 1.3";
}
}
}
}
} // container client-identity
container server-authentication {
nacm:default-deny-write;
must “ca-certs or ee-certs or raw-public-keys or tls12-psks
or tls13-epsks";
description
"Specifies how the TLS client can authenticate TLS servers.
Any combination of credentials is additive and unordered.

Note that no configuration is required for authentication
based on PSK (pre-shared or pairwise symmetric key) as
the key is necessarily the same as configured in the
"../client-identity' node.";
container ca-certs {
if-feature "server-auth-x509-cert"”;
presence "Indicates that Certification Authority (CA)
certificates have been configured. This
statement is present so the mandatory
descendant nodes do not imply that this
node must be configured.";
description
"A set of CA certificates used by the TLS client to
authenticate TLS server certificates. A server
certificate is authenticated if it has a valid chain of
trust to a configured CA certificate."”;
reference
"RFC 9641: A YANG Data Model for a Truststore";
uses ts:inline-or-truststore-certs-grouping;
}
container ee-certs {
if-feature "server-auth-x509-cert";
presence "Indicates that End-Entity (EE) certificates have
been configured. This statement is present so
the mandatory descendant nodes do not imply
that this node must be configured.";
description

Watsen Standards Track Page 28

RFC 9645 Groupings for TLS Clients and Servers October 2024

"A set of server certificates (i.e., EE certificates) used
by the TLS client to authenticate certificates presented
by TLS servers. A server certificate is authenticated if
it is an exact match to a configured server certificate.";

reference

"RFC 9641: A YANG Data Model for a Truststore":

uses ts:inline-or-truststore-certs-grouping;
}
container raw-public-keys {
if-feature "server-auth-raw-public-key";
presence "Indicates that raw public keys have been
configured. This statement is present so
the mandatory descendant nodes do not imply
that this node must be configured.";
description

"A set of raw public keys used by the TLS client to
authenticate raw public keys presented by the TLS
server. A raw public key is authenticated if it
is an exact match to a configured raw public key.";

reference

"RFC 9641: A YANG Data Model for a Truststore":

uses ts:inline-or-truststore-public-keys-grouping {
refine "inline-or-truststore/inline/inline-definition/"
+ "public-key" {
must 'derived-from-or-self(public-key-format, '
+ ' "ct:subject-public-key-info-format")";
}

refine "inline-or-truststore/central-truststore/"
+ "central-truststore-reference" {
must 'not(deref(.)/../ts:public-key/ts:public-key-"
+ 'format[not(derived-from-or-self(., "ct:subject-'
+ 'public-key-info-format"))])"';
}
}

}
leaf tls12-psks {
if-feature "server-auth-tls12-psk";
type empty;
description
"Indicates that the TLS client can authenticate TLS servers
using configured PSKs (pre-shared or pairwise symmetric
keys).

No configuration is required since the PSK value is the
same as the PSK value configured in the 'client-identity'
node.";

}
leaf tls13-epsks {
if-feature "server-auth-tls13-epsk”;
type empty;
description
"Indicates that the TLS client can authenticate TLS servers
using configured External PSKs (pre-shared keys).

No configuration is required since the PSK value is the

same as the PSK value configured in the 'client-identity’
node.";

Watsen Standards Track Page 29

RFC 9645 Groupings for TLS Clients and Servers October 2024

} // container server-authentication
container hello-params {
nacm:default-deny-write;
if-feature "tlscmn:hello-params”;
uses tlscmn:hello-params-grouping;
description
"Configurable parameters for the TLS hello message.";
} // container hello-params
container keepalives {
nacm:default-deny-write;
if-feature "tls-client-keepalives"”;
description
"Configures the keepalive policy for the TLS client.";
leaf peer-allowed-to-send {
type empty;
description
"Indicates that the remote TLS server is allowed to send
HeartbeatRequest messages, as defined by RFC 6520,
to this TLS client.";
reference
"RFC 6520: Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat Extension";
}
container test-peer-aliveness {
presence "Indicates that the TLS client proactively tests the
aliveness of the remote TLS server.";
description
"Configures the keepalive policy to proactively test
the aliveness of the TLS server. An unresponsive
TLS server is dropped after approximately max-wait
* max-attempts seconds. The TLS client MUST send
HeartbeatRequest messages, as defined in RFC 6520.";
reference
"RFC 6520: Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat Extension";
leaf max-wait {
type uint16 {
range "1..max";

units "seconds";
default "30";
description
"Sets the amount of time in seconds, after which a
TLS-1level message will be sent to test the
aliveness of the TLS server if no data has been
received from the TLS server.";
}
leaf max-attempts {
type uint8;
default "3";
description
"Sets the maximum number of sequential keepalive
messages that can fail to obtain a response from
the TLS server before assuming the TLS server is
no longer alive.";

Watsen Standards Track Page 30

RFC 9645 Groupings for TLS Clients and Servers October 2024

} // grouping tls-client-grouping

<CODE ENDS>

4. The "ietf-tls-server" Module

This section defines a YANG 1.1 module called "ietf-tls-server". A high-level overview of the
module is provided in Section 4.1. Examples illustrating the module's use are provided in Section
4.2 ("Example Usage"). The YANG module itself is defined in Section 4.3.

4.1. Data Model Overview

This section provides an overview of the "ietf-tls-server" module in terms of its features and
groupings.

4.1.1. Features

The following diagram lists all the "feature" statements defined in the "ietf-tls-server" module:

Features:

+-- tls-server-keepalives

+-- server-ident-x509-cert

+-- server-ident-raw-public-key
+-- server-ident-psk

+-- client-auth-supported

+-- client-auth-x509-cert

+-- client-auth-raw-public-key
+-- client-auth-psk

The diagram above uses syntax that is similar to but not defined in [RFC8340].

Please refer to the YANG module for a description of each feature.

4.1.2. Groupings

The "ietf-tls-server" module defines the following "grouping" statement:
* tls-server-grouping

This grouping is presented in the following subsection.

4.1.2.1. The "tls-server-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "tls-server-grouping" grouping:

Watsen Standards Track Page 31

RFC 9645 Groupings for TLS Clients and Servers October 2024

S === === NOTE: l\I 1ine Wr’apping per RFC 8792 S === =]

grouping tls-server-grouping:
+-- server-identity
| +-- (auth-type)
| +--:(certificate) {server-ident-x509-cert}?
| | +-- certificate
| | +---u ks:inline-or-keystore-end-entity-cert-with-key\
-grouping
| +--:(raw-private-key) {server-ident-raw-public-key}?
| +-- raw-private-key
| +---u ks:inline-or-keystore-asymmetric-key-grouping
+--:(tls12-psk) {server-ident-tls12-psk}?
| +-- tls12-psk
| +---u ks:inline-or-keystore-symmetric-key-grouping
| +-- id-hint?
| string
+--:(tls13-epsk) {server-ident-tls13-epsk}?
+-- tls13-epsk
+---u ks:inline-or-keystore-symmetric-key-grouping
+-- external-identity
| string
+-- hash?
| tlscmn:epsk-supported-hash
+-- context?

| string
| uint16
+-- target-kdf?
uint16
- client-authentication! {client-auth-supported}?

+-- ca-certs! {client-auth-x509-cert}?
| +---u ts:inline-or-truststore-certs-grouping
+-- ee-certs! {client-auth-x509-cert}?
| +---u ts:inline-or-truststore-certs-grouping
+-- raw-public-keys! {client-auth-raw-public-key}?
| +---u ts:inline-or-truststore-public-keys-grouping
+-- tls12-psks? empty {client-auth-tls12-psk}?
+-- tls13-epsks? empty {client-auth-tls13-epsk}?
+-- hello-params {tlscmn:hello-params}?
| +---u tlscmn:hello-params-grouping
+-- keepalives {tls-server-keepalives}?
+-- peer-allowed-to-send? empty
+-- test-peer-aliveness!
+-- max-wait? uint16
+-- max-attempts? uint8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| +-- target-protocol?
I
I
+_
I
I
I
I
I
I
I
I

Comments:

* The "server-identity" node configures identity credentials, each of which is enabled by a
"feature".

* The "client-authentication” node, which is optionally configured (as client authentication
MAY occur at a higher protocol layer), configures trust anchors for authenticating the TLS
client, with each option enabled by a "feature" statement.

Watsen Standards Track Page 32

RFC 9645 Groupings for TLS Clients and Servers October 2024

 The "hello-params” node, which must be enabled by a feature, configures parameters for the
TLS sessions established by this configuration.

* The "keepalives" node, which must be enabled by a feature, configures a flag enabling the

TLS client to test the aliveness of the TLS server as well as a "presence"” container to test the
aliveness of the TLS client. The aliveness-tests occur at the TLS protocol layer.

* For the referenced grouping statement(s):
° The "inline-or-keystore-end-entity-cert-with-key-grouping" grouping is discussed in
Section 2.1.3.6 of [RFC9642].
> The "inline-or-keystore-asymmetric-key-grouping" grouping is discussed in Section
2.1.3.4 of [RFC9642].
> The "inline-or-keystore-symmetric-key-grouping" grouping is discussed in Section 2.1.3.3
of [RFC9642].

o The "inline-or-truststore-public-keys-grouping" grouping is discussed in Section 2.1.3.4 of
[RFC9641].

> The "inline-or-truststore-certs-grouping" grouping is discussed in Section 2.1.3.3 of
[RFC9641].

> The "hello-params-grouping"” grouping is discussed in Section 2.1.3.1 in this document.

4.1.3. Protocol-Accessible Nodes

The "ietf-tls-server" module defines only "grouping" statements that are used by other modules to
instantiate protocol-accessible nodes. Thus, this module does not itself define any protocol-
accessible nodes when implemented.

4.2. Example Usage

This section presents two examples showing the "tIs-server-grouping" grouping populated with
some data. These examples are effectively the same except the first configures the server identity
using a local key while the second uses a key configured in a keystore. Both examples are
consistent with the examples presented in Section 2.2.1 of [RFC9641] and Section 2.2.1 of
[RFC9642].

The following configuration example uses inline-definitions for the server identity and client
authentication:

SE52SsEs=Sass5= NOTE: I\I llne Wrapping per RFC 8792 e S e e e e

<l-- The outermost element below doesn't exist in the data model. -->
<!-- Tt simulates if the "grouping" were a "container" instead. -->

<tls-server
xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server"
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

<l-- how this server will authenticate itself to the client -->
<server-identity>
<certificate>

<inline-definition>

Watsen Standards Track Page 33

https://rfc-editor.org/rfc/rfc9642#section-2.1.3.6
https://rfc-editor.org/rfc/rfc9642#section-2.1.3.4
https://rfc-editor.org/rfc/rfc9642#section-2.1.3.4
https://rfc-editor.org/rfc/rfc9642#section-2.1.3.3
https://rfc-editor.org/rfc/rfc9641#section-2.1.3.4
https://rfc-editor.org/rfc/rfc9641#section-2.1.3.3
https://rfc-editor.org/rfc/rfc9641#section-2.2.1
https://rfc-editor.org/rfc/rfc9642#section-2.2.1

RFC 9645 Groupings for TLS Clients and Servers October 2024

<private-key-format>ct:rsa-private-key-format</private\
-key-format>
<cleartext-private-key>BASE64VALUE=</cleartext-private\
-key>
<cert-data>BASE64VALUE=</cert-data>
</inline-definition>
</certificate>
</server-identity>

<!-- which certificates will this server trust -->
<client-authentication>
<ca-certs>
<inline-definition>
<certificate>
<name>Identity Cert Issuer #1</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate>
<name>Identity Cert Issuer #2</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</inline-definition>
</ca-certs>
<ee-certs>
<inline-definition>
<certificate>
<name>Application #1</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate>
<name>Application #2</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</inline-definition>
</ee-certs>
<raw-public-keys>
<inline-definition>
<public-key>
<name>User A</name>
<public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
<public-key>BASE64VALUE=</public-key>
</public-key>
<public-key>
<name>User B</name>
<public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
<public-key>BASE64VALUE=</public-key>
</public-key>
</inline-definition>
</raw-public-keys>
<tls12-psks/>
<tls13-epsks/>
</client-authentication>

<keepalives>

<peer-allowed-to-send/>
</keepalives>

Watsen Standards Track Page 34

RFC 9645 Groupings for TLS Clients and Servers October 2024

</tls-server>

The following configuration example uses central-keystore-references for the server identity and
central-truststore-references for client authentication from the keystore:

S === === —— NOTE: l\I line Wr’apping per RFC 8792 S === =]

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<tls-server xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">

<l-- how this server will authenticate itself to the client -->
<server-identity>
<certificate>

<central-keystore-reference>
<asymmetric-key>rsa-asymmetric-key</asymmetric-key>
<certificate>ex-rsa-cert</certificate>
</central-keystore-reference>
</certificate>
</server-identity>

<!-- which certificates will this server trust -->
<client-authentication>
<ca-certs>
<central-truststore-reference>trusted-client-ca-certs</c\
entral-truststore-reference>
</ca-certs>
<ee-certs>
<central-truststore-reference>trusted-client-ee-certs</c\
entral-truststore-reference>
</ee-certs>
<raw-public-keys>
<central-truststore-reference>Raw Public Keys for TLS CI1\
ients</central-truststore-reference>
</raw-public-keys>
<tls12-psks/>
<tls13-epsks/>
</client-authentication>

<keepalives>
<peer-allowed-to-send/>
</keepalives>

</tls-server>

4.3. YANG Module

This YANG module has normative references to [RFC4279], [RFC5280], [RFC6520], [RFC7250],
[RFC9640], [RFC9641], and [RFC9642] and informative references to [RFC5056], [RFC5246],
[RFC8446], [RFC9258], and [RFC9257].

Watsen Standards Track Page 35

RFC 9645 Groupings for TLS Clients and Servers October 2024

<C

mo

Watsen

ODE BEGINS> file "ietf-tls-server@2024-10-10.yang"

dule ietf-tls-server {

yang-version 1.1;

namespace "urn:ietf:params:xml:ns:yang:ietf-tls-server";
prefix tlss;

import ietf-netconf-acm {
prefix nacm;
reference
"RFC 8341: Network Configuration Access Control Model";

}
import ietf-crypto-types {
prefix ct;
reference
"RFC 9640: YANG Data Types and Groupings for Cryptography";
}
import ietf-truststore {
prefix ts;
reference
"RFC 9641: A YANG Data Model for a Truststore";
}
import ietf-keystore {
prefix ks;
reference
"RFC 9642: A YANG Data Model for a Keystore";
}

import ietf-tls-common {
prefix tlscmn;
reference
"RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
}

organization
"IETF NETCONF (Network Configuration) Working Group";
contact
"WG List: NETCONF WG list <mailto:netconf@ietf.org>
WG Web: https://datatracker.ietf.org/wg/netconf
Author: Kent Watsen <mailto:kent+ietf@watsen.net>
Author: Jeff Hartley <mailto:intensifysecurity@gmail.com>";
description
"This module defines reusable groupings for TLS servers that
can be used as a basis for specific TLS server instances.

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
"SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

"NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
are to be interpreted as described in BCP 14 (RFC 2119)
(RFC 8174) when, and only when, they appear in all
capitals, as shown here.

Copyright (c) 2024 IETF Trust and the persons identified
as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with

or without modification, is permitted pursuant to, and
subject to the license terms contained in, the Revised

Standards Track Page 36

RFC 9645 Groupings for TLS Clients and Servers October 2024

BSD License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 9645
(https://www.rfc-editor.org/info/rfc9645); see the RFC
itself for full legal notices."”;

revision 2024-10-10 {
description
"Initial version.";
reference
"RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
}

// Features

feature tls-server-keepalives {
description
"Per-socket TLS keepalive parameters are configurable for
TLS servers on the server implementing this feature.";

}

feature server-ident-x509-cert {
description
"Indicates that the server supports identifying itself
using X.509 certificates."”;
reference
"RFC 5280:
Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile";

}

feature server-ident-raw-public-key {
description
"Indicates that the server supports identifying itself
using raw public keys.";
reference
"RFC 7250:
Using Raw Public Keys in Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS)";

}

feature server-ident-tls12-psk {
if-feature "tlscmn:tls12";
description
"Indicates that the server supports identifying itself
using TLS 1.2 PSKs (pre-shared or pairwise symmetric keys).";
reference
"RFC 4279:
Pre-Shared Key Ciphersuites for Transport Layer Security
(TLS)";

feature server-ident-tls13-epsk {
if-feature "tlscmn:tls13";
description
"Indicates that the server supports identifying itself

Watsen Standards Track Page 37

RFC 9645 Groupings for TLS Clients and Servers October 2024

using TLS 1.3 External PSKs (pre-shared keys).";
reference
"RFC 8446:
The Transport Layer Security (TLS) Protocol Version 1.3";

}

feature client-auth-supported {
description
"Indicates that the configuration for how to authenticate
clients can be configured herein. TLS-level client
authentication may not be needed when client authentication
is expected to occur only at another protocol layer.";

}

feature client-auth-x509-cert {
description
"Indicates that the server supports authenticating clients
using X.509 certificates.";
reference
"RFC 5280:
Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile";

}

feature client-auth-raw-public-key {
description
"Indicates that the server supports authenticating clients
using raw public keys.";
reference
"RFC 7250:
Using Raw Public Keys in Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS)";

}

feature client-auth-tls12-psk {
description
"Indicates that the server supports authenticating clients
using PSKs (pre-shared or pairwise symmetric keys).";
reference
"RFC 4279:
Pre-Shared Key Ciphersuites for Transport Layer Security
(TLS)";

feature client-auth-tls13-epsk {
description
"Indicates that the server supports authenticating clients
using TLS 1.3 External PSKs (pre-shared keys).";
reference
"RFC 8446:
The Transport Layer Security (TLS) Protocol Version 1.3";

}
// Groupings
grouping tls-server-grouping {

description
"A reusable grouping for configuring a TLS server without

Watsen Standards Track Page 38

RFC 9645 Groupings for TLS Clients and Servers October 2024

any consideration for how underlying TCP sessions are
established.

Note that this grouping uses fairly typical descendant
node names such that a stack of 'uses' statements will
have name conflicts. It is intended that the consuming
data model will resolve the issue (e.g., by wrapping
the 'uses' statement in a container called
"tls-server-parameters'). This model purposely does
not do this itself so as to provide maximum flexibility
to consuming models.";
container server-identity {
nacm:default-deny-write;
description
"A locally defined or referenced End-Entity (EE) certificate,
including any configured intermediate certificates, that
the TLS server will present when establishing a TLS
connection in its Certificate message, as defined in
Section 7.4.2 of RFC 5246 and Section 4.4.2 of RFC 8446.";
reference
"RFC 5246: The Transport Layer Security (TLS) Protocol
Version 1.2
RFC 8446: The Transport Layer Security (TLS) Protocol
Version 1.3
RFC 9642: A YANG Data Model for a Keystore";
choice auth-type {
mandatory true;
description
"A choice amongst authentication types, of which one must
be enabled (via its associated 'feature') and selected.";
case certificate {
if-feature "server-ident-x509-cert";
container certificate {
description
"Specifies the server identity using a certificate.";
uses "ks:inline-or-keystore-end-entity-cert-with-key-"
+ "grouping” {
refine "inline-or-keystore/inline/inline-definition" {
must 'not(public-key-format) or derived-from-or-self'
+ '(public-key-format, '
+ ' "ct:subject-public-'
+ 'key-info-format")';
}
refine "inline-or-keystore/central-keystore/"
+ "central-keystore-reference/asymmetric-key" {
must 'not(deref(.)/../ks:public-key-format) or '
+ 'derived-from-or-self(deref(.)/../ks:public-key'
+ '-format, "ct:subject-public-key-info-format")";
}
}
}
}
case raw-private-key {
if-feature "server-ident-raw-public-key";
container raw-private-key {
description
"Specifies the server identity using a raw
private key.";

Watsen Standards Track Page 39

RFC 9645 Groupings for TLS Clients and Servers October 2024

uses ks:inline-or-keystore-asymmetric-key-grouping {
refine "inline-or-keystore/inline/inline-definition" {
must 'not(public-key-format) or derived-from-or-self'
+ '(public-key-format, '
" "ct:subject-public-'
+ 'key-info-format")';

refine "inline-or-keystore/central-keystore/"
+ "central-keystore-reference" {
must 'not(deref(.)/../ks:public-key-format) or
+ 'derived-from-or-self(deref(.)/../ks:public-key'
+ '-format, "ct:subject-public-key-info-format")";

}
}
}

case tls12-psk {
if-feature "server-ident-tls12-psk";
container tlsi12-psk {
description
"Specifies the server identity using a PSK (pre-shared
or pairwise symmetric key).";
uses ks:inline-or-keystore-symmetric-key-grouping;
leaf id-hint {
type string;
description
"The key 'psk_identity_hint' value used in the TLS
'ServerKeyExchange' message.";
reference
"RFC 4279: Pre-Shared Key Ciphersuites for
Transport Layer Security (TLS)";
}
}

case tls13-epsk {
if-feature "server-ident-tls13-epsk";
container tls13-epsk {
description

"An External Pre-Shared Key (EPSK) is established
or provisioned out of band, i.e., not from a TLS
connection. An EPSK is a tuple of (Base Key,
External Identity, Hash). EPSKs MUST NOT be
imported for (D)TLS 1.2 or prior versions.
When PSKs are provisioned out of band, the PSK
identity and the KDF hash algorithm to be used
with the PSK MUST also be provisioned.

The structure of this container is designed to
satisfy the requirements in Section 4.2.11 of
RFC 8446, the recommendations from Section 6 of
RFC 9257, and the EPSK input fields detailed in
Section 5.1 of RFC 9258. The base-key is based
upon ‘'ks:inline-or-keystore-symmetric-key-grouping'
in order to provide users with flexible and
secure storage options.";

reference
"RFC 8446: The Transport Layer Security (TLS)

Protocol Version 1.3

Watsen Standards Track Page 40

RFC 9645 Groupings for TLS Clients and Servers October 2024

RFC 9257: Guidance for External Pre-Shared Key
(PSK) Usage in TLS
RFC 9258: Importing External Pre-Shared Keys
(PSKs) for TLS 1.3";
uses ks:inline-or-keystore-symmetric-key-grouping;
leaf external-identity {
type string;
mandatory true;
description
"As per Section 4.2.11 of RFC 8446 and Section 4.1
of RFC 9257, a sequence of bytes used to identify
an EPSK. A label for a pre-shared key established
externally.";
reference
"RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3
RFC 9257: Guidance for External Pre-Shared Key
(PSK) Usage in TLS";

}
leaf hash {
type tlscmn:epsk-supported-hash;
default "sha-256";
description
"As per Section 4.2.11 of RFC 8446, for EPSKs,
the hash algorithm MUST be set when the PSK is
established; otherwise, default to SHA-256 if
no such algorithm is defined. The server MUST
ensure that it selects a compatible PSK (if any)
and cipher suite. Each PSK MUST only be used
with a single hash function.";
reference
"RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3";
}
leaf context {
type string;
description
"As per Section 5.1 of RFC 9258, context MUST
include the context used to determine the EPSK,
if any exists. For example, context may include
information about peer roles or identities
to mitigate Selfie-style reflection attacks.
Since the EPSK is a key derived from an external
protocol or sequence of protocols, context MUST
include a channel binding for the deriving
protocols (see RFC 5056). The details of this
binding are protocol specific and out of scope
for this document.";
reference
"RFC 9258: Importing External Pre-Shared Keys
(PSKs) for TLS 1.3";
}
leaf target-protocol {
type uint16;
description
"As per Section 3.1 of RFC 9258, the protocol
for which a PSK is imported for use.";
reference

Watsen Standards Track Page 41

RFC 9645 Groupings for TLS Clients and Servers October 2024

"RFC 9258: Importing External Pre-Shared Keys
(PSKs) for TLS 1.3";
}
leaf target-kdf {
type uint16;
description
"As per Section 3 of RFC 9258, the KDF for
which a PSK is imported for use.";
reference
"RFC 9258: Importing External Pre-Shared Keys
(PSKs) for TLS 1.3";
}
}
}
}

} // container server-identity
container client-authentication {
if-feature "client-auth-supported”;
nacm:default-deny-write;
must “ca-certs or ee-certs or raw-public-keys or tls12-psks
or tls13-epsks";
presence "Indicates that client authentication is supported
(i.e., that the server will request clients send
certificates). If not configured, the TLS server
SHOULD NOT request that TLS clients provide
authentication credentials.";
description
"Specifies how the TLS server can authenticate TLS clients.
Any combination of credentials is additive and unordered.

Note that no configuration is required for authentication
based on PSK (pre-shared or pairwise symmetric key) as the
the key is necessarily the same as configured in the
'../server-identity' node.";
container ca-certs {
if-feature "client-auth-x509-cert";
presence "Indicates that Certification Authority (CA)
certificates have been configured. This
statement is present so the mandatory
descendant nodes do not imply that this node
must be configured."”;
description
"A set of CA certificates used by the TLS server to
authenticate TLS client certificates. A client
certificate is authenticated if it has a valid chain
of trust to a configured CA certificate."”;
reference
"RFC 9641: A YANG Data Model for a Truststore":
uses ts:inline-or-truststore-certs-grouping;
}
container ee-certs {
if-feature "client-auth-x509-cert"”;
presence "Indicates that EE certificates have been
configured. This statement is present so the
mandatory descendant nodes do not imply that
this node must be configured."”;
description
"A set of client certificates (i.e., EE certificates)

Watsen Standards Track Page 42

RFC 9645 Groupings for TLS Clients and Servers October 2024

used by the TLS server to authenticate
certificates presented by TLS clients. A client
certificate is authenticated if it is an exact
match to a configured client certificate.";
reference
"RFC 9641: A YANG Data Model for a Truststore":
uses ts:inline-or-truststore-certs-grouping;
}
container raw-public-keys {
if-feature "client-auth-raw-public-key";
presence "Indicates that raw public keys have been
configured. This statement is present so
the mandatory descendant nodes do not imply
that this node must be configured.";
description
"A set of raw public keys used by the TLS server to
authenticate raw public keys presented by the TLS
client. A raw public key is authenticated if it
is an exact match to a configured raw public key.";
reference
"RFC 9641: A YANG Data Model for a Truststore":
uses ts:inline-or-truststore-public-keys-grouping {
refine "inline-or-truststore/inline/inline-definition/"
+ "public-key" {
must 'derived-from-or-self(public-key-format, '
+ ' "ct:subject-public-key-info-format")";
}

refine "inline-or-truststore/central-truststore/"
+ "central-truststore-reference" {
must 'not(deref(.)/../ts:public-key/ts:public-key-"
+ 'format[not(derived-from-or-self(., "ct:subject-'
+ 'public-key-info-format"))])"';
}
}

}
leaf tls12-psks {
if-feature "client-auth-tls12-psk";
type empty;
description
"Indicates that the TLS server can authenticate TLS clients
using configured PSKs (pre-shared or pairwise symmetric
keys).

No configuration is required since the PSK value is the
same as PSK value configured in the 'server-identity'
node.";

}
leaf tls13-epsks {
if-feature "client-auth-tls13-epsk”;
type empty;
description
"Indicates that the TLS 1.3 server can authenticate TLS
clients using configured External PSKs (pre-shared keys).

No configuration is required since the PSK value is the

same as PSK value configured in the 'server-identity'
node.";

Watsen Standards Track Page 43

RFC 9645 Groupings for TLS Clients and Servers October 2024

} // container client-authentication
container hello-params {
nacm:default-deny-write;
if-feature "tlscmn:hello-params”;
uses tlscmn:hello-params-grouping;
description
"Configurable parameters for the TLS hello message.";
} // container hello-params
container keepalives {
nacm:default-deny-write;
if-feature "tls-server-keepalives";
description
"Configures the keepalive policy for the TLS server.";
leaf peer-allowed-to-send {
type empty;
description
"Indicates that the remote TLS client is allowed to send
HeartbeatRequest messages, as defined by RFC 6520,
to this TLS server.";
reference
"RFC 6520: Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat Extension";
}
container test-peer-aliveness {
presence "Indicates that the TLS server proactively tests the
aliveness of the remote TLS client.";
description
"Configures the keepalive policy to proactively test
the aliveness of the TLS client. An unresponsive
TLS client is dropped after approximately max-wait
* max-attempts seconds."”;
leaf max-wait {
type uint16 {
range "1..max";

units "seconds";
default "30";
description
"Sets the amount of time in seconds, after which a
TLS-1level message will be sent to test the
aliveness of the TLS client if no data has been
received from the TLS client.";
}
leaf max-attempts {
type uint8;
default "3";
description
"Sets the maximum number of sequential keepalive
messages that can fail to obtain a response from
the TLS client before assuming the TLS client is
no longer alive.";
}
}
} // container keepalives
} // grouping tls-server-grouping

Watsen Standards Track Page 44

RFC 9645 Groupings for TLS Clients and Servers October 2024

<CODE ENDS>

5. Security Considerations

The three IETF YANG modules in this document define groupings and will not be deployed as
standalone modules. Their security implications may be context dependent based on their use in
other modules. The designers of modules that import these grouping must conduct their own
analysis of the security considerations.

5.1. Considerations for the "iana-tls-cipher-suite-algs" YANG Module
This section is modeled after the template defined in Section 3.7.1 of [RFC8407].

The "iana-tls-cipher-suite-algs" YANG module defines a data model that is designed to be accessed
via YANG-based management protocols, such as NETCONF [RFC6241] and RESTCONF [RFC8040].
These protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH)
[RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and mandatory-to-implement mutual
authentication.

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

This YANG module defines YANG enumerations, for a public IANA-maintained registry.

YANG enumerations are not security-sensitive, as they are statically defined in the publicly
accessible YANG module. IANA MAY deprecate and/or obsolete enumerations over time as
needed to address security issues found in the algorithms.

This module does not define any writable nodes, RPCs, actions, or notifications, and thus the
security considerations for such are not provided here.

5.2. Considerations for the "ietf-tls-common" YANG Module
This section is modeled after the template defined in Section 3.7.1 of [REC8407].

The "ietf-tls-common" YANG module defines a data model that is designed to be accessed via
YANG-based management protocols, such as NETCONF [RFC6241] and RESTCONF [RFC8040].
These protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH)
[RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and mandatory-to-implement mutual
authentication.

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

Watsen Standards Track Page 45

https://rfc-editor.org/rfc/rfc8407#section-3.7.1
https://rfc-editor.org/rfc/rfc8407#section-3.7.1

RFC 9645 Groupings for TLS Clients and Servers October 2024

Please be aware that this YANG module uses groupings from other YANG modules that define
nodes that may be considered sensitive or vulnerable in network environments. Please review
the Security Considerations for dependent YANG modules for information as to which nodes may
be considered sensitive or vulnerable in network environments.

None of the readable data nodes defined in this YANG module are considered sensitive or
vulnerable in network environments. The NACM "default-deny-all" extension has not been set for
any data nodes defined in this module.

None of the writable data nodes defined in this YANG module are considered sensitive or
vulnerable in network environments. The NACM "default-deny-write" extension has not been set
for any data nodes defined in this module.

This module defines the "generate-asymmetric-key-pair" RPC that may;, if the "ct:cleartext-private-
keys" feature is enabled and the client requests it, return the private clear in cleartext form. It is
NOT RECOMMENDED for private keys to pass the server's security perimeter.

This module does not define any actions or notifications, and thus the security considerations for
such are not provided here.

5.3. Considerations for the "ietf-tls-client" YANG Module
This section is modeled after the template defined in Section 3.7.1 of [REC8407].

The "ietf-tlIs-client" YANG module defines a data model that is designed to be accessed via YANG-
based management protocols, such as NETCONF [RFC6241] and RESTCONF [RFC8040]. These
protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH)
[RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and mandatory-to-implement mutual
authentication.

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

Please be aware that this YANG module uses groupings from other YANG modules that define
nodes that may be considered sensitive or vulnerable in network environments. Please review
the Security Considerations for dependent YANG modules for information as to which nodes may
be considered sensitive or vulnerable in network environments.

None of the readable data nodes defined in this YANG module are considered sensitive or
vulnerable in network environments. The NACM "default-deny-all" extension has not been set for
any data nodes defined in this module.

All the writable data nodes defined by this module may be considered sensitive or vulnerable in
some network environments. For instance, any modification to a key or reference to a key may
dramatically alter the implemented security policy. For this reason, the NACM extension "default-
deny-write" has been set for all data nodes defined in this module.

Watsen Standards Track Page 46

https://rfc-editor.org/rfc/rfc8407#section-3.7.1

RFC 9645 Groupings for TLS Clients and Servers October 2024

This module does not define any RPCs, actions, or notifications, and thus the security
considerations for such are not provided here.

5.4. Considerations for the "ietf-tls-server" YANG Module
This section is modeled after the template defined in Section 3.7.1 of [RFC8407].

The "ietf-tls-server" YANG module defines a data model that is designed to be accessed via YANG-
based management protocols, such as NETCONF [RFC6241] and RESTCONF [RFC8040]. These
protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH)
[REC4252], TLS [RFC8446], and QUIC [RFC9000]) and mandatory-to-implement mutual
authentication.

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

Please be aware that this YANG module uses groupings from other YANG modules that define
nodes that may be considered sensitive or vulnerable in network environments. Please review
the Security Considerations for dependent YANG modules for information as to which nodes may
be considered sensitive or vulnerable in network environments.

None of the readable data nodes defined in this YANG module are considered sensitive or
vulnerable in network environments. The NACM "default-deny-all" extension has not been set for
any data nodes defined in this module.

Please be aware that this module uses the "key" and "private-key" nodes from the "ietf-crypto-
types" module [RFC9640], where said nodes have the NACM extension "default-deny-all" set, thus
preventing unrestricted read access to the cleartext key values.

All the writable data nodes defined by this module may be considered sensitive or vulnerable in
some network environments. For instance, any modification to a key or reference to a key may
dramatically alter the implemented security policy. For this reason, the NACM extension "default-
deny-write" has been set for all data nodes defined in this module.

This module does not define any RPCs, actions, or notifications, and thus the security
considerations for such are not provided here.

6. TANA Considerations

6.1. The IETF XML Registry

IANA has registered the following four URIs in the "ns" registry of the "IETF XML Registry"
[RFC3688].

URL: urn:etf:params:xml:ns:yang:iana-tls-cipher-suite-algs
Registrant Contact: The IESG

Watsen Standards Track Page 47

https://rfc-editor.org/rfc/rfc8407#section-3.7.1

RFC 9645 Groupings for TLS Clients and Servers October 2024

XML: N/A; the requested URI is an XML namespace.

URL: urn:etf:params:xml:ns:yang:ietf-tls-common
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.

URL: urn:etf:params:xml:ns:yang:ietf-tls-client
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.

URIL: urn:etf:params:xml:ns:yang:ietf-tls-server
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.

6.2. The YANG Module Names Registry

IANA has registered the following four YANG modules in the "YANG Module Names" registry
[RFC6020].

name: iana-tls-cipher-suite-algs

Maintained by IANA: Y

namespace: urn:etf:params:xml:ns:yang:iana-tls-cipher-suite-algs
prefix: tlscsa

reference: RFC 9645

name: ietf-tls-common

Maintained by IANA: N

namespace: urn:etf:params:xml:ns:yang:ietf-tls-common
prefix: tlscmn

reference: RFC 9645

name: ietf-tls-client

Maintained by IANA: N

namespace: urn:ietf:params:xml:ns:yang:ietf-tls-client
prefix: tlsc

reference: RFC 9645

name: ietf-tls-server

Maintained by IANA: N

namespace: urn:etf:params:xml:ns:yang:ietf-tls-server
prefix: tlss

reference: RFC 9645

Watsen Standards Track Page 48

RFC 9645 Groupings for TLS Clients and Servers October 2024

6.3. Considerations for the "iana-tls-cipher-suite-algs" YANG Module
This section follows the template defined in Section 4.30.3.1 of [RFC8407BIS].

IANA used the script in Appendix A to generate the IANA-maintained "iana-tls-cipher-suite-algs"
YANG module. The YANG module is available from the "YANG Parameters" registry [[ANA-YANG-
PARAMETERS].

IANA has added the following note to the registry:

New values must not be directly added to the "iana-tls-cipher-suite-algs" YANG module.
They must instead be added to the "TLS Cipher Suites" registry in the "Transport Layer
Security (TLS) Parameters" registry group [IANA-CIPHER-ALGS].

When a value is added to the "TLS Cipher Suites" registry, a new "enum" statement must be
added to the "iana-tls-cipher-suite-algs" YANG module. The "enum" statement, and substatements
thereof, should be defined as follows:

enum
Replicates a name from the registry.

value
Contains the decimal value of the IANA-assigned value.

status
Include only if a registration has been deprecated or obsoleted. An IANA "Recommended"
value "N" maps to YANG status "deprecated". Since the registry is unable to express a logical
"MUST NOT" recommendation, there is no mapping to YANG status "obsolete", which is
unfortunate given the moving of single-DES and International Data Encryption Algorithm
(IDEA) TLS cipher suites to Historic [RFC8996].

description
Contains "Enumeration for the 'TLS_FOO' algorithm", where "TLS_FOO" is a placeholder for
the algorithm's name (e.g., "TLS_PSK_WITH_AES_256_CBC_SHA").

reference
Replicates the reference(s) from the registry with the title of the document(s) added.

Unassigned or reserved values are not present in the module.

When the "iana-tls-cipher-suite-algs" YANG module is updated, a new "revision" statement with a
unique revision date must be added in front of the existing revision statements. The "revision"
must have a "description" statement explaining why the the update occurred and must have a
"reference" substatement that points to the document defining the registry update that resulted
in this change. For instance:

Watsen Standards Track Page 49

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-17#section-4.30.3.1

RFC 9645 Groupings for TLS Clients and Servers October 2024

revision 2024-10-10 {
description
"This update reflects the update made to the underlying
'Foo Bar' registry per RFC XXXX.";
reference
"RFC XXXX: Extend the Foo Bar Registry
to Support Something Important”;

IANA has added the following note to the "TLS Cipher Suites" registry under the "Transport Layer
Security (TLS) Parameters" registry group [IANA-CIPHER-ALGS].

When this registry is modified, the YANG module "iana-tls-cipher-suite-algs" [[ANA-
YANG-PARAMETERS] must be updated as defined in RFC 9645.

7. References

7.1. Normative References

[FIPS180-4] National Institute of Standards and Technology (NIST), "Secure Hash Standard
(SHS)", FIPS PUB 180-4, DOI 10.6028/NIST.FIPS.180-4, August 2015, <https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>.

[FIPS186-5] National Institute of Standards and Technology (NIST), "Digital Signature
Standard (DSS)", FIPS 186-5, DOI 10.6028/NIST.FIPS.186-5, February 2023,
<https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH) Authentication Protocol",
RFC 4252, DOI 10.17487/RFC4252, January 2006, <https://www.rfc-editor.org/info/
rfc4252>.

[RFC4279] Eronen, P, Ed. and H. Tschofenig, Ed., "Pre-Shared Key Ciphersuites for
Transport Layer Security (TLS)", REC 4279, DOI 10.17487/RFC4279, December
2005, <https://www.rfc-editor.org/info/rfc4279>.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk,
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, <https://www.rfc-
editor.org/info/rfc5280>.

Watsen Standards Track Page 50

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4279
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280

RFC 9645

[RFC5288]

[RFC5289]

[RFC6020]

[RFC6241]

[RFC6520]

[REC7250]

[REC7589]

[RFC7950]

[RFC8040]

[RFC8174]

[RFC8341]

[RFC8422]

Watsen

Groupings for TLS Clients and Servers October 2024

Salowey, J., Choudhury, A., and D. McGrew, "AES Galois Counter Mode (GCM)
Cipher Suites for TLS", RFC 5288, DOI 10.17487/RFC5288, August 2008, <https://
www.rfc-editor.org/info/rfc5288>.

Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois
Counter Mode (GCM)", RFC 5289, DOI 10.17487/RFC5289, August 2008, <https://
www.rfc-editor.org/info/rfc5289>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October
2010, <https://www.rfc-editor.org/info/rfc6020>.

Enns, R, Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed.,
"Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241,
June 2011, <https://www.rfc-editor.org/info/rfc6241>.

Seggelmann, R., Tuexen, M., and M. Williams, "Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS) Heartbeat Extension", RFC 6520,
DOI 10.17487/RFC6520, February 2012, <https://www.rfc-editor.org/info/
rfc6520>.

Wouters, P, Ed., Tschofenig, H., Ed., Gilmore, J., Weiler, S., and T. Kivinen, "Using
Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250, June 2014, <https://
www.rfc-editor.org/info/rfc7250>.

Badra, M., Luchuk, A., and]. Schoenwaelder, "Using the NETCONF Protocol over
Transport Layer Security (TLS) with Mutual X.509 Authentication", RFC 7589,
DOI 10.17487/RFC7589, June 2015, <https://www.rfc-editor.org/info/rfc7589>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI
10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI
10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model",
STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-
editor.org/info/rfc8341>.

Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic Curve Cryptography
(ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier",
RFC 8422, DOI 10.17487/RFC8422, August 2018, <https://www.rfc-editor.org/info/
rfc8422>.

Standards Track Page 51

https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5289
https://www.rfc-editor.org/info/rfc5289
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6520
https://www.rfc-editor.org/info/rfc6520
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7589
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8422

RFC 9645 Groupings for TLS Clients and Servers October 2024

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446,
DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.

[RFC9000] Iyengar,]., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based Multiplexed and
Secure Transport", RFC 9000, DOI 10.17487/RFC9000, May 2021, <https://
www.rfc-editor.org/info/rfc9000>.

[RFC9640] Watsen, K., "YANG Data Types and Groupings for Cryptography", RFC 9640, DOI
10.17487/RFC9640, October 2024, <https://www.rfc-editor.org/info/rfc9640>.

[RFC9641] Watsen, K., "A YANG Data Model for a Truststore", RFC 9641, DOI 10.17487/
RF(C9641, October 2024, <https://www.rfc-editor.org/info/rfc9641>.

[RFC9642] Watsen, K., "A YANG Data Model for a Keystore", RFC 9642, DOI 10.17487/
RFC9642, October 2024, <https://www.rfc-editor.org/info/rfc9642>.

7.2. Informative References

[HTTP-CLIENT-SERVER] Watsen, K., "YANG Groupings for HTTP Clients and HTTP Servers",
Work in Progress, Internet-Draft, draft-ietf-netconf-http-client-server-23, 15
August 2024, <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-
server-23>.

[IANA-CIPHER-ALGS] IANA, "TLS Cipher Suites", <https://www.iana.org/assignments/tls-
parameters/>.

[IANA-YANG-PARAMETERS] IANA, "YANG Parameters", <https://www.iana.org/assignments/
yang-parameters>.

[NETCONF-CLIENT-SERVER] Watsen, K., "NETCONTF Client and Server Models", Work in
Progress, Internet-Draft, draft-ietf-netconf-netconf-client-server-37, 14 August
2024, <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-
server-37>.

[RESTCONF-CLIENT-SERVER] Watsen, K., "RESTCONTF Client and Server Models", Work in
Progress, Internet-Draft, draft-ietf-netconf-restconf-client-server-38, 14 August
2024, <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-
server-38>.

[RFC3688] Mealling, M., "The IETF XML Registry"”, BCP 81, RFC 3688, DOI 10.17487/RFC3688,
January 2004, <https://www.rfc-editor.org/info/rfc3688>.

[RFC5056] Williams, N., "On the Use of Channel Bindings to Secure Channels", RFC 5056,
DOI 10.17487/RFC5056, November 2007, <https://www.rfc-editor.org/info/
rfc5056>.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version
1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/
info/rfc5246>.

Watsen Standards Track Page 52

https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9640
https://www.rfc-editor.org/info/rfc9641
https://www.rfc-editor.org/info/rfc9642
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-23
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-23
https://www.iana.org/assignments/tls-parameters/
https://www.iana.org/assignments/tls-parameters/
https://www.iana.org/assignments/yang-parameters
https://www.iana.org/assignments/yang-parameters
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-37
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-37
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-38
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-38
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc5056
https://www.rfc-editor.org/info/rfc5056
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246

RFC 9645

[RFC8071]

[RFC8259]

[RFC8340]

[RFC8342]

[RFC8407]

[RFC8407BIS]

[RFC8996]

[RFC9110]

[REC9257]

[RFC9258]

[RFC9643]

[RFC9644]

Groupings for TLS Clients and Servers October 2024

Watsen, K., "NETCONF Call Home and RESTCONF Call Home", RFC 8071, DOI
10.17487/RFC8071, February 2017, <https://www.rfc-editor.org/info/rfc8071>.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format",
STD 90, RFC 8259, DOI 10.17487/RFC8259, December 2017, <https://www.rfc-
editor.org/info/rfc8259>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI
10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P, Watsen, K., and R. Wilton, "Network
Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342,
March 2018, <https://www.rfc-editor.org/info/rfc8342>.

Bierman, A., "Guidelines for Authors and Reviewers of Documents Containing
YANG Data Models", BCP 216, RFC 8407, DOI 10.17487/RFC8407, October 2018,
<https://www.rfc-editor.org/info/rfc8407>.

Bierman, A., Boucadair, M., and Q. Wu, "Guidelines for Authors and Reviewers
of Documents Containing YANG Data Models", Work in Progress, Internet-Draft,
draft-ietf-netmod-rfc8407bis-17, 27 September 2024, <https://datatracker.ietf.org/
doc/html/draft-ietf-netmod-rfc8407bis-17>.

Moriarty, K. and S. Farrell, "Deprecating TLS 1.0 and TLS 1.1", BCP 195, RFC 8996,
DOI 10.17487/RFC8996, March 2021, <https://www.rfc-editor.org/info/rfc8996>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP Semantics", STD
97, RFC 9110, DOI 10.17487/RFC9110, June 2022, <https://www.rfc-editor.org/info/
rfc9110>.

Housley, R., Hoyland, J., Sethi, M., and C. A. Wood, "Guidance for External Pre-
Shared Key (PSK) Usage in TLS", RFC 9257, DOI 10.17487/RFC9257, July 2022,
<https://www.rfc-editor.org/info/rfc9257>.

Benjamin, D. and C. A. Wood, "Importing External Pre-Shared Keys (PSKs) for
TLS 1.3", RFC 9258, DOI 10.17487/RFC9258, July 2022, <https://www.rfc-
editor.org/info/rfc9258>.

Watsen, K. and M. Scharf, "YANG Groupings for TCP Clients and TCP Servers",
RFC 9643, DOI 10.17487/RFC9643, October 2024, <https://www.rfc-editor.org/info/
rfc9643>.

Watsen, K., "YANG Groupings for SSH Clients and SSH Servers", RFC 9644, DOI
10.17487/RFC9644, October 2024, <https://www.rfc-editor.org/info/rfc9644>.

[SYSTEM-CONFIG] Ma, Q., Wu, Q., and C. Feng, "System-defined Configuration", Work in

Watsen

Progress, Internet-Draft, draft-ietf-netmod-system-config-09, 29 September 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-09>.

Standards Track Page 53

https://www.rfc-editor.org/info/rfc8071
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8407
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-17
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-17
https://www.rfc-editor.org/info/rfc8996
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9257
https://www.rfc-editor.org/info/rfc9258
https://www.rfc-editor.org/info/rfc9258
https://www.rfc-editor.org/info/rfc9643
https://www.rfc-editor.org/info/rfc9643
https://www.rfc-editor.org/info/rfc9644
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-09

RFC 9645 Groupings for TLS Clients and Servers October 2024

[W3C.REC-xml-20081126] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and F. Yergeau,
"Extensible Markup Language (XML) 1.0 (Fifth Edition)", W3C Recommendation
REC-xml-20081126, November 2008, <https://www.w3.org/TR/xml/>.

Appendix A. Script to Generate IANA-Maintained YANG
Modules

This section is not normative.

The Python <https://www.python.org> script contained in this section was used to create the
initial IANA-maintained "iana-tls-cipher-suite-algs" YANG module maintained at [[ANA-YANG-
PARAMETERS].

Run the script using the command 'python gen-yang-modules.py' to produce the YANG module
file in the current directory.

Be aware that the script does not attempt to copy the "revision" statements from the previous/
current YANG module. Copying the revision statements must be done manually.

<CODE BEGINS>

import re

import csv

import requests

import textwrap

import requests_cache

from io import StringIO

from datetime import datetime

Metadata for the one YANG module produced by this script

MODULES = [
{
"csv_url": "https://www.iana.org/assignments/tls-parameters/\
\tls-parameters-4.csv",
"spaced_name": "cipher-suite",
"hyphenated_name": "cipher-suite",
"prefix": "tlscsa",
}

def create_module_begin(module, f):

Define template for all four modules
PREAMBLE _TEMPLATE="""
module iana-tls-HNAME-algs {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:iana-tls-HNAME-algs";
prefix PREFIX;

organization
"Internet Assigned Numbers Authority (IANA)";

Watsen Standards Track Page 54

https://www.w3.org/TR/xml/
https://www.python.org

RFC 9645 Groupings for TLS Clients and Servers October 2024

contact
"Postal: ICANN
12025 Waterfront Drive, Suite 300
Los Angeles, CA 90094-2536
United States of America
Tel: +1 310 301 5800
Email: <iana@iana.org>";

description
"This module defines enumerations for the cipher suite
algorithms defined in the 'TLS Cipher Suites' registry
under the 'Transport Layer Security (TLS) Parameters'’
registry group maintained by IANA.

Copyright (c) 2024 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with
or without modification, is permitted pursuant to, and
subject to the license terms contained in, the Revised
BSD License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info).

The initial version of this YANG module is part of RFC 9645
(https://www.rfc-editor.org/info/rfc9645); see the RFC
itself for full legal notices.

All versions of this module are published by IANA
(https://www.iana.org/assignments/yang-parameters).";

revision DATE {
description
"This initial version of the module was created using
the script defined in RFC 9645 to reflect the contents
of the SNAME algorithms registry maintained by IANA.";
reference
"RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
}

typedef tls-HNAME-algorithm {

type enumeration {

Replacements

rep = {
"DATE": datetime.today().strftime('%Y-%m-%d"'),
"YEAR": datetime.today().strftime('%Y"),
"SNAME" : modulel["spaced_name"],
"HNAME" : module["hyphenated_name"],
"PREFIX": module["prefix"]

}

Do the replacement

rep = dict((re.escape(k), v) for k, v in rep.items())

pattern = re.compile("|".join(rep.keys()))

text = pattern.sub(lambda m: rep[re.escape(m.group(@))], PREAMBL\
\E_TEMPLATE)

Watsen Standards Track Page 55

RFC 9645 Groupings for TLS Clients and Servers October 2024

Write preamble into the file
f.write(text)

def create_module_body(module, f):

Fetch the current CSV file from IANA
r = requests.get(module["csv_url"])
assert r.status_code == 200, "Could not get " + module["csv_url"]

Parse each CSV line

with StringIO(r.text) as csv_file:
csv_reader = csv.DictReader(csv_file)
for row in csv_reader:

Skip reserved algs
if row["Description"].startswith("Unassigned"):
continue

Skip unassigned algs
if row["Description"].startswith("Reserved"):
continue

Ensure this is the TLS 1line
assert row["Description”].startswith("TLS_"), "Unrecogni\
\zed description: '" + row["Description"] + """

Set the 'refs' and 'titles' lists

if row["Reference"] == :
pass # skip when the Reference field is empty

else:

There may be more than one ref

refs = row["Reference"][1:-1] # remove the '[' and \
\']"' chars

refs = refs.split("][")

titles = []

for ref in refs:

Ascertain the ref's title
if ref.startswith("RFC"):

Fetch the current BIBTEX entry

bibtex_url="https://datatracker.ietf.org/doc\
\/"+ ref.lower() + "/bibtex/"

r = requests.get(bibtex_url)

assert r.status_code == 200, "Could not GET \
\" + bibtex_url

Append to 'titles' value from the "title" \

\line
for item in r.text.split("\n"):
if "title =" in item:
title = re.sub('.*{{(.*)}}.*", r'\g<\
\1>"', item)

if title.startswith("ECDHE_PSK"):

Watsen Standards Track Page 56

RFC 9645

Groupings for TLS Clients and Servers October 2024

title = re.sub("ECDHE_PSK", \

\"ECDHE_PSK", title)

\ r'\g<1>",

titles.append(re.sub('.*{{(.*)}}.*" \

title))
break
else:
raise Exception("RFC title not found")
Insert a space: "RFC9645" --> "RFC 9645"
index = refs.index(ref)
refs[index] = "RFC " + ref[3:]
elif ref == "IESG Action 2018-08-16":
Rewrite the ref value
index = refs.index(ref)
refs[index] = "IESG Action"
Let title be something descriptive
titles.append("IESG Action 2018-08-16")
elif ref == "draft-irtf-cfrg-aegis-aead-08":

Manually set the document's title
titles.append("The AEGIS Family of Authentic\

\ated Encryption Algorithms")

elif ref:
raise Exception(f'ref "{ref}" not found')

else:
raise Exception(f'ref missing: {row}")

Write out the enum
f.write(f' enum {row["Description"]} {{\n');
if row["Recommended"] == 'N':
f.write(f' status deprecated;\n')
f.write(f' description\n')
description = f' "Enumeration for the \'{row["D\

\escription"]}\' algorithm.";'

description = textwrap.fill(description, width=69, subse\

\quent_indent="

\t_indent="

Watsen

f.write(f'{description}\n")
f.write(' reference\n')
f.write(' "
if row["Reference"] == "":
f.write('Missing in IANA registry."')
else:
ref_len = len(refs)
for i in range(ref_len):
ref = refs[i]
f.write(f'{ref}:\n")

title = " "+ titles[i]

if i == ref_len - 1:
title += '";"'

title = textwrap.fill(title, width=69, subsequen\
")

Standards Track Page 57

RFC 9645 Groupings for TLS Clients and Servers October 2024

f.write(f'{title}")

if i !'= ref_len - 1:
f.write('\n ")
f.write('\n")
f.write(' \n")

def create_module_end(module, f):

Close out the enumeration, typedef, and module

f.write(" \n")
f.write(" description\n")
f.write(f' "An enumeration for TLS {module["spaced_name"]} \

\algorithms.";\n")
f.write(" }\n")
f.write('\n")
f.write('}\n")

def create_module(module):

Install cache for 8x speedup
requests_cache.install_cache()

Ascertain the yang module's name
yang_module_name = "iana-tls-" + module["hyphenated_name"] + "-a\
\1lgs.yang"

Create yang module file

with open(yang_module_name, "w") as f:
create_module_begin(module, f)
create_module_body(module, f)
create_module_end(module, f)

def main():
for module in MODULES:
create_module(module)

if __name__ == "__main__":
main()

<CODE ENDS>

Acknowledgements

The authors would like to thank the following for lively discussions on list and in the halls
(ordered by first name): Alan Luchuk, Andy Bierman, Baldzs Kovacs, Benoit Claise, Bert Wijnen,
David Lamparter, Dhruv Dhody, Eric Vyncke, Gary Wu, Henk Birkholz, Jeff Hartley, Jiirgen
Schonwaélder, Ladislav Lhotka, Liang Xia, Martin Bjorklund, Martin Thomson, Mehmet Ersue,
Michal Vasko, Murray Kucherawy, Paul Wouters, Phil Shafer, Qin Wu, Radek Krejci, Rob Wilton,
Roman Danyliw, Russ Housley, Sean Turner, Thomas Martin, and Tom Petch.

Watsen Standards Track Page 58

RFC 9645 Groupings for TLS Clients and Servers October 2024

Contributors

Special acknowledgement goes to Gary Wu who contributed the "ietf-tls-common" module and
Tom Petch who carefully ensured that references were set correctly throughout.

Author's Address

Kent Watsen
Watsen Networks
Email: kent+ietf@watsen.net

Watsen Standards Track Page 59

mailto:kent+ietf@watsen.net

	RFC 9645
	YANG Groupings for TLS Clients and TLS Servers
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Regarding the Three IETF Modules
	1.2. Relation to Other RFCs
	1.3. Specification Language
	1.4. Adherence to the NMDA
	1.5. Conventions

	2. The "ietf-tls-common" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Identities
	2.1.3. Groupings
	2.1.3.1. The "hello-params-grouping" Grouping

	2.1.4. Protocol-Accessible Nodes

	2.2. Example Usage
	2.3. YANG Module

	3. The "ietf-tls-client" Module
	3.1. Data Model Overview
	3.1.1. Features
	3.1.2. Groupings
	3.1.2.1. The "tls-client-grouping" Grouping

	3.1.3. Protocol-Accessible Nodes

	3.2. Example Usage
	3.3. YANG Module

	4. The "ietf-tls-server" Module
	4.1. Data Model Overview
	4.1.1. Features
	4.1.2. Groupings
	4.1.2.1. The "tls-server-grouping" Grouping

	4.1.3. Protocol-Accessible Nodes

	4.2. Example Usage
	4.3. YANG Module

	5. Security Considerations
	5.1. Considerations for the "iana-tls-cipher-suite-algs" YANG Module
	5.2. Considerations for the "ietf-tls-common" YANG Module
	5.3. Considerations for the "ietf-tls-client" YANG Module
	5.4. Considerations for the "ietf-tls-server" YANG Module

	6. IANA Considerations
	6.1. The IETF XML Registry
	6.2. The YANG Module Names Registry
	6.3. Considerations for the "iana-tls-cipher-suite-algs" YANG Module

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Script to Generate IANA-Maintained YANG Modules
	Acknowledgements
	Contributors
	Author's Address

 YANG Groupings for TLS Clients and TLS Servers

 Watsen Networks

 kent+ietf@watsen.net

 OPS
 netconf

 This document presents four YANG 1.1 modules -- three IETF modules
 and one supporting IANA module.
 The three IETF modules are "ietf-tls-common", "ietf-tls-client", and
 "ietf-tls-server". The "ietf-tls-client" and "ietf-tls-server" modules
 are the primary productions of this work, supporting the configuration
 and monitoring of TLS clients and servers.
 The IANA module is "iana-tls-cipher-suite-algs". This module
 defines YANG enumerations that provide support for an IANA-maintained
 algorithm registry.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Regarding the Three IETF Modules

 . Relation to Other RFCs

 . Specification Language

 . Adherence to the NMDA

 . Conventions

 . The "ietf-tls-common" Module

 . Data Model Overview

 . Example Usage

 . YANG Module

 . The "ietf-tls-client" Module

 . Data Model Overview

 . Example Usage

 . YANG Module

 . The "ietf-tls-server" Module

 . Data Model Overview

 . Example Usage

 . YANG Module

 . Security Considerations

 . Considerations for the "iana-tls-cipher-suite-algs" YANG Module

 . Considerations for the "ietf-tls-common" YANG Module

 . Considerations for the "ietf-tls-client" YANG Module

 . Considerations for the "ietf-tls-server" YANG Module

 . IANA Considerations

 . The IETF XML Registry

 . The YANG Module Names Registry

 . Considerations for the "iana-tls-cipher-suite-algs" YANG Module

 . References

 . Normative References

 . Informative References

 . Script to Generate IANA-Maintained YANG Modules

 Acknowledgements

 Contributors

 Author's Address

 Introduction
 This document presents four YANG 1.1
 modules -- three IETF modules and one IANA module.
 The three IETF modules are "ietf-tls-common" (),
 "ietf-tls-client" (), and "ietf-tls-server"
 (). The "ietf-tls-client" and
 "ietf-tls-server" modules are the primary productions of this work,
 supporting the configuration and monitoring of TLS clients and servers.
 The groupings defined in this document are expected to be used in
 conjunction with the groupings defined in an underlying transport-level
	 module, such as the groupings defined in .
 The transport-level data model enables the configuration of transport-level
 values such as a remote address, a remote port, a local address, and a
 local port.
 The IANA module is "iana-tls-cipher-suite-algs".
 This module defines YANG enumerations that provide support for an IANA-maintained
 algorithm registry.
 IANA used the script in to generate the "iana-tls-cipher-suite-algs" YANG module. This document does not
 publish the initial version of the module; it is published and maintained by IANA.

 Regarding the Three IETF Modules
 The three IETF modules define features and groupings to model "generic" TLS
 clients and TLS servers, where "generic" should be interpreted as "least
 common denominator" rather than "complete." Basic TLS protocol support
 is afforded by these modules, leaving configuration of advance features
 to augmentations made by consuming modules.
 It is intended that the YANG groupings will be used by applications needing
 to configure TLS client and server protocol stacks. For instance, these
 groupings are used to help define the data model for HTTPS
 and clients and servers based on the Network Configuration Protocol (NETCONF) over TLS in and , respectively.
 The "ietf-tls-client" and "ietf-tls-server" YANG modules each define one
 grouping, which is focused on just TLS-specific configuration, and
 specifically avoid any transport-level configuration, such as what
 ports to listen on or connect to. This affords applications the
 opportunity to define their own strategy for how the underlying TCP
 connection is established. For instance, applications supporting NETCONF
 Call Home could use the "tls-server-grouping"
 grouping for the TLS parts it provides, while adding data nodes for the
 TCP-level call-home configuration.
 Both TLS 1.2 and TLS 1.3 may be configured. TLS 1.2
 is obsoleted by TLS 1.3
 but is still in common use, and hence its "feature" statement is marked
 "status deprecated".

 Relation to Other RFCs
 This document presents four YANG modules
 that are part of a collection of RFCs that work together
 to ultimately support the configuration of both the clients
 and servers of the NETCONF and
 RESTCONF protocols.
 The dependency relationship between the primary YANG groupings
 defined in the various RFCs is presented in the diagram below.
 In some cases, a document may define secondary groupings that
 introduce dependencies not illustrated in the diagram.
 The labels in the diagram are shorthand names for the defining
 RFCs. The citation references for the shorthand names are provided below
 the diagram.
 Please note that the arrows in the diagram point from referencer
 to referenced. For example, the "crypto-types" RFC does not
 have any dependencies, whilst the "keystore" RFC depends on the
 "crypto-types" RFC.

 crypto-types
 ^ ^
 / \
 / \
 truststore keystore
 ^ ^ ^ ^
 | +---------+ | |
 | | | |
 | +------------+ |
tcp-client-server | / | |
 ^ ^ ssh-client-server | |
 | | ^ tls-client-server
 | | | ^ ^ http-client-server
 | | | | | ^
		+-----+ +---------+		
+-----------	--------	--------------+		
 +-----------+ | | | | |
 | | | | | |
 | | | | | |
 netconf-client-server restconf-client-server

 Labels in Diagram to RFC Mapping

 Label in Diagram
 Originating RFC

 crypto-types

 truststore

 keystore

 tcp-client-server

 ssh-client-server

 tls-client-server

 RFC 9645

 http-client-server

 netconf-client-server

 restconf-client-server

 Specification Language

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 Adherence to the NMDA
 This document is compliant with the Network Management Datastore
 Architecture (NMDA) . For instance, as
 described in and
 , trust anchors and keys
 installed during manufacturing are expected to appear
 in <operational> () and <system>
 if implemented.

 Conventions
 Various examples in this document use "BASE64VALUE=" as a
 placeholder value for binary data that has been base64 encoded
 (per). This
 placeholder value is used because real base64-encoded structures
 are often many lines long and hence distracting to the example
 being presented.

 Various examples in this document use the XML encoding. Other encodings, such as
 JSON , could alternatively be used.

 Various examples in this document contain long lines that may be folded,
 as described in [RFC8792].

 The "ietf-tls-common" Module
 The TLS common model presented in this section contains features
 and groupings common to both TLS clients and TLS servers. The
 "hello-params-grouping" grouping can be used to configure the list of TLS
 algorithms permitted by the TLS client or TLS server. The lists of
 algorithms are ordered such that, if multiple algorithms are permitted
 by the client, the algorithm that appears first in its list and that is also
 permitted by the server is used for the TLS transport layer connection.
 The ability to restrict the algorithms allowed is provided in this
 grouping for TLS clients and TLS servers that are capable of doing so
 and that may serve to make TLS clients and TLS servers compliant with local
 security policies. This model supports both TLS 1.2 and TLS 1.3 .
 Thus, in order to support both TLS 1.2 and TLS 1.3, the cipher suites
 part of the "hello-params-grouping" grouping should include the following three parameters for
 configuring its permitted TLS algorithms: TLS Cipher Suites,
 TLS SignatureScheme, and TLS Supported Groups.

 Data Model Overview
 This section provides an overview of the "ietf-tls-common" module
 in terms of its features, identities, and groupings.

 Features
 The following diagram lists all the "feature" statements
 defined in the "ietf-tls-common" module:

Features:
 +-- tls12
 +-- tls13
 +-- hello-params
 +-- asymmetric-key-pair-generation
 +-- supported-algorithms

 The diagram above uses syntax that is similar to but not
 defined in .
 Please refer to the YANG module for a description of each feature.

 Identities
 The following diagram illustrates the relationship amongst the
 "identity" statements defined in the "ietf-tls-common" module:

Identities:
 +-- tls-version-base
 +-- tls12
 +-- tls13

 The diagram above uses syntax that is similar to but not
 defined in .
 Comments:

 The diagram shows that there are two base identities.
 One base identity is used to specify TLS versions. This base identity is "abstract" in the object-oriented programming sense because it defines a "class" of things rather than a specific thing.

 These base identities are "abstract" in the object-oriented
 programming sense because they only define a "class" of things
 rather than a specific thing.

 Groupings
 The "ietf-tls-common" module defines the following "grouping" statement:

 hello-params-grouping

 This grouping is presented in the following subsection.

 The "hello-params-grouping" Grouping
 The following tree diagram illustrates the
 "hello-params-grouping" grouping:

 grouping hello-params-grouping:
 +-- tls-versions
 | +-- min? identityref
 | +-- max? identityref
 +-- cipher-suites
 +-- cipher-suite* tlscsa:tls-cipher-suite-algorithm

 Comments:

 This grouping is used by both the "tls-client-grouping" and the
 "tls-server-grouping" groupings defined in Sections
 and , respectively.
 This grouping enables client and server configurations to
 specify the TLS versions and cipher suites that are to be used
 when establishing TLS sessions.
 The "cipher-suites" list is "ordered-by user".

 Protocol-Accessible Nodes
 The following tree diagram lists all the
 protocol-accessible nodes defined in the "ietf-tls-common" module,
 without expanding the "grouping" statements:

module: ietf-tls-common
 +--ro supported-algorithms {algorithm-discovery}?
 +--ro supported-algorithm* tlscsa:tls-cipher-suite-algorithm

 rpcs:
 +---x generate-asymmetric-key-pair
 {asymmetric-key-pair-generation}?
 +---w input
 | +---w algorithm
 | | tlscsa:tls-cipher-suite-algorithm
 | +---w num-bits? uint16
 | +---w private-key-encoding
 | +---w (private-key-encoding)
 | +--:(cleartext) {ct:cleartext-private-keys}?
 | | +---w cleartext? empty
 | +--:(encrypted) {ct:encrypted-private-keys}?
 | | +---w encrypted
 | | +---w ks:encrypted-by-grouping
 | +--:(hidden) {ct:hidden-private-keys}?
 | +---w hidden? empty
 +--ro output
 +--ro (key-or-hidden)?
 +--:(key)
 | +---u ct:asymmetric-key-pair-grouping
 +--:(hidden)
 +--ro location?
 instance-identifier

 Comments:

 Protocol-accessible nodes are nodes that are accessible
 when the module is "implemented", as described in .
 The protocol-accessible nodes for the "ietf-tls-common" module
 are limited to the "supported-algorithms" container, which is constrained
 by the "algorithm-discovery" feature, and the "generate-asymmetric-key-pair" RPC,
 which is constrained by the "asymmetric-key-pair-generation" feature.
 The "encrypted-by-grouping" grouping is discussed in
 .
 The "asymmetric-key-pair-grouping" grouping is discussed in
 .

 Example Usage
 The following example illustrates the "hello-params-grouping"
 grouping when populated with some data.

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<hello-params
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common"
 xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf-tls-common">
 <tls-versions>
 <min>tlscmn:tls12</min>
 <max>tlscmn:tls13</max>
 </tls-versions>
 <cipher-suites>
 <cipher-suite>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA</cipher-suite>
 <cipher-suite>TLS_DHE_RSA_WITH_AES_128_CBC_SHA256</cipher-suite>
 <cipher-suite>TLS_RSA_WITH_3DES_EDE_CBC_SHA</cipher-suite>
 </cipher-suites>
</hello-params>

 The following example illustrates operational state data indicating
 the TLS algorithms supported by the server.

=============== NOTE: '\' line wrapping per RFC 8792 ================

<supported-algorithms
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common">
 <supported-algorithm>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA</support\
ed-algorithm>
 <supported-algorithm>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384</supp\
orted-algorithm>
 <supported-algorithm>TLS_DHE_RSA_WITH_AES_128_CBC_SHA256</supporte\
d-algorithm>
 <supported-algorithm>TLS_RSA_WITH_3DES_EDE_CBC_SHA</supported-algo\
rithm>
 <supported-algorithm>TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384</suppor\
ted-algorithm>
 <supported-algorithm>TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256</su\
pported-algorithm>
 <supported-algorithm>TLS_ECCPWD_WITH_AES_256_GCM_SHA384</supported\
-algorithm>
 <supported-algorithm>TLS_PSK_WITH_AES_256_CCM</supported-algorithm>
 <supported-algorithm>TLS_PSK_WITH_AES_256_CCM_8</supported-algorit\
hm>
 <supported-algorithm>TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384</sup\
ported-algorithm>
 <supported-algorithm>TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384</support\
ed-algorithm>
 <supported-algorithm>TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA</supported\
-algorithm>
 <supported-algorithm>TLS_DH_DSS_WITH_AES_128_GCM_SHA256</supported\
-algorithm>
</supported-algorithms>

 The following example illustrates the "generate-asymmetric-key-pair" RPC.
 REQUEST

=============== NOTE: '\' line wrapping per RFC 8792 ================

<rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <generate-asymmetric-key-pair
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common">
 <algorithm>TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256</algorithm>
 <num-bits>521</num-bits>
 <private-key-encoding>
 <encrypted>
 <asymmetric-key-ref>hidden-asymmetric-key</asymmetric-key-re\
f>
 </encrypted>
 </private-key-encoding>
 </generate-asymmetric-key-pair>
</rpc>

 RESPONSE

=============== NOTE: '\' line wrapping per RFC 8792 ================

<rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
 xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf-tls-common">
 <tlscmn:public-key-format>ct:subject-public-key-info-format</tlscm\
n:public-key-format>
 <tlscmn:public-key>BASE64VALUE=</tlscmn:public-key>
 <tlscmn:private-key-format>ct:ec-private-key-format</tlscmn:privat\
e-key-format>
 <tlscmn:cleartext-private-key>BASE64VALUE=</tlscmn:cleartext-priva\
te-key>
</rpc-reply>

 YANG Module
 This YANG module has normative references to
 , , , , , , and
 .
 This YANG module has informative references to
 and .

module ietf-tls-common {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-common";
 prefix tlscmn;

 import iana-tls-cipher-suite-algs {
 prefix tlscsa;
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }

 import ietf-keystore {
 prefix ks;
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG List: NETCONF WG list <mailto:netconf@ietf.org>
 WG Web: https://datatracker.ietf.org/wg/netconf
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>
 Author: Jeff Hartley <mailto:intensifysecurity@gmail.com>
 Author: Gary Wu <mailto:garywu@cisco.com>";

 description
 "This module defines common features and groupings for
 Transport Layer Security (TLS).

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9645
 (https://www.rfc-editor.org/info/rfc9645); see the RFC
 itself for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version.";
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 // Features

 feature tls12 {
 description
 "TLS Protocol Version 1.2 is supported. TLS 1.2 is obsolete,
 and thus it is NOT RECOMMENDED to enable this feature.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 feature tls13 {
 description
 "TLS Protocol Version 1.3 is supported.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }

 feature hello-params {
 description
 "TLS hello message parameters are configurable.";
 }

 feature algorithm-discovery {
 description
 "Indicates that the server implements the
 'supported-algorithms' container.";
 }

 feature asymmetric-key-pair-generation {
 description
 "Indicates that the server implements the
 'generate-asymmetric-key-pair' RPC.";
 }

 // Identities

 identity tls-version-base {
 description
 "Base identity used to identify TLS protocol versions.";
 }

 identity tls12 {
 if-feature "tls12";
 base tls-version-base;
 description
 "TLS Protocol Version 1.2.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity tls13 {
 if-feature "tls13";
 base tls-version-base;
 description
 "TLS Protocol Version 1.3.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }

 // Typedefs

 typedef epsk-supported-hash {
 type enumeration {
 enum sha-256 {
 description
 "The SHA-256 hash.";
 }
 enum sha-384 {
 description
 "The SHA-384 hash.";
 }
 }
 description
 "As per Section 4.2.11 of RFC 8446, the hash algorithm
 supported by an instance of an External Pre-Shared
 Key (EPSK).";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }

 // Groupings

 grouping hello-params-grouping {
 description
 "A reusable grouping for TLS hello message parameters.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2
 RFC 8446: The Transport Layer Security (TLS) Protocol
 Version 1.3";
 container tls-versions {
 description
 "Parameters limiting which TLS versions, amongst
 those enabled by 'features', are presented during
 the TLS handshake.";
 leaf min {
 type identityref {
 base tls-version-base;
 }
 description
 "If not specified, then there is no configured
 minimum version.";
 }
 leaf max {
 type identityref {
 base tls-version-base;
 }
 description
 "If not specified, then there is no configured
 maximum version.";
 }
 }
 container cipher-suites {
 description
 "Parameters regarding cipher suites.";
 leaf-list cipher-suite {
 type tlscsa:tls-cipher-suite-algorithm;
 ordered-by user;
 description
 "Acceptable cipher suites in order of descending
 preference. The configured host key algorithms should
 be compatible with the algorithm used by the configured
 private key. Please see Section 5 of RFC 9645 for
 valid combinations.

 If this leaf-list is not configured (has zero elements),
 the acceptable cipher suites are implementation-
 defined.";
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }
 }
 } // hello-params-grouping

 // Protocol-accessible Nodes

 container supported-algorithms {
 if-feature "algorithm-discovery";
 config false;
 description
 "A container for a list of cipher suite algorithms supported
 by the server.";
 leaf-list supported-algorithm {
 type tlscsa:tls-cipher-suite-algorithm;
 description
 "A cipher suite algorithm supported by the server.";
 }
 }

 rpc generate-asymmetric-key-pair {
 if-feature "asymmetric-key-pair-generation";
 description
 "Requests the device to generate an 'asymmetric-key-pair'
 key using the specified key algorithm.";
 input {
 leaf algorithm {
 type tlscsa:tls-cipher-suite-algorithm;
 mandatory true;
 description
 "The cipher suite algorithm that the generated key
 works with. Implementations derive the public key
 algorithm from the cipher suite algorithm. For
 example, cipher suite
 'tls-rsa-with-aes-256-cbc-sha256' maps to the RSA
 public key.";
 }
 leaf num-bits {
 type uint16;
 description
 "Specifies the number of bits to create in the key.
 For RSA keys, the minimum size is 1024 bits, and
 the default is 3072 bits. Generally, 3072 bits is
 considered sufficient. DSA keys must be exactly
 1024 bits as specified by FIPS 186-2. For
 elliptical keys, the 'num-bits' value determines
 the key length of the curve (e.g., 256, 384, or 521),
 where valid values supported by the server are
 conveyed via an unspecified mechanism. For some
 public algorithms, the keys have a fixed length, and
 thus the 'num-bits' value is not specified.";
 }
 container private-key-encoding {
 description
 "Indicates how the private key is to be encoded.";
 choice private-key-encoding {
 mandatory true;
 description
 "A choice amongst optional private key handling.";
 case cleartext {
 if-feature "ct:cleartext-private-keys";
 leaf cleartext {
 type empty;
 description
 "Indicates that the private key is to be returned
 as a cleartext value.";
 }
 }
 case encrypted {
 if-feature "ct:encrypted-private-keys";
 container encrypted {
 description
 "Indicates that the key is to be encrypted using
 the specified symmetric or asymmetric key.";
 uses ks:encrypted-by-grouping;
 }
 }
 case hidden {
 if-feature "ct:hidden-private-keys";
 leaf hidden {
 type empty;
 description
 "Indicates that the private key is to be hidden.

 Unlike the 'cleartext' and 'encrypt' options, the
 key returned is a placeholder for an internally
 stored key. See Section 3 of RFC 9642 ('Support
 for Built-In Keys') for information about hidden
 keys.";
 }
 }
 }
 }
 }
 output {
 choice key-or-hidden {
 case key {
 uses ct:asymmetric-key-pair-grouping;
 }
 case hidden {
 leaf location {
 type instance-identifier;
 description
 "The location to where a hidden key was created.";
 }
 }
 description
 "The output can be either a key (for cleartext and
 encrypted keys) or the location to where the key
 was created (for hidden keys).";
 }
 }
 } // end generate-asymmetric-key-pair

}

 The "ietf-tls-client" Module
 This section defines a YANG 1.1 module called
 "ietf-tls-client". A high-level overview of the module is provided in
 . Examples illustrating the module's use
 are provided in ("Example Usage"). The YANG
 module itself is defined in .

 Data Model Overview
 This section provides an overview of the "ietf-tls-client" module
 in terms of its features and groupings.

 Features
 The following diagram lists all the "feature" statements
 defined in the "ietf-tls-client" module:

Features:
 +-- tls-client-keepalives
 +-- client-ident-x509-cert
 +-- client-ident-raw-public-key
 +-- client-ident-psk
 +-- server-auth-x509-cert
 +-- server-auth-raw-public-key
 +-- server-auth-psk

 The diagram above uses syntax that is similar to but not
 defined in .
 Please refer to the YANG module for a description of each feature.

 Groupings
 The "ietf-tls-client" module defines the following "grouping" statement:

 tls-client-grouping

 This grouping is presented in the following subsection.

 The "tls-client-grouping" Grouping
 The following tree diagram illustrates the
 "tls-client-grouping" grouping:

=============== NOTE: '\' line wrapping per RFC 8792 ================

 grouping tls-client-grouping:
 +-- client-identity!
 | +-- (auth-type)
 | +--:(certificate) {client-ident-x509-cert}?
 | | +-- certificate
 | | +---u ks:inline-or-keystore-end-entity-cert-with-key\
-grouping
 | +--:(raw-public-key) {client-ident-raw-public-key}?
 | | +-- raw-private-key
 | | +---u ks:inline-or-keystore-asymmetric-key-grouping
 | +--:(tls12-psk) {client-ident-tls12-psk}?
 | | +-- tls12-psk
 | | +---u ks:inline-or-keystore-symmetric-key-grouping
 | | +-- id?
 | | string
 | +--:(tls13-epsk) {client-ident-tls13-epsk}?
 | +-- tls13-epsk
 | +---u ks:inline-or-keystore-symmetric-key-grouping
 | +-- external-identity
 | | string
 | +-- hash?
 | | tlscmn:epsk-supported-hash
 | +-- context?
 | | string
 | +-- target-protocol?
 | | uint16
 | +-- target-kdf?
 | uint16
 +-- server-authentication
 | +-- ca-certs! {server-auth-x509-cert}?
 | | +---u ts:inline-or-truststore-certs-grouping
 | +-- ee-certs! {server-auth-x509-cert}?
 | | +---u ts:inline-or-truststore-certs-grouping
 | +-- raw-public-keys! {server-auth-raw-public-key}?
 | | +---u ts:inline-or-truststore-public-keys-grouping
 | +-- tls12-psks? empty {server-auth-tls12-psk}?
 | +-- tls13-epsks? empty {server-auth-tls13-epsk}?
 +-- hello-params {tlscmn:hello-params}?
 | +---u tlscmn:hello-params-grouping
 +-- keepalives {tls-client-keepalives}?
 +-- peer-allowed-to-send? empty
 +-- test-peer-aliveness!
 +-- max-wait? uint16
 +-- max-attempts? uint8

 Comments:

 The "client-identity" node, which is optionally configured (as client
 authentication MAY occur at a higher protocol layer), configures
 identity credentials, each enabled by a "feature" statement defined in
 .
 The "server-authentication" node configures trust anchors for
 authenticating the TLS server, with each option enabled by a "feature" statement.
 The "hello-params" node, which must be enabled by a feature, configures
 parameters for the TLS sessions established by this configuration.
 The "keepalives" node, which must be enabled by a feature, configures
 a "presence" container to test the aliveness of the TLS server. The
 aliveness-test occurs at the TLS protocol layer.

 For the referenced grouping statement(s):

 The "inline-or-keystore-end-entity-cert-with-key-grouping" grouping is
 discussed in .
 The "inline-or-keystore-asymmetric-key-grouping" grouping is
 discussed in .
 The "inline-or-keystore-symmetric-key-grouping" grouping is
 discussed in .
 The "inline-or-truststore-certs-grouping" grouping is
 discussed in .
 The "inline-or-truststore-public-keys-grouping" grouping is
 discussed in .
 The "hello-params-grouping" grouping is discussed in
 in this document.

 Protocol-Accessible Nodes
 The "ietf-tls-client" module defines only "grouping" statements that are
 used by other modules to instantiate protocol-accessible nodes. Thus, this module does not itself define any protocol-accessible nodes when implemented.

 Example Usage
 This section presents two examples showing the "tls-client-grouping"
 grouping populated with some data. These examples are effectively the same
 except the first configures the client identity using a local key
 while the second uses a key configured in a keystore. Both examples
 are consistent with the examples presented in
 and
 .
 The following configuration example uses inline-definitions for the
 client identity and server authentication:

=============== NOTE: '\' line wrapping per RFC 8792 ================

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<tls-client
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- how this client will authenticate itself to the server -->
 <client-identity>
 <certificate>
 <inline-definition>
 <private-key-format>ct:rsa-private-key-format</priva\
te-key-format>
 <cleartext-private-key>BASE64VALUE=</cleartext-priva\
te-key>
 <cert-data>BASE64VALUE=</cert-data>
 </inline-definition>
 </certificate>
 </client-identity>

 <!-- which certificates will this client trust -->
 <server-authentication>
 <ca-certs>
 <inline-definition>
 <certificate>
 <name>Server Cert Issuer #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Server Cert Issuer #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </inline-definition>
 </ca-certs>
 <ee-certs>
 <inline-definition>
 <certificate>
 <name>My Application #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>My Application #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </inline-definition>
 </ee-certs>
 <raw-public-keys>
 <inline-definition>
 <public-key>
 <name>corp-fw1</name>
 <public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>corp-fw2</name>
 <public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </inline-definition>
 </raw-public-keys>
 <tls12-psks/>
 <tls13-epsks/>
 </server-authentication>

 <keepalives>
 <test-peer-aliveness>
 <max-wait>30</max-wait>
 <max-attempts>3</max-attempts>
 </test-peer-aliveness>
 </keepalives>

</tls-client>

 The following configuration example uses central-keystore-references for the
 client identity and central-truststore-references for server authentication
 from the keystore:

=============== NOTE: '\' line wrapping per RFC 8792 ================

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<tls-client xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client">

 <!-- how this client will authenticate itself to the server -->
 <client-identity>
 <certificate>
 <central-keystore-reference>
 <asymmetric-key>rsa-asymmetric-key</asymmetric-key>
 <certificate>ex-rsa-cert</certificate>
 </central-keystore-reference>
 </certificate>
 </client-identity>

 <!-- which certificates will this client trust -->
 <server-authentication>
 <ca-certs>
 <central-truststore-reference>trusted-server-ca-certs</c\
entral-truststore-reference>
 </ca-certs>
 <ee-certs>
 <central-truststore-reference>trusted-server-ee-certs</c\
entral-truststore-reference>
 </ee-certs>
 <raw-public-keys>
 <central-truststore-reference>Raw Public Keys for TLS Se\
rvers</central-truststore-reference>
 </raw-public-keys>
 <tls12-psks/>
 <tls13-epsks/>
 </server-authentication>

 <keepalives>
 <test-peer-aliveness>
 <max-wait>30</max-wait>
 <max-attempts>3</max-attempts>
 </test-peer-aliveness>
 </keepalives>

</tls-client>

 YANG Module
 This YANG module has normative references to , , , , , , and and informative references to ,
 , , , and
 .
 module ietf-tls-client {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-client";
 prefix tlsc;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }
 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }
 import ietf-truststore {
 prefix ts;
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 }
 import ietf-keystore {
 prefix ks;
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }
 import ietf-tls-common {
 prefix tlscmn;
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG List: NETCONF WG list <mailto:netconf@ietf.org>
 WG Web: https://datatracker.ietf.org/wg/netconf
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>
 Author: Jeff Hartley <mailto:intensifysecurity@gmail.com>";
 description
 "This module defines reusable groupings for TLS clients that
 can be used as a basis for specific TLS client instances.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9645
 (https://www.rfc-editor.org/info/rfc9645); see the RFC
 itself for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version";
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 // Features

 feature tls-client-keepalives {
 description
 "Per-socket TLS keepalive parameters are configurable for
 TLS clients on the server implementing this feature.";
 }

 feature client-ident-x509-cert {
 description
 "Indicates that the client supports identifying itself
 using X.509 certificates.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile";
 }

 feature client-ident-raw-public-key {
 description
 "Indicates that the client supports identifying itself
 using raw public keys.";
 reference
 "RFC 7250:
 Using Raw Public Keys in Transport Layer Security (TLS)
 and Datagram Transport Layer Security (DTLS)";
 }

 feature client-ident-tls12-psk {
 if-feature "tlscmn:tls12";
 description
 "Indicates that the client supports identifying itself
 using TLS 1.2 PSKs (pre-shared or pairwise symmetric keys).";
 reference
 "RFC 4279:
 Pre-Shared Key Ciphersuites for Transport Layer Security
 (TLS)";
 }

 feature client-ident-tls13-epsk {
 if-feature "tlscmn:tls13";
 description
 "Indicates that the client supports identifying itself
 using TLS 1.3 External PSKs (pre-shared keys).";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 feature server-auth-x509-cert {
 description
 "Indicates that the client supports authenticating servers
 using X.509 certificates.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile";
 }

 feature server-auth-raw-public-key {
 description
 "Indicates that the client supports authenticating servers
 using raw public keys.";
 reference
 "RFC 7250:
 Using Raw Public Keys in Transport Layer Security (TLS)
 and Datagram Transport Layer Security (DTLS)";
 }

 feature server-auth-tls12-psk {
 description
 "Indicates that the client supports authenticating servers
 using PSKs (pre-shared or pairwise symmetric keys).";
 reference
 "RFC 4279:
 Pre-Shared Key Ciphersuites for Transport Layer Security
 (TLS)";
 }

 feature server-auth-tls13-epsk {
 description
 "Indicates that the client supports authenticating servers
 using TLS 1.3 External PSKs (pre-shared keys).";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 // Groupings

 grouping tls-client-grouping {
 description
 "A reusable grouping for configuring a TLS client without
 any consideration for how an underlying TCP session is
 established.

 Note that this grouping uses fairly typical descendant
 node names such that a stack of 'uses' statements will
 have name conflicts. It is intended that the consuming
 data model will resolve the issue (e.g., by wrapping
 the 'uses' statement in a container called
 'tls-client-parameters'). This model purposely does
 not do this itself so as to provide maximum flexibility
 to consuming models.";
 container client-identity {
 nacm:default-deny-write;
 presence "Indicates that a TLS-level client identity has been
 configured. This statement is present so the
 mandatory descendant nodes do not imply that this
 node must be configured.";
 description
 "Identity credentials the TLS client MAY present when
 establishing a connection to a TLS server. If not
 configured, then client authentication is presumed to
 occur in a protocol layer above TLS. When configured,
 and requested by the TLS server when establishing a
 TLS session, these credentials are passed in the
 Certificate message defined in Section 7.4.2 of
 RFC 5246 and Section 4.4.2 of RFC 8446.";
 reference
 "RFC 5246: The Transport Layer Security (TLS)
 Protocol Version 1.2
 RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3
 RFC 9642: A YANG Data Model for a Keystore";
 choice auth-type {
 mandatory true;
 description
 "A choice amongst authentication types, of which one must
 be enabled (via its associated 'feature') and selected.";
 case certificate {
 if-feature "client-ident-x509-cert";
 container certificate {
 description
 "Specifies the client identity using a certificate.";
 uses "ks:inline-or-keystore-end-entity-cert-with-key-"
 + "grouping" {
 refine "inline-or-keystore/inline/inline-definition" {
 must 'not(public-key-format) or derived-from-or-self'
 + '(public-key-format, "ct:subject-public-key-'
 + 'info-format")';
 }
 refine "inline-or-keystore/central-keystore/"
 + "central-keystore-reference/asymmetric-key" {
 must 'not(deref(.)/../ks:public-key-format) or '
 + 'derived-from-or-self(deref(.)/../ks:public-'
 + 'key-format, "ct:subject-public-key-info-'
 + 'format")';
 }
 }
 }
 }
 case raw-public-key {
 if-feature "client-ident-raw-public-key";
 container raw-private-key {
 description
 "Specifies the client identity using a raw
 private key.";
 uses ks:inline-or-keystore-asymmetric-key-grouping {
 refine "inline-or-keystore/inline/inline-definition" {
 must 'not(public-key-format) or derived-from-or-self'
 + '(public-key-format, "ct:subject-public-key-'
 + 'info-format")';
 }
 refine "inline-or-keystore/central-keystore/"
 + "central-keystore-reference" {
 must 'not(deref(.)/../ks:public-key-format) or '
 + 'derived-from-or-self(deref(.)/../ks:public-'
 + 'key-format, "ct:subject-public-key-info-'
 + 'format")';
 }
 }
 }
 }
 case tls12-psk {
 if-feature "client-ident-tls12-psk";
 container tls12-psk {
 description
 "Specifies the client identity using a PSK (pre-shared
 or pairwise symmetric key).";
 uses ks:inline-or-keystore-symmetric-key-grouping;
 leaf id {
 type string;
 description
 "The key 'psk_identity' value used in the TLS
 'ClientKeyExchange' message.";
 reference
 "RFC 4279: Pre-Shared Key Ciphersuites for
 Transport Layer Security (TLS)";
 }
 }
 }
 case tls13-epsk {
 if-feature "client-ident-tls13-epsk";
 container tls13-epsk {
 description
 "An External Pre-Shared Key (EPSK) is established
 or provisioned out of band, i.e., not from a TLS
 connection. An EPSK is a tuple of (Base Key,
 External Identity, Hash). EPSKs MUST NOT be
 imported for (D)TLS 1.2 or prior versions. When
 PSKs are provisioned out of band, the PSK identity
 and the Key Derivation Function (KDF) hash algorithm
 to be used with the PSK MUST also be provisioned.

 The structure of this container is designed to satisfy
 the requirements in Section 4.2.11 of RFC 8446, the
 recommendations from Section 6 of RFC 9257, and the
 EPSK input fields detailed in Section 5.1 of RFC 9258.
 The base-key is based upon
 'ks:inline-or-keystore-symmetric-key-grouping' in
 order to provide users with flexible and secure
 storage options.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3
 RFC 9257: Guidance for External Pre-Shared Key
 (PSK) Usage in TLS
 RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 uses ks:inline-or-keystore-symmetric-key-grouping;
 leaf external-identity {
 type string;
 mandatory true;
 description
 "As per Section 4.2.11 of RFC 8446 and Section 4.1
 of RFC 9257, a sequence of bytes used to identify
 an EPSK. A label for a pre-shared key established
 externally.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3
 RFC 9257: Guidance for External Pre-Shared Key
 (PSK) Usage in TLS";
 }
 leaf hash {
 type tlscmn:epsk-supported-hash;
 default "sha-256";
 description
 "As per Section 4.2.11 of RFC 8446, for EPSKs,
 the hash algorithm MUST be set when the PSK is
 established; otherwise, default to SHA-256 if
 no such algorithm is defined. The server MUST
 ensure that it selects a compatible PSK (if any)
 and cipher suite. Each PSK MUST only be used
 with a single hash function.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }
 leaf context {
 type string;
 description
 "As per Section 5.1 of RFC 9258, context MUST
 include the context used to determine the EPSK,
 if any exists. For example, context may include
 information about peer roles or identities
 to mitigate Selfie-style reflection attacks.
 Since the EPSK is a key derived from an external
 protocol or a sequence of protocols, context MUST
 include a channel binding for the deriving
 protocols (see RFC 5056). The details of this
 binding are protocol specific and out of scope
 for this document.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 leaf target-protocol {
 type uint16;
 description
 "As per Section 3 of RFC 9258, the protocol
 for which a PSK is imported for use.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 leaf target-kdf {
 type uint16;
 description
 "As per Section 3 of RFC 9258, the Key Derivation
 Function (KDF) for which a PSK is imported for
 use.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 }
 }
 }
 } // container client-identity
 container server-authentication {
 nacm:default-deny-write;
 must "ca-certs or ee-certs or raw-public-keys or tls12-psks
 or tls13-epsks";
 description
 "Specifies how the TLS client can authenticate TLS servers.
 Any combination of credentials is additive and unordered.

 Note that no configuration is required for authentication
 based on PSK (pre-shared or pairwise symmetric key) as
 the key is necessarily the same as configured in the
 '../client-identity' node.";
 container ca-certs {
 if-feature "server-auth-x509-cert";
 presence "Indicates that Certification Authority (CA)
 certificates have been configured. This
 statement is present so the mandatory
 descendant nodes do not imply that this
 node must be configured.";
 description
 "A set of CA certificates used by the TLS client to
 authenticate TLS server certificates. A server
 certificate is authenticated if it has a valid chain of
 trust to a configured CA certificate.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-certs-grouping;
 }
 container ee-certs {
 if-feature "server-auth-x509-cert";
 presence "Indicates that End-Entity (EE) certificates have
 been configured. This statement is present so
 the mandatory descendant nodes do not imply
 that this node must be configured.";
 description
 "A set of server certificates (i.e., EE certificates) used
 by the TLS client to authenticate certificates presented
 by TLS servers. A server certificate is authenticated if
 it is an exact match to a configured server certificate.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-certs-grouping;
 }
 container raw-public-keys {
 if-feature "server-auth-raw-public-key";
 presence "Indicates that raw public keys have been
 configured. This statement is present so
 the mandatory descendant nodes do not imply
 that this node must be configured.";
 description
 "A set of raw public keys used by the TLS client to
 authenticate raw public keys presented by the TLS
 server. A raw public key is authenticated if it
 is an exact match to a configured raw public key.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-public-keys-grouping {
 refine "inline-or-truststore/inline/inline-definition/"
 + "public-key" {
 must 'derived-from-or-self(public-key-format,'
 + ' "ct:subject-public-key-info-format")';
 }
 refine "inline-or-truststore/central-truststore/"
 + "central-truststore-reference" {
 must 'not(deref(.)/../ts:public-key/ts:public-key-'
 + 'format[not(derived-from-or-self(., "ct:subject-'
 + 'public-key-info-format"))])';
 }
 }
 }
 leaf tls12-psks {
 if-feature "server-auth-tls12-psk";
 type empty;
 description
 "Indicates that the TLS client can authenticate TLS servers
 using configured PSKs (pre-shared or pairwise symmetric
 keys).

 No configuration is required since the PSK value is the
 same as the PSK value configured in the 'client-identity'
 node.";
 }
 leaf tls13-epsks {
 if-feature "server-auth-tls13-epsk";
 type empty;
 description
 "Indicates that the TLS client can authenticate TLS servers
 using configured External PSKs (pre-shared keys).

 No configuration is required since the PSK value is the
 same as the PSK value configured in the 'client-identity'
 node.";
 }
 } // container server-authentication
 container hello-params {
 nacm:default-deny-write;
 if-feature "tlscmn:hello-params";
 uses tlscmn:hello-params-grouping;
 description
 "Configurable parameters for the TLS hello message.";
 } // container hello-params
 container keepalives {
 nacm:default-deny-write;
 if-feature "tls-client-keepalives";
 description
 "Configures the keepalive policy for the TLS client.";
 leaf peer-allowed-to-send {
 type empty;
 description
 "Indicates that the remote TLS server is allowed to send
 HeartbeatRequest messages, as defined by RFC 6520,
 to this TLS client.";
 reference
 "RFC 6520: Transport Layer Security (TLS) and Datagram
 Transport Layer Security (DTLS) Heartbeat Extension";
 }
 container test-peer-aliveness {
 presence "Indicates that the TLS client proactively tests the
 aliveness of the remote TLS server.";
 description
 "Configures the keepalive policy to proactively test
 the aliveness of the TLS server. An unresponsive
 TLS server is dropped after approximately max-wait
 * max-attempts seconds. The TLS client MUST send
 HeartbeatRequest messages, as defined in RFC 6520.";
 reference
 "RFC 6520: Transport Layer Security (TLS) and Datagram
 Transport Layer Security (DTLS) Heartbeat Extension";
 leaf max-wait {
 type uint16 {
 range "1..max";
 }
 units "seconds";
 default "30";
 description
 "Sets the amount of time in seconds, after which a
 TLS-level message will be sent to test the
 aliveness of the TLS server if no data has been
 received from the TLS server.";
 }
 leaf max-attempts {
 type uint8;
 default "3";
 description
 "Sets the maximum number of sequential keepalive
 messages that can fail to obtain a response from
 the TLS server before assuming the TLS server is
 no longer alive.";
 }
 }
 }
 } // grouping tls-client-grouping

}

 The "ietf-tls-server" Module
 This section defines a YANG 1.1 module called
 "ietf-tls-server". A high-level overview of the module is provided in
 . Examples illustrating the module's use
 are provided in ("Example Usage"). The YANG
 module itself is defined in .

 Data Model Overview
 This section provides an overview of the "ietf-tls-server" module
 in terms of its features and groupings.

 Features
 The following diagram lists all the "feature" statements
 defined in the "ietf-tls-server" module:

Features:
 +-- tls-server-keepalives
 +-- server-ident-x509-cert
 +-- server-ident-raw-public-key
 +-- server-ident-psk
 +-- client-auth-supported
 +-- client-auth-x509-cert
 +-- client-auth-raw-public-key
 +-- client-auth-psk

 The diagram above uses syntax that is similar to but not
 defined in .
 Please refer to the YANG module for a description of each feature.

 Groupings
 The "ietf-tls-server" module defines the following "grouping" statement:

 tls-server-grouping

 This grouping is presented in the following subsection.

 The "tls-server-grouping" Grouping
 The following tree diagram illustrates the
 "tls-server-grouping" grouping:

=============== NOTE: '\' line wrapping per RFC 8792 ================

 grouping tls-server-grouping:
 +-- server-identity
 | +-- (auth-type)
 | +--:(certificate) {server-ident-x509-cert}?
 | | +-- certificate
 | | +---u ks:inline-or-keystore-end-entity-cert-with-key\
-grouping
 | +--:(raw-private-key) {server-ident-raw-public-key}?
 | | +-- raw-private-key
 | | +---u ks:inline-or-keystore-asymmetric-key-grouping
 | +--:(tls12-psk) {server-ident-tls12-psk}?
 | | +-- tls12-psk
 | | +---u ks:inline-or-keystore-symmetric-key-grouping
 | | +-- id-hint?
 | | string
 | +--:(tls13-epsk) {server-ident-tls13-epsk}?
 | +-- tls13-epsk
 | +---u ks:inline-or-keystore-symmetric-key-grouping
 | +-- external-identity
 | | string
 | +-- hash?
 | | tlscmn:epsk-supported-hash
 | +-- context?
 | | string
 | +-- target-protocol?
 | | uint16
 | +-- target-kdf?
 | uint16
 +-- client-authentication! {client-auth-supported}?
 | +-- ca-certs! {client-auth-x509-cert}?
 | | +---u ts:inline-or-truststore-certs-grouping
 | +-- ee-certs! {client-auth-x509-cert}?
 | | +---u ts:inline-or-truststore-certs-grouping
 | +-- raw-public-keys! {client-auth-raw-public-key}?
 | | +---u ts:inline-or-truststore-public-keys-grouping
 | +-- tls12-psks? empty {client-auth-tls12-psk}?
 | +-- tls13-epsks? empty {client-auth-tls13-epsk}?
 +-- hello-params {tlscmn:hello-params}?
 | +---u tlscmn:hello-params-grouping
 +-- keepalives {tls-server-keepalives}?
 +-- peer-allowed-to-send? empty
 +-- test-peer-aliveness!
 +-- max-wait? uint16
 +-- max-attempts? uint8

 Comments:

 The "server-identity" node configures identity credentials, each of
 which is enabled by a "feature".
 The "client-authentication" node, which is optionally configured (as client
 authentication MAY occur at a higher protocol layer), configures trust
 anchors for authenticating the TLS client, with each option enabled
 by a "feature" statement.
 The "hello-params" node, which must be enabled by a feature, configures
 parameters for the TLS sessions established by this configuration.
 The "keepalives" node, which must be enabled by a feature, configures
 a flag enabling the TLS client to test the aliveness of the TLS server
 as well as a "presence" container to test the aliveness of the TLS
 client. The aliveness-tests occur at the TLS protocol layer.

 For the referenced grouping statement(s):

 The "inline-or-keystore-end-entity-cert-with-key-grouping" grouping is
 discussed in .
 The "inline-or-keystore-asymmetric-key-grouping" grouping is
 discussed in .
 The "inline-or-keystore-symmetric-key-grouping" grouping is
 discussed in .
 The "inline-or-truststore-public-keys-grouping" grouping is
 discussed in .
 The "inline-or-truststore-certs-grouping" grouping is
 discussed in .
 The "hello-params-grouping" grouping is discussed in
 in this document.

 Protocol-Accessible Nodes
 The "ietf-tls-server" module defines only "grouping" statements that are
 used by other modules to instantiate protocol-accessible nodes. Thus, this
 module does not itself define any protocol-accessible nodes when implemented.

 Example Usage
 This section presents two examples showing the "tls-server-grouping"
 grouping populated with some data. These examples are effectively the same
 except the first configures the server identity using a local key
 while the second uses a key configured in a keystore. Both examples
 are consistent with the examples presented in
 and
 .
 The following configuration example uses inline-definitions for the
 server identity and client authentication:

=============== NOTE: '\' line wrapping per RFC 8792 ================

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<tls-server
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- how this server will authenticate itself to the client -->
 <server-identity>
 <certificate>
 <inline-definition>
 <private-key-format>ct:rsa-private-key-format</private\
-key-format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private\
-key>
 <cert-data>BASE64VALUE=</cert-data>
 </inline-definition>
 </certificate>
 </server-identity>

 <!-- which certificates will this server trust -->
 <client-authentication>
 <ca-certs>
 <inline-definition>
 <certificate>
 <name>Identity Cert Issuer #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Identity Cert Issuer #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </inline-definition>
 </ca-certs>
 <ee-certs>
 <inline-definition>
 <certificate>
 <name>Application #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Application #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </inline-definition>
 </ee-certs>
 <raw-public-keys>
 <inline-definition>
 <public-key>
 <name>User A</name>
 <public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>User B</name>
 <public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </inline-definition>
 </raw-public-keys>
 <tls12-psks/>
 <tls13-epsks/>
 </client-authentication>

 <keepalives>
 <peer-allowed-to-send/>
 </keepalives>

</tls-server>

 The following configuration example uses central-keystore-references for the
 server identity and central-truststore-references for client authentication
 from the keystore:

=============== NOTE: '\' line wrapping per RFC 8792 ================

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<tls-server xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">

 <!-- how this server will authenticate itself to the client -->
 <server-identity>
 <certificate>
 <central-keystore-reference>
 <asymmetric-key>rsa-asymmetric-key</asymmetric-key>
 <certificate>ex-rsa-cert</certificate>
 </central-keystore-reference>
 </certificate>
 </server-identity>

 <!-- which certificates will this server trust -->
 <client-authentication>
 <ca-certs>
 <central-truststore-reference>trusted-client-ca-certs</c\
entral-truststore-reference>
 </ca-certs>
 <ee-certs>
 <central-truststore-reference>trusted-client-ee-certs</c\
entral-truststore-reference>
 </ee-certs>
 <raw-public-keys>
 <central-truststore-reference>Raw Public Keys for TLS Cl\
ients</central-truststore-reference>
 </raw-public-keys>
 <tls12-psks/>
 <tls13-epsks/>
 </client-authentication>

 <keepalives>
 <peer-allowed-to-send/>
 </keepalives>

</tls-server>

 YANG Module
 This YANG module has normative references to , , , , , ,
 and and informative references to ,
 , , , and
 .

module ietf-tls-server {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-server";
 prefix tlss;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }
 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }
 import ietf-truststore {
 prefix ts;
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 }
 import ietf-keystore {
 prefix ks;
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }
 import ietf-tls-common {
 prefix tlscmn;
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG List: NETCONF WG list <mailto:netconf@ietf.org>
 WG Web: https://datatracker.ietf.org/wg/netconf
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>
 Author: Jeff Hartley <mailto:intensifysecurity@gmail.com>";
 description
 "This module defines reusable groupings for TLS servers that
 can be used as a basis for specific TLS server instances.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9645
 (https://www.rfc-editor.org/info/rfc9645); see the RFC
 itself for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version.";
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 // Features

 feature tls-server-keepalives {
 description
 "Per-socket TLS keepalive parameters are configurable for
 TLS servers on the server implementing this feature.";
 }

 feature server-ident-x509-cert {
 description
 "Indicates that the server supports identifying itself
 using X.509 certificates.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile";
 }

 feature server-ident-raw-public-key {
 description
 "Indicates that the server supports identifying itself
 using raw public keys.";
 reference
 "RFC 7250:
 Using Raw Public Keys in Transport Layer Security (TLS)
 and Datagram Transport Layer Security (DTLS)";
 }

 feature server-ident-tls12-psk {
 if-feature "tlscmn:tls12";
 description
 "Indicates that the server supports identifying itself
 using TLS 1.2 PSKs (pre-shared or pairwise symmetric keys).";
 reference
 "RFC 4279:
 Pre-Shared Key Ciphersuites for Transport Layer Security
 (TLS)";
 }

 feature server-ident-tls13-epsk {
 if-feature "tlscmn:tls13";
 description
 "Indicates that the server supports identifying itself
 using TLS 1.3 External PSKs (pre-shared keys).";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 feature client-auth-supported {
 description
 "Indicates that the configuration for how to authenticate
 clients can be configured herein. TLS-level client
 authentication may not be needed when client authentication
 is expected to occur only at another protocol layer.";
 }

 feature client-auth-x509-cert {
 description
 "Indicates that the server supports authenticating clients
 using X.509 certificates.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile";
 }

 feature client-auth-raw-public-key {
 description
 "Indicates that the server supports authenticating clients
 using raw public keys.";
 reference
 "RFC 7250:
 Using Raw Public Keys in Transport Layer Security (TLS)
 and Datagram Transport Layer Security (DTLS)";
 }

 feature client-auth-tls12-psk {
 description
 "Indicates that the server supports authenticating clients
 using PSKs (pre-shared or pairwise symmetric keys).";
 reference
 "RFC 4279:
 Pre-Shared Key Ciphersuites for Transport Layer Security
 (TLS)";
 }

 feature client-auth-tls13-epsk {
 description
 "Indicates that the server supports authenticating clients
 using TLS 1.3 External PSKs (pre-shared keys).";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 // Groupings

 grouping tls-server-grouping {
 description
 "A reusable grouping for configuring a TLS server without
 any consideration for how underlying TCP sessions are
 established.

 Note that this grouping uses fairly typical descendant
 node names such that a stack of 'uses' statements will
 have name conflicts. It is intended that the consuming
 data model will resolve the issue (e.g., by wrapping
 the 'uses' statement in a container called
 'tls-server-parameters'). This model purposely does
 not do this itself so as to provide maximum flexibility
 to consuming models.";
 container server-identity {
 nacm:default-deny-write;
 description
 "A locally defined or referenced End-Entity (EE) certificate,
 including any configured intermediate certificates, that
 the TLS server will present when establishing a TLS
 connection in its Certificate message, as defined in
 Section 7.4.2 of RFC 5246 and Section 4.4.2 of RFC 8446.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2
 RFC 8446: The Transport Layer Security (TLS) Protocol
 Version 1.3
 RFC 9642: A YANG Data Model for a Keystore";
 choice auth-type {
 mandatory true;
 description
 "A choice amongst authentication types, of which one must
 be enabled (via its associated 'feature') and selected.";
 case certificate {
 if-feature "server-ident-x509-cert";
 container certificate {
 description
 "Specifies the server identity using a certificate.";
 uses "ks:inline-or-keystore-end-entity-cert-with-key-"
 + "grouping" {
 refine "inline-or-keystore/inline/inline-definition" {
 must 'not(public-key-format) or derived-from-or-self'
 + '(public-key-format,'
 + ' "ct:subject-public-'
 + 'key-info-format")';
 }
 refine "inline-or-keystore/central-keystore/"
 + "central-keystore-reference/asymmetric-key" {
 must 'not(deref(.)/../ks:public-key-format) or '
 + 'derived-from-or-self(deref(.)/../ks:public-key'
 + '-format, "ct:subject-public-key-info-format")';
 }
 }
 }
 }
 case raw-private-key {
 if-feature "server-ident-raw-public-key";
 container raw-private-key {
 description
 "Specifies the server identity using a raw
 private key.";
 uses ks:inline-or-keystore-asymmetric-key-grouping {
 refine "inline-or-keystore/inline/inline-definition" {
 must 'not(public-key-format) or derived-from-or-self'
 + '(public-key-format,'
 + ' "ct:subject-public-'
 + 'key-info-format")';
 }
 refine "inline-or-keystore/central-keystore/"
 + "central-keystore-reference" {
 must 'not(deref(.)/../ks:public-key-format) or '
 + 'derived-from-or-self(deref(.)/../ks:public-key'
 + '-format, "ct:subject-public-key-info-format")';
 }
 }
 }
 }
 case tls12-psk {
 if-feature "server-ident-tls12-psk";
 container tls12-psk {
 description
 "Specifies the server identity using a PSK (pre-shared
 or pairwise symmetric key).";
 uses ks:inline-or-keystore-symmetric-key-grouping;
 leaf id-hint {
 type string;
 description
 "The key 'psk_identity_hint' value used in the TLS
 'ServerKeyExchange' message.";
 reference
 "RFC 4279: Pre-Shared Key Ciphersuites for
 Transport Layer Security (TLS)";
 }
 }
 }
 case tls13-epsk {
 if-feature "server-ident-tls13-epsk";
 container tls13-epsk {
 description
 "An External Pre-Shared Key (EPSK) is established
 or provisioned out of band, i.e., not from a TLS
 connection. An EPSK is a tuple of (Base Key,
 External Identity, Hash). EPSKs MUST NOT be
 imported for (D)TLS 1.2 or prior versions.
 When PSKs are provisioned out of band, the PSK
 identity and the KDF hash algorithm to be used
 with the PSK MUST also be provisioned.

 The structure of this container is designed to
 satisfy the requirements in Section 4.2.11 of
 RFC 8446, the recommendations from Section 6 of
 RFC 9257, and the EPSK input fields detailed in
 Section 5.1 of RFC 9258. The base-key is based
 upon 'ks:inline-or-keystore-symmetric-key-grouping'
 in order to provide users with flexible and
 secure storage options.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3
 RFC 9257: Guidance for External Pre-Shared Key
 (PSK) Usage in TLS
 RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 uses ks:inline-or-keystore-symmetric-key-grouping;
 leaf external-identity {
 type string;
 mandatory true;
 description
 "As per Section 4.2.11 of RFC 8446 and Section 4.1
 of RFC 9257, a sequence of bytes used to identify
 an EPSK. A label for a pre-shared key established
 externally.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3
 RFC 9257: Guidance for External Pre-Shared Key
 (PSK) Usage in TLS";
 }
 leaf hash {
 type tlscmn:epsk-supported-hash;
 default "sha-256";
 description
 "As per Section 4.2.11 of RFC 8446, for EPSKs,
 the hash algorithm MUST be set when the PSK is
 established; otherwise, default to SHA-256 if
 no such algorithm is defined. The server MUST
 ensure that it selects a compatible PSK (if any)
 and cipher suite. Each PSK MUST only be used
 with a single hash function.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }
 leaf context {
 type string;
 description
 "As per Section 5.1 of RFC 9258, context MUST
 include the context used to determine the EPSK,
 if any exists. For example, context may include
 information about peer roles or identities
 to mitigate Selfie-style reflection attacks.
 Since the EPSK is a key derived from an external
 protocol or sequence of protocols, context MUST
 include a channel binding for the deriving
 protocols (see RFC 5056). The details of this
 binding are protocol specific and out of scope
 for this document.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 leaf target-protocol {
 type uint16;
 description
 "As per Section 3.1 of RFC 9258, the protocol
 for which a PSK is imported for use.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 leaf target-kdf {
 type uint16;
 description
 "As per Section 3 of RFC 9258, the KDF for
 which a PSK is imported for use.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 }
 }
 }
 } // container server-identity
 container client-authentication {
 if-feature "client-auth-supported";
 nacm:default-deny-write;
 must "ca-certs or ee-certs or raw-public-keys or tls12-psks
 or tls13-epsks";
 presence "Indicates that client authentication is supported
 (i.e., that the server will request clients send
 certificates). If not configured, the TLS server
 SHOULD NOT request that TLS clients provide
 authentication credentials.";
 description
 "Specifies how the TLS server can authenticate TLS clients.
 Any combination of credentials is additive and unordered.

 Note that no configuration is required for authentication
 based on PSK (pre-shared or pairwise symmetric key) as the
 the key is necessarily the same as configured in the
 '../server-identity' node.";
 container ca-certs {
 if-feature "client-auth-x509-cert";
 presence "Indicates that Certification Authority (CA)
 certificates have been configured. This
 statement is present so the mandatory
 descendant nodes do not imply that this node
 must be configured.";
 description
 "A set of CA certificates used by the TLS server to
 authenticate TLS client certificates. A client
 certificate is authenticated if it has a valid chain
 of trust to a configured CA certificate.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-certs-grouping;
 }
 container ee-certs {
 if-feature "client-auth-x509-cert";
 presence "Indicates that EE certificates have been
 configured. This statement is present so the
 mandatory descendant nodes do not imply that
 this node must be configured.";
 description
 "A set of client certificates (i.e., EE certificates)
 used by the TLS server to authenticate
 certificates presented by TLS clients. A client
 certificate is authenticated if it is an exact
 match to a configured client certificate.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-certs-grouping;
 }
 container raw-public-keys {
 if-feature "client-auth-raw-public-key";
 presence "Indicates that raw public keys have been
 configured. This statement is present so
 the mandatory descendant nodes do not imply
 that this node must be configured.";
 description
 "A set of raw public keys used by the TLS server to
 authenticate raw public keys presented by the TLS
 client. A raw public key is authenticated if it
 is an exact match to a configured raw public key.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-public-keys-grouping {
 refine "inline-or-truststore/inline/inline-definition/"
 + "public-key" {
 must 'derived-from-or-self(public-key-format,'
 + ' "ct:subject-public-key-info-format")';
 }
 refine "inline-or-truststore/central-truststore/"
 + "central-truststore-reference" {
 must 'not(deref(.)/../ts:public-key/ts:public-key-'
 + 'format[not(derived-from-or-self(., "ct:subject-'
 + 'public-key-info-format"))])';
 }
 }
 }
 leaf tls12-psks {
 if-feature "client-auth-tls12-psk";
 type empty;
 description
 "Indicates that the TLS server can authenticate TLS clients
 using configured PSKs (pre-shared or pairwise symmetric
 keys).

 No configuration is required since the PSK value is the
 same as PSK value configured in the 'server-identity'
 node.";
 }
 leaf tls13-epsks {
 if-feature "client-auth-tls13-epsk";
 type empty;
 description
 "Indicates that the TLS 1.3 server can authenticate TLS
 clients using configured External PSKs (pre-shared keys).

 No configuration is required since the PSK value is the
 same as PSK value configured in the 'server-identity'
 node.";
 }
 } // container client-authentication
 container hello-params {
 nacm:default-deny-write;
 if-feature "tlscmn:hello-params";
 uses tlscmn:hello-params-grouping;
 description
 "Configurable parameters for the TLS hello message.";
 } // container hello-params
 container keepalives {
 nacm:default-deny-write;
 if-feature "tls-server-keepalives";
 description
 "Configures the keepalive policy for the TLS server.";
 leaf peer-allowed-to-send {
 type empty;
 description
 "Indicates that the remote TLS client is allowed to send
 HeartbeatRequest messages, as defined by RFC 6520,
 to this TLS server.";
 reference
 "RFC 6520: Transport Layer Security (TLS) and Datagram
 Transport Layer Security (DTLS) Heartbeat Extension";
 }
 container test-peer-aliveness {
 presence "Indicates that the TLS server proactively tests the
 aliveness of the remote TLS client.";
 description
 "Configures the keepalive policy to proactively test
 the aliveness of the TLS client. An unresponsive
 TLS client is dropped after approximately max-wait
 * max-attempts seconds.";
 leaf max-wait {
 type uint16 {
 range "1..max";
 }
 units "seconds";
 default "30";
 description
 "Sets the amount of time in seconds, after which a
 TLS-level message will be sent to test the
 aliveness of the TLS client if no data has been
 received from the TLS client.";
 }
 leaf max-attempts {
 type uint8;
 default "3";
 description
 "Sets the maximum number of sequential keepalive
 messages that can fail to obtain a response from
 the TLS client before assuming the TLS client is
 no longer alive.";
 }
 }
 } // container keepalives
 } // grouping tls-server-grouping

}

 Security Considerations
 The three IETF YANG modules in this document define groupings and will
 not be deployed as standalone modules. Their security implications
 may be context dependent based on their use in other modules. The
 designers of modules that import these grouping must conduct their
 own analysis of the security considerations.

 Considerations for the "iana-tls-cipher-suite-algs" YANG Module
 This section is modeled after the template defined in .
 The "iana-tls-cipher-suite-algs" YANG module defines a
 	data model that is designed to be accessed via YANG-based management
 protocols, such as NETCONF and RESTCONF
 . These
 protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH) , TLS , and QUIC) and mandatory-to-implement mutual authentication.

 The Network Configuration Access Control Model (NACM)
 provides the means to restrict access for particular users to a
 preconfigured subset of all available protocol operations and
 content.
 This YANG module defines YANG enumerations, for a public IANA-maintained
 registry.
 YANG enumerations are not security-sensitive, as they are statically
 defined in the publicly accessible YANG module. IANA MAY deprecate
 and/or obsolete enumerations over time as needed to address security
 issues found in the algorithms.
 This module does not define any writable nodes, RPCs, actions,
 or notifications, and thus the security considerations for such
 are not provided here.

 Considerations for the "ietf-tls-common" YANG Module
 This section is modeled after the template defined in .
 The "ietf-tls-common" YANG module defines a data model that is designed to be accessed via YANG-based management
 protocols, such as NETCONF and RESTCONF
 . These
 protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH) , TLS , and QUIC) and mandatory-to-implement mutual authentication.

 The Network Configuration Access Control Model (NACM)
 provides the means to restrict access for particular users to a
 preconfigured subset of all available protocol operations and
 content.
 Please be aware that this YANG module uses groupings from
 other YANG modules that define nodes that may be considered
 sensitive or vulnerable in network environments. Please
 review the Security Considerations for dependent YANG modules
 for information as to which nodes may be considered sensitive
 or vulnerable in network environments.
 None of the readable data nodes defined in this YANG module are
 considered sensitive or vulnerable in network environments.
 The NACM "default-deny-all" extension has not been set for
 any data nodes defined in this module.
 None of the writable data nodes defined in this YANG module are
 considered sensitive or vulnerable in network environments.
 The NACM "default-deny-write" extension has not been set for
 any data nodes defined in this module.
 This module defines the "generate-asymmetric-key-pair" RPC that may, if
 the "ct:cleartext-private-keys" feature is enabled and the client
 requests it, return the private clear in cleartext form. It is
 NOT RECOMMENDED for private keys to pass the server's security
 perimeter.
 This module does not define any actions or notifications,
 and thus the security considerations for such are not provided here.

 Considerations for the "ietf-tls-client" YANG Module
 This section is modeled after the template defined in .
 The "ietf-tls-client" YANG module defines a data model that is designed to be accessed via YANG-based management
 protocols, such as NETCONF and RESTCONF
 . These
 protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH) , TLS , and QUIC) and mandatory-to-implement mutual authentication.

 The Network Configuration Access Control Model (NACM)
 provides the means to restrict access for particular users to a
 preconfigured subset of all available protocol operations and
 content.
 Please be aware that this YANG module uses groupings from
 other YANG modules that define nodes that may be considered
 sensitive or vulnerable in network environments. Please
 review the Security Considerations for dependent YANG modules
 for information as to which nodes may be considered sensitive
 or vulnerable in network environments.
 None of the readable data nodes defined in this YANG module
 are considered sensitive or vulnerable in network environments.
 The NACM "default-deny-all" extension has not been set for any
 data nodes defined in this module.
 All the writable data nodes defined by this module may be
 considered sensitive or vulnerable in some network environments.
 For instance, any modification to a key or reference to a key
 may dramatically alter the implemented security policy. For
 this reason, the NACM extension "default-deny-write" has been
 set for all data nodes defined in this module.
 This module does not define any RPCs, actions, or notifications,
 and thus the security considerations for such are not provided here.

 Considerations for the "ietf-tls-server" YANG Module
 This section is modeled after the template defined in .
 The "ietf-tls-server" YANG module defines a data model that is designed to be accessed via YANG-based management
 protocols, such as NETCONF and RESTCONF
 . These
 protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH) , TLS , and QUIC) and mandatory-to-implement mutual authentication.

 The Network Configuration Access Control Model (NACM)
 provides the means to restrict access for particular users to a
 preconfigured subset of all available protocol operations and
 content.
 Please be aware that this YANG module uses groupings from
 other YANG modules that define nodes that may be considered
 sensitive or vulnerable in network environments. Please
 review the Security Considerations for dependent YANG modules
 for information as to which nodes may be considered sensitive
 or vulnerable in network environments.
 None of the readable data nodes defined in this YANG module are considered sensitive
 or vulnerable in network environments. The NACM "default-deny-all" extension
 has not been set for any data nodes defined in this module.
 Please be aware that this module uses the "key" and "private-key"
 nodes from the "ietf-crypto-types" module ,
 where said nodes have the NACM extension "default-deny-all" set, thus
 preventing unrestricted read access to the cleartext key values.
 All the writable data nodes defined by this module may be
 considered sensitive or vulnerable in some network environments.
 For instance, any modification to a key or reference to a key
 may dramatically alter the implemented security policy. For
 this reason, the NACM extension "default-deny-write" has been
 set for all data nodes defined in this module.
 This module does not define any RPCs, actions, or notifications,
 and thus the security considerations for such are not provided here.

 IANA Considerations

 The IETF XML Registry
 IANA has registered the following four URIs in the "ns" registry of the
 "IETF XML Registry" .

 URI:
 urn:ietf:params:xml:ns:yang:iana-tls-cipher-suite-algs
 Registrant Contact:
 The IESG
 XML:
 N/A; the requested URI is an XML namespace.

 URI:
 urn:ietf:params:xml:ns:yang:ietf-tls-common
 Registrant Contact:
 The IESG
 XML:
 N/A; the requested URI is an XML namespace.

 URI:
 urn:ietf:params:xml:ns:yang:ietf-tls-client
 Registrant Contact:
 The IESG
 XML:
 N/A; the requested URI is an XML namespace.

 URI:
 urn:ietf:params:xml:ns:yang:ietf-tls-server
 Registrant Contact:
 The IESG
 XML:
 N/A; the requested URI is an XML namespace.

 The YANG Module Names Registry
 IANA has registered the following four YANG modules in the "YANG Module Names"
 registry .

 name:
 iana-tls-cipher-suite-algs
 Maintained by IANA:
 Y
 namespace:
 urn:ietf:params:xml:ns:yang:iana-tls-cipher-suite-algs
 prefix:
 tlscsa
 reference:
 RFC 9645

 name:
 ietf-tls-common
 Maintained by IANA:
 N
 namespace:
 urn:ietf:params:xml:ns:yang:ietf-tls-common
 prefix:
 tlscmn
 reference:
 RFC 9645

 name:
 ietf-tls-client
 Maintained by IANA:
 N
 namespace:
 urn:ietf:params:xml:ns:yang:ietf-tls-client
 prefix:
 tlsc
 reference:
 RFC 9645

 name:
 ietf-tls-server
 Maintained by IANA:
 N
 namespace:
 urn:ietf:params:xml:ns:yang:ietf-tls-server
 prefix:
 tlss
 reference:
 RFC 9645

 Considerations for the "iana-tls-cipher-suite-algs" YANG Module
 This section follows the template defined in .
 IANA used the script in to generate the
 IANA-maintained "iana-tls-cipher-suite-algs" YANG module.
 The YANG module is available from the "YANG Parameters"
 registry .
 IANA has added the following note to the registry:

	 New values must not be directly added to the "iana-tls-cipher-suite-algs"
 YANG module. They must instead be added to the "TLS Cipher Suites" registry in
 the "Transport Layer Security (TLS) Parameters" registry group .
	
 When a value is added to the "TLS Cipher Suites" registry, a new "enum"
 statement must be added to the "iana-tls-cipher-suite-algs" YANG module. The
 "enum" statement, and substatements thereof, should be defined as follows:

 enum
 Replicates a name from the registry.
 value
 Contains the decimal value of the IANA-assigned value.
 status
 Include only if a registration has been deprecated or obsoleted.
 An IANA "Recommended" value "N" maps to YANG status "deprecated". Since the registry
 is unable to express a logical " MUST NOT" recommendation, there is no
 mapping to YANG status "obsolete", which is unfortunate given the moving of single-DES and International Data
 Encryption Algorithm (IDEA) TLS cipher suites to Historic .
 description
 Contains "Enumeration for the 'TLS_FOO' algorithm", where "TLS_FOO" is
 a placeholder for the algorithm's name (e.g., "TLS_PSK_WITH_AES_256_CBC_SHA").
 reference
 Replicates the reference(s) from the registry with the title of the
 document(s) added.

 Unassigned or reserved values are not present in the module.
 When the "iana-tls-cipher-suite-algs" YANG module is updated, a
 new "revision" statement with a unique revision date must be added
 in front of the existing revision statements. The "revision"
 must have a "description" statement explaining why the the update
 occurred and must have a "reference" substatement that points to the
 document defining the registry update that resulted in this change.
 For instance:

revision 2024-10-10 {
 description
 "This update reflects the update made to the underlying
 'Foo Bar' registry per RFC XXXX.";
 reference
 "RFC XXXX: Extend the Foo Bar Registry
 to Support Something Important";
}
 IANA has added the following note to the "TLS Cipher Suites"
 registry under the "Transport Layer Security (TLS) Parameters"
 registry group .
 When this registry is modified, the YANG module "iana-tls-cipher-suite-algs"
 must be updated as defined in RFC 9645.

 References

 Normative References

 Secure Hash Standard (SHS)

 National Institute of Standards and Technology (NIST)

 Digital Signature Standard (DSS)

 National Institute of Standards and Technology (NIST)

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The Secure Shell (SSH) Authentication Protocol

 The Secure Shell Protocol (SSH) is a protocol for secure remote login and other secure network services over an insecure network. This document describes the SSH authentication protocol framework and public key, password, and host-based client authentication methods. Additional authentication methods are described in separate documents. The SSH authentication protocol runs on top of the SSH transport layer protocol and provides a single authenticated tunnel for the SSH connection protocol. [STANDARDS-TRACK]

 Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)

 This document specifies three sets of new ciphersuites for the Transport Layer Security (TLS) protocol to support authentication based on pre-shared keys (PSKs). These pre-shared keys are symmetric keys, shared in advance among the communicating parties. The first set of ciphersuites uses only symmetric key operations for authentication. The second set uses a Diffie-Hellman exchange authenticated with a pre-shared key, and the third set combines public key authentication of the server with pre-shared key authentication of the client. [STANDARDS-TRACK]

 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

 This memo profiles the X.509 v3 certificate and X.509 v2 certificate revocation list (CRL) for use in the Internet. An overview of this approach and model is provided as an introduction. The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of Internet name forms. Standard certificate extensions are described and two Internet-specific extensions are defined. A set of required certificate extensions is specified. The X.509 v2 CRL format is described in detail along with standard and Internet-specific extensions. An algorithm for X.509 certification path validation is described. An ASN.1 module and examples are provided in the appendices. [STANDARDS-TRACK]

 AES Galois Counter Mode (GCM) Cipher Suites for TLS

 This memo describes the use of the Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM) as a Transport Layer Security (TLS) authenticated encryption operation. GCM provides both confidentiality and data origin authentication, can be efficiently implemented in hardware for speeds of 10 gigabits per second and above, and is also well-suited to software implementations. This memo defines TLS cipher suites that use AES-GCM with RSA, DSA, and Diffie-Hellman-based key exchange mechanisms. [STANDARDS-TRACK]

 TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM)

 RFC 4492 describes elliptic curve cipher suites for Transport Layer Security (TLS). However, all those cipher suites use HMAC-SHA-1 as their Message Authentication Code (MAC) algorithm. This document describes sixteen new cipher suites for TLS that specify stronger MAC algorithms. Eight use Hashed Message Authentication Code (HMAC) with SHA-256 or SHA-384, and eight use AES in Galois Counter Mode (GCM). This memo provides information for the Internet community.

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) Heartbeat Extension

 This document describes the Heartbeat Extension for the Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) protocols.
 The Heartbeat Extension provides a new protocol for TLS/DTLS allowing the usage of keep-alive functionality without performing a renegotiation and a basis for path MTU (PMTU) discovery for DTLS. [STANDARDS-TRACK]

 Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 This document specifies a new certificate type and two TLS extensions for exchanging raw public keys in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). The new certificate type allows raw public keys to be used for authentication.

 Using the NETCONF Protocol over Transport Layer Security (TLS) with Mutual X.509 Authentication

 The Network Configuration Protocol (NETCONF) provides mechanisms to install, manipulate, and delete the configuration of network devices. This document describes how to use the Transport Layer Security (TLS) protocol with mutual X.509 authentication to secure the exchange of NETCONF messages. This revision of RFC 5539 documents the new message framing used by NETCONF 1.1 and it obsoletes RFC 5539.

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Network Configuration Access Control Model

 The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
 This document obsoletes RFC 6536.

 Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier

 This document describes key exchange algorithms based on Elliptic Curve Cryptography (ECC) for the Transport Layer Security (TLS) protocol. In particular, it specifies the use of Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) key agreement in a TLS handshake and the use of the Elliptic Curve Digital Signature Algorithm (ECDSA) and Edwards-curve Digital Signature Algorithm (EdDSA) as authentication mechanisms.
 This document obsoletes RFC 4492.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.

 YANG Data Types and Groupings for Cryptography

 Watsen Networks

 A YANG Data Model for a Truststore

 Watsen Networks

 A YANG Data Model for a Keystore

 Watsen Networks

 Informative References

 YANG Groupings for HTTP Clients and HTTP Servers

 Watsen Networks

 This document presents two YANG modules: the first defines a minimal grouping for configuring an HTTP client, and the second defines a minimal grouping for configuring an HTTP server. It is intended that these groupings will be used to help define the configuration for simple HTTP-based protocols (not for complete web servers or browsers). Support is provided for HTTP/1.1, HTTP/2, and HTTP/3.

 Work in Progress

 TLS Cipher Suites

 IANA

 YANG Parameters

 IANA

 NETCONF Client and Server Models

 Watsen Networks

 This document presents two YANG modules, one module to configure a NETCONF client and the other module to configure a NETCONF server. Both modules support both the SSH and TLS transport protocols, and support both standard NETCONF and NETCONF Call Home connections. Editorial Note (To be removed by RFC Editor) This draft contains placeholder values that need to be replaced with finalized values at the time of publication. This note summarizes all of the substitutions that are needed. No other RFC Editor instructions are specified elsewhere in this document. Artwork in this document contains shorthand references to drafts in progress. Please apply the following replacements (note: not all may be present): * AAAA --> the assigned RFC value for draft-ietf-netconf-crypto- types * BBBB --> the assigned RFC value for draft-ietf-netconf-trust- anchors * CCCC --> the assigned RFC value for draft-ietf-netconf-keystore * DDDD --> the assigned RFC value for draft-ietf-netconf-tcp-client- server * EEEE --> the assigned RFC value for draft-ietf-netconf-ssh-client- server * FFFF --> the assigned RFC value for draft-ietf-netconf-tls-client- server * GGGG --> the assigned RFC value for draft-ietf-netconf-http- client-server * HHHH --> the assigned RFC value for this draft Artwork in this document contains placeholder values for the date of publication of this draft. Please apply the following replacement: * 2024-08-14 --> the publication date of this draft The "Relation to other RFCs" section Section 1.1 contains the text "one or more YANG modules" and, later, "modules". This text is sourced from a file in a context where it is unknown how many modules a draft defines. The text is not wrong as is, but it may be improved by stating more directly how many modules are defined. The "Relation to other RFCs" section Section 1.1 contains a self- reference to this draft, along with a corresponding reference in the Appendix. Please replace the self-reference in this section with "This RFC" (or similar) and remove the self-reference in the "Normative/Informative References" section, whichever it is in. Tree-diagrams in this draft may use the '\' line-folding mode defined in RFC 8792. However, nicer-to-the-eye is when the '\\' line-folding mode is used. The AD suggested suggested putting a request here for the RFC Editor to help convert "ugly" '\' folded examples to use the '\\' folding mode. "Help convert" may be interpreted as, identify what looks ugly and ask the authors to make the adjustment. The following Appendix section is to be removed prior to publication: * Appendix A. Change Log

 Work in Progress

 RESTCONF Client and Server Models

 Watsen Networks

 This document presents two YANG modules, one module to configure a RESTCONF client and the other module to configure a RESTCONF server. Both modules support the TLS transport protocol with both standard RESTCONF and RESTCONF Call Home connections. Editorial Note (To be removed by RFC Editor) This draft contains placeholder values that need to be replaced with finalized values at the time of publication. This note summarizes all of the substitutions that are needed. No other RFC Editor instructions are specified elsewhere in this document. Artwork in this document contains shorthand references to drafts in progress. Please apply the following replacements (note: not all may be present): * AAAA --> the assigned RFC value for draft-ietf-netconf-crypto- types * BBBB --> the assigned RFC value for draft-ietf-netconf-trust- anchors * CCCC --> the assigned RFC value for draft-ietf-netconf-keystore * DDDD --> the assigned RFC value for draft-ietf-netconf-tcp-client- server * EEEE --> the assigned RFC value for draft-ietf-netconf-ssh-client- server * FFFF --> the assigned RFC value for draft-ietf-netconf-tls-client- server * GGGG --> the assigned RFC value for draft-ietf-netconf-http- client-server * HHHH --> the assigned RFC value for draft-ietf-netconf-netconf- client-server * IIII --> the assigned RFC value for this draft Artwork in this document contains placeholder values for the date of publication of this draft. Please apply the following replacement: * 2024-08-14 --> the publication date of this draft The "Relation to other RFCs" section Section 1.1 contains the text "one or more YANG modules" and, later, "modules". This text is sourced from a file in a context where it is unknown how many modules a draft defines. The text is not wrong as is, but it may be improved by stating more directly how many modules are defined. The "Relation to other RFCs" section Section 1.1 contains a self- reference to this draft, along with a corresponding reference in the Appendix. Please replace the self-reference in this section with "This RFC" (or similar) and remove the self-reference in the "Normative/Informative References" section, whichever it is in. Tree-diagrams in this draft may use the '\' line-folding mode defined in RFC 8792. However, nicer-to-the-eye is when the '\\' line-folding mode is used. The AD suggested suggested putting a request here for the RFC Editor to help convert "ugly" '\' folded examples to use the '\\' folding mode. "Help convert" may be interpreted as, identify what looks ugly and ask the authors to make the adjustment. The following Appendix section is to be removed prior to publication: * Appendix A. Change Log

 Work in Progress

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 On the Use of Channel Bindings to Secure Channels

 The concept of channel binding allows applications to establish that the two end-points of a secure channel at one network layer are the same as at a higher layer by binding authentication at the higher layer to the channel at the lower layer. This allows applications to delegate session protection to lower layers, which has various performance benefits.
 This document discusses and formalizes the concept of channel binding to secure channels. [STANDARDS-TRACK]

 The Transport Layer Security (TLS) Protocol Version 1.2

 This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]

 NETCONF Call Home and RESTCONF Call Home

 This RFC presents NETCONF Call Home and RESTCONF Call Home, which enable a NETCONF or RESTCONF server to initiate a secure connection to a NETCONF or RESTCONF client, respectively.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 Network Management Datastore Architecture (NMDA)

 Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.

 Guidelines for Authors and Reviewers of Documents Containing YANG Data Models

 This memo provides guidelines for authors and reviewers of specifications containing YANG modules. Recommendations and procedures are defined, which are intended to increase interoperability and usability of Network Configuration Protocol (NETCONF) and RESTCONF protocol implementations that utilize YANG modules. This document obsoletes RFC 6087.

 Guidelines for Authors and Reviewers of Documents Containing YANG Data Models

 YumaWorks

 Orange

 Huawei

 This memo provides guidelines for authors and reviewers of specifications containing YANG modules, including IANA-maintained modules. Recommendations and procedures are defined, which are intended to increase interoperability and usability of Network Configuration Protocol (NETCONF) and RESTCONF protocol implementations that utilize YANG modules. This document obsoletes RFC 8407. Also, this document updates RFC 8126 by providing additional guidelines for writing the IANA considerations for RFCs that specify IANA-maintained modules. The document also updates RFC 6020 by clarifying how modules and their revisions are handled by IANA.

 Work in Progress

 Deprecating TLS 1.0 and TLS 1.1

 This document formally deprecates Transport Layer Security (TLS) versions 1.0 (RFC 2246) and 1.1 (RFC 4346). Accordingly, those documents have been moved to Historic status. These versions lack support for current and recommended cryptographic algorithms and mechanisms, and various government and industry profiles of applications using TLS now mandate avoiding these old TLS versions. TLS version 1.2 became the recommended version for IETF protocols in 2008 (subsequently being obsoleted by TLS version 1.3 in 2018), providing sufficient time to transition away from older versions. Removing support for older versions from implementations reduces the attack surface, reduces opportunity for misconfiguration, and streamlines library and product maintenance.
 This document also deprecates Datagram TLS (DTLS) version 1.0 (RFC 4347) but not DTLS version 1.2, and there is no DTLS version 1.1.
 This document updates many RFCs that normatively refer to TLS version 1.0 or TLS version 1.1, as described herein. This document also updates the best practices for TLS usage in RFC 7525; hence, it is part of BCP 195.

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 Guidance for External Pre-Shared Key (PSK) Usage in TLS

 This document provides usage guidance for external Pre-Shared Keys (PSKs) in Transport Layer Security (TLS) 1.3 as defined in RFC 8446. It lists TLS security properties provided by PSKs under certain assumptions, then it demonstrates how violations of these assumptions lead to attacks. Advice for applications to help meet these assumptions is provided. This document also discusses PSK use cases and provisioning processes. Finally, it lists the privacy and security properties that are not provided by TLS 1.3 when external PSKs are used.

 Importing External Pre-Shared Keys (PSKs) for TLS 1.3

 This document describes an interface for importing external Pre-Shared Keys (PSKs) into TLS 1.3.

 YANG Groupings for TCP Clients and TCP Servers

 Watsen Networks

 Hochschule Esslingen - University of Applied Sciences

 YANG Groupings for SSH Clients and SSH Servers

 Watsen Networks

 System-defined Configuration

 Huawei

 Huawei

 The Network Management Datastore Architecture (NMDA) in RFC 8342 defines several configuration datastores holding configuration. The contents of these configuration datastores are controlled by clients. This document introduces the concept of system configuration datastore holding configuration controlled by the system on which a server is running. The system configuration can be referenced (e.g., leafref) by configuration explicitly created by clients. This document updates RFC 8342.

 Work in Progress

 Extensible Markup Language (XML) 1.0 (Fifth Edition)

 W3C Recommendation REC-xml-20081126

 Script to Generate IANA-Maintained YANG Modules
 This section is not normative.
 The Python script contained in this
 section was used to create the initial IANA-maintained "iana-tls-cipher-suite-algs" YANG module maintained at .
 Run the script using the command 'python gen-yang-modules.py' to produce the
 YANG module file in the current directory.
 Be aware that the script does not attempt to copy the "revision" statements
 from the previous/current YANG module. Copying the revision statements must
 be done manually.

=============== NOTE: '\\' line wrapping per RFC 8792 ===============

import re
import csv
import requests
import textwrap
import requests_cache
from io import StringIO
from datetime import datetime

Metadata for the one YANG module produced by this script
MODULES = [
 {
 "csv_url": "https://www.iana.org/assignments/tls-parameters/\
\tls-parameters-4.csv",
 "spaced_name": "cipher-suite",
 "hyphenated_name": "cipher-suite",
 "prefix": "tlscsa",
 }
]

def create_module_begin(module, f):

 # Define template for all four modules
 PREAMBLE_TEMPLATE="""
module iana-tls-HNAME-algs {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:iana-tls-HNAME-algs";
 prefix PREFIX;

 organization
 "Internet Assigned Numbers Authority (IANA)";

 contact
 "Postal: ICANN
 12025 Waterfront Drive, Suite 300
 Los Angeles, CA 90094-2536
 United States of America
 Tel: +1 310 301 5800
 Email: <iana@iana.org>";

 description
 "This module defines enumerations for the cipher suite
 algorithms defined in the 'TLS Cipher Suites' registry
 under the 'Transport Layer Security (TLS) Parameters'
 registry group maintained by IANA.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 The initial version of this YANG module is part of RFC 9645
 (https://www.rfc-editor.org/info/rfc9645); see the RFC
 itself for full legal notices.

 All versions of this module are published by IANA
 (https://www.iana.org/assignments/yang-parameters).";

 revision DATE {
 description
 "This initial version of the module was created using
 the script defined in RFC 9645 to reflect the contents
 of the SNAME algorithms registry maintained by IANA.";
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 typedef tls-HNAME-algorithm {
 type enumeration {
"""
 # Replacements
 rep = {
 "DATE": datetime.today().strftime('%Y-%m-%d'),
 "YEAR": datetime.today().strftime('%Y'),
 "SNAME": module["spaced_name"],
 "HNAME": module["hyphenated_name"],
 "PREFIX": module["prefix"]
 }

 # Do the replacement
 rep = dict((re.escape(k), v) for k, v in rep.items())
 pattern = re.compile("|".join(rep.keys()))
 text = pattern.sub(lambda m: rep[re.escape(m.group(0))], PREAMBL\
\E_TEMPLATE)

 # Write preamble into the file
 f.write(text)

def create_module_body(module, f):

 # Fetch the current CSV file from IANA
 r = requests.get(module["csv_url"])
 assert r.status_code == 200, "Could not get " + module["csv_url"]

 # Parse each CSV line
 with StringIO(r.text) as csv_file:
 csv_reader = csv.DictReader(csv_file)
 for row in csv_reader:

 # Skip reserved algs
 if row["Description"].startswith("Unassigned"):
 continue

 # Skip unassigned algs
 if row["Description"].startswith("Reserved"):
 continue

 # Ensure this is the TLS line
 assert row["Description"].startswith("TLS_"), "Unrecogni\
\zed description: '" + row["Description"] + "'"

 # Set the 'refs' and 'titles' lists
 if row["Reference"] == "":
 pass # skip when the Reference field is empty

 else:

 # There may be more than one ref
 refs = row["Reference"][1:-1] # remove the '[' and \
\']' chars
 refs = refs.split("][")
 titles = []
 for ref in refs:

 # Ascertain the ref's title
 if ref.startswith("RFC"):

 # Fetch the current BIBTEX entry
 bibtex_url="https://datatracker.ietf.org/doc\
\/"+ ref.lower() + "/bibtex/"
 r = requests.get(bibtex_url)
 assert r.status_code == 200, "Could not GET \
\" + bibtex_url

 # Append to 'titles' value from the "title" \
\line
 for item in r.text.split("\n"):
 if "title =" in item:
 title = re.sub('.*{{(.*)}}.*', r'\g<\
\1>', item)
 if title.startswith("ECDHE_PSK"):
 title = re.sub("ECDHE_PSK", \
\"ECDHE_PSK", title)
 titles.append(re.sub('.*{{(.*)}}.*',\
\ r'\g<1>', title))
 break
 else:
 raise Exception("RFC title not found")

 # Insert a space: "RFC9645" --> "RFC 9645"
 index = refs.index(ref)
 refs[index] = "RFC " + ref[3:]

 elif ref == "IESG Action 2018-08-16":

 # Rewrite the ref value
 index = refs.index(ref)
 refs[index] = "IESG Action"

 # Let title be something descriptive
 titles.append("IESG Action 2018-08-16")

 elif ref == "draft-irtf-cfrg-aegis-aead-08":

 # Manually set the document's title
 titles.append("The AEGIS Family of Authentic\
\ated Encryption Algorithms")

 elif ref:
 raise Exception(f'ref "{ref}" not found')

 else:
 raise Exception(f'ref missing: {row}')

 # Write out the enum
 f.write(f' enum {row["Description"]} {{\n');
 if row["Recommended"] == 'N':
 f.write(f' status deprecated;\n')
 f.write(f' description\n')
 description = f' "Enumeration for the \'{row["D\
\escription"]}\' algorithm.";'
 description = textwrap.fill(description, width=69, subse\
\quent_indent=" ")
 f.write(f'{description}\n')
 f.write(' reference\n')
 f.write(' "')
 if row["Reference"] == "":
 f.write('Missing in IANA registry.')
 else:
 ref_len = len(refs)
 for i in range(ref_len):
 ref = refs[i]
 f.write(f'{ref}:\n')
 title = " " + titles[i]
 if i == ref_len - 1:
 title += '";'
 title = textwrap.fill(title, width=69, subsequen\
\t_indent=" ")
 f.write(f'{title}')
 if i != ref_len - 1:
 f.write('\n ')
 f.write('\n')
 f.write(' }\n')

def create_module_end(module, f):

 # Close out the enumeration, typedef, and module
 f.write(" }\n")
 f.write(" description\n")
 f.write(f' "An enumeration for TLS {module["spaced_name"]} \
\algorithms.";\n')
 f.write(" }\n")
 f.write('\n')
 f.write('}\n')

def create_module(module):

 # Install cache for 8x speedup
 requests_cache.install_cache()

 # Ascertain the yang module's name
 yang_module_name = "iana-tls-" + module["hyphenated_name"] + "-a\
\lgs.yang"

 # Create yang module file
 with open(yang_module_name, "w") as f:
 create_module_begin(module, f)
 create_module_body(module, f)
 create_module_end(module, f)

def main():
 for module in MODULES:
 create_module(module)

if __name__ == "__main__":
 main()

 Acknowledgements
 The authors would like to thank the following for lively discussions
 on list and in the halls (ordered by first name):
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
	 , and
 .

 Contributors
 Special acknowledgement goes to who contributed the
 "ietf-tls-common" module and who carefully ensured
 that references were set correctly throughout.

 Author's Address

 Watsen Networks

 kent+ietf@watsen.net

