<?xml version="1.0" encoding="US-ASCII"?> version='1.0' encoding='UTF-8'?>

<!DOCTYPE rfc SYSTEM "rfc2629.dtd" [
  <!ENTITY rfc2119 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml"> nbsp    "&#160;">
  <!ENTITY rfc8174 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8174.xml"> zwsp   "&#8203;">
  <!ENTITY nbhy   "&#8209;">
  <!ENTITY wj     "&#8288;">
]>
<?rfc toc="yes"?>
<?rfc symrefs="yes"?>
<?rfc compact="yes"?>
<?rfc subcompact="no"?>
<?rfc strict="no"?>
<?rfc rfcedstyle="yes"?>
<?rfc comments="yes"?>
<?rfc inline="yes"?>

<rfc xmlns:xi="http://www.w3.org/2001/XInclude" category="info" docName="draft-irtf-cfrg-kangarootwelve-17" ipr="trust200902"> number="9861" consensus="true" ipr="trust200902" obsoletes="" updates="" submissionType="IRTF" xml:lang="en" tocInclude="true" symRefs="true" version="3">

<!--[rfced] Please ensure that the guidelines listed in Section 2.1 of RFC 5743 have been
adhered to in this document.  -->

<!--[rfced] Should the document's short title, which can be seen in the header
of the PDF output, include "TurboSHAKE" to reflect the full document title?

Original:
   KangarooTwelve

Perhaps:
   KangarooTwelve and TurboSHAKE
-->

  <front>
    <title abbrev="KangarooTwelve">KangarooTwelve and TurboSHAKE</title>

    <!-- If the author is acting as editor, use the <role=editor> attribute-->

    <!-- see RFC2223 for guidelines regarding author names -->
    <seriesInfo name="RFC" value="9861"/>
    <author fullname="Beno&icirc;t fullname="Benoît Viguier" initials="B" surname="Viguier">
      <organization>ABN AMRO Bank</organization>
      <address>
        <postal>
          <street>Groenelaan 2</street>
          <city>Amstelveen</city>
          <country>The Netherlands</country>
          <country>Netherlands</country>
        </postal>
        <email>cs.ru.nl@viguier.nl</email>
      </address>
    </author>
    <author fullname="David Wong" initials="D" surname="Wong" role="editor">
      <organization>zkSecurity</organization>
      <address>
        <email>davidwong.crypto@gmail.com</email>
      </address>
    </author>
    <author fullname="Gilles Van Assche" initials="G" surname="Van Assche" role="editor">
      <organization>STMicroelectronics</organization>
      <address>
        <email>gilles.vanassche@st.com</email>
      </address>
    </author>
    <author fullname="Quynh Dang" initials="Q" surname="Dang" role="editor">
      <organization abbrev="NIST">National Institute of Standards and Technology</organization>
      <address>
        <email>quynh.dang@nist.gov</email>
      </address>
    </author>
    <author fullname="Joan Daemen" initials="J" surname="Daemen" role="editor">
      <organization>Radboud University</organization>
      <address>
        <email>joan@cs.ru.nl</email>
      </address>
    </author>
    <!-- <author fullname="Stanislav V. Smyshlyaev" initials="S" surname="Smyshlyaev">
      <organization>CryptoPro</organization>
      <address>
        <email>smyshsv@gmail.com</email>
      </address>
    </author> -->

    <!-- <author fullname="John Mattsson" initials="J" surname="Mattsson">
      <organization>Ericsson</organization>
      <address>
        <email>john.mattsson@ericsson.com</email>
      </address>
    </author> -->

    <!-- month and day will be generated automatically by XL2RFC;
    be sure the year is current.-->

    <date year="2025" />

    <!--WG name at the upperleft corner of the doc,
    IETF is fine for non-WG IETF submissions --> month="September"/>

    <workgroup>Crypto Forum</workgroup>

    <keyword>Keccak</keyword>
    <keyword>Sakura</keyword>
    <keyword>KangarooTwelve</keyword>
    <keyword>TurboSHAKE</keyword>
    <keyword>Cryptographic Hash</keyword>
    <keyword>eXtendable Output Function</keyword>

    <abstract>
      <t>This document defines four eXtendable Output eXtendable-Output Functions (XOF), (XOFs),
  hash functions with output of arbitrary length, named TurboSHAKE128,
  TurboSHAKE256, KT128 KT128, and KT256.</t>
      <t>All four functions provide efficient and secure hashing primitives,
  and the last two are able to exploit the parallelism of the implementation
  in a scalable way.</t>
      <t>This document is a product of the Crypto Forum Research Group.
  It builds up on the definitions of the permutations and of the
  sponge construction in [FIPS 202], NIST FIPS 202 and is meant to serve as a stable reference
  and an implementation guide.</t>
    </abstract>
  </front>
  <middle>
    <section title="Introduction"> numbered="true" toc="default">
      <name>Introduction</name>
      <t>This document defines the TurboSHAKE128, TurboSHAKE256 <xref target="TURBOSHAKE"></xref>,
    KT128 target="TURBOSHAKE" format="default"/>,
    KT128, and KT256 <xref target="KT"></xref> eXtendable Output target="KT" format="default"/> eXtendable-Output Functions (XOF), (XOFs),
    i.e., a hash function generalization generalizations that can return an output of arbitrary length.
      Both TurboSHAKE128 and TurboSHAKE256 are based on a Keccak-p permutation specified in <xref
    target="FIPS202"></xref> target="FIPS202" format="default"/> and have a higher speed than the SHA-3 and SHAKE functions.</t>

<!--[rfced] May we clarify that "similarly to the SHAKE's" is referring
to the SHAKE's security?

Original:
   Similarly to the SHAKE's, it proposes two security strengths:
   128 bits for TurboSHAKE128 and 256 bits for TurboSHAKE256.

Perhaps:
   Similarly to the SHAKE's security, it proposes two security strengths:
   128 bits for TurboSHAKE128 and 256 bits for TurboSHAKE256.
-->

      <t>TurboSHAKE is a sponge function family that makes use of Keccak-p[n_r=12,b=1600], a round-reduced
    version of the permutation used in SHA-3. Similarly to the SHAKE's, it proposes two security strengths:
    128 bits for TurboSHAKE128 and 256 bits for TurboSHAKE256.
    Halving the number of rounds compared to the original SHAKE functions makes TurboSHAKE roughly two times
    faster.</t>
      <t>
    KangarooTwelve applies tree hashing on top of TurboSHAKE and comprises two functions, KT128 and KT256.
    Note that <xref target="KT"></xref> target="KT" format="default"/> only defined KT128 under the name KangarooTwelve.
    KT256 is defined in this document.
      </t>
      <t>
    The SHA-3 and SHAKE functions process data in a serial manner and are strongly
    limited in exploiting available parallelism in modern CPU architectures.
    Similar to ParallelHash <xref target="SP800-185"></xref>, target="SP800-185" format="default"/>, KangarooTwelve splits
    the input message into fragments. It then applies TurboSHAKE on each of them
    separately before applying TurboSHAKE again on the combination of the first
    fragment and the digests.
    More precisely, KT128 uses TurboSHAKE128 and KT256 uses TurboSHAKE256.
    They make use of Sakura coding for ensuring soundness of the tree hashing
    mode <xref target="SAKURA"/>. target="SAKURA" format="default"/>.
    The use of TurboSHAKE in KangarooTwelve makes it faster than ParallelHash.</t>
      <t>The security of TurboSHAKE128, TurboSHAKE256, KT128 KT128, and KT256 builds on the public
    scrutiny that Keccak has received since its
    publication <xref target="KECCAK_CRYPTANALYSIS"/><xref target="TURBOSHAKE"/>.</t> target="KECCAK_CRYPTANALYSIS" format="default"/> <xref target="TURBOSHAKE" format="default"/>.</t>
      <t>With respect to functions defined in <xref target="FIPS202"></xref> target="FIPS202" format="default"/> and <xref target="SP800-185"></xref>
    functions, target="SP800-185" format="default"/>, TurboSHAKE128, TurboSHAKE256, KT128 KT128, and KT256 feature the following advantages:</t>

    <t><list style="symbols">
      <ul spacing="normal">
        <li>
          <t>Unlike SHA3-224, SHA3-256, SHA3-384, and SHA3-512, the TurboSHAKE and
      KangarooTwelve functions have an extendable output.</t>
        </li>
        <li>
          <t>Unlike any functions in <xref target="FIPS202"></xref> defined function, similarly target="FIPS202" format="default"/>, and similar to
    functions defined in <xref target="SP800-185"></xref>, target="SP800-185" format="default"/>, KT128 and KT256
    allow the use of a customization string.</t>
        </li>
        <li>

<!--[rfced] Section 1. We rephrased the following sentence for
consistency with the other sentences in the list and to avoid
using citations as adjectives. If it changes the intended
meaning, please let us know.

Original:
   *  Unlike any [FIPS202] and [SP800-185] functions but ParallelHash,
      KT128 and KT256 exploit available parallelism.

Perhaps:
   *  Unlike any functions in [FIPS202] and [SP800-185] except for
      ParallelHash, KT128 and KT256 exploit available parallelism.
-->

          <t>Unlike any functions in <xref target="FIPS202"></xref> target="FIPS202" format="default"/> and <xref target="SP800-185"></xref>
    functions but target="SP800-185" format="default"/> except for ParallelHash, KT128 and KT256 exploit available parallelism.</t>
        </li>
        <li>
          <t>Unlike ParallelHash, KT128 and KT256 do not have overhead when
    processing short messages.</t>
        </li>
        <li>
          <t>The permutation in the TurboSHAKE functions has half
    the number of rounds compared to the one in the SHA-3 and SHAKE functions,
    making them faster than any function defined in <xref target="FIPS202"></xref>. target="FIPS202" format="default"/>.
    The KangarooTwelve functions immediately benefit from the same speedup, improving over
    <xref target="FIPS202"></xref> target="FIPS202" format="default"/> and <xref target="SP800-185"></xref>.</t>
    </list></t> target="SP800-185" format="default"/>.</t>
        </li>
      </ul>
      <t>With respect to SHA-256 and SHA-512 SHA-256, SHA-512, and other functions defined in <xref target="FIPS180"/> functions, target="FIPS180" format="default"/>, TurboSHAKE128, TurboSHAKE256, KT128 KT128, and KT256 feature the following advantages:</t>

    <t><list style="symbols">
      <ul spacing="normal">
        <li>
          <t>Unlike any functions in <xref target="FIPS180"/> functions, target="FIPS180" format="default"/>, the TurboSHAKE and KangarooTwelve functions have an extendable output.</t>
        </li>
        <li>
          <t>The TurboSHAKE functions produce output at the same rate as they process input, whereas SHA-256 and SHA-512, when used in a mask generation function (MGF) construction, produce output half as fast as they process input.</t>
        </li>
        <li>
          <t>Unlike the SHA-256 and SHA-512 functions, TurboSHAKE128, TurboSHAKE256, KT128 KT128, and KT256 do not suffer from the length extension weakness.</t>
        </li>
        <li>
          <t>Unlike any functions in <xref target="FIPS180"></xref> functions, target="FIPS180" format="default"/>, TurboSHAKE128, TurboSHAKE256, KT128 KT128, and KT256 use a round function with algebraic degree 2, which makes them more suitable to masking techniques for protections against side-channel attacks.</t>
    </list></t>
        </li>
      </ul>
      <t>This document represents the consensus of the Crypto Forum Research Group (CFRG)
   in the IRTF. It is not an IETF product and is not a standard.</t>
      <section title="Conventions">
      <t>The numbered="true" toc="default">
        <name>Conventions</name>
        <t>
    The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
      "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL
    NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>",
    "<bcp14>MAY</bcp14>", and "OPTIONAL" "<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as
    described in BCP 14 BCP&nbsp;14 <xref target="RFC2119"></xref> target="RFC2119"/> <xref target="RFC8174"></xref> target="RFC8174"/>
    when, and only when, they appear in all capitals, as shown here.</t> here.
        </t>
        <t>The following notations are used throughout the document:</t>

      <t><list style="hanging">
        <t hangText="`...`">denotes
        <ul  spacing="normal">
          <li>`...` denotes a string of bytes given in
        hexadecimal. For example, `0B 80`.</t>

        <t hangText="|s|">denotes 80`.</li>
          <li>|s| denotes the length of a byte string `s`.
        For example, |`FF FF`| = 2.</t>

        <t hangText="`00`^b">denotes 2.</li>
          <li>`00`^b denotes a byte string consisting of the concatenation
        of b bytes `00`. For example, `00`^7 = `00 00 00 00 00 00 00`.</t>

        <t hangText="`00`^0">denotes 00`.</li>
          <li>`00`^0 denotes the empty byte-string.</t>

        <t hangText="a||b">denotes byte string.</li>
          <li>a||b denotes the concatenation of two strings strings, a and b.
        For example, `10`||`F1` = `10 F1`</t>

        <t hangText="s[n:m]">denotes F1`.</li>
          <li>s[n:m] denotes the selection of bytes from n (inclusive) to m
        (exclusive) of a string s. The indexing of a byte-string byte string starts at 0.
        For example, for s = `A5 C6 D7`, s[0:1] = `A5` and s[1:3] = `C6 D7`.</t>

        <t hangText="s[n:]">denotes D7`.</li>
          <li>s[n:] denotes the selection of bytes from n to the end of
        a string s.
        For example, for s = `A5 C6 D7`, s[0:] = `A5 C6 D7` and s[2:] = `D7`.</t>
      </list></t> `D7`.</li>
        </ul>
        <t>In the following, x and y are byte strings of equal length:</t>

      <t><list style="hanging">
        <t hangText="x^=y">
        <ul spacing="normal">
          <li>x^=y denotes x takes the value x XOR y.</t>

        <t hangText="x y.</li>
          <li>x &amp; y"> y denotes x AND y.</t>
      </list></t> y.</li>
        </ul>
        <t>In the following, x and y are integers:</t>

      <t><list style="hanging">
        <t hangText="x+=y">
        <ul spacing="normal">
          <li>x+=y denotes x takes the value x + y.</t>

        <t hangText="x-=y"> y.</li>
          <li>x-=y denotes x takes the value x - y.</t>

        <t hangText="x**y"> y.</li>
          <li>x**y denotes the exponentiation of x by y.</t>

        <t hangText="x y.</li>
          <li>x mod y"> y denotes the remainder of the division of x by y.</t>

        <t hangText="x y.</li>
          <li>x / y"> y denotes the integer dividend of the division of x by y.</t>
        </list></t> y.</li>
        </ul>
      </section>
    </section>
    <section title="TurboSHAKE"> numbered="true" toc="default">
      <name>TurboSHAKE</name>
      <section anchor="TurboSHAKE_Interface" title="Interface"> numbered="true" toc="default">
        <name>Interface</name>
        <t>TurboSHAKE is a family of eXtendable Output eXtendable-Output Functions (XOF). (XOFs).
        Internally, it makes use of the sponge construction, parameterized by two integers, the rate and the capacity, that sum to the permutation width (here, 1600 bits).
        The rate gives the number of bits processed or produced per call to the permutation, whereas the capacity determines the security level, level; see <xref target="FIPS202"/> target="FIPS202" format="default"/> for more details.
        This document focuses on only two instances, namely, namely TurboSHAKE128 and TurboSHAKE256.
        (Note that the original definition includes a wider range of instances parameterized by their capacity <xref target="TURBOSHAKE"/>.) target="TURBOSHAKE" format="default"/>.)
        </t>
        <t>

<!--[rfced] Section 2.1. We rephrased this text to match similar text
in the first paragraph of Section 3.1. If it changes the intended
meaning, please let us know.

Original:
   An instance of TurboSHAKE takes as input parameters a byte-string M,
   an OPTIONAL byte D and a positive integer L
      where<list style="hanging">
        <t hangText="M"> byte-string, where

Current:
   A TurboSHAKE instance takes a byte string M, an OPTIONAL byte D, and
   a positive integer L as input parameters, where:
-->

      A TurboSHAKE instance takes a byte string M, an <bcp14>OPTIONAL</bcp14> byte D, and a positive integer L as input parameters, where:</t>
        <ul spacing="normal">
          <li>M byte string is the Message and</t>
        <t hangText="D"> Message,</li>
          <li>D byte in the range [`01`, `02`, .. , `7F`], `7F`] is an OPTIONAL Domain <bcp14>OPTIONAL</bcp14> domain separation byte and</t>
        <t hangText="L"> byte, and</li>
          <li>L positive integer, integer is the requested number of output bytes.</t>
      </list></t> bytes.</li>
        </ul>
        <t>
      Conceptually, a an XOF can be viewed as a hash function with an infinitely long output truncated to L bytes.
      This means that calling a an XOF with the same input parameters but two different lengths yields outputs such that the shorter one is a prefix of the longer one.
      Specifically, if L1 &lt; L2, then TurboSHAKE(M, D, L1) is the same as the first L1 bytes of TurboSHAKE(M, D, L2).
        </t>
        <t>By default, the Domain domain separation byte is `1F`. For an API that
      does not support a domain separation byte, D MUST <bcp14>MUST</bcp14> be the `1F`.</t>
        <t>
      The TurboSHAKE instance produces output that is a hash of the (M, D) couple.
      If D is fixed, this becomes a hash of the Message M.
      However, a protocol that requires a number of independent hash functions can choose different values for D to implement these.

<!--[rfced] Please clarify "for any distinct values D1 and D2". Is the
current text correct or is the intended meaning "for distinct
values D1 and D2" (i.e., without "any")?

Original:
   Specifically, for any distinct values D1 and D2, TurboSHAKE(M, D1,
   L1) and TurboSHAKE(M, D2, L2) yield independent hashes of M.

Perhaps:
   Specifically, for distinct values D1 and D2, TurboSHAKE(M, D1,
   L1) and TurboSHAKE(M, D2, L2) yield independent hashes of M.
-->

      Specifically, for any distinct values D1 and D2, TurboSHAKE(M, D1, L1) and TurboSHAKE(M, D2, L2) yield independent hashes of M.
        </t>
        <t>
      Note that an implementation MAY <bcp14>MAY</bcp14> propose an incremental input interface where the input string M is given in pieces.
      If so, the output MUST <bcp14>MUST</bcp14> be the same as if the function was called with M equal to the concatenation of the different pieces in the order they were given.
      Independently, an implementation MAY <bcp14>MAY</bcp14> propose an incremental output interface where the output string is requested in pieces of given lengths.
      When the output is formed by concatenating the pieces in the requested order, it MUST <bcp14>MUST</bcp14> be the same as if the function was called with L equal to the sum of the given lengths.
        </t>
      </section>
      <section title="Specifications"> numbered="true" toc="default">
        <name>Specifications</name>
        <t>TurboSHAKE makes use of the permutation Keccak-p[1600,n_r=12],
      i.e., the permutation used in SHAKE and SHA-3 functions reduced
      to its last n_r=12 rounds and as specified in FIPS 202, 202; see Sections
      3.3 and 3.4 of <xref target="FIPS202"></xref>. target="FIPS202" format="default"/>.
      KP denotes this permutation.</t>
        <t>Similarly to SHAKE128, TurboSHAKE128 is a sponge function
      calling this permutation KP with a rate of 168 bytes
      or 1344 bits. It follows that TurboSHAKE128 has a capacity of
      1600 - 1344 = 256 bits or 32 bytes. Respectively to SHAKE256, TurboSHAKE256 makes use
      of a rate of 136 bytes or 1088 bits, bits and has a capacity of 512 bits or 64 bytes.</t>

      <t><figure><artwork><![CDATA[
                       +-------------+--------------+
                       |    Rate     |   Capacity   |
      +----------------+-------------+--------------+
      | TurboSHAKE128  |  168 Bytes  |   32 Bytes   |
      |                |             |              |
      | TurboSHAKE256  |  136 Bytes  |   64 Bytes   |
      +----------------+-------------+--------------+]]></artwork>
      </figure></t>

<table>
  <thead>
    <tr>
      <td></td>
      <th>Rate</th>
      <th>Capacity</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>TurboSHAKE128</th>
      <td>168 Bytes</td>
      <td>32 Bytes</td>
    </tr>
    <tr>
      <th>TurboSHAKE256</th>
      <td>136 Bytes</td>
      <td>64 Bytes</td>
    </tr>
  </tbody>
</table>

        <t>We now describe the operations inside TurboSHAKE128.<list style="symbols">
        <t>First TurboSHAKE128.</t>
        <ul spacing="normal">
          <li>
            <t>First, the input M' is formed by appending the domain separation byte D to the message M.</t>
          </li>
          <li>
            <t>
          If the length of M' is not a multiple of 168 bytes bytes, then it is padded with zeros at the end to make it a multiple of 168 bytes.
          If M' is already a multiple of 168 bytes bytes, then no padding is added.
        Then
        Then, a byte `80` is XORed to the last byte of the padded input M'
        and the resulting string is split into a sequence of 168-byte blocks.
            </t>
          </li>
          <li>
            <t>M' never has a length of 0 bytes due to the presence of the domain separation byte.</t>
          </li>
          <li>
            <t>As defined by the sponge construction, the process operates on a state
        and consists of two phases: the absorbing phase that phase, which processes the padded input M' M',
        and the squeezing phase that phase, which produces the output.</t>
          </li>
          <li>
            <t>In the absorbing phase phase, the state is initialized to all-zero. all zero. The
        message blocks are XORed into the first 168 bytes of the state.
        Each block absorbed is followed with an application of KP to the state.</t>
          </li>
          <li>
            <t> In the squeezing phase phase, the output is formed by taking the first 168 bytes of the state,
          applying KP to the state, and repeating as many times as is necessary.</t>
      </list></t>
          </li>
        </ul>
        <t>TurboSHAKE256 performs the same steps but makes use of 136-byte blocks with respect
    to the padding, absorbing, and squeezing phases.</t>
        <t>
    The definition of the TurboSHAKE functions equivalently implements the pad10*1 rule; see Section 5.1 of <xref target="FIPS202"/> target="FIPS202" format="default"/> for a definition of pad10*1.
    While M can be empty, the D byte is always present and is in the `01`-`7F` range.
    This last byte serves as domain separation and integrates the first bit of padding
    of the pad10*1 rule (hence (hence, it cannot be `00`).
    Additionally, it must leave room for the second bit of padding
    (hence
    (hence, it cannot have the MSB most significant bit (MSB) set to 1), should it be the last byte of the block.
    For more details, refer to Section 6.1 of <xref target="KT"></xref> target="KT" format="default"/> and Section 3 of <xref target="TURBOSHAKE"></xref>.</t> target="TURBOSHAKE" format="default"/>.</t>
        <t>The pseudocode versions of TurboSHAKE128 and TurboSHAKE256 are provided respectively in Appendices <xref target="TSHK128_PC"/> target="TSHK128_PC" format="counter"/> and <xref target="TSHK256_PC"/>.</t> target="TSHK256_PC" format="counter"/>, respectively.</t>
      </section>
    </section>
    <section title="KangarooTwelve: numbered="true" toc="default">
      <name>KangarooTwelve: Tree hashing Hashing over TurboSHAKE"> TurboSHAKE</name>
      <section title="Interface"> numbered="true" toc="default">
        <name>Interface</name>
        <t>KangarooTwelve is a family of eXtendable Output eXtendable-Output Functions (XOF) (XOFs) consisting of the KT128 and KT256 instances.
      A KangarooTwelve instance takes as input parameters two byte-strings byte strings (M, C) and a positive integer L
      where <list style="hanging">
      <t hangText="M"> byte-string, as input parameters, where:</t>
        <ul spacing="normal">
          <li>M byte string is the Message and</t>
      <t hangText="C"> byte-string, Message,</li>
          <li>C byte string is an OPTIONAL <bcp14>OPTIONAL</bcp14> Customization string and</t>
      <t hangText="L"> string, and</li>
          <li>L positive integer, integer is the requested number of output bytes.</t>
      </list></t> bytes.</li>
        </ul>
        <t>The Customization string MAY <bcp14>MAY</bcp14> serve as domain separation.
        It is typically a short string such as a name or an identifier (e.g. (e.g., URI,
        ODI...).
        Original Dialog Identifier (ODI), etc.).
        It can serve the same purpose as TurboSHAKE's D input parameter (see <xref target="TurboSHAKE_Interface"/>), target="TurboSHAKE_Interface" format="default"/>) but with a larger range.
        </t>
        <t>By default, the Customization string is the empty string. For an API that
        does not support a customization string parameter, C MUST <bcp14>MUST</bcp14> be the empty string.</t>
        <t>Note that an implementation MAY <bcp14>MAY</bcp14> propose an interface with the input and/or output provided incrementally incrementally, as specified in <xref target="TurboSHAKE_Interface"/>.</t> target="TurboSHAKE_Interface" format="default"/>.</t>
      </section>
      <section title="Specification numbered="true" toc="default">
        <name>Specification of KT128"> KT128</name>
        <t>On top of the sponge function TurboSHAKE128, KT128 uses a
        Sakura-compatible tree hash mode <xref target="SAKURA"></xref>. target="SAKURA" format="default"/>.
        First, merge M and the OPTIONAL <bcp14>OPTIONAL</bcp14> C to a single input string S in a
        reversible way. length_encode( |C| ) |C|&nbsp;) gives the length in bytes of C as a
        byte-string.
        byte string.
        See <xref target="RE"/>.</t>

        <t><figure><artwork><![CDATA[ target="RE" format="default"/>.</t>

        <artwork name="" type="" align="left" alt=""><![CDATA[
    S = M || C || length_encode( |C| ) ]]></artwork></figure></t> )]]></artwork>

        <t>Then, split S into n chunks of 8192 bytes.</t>

        <t><figure><artwork><![CDATA[

        <artwork name="" type="" align="left" alt=""><![CDATA[
    S = S_0 || .. || S_(n-1)
    |S_0| = .. = |S_(n-2)| = 8192 bytes
    |S_(n-1)| <= 8192 bytes ]]></artwork></figure></t> bytes]]></artwork>

        <t>From S_1 .. S_(n-1), compute the 32-byte Chaining Values CV_1 .. CV_(n-1).
        In order to be optimally efficient, this computation MAY <bcp14>MAY</bcp14> exploit the
        parallelism available on the platform platform, such as SIMD single instruction, multiple data (SIMD) instructions.</t>

        <t><figure><artwork><![CDATA[

        <artwork name="" type="" align="left" alt=""><![CDATA[
    CV_i = TurboSHAKE128( S_i, `0B`, 32 )]]></artwork></figure></t> )]]></artwork>

        <t>Compute the final node: FinalNode.
        <list style="symbols"> FinalNode.</t>

        <ul spacing="normal">
          <li>
            <t>If |S| &lt;= 8192 bytes, FinalNode = S</t>
        <t>Otherwise S.</t>
          </li>
          <li>
            <t>Otherwise, compute FinalNode as follows:</t>
        </list></t>

        <t><figure><artwork><![CDATA[
          </li>
        </ul>
        <artwork name="" type="" align="left" alt=""><![CDATA[
    FinalNode = S_0 || `03 00 00 00 00 00 00 00`
    FinalNode = FinalNode || CV_1
                ..
    FinalNode = FinalNode || CV_(n-1)
    FinalNode = FinalNode || length_encode(n-1)
    FinalNode = FinalNode || `FF FF`]]></artwork></figure></t> FF`]]></artwork>

        <t>Finally, the KT128 output is retrieved:
        <list style="symbols">
            <t>If retrieved:</t>
        <ul spacing="normal">
          <li><t>If |S| &lt;= 8192 bytes, from TurboSHAKE128( FinalNode, `07`, L )</t>
        </list></t>

        <t><figure>
        <artwork><![CDATA[

        <artwork name="" type="" align="left" alt=""><![CDATA[
    KT128( M, C, L ) = TurboSHAKE128( FinalNode, `07`, L )]]>
        </artwork></figure></t>

      <t><list style="symbols">
        <t>Otherwise )]]></artwork>
	  </li>

          <li><t>Otherwise, from TurboSHAKE128( FinalNode, `06`, L )</t>
      </list></t>

      <t><figure>
      <artwork><![CDATA[

        <artwork name="" type="" align="left" alt=""><![CDATA[
    KT128( M, C, L ) = TurboSHAKE128( FinalNode, `06`, L )]]>
      </artwork></figure></t> )]]></artwork>
	  </li>
	</ul>

        <t>The following figure illustrates the computation flow of KT128
      for |S| &lt;= 8192 bytes:</t>

        <t><figure><artwork><![CDATA[

        <artwork name="" type="" align="left" alt=""><![CDATA[
    +--------------+  TurboSHAKE128(.., `07`, L)
    |      S       |----------------------------->  output
    +--------------+]]></artwork></figure></t>
    +--------------+]]></artwork>

<!--[rfced] Is the space before the colon in "l_e( x ) :" intentional,
or may we update the text as follows to avoid the added space?

Current:
   The following figure illustrates the computation flow of KT128
   for |S| > 8192 bytes and where TurboSHAKE128 and length_encode( x )
   are abbreviated respectively as TSHK128 and l_e( x ) :

Perhaps:
   The following figure illustrates the computation flow of KT128
   for |S| > 8192 bytes and where TurboSHAKE128 and length_encode( x )
   are abbreviated as TSHK128 and l_e( x ), respectively:
-->

        <t>The following figure illustrates the computation flow of KT128
      for |S| &gt; 8192 bytes and where TurboSHAKE128 and length_encode(&#160;x&#160;) length_encode(&nbsp;x&nbsp;) are
      abbreviated as respectively as TSHK128 and l_e(&#160;x&#160;) l_e(&nbsp;x&nbsp;) :</t>

      <t><figure><artwork><![CDATA[
        <artwork name="" type="" align="left" alt=""><![CDATA[
                                  +--------------+
                                  |     S_0      |
                                  +--------------+
                                        ||
                                  +--------------+
                                  | `03`||`00`^7 |
                                  +--------------+
                                        ||
+---------+  TSHK128(..,`0B`,32)  +--------------+
|   S_1   |---------------------->|     CV_1     |
+---------+                       +--------------+
                                        ||
+---------+  TSHK128(..,`0B`,32)  +--------------+
|   S_2   |---------------------->|     CV_2     |
+---------+                       +--------------+
                                        ||
               ..                       ..
                                        ||
+---------+  TSHK128(..,`0B`,32)  +--------------+
| S_(n-1) |----------------------->|   CV_(n-1)  |
+---------+                       +--------------+
                                        ||
                                  +--------------+
                                  |  l_e( n-1 )  |
                                  +--------------+
                                        ||
                                  +--------------+
                                  |   `FF FF`    |
                                  +--------------+
                                         | TSHK128(.., `06`, L)
                                         +-------------------->  output]]></artwork></figure></t>  output]]></artwork>

        <t>A pseudocode version is provided in <xref target="KT128_PC"/>.</t> target="KT128_PC" format="default"/>.</t>
        <t>The table below gathers the values of the domain separation
      bytes used by the tree hash mode:</t>

      <t><figure><artwork><![CDATA[
      +--------------------+------------------+
      |   Type             |       Byte       |
      +--------------------+------------------+
      |  SingleNode        |       `07`       |
      |                    |                  |
      |  IntermediateNode  |       `0B`       |
      |                    |                  |
      |  FinalNode         |       `06`       |
      +--------------------+------------------+]]></artwork>
      </figure></t>

<table>
  <thead>
    <tr>
      <th>Type</th>
      <th>Byte</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>SingleNode</td>
      <td>`07`</td>
    </tr>
    <tr>
      <td>IntermediateNode</td>
      <td>`0B`</td>
    </tr>
    <tr>
      <td>FinalNode</td>
      <td>`06`</td>
    </tr>
  </tbody>
</table>

      </section>
      <section anchor="RE" title="length_encode( numbered="true" toc="default">
        <name>length_encode( x )"> )</name>
        <t>The function length_encode takes as inputs a non-negative integer x
      &lt; 256**255 and outputs a string of bytes x_(n-1) || .. || x_0 || n where</t>

      <t><figure>
      <artwork><![CDATA[
        <artwork name="" type="" align="left" alt=""><![CDATA[
    x = sum of 256**i * x_i for i from 0 to n-1]]></artwork></figure></t> n-1]]></artwork>
        <t>and where n is the smallest non-negative integer such that x &lt; 256**n.
      n is also the length of x_(n-1) || .. || x_0.</t>

      <t>As
        <t>For example, length_encode(0) = `00`, length_encode(12) = `0C 01` 01`, and
      length_encode(65538) = `01 00 02 03`</t> 03`.</t>
        <t>A pseudocode version is as follows follows, where { b } denotes the byte of numerical value b.</t>

      <t><figure><artwork><![CDATA[
        <sourcecode type="pseudocode"><![CDATA[
  length_encode(x):
    S = `00`^0

    while x > 0
        S = { x mod 256 } || S
        x = x / 256

    S = S || { |S| }

    return S
    end]]></artwork></figure></t>
    end]]></sourcecode>
      </section>
      <section title="Specification numbered="true" toc="default">
        <name>Specification of KT256"> KT256</name>
        <t>KT256 is specified exactly like KT128, with two differences:</t>
      <list style="symbols">
        <ul spacing="normal">
          <li>
            <t>All the calls to TurboSHAKE128 in KT128 are replaced with calls to TurboSHAKE256 in KT256.</t>
          </li>
          <li>
            <t>The chaining values CV_1 to CV_(n-1) are 64-byte 64 bytes long in KT256 and are computed as follows:</t>
      </list>
        <t><figure><artwork><![CDATA[
        <artwork name="" type="" align="left" alt=""><![CDATA[
    CV_i = TurboSHAKE256( S_i, `0B`, 64 )]]></artwork></figure></t> )]]></artwork>
	  </li>
	</ul>
        <t>A pseudocode version is provided in <xref target="KT256_PC"/>.</t> target="KT256_PC" format="default"/>.</t>
      </section>
    </section>
    <section title="Message authentication codes"> numbered="true" toc="default">
      <name>Message Authentication Codes</name>
      <t>Implementing a MAC Message Authentication Code (MAC) with KT128 or KT256 MAY <bcp14>MAY</bcp14> use a hash-then-MAC construction.
      This document defines and recommends a method called HopMAC:</t>

    <t><figure>
      <artwork><![CDATA[
      <artwork name="" type="" align="left" alt=""><![CDATA[
    HopMAC128(Key, M, C, L) = KT128(Key, KT128(M, C, 32), L)
    HopMAC256(Key, M, C, L) = KT256(Key, KT256(M, C, 64), L)]]></artwork>
      </figure></t>
      <t>Similarly to HMAC, Hashed Message Authentication Code (HMAC), HopMAC consists of two calls: an inner call compressing the
      message M and the optional customization string C to a digest, digest
      and an outer call computing the tag from the key and the digest.</t>
      <t>Unlike HMAC, the inner call to KangarooTwelve in HopMAC is keyless
      and does not require additional protection against side channel attacks (SCA). (SCAs).
      Consequently, in an implementation that has to protect the HopMAC key
      against SCA an SCA, only the outer call does need needs protection,
      and this amounts to a single execution of the underlying permutation (assuming the key length is at most 69 bytes).</t>
      <t>In any case, TurboSHAKE128, TurboSHAKE256, KT128 KT128, and KT256
      MAY
      <bcp14>MAY</bcp14> be used to compute a MAC with the key
      reversibly prepended or appended to the input. For instance, one MAY <bcp14>MAY</bcp14>
      compute a MAC on short messages simply calling KT128 with the
      key as the customization string, i.e., MAC = KT128(M, Key, L).</t>
    </section>
    <section title="Test vectors"> numbered="true" toc="default">
      <name>Test Vectors</name>
      <t>Test vectors are based on the repetition of the pattern `00 01 02 .. F9 FA`
    with a specific length. ptn(n) defines a string by repeating the pattern
    `00 01 02 .. F9 FA` as many times as necessary and truncated to n bytes e.g. bytes, for example:
      </t>

    <t><figure><artwork><![CDATA[
      <artwork name="" type="" align="left" alt=""><![CDATA[
    Pattern for a length of 17 bytes:
    ptn(17) =
      `00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10`]]></artwork></figure>
    </t>

    <t><figure><artwork><![CDATA[ 10`]]></artwork>
      <artwork name="" type="" align="left" alt=""><![CDATA[
    Pattern for a length of 17**2 bytes:
    ptn(17**2) =
      `00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
       10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
       20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
       30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
       40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
       50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
       60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
       70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
       80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
       90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
       A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
       B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
       C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
       D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
       E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
       F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA
       00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
       10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
       20 21 22 23 24 25`]]></artwork></figure></t>

    <t><figure><artwork><![CDATA[ 25`]]></artwork>

      <artwork name="" type="" align="left" alt=""><![CDATA[
  TurboSHAKE128(M=`00`^0, D=`1F`, 32):
    `1E 41 5F 1C 59 83 AF F2 16 92 17 27 7D 17 BB 53
     8C D9 45 A3 97 DD EC 54 1F 1C E4 1A F2 C1 B7 4C`

  TurboSHAKE128(M=`00`^0, D=`1F`, 64):
    `1E 41 5F 1C 59 83 AF F2 16 92 17 27 7D 17 BB 53
     8C D9 45 A3 97 DD EC 54 1F 1C E4 1A F2 C1 B7 4C
     3E 8C CA E2 A4 DA E5 6C 84 A0 4C 23 85 C0 3C 15
     E8 19 3B DF 58 73 73 63 32 16 91 C0 54 62 C8 DF`

  TurboSHAKE128(M=`00`^0, D=`1F`, 10032), last 32 bytes:
    `A3 B9 B0 38 59 00 CE 76 1F 22 AE D5 48 E7 54 DA
     10 A5 24 2D 62 E8 C6 58 E3 F3 A9 23 A7 55 56 07`

  TurboSHAKE128(M=ptn(17**0 bytes), D=`1F`, 32):
    `55 CE DD 6F 60 AF 7B B2 9A 40 42 AE 83 2E F3 F5
     8D B7 29 9F 89 3E BB 92 47 24 7D 85 69 58 DA A9`

  TurboSHAKE128(M=ptn(17**1 bytes), D=`1F`, 32):
    `9C 97 D0 36 A3 BA C8 19 DB 70 ED E0 CA 55 4E C6
     E4 C2 A1 A4 FF BF D9 EC 26 9C A6 A1 11 16 12 33`

  TurboSHAKE128(M=ptn(17**2 bytes), D=`1F`, 32):
    `96 C7 7C 27 9E 01 26 F7 FC 07 C9 B0 7F 5C DA E1
     E0 BE 60 BD BE 10 62 00 40 E7 5D 72 23 A6 24 D2`

  TurboSHAKE128(M=ptn(17**3 bytes), D=`1F`, 32):
    `D4 97 6E B5 6B CF 11 85 20 58 2B 70 9F 73 E1 D6
     85 3E 00 1F DA F8 0E 1B 13 E0 D0 59 9D 5F B3 72`

  TurboSHAKE128(M=ptn(17**4 bytes), D=`1F`, 32):
    `DA 67 C7 03 9E 98 BF 53 0C F7 A3 78 30 C6 66 4E
     14 CB AB 7F 54 0F 58 40 3B 1B 82 95 13 18 EE 5C`

  TurboSHAKE128(M=ptn(17**5 bytes), D=`1F`, 32):
    `B9 7A 90 6F BF 83 EF 7C 81 25 17 AB F3 B2 D0 AE
     A0 C4 F6 03 18 CE 11 CF 10 39 25 12 7F 59 EE CD`

  TurboSHAKE128(M=ptn(17**6 bytes), D=`1F`, 32):
    `35 CD 49 4A DE DE D2 F2 52 39 AF 09 A7 B8 EF 0C
     4D 1C A4 FE 2D 1A C3 70 FA 63 21 6F E7 B4 C2 B1`

  TurboSHAKE128(M=`FF FF FF`, D=`01`, 32):
    `BF 32 3F 94 04 94 E8 8E E1 C5 40 FE 66 0B E8 A0
     C9 3F 43 D1 5E C0 06 99 84 62 FA 99 4E ED 5D AB`

  TurboSHAKE128(M=`FF`, D=`06`, 32):
    `8E C9 C6 64 65 ED 0D 4A 6C 35 D1 35 06 71 8D 68
     7A 25 CB 05 C7 4C CA 1E 42 50 1A BD 83 87 4A 67`

  TurboSHAKE128(M=`FF FF FF`, D=`07`, 32):
    `B6 58 57 60 01 CA D9 B1 E5 F3 99 A9 F7 77 23 BB
     A0 54 58 04 2D 68 20 6F 72 52 68 2D BA 36 63 ED`

  TurboSHAKE128(M=`FF FF FF FF FF FF FF`, D=`0B`, 32):
    `8D EE AA 1A EC 47 CC EE 56 9F 65 9C 21 DF A8 E1
     12 DB 3C EE 37 B1 81 78 B2 AC D8 05 B7 99 CC 37`

  TurboSHAKE128(M=`FF`, D=`30`, 32):
    `55 31 22 E2 13 5E 36 3C 32 92 BE D2 C6 42 1F A2
     32 BA B0 3D AA 07 C7 D6 63 66 03 28 65 06 32 5B`

  TurboSHAKE128(M=`FF FF FF`, D=`7F`, 32):
    `16 27 4C C6 56 D4 4C EF D4 22 39 5D 0F 90 53 BD
     A6 D2 8E 12 2A BA 15 C7 65 E5 AD 0E 6E AF 26 F9`
]]></artwork></figure></t>

    <t><figure><artwork><![CDATA[
]]></artwork>

      <artwork name="" type="" align="left" alt=""><![CDATA[
  TurboSHAKE256(M=`00`^0, D=`1F`, 64):
    `36 7A 32 9D AF EA 87 1C 78 02 EC 67 F9 05 AE 13
     C5 76 95 DC 2C 66 63 C6 10 35 F5 9A 18 F8 E7 DB
     11 ED C0 E1 2E 91 EA 60 EB 6B 32 DF 06 DD 7F 00
     2F BA FA BB 6E 13 EC 1C C2 0D 99 55 47 60 0D B0`

  TurboSHAKE256(M=`00`^0, D=`1F`, 10032), last 32 bytes:
    `AB EF A1 16 30 C6 61 26 92 49 74 26 85 EC 08 2F
     20 72 65 DC CF 2F 43 53 4E 9C 61 BA 0C 9D 1D 75`

  TurboSHAKE256(M=ptn(17**0 bytes), D=`1F`, 64):
    `3E 17 12 F9 28 F8 EA F1 05 46 32 B2 AA 0A 24 6E
     D8 B0 C3 78 72 8F 60 BC 97 04 10 15 5C 28 82 0E
     90 CC 90 D8 A3 00 6A A2 37 2C 5C 5E A1 76 B0 68
     2B F2 2B AE 74 67 AC 94 F7 4D 43 D3 9B 04 82 E2`

  TurboSHAKE256(M=ptn(17**1 bytes), D=`1F`, 64):
    `B3 BA B0 30 0E 6A 19 1F BE 61 37 93 98 35 92 35
     78 79 4E A5 48 43 F5 01 10 90 FA 2F 37 80 A9 E5
     CB 22 C5 9D 78 B4 0A 0F BF F9 E6 72 C0 FB E0 97
     0B D2 C8 45 09 1C 60 44 D6 87 05 4D A5 D8 E9 C7`

  TurboSHAKE256(M=ptn(17**2 bytes), D=`1F`, 64):
    `66 B8 10 DB 8E 90 78 04 24 C0 84 73 72 FD C9 57
     10 88 2F DE 31 C6 DF 75 BE B9 D4 CD 93 05 CF CA
     E3 5E 7B 83 E8 B7 E6 EB 4B 78 60 58 80 11 63 16
     FE 2C 07 8A 09 B9 4A D7 B8 21 3C 0A 73 8B 65 C0`

  TurboSHAKE256(M=ptn(17**3 bytes), D=`1F`, 64):
    `C7 4E BC 91 9A 5B 3B 0D D1 22 81 85 BA 02 D2 9E
     F4 42 D6 9D 3D 42 76 A9 3E FE 0B F9 A1 6A 7D C0
     CD 4E AB AD AB 8C D7 A5 ED D9 66 95 F5 D3 60 AB
     E0 9E 2C 65 11 A3 EC 39 7D A3 B7 6B 9E 16 74 FB`

  TurboSHAKE256(M=ptn(17**4 bytes), D=`1F`, 64):
    `02 CC 3A 88 97 E6 F4 F6 CC B6 FD 46 63 1B 1F 52
     07 B6 6C 6D E9 C7 B5 5B 2D 1A 23 13 4A 17 0A FD
     AC 23 4E AB A9 A7 7C FF 88 C1 F0 20 B7 37 24 61
     8C 56 87 B3 62 C4 30 B2 48 CD 38 64 7F 84 8A 1D`

  TurboSHAKE256(M=ptn(17**5 bytes), D=`1F`, 64):
    `AD D5 3B 06 54 3E 58 4B 58 23 F6 26 99 6A EE 50
     FE 45 ED 15 F2 02 43 A7 16 54 85 AC B4 AA 76 B4
     FF DA 75 CE DF 6D 8C DC 95 C3 32 BD 56 F4 B9 86
     B5 8B B1 7D 17 78 BF C1 B1 A9 75 45 CD F4 EC 9F`

  TurboSHAKE256(M=ptn(17**6 bytes), D=`1F`, 64):
    `9E 11 BC 59 C2 4E 73 99 3C 14 84 EC 66 35 8E F7
     1D B7 4A EF D8 4E 12 3F 78 00 BA 9C 48 53 E0 2C
     FE 70 1D 9E 6B B7 65 A3 04 F0 DC 34 A4 EE 3B A8
     2C 41 0F 0D A7 0E 86 BF BD 90 EA 87 7C 2D 61 04`

  TurboSHAKE256(M=`FF FF FF`, D=`01`, 64):
    `D2 1C 6F BB F5 87 FA 22 82 F2 9A EA 62 01 75 FB
     02 57 41 3A F7 8A 0B 1B 2A 87 41 9C E0 31 D9 33
     AE 7A 4D 38 33 27 A8 A1 76 41 A3 4F 8A 1D 10 03
     AD 7D A6 B7 2D BA 84 BB 62 FE F2 8F 62 F1 24 24`

  TurboSHAKE256(M=`FF`, D=`06`, 64):
    `73 8D 7B 4E 37 D1 8B 7F 22 AD 1B 53 13 E3 57 E3
     DD 7D 07 05 6A 26 A3 03 C4 33 FA 35 33 45 52 80
     F4 F5 A7 D4 F7 00 EF B4 37 FE 6D 28 14 05 E0 7B
     E3 2A 0A 97 2E 22 E6 3A DC 1B 09 0D AE FE 00 4B`

  TurboSHAKE256(M=`FF FF FF`, D=`07`, 64):
    `18 B3 B5 B7 06 1C 2E 67 C1 75 3A 00 E6 AD 7E D7
     BA 1C 90 6C F9 3E FB 70 92 EA F2 7F BE EB B7 55
     AE 6E 29 24 93 C1 10 E4 8D 26 00 28 49 2B 8E 09
     B5 50 06 12 B8 F2 57 89 85 DE D5 35 7D 00 EC 67`

  TurboSHAKE256(M=`FF FF FF FF FF FF FF`, D=`0B`, 64):
    `BB 36 76 49 51 EC 97 E9 D8 5F 7E E9 A6 7A 77 18
     FC 00 5C F4 25 56 BE 79 CE 12 C0 BD E5 0E 57 36
     D6 63 2B 0D 0D FB 20 2D 1B BB 8F FE 3D D7 4C B0
     08 34 FA 75 6C B0 34 71 BA B1 3A 1E 2C 16 B3 C0`

  TurboSHAKE256(M=`FF`, D=`30`, 64):
    `F3 FE 12 87 3D 34 BC BB 2E 60 87 79 D6 B7 0E 7F
     86 BE C7 E9 0B F1 13 CB D4 FD D0 C4 E2 F4 62 5E
     14 8D D7 EE 1A 52 77 6C F7 7F 24 05 14 D9 CC FC
     3B 5D DA B8 EE 25 5E 39 EE 38 90 72 96 2C 11 1A`

  TurboSHAKE256(M=`FF FF FF`, D=`7F`, 64):
    `AB E5 69 C1 F7 7E C3 40 F0 27 05 E7 D3 7C 9A B7
     E1 55 51 6E 4A 6A 15 00 21 D7 0B 6F AC 0B B4 0C
     06 9F 9A 98 28 A0 D5 75 CD 99 F9 BA E4 35 AB 1A
     CF 7E D9 11 0B A9 7C E0 38 8D 07 4B AC 76 87 76`
]]></artwork></figure></t>

    <t><figure><artwork><![CDATA[
]]></artwork>

      <artwork name="" type="" align="left" alt=""><![CDATA[
  KT128(M=`00`^0, C=`00`^0, 32):
    `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51
     3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5`

  KT128(M=`00`^0, C=`00`^0, 64):
    `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51
     3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5
     42 69 C0 56 B8 C8 2E 48 27 60 38 B6 D2 92 96 6C
     C0 7A 3D 46 45 27 2E 31 FF 38 50 81 39 EB 0A 71`

  KT128(M=`00`^0, C=`00`^0, 10032), last 32 bytes:
    `E8 DC 56 36 42 F7 22 8C 84 68 4C 89 84 05 D3 A8
     34 79 91 58 C0 79 B1 28 80 27 7A 1D 28 E2 FF 6D`

  KT128(M=ptn(1 bytes), C=`00`^0, 32):
    `2B DA 92 45 0E 8B 14 7F 8A 7C B6 29 E7 84 A0 58
     EF CA 7C F7 D8 21 8E 02 D3 45 DF AA 65 24 4A 1F`

  KT128(M=ptn(17 bytes), C=`00`^0, 32):
    `6B F7 5F A2 23 91 98 DB 47 72 E3 64 78 F8 E1 9B
     0F 37 12 05 F6 A9 A9 3A 27 3F 51 DF 37 12 28 88`

  KT128(M=ptn(17**2 bytes), C=`00`^0, 32):
    `0C 31 5E BC DE DB F6 14 26 DE 7D CF 8F B7 25 D1
     E7 46 75 D7 F5 32 7A 50 67 F3 67 B1 08 EC B6 7C`

  KT128(M=ptn(17**3 bytes), C=`00`^0, 32):
    `CB 55 2E 2E C7 7D 99 10 70 1D 57 8B 45 7D DF 77
     2C 12 E3 22 E4 EE 7F E4 17 F9 2C 75 8F 0D 59 D0`

  KT128(M=ptn(17**4 bytes), C=`00`^0, 32):
    `87 01 04 5E 22 20 53 45 FF 4D DA 05 55 5C BB 5C
     3A F1 A7 71 C2 B8 9B AE F3 7D B4 3D 99 98 B9 FE`

  KT128(M=ptn(17**5 bytes), C=`00`^0, 32):
    `84 4D 61 09 33 B1 B9 96 3C BD EB 5A E3 B6 B0 5C
     C7 CB D6 7C EE DF 88 3E B6 78 A0 A8 E0 37 16 82`

  KT128(M=ptn(17**6 bytes), C=`00`^0, 32):
    `3C 39 07 82 A8 A4 E8 9F A6 36 7F 72 FE AA F1 32
     55 C8 D9 58 78 48 1D 3C D8 CE 85 F5 8E 88 0A F8`

  KT128(`00`^0, C=ptn(1 bytes), 32):
    `FA B6 58 DB 63 E9 4A 24 61 88 BF 7A F6 9A 13 30
     45 F4 6E E9 84 C5 6E 3C 33 28 CA AF 1A A1 A5 83`

  KT128(`FF`, C=ptn(41 bytes), 32):
    `D8 48 C5 06 8C ED 73 6F 44 62 15 9B 98 67 FD 4C
     20 B8 08 AC C3 D5 BC 48 E0 B0 6B A0 A3 76 2E C4`

  KT128(`FF FF FF`, C=ptn(41**2 bytes), 32):
    `C3 89 E5 00 9A E5 71 20 85 4C 2E 8C 64 67 0A C0
     13 58 CF 4C 1B AF 89 44 7A 72 42 34 DC 7C ED 74`

  KT128(`FF FF FF FF FF FF FF`, C=ptn(41**3 bytes), 32):
    `75 D2 F8 6A 2E 64 45 66 72 6B 4F BC FC 56 57 B9
     DB CF 07 0C 7B 0D CA 06 45 0A B2 91 D7 44 3B CF`

  KT128(M=ptn(8191 bytes), C=`00`^0, 32):
    `1B 57 76 36 F7 23 64 3E 99 0C C7 D6 A6 59 83 74
     36 FD 6A 10 36 26 60 0E B8 30 1C D1 DB E5 53 D6`

  KT128(M=ptn(8192 bytes), C=`00`^0, 32):
    `48 F2 56 F6 77 2F 9E DF B6 A8 B6 61 EC 92 DC 93
     B9 5E BD 05 A0 8A 17 B3 9A E3 49 08 70 C9 26 C3`

  KT128(M=ptn(8192 bytes), C=ptn(8189 bytes), 32):
    `3E D1 2F 70 FB 05 DD B5 86 89 51 0A B3 E4 D2 3C
     6C 60 33 84 9A A0 1E 1D 8C 22 0A 29 7F ED CD 0B`

  KT128(M=ptn(8192 bytes), C=ptn(8190 bytes), 32):
    `6A 7C 1B 6A 5C D0 D8 C9 CA 94 3A 4A 21 6C C6 46
     04 55 9A 2E A4 5F 78 57 0A 15 25 3D 67 BA 00 AE`]]></artwork></figure></t>

    <t><figure><artwork><![CDATA[ AE`]]></artwork>

      <artwork name="" type="" align="left" alt=""><![CDATA[
  KT256(M=`00`^0, C=`00`^0, 64):
    `B2 3D 2E 9C EA 9F 49 04 E0 2B EC 06 81 7F C1 0C
     E3 8C E8 E9 3E F4 C8 9E 65 37 07 6A F8 64 64 04
     E3 E8 B6 81 07 B8 83 3A 5D 30 49 0A A3 34 82 35
     3F D4 AD C7 14 8E CB 78 28 55 00 3A AE BD E4 A9`

  KT256(M=`00`^0, C=`00`^0, 128):
    `B2 3D 2E 9C EA 9F 49 04 E0 2B EC 06 81 7F C1 0C
     E3 8C E8 E9 3E F4 C8 9E 65 37 07 6A F8 64 64 04
     E3 E8 B6 81 07 B8 83 3A 5D 30 49 0A A3 34 82 35
     3F D4 AD C7 14 8E CB 78 28 55 00 3A AE BD E4 A9
     B0 92 53 19 D8 EA 1E 12 1A 60 98 21 EC 19 EF EA
     89 E6 D0 8D AE E1 66 2B 69 C8 40 28 9F 18 8B A8
     60 F5 57 60 B6 1F 82 11 4C 03 0C 97 E5 17 84 49
     60 8C CD 2C D2 D9 19 FC 78 29 FF 69 93 1A C4 D0`

  KT256(M=`00`^0, C=`00`^0, 10064), last 64 bytes:
    `AD 4A 1D 71 8C F9 50 50 67 09 A4 C3 33 96 13 9B
     44 49 04 1F C7 9A 05 D6 8D A3 5F 1E 45 35 22 E0
     56 C6 4F E9 49 58 E7 08 5F 29 64 88 82 59 B9 93
     27 52 F3 CC D8 55 28 8E FE E5 FC BB 8B 56 30 69`

  KT256(M=ptn(1 bytes), C=`00`^0, 64):
    `0D 00 5A 19 40 85 36 02 17 12 8C F1 7F 91 E1 F7
     13 14 EF A5 56 45 39 D4 44 91 2E 34 37 EF A1 7F
     82 DB 6F 6F FE 76 E7 81 EA A0 68 BC E0 1F 2B BF
     81 EA CB 98 3D 72 30 F2 FB 02 83 4A 21 B1 DD D0`

  KT256(M=ptn(17 bytes), C=`00`^0, 64):
    `1B A3 C0 2B 1F C5 14 47 4F 06 C8 97 99 78 A9 05
     6C 84 83 F4 A1 B6 3D 0D CC EF E3 A2 8A 2F 32 3E
     1C DC CA 40 EB F0 06 AC 76 EF 03 97 15 23 46 83
     7B 12 77 D3 E7 FA A9 C9 65 3B 19 07 50 98 52 7B`

  KT256(M=ptn(17**2 bytes), C=`00`^0, 64):
    `DE 8C CB C6 3E 0F 13 3E BB 44 16 81 4D 4C 66 F6
     91 BB F8 B6 A6 1E C0 A7 70 0F 83 6B 08 6C B0 29
     D5 4F 12 AC 71 59 47 2C 72 DB 11 8C 35 B4 E6 AA
     21 3C 65 62 CA AA 9D CC 51 89 59 E6 9B 10 F3 BA`

  KT256(M=ptn(17**3 bytes), C=`00`^0, 64):
    `64 7E FB 49 FE 9D 71 75 00 17 1B 41 E7 F1 1B D4
     91 54 44 43 20 99 97 CE 1C 25 30 D1 5E B1 FF BB
     59 89 35 EF 95 45 28 FF C1 52 B1 E4 D7 31 EE 26
     83 68 06 74 36 5C D1 91 D5 62 BA E7 53 B8 4A A5`

  KT256(M=ptn(17**4 bytes), C=`00`^0, 64):
    `B0 62 75 D2 84 CD 1C F2 05 BC BE 57 DC CD 3E C1
     FF 66 86 E3 ED 15 77 63 83 E1 F2 FA 3C 6A C8 F0
     8B F8 A1 62 82 9D B1 A4 4B 2A 43 FF 83 DD 89 C3
     CF 1C EB 61 ED E6 59 76 6D 5C CF 81 7A 62 BA 8D`

  KT256(M=ptn(17**5 bytes), C=`00`^0, 64):
    `94 73 83 1D 76 A4 C7 BF 77 AC E4 5B 59 F1 45 8B
     16 73 D6 4B CD 87 7A 7C 66 B2 66 4A A6 DD 14 9E
     60 EA B7 1B 5C 2B AB 85 8C 07 4D ED 81 DD CE 2B
     40 22 B5 21 59 35 C0 D4 D1 9B F5 11 AE EB 07 72`

  KT256(M=ptn(17**6 bytes), C=`00`^0, 64):
    `06 52 B7 40 D7 8C 5E 1F 7C 8D CC 17 77 09 73 82
     76 8B 7F F3 8F 9A 7A 20 F2 9F 41 3B B1 B3 04 5B
     31 A5 57 8F 56 8F 91 1E 09 CF 44 74 6D A8 42 24
     A5 26 6E 96 A4 A5 35 E8 71 32 4E 4F 9C 70 04 DA`

  KT256(`00`^0, C=ptn(1 bytes), 64):
    `92 80 F5 CC 39 B5 4A 5A 59 4E C6 3D E0 BB 99 37
     1E 46 09 D4 4B F8 45 C2 F5 B8 C3 16 D7 2B 15 98
     11 F7 48 F2 3E 3F AB BE 5C 32 26 EC 96 C6 21 86
     DF 2D 33 E9 DF 74 C5 06 9C EE CB B4 DD 10 EF F6`

  KT256(`FF`, C=ptn(41 bytes), 64):
    `47 EF 96 DD 61 6F 20 09 37 AA 78 47 E3 4E C2 FE
     AE 80 87 E3 76 1D C0 F8 C1 A1 54 F5 1D C9 CC F8
     45 D7 AD BC E5 7F F6 4B 63 97 22 C6 A1 67 2E 3B
     F5 37 2D 87 E0 0A FF 89 BE 97 24 07 56 99 88 53`

  KT256(`FF FF FF`, C=ptn(41**2 bytes), 64):
    `3B 48 66 7A 50 51 C5 96 6C 53 C5 D4 2B 95 DE 45
     1E 05 58 4E 78 06 E2 FB 76 5E DA 95 90 74 17 2C
     B4 38 A9 E9 1D DE 33 7C 98 E9 C4 1B ED 94 C4 E0
     AE F4 31 D0 B6 4E F2 32 4F 79 32 CA A6 F5 49 69`

  KT256(`FF FF FF FF FF FF FF`, C=ptn(41**3 bytes), 64):
    `E0 91 1C C0 00 25 E1 54 08 31 E2 66 D9 4A DD 9B
     98 71 21 42 B8 0D 26 29 E6 43 AA C4 EF AF 5A 3A
     30 A8 8C BF 4A C2 A9 1A 24 32 74 30 54 FB CC 98
     97 67 0E 86 BA 8C EC 2F C2 AC E9 C9 66 36 97 24`

  KT256(M=ptn(8191 bytes), C=`00`^0, 64):
    `30 81 43 4D 93 A4 10 8D 8D 8A 33 05 B8 96 82 CE
     BE DC 7C A4 EA 8A 3C E8 69 FB B7 3C BE 4A 58 EE
     F6 F2 4D E3 8F FC 17 05 14 C7 0E 7A B2 D0 1F 03
     81 26 16 E8 63 D7 69 AF B3 75 31 93 BA 04 5B 20`

  KT256(M=ptn(8192 bytes), C=`00`^0, 64):
    `C6 EE 8E 2A D3 20 0C 01 8A C8 7A AA 03 1C DA C2
     21 21 B4 12 D0 7D C6 E0 DC CB B5 34 23 74 7E 9A
     1C 18 83 4D 99 DF 59 6C F0 CF 4B 8D FA FB 7B F0
     2D 13 9D 0C 90 35 72 5A DC 1A 01 B7 23 0A 41 FA`

  KT256(M=ptn(8192 bytes), C=ptn(8189 bytes), 64):
    `74 E4 78 79 F1 0A 9C 5D 11 BD 2D A7 E1 94 FE 57
     E8 63 78 BF 3C 3F 74 48 EF F3 C5 76 A0 F1 8C 5C
     AA E0 99 99 79 51 20 90 A7 F3 48 AF 42 60 D4 DE
     3C 37 F1 EC AF 8D 2C 2C 96 C1 D1 6C 64 B1 24 96`

  KT256(M=ptn(8192 bytes), C=ptn(8190 bytes), 64):
    `F4 B5 90 8B 92 9F FE 01 E0 F7 9E C2 F2 12 43 D4
     1A 39 6B 2E 73 03 A6 AF 1D 63 99 CD 6C 7A 0A 2D
     D7 C4 F6 07 E8 27 7F 9C 9B 1C B4 AB 9D DC 59 D4
     B9 2D 1F C7 55 84 41 F1 83 2C 32 79 A4 24 1B 8B`]]></artwork></figure></t> 8B`]]></artwork>
    </section>
    <section anchor="IANA" title="IANA Considerations"> numbered="true" toc="default">
      <name>IANA Considerations</name>
      <t> In the Named "Named Information Hash Algorithm Registry, Registry", k12-256 refers to the hash
    function obtained by evaluating KT128 on the input message with default C (the empty string)
    and L = 32 bytes (256 bits). Similarly, k12-512 refers to the hash function obtained by evaluating
    KT256 on  the input message with default C (the empty string) and L = 64 bytes (512 bits). </t>
    <t> In the COSE Algorithms "COSE Algorithms" registry, IANA has added the following entries are assigned to for TurboSHAKE and KangarooTwelve:</t>

    <t><figure><artwork><![CDATA[
        +---------------+-------+-------------------+--------------+
        | Name          | Value | Description       | Capabilities |
        +---------------+-------+-------------------+--------------+
        | TurboSHAKE128 |  -261 | TurboSHAKE128 XOF | [kty]        |
        |               |       |                   |              |
        | TurboSHAKE256 |  -262 | TurboSHAKE256 XOF | [kty]        |
        |               |       |                   |              |
        | KT128         |  -263 | KT128 XOF         | [kty]        |
        |               |       |                   |              |
        | KT256

<!--[rfced] In the "COSE Algorithms" registry at
<https://www.iana.org/assignments/cose>, IANA lists the values in
descending order. Should Table 3 be ordered to match the IANA
registry (e.g., list "KT256 | -264 " first and "TurboSHAKE128 | KT256 XOF         | [kty]        |
        +---------------+-------+-------------------+--------------+ ]]></artwork>
      </figure></t>
-261" last)?

Also, may we include the "Recommended" column in Table 3 to match
the IANA registry or include the following sentence in the lead-in
text? Please let us know which option is preferred.

Current:
   In the COSE Algorithms "COSE Algorithms" registry, IANA has added
   the following entries for TurboSHAKE and KangarooTwelve:

Perhaps:
   In the COSE Algorithms "COSE Algorithms" registry, IANA has added
   the following entries for TurboSHAKE and KangarooTwelve. For each
   entry, the "Recommended" column contains "No".
-->

<table>
  <thead>
    <tr>
      <th>Name</th>
      <th>Value</th>
      <th>Description</th>
      <th>Capabilities</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>TurboSHAKE128</td>
      <td>-261</td>
      <td>TurboSHAKE128 XOF</td>
      <td>[kty]</td>
    </tr>
    <tr>
      <td>TurboSHAKE256</td>
      <td>-262</td>
      <td>TurboSHAKE256 XOF</td>
      <td>[kty]</td>
    </tr>
    <tr>
      <td>KT128</td>
      <td>-263</td>
      <td>KT128 XOF</td>
      <td>[kty]</td>
    </tr>
    <tr>
      <td>KT256</td>
      <td>-264</td>
      <td>KT256 XOF</td>
      <td>[kty]</td>
    </tr>
  </tbody>
</table>

    </section>
    <section anchor="Security" title="Security Considerations"> numbered="true" toc="default">
      <name>Security Considerations</name>
      <t>This document is meant to serve as a stable reference and an
    implementation guide for the KangarooTwelve and TurboSHAKE eXtendable Output eXtendable-Output Functions.
    The security assurance of these functions relies on the cryptanalysis of reduced-round versions of Keccak Keccak, and they have the same claimed security strength as their corresponding SHAKE functions.</t>

    <t><figure><artwork><![CDATA[
                        +-------------------------------+
                        |        security claim         |
      +-----------------+-------------------------------+
      | TurboSHAKE128   |  128

<table>
  <thead>
    <tr>
      <td></td>
      <th>Security Claim</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>TurboSHAKE128</th>
      <td>128 bits (same as SHAKE128)  |
      |                 |                               |
      | KT128           |  128 SHAKE128)</td>
    </tr>
    <tr>
      <th>KT128</th>
      <td>128 bits (same as SHAKE128)  |
      |                 |                               |
      | TurboSHAKE256   |  256 SHAKE128)</td>
    </tr>
    <tr>
      <th>TurboSHAKE256</th>
      <td>256 bits (same as SHAKE256)  |
      |                 |                               |
      | KT256           |  256 SHAKE256)</td>
    </tr>
    <tr>
      <th>KT256</th>
      <td>256 bits (same as SHAKE256)  |
      +-----------------+-------------------------------+]]></artwork>
      </figure></t>

    <t>
    To SHAKE256)</td>
    </tr>
  </tbody>
</table>

      <t>To be more precise, KT128 is made of two layers:
    <list style="symbols"> layers:</t>
      <ul spacing="normal">
        <li>
          <t>The inner function TurboSHAKE128.
    The security assurance of this layer relies on cryptanalysis.
    The TurboSHAKE128 function is exactly Keccak[r=1344, c=256] (as in SHAKE128)
    reduced to 12 rounds.
    Any cryptanalysis of reduced-round Keccak is also cryptanalysis of reduced-round TurboSHAKE128
    (provided the number of rounds attacked is not higher than 12).</t>
        </li>
        <li>
          <t>The tree hashing over TurboSHAKE128. This layer is a mode on top
    of TurboSHAKE128 that does not introduce any vulnerability thanks to
    the use of Sakura coding proven secure in <xref target="SAKURA"/>.</t>
    </list></t> target="SAKURA" format="default"/>.</t>
        </li>
      </ul>
      <t>This reasoning is detailed and formalized in <xref target="KT"/>.</t> target="KT" format="default"/>.</t>
      <t>KT256 is structured as KT128, except that it uses TurboSHAKE256 as the inner function.
    The TurboSHAKE256 function is exactly Keccak[r=1088, c=512] (as in SHAKE256)
      reduced to 12 rounds, and the same reasoning on cryptanalysis applies.</t>

<!--[rfced] To improve the readability of "the output L MUST be chosen
long enough", may we update it to "the chose L output MUST be long enough"?
Note that this phrasing occurs in two sentences.

Original:
   To achieve 128-bit
   security strength, the output L MUST be chosen long enough so that
   there are no generic attacks that violate 128-bit security.
   ...
   To achieve 256-bit security strength, the output L MUST be chosen long
   enough so that there are no generic attacks that violate 256-bit
   security.

Perhaps:
   To achieve 128-bit
   security strength, the chosen L output MUST be long enough so that
   there are no generic attacks that violate 128-bit security.
   ...
   To achieve 256-bit security strength, the chosen L output MUST be long
   enough so that there are no generic attacks that violate 256-bit
   security.
-->

      <t>TurboSHAKE128 and KT128 aim at 128-bit security.
    To achieve 128-bit security strength, the output L MUST <bcp14>MUST</bcp14> be chosen long
    enough so that there are no generic attacks that violate 128-bit security.
    So for 128-bit (second) preimage security security, the output should be at least 128 bits, bits;
    for 128 bits of security against multi-target preimage attacks with T targets targets,
    the output should be at least 128+log_2(T) bits bits;
    and for 128-bit collision security security, the output should be at least 256 bits.
    Furthermore, when the output length is at least 256 bits, TurboSHAKE128 and
    KT128 achieve NIST's post-quantum security level 2 <xref target="NISTPQ"/>.</t> target="NISTPQ" format="default"/>.</t>
      <t>Similarly, TurboSHAKE256 and KT256 aim at 256-bit security.
    To achieve 256-bit security strength, the output L MUST <bcp14>MUST</bcp14> be chosen long
    enough so that there are no generic attacks that violate 256-bit security.
    So for 256-bit (second) preimage security security, the output should be at least 256 bits, bits;
    for 256 bits of security against multi-target preimage attacks with T targets targets,
    the output should be at least 256+log_2(T) bits bits;
    and for 256-bit collision security security, the output should be at least 512 bits.
    Furthermore, when the output length is at least 512 bits, TurboSHAKE256 and
    KT256 achieve NIST's post-quantum security level 5 <xref target="NISTPQ"/>.</t> target="NISTPQ" format="default"/>.</t>
      <t>
    Unlike the SHA-256 and SHA-512 functions, TurboSHAKE128, TurboSHAKE256, KT128 KT128, and KT256 do not suffer from the length extension weakness, weakness and therefore do not require the use of the HMAC construction construction, for instance instance, when used for MAC computation <xref target="FIPS198"/>. target="FIPS198" format="default"/>.
    Also, they can naturally be used as a key derivation function.
      The input must be an injective encoding of secret and diversification material, and the output can be taken as the derived key(s).
      The input does not need to be uniformly distributed, e.g., it can be a shared secret produced by
      the Diffie-Hellman or ECDH Elliptic Curve Diffie-Hellman (ECDH) protocol, but it needs to have sufficient min-entropy.
      </t>

    <t>Lastly,

<!--[rfced] As the first sentence is not a full sentence, may we combine
the two sentences below into one sentence?

Original:
   Lastly, as KT128 and KT256 use TurboSHAKE with three values for D,
   namely 0x06, 0x07, and 0x0B.  Protocols that use both KT128 and
   TurboSHAKE128, or both KT256 and TurboSHAKE256, SHOULD avoid using
   these three values for D.

Perhaps:
   Lastly, as KT128 and KT256 use TurboSHAKE with three values for D,
   namely 0x06, 0x07, and 0x0B, protocols that use both KT128 and
   TurboSHAKE128 or both KT256 and TurboSHAKE256 SHOULD avoid using
   these three values for D.
-->

      <t>Lastly, as KT128 and KT256 use TurboSHAKE with three values for D,
    namely 0x06, 0x07, and 0x0B.
    Protocols that use both KT128 and TurboSHAKE128, or both KT256 and TurboSHAKE256,
    <bcp14>SHOULD</bcp14> avoid using these three values for D.</t>
    </section>

<!--
    <section title="Contributors">
      <t><cref>[TEMPLATE TODO] This optional section can be used to mention contributors to your internet draft.</cref></t>
    </section> -->

</middle>
  <back>

<!-- References Section -->
<references title="Normative References">
  &rfc2119;
  &rfc8174;

<references>
      <name>References</name>
      <references>
        <name>Normative References</name>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/>

<reference anchor="FIPS202"> anchor="FIPS202" target="https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf">
  <front>
      <title>FIPS PUB 202 - SHA-3
    <title>SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions</title>
    <author>
        <organization>National
      <organization abbrev="NIST">National Institute of Standards and Technology
        </organization> Technology</organization>
    </author>
    <date month="August" year="2015"></date> year="2015"/>
  </front>
  <seriesInfo name="WWW" value="http://dx.doi.org/10.6028/NIST.FIPS.202" /> name="NIST FIPS" value="202"/>
  <seriesInfo name="DOI" value="10.6028/NIST.FIPS.202"/>
</reference>

        <reference anchor="SP800-185">
          <front>
      <title>NIST Special Publication 800-185 SHA-3
            <title>SHA-3 Derived Functions:
            cSHAKE, KMAC, TupleHash and ParallelHash</title>
      <author>
        <organization>National Institute of Standards and
        <author fullname="John Kelsey" surname="Kelsey">
          <organization>Information Technology
        </organization> Laboratory</organization>
        </author>
        <author fullname="Shu-jen Chang" surname="Chang">
          <organization>Information Technology Laboratory</organization>
        </author>
        <author fullname="Ray Perlner" surname="Perlner">
          <organization>Information Technology Laboratory</organization>
          </author>            <date month="December" year="2016"></date> year="2016"/>
          </front>
          <seriesInfo name="WWW" value="https://doi.org/10.6028/NIST.SP.800-185" /> name="NIST SP" value="800-185"/>
          <seriesInfo name="DOI" value="10.6028/NIST.SP.800-185"/>
          <refcontent>National Institute of Standards and Technology</refcontent>
        </reference>

      </references>

<references title="Informative References">
      <references>
        <name>Informative References</name>

        <reference anchor="TURBOSHAKE"> anchor="TURBOSHAKE" target="http://eprint.iacr.org/2023/342">
          <front>
            <title>TurboSHAKE</title>
            <author initials="G." surname="Bertoni" fullname="Guido Bertoni"/>
            <author initials="J." surname="Daemen" fullname="Joan Daemen"/>
            <author initials="S." surname="Hoffert" fullname="Seth Hoffert"/>
            <author initials="M." surname="Peeters" fullname="Michael Peeters"/>
            <author initials="G." surname="Van Assche" fullname="Gilles Van Assche"/>
            <author initials="R." surname="Van Keer" fullname="Ronny Van Keer"/>
            <author initials="B." surname="Viguier" fullname="Beno&icirc;t fullname="Benoît Viguier"/>
            <date month="March" year="2023"/>
          </front>
    <seriesInfo name="WWW" value="http://eprint.iacr.org/2023/342"/>
          <refcontent>Cryptology ePrint Archive, Paper 2023/342</refcontent>
        </reference>

  <reference anchor="KT">
    <front>
      <title>KangarooTwelve:

<!-- [rfced] References

a) Would you like the references to be alphabetized or left in their
current order?

b) We note that the original [KT] reference entry contained two URL
strings.

The first URL is to a pre-print version of this article available from
the Cryptology ePrint Archive with the most recent version being added
in May 2018: http://eprint.iacr.org/2016/770.pdf.

The other URL is to the published conference paper with a date of June
2018: https://link.springer.com/chapter/10.1007/978-3-319-93387-0_21.

We have modified this reference to use the Springer Link URL as this
appears to be the most recently published version that also includes
a DOI. Please review and let us know if you have any objections.

Original:
   [KT]       Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van
              Keer, R., and B. Viguier, "KangarooTwelve: fast hashing
              based on Keccak-p", WWW https://link.springer.com/
              chapter/10.1007/978-3-319-93387-0_21,
              WWW http://eprint.iacr.org/2016/770.pdf, July 2018.

Current:
   [KT]       Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van
              Keer, R., and B. Viguier, "KangarooTwelve: Fast Hashing
              Based on Keccak-p", Applied Cryptography and Network
              Security (ACNS 2018), Lecture Notes in Computer Science,
              vol. 10892, pp. 400-418, DOI 10.1007/978-3-319-93387-0_21,
              June 2018, <https://link.springer.com/
              chapter/10.1007/978-3-319-93387-0_21>.

c) We note that the original [SAKURA] reference entry contained two URL
strings.

The first URL is to a pre-print version of this article available from
the Cryptology ePrint Archive with the most recent version being added
in April 2014: https://eprint.iacr.org/2013/231.pdf.

The other URL is to the published conference paper with a date of
2014: https://link.springer.com/chapter/10.1007/978-3-319-07536-5_14.

We have modified this reference to use the Springer Link URL as this
appears to be the most recently published version that also includes
a DOI. Please review and let us know if you have any objections.

Original:
   [SAKURA]   Bertoni, G., Daemen, J., Peeters, M., and G. Van Assche,
              "Sakura: a flexible coding for tree hashing", WWW
              https://link.springer.com/
              chapter/10.1007/978-3-319-07536-5_14,
              WWW http://eprint.iacr.org/2013/231.pdf, June 2014.

Current:
   [SAKURA]   Bertoni, G., Daemen, J., Peeters, M., and G. Van Assche,
              "Sakura: a Flexible Coding for Tree Hashing", Applied
              Cryptography and Network Security (ACNS 2014), Lecture
              Notes in Computer Science, vol. 8479, pp. 217-234,
              DOI 10.1007/978-3-319-07536-5_14, 2014,
              <https://link.springer.com/
              chapter/10.1007/978-3-319-07536-5_14>.

d) Since this reference is to a GitHub repository, please
provide a commit hash in accordance with Part 2 of the RFC Style
Guide: https://www.rfc-editor.org/styleguide/part2/#ref_repo.

   [XKCP]     "eXtended Keccak Code Package", December 2022,
              <https://github.com/XKCP/XKCP>.
-->

        <reference anchor="KT" target="https://link.springer.com/chapter/10.1007/978-3-319-93387-0_21">
          <front>
            <title>KangarooTwelve: Fast Hashing Based on Keccak-p</title>
            <author initials="G." surname="Bertoni" fullname="Guido Bertoni"/>
            <author initials="J." surname="Daemen" fullname="Joan Daemen"/>
            <author initials="M." surname="Peeters" fullname="Michael Peeters"/>
            <author initials="G." surname="Van Assche" fullname="Gilles Van Assche"/>
            <author initials="R." surname="Van Keer" fullname="Ronny Van Keer"/>
            <author initials="B." surname="Viguier" fullname="Beno&icirc;t fullname="Benoît Viguier"/>
            <date month="July" month="June" year="2018"/>
          </front>
          <refcontent>Applied Cryptography and Network Security (ACNS 2018), Lecture Notes in Computer Science, vol. 10892, pp. 400-418</refcontent>
          <seriesInfo name="WWW" value="https://link.springer.com/chapter/10.1007/978-3-319-93387-0_21"/>
    <seriesInfo name="WWW" value="http://eprint.iacr.org/2016/770.pdf"/> name="DOI" value="10.1007/978-3-319-93387-0_21"/>
        </reference>

        <reference anchor="SAKURA"> anchor="SAKURA" target="https://link.springer.com/chapter/10.1007/978-3-319-07536-5_14">
          <front>
            <title>Sakura: a flexible coding Flexible Coding for tree hashing</title> Tree Hashing</title>
            <author initials="G." surname="Bertoni" fullname="Guido Bertoni"/>
            <author initials="J." surname="Daemen" fullname="Joan Daemen"/>
            <author initials="M." surname="Peeters" fullname="Michael Peeters"/>
            <author initials="G." surname="Van Assche" fullname="Gilles Van Assche"/>
            <date month="June" year="2014"/>
          </front>
          <refcontent>Applied Cryptography and Network Security (ACNS 2014), Lecture Notes in Computer Science, vol. 8479, pp. 217-234</refcontent>
          <seriesInfo name="WWW" value="https://link.springer.com/chapter/10.1007/978-3-319-07536-5_14"/>
    <seriesInfo name="WWW" value="http://eprint.iacr.org/2013/231.pdf"/> name="DOI" value="10.1007/978-3-319-07536-5_14"/>
        </reference>

        <reference anchor="KECCAK_CRYPTANALYSIS"> anchor="KECCAK_CRYPTANALYSIS" target="https://www.keccak.team/third_party.html">
          <front>
            <title>Summary of Third-party cryptanalysis of Keccak</title>
            <author>
              <organization>Keccak Team</organization>
            </author>
      <date year="2022"/>
          </front>
    <seriesInfo name="WWW" value="https://www.keccak.team/third_party.html"/>
        </reference>

        <reference anchor="XKCP"> anchor="XKCP" target="https://github.com/XKCP/XKCP">
          <front>
            <title>eXtended Keccak Code Package</title>
        <author initials="G." surname="Bertoni" fullname="Guido Bertoni"/>
        <author initials="J." surname="Daemen" fullname="Joan Daemen"/>
        <author initials="M." surname="Peeters" fullname="Michael Peeters"/>
        <author initials="G." surname="Van Assche" fullname="Gilles Van Assche"/>
        <author initials="R." surname="Van Keer" fullname="Ronny Van Keer"/>
            <author/>
            <date month="December" year="2022"/>
          </front>
      <seriesInfo name="WWW" value="https://github.com/XKCP/XKCP"/>
        </reference>

        <reference anchor="NISTPQ"> anchor="NISTPQ" target="https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf">
          <front>
            <title>Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process</title>
            <author>
        <organization>National
              <organization abbrev="NIST">National Institute of Standards and Technology
              </organization>
            </author>
      <date month="December" year="2016"></date>
          </front>
    <seriesInfo name="WWW" value="https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf" />
        </reference>

<reference anchor="FIPS180"> anchor="FIPS180" target="https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">
  <front>
    <title>Secure Hash Standard (SHS)</title> Standard</title>
    <author>
        <organization>National
      <organization abbrev="NIST">National Institute of Standards and Technology (NIST)</organization> Technology</organization>
    </author>
    <date year="2015" month="August"/> month="August" year="2015"/>
  </front>
  <seriesInfo name="FIPS PUB" name="NIST FIPS" value="180-4"/>
  <seriesInfo name="WWW" value="https://doi.org/10.6028/NIST.FIPS.180-4"/> name="DOI" value="10.6028/NIST.FIPS.180-4"/>
</reference>

<reference anchor="FIPS198"> anchor="FIPS198" target="https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf">
  <front>
    <title>The Keyed-Hash Message Authentication Code (HMAC)</title>
    <author>
        <organization>National
      <organization abbrev="NIST">National Institute of Standards and Technology (NIST)</organization> Technology</organization>
    </author>
    <date year="2008" month="July"/> month="July" year="2008"/>
  </front>
  <seriesInfo name="FIPS PUB" name="NIST FIPS" value="198-1"/>
  <seriesInfo name="WWW" value="https://doi.org/10.6028/NIST.FIPS.198-1"/> name="DOI" value="10.6028/NIST.FIPS.198-1"/>
</reference>

      </references>
    </references>
    <section anchor="pseudocode" title="Pseudocode"> numbered="true" toc="default">
      <name>Pseudocode</name>
      <t>The sub-sections subsections of this appendix contain pseudocode definitions of
    TurboSHAKE128, TurboSHAKE256 TurboSHAKE256, and KangarooTwelve.
    Standalone Python versions are also available in the Keccak Code Package
    <xref target="XKCP"></xref> target="XKCP" format="default"/> and in <xref target="KT"></xref> target="KT" format="default"/>
      </t>
      <section anchor="Keccak_PC" title="Keccak-p[1600,n_r=12]">

      <t><figure><artwork><![CDATA[ numbered="true" toc="default">
        <name>Keccak-p[1600,n_r=12]</name>
        <sourcecode type="pseudocode"><![CDATA[
KP(state):
  RC[0]  = `8B 80 00 80 00 00 00 00`
  RC[1]  = `8B 00 00 00 00 00 00 80`
  RC[2]  = `89 80 00 00 00 00 00 80`
  RC[3]  = `03 80 00 00 00 00 00 80`
  RC[4]  = `02 80 00 00 00 00 00 80`
  RC[5]  = `80 00 00 00 00 00 00 80`
  RC[6]  = `0A 80 00 00 00 00 00 00`
  RC[7]  = `0A 00 00 80 00 00 00 80`
  RC[8]  = `81 80 00 80 00 00 00 80`
  RC[9]  = `80 80 00 00 00 00 00 80`
  RC[10] = `01 00 00 80 00 00 00 00`
  RC[11] = `08 80 00 80 00 00 00 80`

  for x from 0 to 4
    for y from 0 to 4
      lanes[x][y] = state[8*(x+5*y):8*(x+5*y)+8]

  for round from 0 to 11
    # theta
    for x from 0 to 4
      C[x] = lanes[x][0]
      C[x] ^= lanes[x][1]
      C[x] ^= lanes[x][2]
      C[x] ^= lanes[x][3]
      C[x] ^= lanes[x][4]
    for x from 0 to 4
      D[x] = C[(x+4) mod 5] ^ ROL64(C[(x+1) mod 5], 1)
    for y from 0 to 4
      for x from 0 to 4
        lanes[x][y] = lanes[x][y]^D[x]

    # rho and pi
    (x, y) = (1, 0)
    current = lanes[x][y]
    for t from 0 to 23
      (x, y) = (y, (2*x+3*y) mod 5)
      (current, lanes[x][y]) =
          (lanes[x][y], ROL64(current, (t+1)*(t+2)/2))

    # chi
    for y from 0 to 4
      for x from 0 to 4
        T[x] = lanes[x][y]
      for x from 0 to 4
        lanes[x][y] = T[x] ^((not T[(x+1) mod 5]) & T[(x+2) mod 5])

    # iota
    lanes[0][0] ^= RC[round]

  state = `00`^0
  for y from 0 to 4
    for x from 0 to 4
      state = state || lanes[x][y]

  return state
  end
]]></artwork></figure></t>
]]></sourcecode>
        <t>where ROL64(x, y) is a rotation of the 'x' 64-bit word toward the bits
      with higher indexes by 'y' positions. The 8-bytes byte-string byte string x is
      interpreted as a 64-bit word in little-endian format.
        </t>
      </section>
      <section anchor="TSHK128_PC" title="TurboSHAKE128">
      <t><figure><artwork><![CDATA[ numbered="true" toc="default">
        <name>TurboSHAKE128</name>

        <sourcecode type="pseudocode"><![CDATA[
TurboSHAKE128(message, separationByte, outputByteLen):
  offset = 0
  state = `00`^200
  input = message || separationByte

  # === Absorb complete blocks ===
  while offset < |input| - 168
      state ^= input[offset : offset + 168] || `00`^32
      state = KP(state)
      offset += 168

  # === Absorb last block and treatment of padding ===
  LastBlockLength = |input| - offset
  state ^= input[offset:] || `00`^(200-LastBlockLength)
  state ^= `00`^167 || `80` || `00`^32
  state = KP(state)

  # === Squeeze ===
  output = `00`^0
  while outputByteLen > 168
      output = output || state[0:168]
      outputByteLen -= 168
      state = KP(state)

  output = output || state[0:outputByteLen]

  return output
]]></artwork></figure></t>
]]></sourcecode>
      </section>
      <section anchor="TSHK256_PC" title="TurboSHAKE256">
      <t><figure><artwork><![CDATA[ numbered="true" toc="default">
        <name>TurboSHAKE256</name>
        <sourcecode type="pseudocode"><![CDATA[
TurboSHAKE256(message, separationByte, outputByteLen):
  offset = 0
  state = `00`^200
  input = message || separationByte

  # === Absorb complete blocks ===
  while offset < |input| - 136
      state ^= input[offset : offset + 136] || `00`^64
      state = KP(state)
      offset += 136

  # === Absorb last block and treatment of padding ===
  LastBlockLength = |input| - offset
  state ^= input[offset:] || `00`^(200-LastBlockLength)
  state ^= `00`^135 || `80` || `00`^64
  state = KP(state)

  # === Squeeze ===
  output = `00`^0
  while outputByteLen > 136
      output = output || state[0:136]
      outputByteLen -= 136
      state = KP(state)

  output = output || state[0:outputByteLen]

  return output
]]></artwork></figure></t>
]]></sourcecode>
      </section>

<!--[rfced] The following lines are 1 character over the 72-character
limit. Please let us know how you would like to adjust the
lines/spacing.

Appendix A.4:
   CV = TurboSHAKE128(S[offset : offset + blockSize], `0B`, 32)

Appendix A.5:
   CV = TurboSHAKE256(S[offset : offset + blockSize], `0B`, 64)
-->

      <section anchor="KT128_PC" title="KT128">
      <t><figure><artwork><![CDATA[ numbered="true" toc="default">
        <name>KT128</name>
        <sourcecode type="pseudocode"><![CDATA[
KT128(inputMessage, customString, outputByteLen):
  S = inputMessage || customString
  S = S || length_encode( |customString| )

  if |S| <= 8192
      return TurboSHAKE128(S, `07`, outputByteLen)
  else
      # === Kangaroo hopping ===
      FinalNode = S[0:8192] || `03` || `00`^7
      offset = 8192
      numBlock = 0
      while offset < |S|
          blockSize = min( |S| - offset, 8192)
          CV = TurboSHAKE128(S[offset : offset + blockSize], `0B`, 32)
          FinalNode = FinalNode || CV
          numBlock += 1
          offset   += blockSize

      FinalNode = FinalNode || length_encode( numBlock ) || `FF FF`

      return TurboSHAKE128(FinalNode, `06`, outputByteLen)
  end
]]></artwork></figure></t>
]]></sourcecode>
      </section>
      <section anchor="KT256_PC" title="KT256">
      <t><figure><artwork><![CDATA[ numbered="true" toc="default">
        <name>KT256</name>
        <sourcecode type="pseudocode"><![CDATA[
KT256(inputMessage, customString, outputByteLen):
  S = inputMessage || customString
  S = S || length_encode( |customString| )

  if |S| <= 8192
      return TurboSHAKE256(S, `07`, outputByteLen)
  else
      # === Kangaroo hopping ===
      FinalNode = S[0:8192] || `03` || `00`^7
      offset = 8192
      numBlock = 0
      while offset < |S|
          blockSize = min( |S| - offset, 8192)
          CV = TurboSHAKE256(S[offset : offset + blockSize], `0B`, 64)
          FinalNode = FinalNode || CV
          numBlock += 1
          offset   += blockSize

      FinalNode = FinalNode || length_encode( numBlock ) || `FF FF`

      return TurboSHAKE256(FinalNode, `06`, outputByteLen)
  end
]]></artwork></figure></t>
]]></sourcecode>
      </section>
    </section>
  </back>

<!--[rfced] Throughout the text, the following terminology appears to be used
inconsistently. Please review these occurrences and let us know if/how they
may be made consistent.

 Chaining Value vs. chaining value
 Customization string vs. customization string
 Message vs. message
-->

<!-- [rfced] Abbreviations

a) FYI - We have added expansions for the following abbreviations
per Section 3.6 of RFC 7322 ("RFC Style Guide"). Please review each
expansion in the document carefully to ensure correctness.

 Elliptic Curve Diffie-Hellman (ECDH)
 Hashed Message Authentication Code (HMAC)
 Original Dialog Identifier (ODI)
 single instruction, multiple data (SIMD)

b) FYI: We added a hyphen to the expansion of "XOF" per [FIPS202] and
the NIST glossary.

  eXtendable Output Functions -> eXtendable-Output Functions
-->

<!-- [rfced] Please review the "Inclusive Language" portion of the online
Style Guide <https://www.rfc-editor.org/styleguide/part2/#inclusive_language>
and let us know if any changes are needed.

Note that our script did not flag any words in particular, but this should still
be reviewed as a best practice.
-->

</rfc>