
RFC 9682
Updates to the Concise Data Definition Language
(CDDL) Grammar

Abstract
The Concise Data Definition Language (CDDL), as defined in RFCs 8610 and 9165, provides an
easy and unambiguous way to express structures for protocol messages and data formats that
are represented in Concise Binary Object Representation (CBOR) or JSON.

This document updates RFC 8610 by addressing related errata reports and making other small
fixes for the ABNF grammar defined for CDDL.

Stream:
RFC:
Updates:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9682
8610
Standards Track
November 2024
2070-1721
C. Bormann
Universität Bremen TZI

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9682

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Bormann Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9682
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/info/rfc9682
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Conventions and Definitions

2. Clarifications and Changes Based on Errata Reports

2.1. Updates to String Literal Grammar

2.1.1. Erratum ID 6527 (Text String Literals)

2.1.2. Erratum ID 6278 (Consistent String Literals)

2.1.3. Addressing Erratum ID 6526 and Erratum ID 6543

2.2. Examples Demonstrating the Updated String Syntaxes

3. Small Enabling Grammar Changes

3.1. Empty Data Models

3.2. Non-Literal Tag Numbers and Simple Values

4. Security Considerations

5. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Updated Collected ABNF for CDDL

Appendix B. Details about Covering Erratum ID 6543

B.1. Change Proposed by Erratum ID 6543

B.2. No Further Change Needed after Updating String Literal Grammar

Acknowledgments

Author's Address

3

3

3

3

3

5

5

5

6

6

7

8

9

9

9

9

10

13

13

14

14

15

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 2

1. Introduction
The Concise Data Definition Language (CDDL), as defined in and , provides
an easy and unambiguous way to express structures for protocol messages and data formats that
are represented in CBOR or JSON.

This document updates by addressing errata reports and making other small fixes for
the ABNF grammar defined for CDDL. The body of this document explains and shows motivation
for the updates; the updated collected ABNF syntax in Figure 11 in Appendix A replaces the
collected ABNF syntax in .

[RFC8610] [RFC9165]

[RFC8610]

Appendix B of [RFC8610]

1.1. Conventions and Definitions
The terminology from applies. The grammar in is based on ABNF, which is
defined in and .

[RFC8610] [RFC8610]
[STD68] [RFC7405]

2. Clarifications and Changes Based on Errata Reports
A number of errata reports have been made regarding some details of text string and byte string
literal syntax: for example, and . These are being addressed in this section,
updating details of the ABNF for these literal syntaxes. Also, the changes described in
need to be applied (backslashes have been lost during the RFC publication process of

, garbling the text explaining backslash escaping).

These changes are intended to mirror the way existing implementations have dealt with the
errata reports. This document also uses the opportunity presented by the necessary cleanup of
the grammar of string literals for a backward-compatible addition to the syntax for hexadecimal
escapes. The latter change is not automatically forward compatible (i.e., CDDL specifications that
make use of this syntax do not necessarily work with existing implementations until these are
updated, which is recommended by this specification).

[Err6527] [Err6543]
[Err6526]
Appendix

G.2 of [RFC8610]

2.1. Updates to String Literal Grammar

2.1.1. Erratum ID 6527 (Text String Literals)

The ABNF used in for the content of text string literals is rather permissive:[RFC8610]

Figure 1: Original ABNF from RFC 8610 for Strings with Permissive ABNF for SESC (Which Did Not
Allow Hex Escapes)

; ABNF from RFC 8610:
text = %x22 *SCHAR %x22
SCHAR = %x20-21 / %x23-5B / %x5D-7E / %x80-10FFFD / SESC
SESC = "\" (%x20-7E / %x80-10FFFD)

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 3

https://rfc-editor.org/rfc/rfc8610#appendix-B
https://rfc-editor.org/rfc/rfc8610#appendix-G.2
https://rfc-editor.org/rfc/rfc8610#appendix-G.2

This allows almost any non-C0 character to be escaped by a backslash, but critically misses out
on the \uXXXX and \uHHHH\uLLLL forms that JSON allows to specify characters in hex (which
should apply here according to item 6 of). (Note that CDDL imports from
JSON the unwieldy \uHHHH\uLLLL syntax, which represents Unicode code points beyond U+FFFF
by making them look like UTF-16 surrogate pairs; CDDL text strings do not use UTF-16 or
surrogates.)

Both can be solved by updating the SESC rule. This document uses the opportunity to add a
popular form of directly specifying characters in strings using hexadecimal escape sequences of
the form \u{hex}, where hex is the hexadecimal representation of the Unicode scalar value. The
result is the new set of rules defining SESC in Figure 2.

Notes: In ABNF, strings such as "A", "B", etc., are case insensitive, as is intended
here. The rules above could have also used %s"b", etc., instead of %x62, but didn't, in
order to maximize compatibility with ABNF tools.

Now that SESC is more restrictively formulated, an update to the BCHAR rule used in the ABNF
syntax for byte string literals is also required:

With the SESC updated as above, \' is no longer allowed in BCHAR and now needs to be
explicitly included there; see Figure 4.

Section 3.1 of [RFC8610]

Figure 2: Update to String ABNF in Appendix B of [RFC8610]: Allow Hex Escapes

; new rules collectively defining SESC:
SESC = "\" (%x22 / "/" / "\" / ; \" \/ \\
 %x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t
 (%x75 hexchar)) ; \uXXXX
hexchar = "{" (1*"0" [hexscalar] / hexscalar) "}" /
 non-surrogate / (high-surrogate "\" %x75 low-surrogate)
non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /
 ("D" %x30-37 2HEXDIG)
high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG
low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG
hexscalar = "10" 4HEXDIG / HEXDIG1 4HEXDIG
 / non-surrogate / 1*3HEXDIG
HEXDIG1 = DIGIT1 / "A" / "B" / "C" / "D" / "E" / "F"

Figure 3: ABNF from RFC 8610 for BCHAR

; ABNF from RFC 8610:
bytes = [bsqual] %x27 *BCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF
bsqual = "h" / "b64"

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 4

https://rfc-editor.org/rfc/rfc8610#section-3.1
https://rfc-editor.org/rfc/rfc8610#appendix-B

2.1.2. Erratum ID 6278 (Consistent String Literals)

Updating BCHAR also provides an opportunity to address , which points to an
inconsistency in treating U+007F (DEL) between SCHAR and BCHAR. As U+007F is not printable,
including it in a byte string literal is as confusing as for a text string literal; therefore, it should be
excluded from BCHAR as it is from SCHAR. The same reasoning also applies to the C1 control
characters, so the updated ABNF actually excludes the entire range from U+007F to U+009F. The
same reasoning also applies to text in comments (PCHAR). For completeness, all these rules
should also explicitly exclude the code points that have been set aside for UTF-16 surrogates.

(Note that, apart from addressing the inconsistencies, there is no attempt to further exclude non-
printable characters from the ABNF; doing this properly would draw in complexity from the
ongoing evolution of the Unicode standard that is not needed here.)

[Err6278]

Figure 4: Update to ABNF in Appendix B of [RFC8610]: BCHAR, SCHAR, and PCHAR

; new rules for SCHAR, BCHAR, and PCHAR:
SCHAR = %x20-21 / %x23-5B / %x5D-7E / NONASCII / SESC
BCHAR = %x20-26 / %x28-5B / %x5D-7E / NONASCII / SESC / "\'" / CRLF
PCHAR = %x20-7E / NONASCII
NONASCII = %xA0-D7FF / %xE000-10FFFD

[UNICODE]

2.1.3. Addressing Erratum ID 6526 and Erratum ID 6543

The above changes also cover (a proposal to split off qualified byte string literals from
UTF-8 byte string literals) and (lost backslashes); see Appendix B for details.

[Err6543]
[Err6526]

2.2. Examples Demonstrating the Updated String Syntaxes
The CDDL example in Figure 5 demonstrates various escaping techniques now available for (byte
and text) strings in CDDL. Obviously, in the literals for a and x, there is no need to escape the
second character, an o, as \u{6f}; this is just for demonstration. Similarly, as shown in c and z,
there also is no need to escape the "🁳" (DOMINO TILE VERTICAL-02-02, U+1F073) or "⌘" (PLACE
OF INTEREST SIGN, U+2318); however, escaping them may be convenient in order to limit the
character repertoire of a CDDL file itself to ASCII .[STD80]

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 5

https://rfc-editor.org/rfc/rfc8610#appendix-B

In this example, the rules a to c and x to z all produce strings with byte-wise identical content: a
to c are text strings and x to z are byte strings. Figure 6 illustrates this by showing the output
generated from the start rule in Figure 5, using pretty-printed hexadecimal.

Figure 5: Example Text and Byte String Literals with Various Escaping Techniques

start = [a, b, c, x, y, z]

; "🁳", DOMINO TILE VERTICAL-02-02, and
; "⌘", PLACE OF INTEREST SIGN, in a text string:
a = "D\u{6f}mino's \u{1F073} + \u{2318}" ; \u{}-escape 3 chars
b = "Domino's \uD83C\uDC73 + \u2318" ; escape JSON-like
c = "Domino's 🁳 + ⌘" ; unescaped

; in a byte string given as text, the ' needs to be escaped:
x = 'D\u{6f}mino\u{27}s \u{1F073} + \u{2318}' ; \u{}-escape 4 chars
y = 'Domino\'s \uD83C\uDC73 + \u2318' ; escape JSON-like
z = 'Domino\'s 🁳 + ⌘' ; escape ' only

Figure 6: Generated CBOR from CDDL Example (Pretty-Printed Hexadecimal)

86 # array(6)
 73 # text(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 73 # text(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 73 # text(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 53 # bytes(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 53 # bytes(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 53 # bytes(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"

3. Small Enabling Grammar Changes
Each subsection that follows specifies a small change to the grammar that is intended to enable
certain kinds of specifications. These changes are backward compatible (i.e., CDDL files that
comply with continue to match the updated grammar) but not necessarily forward
compatible (i.e., CDDL specifications that make use of these changes cannot necessarily be
processed by existing implementations of).

[RFC8610]

[RFC8610]

3.1. Empty Data Models
 requires a CDDL file to have at least one rule.[RFC8610]

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 6

This makes sense when the file has to stand alone, as a CDDL data model needs to have at least
one rule to provide an entry point (i.e., a start rule).

With CDDL modules , CDDL files can also include directives, and these might
be the source of all the rules that ultimately make up the module created by the file. Any other
rule content in the file has to be available for directive processing, making the requirement for at
least one rule cumbersome.

Therefore, the present update extends the grammar as in Figure 8 and turns the existence of at
least one rule into a semantic constraint, to be fulfilled after processing of all directives.

Figure 7: ABNF from RFC 8610 for Top-Level Rule cddl

; ABNF from RFC 8610:
cddl = S 1*(rule S)

[CDDL-MODULES]

Figure 8: Update to Top-Level ABNF in Appendices B and C of RFC 8610

; new top-level rule:
cddl = S *(rule S)

3.2. Non-Literal Tag Numbers and Simple Values
The existing ABNF syntax for expressing tags in CDDL is as follows:

This means tag numbers can only be given as literal numbers (uints). Some specifications operate
on ranges of tag numbers; for example, has a range of tag numbers 1668546817
(0x63740101) to 1668612095 (0x6374FFFF) to tag specific content formats. This cannot currently
be expressed in CDDL. Similar considerations apply to simple values (#7.xx).

This update extends the syntax to the following:

Figure 9: Original ABNF from RFC 8610 for Tag Syntax

; extracted from the ABNF in RFC 8610:
type2 =/ "#" "6" ["." uint] "(" S type S ")"

[RFC9277]

Figure 10: Update to Tag and Simple Value ABNF in Appendices B and C of RFC 8610

; new rules collectively defining the tagged case:
type2 =/ "#" "6" ["." head-number] "(" S type S ")"
 / "#" "7" ["." head-number]
head-number = uint / ("<" type ">")

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 7

For #6, the head-number stands for the tag number. For #7, the head-number stands for the
simple value if it is in the ranges 0..23 or 32..255 (as per Section 3.3 of RFC 8949 , the
simple values 24..31 are not used). For 24..31, the head-number stands for the "additional
information", e.g., #7.25 or #7.<25> is a float16, etc. (All ranges mentioned here are inclusive.)

So the above range can be expressed in a CDDL fragment such as:

Notes:

This syntax reuses the angle bracket syntax for generics; this reuse is innocuous
because a generic parameter or argument only ever occurs after a rule name
(id), while it occurs after the "." (dot) character here. (Whether there is
potential for human confusion can be debated; the above example deliberately
uses generics as well.)
The updated ABNF grammar makes it a bit more explicit that the number given
after the optional dot is the value of the argument: for tags and simple values, it
is not giving the CBOR "additional information”, as it is with other uses of # in
CDDL. (Adding this observation to is the subject of

; it is correctly noted in .) In hindsight, maybe
a different character than the dot should have been chosen for this special case;
however, changing the grammar in the current document would have been too
disruptive.

[STD94]

ct-tag<content> = #6.<ct-tag-number>(content)
ct-tag-number = 1668546817..1668612095
; or use 0x63740101..0x6374FFFF

1.

2.

Section 2.2.3 of [RFC8610]
[Err6575] Section 3.6 of [RFC8610]

4. Security Considerations
The grammar fixes and updates in this document are not believed to create additional security
considerations. The security considerations in apply. Specifically, the
potential for confusion is increased in an environment that uses a combination of CDDL tools,
some of which have been updated and some of which have not, in particular based on Section 2.

Attackers may want to exploit such potential confusion by crafting CDDL models that are
interpreted differently by different parts of a system. There will be a period of transition from
the details that the grammar in handled in a less well-defined way, to the updated
grammar defined in the present document. This transition might offer one (but not the only) type
of opportunity for the kind of attack that relies on differences between implementations.
Implementations that make use of CDDL models operationally already need to ascertain the
provenance (and thus authenticity and integrity) and applicability of models they employ. At the
time of writing, it is expected that the models will generally be processed by a software
developer, within a software development environment. Therefore, developers are advised to
treat CDDL models with the same care as any other source code.

Section 5 of [RFC8610]

[RFC8610]

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 8

https://rfc-editor.org/rfc/rfc8949#section-3.3
https://rfc-editor.org/rfc/rfc8610#section-2.2.3
https://rfc-editor.org/rfc/rfc8610#section-3.6
https://rfc-editor.org/rfc/rfc8610#section-5

6. References

5. IANA Considerations
This document has no IANA actions.

[RFC8610]

[STD68]

[STD94]

6.1. Normative References

, , and ,

, ,
, June 2019, .

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Internet Standard 68, .<https://www.rfc-editor.org/info/std68>
At the time of writing, this STD comprises the following:

 and ,
, , , , January 2008,

.

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Internet Standard 94, .<https://www.rfc-editor.org/info/std94>
At the time of writing, this STD comprises the following:

 and , ,
, , , December 2020,

.

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

[CDDL-MODULES]

[EDN-LITERALS]

[Err6278]

[Err6526]

[Err6527]

6.2. Informative References

 and , , ,
, 1 September 2024,

.

, , ,
, 3 November 2024,

.

, , ,
.

, , ,
.

, , ,
.

Bormann, C. B. Moran "CDDL Module Structure" Work in Progress
Internet-Draft, draft-ietf-cbor-cddl-modules-03 <https://
datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-modules-03>

Bormann, C. "CBOR Extended Diagnostic Notation (EDN)" Work in Progress
Internet-Draft, draft-ietf-cbor-edn-literals-13 <https://
datatracker.ietf.org/doc/html/draft-ietf-cbor-edn-literals-13>

RFC Errata Erratum ID 6278 RFC 8610 <https://www.rfc-editor.org/errata/
eid6278>

RFC Errata Erratum ID 6526 RFC 8610 <https://www.rfc-editor.org/errata/
eid6526>

RFC Errata Erratum ID 6527 RFC 8610 <https://www.rfc-editor.org/errata/
eid6527>

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 9

https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/std68
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/std94
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-modules-03
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-modules-03
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-edn-literals-13
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-edn-literals-13
https://www.rfc-editor.org/errata/eid6278
https://www.rfc-editor.org/errata/eid6278
https://www.rfc-editor.org/errata/eid6526
https://www.rfc-editor.org/errata/eid6526
https://www.rfc-editor.org/errata/eid6527
https://www.rfc-editor.org/errata/eid6527

[Err6543]

[Err6575]

[RFC7405]

[RFC9165]

[RFC9277]

[STD80]

[UNICODE]

, , ,
.

, , ,
.

, , ,
, December 2014, .

,
, , , December 2021,

.

 and ,
, , , August 2022,

.

, ,
.

RFC Errata Erratum ID 6543 RFC 8610 <https://www.rfc-editor.org/errata/
eid6543>

RFC Errata Erratum ID 6575 RFC 8610 <https://www.rfc-editor.org/errata/
eid6575>

Kyzivat, P. "Case-Sensitive String Support in ABNF" RFC 7405 DOI 10.17487/
RFC7405 <https://www.rfc-editor.org/info/rfc7405>

Bormann, C. "Additional Control Operators for the Concise Data Definition
Language (CDDL)" RFC 9165 DOI 10.17487/RFC9165 <https://
www.rfc-editor.org/info/rfc9165>

Richardson, M. C. Bormann "On Stable Storage for Items in Concise Binary
Object Representation (CBOR)" RFC 9277 DOI 10.17487/RFC9277
<https://www.rfc-editor.org/info/rfc9277>

Internet Standard 80, .<https://www.rfc-editor.org/info/std80>
At the time of writing, this STD comprises the following:

, , , ,
, October 1969, .

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/
RFC0020 <https://www.rfc-editor.org/info/rfc20>

The Unicode Consortium "The Unicode Standard" <https://www.unicode.org/
versions/latest/>

Appendix A. Updated Collected ABNF for CDDL
This appendix is normative.

It provides the full ABNF from as updated by the present document.[RFC8610]

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 10

https://www.rfc-editor.org/errata/eid6543
https://www.rfc-editor.org/errata/eid6543
https://www.rfc-editor.org/errata/eid6575
https://www.rfc-editor.org/errata/eid6575
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9277
https://www.rfc-editor.org/info/std80
https://www.rfc-editor.org/info/rfc20
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/

cddl = S *(rule S)
rule = typename [genericparm] S assignt S type
 / groupname [genericparm] S assigng S grpent

typename = id
groupname = id

assignt = "=" / "/="
assigng = "=" / "//="

genericparm = "<" S id S *("," S id S) ">"
genericarg = "<" S type1 S *("," S type1 S) ">"

type = type1 *(S "/" S type1)

type1 = type2 [S (rangeop / ctlop) S type2]
; space may be needed before the operator if type2 ends in a name

type2 = value
 / typename [genericarg]
 / "(" S type S ")"
 / "{" S group S "}"
 / "[" S group S "]"
 / "~" S typename [genericarg]
 / "&" S "(" S group S ")"
 / "&" S groupname [genericarg]
 / "#" "6" ["." head-number] "(" S type S ")"
 / "#" "7" ["." head-number]
 / "#" DIGIT ["." uint] ; major/ai
 / "#" ; any
head-number = uint / ("<" type ">")

rangeop = "..." / ".."

ctlop = "." id

group = grpchoice *(S "//" S grpchoice)

grpchoice = *(grpent optcom)

grpent = [occur S] [memberkey S] type
 / [occur S] groupname [genericarg] ; preempted by above
 / [occur S] "(" S group S ")"

memberkey = type1 S ["^" S] "=>"
 / bareword S ":"
 / value S ":"

bareword = id

optcom = S ["," S]

occur = [uint] "*" [uint]
 / "+"
 / "?"

uint = DIGIT1 *DIGIT

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 11

Figure 11: ABNF for CDDL as Updated

 / "0x" 1*HEXDIG
 / "0b" 1*BINDIG
 / "0"

value = number
 / text
 / bytes

int = ["-"] uint

; This is a float if it has fraction or exponent; int otherwise
number = hexfloat / (int ["." fraction] ["e" exponent])
hexfloat = ["-"] "0x" 1*HEXDIG ["." 1*HEXDIG] "p" exponent
fraction = 1*DIGIT
exponent = ["+"/"-"] 1*DIGIT

text = %x22 *SCHAR %x22
SCHAR = %x20-21 / %x23-5B / %x5D-7E / NONASCII / SESC

SESC = "\" (%x22 / "/" / "\" / ; \" \/ \\
 %x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t
 (%x75 hexchar)) ; \uXXXX

hexchar = "{" (1*"0" [hexscalar] / hexscalar) "}" /
 non-surrogate / (high-surrogate "\" %x75 low-surrogate)
non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /
 ("D" %x30-37 2HEXDIG)
high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG
low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG
hexscalar = "10" 4HEXDIG / HEXDIG1 4HEXDIG
 / non-surrogate / 1*3HEXDIG

bytes = [bsqual] %x27 *BCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-7E / NONASCII / SESC / "\'" / CRLF
bsqual = "h" / "b64"

id = EALPHA *(*("-" / ".") (EALPHA / DIGIT))
ALPHA = %x41-5A / %x61-7A
EALPHA = ALPHA / "@" / "_" / "$"
DIGIT = %x30-39
DIGIT1 = %x31-39
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
HEXDIG1 = DIGIT1 / "A" / "B" / "C" / "D" / "E" / "F"
BINDIG = %x30-31

S = *WS
WS = SP / NL
SP = %x20
NL = COMMENT / CRLF
COMMENT = ";" *PCHAR CRLF
PCHAR = %x20-7E / NONASCII
NONASCII = %xA0-D7FF / %xE000-10FFFD
CRLF = %x0A / %x0D.0A

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 12

Appendix B. Details about Covering Erratum ID 6543
This appendix is informative.

 notes that the ABNF used in for the content of byte string literals lumps
together byte strings notated as text with byte strings notated in base16 (hex) or base64 (but see
also updated BCHAR rule in Figure 4):

[Err6543] [RFC8610]

Figure 12: Original ABNF from RFC 8610 for BCHAR

; ABNF from RFC 8610:
bytes = [bsqual] %x27 *BCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF

B.1. Change Proposed by Erratum ID 6543
Erratum ID 6543 proposes handling the two cases in separate ABNF rules (where, with an
updated SESC, BCHAR obviously needs to be updated as above):

This potentially causes a subtle change, which is hidden in the WS rule:

This allows any non-C0 character in a comment, so this fragment becomes possible:

Figure 13: Proposal from Erratum ID 6543 to Split the Byte String Rules

; Proposal from Erratum ID 6543:
bytes = %x27 *BCHAR %x27
 / bsqual %x27 *QCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF
QCHAR = DIGIT / ALPHA / "+" / "/" / "-" / "_" / "=" / WS

Figure 14: ABNF Definition of WS from RFC 8610

; ABNF from RFC 8610:
WS = SP / NL
SP = %x20
NL = COMMENT / CRLF
COMMENT = ";" *PCHAR CRLF
PCHAR = %x20-7E / %x80-10FFFD
CRLF = %x0A / %x0D.0A

foo = h'
 43424F52 ; 'CBOR'
 0A ; LF, but don't use CR!
'

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 13

The current text is not unambiguously saying whether the three apostrophes need to be escaped
with a \ or not, as in:

... which would be supported by the existing ABNF in .

foo = h'
 43424F52 ; \'CBOR\'
 0A ; LF, but don\'t use CR!
'

[RFC8610]

B.2. No Further Change Needed after Updating String Literal Grammar
This document takes the simpler approach of leaving the processing of the content of the byte
string literal to a semantic step after processing the syntax of the bytes and BCHAR rules, as
updated by Figures 2 and 4 in Section 2.1 (updates prompted by the combination of
and).

Therefore, the rules in Figure 14 (as updated by Figure 4) are applied to the result of this
processing where bsqual is given as h or b64.

Note that this approach also works well with the use of byte strings in . It
does require some care when copying-and-pasting into CDDL models from ABNF that contains
single quotes (which may also hide as apostrophes in comments); these need to be escaped or
possibly replaced by %x27.

Finally, the approach taken lends support to extending bsqual in CDDL similar to the way this is
done for CBOR diagnostic notation in . (Note that, at the time of writing, the
processing of string literals is quite similar for both CDDL and Extended Diagnostic Notation
(EDN), except that CDDL has end-of-line comments that are ";" based and EDN has two comment
syntaxes: one in-line "/" based and one end-of-line "#" based.)

[Err6527]
[Err6278]

Section 3 of [RFC9165]

[EDN-LITERALS]

Acknowledgments
Many thanks go to the submitters of the errata reports addressed in this document. In one of the
ensuing discussions, proposed defining an ABNF rule "NONASCII", of which we have
included the essence. Special thanks to the reviewers , (Shepherd
Review and further guidance), (AD Review and further guidance), and
(detailed IESG review).

Doug Ewell
Marco Tiloca Christian Amsüss

Orie Steele Éric Vyncke

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 14

https://rfc-editor.org/rfc/rfc9165#section-3

Author's Address
Carsten Bormann
Universität Bremen TZI
Postfach 330440
D-28359 Bremen
Germany

+49-421-218-63921Phone:
cabo@tzi.orgEmail:

RFC 9682 CDDL grammar updates November 2024

Bormann Standards Track Page 15

tel:+49-421-218-63921
mailto:cabo@tzi.org

	RFC 9682
	Updates to the Concise Data Definition Language (CDDL) Grammar
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Clarifications and Changes Based on Errata Reports
	2.1. Updates to String Literal Grammar
	2.1.1. Erratum ID 6527 (Text String Literals)
	2.1.2. Erratum ID 6278 (Consistent String Literals)
	2.1.3. Addressing Erratum ID 6526 and Erratum ID 6543

	2.2. Examples Demonstrating the Updated String Syntaxes

	3. Small Enabling Grammar Changes
	3.1. Empty Data Models
	3.2. Non-Literal Tag Numbers and Simple Values

	4. Security Considerations
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Updated Collected ABNF for CDDL
	Appendix B. Details about Covering Erratum ID 6543
	B.1. Change Proposed by Erratum ID 6543
	B.2. No Further Change Needed after Updating String Literal Grammar

	Acknowledgments
	Author's Address

 Updates to the Concise Data Definition Language (CDDL) Grammar

 Universität Bremen TZI

 Postfach 330440
 Bremen
 D-28359
 Germany

 +49-421-218-63921
 cabo@tzi.org

 ART
 cbor
 Concise Data Definition Language

 The Concise Data Definition Language (CDDL), as defined in
RFCs 8610 and 9165,
provides an easy and unambiguous way to express structures for
protocol messages and data formats that are represented in Concise Binary Object Representation (CBOR) or
JSON.
 This document updates RFC 8610 by addressing related errata reports and making
other small fixes for the ABNF grammar defined for CDDL.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Conventions and Definitions

 . Clarifications and Changes Based on Errata Reports

 . Updates to String Literal Grammar

 . Erratum ID 6527 (Text String Literals)

 . Erratum ID 6278 (Consistent String Literals)

 . Addressing Erratum ID 6526 and Erratum ID 6543

 . Examples Demonstrating the Updated String Syntaxes

 . Small Enabling Grammar Changes

 . Empty Data Models

 . Non-Literal Tag Numbers and Simple Values

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . Updated Collected ABNF for CDDL

 . Details about Covering Erratum ID 6543

 . Change Proposed by Erratum ID 6543

 . No Further Change Needed after Updating String Literal Grammar

 Acknowledgments

 Author's Address

 Introduction
 The Concise Data Definition Language (CDDL), as defined in
 and ,
provides an easy and unambiguous way to express structures for
protocol messages and data formats that are represented in CBOR or
JSON.
 This document updates by addressing errata reports and making
other small fixes for the ABNF grammar defined for CDDL.
The body of this document explains and shows motivation for the updates; the
updated collected ABNF syntax in in
 replaces the collected ABNF syntax in
 .

 Conventions and Definitions
 The terminology from applies.
The grammar in is based on ABNF, which is defined in
and .

 Clarifications and Changes Based on Errata Reports
 A number of errata reports have been made regarding some details of text
string and byte string literal syntax: for example, and .
These are being addressed in this section, updating details of the
ABNF for these literal syntaxes.
Also, the changes described in need to be applied (backslashes have been lost during the RFC publication process of , garbling the text explaining backslash escaping).
 These changes are intended to mirror the way existing implementations
have dealt with the errata reports. This document also uses the opportunity presented
by the necessary cleanup of the grammar of string literals for a
backward-compatible addition to the syntax for hexadecimal escapes.
The latter change is not automatically forward compatible (i.e., CDDL
specifications that make use of this syntax do not necessarily work
with existing implementations until these are updated, which is recommended by this
specification).

 Updates to String Literal Grammar

 Erratum ID 6527 (Text String Literals)
 The ABNF used in for the content of text string literals
	 is rather permissive:

 Original ABNF from RFC 8610 for Strings with Permissive ABNF
 for SESC (Which Did Not Allow Hex Escapes)

; ABNF from RFC 8610:
text = %x22 *SCHAR %x22
SCHAR = %x20-21 / %x23-5B / %x5D-7E / %x80-10FFFD / SESC
SESC = "\" (%x20-7E / %x80-10FFFD)

 This allows almost any non-C0 character to be escaped by a backslash,
but critically misses out on the \uXXXX and \uHHHH\uLLLL forms
that JSON allows to specify characters in hex

(which should
apply here according to item 6 of).

(Note that CDDL imports from JSON the unwieldy \uHHHH\uLLLL syntax,
which represents Unicode code points beyond U+FFFF by making them look
like UTF-16 surrogate pairs; CDDL text strings do not use UTF-16 or
	 surrogates.)
 Both can be solved by updating the SESC rule.

This document uses the opportunity to add a popular form of directly specifying
characters in strings using hexadecimal escape sequences of the form
 \u{hex}, where hex is the hexadecimal representation of the
Unicode scalar value.
The result is the new set of rules defining SESC in .

 Update to String ABNF in : Allow Hex Escapes

; new rules collectively defining SESC:
SESC = "\" (%x22 / "/" / "\" / ; \" \/ \\
 %x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t
 (%x75 hexchar)) ; \uXXXX
hexchar = "{" (1*"0" [hexscalar] / hexscalar) "}" /
 non-surrogate / (high-surrogate "\" %x75 low-surrogate)
non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /
 ("D" %x30-37 2HEXDIG)
high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG
low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG
hexscalar = "10" 4HEXDIG / HEXDIG1 4HEXDIG
 / non-surrogate / 1*3HEXDIG
HEXDIG1 = DIGIT1 / "A" / "B" / "C" / "D" / "E" / "F"

 Notes:
In ABNF, strings such as "A", "B", etc., are case insensitive, as is
intended here.
The rules above could have also used %s"b", etc., instead of %x62, but didn't, in order to
	 maximize compatibility with ABNF tools.

 Now that SESC is more restrictively formulated, an
update to the BCHAR rule used in the ABNF syntax for byte string
literals is also required:

 ABNF from RFC 8610 for BCHAR

; ABNF from RFC 8610:
bytes = [bsqual] %x27 *BCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF
bsqual = "h" / "b64"

 With the SESC updated as above, \' is no longer allowed in BCHAR and now needs to be explicitly included there; see .

 Erratum ID 6278 (Consistent String Literals)
 Updating BCHAR also provides an opportunity to address ,
which points to an inconsistency in treating U+007F (DEL) between SCHAR and
BCHAR.
As U+007F is not printable, including it in a byte string literal is
as confusing as for a text string literal; therefore, it should be
excluded from BCHAR as it is from SCHAR.
The same reasoning also applies to the C1 control characters,
so the updated ABNF actually excludes the entire range from U+007F to U+009F.
The same reasoning also applies to text in comments (PCHAR). For completeness, all these rules should also explicitly exclude the code
points that have been set aside for UTF-16 surrogates.

 Update to ABNF in : BCHAR, SCHAR, and PCHAR

; new rules for SCHAR, BCHAR, and PCHAR:
SCHAR = %x20-21 / %x23-5B / %x5D-7E / NONASCII / SESC
BCHAR = %x20-26 / %x28-5B / %x5D-7E / NONASCII / SESC / "\'" / CRLF
PCHAR = %x20-7E / NONASCII
NONASCII = %xA0-D7FF / %xE000-10FFFD

 (Note that, apart from addressing the inconsistencies, there is no
attempt to further exclude non-printable characters from the ABNF;
doing this properly would draw in complexity from the ongoing
evolution of the Unicode standard that is not needed here.)

 Addressing Erratum ID 6526 and Erratum ID 6543
 The above changes also cover (a proposal to split off
qualified byte string literals from UTF-8 byte string literals) and
 (lost backslashes); see for details.

 Examples Demonstrating the Updated String Syntaxes
 The CDDL example in demonstrates various escaping
techniques now available for (byte and text) strings in CDDL.
Obviously, in the literals for a and x, there is no need to escape
the second character, an o, as \u{6f}; this is just for demonstration.
Similarly, as shown in c and z, there also is no need to escape the
 🁳 or ⌘; however, escaping them may be convenient in order to limit the character
repertoire of a CDDL file itself to ASCII .

 Example Text and Byte String Literals with Various Escaping Techniques

start = [a, b, c, x, y, z]

; "🁳", DOMINO TILE VERTICAL-02-02, and
; "⌘", PLACE OF INTEREST SIGN, in a text string:
a = "D\u{6f}mino's \u{1F073} + \u{2318}" ; \u{}-escape 3 chars
b = "Domino's \uD83C\uDC73 + \u2318" ; escape JSON-like
c = "Domino's 🁳 + ⌘" ; unescaped

; in a byte string given as text, the ' needs to be escaped:
x = 'D\u{6f}mino\u{27}s \u{1F073} + \u{2318}' ; \u{}-escape 4 chars
y = 'Domino\'s \uD83C\uDC73 + \u2318' ; escape JSON-like
z = 'Domino\'s 🁳 + ⌘' ; escape ' only

 In this example, the rules a to c and x to z all produce strings with
byte-wise identical content: a to c are text strings and x to z
are byte strings.
 illustrates this by showing the output generated from
the start rule in , using pretty-printed hexadecimal.

 Generated CBOR from CDDL Example (Pretty-Printed Hexadecimal)

86 # array(6)
 73 # text(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 73 # text(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 73 # text(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 53 # bytes(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 53 # bytes(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"
 53 # bytes(19)
 446f6d696e6f277320f09f81b3202b20e28c98 # "Domino's 🁳 + ⌘"

 Small Enabling Grammar Changes
 Each subsection that follows specifies a small change to the
grammar that is intended to enable certain kinds of specifications.
These changes are backward compatible (i.e., CDDL files that
comply with continue to match the updated grammar) but not
necessarily forward compatible (i.e., CDDL specifications that make
use of these changes cannot necessarily be processed by existing implementations of).

 Empty Data Models
 requires a CDDL file to have at least one rule.

 ABNF from RFC 8610 for Top-Level Rule cddl

; ABNF from RFC 8610:
cddl = S 1*(rule S)

 This makes sense when the file has to stand alone, as a CDDL data
model needs to have at least one rule to provide an entry point (i.e., a start
rule).
 With CDDL modules , CDDL files can also include directives,
and these might be the source of all the rules that
ultimately make up the module created by the file.
Any other rule content in the file has to be available for directive
processing, making the requirement for at least one rule cumbersome.
 Therefore, the present update extends the grammar as in
and turns the existence of at least one rule into a semantic constraint, to
be fulfilled after processing of all directives.

 Update to Top-Level ABNF in Appendices B and C of RFC 8610

; new top-level rule:
cddl = S *(rule S)

 Non-Literal Tag Numbers and Simple Values
 The existing ABNF syntax for expressing tags in CDDL is as follows:

 Original ABNF from RFC 8610 for Tag Syntax

; extracted from the ABNF in RFC 8610:
type2 =/ "#" "6" ["." uint] "(" S type S ")"

 This means tag numbers can only be given as literal numbers (uints).
Some specifications operate on ranges of tag numbers; for example,
has a range of tag numbers 1668546817 (0x63740101) to 1668612095
(0x6374FFFF) to tag specific content formats.
This cannot currently be expressed in CDDL.
Similar considerations apply to simple values (#7.xx).
 This update extends the syntax to the following:

 Update to Tag and Simple Value ABNF in Appendices B and C of RFC 8610

; new rules collectively defining the tagged case:
type2 =/ "#" "6" ["." head-number] "(" S type S ")"
 / "#" "7" ["." head-number]
head-number = uint / ("<" type ">")

 For #6, the head-number stands for the tag number.
For #7, the head-number stands for the simple value if it is in
the ranges 0..23 or 32..255 (as per Section of RFC 8949 ,
the simple values 24..31 are not used).
For 24..31, the head-number stands for the "additional
information", e.g., #7.25 or #7.<25> is a float16, etc.
(All ranges mentioned here are inclusive.)
 So the above range can be expressed in a CDDL fragment such as:

ct-tag<content> = #6.<ct-tag-number>(content)
ct-tag-number = 1668546817..1668612095
; or use 0x63740101..0x6374FFFF

 Notes:

 This syntax reuses the angle bracket syntax for generics;
this reuse is innocuous because a generic parameter or argument only ever
occurs after a rule name (id), while it occurs after the " ." (dot) character here.
(Whether there is potential for human confusion can be debated; the
above example deliberately uses generics as well.)

 The updated ABNF grammar makes it a bit more explicit that the
 number given after the optional dot is the value of the argument:
 for tags and simple
 values, it is not giving the CBOR "additional information”,
 as it is with other uses of # in CDDL.
(Adding this observation to is the subject
of ; it is correctly noted in .)
In hindsight, maybe a different character than the dot should have
been chosen for this special case; however, changing the grammar
in the current document would have been too disruptive.

 Security Considerations
 The grammar fixes and updates in this document are not believed to
create additional security considerations.
The security considerations in apply.
Specifically, the potential for confusion is increased in an
environment that uses a combination of CDDL tools, some of which have
been updated and some of which have not, in particular based on
 .
 Attackers may want to exploit such potential confusion by crafting
CDDL models that are interpreted differently by different parts of a
system.
There will be a period of transition from the details that the grammar in
 handled in a less well-defined way, to the updated
grammar defined in the present document. This transition might offer one (but not the only) type of opportunity
 for the kind of attack that relies on differences between
 implementations.
Implementations that make use of CDDL models operationally already
need to ascertain the provenance (and thus authenticity and integrity)
and applicability of models they employ.
At the time of writing, it is expected that the models will generally
be processed by a software developer, within a software development
environment.
Therefore, developers are advised to treat CDDL models with
the same care as any other source code.

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures

 This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON.

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 Concise Binary Object Representation (CBOR)

 The Concise Binary Object Representation (CBOR) is a data format whose design goals include the possibility of extremely small code size, fairly small message size, and extensibility without the need for version negotiation. These design goals make it different from earlier binary serializations such as ASN.1 and MessagePack.
 This document obsoletes RFC 7049, providing editorial improvements, new details, and errata fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create a new version of the format.

 Informative References

 CDDL Module Structure

 Universität Bremen TZI

 Arm Limited

 At the time of writing, the Concise Data Definition Language (CDDL)
 is defined by RFC 8610 and RFC 9165. The latter has used the
 extension point provided in RFC 8610, the _control operator_.

 As CDDL is being used in larger projects, the need for features has
 become known that cannot be easily mapped into this single extension
 point.

 The present document defines a backward- and forward-compatible way
 to add a module structure to CDDL.

 Work in Progress

 CBOR Extended Diagnostic Notation (EDN)

 Universität Bremen TZI

 The Concise Binary Object Representation (CBOR) (STD 94, RFC 8949) is
 a data format whose design goals include the possibility of extremely
 small code size, fairly small message size, and extensibility without
 the need for version negotiation.

 In addition to the binary interchange format, CBOR from the outset
 (RFC 7049) defined a text-based "diagnostic notation" in order to be
 able to converse about CBOR data items without having to resort to
 binary data. RFC 8610 extended this into what is known as Extended
 Diagnostic Notation (EDN).

 This document consolidates the definition of EDN, sets forth a
 further step of its evolution, and is intended to serve as a single
 reference target in specifications that use EDN.

 It specifies an extension point for adding application-oriented
 extensions to the diagnostic notation. It then defines two such
 extensions that enhance EDN with text representations of epoch-based
 date/times and of IP addresses and prefixes (RFC 9164).

 A few further additions close some gaps in usability. The document
 modifies one extension originally specified in Appendix G.4 of RFC
 8610 to enable further increasing usability. To facilitate tool
 interoperation, this document specifies a formal ABNF grammar, and it
 adds media types.

 // (This "cref" paragraph will be removed by the RFC editor:) The
 // present revision -13 reflects the branches "roll-up" and "roll-up-
 // 2" in the repository, an attempt to contain the entire
 // specification of EDN in this document, instead of describing
 // updates to the existing documents RFC 8949 and RFC 8610.
 // Editorial work on the branch "roll-up-2" might continue. The
 // exact reflection of this document being a replacement for both
 // Section 8 of RFC 8949 and Appendix G of RFC 8610 needs to be
 // recorded in the metadata and in abstract and introduction.

 Work in Progress

 Erratum ID 6278

 RFC Errata

 RFC 8610

 Erratum ID 6526

 RFC Errata

 RFC 8610

 Erratum ID 6527

 RFC Errata

 RFC 8610

 Erratum ID 6543

 RFC Errata

 RFC 8610

 Erratum ID 6575

 RFC Errata

 RFC 8610

 Case-Sensitive String Support in ABNF

 This document extends the base definition of ABNF (Augmented Backus-Naur Form) to include a way to specify US-ASCII string literals that are matched in a case-sensitive manner.

 Additional Control Operators for the Concise Data Definition Language (CDDL)

 The Concise Data Definition Language (CDDL), standardized in RFC 8610, provides "control operators" as its main language extension point.
 The present document defines a number of control operators that were not yet ready at the time RFC 8610 was completed:.plus,.cat, and.det for the construction of constants;.abnf/.abnfb for including ABNF (RFC 5234 and RFC 7405) in CDDL specifications; and.feature for indicating the use of a non-basic feature in an instance.

 On Stable Storage for Items in Concise Binary Object Representation (CBOR)

 This document defines a stored ("file") format for Concise Binary Object Representation (CBOR) data items that is friendly to common systems that recognize file types, such as the Unix file(1) command.

 ASCII format for network interchange

 The Unicode Standard

 The Unicode Consortium

 Updated Collected ABNF for CDDL
 This appendix is normative.
 It provides the full ABNF from as updated by the present document.

 ABNF for CDDL as Updated

cddl = S *(rule S)
rule = typename [genericparm] S assignt S type
 / groupname [genericparm] S assigng S grpent

typename = id
groupname = id

assignt = "=" / "/="
assigng = "=" / "//="

genericparm = "<" S id S *("," S id S) ">"
genericarg = "<" S type1 S *("," S type1 S) ">"

type = type1 *(S "/" S type1)

type1 = type2 [S (rangeop / ctlop) S type2]
; space may be needed before the operator if type2 ends in a name

type2 = value
 / typename [genericarg]
 / "(" S type S ")"
 / "{" S group S "}"
 / "[" S group S "]"
 / "~" S typename [genericarg]
 / "&" S "(" S group S ")"
 / "&" S groupname [genericarg]
 / "#" "6" ["." head-number] "(" S type S ")"
 / "#" "7" ["." head-number]
 / "#" DIGIT ["." uint] ; major/ai
 / "#" ; any
head-number = uint / ("<" type ">")

rangeop = "..." / ".."

ctlop = "." id

group = grpchoice *(S "//" S grpchoice)

grpchoice = *(grpent optcom)

grpent = [occur S] [memberkey S] type
 / [occur S] groupname [genericarg] ; preempted by above
 / [occur S] "(" S group S ")"

memberkey = type1 S ["^" S] "=>"
 / bareword S ":"
 / value S ":"

bareword = id

optcom = S ["," S]

occur = [uint] "*" [uint]
 / "+"
 / "?"

uint = DIGIT1 *DIGIT
 / "0x" 1*HEXDIG
 / "0b" 1*BINDIG
 / "0"

value = number
 / text
 / bytes

int = ["-"] uint

; This is a float if it has fraction or exponent; int otherwise
number = hexfloat / (int ["." fraction] ["e" exponent])
hexfloat = ["-"] "0x" 1*HEXDIG ["." 1*HEXDIG] "p" exponent
fraction = 1*DIGIT
exponent = ["+"/"-"] 1*DIGIT

text = %x22 *SCHAR %x22
SCHAR = %x20-21 / %x23-5B / %x5D-7E / NONASCII / SESC

SESC = "\" (%x22 / "/" / "\" / ; \" \/ \\
 %x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t
 (%x75 hexchar)) ; \uXXXX

hexchar = "{" (1*"0" [hexscalar] / hexscalar) "}" /
 non-surrogate / (high-surrogate "\" %x75 low-surrogate)
non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /
 ("D" %x30-37 2HEXDIG)
high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG
low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG
hexscalar = "10" 4HEXDIG / HEXDIG1 4HEXDIG
 / non-surrogate / 1*3HEXDIG

bytes = [bsqual] %x27 *BCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-7E / NONASCII / SESC / "\'" / CRLF
bsqual = "h" / "b64"

id = EALPHA *(*("-" / ".") (EALPHA / DIGIT))
ALPHA = %x41-5A / %x61-7A
EALPHA = ALPHA / "@" / "_" / "$"
DIGIT = %x30-39
DIGIT1 = %x31-39
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
HEXDIG1 = DIGIT1 / "A" / "B" / "C" / "D" / "E" / "F"
BINDIG = %x30-31

S = *WS
WS = SP / NL
SP = %x20
NL = COMMENT / CRLF
COMMENT = ";" *PCHAR CRLF
PCHAR = %x20-7E / NONASCII
NONASCII = %xA0-D7FF / %xE000-10FFFD
CRLF = %x0A / %x0D.0A

 Details about Covering Erratum ID 6543
 This appendix is informative.
 notes that
the ABNF used in for the content of byte string literals
lumps together byte strings notated as text with byte strings notated
 in base16 (hex) or base64 (but see also updated BCHAR rule in):

 Original ABNF from RFC 8610 for BCHAR

; ABNF from RFC 8610:
bytes = [bsqual] %x27 *BCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF

 Change Proposed by Erratum ID 6543
 Erratum ID 6543 proposes handling the two cases in separate
ABNF rules (where, with an updated SESC, BCHAR obviously needs to be
updated as above):

 Proposal from Erratum ID 6543 to Split the Byte String Rules

; Proposal from Erratum ID 6543:
bytes = %x27 *BCHAR %x27
 / bsqual %x27 *QCHAR %x27
BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF
QCHAR = DIGIT / ALPHA / "+" / "/" / "-" / "_" / "=" / WS

 This potentially causes a subtle change, which is hidden in the WS rule:

 ABNF Definition of WS from RFC 8610

; ABNF from RFC 8610:
WS = SP / NL
SP = %x20
NL = COMMENT / CRLF
COMMENT = ";" *PCHAR CRLF
PCHAR = %x20-7E / %x80-10FFFD
CRLF = %x0A / %x0D.0A

 This allows any non-C0 character in a comment, so this fragment
becomes possible:

foo = h'
 43424F52 ; 'CBOR'
 0A ; LF, but don't use CR!
'

 The current text is not unambiguously saying whether the three apostrophes
need to be escaped with a \ or not, as in:

foo = h'
 43424F52 ; \'CBOR\'
 0A ; LF, but don\'t use CR!
'

 ... which would be supported by the existing ABNF in .

 No Further Change Needed after Updating String Literal Grammar
 This document takes the simpler approach of leaving the processing of
the content of the byte string literal to a semantic step after
processing the syntax of the bytes and BCHAR rules, as updated by
Figures and in (updates prompted by the combination
of and).
 Therefore, the rules in (as updated by) are
applied to the result of this
processing where bsqual is given as h or b64.
 Note that this approach also works well with the use of byte strings
in .
It does require some care when copying-and-pasting into CDDL models from ABNF
that contains single quotes (which may also hide as apostrophes
in comments); these need to be escaped or possibly replaced by %x27.
 Finally, the approach taken lends support to extending bsqual in CDDL
similar to the way this is done for CBOR diagnostic notation in .
(Note that, at the time of writing, the processing of string literals is quite similar for both
CDDL and Extended Diagnostic Notation (EDN), except that CDDL has end-of-line comments that are " ;" based and EDN has
two comment syntaxes: one in-line " /" based and one end-of-line " #" based.)

 Acknowledgments
 Many thanks go to the submitters of the errata reports addressed in
this document.
In one of the ensuing discussions, proposed defining an
ABNF rule "NONASCII", of which we have included the essence.
Special thanks to the reviewers , (Shepherd Review and further guidance), (AD
Review and further guidance), and
(detailed IESG review).

 Author's Address

 Universität Bremen TZI

 Postfach 330440
 Bremen
 D-28359
 Germany

 +49-421-218-63921
 cabo@tzi.org

