
RFC 9725
WebRTC-HTTP Ingestion Protocol (WHIP)

Abstract
This document describes a simple HTTP-based protocol that will allow WebRTC-based ingestion
of content into streaming services and/or Content Delivery Networks (CDNs).

This document updates RFCs 8840 and 8842.

Stream: Internet Engineering Task Force (IETF)
RFC: 9725
Updates: 8840, 8842
Category: Standards Track
Published: March 2025
ISSN: 2070-1721
Authors: S. Garcia Murillo

Millicast
A. Gouaillard
CoSMo Software

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9725

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Garcia Murillo & Gouaillard Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9725
https://www.rfc-editor.org/rfc/rfc8840
https://www.rfc-editor.org/rfc/rfc8842
https://www.rfc-editor.org/info/rfc9725
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. Overview

4. Protocol Operation

4.1. HTTP Usage

4.2. Ingest Session Setup

4.3. ICE Support

4.3.1. HTTP PATCH Request Usage

4.3.2. Trickle ICE

4.3.3. ICE Restarts

4.4. WebRTC Constraints

4.4.1. SDP Bundle

4.4.2. Single MediaStream

4.4.3. No Partially Successful Answers

4.4.4. DTLS Setup Role and SDP "setup" Attribute

4.4.5. Trickle ICE and ICE Restarts

4.5. Load Balancing and Redirections

4.6. STUN/TURN Server Configuration

4.6.1. Congestion Control

4.7. Authentication and Authorization

4.7.1. Bearer Token Authentication

4.8. Simulcast and Scalable Video Coding

4.9. Protocol Extensions

5. Security Considerations

6. IANA Considerations

6.1. Link Relation Type: ice-server

6.2. URN Sub-namespace for WHIP (urn:ietf:params:whip)

3

4

4

6

6

6

10

10

11

12

14

14

15

15

15

15

16

16

17

17

18

18

18

19

20

20

20

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 2

6.3. WebRTC-HTTP Ingestion Protocol (WHIP) URNs Registry

6.4. WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs Registry

6.5. Registering WHIP URNs and WHIP Extension URNs

6.5.1. Registration Procedure

6.5.2. Guidance for the Designated Expert

6.5.3. Registration Template

7. References

7.1. Normative References

7.2. Informative References

Acknowledgements

Authors' Addresses

21

21

22

22

22

23

23

23

26

27

28

1. Introduction
The IETF RTCWEB Working Group standardized the JavaScript Session Establishment Protocol
(JSEP) , a mechanism used to control the setup, management, and teardown of a
multimedia session. It also describes how to negotiate media flows using the offer/answer model
with the Session Description Protocol (SDP) , including the formats for data sent over
the wire (e.g., media types, codec parameters, and encryption). WebRTC intentionally does not
specify a signaling transport protocol at the application level.

Unfortunately, the lack of a standardized signaling mechanism in WebRTC has been an obstacle
to its adoption as an ingestion protocol within the broadcast and streaming industry, where a
streamlined production pipeline is taken for granted. For example, cables carrying raw media to
hardware encoders are plugged in and then the encoded media is pushed to any streaming
service or Content Delivery Network (CDN) using an ingestion protocol.

While WebRTC can be integrated with standard signaling protocols like SIP or
Extensible Messaging and Presence Protocol (XMPP) , they are not designed to be used
in broadcasting and streaming services, and there is also no sign of adoption in that industry.
The Real-Time Streaming Protocol (RTSP) , which is based on RTP, does not support the
SDP offer/answer model for negotiating the characteristics of the media session.

This document proposes a simple protocol based on HTTP for supporting WebRTC as a media
ingestion method that:

is easy to implement,
is as easy to use as popular IP-based broadcast protocols,

[RFC9429]

[RFC3264]

[RFC3261]
[RFC6120]

[RFC7826]
[RFC3264]

•
•

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 3

is fully compliant with WebRTC and RTCWEB specs,
enables ingestion on both classical media platforms and WebRTC end-to-end platforms
(achieving the lowest possible latency),
lowers the requirements on both hardware encoders and broadcasting services to support
WebRTC, and
is usable in both web browsers and standalone encoders.

•
•

•

•

2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Overview
The WebRTC-HTTP Ingestion Protocol (WHIP) is designed to facilitate a one-time exchange of
Session Description Protocol (SDP) offers and answers using HTTP POST requests. This exchange
is a fundamental step in establishing an Interactive Connectivity Establishment (ICE) and
Datagram Transport Layer Security (DTLS) session between the WHIP client, which represents
the encoder or media producer, and the media server, which is the broadcasting ingestion
endpoint.

Upon successful establishment of the ICE/DTLS session, unidirectional media data transmission
commences from the WHIP client to the media server. It is important to note that SDP
renegotiations are not supported in WHIP. This means that no modifications to the "m=" sections
can be made after the initial SDP offer/answer exchange via HTTP POST is completed and that
only ICE-related information can be updated via HTTP PATCH requests as defined in Section 4.3.

The following diagram illustrates the core operation of WHIP for initiating and terminating an
ingest session:

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 4

WHIP client:

WHIP endpoint:

WHIP endpoint URL:

Media server:

WHIP session:

WHIP session URL:

The elements in Figure 1 are described as follows:

This represents the WebRTC media encoder or producer, which functions as a
client of WHIP by encoding and delivering media to a remote media server.

This denotes the ingest server that receives the initial WHIP request.

This refers to the URL of the WHIP endpoint responsible for creating the
WHIP session.

This is the WebRTC media server or consumer responsible for establishing the
media session with the WHIP client and receiving the media content it produces.

This indicates the server handling the allocated HTTP resource by the WHIP
endpoint for an ongoing ingest session.

This refers to the URL of the WHIP resource allocated by the WHIP
endpoint for a specific media session. To modify the session (e.g., ICE operations or session
termination), the WHIP client can send requests to the WHIP session using this URL.

Figure 1: WHIP Session Setup and Teardown

+-------------+ +---------------+ +--------------+ +---------------+
| WHIP client | | WHIP endpoint | | Media server | | WHIP session |
+--+----------+ +---------+-----+ +------+-------+ +--------|------+
HTTP POST (SDP offer)		
+------------------------>+		
201 Created (SDP answer)		
+<------------------------+		
ICE/STUN REQUEST		
+--------------------------------------->+		
ICE/STUN RESPONSE		
<---------------------------------------+		
DTLS SETUP		
<======================================>		
RTP/RTCP FLOW		
+<-------------------------------------->+		
HTTP DELETE		
+-->+		
200 OK		
 <---x

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 5

Figure 1 illustrates the communication flow between a WHIP client, WHIP endpoint, media
server, and WHIP session. This flow outlines the process of setting up and tearing down an
ingest session using WHIP, which involves negotiation, ICE for Network Address Translation
(NAT) traversal, DTLS and the Secure Real-time Transport Protocol (SRTP) for security, and RTP/
RTCP for media transport:

The WHIP client initiates the communication by sending an HTTP POST with an SDP offer to
the WHIP endpoint.
The WHIP endpoint responds with a "201 Created" message containing an SDP answer.
The WHIP client and media server establish ICE and DTLS sessions for NAT traversal and
secure communication.
RTP and RTCP flows are established for media transmission from the WHIP client to the
media server, secured by the SRTP profile.
The WHIP client sends an HTTP DELETE to terminate the WHIP session.
The WHIP session responds with a "200 OK" to confirm the session termination.

•

•
•

•

•
•

4. Protocol Operation

4.1. HTTP Usage
Following the guidelines in , WHIP clients match error codes returned by the
WHIP endpoints and resources to a specific error cause indicated in this specification. WHIP
clients be able to handle all applicable status codes by gracefully falling back to the
generic n00 semantics of a given status code on unknown error codes. WHIP endpoints and
resources could convey finer-grained error information by a problem details json object in the
response message body of the failed request as per .

The WHIP endpoints and sessions are origin servers as defined in ; they
handle the requests and provide responses for the underlying HTTP resources. Those HTTP
resources do not have any representation defined in this specification, so the WHIP endpoints
and sessions return a 2xx successful response with no content when a GET request is
received.

[BCP56] MUST NOT

MUST

[RFC9457]

Section 3.6 of [RFC9110]

MUST

4.2. Ingest Session Setup
In order to set up an ingest session, the WHIP client generate an SDP offer according to the
JSEP rules for an initial offer as per and send an HTTP POST request as
per to the configured WHIP endpoint URL.

The HTTP POST request have a content type of "application/sdp" and contain the SDP offer
as the body. The WHIP endpoint generate an SDP answer according to the JSEP rules for an
initial answer as per and return the following: a "201 Created"
response with a content type of "application/sdp", the SDP answer as the body, and a Location
header field pointing to the newly created WHIP session. If the HTTP POST to the WHIP endpoint
has a content type different than "application/sdp" or the SDP is malformed, the WHIP endpoint

 reject the HTTP POST request with an appropriate 4xx error response.

MUST
Section 5.2.1 of [RFC9429]

Section 9.3.3 of [RFC9110]

MUST
MUST

Section 5.3.1 of [RFC9429]

MUST

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 6

https://rfc-editor.org/rfc/rfc9110#section-3.6
https://rfc-editor.org/rfc/rfc9429#section-5.2.1
https://rfc-editor.org/rfc/rfc9110#section-9.3.3
https://rfc-editor.org/rfc/rfc9429#section-5.3.1

As WHIP only supports the ingestion use case with unidirectional media, the WHIP client
 use the "sendonly" attribute in the SDP offer but use the "sendrecv" attribute

instead; the "inactive" and "recvonly" attributes be used. The WHIP endpoint
use the "recvonly" attribute in the SDP answer.

Figure 2 is an example of an HTTP POST sent from a WHIP client to a WHIP endpoint and the
"201 Created" response from the WHIP endpoint containing the Location header pointing to the
newly created WHIP session.

SHOULD MAY
MUST NOT MUST

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 7

POST /whip/endpoint HTTP/1.1
Host: whip.example.com
Content-Type: application/sdp
Content-Length: 1101

v=0
o=- 5228595038118931041 2 IN IP4 127.0.0.1
s=-
t=0 0
a=group:BUNDLE 0 1
a=extmap-allow-mixed
a=ice-options:trickle ice2
m=audio 9 UDP/TLS/RTP/SAVPF 111
c=IN IP4 0.0.0.0
a=rtcp:9 IN IP4 0.0.0.0
a=ice-ufrag:EsAw
a=ice-pwd:bP+XJMM09aR8AiX1jdukzR6Y
a=fingerprint:sha-256 DA:7B:57:DC:28:CE:04:4F:31:79:85:C4:31:67:EB:
 27:58:29:ED:77:2A:0D:24:AE:ED:AD:30:BC:BD:F1:9C:02
a=setup:actpass
a=mid:0
a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid
a=sendonly
a=msid:d46fb922-d52a-4e9c-aa87-444eadc1521b ce326ecf-a081-453a-8f9f-
 0605d5ef4128
a=rtcp-mux
a=rtcp-mux-only
a=rtpmap:111 opus/48000/2
a=fmtp:111 minptime=10;useinbandfec=1
m=video 0 UDP/TLS/RTP/SAVPF 96 97
a=mid:1
a=bundle-only
a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid
a=extmap:10 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
a=extmap:11 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id
a=sendonly
a=msid:d46fb922-d52a-4e9c-aa87-444eadc1521b 3956b460-40f4-4d05-acef-
 03abcdd8c6fd
a=rtpmap:96 VP8/90000
a=rtcp-fb:96 ccm fir
a=rtcp-fb:96 nack
a=rtcp-fb:96 nack pli
a=rtpmap:97 rtx/90000
a=fmtp:97 apt=96

HTTP/1.1 201 Created
ETag: "xyzzy"
Content-Type: application/sdp
Content-Length: 1053
Location: https://whip.example.com/session/id

v=0
o=- 1657793490019 1 IN IP4 127.0.0.1
s=-
t=0 0
a=group:BUNDLE 0 1
a=extmap-allow-mixed

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 8

Once a session is set up, consent freshness as per be used to detect non-
graceful disconnection by full ICE implementations and DTLS teardown for session termination
by either side.

To explicitly terminate a WHIP session, the WHIP client send an HTTP DELETE request to
the WHIP session URL returned in the Location header field of the initial HTTP POST. Upon
receiving the HTTP DELETE request, the WHIP session will be removed and the resources freed
on the media server, terminating the ICE and DTLS sessions.

A media server terminating a session follow the procedures in for
immediate revocation of consent.

The WHIP endpoints support OPTIONS requests for Cross-Origin Resource Sharing (CORS)
as defined in . The "200 OK" response to any OPTIONS request include an
Accept-Post header with a media type value of "application/sdp" as per .

Figure 2: Example of the SDP Offer/Answer Exchange Done via an HTTP POST

a=ice-lite
a=ice-options:trickle ice2
m=audio 9 UDP/TLS/RTP/SAVPF 111
c=IN IP4 0.0.0.0
a=rtcp:9 IN IP4 0.0.0.0
a=ice-ufrag:38sdf4fdsf54
a=ice-pwd:2e13dde17c1cb009202f627fab90cbec358d766d049c9697
a=fingerprint:sha-256 F7:EB:F3:3E:AC:D2:EA:A7:C1:EC:79:D9:B3:8A:35:
 DA:70:86:4F:46:D9:2D:CC:D0:BC:81:9F:67:EF:34:2E:BD
a=candidate:1 1 UDP 2130706431 198.51.100.1 39132 typ host
a=setup:passive
a=mid:0
a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid
a=recvonly
a=rtcp-mux
a=rtcp-mux-only
a=rtpmap:111 opus/48000/2
a=fmtp:111 minptime=10;useinbandfec=1
m=video 0 UDP/TLS/RTP/SAVPF 96 97
c=IN IP4 0.0.0.0
a=mid:1
a=bundle-only
a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid
a=extmap:10 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
a=extmap:11 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id
a=recvonly
a=rtpmap:96 VP8/90000
a=rtcp-fb:96 ccm fir
a=rtcp-fb:96 nack
a=rtcp-fb:96 nack pli
a=rtpmap:97 rtx/90000
a=fmtp:97 apt=96

[RFC7675] SHALL

MUST

MUST Section 5.2 of [RFC7675]

MUST
[FETCH] SHOULD

[W3C.REC-ldp-20150226]

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 9

https://rfc-editor.org/rfc/rfc7675#section-5.2

4.3. ICE Support
ICE is a protocol that addresses the complexities of NAT traversal commonly
encountered in Internet communication. NATs hinder direct communication between devices on
different local networks, posing challenges for real-time applications. ICE facilitates seamless
connectivity by employing techniques to discover and negotiate efficient communication paths.

Trickle ICE optimizes the connectivity process by incrementally sharing potential
communication paths, reducing latency, and facilitating quicker establishment.

ICE restarts are crucial for maintaining connectivity in dynamic network conditions or
disruptions, allowing devices to re-establish communication paths without complete
renegotiation. This ensures minimal latency and reliable real-time communication.

Trickle ICE and ICE restart support are for both WHIP sessions and clients.

[RFC8445]

[RFC8838]

RECOMMENDED

4.3.1. HTTP PATCH Request Usage

The WHIP client perform Trickle ICE or ICE restarts by sending an HTTP PATCH request as
per to the WHIP session URL. This HTTP PATCH request contain a body with an
SDP fragment with media type "application/trickle-ice-sdpfrag" as specified in , which
carries the relevant ICE information. If the HTTP PATCH request sent to the WHIP session URL
has a content type different than "application/trickle-ice-sdpfrag" or the SDP fragment is
malformed, the WHIP session reject the HTTP PATCH with an appropriate 4xx error
response.

If the WHIP session supports either Trickle ICE or ICE restarts, but not both, it return a
"422 Unprocessable Content" error response for the HTTP PATCH requests that are not supported
as per .

The WHIP client send overlapping HTTP PATCH requests to one WHIP session.
Consequently, those HTTP PATCH requests may be received out of order by the WHIP session.
Thus, if the WHIP session supports ICE restarts, it generate a unique strong entity-tag
identifying the ICE session as per . The initial value of the entity-tag
identifying the initial ICE session be returned in an ETag header field in the "201 Created"
response to the initial POST request to the WHIP endpoint.

WHIP clients use entity-tag validation when matching a specific ICE session is not
required, for example, when initiating a DELETE request to terminate a session. WHIP sessions

 ignore any entity-tag value sent by the WHIP client when ICE session matching is not
required, as in the HTTP DELETE request.

Missing or outdated ETags in the PATCH requests from WHIP clients will be answered by WHIP
sessions as per and , with a "428 Precondition
Required" response for a missing entity-tag and a "412 Precondition Failed" response for a non-
matching entity-tag.

MAY
[RFC5789] MUST

[RFC8840]

MUST

MUST

Section 15.5.21 of [RFC9110]

MAY

MUST
Section 8.8.3 of [RFC9110]
MUST

SHOULD NOT

MUST

Section 13.1.1 of [RFC9110] Section 3 of [RFC6585]

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 10

https://rfc-editor.org/rfc/rfc9110#section-15.5.21
https://rfc-editor.org/rfc/rfc9110#section-8.8.3
https://rfc-editor.org/rfc/rfc9110#section-13.1.1
https://rfc-editor.org/rfc/rfc6585#section-3

4.3.2. Trickle ICE

Depending on the Trickle ICE support on the WHIP client, the initial offer by the WHIP client
be sent after the full ICE gathering is complete with the full list of ICE candidates, or it only
contain local candidates (or even an empty list of candidates) as per . For the purpose
of reducing setup times, when using Trickle ICE, the WHIP client send the SDP offer
(containing either locally gathered ICE candidates or an empty list of candidates) as soon as
possible.

In order to simplify the protocol, the WHIP session cannot signal additional ICE candidates to the
WHIP client after the SDP answer has been sent. The WHIP endpoint gather all the ICE
candidates for the media server before responding to the client request, and the SDP answer

 contain the full list of ICE candidates of the media server.

As the WHIP client needs to know the WHIP session URL associated with the ICE session in order
to send a PATCH request containing new ICE candidates, it wait and buffer any gathered
candidates until the "201 Created" HTTP response to the initial POST request is received. In order
to reduce the HTTP traffic and processing time required, the WHIP client send a single
aggregated HTTP PATCH request with all the buffered ICE candidates once the response is
received. Additionally, if ICE restarts are supported by the WHIP session, the WHIP client needs
to know the entity-tag associated with the ICE session in order to send a PATCH request
containing new ICE candidates; thus, it also wait and buffer any gathered candidates until
it receives the HTTP response with the new entity-tag value to the last PATCH request
performing an ICE restart.

WHIP clients generating the HTTP PATCH body with the SDP fragment and its subsequent
processing by WHIP sessions follow the guidelines defined in with
the following considerations:

As per , only "m=" sections not marked as bundle-only can gather ICE candidates,
so given that the "max-bundle" policy is being used, the SDP fragment will contain only the
offerer-tagged "m=" line of the bundle group.
The WHIP client exclude ICE candidates from the HTTP PATCH body if they have
already been confirmed by the WHIP session with a successful HTTP response to a previous
HTTP PATCH request.

WHIP sessions and clients that support Trickle ICE make use of entity-tags and conditional
requests as explained in Section 4.3.1.

When a WHIP session receives a PATCH request that adds new ICE candidates without
performing an ICE restart, it return a "204 No Content" response without a body and

 include an ETag header in the response. If the WHIP session does not support a candidate
transport or is not able to resolve the connection address, it silently discard the candidate
and continue processing the rest of the request normally.

MAY
MAY

[RFC8445]
SHOULD

SHALL

SHALL

MUST

SHOULD

MUST

MUST Section 4.4 of [RFC8840]

• [RFC9429]

• MAY

MUST

MUST MUST
NOT

MUST

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 11

https://rfc-editor.org/rfc/rfc8840#section-4.4

Figure 3 shows an example of the Trickle ICE procedure where the WHIP client sends a PATCH
request with updated ICE candidate information and receives a successful response from the
WHIP session.

Figure 3: Example of a Trickle ICE Request and Response

PATCH /session/id HTTP/1.1
Host: whip.example.com
If-Match: "xyzzy"
Content-Type: application/trickle-ice-sdpfrag
Content-Length: 576

a=group:BUNDLE 0 1
m=audio 9 UDP/TLS/RTP/SAVPF 111
a=mid:0
a=ice-ufrag:EsAw
a=ice-pwd:P2uYro0UCOQ4zxjKXaWCBui1
a=candidate:1387637174 1 udp 2122260223 192.0.2.1 61764 typ host
 generation 0 ufrag EsAw network-id 1
a=candidate:3471623853 1 udp 2122194687 198.51.100.2 61765 typ host
 generation 0 ufrag EsAw network-id 2
a=candidate:473322822 1 tcp 1518280447 192.0.2.1 9 typ host tcptype
 active generation 0 ufrag EsAw network-id 1
a=candidate:2154773085 1 tcp 1518214911 198.51.100.2 9 typ host
 tcptype active generation 0 ufrag EsAw network-id 2
a=end-of-candidates

HTTP/1.1 204 No Content

4.3.3. ICE Restarts

As defined in , when an ICE restart occurs, a new SDP offer/answer exchange is
triggered. However, as WHIP does not support renegotiation of non-ICE-related SDP
information, a WHIP client will not send a new offer when an ICE restart occurs. Instead, the
WHIP client and WHIP session will only exchange the relevant ICE information via an HTTP
PATCH request as defined in Section 4.3.1 and assume that the previously negotiated non-
ICE-related SDP information still applies after the ICE restart.

When performing an ICE restart, the WHIP client include the updated "ice-pwd" and "ice-
ufrag" in the SDP fragment of the HTTP PATCH request body as well as the new set of gathered
ICE candidates as defined in . Similar to what is defined in Section 4.3.2, as per

, only "m=" sections not marked as bundle-only can gather ICE candidates, so given
that the "max-bundle" policy is being used, the SDP fragment will contain only the offerer-tagged
"m=" line of the bundle group. A WHIP client sending a PATCH request for performing ICE restart

 contain an If-Match header field with a field-value of "*" as per .

 states that an agent discard any received requests containing "ice-pwd" and "ice-
ufrag" attributes that do not match those of the current ICE Negotiation Session. However, any
WHIP session receiving updated "ice-pwd" and "ice-ufrag" attributes consider the request
as performing an ICE restart instead and, if supported, return a "200 OK" with an
"application/trickle-ice-sdpfrag" body containing the new ICE username fragment and password

[RFC8839]

MUST

MUST

[RFC8840]
[RFC9429]

MUST Section 13.1.1 of [RFC9110]

[RFC8840] MUST

MUST
SHALL

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 12

https://rfc-editor.org/rfc/rfc9110#section-13.1.1

and a new set of ICE candidates for the WHIP session. Also, the "200 OK" response for a
successful ICE restart contain the new entity-tag corresponding to the new ICE session in
an ETag response header field and contain a new set of ICE candidates for the media server.

As defined in , the set of candidates after an ICE restart may include
some, none, or all of the previous candidates for that data stream and may include a totally new
set of candidates. Therefore, after performing a successful ICE restart, both the WHIP client and
the WHIP session replace the previous set of remote candidates with the new set
exchanged in the HTTP PATCH request and response, discarding any remote ICE candidate not
present on the new set. Both the WHIP client and the WHIP session ensure that the HTTP
PATCH request and response bodies include the same "ice-options," "ice-pacing," and "ice-lite"
attributes as those used in the SDP offer or answer.

If the ICE restart request cannot be satisfied by the WHIP session, the resource return an
appropriate HTTP error code and terminate the session immediately and keep the
existing ICE session. The WHIP client retry performing a new ICE restart or terminate the
session by issuing an HTTP DELETE request instead. In any case, the session be terminated
if the ICE consent expires as a consequence of the failed ICE restart as per

.

In case of unstable network conditions, the ICE restart HTTP PATCH requests and responses
might be received out of order. In order to mitigate this scenario, when the client performs an
ICE restart, it discard any previous ICE username fragment and password and ignore any
further HTTP PATCH response received from a pending HTTP PATCH request. WHIP clients
apply only the ICE information received in the response to the last sent request. If there is a
mismatch between the ICE information at the WHIP client and at the WHIP session (because of
an out-of-order request), the Session Traversal Utilities for NAT (STUN) requests will contain
invalid ICE information and will be dropped by the receiving side. If this situation is detected by
the WHIP client, it send a new ICE restart request to the server.

Figure 4 demonstrates a Trickle ICE restart procedure example. The WHIP client sends a PATCH
request containing updated ICE information, including a new username fragment and
password, along with newly gathered ICE candidates. In response, the WHIP session provides
ICE information for the session after the ICE restart, including the updated username fragment
and password, as well as the previous ICE candidate.

MUST
MAY

Section 4.4.1.1.1 of [RFC8839]

MUST

MUST

MUST
MUST NOT

MAY
MUST

Section 5.1 of
[RFC7675]

MUST
MUST

MUST

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 13

https://rfc-editor.org/rfc/rfc8839#section-4.4.1.1.1
https://rfc-editor.org/rfc/rfc7675#section-5.1

Figure 4: Example of an ICE Restart Request and Response

PATCH /session/id HTTP/1.1
Host: whip.example.com
If-Match: "*"
Content-Type: application/trickle-ice-sdpfrag
Content-Length: 82

a=ice-options:trickle ice2
a=group:BUNDLE 0 1
m=audio 9 UDP/TLS/RTP/SAVPF 111
a=mid:0
a=ice-ufrag:ysXw
a=ice-pwd:vw5LmwG4y/e6dPP/zAP9Gp5k
a=candidate:1387637174 1 udp 2122260223 192.0.2.1 61764 typ host
 generation 0 ufrag EsAw network-id 1
a=candidate:3471623853 1 udp 2122194687 198.51.100.2 61765 typ host
 generation 0 ufrag EsAw network-id 2
a=candidate:473322822 1 tcp 1518280447 192.0.2.1 9 typ host tcptype
 active generation 0 ufrag EsAw network-id 1
a=candidate:2154773085 1 tcp 1518214911 198.51.100.2 9 typ host
 tcptype active generation 0 ufrag EsAw network-id 2

HTTP/1.1 200 OK
ETag: "abccd"
Content-Type: application/trickle-ice-sdpfrag
Content-Length: 252

a=ice-lite
a=ice-options:trickle ice2
a=group:BUNDLE 0 1
m=audio 9 UDP/TLS/RTP/SAVPF 111
a=mid:0
a=ice-ufrag:289b31b754eaa438
a=ice-pwd:0b66f472495ef0ccac7bda653ab6be49ea13114472a5d10a
a=candidate:1 1 udp 2130706431 198.51.100.1 39132 typ host
a=end-of-candidates

4.4. WebRTC Constraints
To simplify the implementation of WHIP in both clients and media servers, WHIP introduces
specific restrictions on WebRTC usage. The following subsections will explain these restrictions
in detail.

4.4.1. SDP Bundle

Both the WHIP client and the WHIP endpoint support and use the "max-
bundle" policy as defined in . The WHIP client and the media server support
multiplexed media associated with the BUNDLE group as per . In addition,
per , the WHIP client and media server use RTP/RTCP multiplexing for all
bundled media. In order to reduce the network resources required at the media server, both the
WHIP client and WHIP endpoints include the "rtcp-mux-only" attribute in each bundled
"m=" section as per .

SHALL [RFC9143]
[RFC9429] MUST

Section 9 of [RFC9143]
[RFC9143] SHALL

MUST
Section 3 of [RFC8858]

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 14

https://rfc-editor.org/rfc/rfc9143#section-9
https://rfc-editor.org/rfc/rfc8858#section-3

4.4.2. Single MediaStream

WHIP only supports a single MediaStream as defined in ; therefore, all "m=" sections
 contain a "msid" attribute with the same value. The MediaStream contain at least

one MediaStreamTrack of any media kind, and it have two or more
MediaStreamTracks for the same media (audio or video). However, it would be possible for
future revisions of this specification to allow more than a single MediaStream or
MediaStreamTrack of each media kind. Therefore, in order to ensure forward compatibility, if
the number of audio and/or video MediaStreamTracks or the number of MediaStreams are not
supported by the WHIP endpoint, it reject the HTTP POST request with a "422
Unprocessable Content" or "400 Bad Request" error response. The WHIP endpoint also
return a problem statement that provides further error details about the failed request, as
recommended in Section 4.1.

[RFC8830]
MUST MUST

MUST NOT

MUST
MAY

4.4.3. No Partially Successful Answers

The WHIP endpoint reject individual "m=" sections, as specified in
, if an error occurs when processing the "m=" section; instead, it reject the

HTTP POST request with a "422 Unprocessable Content" or "400 Bad Request" error response to
prevent having partially successful ingest sessions, which can be misleading to end users. The
WHIP endpoint also return a problem statement as recommended in Section 4.1 proving
further error details about the failed request.

SHOULD NOT Section 5.3.1 of
[RFC9429] SHOULD

MAY

4.4.4. DTLS Setup Role and SDP "setup" Attribute

When a WHIP client sends an SDP offer, it insert an SDP "setup" attribute with an
"actpass" attribute value, as defined in . However, if the WHIP client only implements
the DTLS client role, it use an SDP "setup" attribute with an "active" attribute value. If the
WHIP endpoint does not support an SDP offer with an SDP "setup" attribute with an "active"
attribute value, it reject the request with a "422 Unprocessable Content" or "400 Bad
Request" error response.

NOTE: defines that the offerer must insert an SDP "setup" attribute with an "actpass"
attribute value. However, the WHIP client will always communicate with a media server that is
expected to support the DTLS server role, in which case the client might choose to only
implement support for the DTLS client role.

SHOULD
[RFC8842]

MAY

SHOULD

[RFC8842]

4.4.5. Trickle ICE and ICE Restarts

The media server support full ICE, unless it is connected to the Internet with an IP
address that is accessible by each WHIP client that is authorized to use it, in which case it
support only ICE lite. The WHIP client implement and use full ICE.

Trickle ICE and ICE restart support is for both the WHIP clients and media servers as
explained in Section 4.3.

SHOULD
MAY

MUST

OPTIONAL

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 15

https://rfc-editor.org/rfc/rfc9429#section-5.3.1

4.5. Load Balancing and Redirections
WHIP endpoints and media servers might not be colocated on the same server, so it is possible
to load balance incoming requests to different media servers.

WHIP clients support HTTP redirections as per . In order to
avoid POST requests being redirected as GET requests, status codes "301 Moved Permanently"
and "302 Found" be used; the preferred method for performing load balancing is via
the "307 Temporary Redirect" response status code as described in .
Redirections are not required to be supported for the PATCH and DELETE requests.

In case of high load, the WHIP endpoints return a "503 Service Unavailable" response
indicating that the server is currently unable to handle the request due to a temporary overload
or scheduled maintenance as described in , which will likely be
alleviated after some delay. The WHIP endpoint might send a Retry-After header field indicating
the minimum time that the user agent ought to wait before making a follow-up request as
described in .

SHALL Section 15.4 of [RFC9110]

MUST NOT
Section 15.4.8 of [RFC9110]

MAY

Section 15.6.4 of [RFC9110]

Section 10.2.3 of [RFC9110]

4.6. STUN/TURN Server Configuration
The WHIP endpoint return STUN/TURN server configuration URLs and credentials usable
by the client in the "201 Created" response to the HTTP POST request to the WHIP endpoint URL.

A reference to each STUN/TURN server will be returned using the Link header field
with a "rel" attribute value of "ice-server". The Link target URI is the server URI as defined in

 and . The credentials are encoded in the Link target attributes as follows:

username: If the Link header field represents a Traversal Using Relays around NAT (TURN)
server, then this attribute specifies the username to use with that TURN server.
credential: This attribute represents a long-term authentication password, as described in

.

Figure 5 illustrates the Link headers included in a "201 Created" response, providing the ICE
server URLs and associated credentials.

MAY

[RFC8288]

[RFC7064] [RFC7065]

•

•
Section 9.2 of [RFC8489]

Figure 5: Example of a STUN/TURN Server's Configuration

Link: <stun:stun.example.net>; rel="ice-server"
Link: <turn:turn.example.net?transport=udp>; rel="ice-server";
 username="user"; credential="myPassword"
Link: <turn:turn.example.net?transport=tcp>; rel="ice-server";
 username="user"; credential="myPassword"
Link: <turns:turn.example.net?transport=tcp>; rel="ice-server";
 username="user"; credential="myPassword"

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 16

https://rfc-editor.org/rfc/rfc9110#section-15.4
https://rfc-editor.org/rfc/rfc9110#section-15.4.8
https://rfc-editor.org/rfc/rfc9110#section-15.6.4
https://rfc-editor.org/rfc/rfc9110#section-10.2.3
https://rfc-editor.org/rfc/rfc8489#section-9.2

NOTE: The naming of both the "rel" attribute value of "ice-server" and the target attributes
follows that used in the RTCConfiguration dictionary in Section 4.2.1 of the W3C WebRTC
recommendation (see). The "rel" attribute value of "ice-server" is
not prepended with the "urn:ietf:params:whip:" so it can be reused by other specifications,
which may use this mechanism to configure the usage of STUN/TURN servers.

NOTE: Depending on the ICE agent implementation, the WHIP client may need to call the
setConfiguration method before calling the setLocalDescription method with the local SDP offer
in order to avoid having to perform an ICE restart for applying the updated STUN/TURN server
configuration on the next ICE gathering phase.

There are some WebRTC implementations that do not support updating the STUN/TURN server
configuration after the local offer has been created as specified in . In
order to support these clients, the WHIP endpoint also include the STUN/TURN server
configuration in the responses to OPTIONS requests sent to the WHIP endpoint URL before the
POST request is sent. However, this method is to be used by the WHIP
clients, and if it is supported by the underlying WHIP client's WebRTC implementation, the
WHIP client wait for the information to be returned by the WHIP endpoint in the
response of the HTTP POST request instead.

The generation of the TURN server credentials may require sending a request to an external
provider, which can both add latency to the OPTIONS request processing and increase the
processing required to handle that request. In order to prevent this, the WHIP endpoint

 return the STUN/TURN server configuration if the OPTIONS request is a preflight request for
CORS as defined in , that is, if the OPTIONS request does not contain an Access-Control-
Request-Method with a POST value and the Access-Control-Request-Headers HTTP header does
not contain the Link value.

The WHIP clients also support configuring the STUN/TURN server URIs with long-term
credentials provided by either the broadcasting service or an external TURN provider,
overriding the values provided by the WHIP endpoint.

[W3C.REC-webrtc-20250313]

Section 4.1.18 of [RFC9429]
MAY

NOT RECOMMENDED

SHOULD

SHOULD
NOT

[FETCH]

MAY

4.6.1. Congestion Control

 defines the congestion control requirements for interactive real-time media to be
used in WebRTC. These requirements are based on the assumption that the data needs to be
provided continuously within a very limited time window (a delay of no more than hundreds of
milliseconds end-to-end). If the latency target is higher, some of the requirements present in

 could be relaxed to allow more flexible implementations.

[RFC8836]

[RFC8836]

4.7. Authentication and Authorization
All WHIP endpoints, sessions, and clients support HTTP authentication as per

. Additionally, in order to ensure interoperability, bearer token authentication as
defined in the next section be supported by all WHIP entities. However, this does not
preclude the support of additional HTTP authentication schemes as defined in

.

MUST Section 11 of
[RFC9110]

MUST
Section 11.6 of

[RFC9110]

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 17

https://rfc-editor.org/rfc/rfc9429#section-4.1.18
https://rfc-editor.org/rfc/rfc9110#section-11
https://rfc-editor.org/rfc/rfc9110#section-11.6

4.7.1. Bearer Token Authentication

WHIP endpoints and sessions require the HTTP request to be authenticated using an HTTP
Authorization header field with a bearer token as specified in . WHIP
clients implement this authentication and authorization mechanism and send the HTTP
Authorization header field in all HTTP requests sent to either the WHIP endpoint or session
(except the preflight OPTIONS requests for CORS).

The nature, syntax, and semantics of the bearer token, as well as how to distribute it to the
client, are outside the scope of this document. Examples of tokens that could be used include, but
are not limited to, JSON Web Tokens (JWTs) as per and a shared secret stored on a
database. The tokens are typically made available to the end user alongside the WHIP endpoint
URL and configured on the WHIP clients (similar to the way Real Time Messaging Protocol
(RTMP) URLs and Stream Keys are distributed).

WHIP endpoints and sessions could perform the authentication and authorization by encoding
an authentication token within the URLs for the WHIP endpoints or sessions instead. In case the
WHIP client is not configured to use a bearer token, the HTTP Authorization header field

 be sent in any request.

MAY
Section 2.1 of [RFC6750]

MUST

[RFC8725]

MUST
NOT

4.8. Simulcast and Scalable Video Coding
Simulcast as per be supported by both the media servers and WHIP clients
through negotiation in the SDP offer/answer.

If the client supports simulcast and wants to enable it for ingesting, it negotiate the
support in the SDP offer according to the procedures in . A server
accepting a simulcast offer create an answer according to the procedures in

.

It is possible for both media servers and WHIP clients to support Scalable Video Coding (SVC).
However, as there is no universal negotiation mechanism in SDP for SVC, the encoder must
consider the negotiated codec(s), intended usage, and SVC support in available decoders when
configuring SVC.

[RFC8853] MAY

MUST
Section 5.3 of [RFC8853]

MUST Section 5.3.2
of [RFC8853]

4.9. Protocol Extensions
In order to support future extensions to be defined for WHIP, a common procedure for
registering and announcing the new extensions is defined.

Protocol extensions supported by the WHIP sessions be advertised to the WHIP client in
the "201 Created" response to the initial HTTP POST request sent to the WHIP endpoint. The
WHIP endpoint return one Link header field for each extension that it supports, with the
extension "rel" attribute value containing the extension URN and the URL for the HTTP resource
that will be available for receiving requests related to that extension.

MUST

MUST

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 18

https://rfc-editor.org/rfc/rfc6750#section-2.1
https://rfc-editor.org/rfc/rfc8853#section-5.3
https://rfc-editor.org/rfc/rfc8853#section-5.3.2

Protocol extensions are optional for both WHIP clients and servers. WHIP clients ignore
any Link target attribute with an unknown "rel" attribute value, and WHIP sessions
require the usage of any extension.

Each protocol extension register a unique "rel" attribute value that starts with the prefix
"urn:ietf:params:whip:ext" in the "WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs"
registry (Section 6.4).

For example, consider a potential extension of server-to-client communication using server-sent
events as specified in Section 9.2 of . The URL for connecting to the server-sent event
resource for the ingested stream could be returned in the initial HTTP "201 Created" response
with a Link header field and a "rel" attribute of "urn:ietf:params:whip:ext:example:server-sent-
events" (this document does not specify such an extension and uses it only as an example).

In this theoretical case, the "201 Created" response to the HTTP POST request would look like:

Figure 6 shows the "201 Created" response to the HTTP POST request in this theoretical case (i.e.,
the WHIP extension supported by the WHIP session, as indicated in the Link header of the "201
Created" response).

MUST
MUST NOT

MUST

[HTML]

Figure 6: Example of a WHIP Extension

HTTP/1.1 201 Created
Content-Type: application/sdp
Location: https://whip.example.com/session/id
Link: <https://whip.example.com/session/id/sse>;
 rel="urn:ietf:params:whip:ext:example:server-sent-events"

5. Security Considerations
This document specifies a new protocol on top of HTTP and WebRTC; thus, security protocols
and considerations from related specifications apply to the WHIP specification. These include:

WebRTC security considerations: See . HTTPS be used in order to preserve
the WebRTC security model.
Transport Layer Security (TLS): See and .
HTTP security: See and .
URI security: See .

On top of that, WHIP exposes a thin new attack surface specific to the REST API methods used
within it:

HTTP POST flooding and resource exhaustion: It would be possible for an attacker in
possession of authentication credentials valid for ingesting a WHIP stream to make multiple
HTTP POST requests to the WHIP endpoint. This will force the WHIP endpoint to process the
incoming SDP and allocate resources for being able to set up the DTLS/ICE connection. While
the malicious client does not need to initiate the DTLS/ICE connection at all, the WHIP

• [RFC8826] SHALL

• [RFC8446] [RFC9147]
• Section 11 of [RFC9112] Section 17 of [RFC9110]
• Section 7 of [RFC3986]

•

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 19

https://rfc-editor.org/rfc/rfc9112#section-11
https://rfc-editor.org/rfc/rfc9110#section-17
https://rfc-editor.org/rfc/rfc3986#section-7

session will have to wait for the DTLS/ICE connection timeout in order to release the
associated resources. If the connection rate is high enough, this could lead to resource
exhaustion on the servers handling the requests, and they will not be able to process
legitimate incoming ingests. In order to prevent this scenario, WHIP endpoints
implement a rate limit and avalanche control mechanism for incoming initial HTTP POST
requests.
Insecure Direct Object References (IDORs) for WHIP session URLs: If the URLs returned by
the WHIP endpoint for the location of WHIP sessions are easy to guess, it would be possible
for an attacker to send multiple HTTP DELETE requests and terminate all the WHIP sessions
currently running. In order to prevent this scenario, WHIP endpoints generate
URLs with enough randomness, using a cryptographically secure pseudorandom number
generator following the best practices in "Randomness Requirements for Security"

, and implement a rate limit and avalanche control mechanism for HTTP DELETE
requests. The security considerations for Universally Unique IDentifiers (UUIDs) in

 are applicable for generating the WHIP session URLs.
HTTP PATCH flooding: Similar to the HTTP POST flooding, a malicious client could also
create resource exhaustion by sending multiple HTTP PATCH requests to the WHIP session,
although the WHIP sessions can limit the impact by not allocating new ICE candidates and
reusing the existing ICE candidates when doing ICE restarts. In order to prevent this
scenario, WHIP endpoints implement a rate limit and avalanche control
mechanism for incoming HTTP PATCH requests.

SHOULD

•

SHOULD

[RFC4086]
Section 8

of [RFC9562]
•

SHOULD

6. IANA Considerations
Per this specification, IANA has added a new link relation type and a new URN sub-namespace
for WHIP. IANA has also created registries to manage entries within the "urn:ietf:params:whip"
and "urn:ietf:params:whip:ext" namespaces.

Relation Name:

Description:

Reference:

6.1. Link Relation Type: ice-server
The link relation type below has been registered by IANA in the "Link Relation Types" registry
per :

ice-server

Conveys the STUN and TURN servers that can be used by an ICE agent to establish
a connection with a peer.

RFC 9725

Section 4.2 of [RFC8288]

6.2. URN Sub-namespace for WHIP (urn:ietf:params:whip)
IANA has added a new entry in the "IETF URN Sub-namespace for Registered Protocol Parameter
Identifiers" registry, following the template in :[RFC3553]

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 20

https://rfc-editor.org/rfc/rfc9562#section-8
https://rfc-editor.org/rfc/rfc8288#section-4.2

Registry name:

Specification:

Repository:

Index value:

whip

RFC 9725

<https://www.iana.org/assignments/whip>

An IANA-assigned positive integer that identifies the registration. The first entry
added to this registry uses the value 1, and this value is incremented for each subsequent
entry added to the registry.

To manage this sub-namespace, IANA has created two registries within a new registry group
called "WebRTC-HTTP Ingestion Protocol (WHIP)":

"WebRTC-HTTP Ingestion Protocol (WHIP) URNs" registry (Section 6.3)
"WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs" registry (Section 6.4)

•
•

URN:

Name:

Reference:

IANA Registry Reference:

Change Controller:

6.3. WebRTC-HTTP Ingestion Protocol (WHIP) URNs Registry
The "WebRTC-HTTP Ingestion Protocol (WHIP) URNs" registry is used to manage entries within
the "urn:ietf:params:whip" namespace. The registration procedure is "Specification Required"

. The registry contains the following fields: URN, Name, Reference, IANA Registry
Reference, and Change Controller. This document is listed as the reference.

The registry contains a single initial entry:

urn:ietf:params:whip:ext

WebRTC-HTTP Ingestion Protocol (WHIP) extension URNs

Section 6.4 of RFC 9725

See "WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs" on
<https://www.iana.org/assignments/whip>

IETF

[RFC8126]

6.4. WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs Registry
The "WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs" registry is used to manage
entries within the "urn:ietf:params:whip:ext" namespace. The registration procedure is
"Specification Required" . The registry contains the following fields: URN, Name,
Reference, IANA Registry Reference, and Change Controller. This document is listed as the
reference.

A WHIP extension URN is used as a value in the "rel" attribute of the Link header as defined in
Section 4.9 for the purpose of signaling the WHIP extensions supported by the WHIP endpoint.
WHIP extension URNs have an "ext" type.

[RFC8126]

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 21

6.5. Registering WHIP URNs and WHIP Extension URNs
This section defines the process for registering new URNs in the "WebRTC-HTTP Ingestion
Protocol (WHIP) URNs" registry (Section 6.3) and the "WebRTC-HTTP Ingestion Protocol (WHIP)
Extension URNs" registry (Section 6.4).

6.5.1. Registration Procedure

The IETF has created a mailing list, <wish@ietf.org>, which can be used for public discussion of
proposals prior to registration. Use of the mailing list is strongly encouraged. A designated
expert (DE) , appointed by the IESG, will monitor the <wish@ietf.org> mailing list and
review registrations.

Registration of new entries in the WHIP registries defined in this document be
documented in a permanent and readily available public specification, in sufficient detail so that
interoperability between independent implementations is possible, and reviewed by the DE as
per . A Standards Track RFC is for the registration of new
value data types that modify existing properties. A Standards Track RFC is also for
registration of WHIP extension URNs that modify WHIP extensions previously documented in an
existing RFC.

The registration procedure begins when a completed registration template, defined in Section
6.5.3, is sent to <iana@iana.org>. Decisions made by the DE can be appealed to an Applications
and Real-Time (ART) Area Director, then to the IESG. The normal appeals procedure described in
RFC 2026 is to be followed.

Once the registration procedure concludes successfully, IANA will create or modify the
corresponding record in the "WebRTC-HTTP Ingestion Protocol (WHIP) URNs Registry" or
"WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs" registry.

An RFC specifying one or more new WHIP extension URNs include the completed
registration template(s), which be expanded with additional information. These completed
template(s) are intended to go in the body of the document, not in the IANA Considerations
section. The RFC include the syntax and semantics of any extension-specific attributes that
may be provided in a Link header field advertising the extension.

[RFC8126]

MUST

Section 4.6 of [RFC8126] REQUIRED
REQUIRED

[BCP9]

MUST
MAY

MUST

6.5.2. Guidance for the Designated Expert

The DE is expected to do the following:

Ascertain the existence of suitable documentation (a specification) as described in
and verify that the document is permanently and publicly available. Specifications should
be documented in an Internet-Draft.
Check the clarity of purpose and use of the requested registration.
Verify that any request for one of these registrations has been made available for review
and comments by posting the request to the <wish@ietf.org> mailing list.

• [RFC8126]

•
•

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 22

https://rfc-editor.org/rfc/rfc8126#section-4.6

Ensure that any other request for a code point does not conflict with work that is active or
already published by the IETF.

•

URN:

Name:

Reference:

IANA Registry Reference:

Change Controller:

6.5.3. Registration Template

A WHIP extension URN is defined by completing the following template:

A unique URN (e.g., "urn:ietf:params:whip:ext:example:server-sent-events")

A descriptive name (e.g., "Sender Side events")

A formal reference to the publicly available specification

The registry related to the new URN

For Standards Track documents, this is "IETF". Otherwise, this is the name
of the person or body that has change control over the specification.

7. References

[FETCH]

[RFC2119]

[RFC3264]

[RFC3553]

[RFC3986]

[RFC4086]

[RFC5789]

7.1. Normative References

, , , .

, , ,
, , March 1997,
.

 and ,
, , , June 2002,

.

, , , and ,
, , ,

, June 2003, .

, , and ,
, , , , January 2005,

.

, , and ,
, , , , June 2005,

.

 and , , ,
, March 2010, .

WHATWG "Fetch" WHATWG Living Standard <https://fetch.spec.whatwg.org>
Commit snapshot: <https://fetch.spec.whatwg.org/commit-snapshots/

.edfa8d100cf1ecfde385f65c172e0e8d018fcd98/>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Rosenberg, J. H. Schulzrinne "An Offer/Answer Model with Session
Description Protocol (SDP)" RFC 3264 DOI 10.17487/RFC3264
<https://www.rfc-editor.org/info/rfc3264>

Mealling, M. Masinter, L. Hardie, T. G. Klyne "An IETF URN Sub-
namespace for Registered Protocol Parameters" BCP 73 RFC 3553 DOI 10.17487/
RFC3553 <https://www.rfc-editor.org/info/rfc3553>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier
(URI): Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Dusseault, L. J. Snell "PATCH Method for HTTP" RFC 5789 DOI 10.17487/
RFC5789 <https://www.rfc-editor.org/info/rfc5789>

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 23

https://fetch.spec.whatwg.org
https://fetch.spec.whatwg.org/commit-snapshots/edfa8d100cf1ecfde385f65c172e0e8d018fcd98/
https://fetch.spec.whatwg.org/commit-snapshots/edfa8d100cf1ecfde385f65c172e0e8d018fcd98/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc3553
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc5789

[RFC6585]

[RFC6750]

[RFC7064]

[RFC7065]

[RFC7675]

[RFC8174]

[RFC8288]

[RFC8445]

[RFC8446]

[RFC8489]

[RFC8725]

[RFC8826]

[RFC8830]

 and , , ,
, April 2012, .

 and ,
, , , October 2012,

.

, , , and ,
, ,

, November 2013, .

, , , and ,
, ,

, November 2013, .

, , , , and ,
, ,

, October 2015, .

, ,
, , , May 2017,

.

, , , , October 2017,
.

, , and ,

, , , July 2018,
.

, , ,
, August 2018, .

, , , , , and
, , ,

, February 2020, .

, , and , ,
, , , February 2020,

.

, , ,
, January 2021, .

,
, , , January 2021,

.

Nottingham, M. R. Fielding "Additional HTTP Status Codes" RFC 6585 DOI
10.17487/RFC6585 <https://www.rfc-editor.org/info/rfc6585>

Jones, M. D. Hardt "The OAuth 2.0 Authorization Framework: Bearer Token
Usage" RFC 6750 DOI 10.17487/RFC6750 <https://www.rfc-
editor.org/info/rfc6750>

Nandakumar, S. Salgueiro, G. Jones, P. M. Petit-Huguenin "URI Scheme for
the Session Traversal Utilities for NAT (STUN) Protocol" RFC 7064 DOI 10.17487/
RFC7064 <https://www.rfc-editor.org/info/rfc7064>

Petit-Huguenin, M. Nandakumar, S. Salgueiro, G. P. Jones "Traversal
Using Relays around NAT (TURN) Uniform Resource Identifiers" RFC 7065 DOI
10.17487/RFC7065 <https://www.rfc-editor.org/info/rfc7065>

Perumal, M. Wing, D. Ravindranath, R. Reddy, T. M. Thomson "Session
Traversal Utilities for NAT (STUN) Usage for Consent Freshness" RFC 7675 DOI
10.17487/RFC7675 <https://www.rfc-editor.org/info/rfc7675>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Nottingham, M. "Web Linking" RFC 8288 DOI 10.17487/RFC8288
<https://www.rfc-editor.org/info/rfc8288>

Keranen, A. Holmberg, C. J. Rosenberg "Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal" RFC 8445 DOI 10.17487/RFC8445 <https://www.rfc-
editor.org/info/rfc8445>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Petit-Huguenin, M. Salgueiro, G. Rosenberg, J. Wing, D. Mahy, R. P.
Matthews "Session Traversal Utilities for NAT (STUN)" RFC 8489 DOI 10.17487/
RFC8489 <https://www.rfc-editor.org/info/rfc8489>

Sheffer, Y. Hardt, D. M. Jones "JSON Web Token Best Current Practices"
BCP 225 RFC 8725 DOI 10.17487/RFC8725 <https://www.rfc-
editor.org/info/rfc8725>

Rescorla, E. "Security Considerations for WebRTC" RFC 8826 DOI 10.17487/
RFC8826 <https://www.rfc-editor.org/info/rfc8826>

Alvestrand, H. "WebRTC MediaStream Identification in the Session Description
Protocol" RFC 8830 DOI 10.17487/RFC8830 <https://www.rfc-
editor.org/info/rfc8830>

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 24

https://www.rfc-editor.org/info/rfc6585
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7064
https://www.rfc-editor.org/info/rfc7065
https://www.rfc-editor.org/info/rfc7675
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8489
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8826
https://www.rfc-editor.org/info/rfc8830
https://www.rfc-editor.org/info/rfc8830

[RFC8838]

[RFC8839]

[RFC8840]

[RFC8842]

[RFC8853]

[RFC8858]

[RFC9110]

[RFC9112]

[RFC9143]

[RFC9147]

[RFC9429]

, , and ,
,

, , January 2021,
.

, , , , and ,

, , , January
2021, .

, , , and ,

, , ,
January 2021, .

 and ,

, , , January 2021,
.

, , , and ,
, ,

, January 2021, .

,
, ,

, January 2021, .

, , and , ,
, , , June 2022,

.

, , and , , ,
, , June 2022,

.

, , and ,
, , ,

February 2022, .

, , and ,
, , , April

2022, .

, , and ,
, , , April 2024,

.

Ivov, E. Uberti, J. P. Saint-Andre "Trickle ICE: Incremental Provisioning of
Candidates for the Interactive Connectivity Establishment (ICE) Protocol" RFC
8838 DOI 10.17487/RFC8838 <https://www.rfc-editor.org/info/
rfc8838>

Petit-Huguenin, M. Nandakumar, S. Holmberg, C. Keränen, A. R. Shpount
"Session Description Protocol (SDP) Offer/Answer Procedures for Interactive
Connectivity Establishment (ICE)" RFC 8839 DOI 10.17487/RFC8839

<https://www.rfc-editor.org/info/rfc8839>

Ivov, E. Stach, T. Marocco, E. C. Holmberg "A Session Initiation Protocol
(SIP) Usage for Incremental Provisioning of Candidates for the Interactive
Connectivity Establishment (Trickle ICE)" RFC 8840 DOI 10.17487/RFC8840

<https://www.rfc-editor.org/info/rfc8840>

Holmberg, C. R. Shpount "Session Description Protocol (SDP) Offer/Answer
Considerations for Datagram Transport Layer Security (DTLS) and Transport
Layer Security (TLS)" RFC 8842 DOI 10.17487/RFC8842 <https://
www.rfc-editor.org/info/rfc8842>

Burman, B. Westerlund, M. Nandakumar, S. M. Zanaty "Using Simulcast
in Session Description Protocol (SDP) and RTP Sessions" RFC 8853 DOI 10.17487/
RFC8853 <https://www.rfc-editor.org/info/rfc8853>

Holmberg, C. "Indicating Exclusive Support of RTP and RTP Control Protocol
(RTCP) Multiplexing Using the Session Description Protocol (SDP)" RFC 8858
DOI 10.17487/RFC8858 <https://www.rfc-editor.org/info/rfc8858>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/
rfc9110>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP/1.1" STD 99 RFC
9112 DOI 10.17487/RFC9112 <https://www.rfc-editor.org/info/
rfc9112>

Holmberg, C. Alvestrand, H. C. Jennings "Negotiating Media Multiplexing
Using the Session Description Protocol (SDP)" RFC 9143 DOI 10.17487/RFC9143

<https://www.rfc-editor.org/info/rfc9143>

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Uberti, J. Jennings, C. E. Rescorla, Ed. "JavaScript Session Establishment
Protocol (JSEP)" RFC 9429 DOI 10.17487/RFC9429 <https://www.rfc-
editor.org/info/rfc9429>

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 25

https://www.rfc-editor.org/info/rfc8838
https://www.rfc-editor.org/info/rfc8838
https://www.rfc-editor.org/info/rfc8839
https://www.rfc-editor.org/info/rfc8840
https://www.rfc-editor.org/info/rfc8842
https://www.rfc-editor.org/info/rfc8842
https://www.rfc-editor.org/info/rfc8853
https://www.rfc-editor.org/info/rfc8858
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9143
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9429
https://www.rfc-editor.org/info/rfc9429

[RFC9562]

[W3C.REC-ldp-20150226]

, , and , ,
, , May 2024,
.

, , and ,
, , 26 February 2015,

.

Davis, K. Peabody, B. P. Leach "Universally Unique IDentifiers (UUIDs)"
RFC 9562 DOI 10.17487/RFC9562 <https://www.rfc-editor.org/info/
rfc9562>

Arwe, J., Ed. Speicher, S., Ed. A. Malhotra, Ed. "Linked Data
Platform 1.0" W3C Recommendation <https://www.w3.org/
TR/2015/REC-ldp-20150226/> Latest version available at: <https://www.w3.org/

.TR/ldp/>

[BCP56]

[BCP9]

7.2. Informative References

Best Current Practice 56, .<https://www.rfc-editor.org/info/bcp56>
At the time of writing, this BCP comprises the following:

, , , ,
, June 2022, .

Nottingham, M. "Building Protocols with HTTP" BCP 56 RFC 9205 DOI
10.17487/RFC9205 <https://www.rfc-editor.org/info/rfc9205>

Best Current Practice 9, .<https://www.rfc-editor.org/info/bcp9>
At the time of writing, this BCP comprises the following:

, , , ,
, October 1996, .

Bradner, S. "The Internet Standards Process -- Revision 3" BCP 9 RFC 2026 DOI
10.17487/RFC2026 <https://www.rfc-editor.org/info/rfc2026>

 and ,
, , ,

, September 2009, .

Dusseault, L. R. Sparks "Guidance on Interoperation and Implementation
Reports for Advancement to Draft Standard" BCP 9 RFC 5657 DOI 10.17487/
RFC5657 <https://www.rfc-editor.org/info/rfc5657>

, , and ,
, , , , October 2011,

.

Housley, R. Crocker, D. E. Burger "Reducing the Standards Track to Two
Maturity Levels" BCP 9 RFC 6410 DOI 10.17487/RFC6410 <https://
www.rfc-editor.org/info/rfc6410>

,
, , , , December 2013,

.

Resnick, P. "Retirement of the "Internet Official Protocol Standards" Summary
Document" BCP 9 RFC 7100 DOI 10.17487/RFC7100 <https://
www.rfc-editor.org/info/rfc7100>

, , and ,
, , , , January 2014,

.

Kolkman, O. Bradner, S. S. Turner "Characterization of Proposed
Standards" BCP 9 RFC 7127 DOI 10.17487/RFC7127 <https://
www.rfc-editor.org/info/rfc7127>

, , ,
, , March 2015,
.

Dawkins, S. "Increasing the Number of Area Directors in an IETF Area" BCP 9
RFC 7475 DOI 10.17487/RFC7475 <https://www.rfc-editor.org/info/
rfc7475>

 and ,
, , , , June 2020,

.

Halpern, J., Ed. E. Rescorla, Ed. "IETF Stream Documents Require IETF
Rough Consensus" BCP 9 RFC 8789 DOI 10.17487/RFC8789 <https://
www.rfc-editor.org/info/rfc8789>

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 26

https://www.rfc-editor.org/info/rfc9562
https://www.rfc-editor.org/info/rfc9562
https://www.w3.org/TR/2015/REC-ldp-20150226/
https://www.w3.org/TR/2015/REC-ldp-20150226/
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/ldp/
https://www.rfc-editor.org/info/bcp56
https://www.rfc-editor.org/info/rfc9205
https://www.rfc-editor.org/info/bcp9
https://www.rfc-editor.org/info/rfc2026
https://www.rfc-editor.org/info/rfc5657
https://www.rfc-editor.org/info/rfc6410
https://www.rfc-editor.org/info/rfc6410
https://www.rfc-editor.org/info/rfc7100
https://www.rfc-editor.org/info/rfc7100
https://www.rfc-editor.org/info/rfc7127
https://www.rfc-editor.org/info/rfc7127
https://www.rfc-editor.org/info/rfc7475
https://www.rfc-editor.org/info/rfc7475
https://www.rfc-editor.org/info/rfc8789
https://www.rfc-editor.org/info/rfc8789

[HTML]

[RFC3261]

[RFC6120]

[RFC7826]

[RFC8126]

[RFC8836]

[RFC9457]

[W3C.REC-webrtc-20250313]

, , , .

, , , , , ,
, and , , ,

, June 2002, .

, ,
, , March 2011,

.

, , , , and ,
, , ,

December 2016, .

, , and ,
, , , , June

2017, .

 and ,
, , , January 2021,

.

, , and , ,
, , July 2023,

.

, , , and
, , ,

13 March 2025, .

, , , ,
, June 2022, .

Rosen, B. "Responsibility Change for the RFC Series" BCP 9 RFC 9282 DOI
10.17487/RFC9282 <https://www.rfc-editor.org/info/rfc9282>

WHATWG "HTML" WHATWG Living Standard <https://html.spec.whatwg.org/>
Commit snapshot: <https://html.spec.whatwg.org/commit-snapshots/

.09db56ba9343c597340b2c7715f43ff9b10826f6/>

Rosenberg, J. Schulzrinne, H. Camarillo, G. Johnston, A. Peterson, J. Sparks, R.
Handley, M. E. Schooler "SIP: Session Initiation Protocol" RFC 3261 DOI
10.17487/RFC3261 <https://www.rfc-editor.org/info/rfc3261>

Saint-Andre, P. "Extensible Messaging and Presence Protocol (XMPP): Core" RFC
6120 DOI 10.17487/RFC6120 <https://www.rfc-editor.org/info/
rfc6120>

Schulzrinne, H. Rao, A. Lanphier, R. Westerlund, M. M. Stiemerling, Ed.
"Real-Time Streaming Protocol Version 2.0" RFC 7826 DOI 10.17487/RFC7826

<https://www.rfc-editor.org/info/rfc7826>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Jesup, R. Z. Sarker, Ed. "Congestion Control Requirements for Interactive
Real-Time Media" RFC 8836 DOI 10.17487/RFC8836 <https://
www.rfc-editor.org/info/rfc8836>

Nottingham, M. Wilde, E. S. Dalal "Problem Details for HTTP APIs" RFC
9457 DOI 10.17487/RFC9457 <https://www.rfc-editor.org/info/
rfc9457>

Jennings, C., Ed. Castelli, F., Ed. Boström, H., Ed. J. Bruaroey,
Ed. "WebRTC: Real-Time Communication in Browsers" W3C Recommendation

<https://www.w3.org/TR/2025/REC-webrtc-20250313/> Latest
version available at: .<https://www.w3.org/TR/webrtc/>

Acknowledgements
The authors wish to thank , , , ,

, , , , ,
, and everyone else in the WebRTC community that have provided comments,

feedback, text, and improvement proposals on the document and contributed early
implementations of the spec.

Lorenzo Miniero Juliusz Chroboczek Adam Roach Nils Ohlmeier
Christer Holmberg Cameron Elliott Gustavo Garcia Jonas Birme Sandro Gauci Christer
Holmberg

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 27

https://www.rfc-editor.org/info/rfc9282
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/commit-snapshots/09db56ba9343c597340b2c7715f43ff9b10826f6/
https://html.spec.whatwg.org/commit-snapshots/09db56ba9343c597340b2c7715f43ff9b10826f6/
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc7826
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8836
https://www.rfc-editor.org/info/rfc8836
https://www.rfc-editor.org/info/rfc9457
https://www.rfc-editor.org/info/rfc9457
https://www.w3.org/TR/2025/REC-webrtc-20250313/
https://www.w3.org/TR/webrtc/

Authors' Addresses
Sergio Garcia Murillo
Millicast

sergio.garcia.murillo@cosmosoftware.ioEmail:

Alexandre Gouaillard
CoSMo Software

alex.gouaillard@cosmosoftware.ioEmail:

RFC 9725 whip March 2025

Garcia Murillo & Gouaillard Standards Track Page 28

mailto:sergio.garcia.murillo@cosmosoftware.io
mailto:alex.gouaillard@cosmosoftware.io

	RFC 9725
	WebRTC-HTTP Ingestion Protocol (WHIP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Overview
	4. Protocol Operation
	4.1. HTTP Usage
	4.2. Ingest Session Setup
	4.3. ICE Support
	4.3.1. HTTP PATCH Request Usage
	4.3.2. Trickle ICE
	4.3.3. ICE Restarts

	4.4. WebRTC Constraints
	4.4.1. SDP Bundle
	4.4.2. Single MediaStream
	4.4.3. No Partially Successful Answers
	4.4.4. DTLS Setup Role and SDP "setup" Attribute
	4.4.5. Trickle ICE and ICE Restarts

	4.5. Load Balancing and Redirections
	4.6. STUN/TURN Server Configuration
	4.6.1. Congestion Control

	4.7. Authentication and Authorization
	4.7.1. Bearer Token Authentication

	4.8. Simulcast and Scalable Video Coding
	4.9. Protocol Extensions

	5. Security Considerations
	6. IANA Considerations
	6.1. Link Relation Type: ice-server
	6.2. URN Sub-namespace for WHIP (urn:ietf:params:whip)
	6.3. WebRTC-HTTP Ingestion Protocol (WHIP) URNs Registry
	6.4. WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs Registry
	6.5. Registering WHIP URNs and WHIP Extension URNs
	6.5.1. Registration Procedure
	6.5.2. Guidance for the Designated Expert
	6.5.3. Registration Template

	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Authors' Addresses

 WebRTC-HTTP Ingestion Protocol (WHIP)

 Millicast

 sergio.garcia.murillo@cosmosoftware.io

 CoSMo Software

 alex.gouaillard@cosmosoftware.io

 WIT
 wish

 This document describes a simple HTTP-based protocol that will allow
 WebRTC-based ingestion of content into streaming services and/or
 Content Delivery Networks (CDNs).
 This document updates RFCs 8840 and 8842.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Overview

 . Protocol Operation

 . HTTP Usage

 . Ingest Session Setup

 . ICE Support

 . HTTP PATCH Request Usage

 . Trickle ICE

 . ICE Restarts

 . WebRTC Constraints

 . SDP Bundle

 . Single MediaStream

 . No Partially Successful Answers

 . DTLS Setup Role and SDP "setup" Attribute

 . Trickle ICE and ICE Restarts

 . Load Balancing and Redirections

 . STUN/TURN Server Configuration

 . Congestion Control

 . Authentication and Authorization

 . Bearer Token Authentication

 . Simulcast and Scalable Video Coding

 . Protocol Extensions

 . Security Considerations

 . IANA Considerations

 . Link Relation Type: ice-server

 . URN Sub-namespace for WHIP (urn:ietf:params:whip)

 . WebRTC-HTTP Ingestion Protocol (WHIP) URNs Registry

 . WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs Registry

 . Registering WHIP URNs and WHIP Extension URNs

 . Registration Procedure

 . Guidance for the Designated Expert

 . Registration Template

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 The IETF RTCWEB Working Group standardized the JavaScript Session Establishment Protocol (JSEP) , a mechanism used to control the setup, management,
 and teardown of a multimedia session. It also describes how to negotiate
 media flows using the offer/answer model with the Session Description
 Protocol (SDP) , including the formats for data
 sent over the wire (e.g., media types, codec parameters, and
 encryption). WebRTC intentionally does not specify a signaling transport
 protocol at the application level.
 Unfortunately, the lack of a standardized signaling mechanism in
WebRTC has been an obstacle to its adoption as an ingestion protocol
within the broadcast and streaming industry, where a streamlined
production pipeline is taken for granted. For example, cables carrying raw
media to hardware encoders are plugged in and then the encoded media is
pushed to any streaming service or Content Delivery Network (CDN) using an
ingestion protocol.

 While WebRTC can be integrated with standard signaling protocols like
 SIP or Extensible Messaging and Presence
 Protocol (XMPP) , they are not designed to be
 used in broadcasting and streaming services, and there is also no sign of
 adoption in that industry. The Real-Time Streaming Protocol (RTSP) , which is based
 on RTP, does not support the SDP offer/answer model for negotiating the characteristics of the media
 session.
 This document proposes a simple protocol based on HTTP for supporting WebRTC as a media ingestion method that:

 is easy to implement,

 is as easy to use as popular IP-based broadcast protocols,

 is fully compliant with WebRTC and RTCWEB specs,

 enables ingestion on both classical media platforms and WebRTC end-to-end platforms (achieving the lowest possible latency),

 lowers the requirements on both hardware encoders and broadcasting services to support WebRTC, and

 is usable in both web browsers and standalone encoders.

 Terminology

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 Overview
 The WebRTC-HTTP Ingestion Protocol (WHIP) is designed to facilitate a
 one-time exchange of Session Description Protocol (SDP) offers and
 answers using HTTP POST requests. This exchange is a fundamental step in
 establishing an Interactive Connectivity Establishment (ICE) and
 Datagram Transport Layer Security (DTLS) session between the WHIP
 client, which represents the encoder or media producer, and the media
 server, which is the broadcasting ingestion endpoint.
 Upon successful establishment of the ICE/DTLS session, unidirectional
 media data transmission commences from the WHIP client to the media
 server. It is important to note that SDP renegotiations are not
 supported in WHIP. This means that no modifications to the "m=" sections
 can be made after the initial SDP offer/answer exchange via HTTP POST is
 completed and that only ICE-related information can be updated via HTTP PATCH
 requests as defined in .
 The following diagram illustrates the core operation of WHIP
 for initiating and terminating an ingest session:

 WHIP Session Setup and Teardown

+-------------+ +---------------+ +--------------+ +---------------+
| WHIP client | | WHIP endpoint | | Media server | | WHIP session |
+--+----------+ +---------+-----+ +------+-------+ +--------|------+
HTTP POST (SDP offer)		
+------------------------>+		
201 Created (SDP answer)		
+<------------------------+		
ICE/STUN REQUEST		
+--------------------------------------->+		
ICE/STUN RESPONSE		
<---------------------------------------+		
DTLS SETUP		
<======================================>		
RTP/RTCP FLOW		
+<-------------------------------------->+		
HTTP DELETE		
+-->+		
200 OK		
 <---x

 The elements in are
 described as follows:

 WHIP client:
 This represents the WebRTC media encoder or
 producer, which functions as a client of WHIP by
 encoding and delivering media to a remote media server.
 WHIP endpoint:
 This denotes the ingest server that
 receives the initial WHIP request.
 WHIP endpoint URL:
 This refers to the URL of the WHIP endpoint responsible for creating the WHIP session.
 Media server:
 This is the WebRTC media server or
 consumer responsible for establishing the media session with the
 WHIP client and receiving the media content it produces.
 WHIP session:
 This indicates the server handling the
 allocated HTTP resource by the WHIP endpoint for an ongoing ingest
 session.
 WHIP session URL:
 This refers to the URL of the WHIP resource
 allocated by the WHIP endpoint for a specific media session. To
 modify the session (e.g., ICE operations or session termination), the
 WHIP client can send requests to the WHIP session using this URL.

 illustrates the
 communication flow between a WHIP client, WHIP endpoint, media server,
 and WHIP session. This flow outlines the process of setting up and
 tearing down an ingest session using WHIP, which involves
 negotiation, ICE for Network Address Translation (NAT) traversal, DTLS
 and the Secure Real-time Transport Protocol (SRTP) for security, and
 RTP/RTCP for media transport:

 The WHIP client initiates the communication by sending an HTTP
 POST with an SDP offer to the WHIP endpoint.
	
 The WHIP endpoint responds with a "201 Created" message containing
 an SDP answer.
	
 The WHIP client and media server establish ICE and DTLS
 sessions for NAT traversal and secure communication.
	
 RTP and RTCP flows are established for media transmission from the
 WHIP client to the media server, secured by the SRTP profile.

 The WHIP client sends an HTTP DELETE to terminate the WHIP session.
	
 The WHIP session responds with a "200 OK" to confirm the session
 termination.
	

 Protocol Operation

 HTTP Usage
 Following the guidelines in , WHIP clients
 MUST NOT match error codes returned by the WHIP
 endpoints and resources to a specific error cause indicated in this
 specification. WHIP clients MUST be able to handle all
 applicable status codes by gracefully falling back to the generic n00
 semantics of a given status code on unknown error codes. WHIP
 endpoints and resources could convey finer-grained error information
 by a problem details json object in the response message body of the
 failed request as per .
 The WHIP endpoints and sessions are origin servers as defined in
 ; they handle the
 requests and provide responses for the underlying HTTP
 resources. Those HTTP resources do not have any representation defined
 in this specification, so the WHIP endpoints and sessions
 MUST return a 2xx successful response with no content
 when a GET request is received.

 Ingest Session Setup
 In order to set up an ingest session, the WHIP client
 MUST generate an SDP offer according to the JSEP rules
 for an initial offer as per and send an HTTP POST request as per to the
 configured WHIP endpoint URL.
 The HTTP POST request MUST have a content type of
 "application/sdp" and contain the SDP offer as the body. The WHIP
 endpoint MUST generate an SDP answer according to the
 JSEP rules for an initial answer as per and return the following: a "201 Created"
 response with a content type of "application/sdp", the SDP answer as
 the body, and a Location header field pointing to the newly created
 WHIP session. If the HTTP POST to the WHIP endpoint has a content type
 different than "application/sdp" or the SDP is malformed, the WHIP
 endpoint MUST reject the HTTP POST request with an
 appropriate 4xx error response.
 As WHIP only supports the ingestion use case with
 unidirectional media, the WHIP client SHOULD use the
 "sendonly" attribute in the SDP offer but MAY use the
 "sendrecv" attribute instead; the "inactive" and "recvonly" attributes
 MUST NOT be used. The WHIP endpoint MUST
 use the "recvonly" attribute in the SDP answer.
 is an example of an
 HTTP POST sent from a WHIP client to a WHIP endpoint and the "201
 Created" response from the WHIP endpoint containing the Location
 header pointing to the newly created WHIP session.

 Example of the SDP Offer/Answer Exchange Done via an HTTP POST

POST /whip/endpoint HTTP/1.1
Host: whip.example.com
Content-Type: application/sdp
Content-Length: 1101

v=0
o=- 5228595038118931041 2 IN IP4 127.0.0.1
s=-
t=0 0
a=group:BUNDLE 0 1
a=extmap-allow-mixed
a=ice-options:trickle ice2
m=audio 9 UDP/TLS/RTP/SAVPF 111
c=IN IP4 0.0.0.0
a=rtcp:9 IN IP4 0.0.0.0
a=ice-ufrag:EsAw
a=ice-pwd:bP+XJMM09aR8AiX1jdukzR6Y
a=fingerprint:sha-256 DA:7B:57:DC:28:CE:04:4F:31:79:85:C4:31:67:EB:
 27:58:29:ED:77:2A:0D:24:AE:ED:AD:30:BC:BD:F1:9C:02
a=setup:actpass
a=mid:0
a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid
a=sendonly
a=msid:d46fb922-d52a-4e9c-aa87-444eadc1521b ce326ecf-a081-453a-8f9f-
 0605d5ef4128
a=rtcp-mux
a=rtcp-mux-only
a=rtpmap:111 opus/48000/2
a=fmtp:111 minptime=10;useinbandfec=1
m=video 0 UDP/TLS/RTP/SAVPF 96 97
a=mid:1
a=bundle-only
a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid
a=extmap:10 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
a=extmap:11 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id
a=sendonly
a=msid:d46fb922-d52a-4e9c-aa87-444eadc1521b 3956b460-40f4-4d05-acef-
 03abcdd8c6fd
a=rtpmap:96 VP8/90000
a=rtcp-fb:96 ccm fir
a=rtcp-fb:96 nack
a=rtcp-fb:96 nack pli
a=rtpmap:97 rtx/90000
a=fmtp:97 apt=96

HTTP/1.1 201 Created
ETag: "xyzzy"
Content-Type: application/sdp
Content-Length: 1053
Location: https://whip.example.com/session/id

v=0
o=- 1657793490019 1 IN IP4 127.0.0.1
s=-
t=0 0
a=group:BUNDLE 0 1
a=extmap-allow-mixed
a=ice-lite
a=ice-options:trickle ice2
m=audio 9 UDP/TLS/RTP/SAVPF 111
c=IN IP4 0.0.0.0
a=rtcp:9 IN IP4 0.0.0.0
a=ice-ufrag:38sdf4fdsf54
a=ice-pwd:2e13dde17c1cb009202f627fab90cbec358d766d049c9697
a=fingerprint:sha-256 F7:EB:F3:3E:AC:D2:EA:A7:C1:EC:79:D9:B3:8A:35:
 DA:70:86:4F:46:D9:2D:CC:D0:BC:81:9F:67:EF:34:2E:BD
a=candidate:1 1 UDP 2130706431 198.51.100.1 39132 typ host
a=setup:passive
a=mid:0
a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid
a=recvonly
a=rtcp-mux
a=rtcp-mux-only
a=rtpmap:111 opus/48000/2
a=fmtp:111 minptime=10;useinbandfec=1
m=video 0 UDP/TLS/RTP/SAVPF 96 97
c=IN IP4 0.0.0.0
a=mid:1
a=bundle-only
a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid
a=extmap:10 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
a=extmap:11 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id
a=recvonly
a=rtpmap:96 VP8/90000
a=rtcp-fb:96 ccm fir
a=rtcp-fb:96 nack
a=rtcp-fb:96 nack pli
a=rtpmap:97 rtx/90000
a=fmtp:97 apt=96

 Once a session is set up, consent freshness as per SHALL be used to detect non-graceful
 disconnection by full ICE implementations and DTLS teardown for
 session termination by either side.
 To explicitly terminate a WHIP session, the WHIP client
 MUST send an HTTP DELETE request to the WHIP session
 URL returned in the Location header field of the initial HTTP
 POST. Upon receiving the HTTP DELETE request, the WHIP session will be
 removed and the resources freed on the media server, terminating the
 ICE and DTLS sessions.
 A media server terminating a session MUST follow the
 procedures in for immediate revocation of consent.
 The WHIP endpoints MUST support OPTIONS requests for
 Cross-Origin Resource Sharing (CORS) as defined in . The "200 OK" response to any OPTIONS request
 SHOULD include an Accept-Post header with a media
 type value of "application/sdp" as per .

 ICE Support
 ICE is a protocol that addresses the
 complexities of NAT traversal commonly encountered in Internet
 communication. NATs hinder direct communication between devices on
 different local networks, posing challenges for real-time
 applications. ICE facilitates seamless connectivity by employing
 techniques to discover and negotiate efficient communication
 paths.
 Trickle ICE optimizes the connectivity
 process by incrementally sharing potential communication paths,
 reducing latency, and facilitating quicker establishment.
 ICE restarts are crucial for maintaining connectivity in dynamic
 network conditions or disruptions, allowing devices to re-establish
 communication paths without complete renegotiation. This ensures
 minimal latency and reliable real-time communication.
 Trickle ICE and ICE restart support are RECOMMENDED
 for both WHIP sessions and clients.

 HTTP PATCH Request Usage
 The WHIP client MAY perform Trickle ICE or ICE
 restarts by sending an HTTP PATCH request as per to the WHIP session URL. This HTTP PATCH request MUST contain a body with
 an SDP fragment with media type "application/trickle-ice-sdpfrag" as
 specified in , which carries the relevant ICE
 information. If the HTTP PATCH request sent to the WHIP session URL has a content
 type different than "application/trickle-ice-sdpfrag" or the SDP
 fragment is malformed, the WHIP session MUST reject
 the HTTP PATCH with an appropriate 4xx error response.
 If the WHIP session supports either Trickle ICE or ICE restarts,
 but not both, it MUST return a "422 Unprocessable
 Content" error response for the HTTP PATCH requests that are not
 supported as per .
 The WHIP client MAY send overlapping HTTP PATCH
 requests to one WHIP session.

	 Consequently, those HTTP PATCH requests may be received out of order
	 by the WHIP session. Thus, if the WHIP session supports ICE
	 restarts, it MUST generate a unique strong entity-tag
	 identifying the ICE session as per .
	 The initial value of the
 entity-tag identifying the initial ICE session MUST
 be returned in an ETag header field in the "201 Created" response to
 the initial POST request to the WHIP endpoint.
 WHIP clients SHOULD NOT use entity-tag validation
 when matching a specific ICE session is not required, for example, when
 initiating a DELETE request to terminate a session.
 WHIP sessions MUST ignore any entity-tag
 value sent by the WHIP client when ICE session matching is not
 required, as in the HTTP DELETE request.
 Missing or outdated ETags in the PATCH requests from WHIP clients
 will be answered by WHIP sessions as per and , with a "428 Precondition
 Required" response for a missing entity-tag and a "412 Precondition
 Failed" response for a non-matching entity-tag.

 Trickle ICE
 Depending on the Trickle ICE support on the WHIP client, the
 initial offer by the WHIP client MAY be sent after
 the full ICE gathering is complete with the full list of ICE
 candidates, or it MAY only contain local candidates
 (or even an empty list of candidates) as per . For the purpose of reducing setup times, when
 using Trickle ICE, the WHIP client SHOULD send the SDP
 offer (containing either locally gathered ICE
 candidates or an empty list of candidates) as soon as possible.
 In order to simplify the protocol, the WHIP session cannot signal
 additional ICE candidates to the WHIP client after the SDP answer
 has been sent. The WHIP endpoint SHALL gather all the
 ICE candidates for the media server before responding to the client
 request, and the SDP answer SHALL contain the full
 list of ICE candidates of the media server.
 As the WHIP client needs to know the WHIP session URL associated
 with the ICE session in order to send a PATCH request containing new
 ICE candidates, it MUST wait and buffer any gathered
 candidates until the "201 Created" HTTP response to the initial POST
 request is received. In order to reduce the HTTP traffic and
 processing time required, the WHIP client SHOULD send
 a single aggregated HTTP PATCH request with all the buffered ICE
 candidates once the response is received. Additionally, if ICE
 restarts are supported by the WHIP session, the WHIP client needs to
 know the entity-tag associated with the ICE session in order to send
 a PATCH request containing new ICE candidates; thus, it
 MUST also wait and buffer any gathered candidates
 until it receives the HTTP response with the new entity-tag value to
 the last PATCH request performing an ICE restart.
 WHIP clients generating the HTTP PATCH body with the SDP fragment
 and its subsequent processing by WHIP sessions MUST
 follow the guidelines defined in with the following
 considerations:

 As per , only "m=" sections not marked
 as bundle-only can gather ICE candidates, so given that the
 "max-bundle" policy is being used, the SDP fragment will contain
 only the offerer-tagged "m=" line of the bundle group.

 The WHIP client MAY exclude ICE candidates
 from the HTTP PATCH body if they have already been confirmed by
 the WHIP session with a successful HTTP response to a previous
 HTTP PATCH request.

 WHIP sessions and clients that support Trickle ICE
 MUST make use of entity-tags and conditional requests
 as explained in .
 When a WHIP session receives a PATCH request that adds new ICE
 candidates without performing an ICE restart, it MUST
 return a "204 No Content" response without a body and MUST NOT include an ETag header in the response. If the WHIP
 session does not support a candidate transport or is not able to
 resolve the connection address, it MUST silently
 discard the candidate and continue processing the rest of the
 request normally.
 shows an example of the
 Trickle ICE procedure where the WHIP client sends a PATCH request
 with updated ICE candidate information and receives a successful
 response from the WHIP session.

 Example of a Trickle ICE Request and Response

PATCH /session/id HTTP/1.1
Host: whip.example.com
If-Match: "xyzzy"
Content-Type: application/trickle-ice-sdpfrag
Content-Length: 576

a=group:BUNDLE 0 1
m=audio 9 UDP/TLS/RTP/SAVPF 111
a=mid:0
a=ice-ufrag:EsAw
a=ice-pwd:P2uYro0UCOQ4zxjKXaWCBui1
a=candidate:1387637174 1 udp 2122260223 192.0.2.1 61764 typ host
 generation 0 ufrag EsAw network-id 1
a=candidate:3471623853 1 udp 2122194687 198.51.100.2 61765 typ host
 generation 0 ufrag EsAw network-id 2
a=candidate:473322822 1 tcp 1518280447 192.0.2.1 9 typ host tcptype
 active generation 0 ufrag EsAw network-id 1
a=candidate:2154773085 1 tcp 1518214911 198.51.100.2 9 typ host
 tcptype active generation 0 ufrag EsAw network-id 2
a=end-of-candidates

HTTP/1.1 204 No Content

 ICE Restarts
 As defined in , when an ICE restart
 occurs, a new SDP offer/answer exchange is triggered. However, as
 WHIP does not support renegotiation of non-ICE-related SDP
 information, a WHIP client will not send a new offer when an ICE
 restart occurs. Instead, the WHIP client and WHIP session will only
 exchange the relevant ICE information via an HTTP PATCH request as
 defined in and MUST
 assume that the previously negotiated non-ICE-related SDP
 information still applies after the ICE restart.
 When performing an ICE restart, the WHIP client
 MUST include the updated "ice-pwd" and "ice-ufrag" in
 the SDP fragment of the HTTP PATCH request body as well as the new
 set of gathered ICE candidates as defined in . Similar to what is defined in , as per , only
 "m=" sections not marked as bundle-only can gather ICE candidates, so
 given that the "max-bundle" policy is being used, the SDP fragment
 will contain only the offerer-tagged "m=" line of the bundle group. A
 WHIP client sending a PATCH request for performing ICE restart
 MUST contain an If-Match header field with a
 field-value of "*" as per .
 states that an agent MUST
 discard any received requests containing "ice-pwd" and "ice-ufrag"
 attributes that do not match those of the current ICE Negotiation
 Session. However, any WHIP session receiving updated "ice-pwd"
 and "ice-ufrag" attributes MUST consider the request
 as performing an ICE restart instead and, if supported,
 SHALL return a "200 OK" with an
 "application/trickle-ice-sdpfrag" body containing the new ICE
 username fragment and password and a new set of ICE candidates for
 the WHIP session. Also, the "200 OK" response for a successful ICE
 restart MUST contain the new entity-tag corresponding
 to the new ICE session in an ETag response header field and
 MAY contain a new set of ICE candidates for the media
 server.
 As defined in , the set of candidates after an ICE restart may
 include some, none, or all of the previous candidates for that data
 stream and may include a totally new set of candidates. Therefore, after
 performing a successful ICE restart, both the WHIP client and the
 WHIP session MUST replace the previous set of remote
 candidates with the new set exchanged in the HTTP PATCH request and
 response, discarding any remote ICE candidate not present on the new
 set. Both the WHIP client and the WHIP session MUST
 ensure that the HTTP PATCH request and response bodies include the
 same "ice-options," "ice-pacing," and "ice-lite" attributes as those
 used in the SDP offer or answer.
 If the ICE restart request cannot be satisfied by the WHIP
 session, the resource MUST return an appropriate HTTP
 error code and MUST NOT terminate the session
 immediately and keep the existing ICE session. The WHIP client
 MAY retry performing a new ICE restart or terminate
 the session by issuing an HTTP DELETE request instead. In any case,
 the session MUST be terminated if the ICE consent
 expires as a consequence of the failed ICE restart as per .
 In case of unstable network conditions, the ICE restart HTTP
 PATCH requests and responses might be received out of order. In
 order to mitigate this scenario, when the client performs an ICE
 restart, it MUST discard any previous ICE username fragment
 and password and ignore any further HTTP PATCH response
 received from a pending HTTP PATCH request. WHIP clients
 MUST apply only the ICE information received in the
 response to the last sent request. If there is a mismatch between
 the ICE information at the WHIP client and at the WHIP session
 (because of an out-of-order request), the Session Traversal
 Utilities for NAT (STUN) requests will contain invalid ICE
 information and will be dropped by the receiving side. If this
 situation is detected by the WHIP client, it MUST
 send a new ICE restart request to the server.
 demonstrates a Trickle ICE
 restart procedure example. The WHIP client sends a PATCH request
 containing updated ICE information, including a new username fragment and
 password, along with newly gathered ICE candidates. In response, the
 WHIP session provides ICE information for the session after the ICE
 restart, including the updated username fragment and password, as well as the
 previous ICE candidate.

 Example of an ICE Restart Request and Response

PATCH /session/id HTTP/1.1
Host: whip.example.com
If-Match: "*"
Content-Type: application/trickle-ice-sdpfrag
Content-Length: 82

a=ice-options:trickle ice2
a=group:BUNDLE 0 1
m=audio 9 UDP/TLS/RTP/SAVPF 111
a=mid:0
a=ice-ufrag:ysXw
a=ice-pwd:vw5LmwG4y/e6dPP/zAP9Gp5k
a=candidate:1387637174 1 udp 2122260223 192.0.2.1 61764 typ host
 generation 0 ufrag EsAw network-id 1
a=candidate:3471623853 1 udp 2122194687 198.51.100.2 61765 typ host
 generation 0 ufrag EsAw network-id 2
a=candidate:473322822 1 tcp 1518280447 192.0.2.1 9 typ host tcptype
 active generation 0 ufrag EsAw network-id 1
a=candidate:2154773085 1 tcp 1518214911 198.51.100.2 9 typ host
 tcptype active generation 0 ufrag EsAw network-id 2

HTTP/1.1 200 OK
ETag: "abccd"
Content-Type: application/trickle-ice-sdpfrag
Content-Length: 252

a=ice-lite
a=ice-options:trickle ice2
a=group:BUNDLE 0 1
m=audio 9 UDP/TLS/RTP/SAVPF 111
a=mid:0
a=ice-ufrag:289b31b754eaa438
a=ice-pwd:0b66f472495ef0ccac7bda653ab6be49ea13114472a5d10a
a=candidate:1 1 udp 2130706431 198.51.100.1 39132 typ host
a=end-of-candidates

 WebRTC Constraints
 To simplify the implementation of WHIP in both clients and media
 servers, WHIP introduces specific restrictions on WebRTC usage. The
 following subsections will explain these restrictions in detail.

 SDP Bundle
 Both the WHIP client and the WHIP endpoint SHALL
 support and use the "max-bundle" policy as
 defined in . The WHIP client and the media
 server MUST support multiplexed media associated with
 the BUNDLE group as per . In addition, per , the
 WHIP client and media server SHALL use RTP/RTCP
 multiplexing for all bundled media. In order to reduce the network
 resources required at the media server, both the WHIP client and
 WHIP endpoints MUST include the "rtcp-mux-only"
 attribute in each bundled "m=" section as per .

 Single MediaStream
 WHIP only supports a single MediaStream as defined in ; therefore, all "m=" sections MUST
 contain a "msid" attribute with the same value. The MediaStream
 MUST contain at least one MediaStreamTrack of any
 media kind, and it MUST NOT have two or more
 MediaStreamTracks for the same media (audio or video). However, it
 would be possible for future revisions of this specification to allow more
 than a single MediaStream or MediaStreamTrack of each media
 kind. Therefore, in order to ensure forward compatibility, if the
 number of audio and/or video MediaStreamTracks or the number of
 MediaStreams are not supported by the WHIP endpoint, it
 MUST reject the HTTP POST request with a "422
 Unprocessable Content" or "400 Bad Request" error response. The WHIP
 endpoint MAY also return a problem statement that provides further error
 details about the failed request, as
 recommended in .

 No Partially Successful Answers
 The WHIP endpoint SHOULD NOT reject individual
 "m=" sections, as specified in , if an error occurs when processing the "m="
 section; instead, it SHOULD reject the HTTP POST request with a "422 Unprocessable
 Content" or "400 Bad Request" error response to prevent having
 partially successful ingest sessions, which can be misleading to end
 users. The WHIP endpoint MAY also return a problem
 statement as recommended in proving
 further error details about the failed request.

 DTLS Setup Role and SDP "setup" Attribute
 When a WHIP client sends an SDP offer, it SHOULD
 insert an SDP "setup" attribute with an "actpass" attribute value,
 as defined in . However, if the WHIP client
 only implements the DTLS client role, it MAY use an
 SDP "setup" attribute with an "active" attribute value. If the WHIP
 endpoint does not support an SDP offer with an SDP "setup" attribute
 with an "active" attribute value, it SHOULD reject
 the request with a "422 Unprocessable Content" or "400 Bad Request"
 error response.
 NOTE: defines that the offerer
 must insert an SDP "setup" attribute with an "actpass" attribute
 value. However, the WHIP client will always communicate with a media
 server that is expected to support the DTLS server role, in which
 case the client might choose to only implement support for the DTLS
 client role.

 Trickle ICE and ICE Restarts
 The media server SHOULD support full ICE, unless
 it is connected to the Internet with an IP address that is
 accessible by each WHIP client that is authorized to use it, in
 which case it MAY support only ICE lite. The WHIP
 client MUST implement and use full ICE.
 Trickle ICE and ICE restart support is OPTIONAL
 for both the WHIP clients and media servers as explained in .

 Load Balancing and Redirections
 WHIP endpoints and media servers might not be colocated on the same
 server, so it is possible to load balance incoming requests to
 different media servers.
 WHIP clients SHALL support HTTP redirections as per
 . In order
 to avoid POST requests being redirected as GET requests, status codes
 "301 Moved Permanently" and "302 Found" MUST NOT be used; the preferred method
 for performing load balancing is via the "307 Temporary Redirect"
 response status code as described in . Redirections are not required
 to be supported for the PATCH and DELETE requests.
 In case of high load, the WHIP endpoints MAY return
 a "503 Service Unavailable" response indicating that the server is
 currently unable to handle the request due to a temporary overload or
 scheduled maintenance as described in , which will likely be alleviated
 after some delay. The WHIP endpoint might send a Retry-After header
 field indicating the minimum time that the user agent ought to wait
 before making a follow-up request as described in .

 STUN/TURN Server Configuration
 The WHIP endpoint MAY return STUN/TURN server configuration URLs and credentials usable by the client in the "201 Created" response to the HTTP POST request to the WHIP endpoint URL.
 A reference to each STUN/TURN server will be returned using the Link header field with a "rel" attribute value of "ice-server". The Link target URI is the server URI as defined in and . The credentials are encoded in the Link target attributes as follows:

 username: If the Link header field represents a Traversal Using Relays around NAT (TURN) server, then this attribute specifies the username to use with that TURN server.

 credential: This attribute represents a long-term
 authentication password, as described in .

 illustrates the Link headers included in a "201 Created" response, providing the ICE server URLs and associated credentials.

 Example of a STUN/TURN Server's Configuration

Link: <stun:stun.example.net>; rel="ice-server"
Link: <turn:turn.example.net?transport=udp>; rel="ice-server";
 username="user"; credential="myPassword"
Link: <turn:turn.example.net?transport=tcp>; rel="ice-server";
 username="user"; credential="myPassword"
Link: <turns:turn.example.net?transport=tcp>; rel="ice-server";
 username="user"; credential="myPassword"

 NOTE: The naming of both the "rel" attribute value of
 "ice-server" and the target attributes follows that used in the
 RTCConfiguration dictionary in Section 4.2.1 of the W3C WebRTC
 recommendation (see). The "rel"
 attribute value of "ice-server" is not prepended with the
 "urn:ietf:params:whip:" so it can be reused by other specifications,
 which may use this mechanism to configure the usage of STUN/TURN
 servers.
 NOTE: Depending on the ICE agent implementation, the WHIP
 client may need to call the setConfiguration method before calling the
 setLocalDescription method with the local SDP offer in order
 to avoid having to perform an ICE restart for applying the updated
 STUN/TURN server configuration on the next ICE gathering
 phase.
 There are some WebRTC implementations that do not support updating
 the STUN/TURN server configuration after the local offer has been
 created as specified in . In order to support these clients, the WHIP
 endpoint MAY also include the STUN/TURN server
 configuration in the responses to OPTIONS requests sent to the WHIP
 endpoint URL before the POST request is sent. However, this method is
 NOT RECOMMENDED to be used by the WHIP clients, and if it is
 supported by the underlying WHIP client's WebRTC implementation, the
 WHIP client SHOULD wait for the information to be
 returned by the WHIP endpoint in the response of the HTTP POST request
 instead.
 The generation of the TURN server credentials may require
 sending a request to an external provider, which can both add
 latency to the OPTIONS request processing and increase the processing
 required to handle that request. In order to prevent this, the WHIP
 endpoint SHOULD NOT return the STUN/TURN server
 configuration if the OPTIONS request is a preflight request for CORS
 as defined in , that is, if the OPTIONS request
 does not contain an Access-Control-Request-Method with a POST value
 and the Access-Control-Request-Headers HTTP header does not contain
 the Link value.
 The WHIP clients MAY also support configuring the
 STUN/TURN server URIs with long-term credentials provided by either
 the broadcasting service or an external TURN provider, overriding the
 values provided by the WHIP endpoint.

 Congestion Control
 defines the congestion control
 requirements for interactive real-time media to be used in
 WebRTC. These requirements are based on the assumption that the data
 needs to be provided continuously within a very limited time window
 (a delay of no more than hundreds of milliseconds end-to-end). If
 the latency target is higher, some of the requirements present in
 could be relaxed to allow more flexible
 implementations.

 Authentication and Authorization
 All WHIP endpoints, sessions, and clients MUST
 support HTTP authentication as per . Additionally, in order to
 ensure interoperability, bearer token authentication as defined in the
 next section MUST be supported by all WHIP
 entities. However, this does not preclude the support of additional
 HTTP authentication schemes as defined in .

 Bearer Token Authentication
 WHIP endpoints and sessions MAY require the HTTP
 request to be authenticated using an HTTP Authorization header field
 with a bearer token as specified in . WHIP clients
 MUST implement this authentication and authorization
 mechanism and send the HTTP Authorization header field in all HTTP
 requests sent to either the WHIP endpoint or session (except the
 preflight OPTIONS requests for CORS).
 The nature, syntax, and semantics of the bearer token, as well as
 how to distribute it to the client, are outside the scope of this
 document. Examples of tokens that could be used
 include, but are not limited to, JSON Web Tokens (JWTs) as per
 and a shared secret
 stored on a database. The tokens are typically made available to the
 end user alongside the WHIP endpoint URL and configured on the WHIP
 clients (similar to the way Real Time Messaging Protocol (RTMP) URLs
 and Stream Keys are distributed).
 WHIP endpoints and sessions could perform the authentication and
 authorization by encoding an authentication token within the URLs
 for the WHIP endpoints or sessions instead. In case the WHIP client
 is not configured to use a bearer token, the HTTP Authorization
 header field MUST NOT be sent in any request.

 Simulcast and Scalable Video Coding
 Simulcast as per MAY be
 supported by both the media servers and WHIP clients through
 negotiation in the SDP offer/answer.
 If the client supports simulcast and wants to enable it for
 ingesting, it MUST negotiate the support in the SDP
 offer according to the procedures in . A server accepting a simulcast
 offer MUST create an answer according to the procedures
 in .
 It is possible for both media servers and WHIP clients to support
 Scalable Video Coding (SVC). However, as there is no universal
 negotiation mechanism in SDP for SVC, the encoder must consider the
 negotiated codec(s), intended usage, and SVC support in available
 decoders when configuring SVC.

 Protocol Extensions
 In order to support future extensions to be defined for WHIP, a common procedure for registering and announcing the new
 extensions is defined.
 Protocol extensions supported by the WHIP sessions
 MUST be advertised to the WHIP client in the "201
 Created" response to the initial HTTP POST request sent to the WHIP
 endpoint. The WHIP endpoint MUST return one Link
 header field for each extension that it supports, with the extension
 "rel" attribute value containing the extension URN and the URL for the
 HTTP resource that will be available for receiving requests related to
 that extension.
 Protocol extensions are optional for both WHIP clients and
 servers. WHIP clients MUST ignore any Link target attribute
 with an unknown "rel" attribute value, and WHIP sessions MUST NOT require the usage of any extension.
 Each protocol extension MUST register a unique "rel"
 attribute value that starts with the prefix
 "urn:ietf:params:whip:ext" in the "WebRTC-HTTP Ingestion Protocol (WHIP)
 Extension URNs" registry ().
 For example, consider a potential extension of server-to-client
 communication using server-sent events as specified in Section 9.2 of
 . The URL for connecting to the server-sent event
 resource for the ingested stream could be returned in the initial HTTP
 "201 Created" response with a Link header field and a "rel"
 attribute of "urn:ietf:params:whip:ext:example:server-sent-events"
 (this document does not specify such an extension and uses it only as
 an example).
 In this theoretical case, the "201 Created" response to the HTTP
 POST request would look like:
 shows the "201 Created"
 response to the HTTP POST request in this theoretical case (i.e., the
 WHIP extension supported by the WHIP session, as indicated in
 the Link header of the "201 Created" response).

 Example of a WHIP Extension

HTTP/1.1 201 Created
Content-Type: application/sdp
Location: https://whip.example.com/session/id
Link: <https://whip.example.com/session/id/sse>;
 rel="urn:ietf:params:whip:ext:example:server-sent-events"

 Security Considerations
 This document specifies a new protocol on top of HTTP and WebRTC;
 thus, security protocols and considerations from related specifications
 apply to the WHIP specification. These include:

 WebRTC security considerations: See . HTTPS SHALL be used in order to
 preserve the WebRTC security model.
 Transport Layer Security (TLS): See and
 .
 HTTP security: See and .
 URI security: See .

 On top of that, WHIP exposes a thin new attack surface
 specific to the REST API methods used within it:

 HTTP POST flooding and resource exhaustion: It would be possible
 for an attacker in possession of authentication credentials valid
 for ingesting a WHIP stream to make multiple HTTP POST requests to the WHIP
 endpoint. This will force the WHIP endpoint to process the incoming
 SDP and allocate resources for being able to set up the DTLS/ICE
 connection. While the malicious client does not need to initiate
 the DTLS/ICE connection at all, the WHIP session will have to wait
 for the DTLS/ICE connection timeout in order to release the
 associated resources. If the connection rate is high enough, this
 could lead to resource exhaustion on the servers handling the
 requests, and they will not be able to process legitimate incoming
 ingests. In order to prevent this scenario, WHIP endpoints
 SHOULD implement a rate limit and avalanche control
 mechanism for incoming initial HTTP POST requests.
 Insecure Direct Object References (IDORs) for WHIP session URLs:
 If the URLs returned by the WHIP endpoint for the location of WHIP
 sessions are easy to guess, it would be possible for an
 attacker to send multiple HTTP DELETE requests and terminate all
 the WHIP sessions currently running.
	 In order to prevent this scenario,
 WHIP endpoints SHOULD generate URLs with enough
 randomness, using a cryptographically secure pseudorandom number
 generator following the best practices in "Randomness Requirements
 for Security" , and implement a rate limit and avalanche control
 mechanism for HTTP DELETE requests. The security considerations for
 Universally Unique IDentifiers (UUIDs) in are applicable for generating the
 WHIP session URLs.
 HTTP PATCH flooding: Similar to the HTTP POST flooding, a
 malicious client could also create resource exhaustion by sending
 multiple HTTP PATCH requests to the WHIP session, although the WHIP
 sessions can limit the impact by not allocating new ICE candidates
 and reusing the existing ICE candidates when doing ICE restarts. In
 order to prevent this scenario, WHIP endpoints SHOULD
 implement a rate limit and avalanche control mechanism for incoming
 HTTP PATCH requests.

 IANA Considerations
 Per this specification, IANA has added a new link relation type and
 a new URN sub-namespace for WHIP. IANA has also created registries
 to manage entries within the "urn:ietf:params:whip" and
 "urn:ietf:params:whip:ext" namespaces.

 Link Relation Type: ice-server
 The link relation type below has been registered by IANA in the
 "Link Relation Types" registry per :

 Relation Name:
 ice-server
 Description:
 Conveys the STUN and TURN servers that can be used by
 an ICE agent to establish a connection with a peer.
 Reference:
 RFC 9725

 URN Sub-namespace for WHIP (urn:ietf:params:whip)
 IANA has added a new entry in the "IETF URN Sub-namespace for Registered
Protocol Parameter Identifiers" registry, following the template in :

 Registry name:
 whip
 Specification:
 RFC 9725
 Repository:
 <https://www.iana.org/assignments/whip>
 Index value:
 An IANA-assigned positive integer that identifies
 the registration. The first entry added to this registry uses the value 1,
 and this value is incremented for each subsequent entry added to the
 registry.

 To manage this sub-namespace, IANA has created two registries within
a new registry group called "WebRTC-HTTP Ingestion Protocol (WHIP)":

 "WebRTC-HTTP Ingestion Protocol (WHIP) URNs" registry ()
 "WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs" registry ()

 WebRTC-HTTP Ingestion Protocol (WHIP) URNs Registry
 The "WebRTC-HTTP Ingestion Protocol (WHIP) URNs" registry is used
 to manage entries within the "urn:ietf:params:whip" namespace. The
 registration procedure is "Specification Required" . The registry contains the following fields:
	 URN, Name, Reference, IANA Registry Reference, and Change Controller. This document is listed as the reference.
 The registry contains a single initial entry:

 URN:
 urn:ietf:params:whip:ext
 Name:
 WebRTC-HTTP Ingestion Protocol (WHIP) extension URNs
 Reference:

 of RFC 9725
 IANA Registry Reference:
 See "WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs" on <https://www.iana.org/assignments/whip>
 Change Controller:
 IETF

 WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs Registry
 The "WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs" registry is
 used to manage entries within the "urn:ietf:params:whip:ext"
 namespace. The registration procedure is "Specification Required"
 .
 The registry contains the following fields:
	 URN, Name, Reference, IANA Registry Reference, and Change Controller. This document is listed as the reference.

 A WHIP extension URN is used as a value in the "rel" attribute of the Link header as defined in for the purpose of signaling the WHIP extensions supported by the WHIP endpoint. WHIP extension URNs have an "ext" type.

 Registering WHIP URNs and WHIP Extension URNs
 This section defines the process for registering new URNs in the
 "WebRTC-HTTP Ingestion Protocol (WHIP) URNs" registry () and the "WebRTC-HTTP Ingestion Protocol
 (WHIP) Extension URNs" registry ().

 Registration Procedure
 The IETF has created a mailing list, <wish@ietf.org>, which can
 be used for public discussion of proposals
 prior to registration. Use of the mailing list is strongly
 encouraged. A designated expert (DE) , appointed by the IESG, will monitor the <wish@ietf.org> mailing list
 and review registrations.
 Registration of new entries in the WHIP registries defined in this document
 MUST be documented in a permanent and readily
 available public specification, in sufficient detail so that
 interoperability between independent implementations is possible, and
 reviewed by the DE as per . A Standards Track RFC is
 REQUIRED for the registration of new value data types
 that modify existing properties. A Standards Track RFC is also
 REQUIRED for registration of WHIP extension
 URNs that modify WHIP extensions previously documented in
 an existing RFC.
 The registration procedure begins when a completed registration template, defined in , is sent to <iana@iana.org>.
 Decisions made by the DE can be appealed to an Applications and Real-Time (ART) Area Director, then to the IESG.
 The normal appeals procedure described in RFC 2026 is to be followed.
 Once the registration procedure concludes successfully, IANA will create
 or modify the corresponding record in the "WebRTC-HTTP Ingestion Protocol (WHIP) URNs Registry" or "WebRTC-HTTP Ingestion Protocol (WHIP) Extension URNs" registry.
 An RFC specifying one or more new WHIP extension URNs MUST include the
 completed registration template(s), which MAY be expanded with
 additional information. These completed template(s) are intended to go
 in the body of the document, not in the IANA Considerations section.
 The RFC MUST include the syntax and semantics of any extension-specific attributes that may be provided in a Link header
 field advertising the extension.

 Guidance for the Designated Expert
 The DE is expected to do the following:

 Ascertain the existence of suitable documentation (a
	 specification) as described in and verify
	 that the document is permanently and publicly
	 available. Specifications should be documented in an
	 Internet-Draft.
 Check the clarity of purpose and use of the requested
 registration.
 Verify that any request for one of these
 registrations has been made available for review and comments by
 posting the request to the <wish@ietf.org> mailing list.
 Ensure that any other request for a code point does not conflict with work that is active or already published by the IETF.

 Registration Template
 A WHIP extension URN is defined by completing the following template:

 URN:
 A unique URN (e.g., "urn:ietf:params:whip:ext:example:server-sent-events")
 Name:
 A descriptive name (e.g., "Sender Side events")
 Reference:
 A formal reference to the publicly available specification
 IANA Registry Reference:
 The registry related to the new URN
	
 Change Controller:
 For Standards Track documents, this is "IETF".
 Otherwise, this is the name of the person or body
 that has change control over the specification.

 References

 Normative References

 Fetch

 WHATWG

 WHATWG Living Standard
 Commit snapshot: .

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 An Offer/Answer Model with Session Description Protocol (SDP)

 This document defines a mechanism by which two entities can make use of the Session Description Protocol (SDP) to arrive at a common view of a multimedia session between them. In the model, one participant offers the other a description of the desired session from their perspective, and the other participant answers with the desired session from their perspective. This offer/answer model is most useful in unicast sessions where information from both participants is needed for the complete view of the session. The offer/answer model is used by protocols like the Session Initiation Protocol (SIP). [STANDARDS-TRACK]

 An IETF URN Sub-namespace for Registered Protocol Parameters

 This document describes a new sub-delegation for the 'ietf' URN namespace for registered protocol items. The 'ietf' URN namespace is defined in RFC 2648 as a root for persistent URIs that refer to IETF- defined resources. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 PATCH Method for HTTP

 Several applications extending the Hypertext Transfer Protocol (HTTP) require a feature to do partial resource modification. The existing HTTP PUT method only allows a complete replacement of a document. This proposal adds a new HTTP method, PATCH, to modify an existing HTTP resource. [STANDARDS-TRACK]

 Additional HTTP Status Codes

 This document specifies additional HyperText Transfer Protocol (HTTP) status codes for a variety of common situations. [STANDARDS-TRACK]

 The OAuth 2.0 Authorization Framework: Bearer Token Usage

 This specification describes how to use bearer tokens in HTTP requests to access OAuth 2.0 protected resources. Any party in possession of a bearer token (a "bearer") can use it to get access to the associated resources (without demonstrating possession of a cryptographic key). To prevent misuse, bearer tokens need to be protected from disclosure in storage and in transport. [STANDARDS-TRACK]

 URI Scheme for the Session Traversal Utilities for NAT (STUN) Protocol

 This document specifies the syntax and semantics of the Uniform Resource Identifier (URI) scheme for the Session Traversal Utilities for NAT (STUN) protocol.

 Traversal Using Relays around NAT (TURN) Uniform Resource Identifiers

 This document specifies the syntax of Uniform Resource Identifier (URI) schemes for the Traversal Using Relays around NAT (TURN) protocol. It defines two URI schemes to provision the TURN Resolution Mechanism (RFC 5928).

 Session Traversal Utilities for NAT (STUN) Usage for Consent Freshness

 To prevent WebRTC applications, such as browsers, from launching attacks by sending traffic to unwilling victims, periodic consent to send needs to be obtained from remote endpoints.
 This document describes a consent mechanism using a new Session Traversal Utilities for NAT (STUN) usage.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Web Linking

 This specification defines a model for the relationships between resources on the Web ("links") and the type of those relationships ("link relation types").
 It also defines the serialisation of such links in HTTP headers with the Link header field.

 Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal

 This document describes a protocol for Network Address Translator (NAT) traversal for UDP-based communication. This protocol is called Interactive Connectivity Establishment (ICE). ICE makes use of the Session Traversal Utilities for NAT (STUN) protocol and its extension, Traversal Using Relay NAT (TURN).
 This document obsoletes RFC 5245.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Session Traversal Utilities for NAT (STUN)

 Session Traversal Utilities for NAT (STUN) is a protocol that serves as a tool for other protocols in dealing with NAT traversal. It can be used by an endpoint to determine the IP address and port allocated to it by a NAT. It can also be used to check connectivity between two endpoints and as a keep-alive protocol to maintain NAT bindings. STUN works with many existing NATs and does not require any special behavior from them.
 STUN is not a NAT traversal solution by itself. Rather, it is a tool to be used in the context of a NAT traversal solution.
 This document obsoletes RFC 5389.

 JSON Web Token Best Current Practices

 JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security tokens that contain a set of claims that can be signed and/or encrypted. JWTs are being widely used and deployed as a simple security token format in numerous protocols and applications, both in the area of digital identity and in other application areas. This Best Current Practices document updates RFC 7519 to provide actionable guidance leading to secure implementation and deployment of JWTs.

 Security Considerations for WebRTC

 WebRTC is a protocol suite for use with real-time applications that can be deployed in browsers -- "real-time communication on the Web". This document defines the WebRTC threat model and analyzes the security threats of WebRTC in that model.

 WebRTC MediaStream Identification in the Session Description Protocol

 This document specifies a Session Description Protocol (SDP) grouping mechanism for RTP media streams that can be used to specify relations between media streams.
 This mechanism is used to signal the association between the SDP concept of "media description" and the Web Real-Time Communication (WebRTC) concept of MediaStream/MediaStreamTrack using SDP signaling.

 Trickle ICE: Incremental Provisioning of Candidates for the Interactive Connectivity Establishment (ICE) Protocol

 This document describes "Trickle ICE", an extension to the Interactive Connectivity Establishment (ICE) protocol that enables ICE agents to begin connectivity checks while they are still gathering candidates, by incrementally exchanging candidates over time instead of all at once. This method can considerably accelerate the process of establishing a communication session.

 Session Description Protocol (SDP) Offer/Answer Procedures for Interactive Connectivity Establishment (ICE)

 This document describes Session Description Protocol (SDP) Offer/Answer procedures for carrying out Interactive Connectivity Establishment (ICE) between the agents.
 This document obsoletes RFCs 5245 and 6336.

 A Session Initiation Protocol (SIP) Usage for Incremental Provisioning of Candidates for the Interactive Connectivity Establishment (Trickle ICE)

 The Interactive Connectivity Establishment (ICE) protocol describes a Network Address Translator (NAT) traversal mechanism for UDP-based multimedia sessions established with the Offer/Answer model. The ICE extension for Incremental Provisioning of Candidates (Trickle ICE) defines a mechanism that allows ICE Agents to shorten session establishment delays by making the candidate gathering and connectivity checking phases of ICE non-blocking and by executing them in parallel.
 This document defines usage semantics for Trickle ICE with the Session Initiation Protocol (SIP). The document also defines a new SIP Info Package to support this usage together with the corresponding media type. Additionally, a new Session Description Protocol (SDP) "end-of-candidates" attribute and a new SIP option tag "trickle-ice" are defined.

 Session Description Protocol (SDP) Offer/Answer Considerations for Datagram Transport Layer Security (DTLS) and Transport Layer Security (TLS)

 This document defines the Session Description Protocol (SDP) offer/answer procedures for negotiating and establishing a Datagram Transport Layer Security (DTLS) association. The document also defines the criteria for when a new DTLS association must be established. The document updates RFCs 5763 and 7345 by replacing common SDP offer/answer procedures with a reference to this specification.
 This document defines a new SDP media-level attribute, "tls-id".
 This document also defines how the "tls-id" attribute can be used for negotiating and establishing a Transport Layer Security (TLS) connection, in conjunction with the procedures in RFCs 4145 and 8122.

 Using Simulcast in Session Description Protocol (SDP) and RTP Sessions

 In some application scenarios, it may be desirable to send multiple differently encoded versions of the same media source in different RTP streams. This is called simulcast. This document describes how to accomplish simulcast in RTP and how to signal it in the Session Description Protocol (SDP). The described solution uses an RTP/RTCP identification method to identify RTP streams belonging to the same media source and makes an extension to SDP to indicate that those RTP streams are different simulcast formats of that media source. The SDP extension consists of a new media-level SDP attribute that expresses capability to send and/or receive simulcast RTP streams.

 Indicating Exclusive Support of RTP and RTP Control Protocol (RTCP) Multiplexing Using the Session Description Protocol (SDP)

 This document defines a new Session Description Protocol (SDP) media-level attribute, 'rtcp-mux-only', that can be used by an endpoint to indicate exclusive support of RTP and RTP Control Protocol (RTCP) multiplexing. The document also updates RFC 5761 by clarifying that an offerer can use a mechanism to indicate that it is not able to send and receive RTCP on separate ports.

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 HTTP/1.1

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document specifies the HTTP/1.1 message syntax, message parsing, connection management, and related security concerns.
 This document obsoletes portions of RFC 7230.

 Negotiating Media Multiplexing Using the Session Description Protocol (SDP)

 This specification defines a new Session Description Protocol (SDP) Grouping Framework extension called 'BUNDLE'. The extension can be used with the SDP offer/answer mechanism to negotiate the usage of a single transport (5-tuple) for sending and receiving media described by multiple SDP media descriptions ("m=" sections). Such transport is referred to as a "BUNDLE transport", and the media is referred to as "bundled media". The "m=" sections that use the BUNDLE transport form a BUNDLE group.
 This specification defines a new RTP Control Protocol (RTCP) Source Description (SDES) item and a new RTP header extension.
 This specification updates RFCs 3264, 5888, and 7941.
 This specification obsoletes RFC 8843.

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

 This document specifies version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 The DTLS 1.3 protocol is based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection / non-replayability. Datagram semantics of the underlying transport are preserved by the DTLS protocol.
 This document obsoletes RFC 6347.

 JavaScript Session Establishment Protocol (JSEP)

 This document describes the mechanisms for allowing a JavaScript application to control the signaling plane of a multimedia session via the interface specified in the W3C RTCPeerConnection API and discusses how this relates to existing signaling protocols.
 This specification obsoletes RFC 8829.

 Universally Unique IDentifiers (UUIDs)

 This specification defines UUIDs (Universally Unique IDentifiers) --
also known as GUIDs (Globally Unique IDentifiers) -- and a Uniform
Resource Name namespace for UUIDs. A UUID is 128 bits long and is
intended to guarantee uniqueness across space and time. UUIDs were
originally used in the Apollo Network Computing System (NCS), later
in the Open Software Foundation's (OSF's) Distributed Computing
Environment (DCE), and then in Microsoft Windows platforms.
 This specification is derived from the OSF DCE specification with the
kind permission of the OSF (now known as "The Open Group"). Information from earlier versions of the OSF DCE specification have
been incorporated into this document. This document obsoletes RFC
4122.

 Linked Data Platform 1.0

 W3C Recommendation
 Latest version available at: .

 Informative References

 Building Protocols with HTTP

 Applications often use HTTP as a substrate to create HTTP-based APIs. This document specifies best practices for writing specifications that use HTTP to define new application protocols. It is written primarily to guide IETF efforts to define application protocols using HTTP for deployment on the Internet but might be applicable in other situations.
 This document obsoletes RFC 3205.

 The Internet Standards Process -- Revision 3

 This memo documents the process used by the Internet community for the standardization of protocols and procedures. It defines the stages in the standardization process, the requirements for moving a document between stages and the types of documents used during this process. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Guidance on Interoperation and Implementation Reports for Advancement to Draft Standard

 Advancing a protocol to Draft Standard requires documentation of the interoperation and implementation of the protocol. Historic reports have varied widely in form and level of content and there is little guidance available to new report preparers. This document updates the existing processes and provides more detail on what is appropriate in an interoperability and implementation report. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Reducing the Standards Track to Two Maturity Levels

 This document updates the Internet Engineering Task Force (IETF) Standards Process defined in RFC 2026. Primarily, it reduces the Standards Process from three Standards Track maturity levels to two. This memo documents an Internet Best Current Practice.

 Retirement of the "Internet Official Protocol Standards" Summary Document

 This document updates RFC 2026 to no longer use STD 1 as a summary of "Internet Official Protocol Standards". It obsoletes RFC 5000 and requests the IESG to move RFC 5000 (and therefore STD 1) to Historic status.

 Characterization of Proposed Standards

 RFC 2026 describes the review performed by the Internet Engineering Steering Group (IESG) on IETF Proposed Standard RFCs and characterizes the maturity level of those documents. This document updates RFC 2026 by providing a current and more accurate characterization of Proposed Standards.

 Increasing the Number of Area Directors in an IETF Area

 This document removes a limit on the number of Area Directors who manage an Area in the definition of "IETF Area". This document updates RFC 2026 (BCP 9) and RFC 2418 (BCP 25).

 IETF Stream Documents Require IETF Rough Consensus

 This document requires that the IETF never publish any IETF Stream RFCs without IETF rough consensus. This updates RFC 2026.

 Responsibility Change for the RFC Series

 In RFC 9280, responsibility for the RFC Series moved to the RFC Series Working Group and the RFC Series Approval Board. It is no longer the responsibility of the RFC Editor, and the role of the IAB in the RFC Series is altered. Accordingly, in Section 2.1 of RFC 2026, the sentence "RFC publication is the direct responsibility of the RFC Editor, under the general direction of the IAB" is deleted.

 HTML

 WHATWG

 WHATWG Living Standard
 Commit snapshot: .

 SIP: Session Initiation Protocol

 This document describes Session Initiation Protocol (SIP), an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences. [STANDARDS-TRACK]

 Extensible Messaging and Presence Protocol (XMPP): Core

 The Extensible Messaging and Presence Protocol (XMPP) is an application profile of the Extensible Markup Language (XML) that enables the near-real-time exchange of structured yet extensible data between any two or more network entities. This document defines XMPP's core protocol methods: setup and teardown of XML streams, channel encryption, authentication, error handling, and communication primitives for messaging, network availability ("presence"), and request-response interactions. This document obsoletes RFC 3920. [STANDARDS-TRACK]

 Real-Time Streaming Protocol Version 2.0

 This memorandum defines the Real-Time Streaming Protocol (RTSP) version 2.0, which obsoletes RTSP version 1.0 defined in RFC 2326.
 RTSP is an application-layer protocol for the setup and control of the delivery of data with real-time properties. RTSP provides an extensible framework to enable controlled, on-demand delivery of real-time data, such as audio and video. Sources of data can include both live data feeds and stored clips. This protocol is intended to control multiple data delivery sessions; provide a means for choosing delivery channels such as UDP, multicast UDP, and TCP; and provide a means for choosing delivery mechanisms based upon RTP (RFC 3550).

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Congestion Control Requirements for Interactive Real-Time Media

 Congestion control is needed for all data transported across the Internet, in order to promote fair usage and prevent congestion collapse. The requirements for interactive, point-to-point real-time multimedia, which needs low-delay, semi-reliable data delivery, are different from the requirements for bulk transfer like FTP or bursty transfers like web pages. Due to an increasing amount of RTP-based real-time media traffic on the Internet (e.g., with the introduction of the Web Real-Time Communication (WebRTC)), it is especially important to ensure that this kind of traffic is congestion controlled.
 This document describes a set of requirements that can be used to evaluate other congestion control mechanisms in order to figure out their fitness for this purpose, and in particular to provide a set of possible requirements for a real-time media congestion avoidance technique.

 Problem Details for HTTP APIs

 This document defines a "problem detail" to carry machine-readable details of errors in HTTP response content to avoid the need to define new error response formats for HTTP APIs.
 This document obsoletes RFC 7807.

 WebRTC: Real-Time Communication in Browsers

 W3C Recommendation
 Latest version available at: .

 Acknowledgements
 The authors wish to thank ,
 , , , , ,
 , ,
 , , and everyone else in the WebRTC community that have provided
 comments, feedback, text, and improvement proposals on the document and
 contributed early implementations of the spec.

 Authors' Addresses

 Millicast

 sergio.garcia.murillo@cosmosoftware.io

 CoSMo Software

 alex.gouaillard@cosmosoftware.io

