Stream: Internet Engineering Task Force (IETF)

RFC: 9770

Category: Standards Track

Published: June 2025

ISSN: 2070-1721

Authors: M. Tiloca F. Palombini S.Echeverria G. Lewis
RISE AB Ericsson AB CMU SEI CMU SEI

RFC 9770

Notification of Revoked Access Tokens in the
Authentication and Authorization for Constrained
Environments (ACE) Framework

Abstract

This document specifies a method of the Authentication and Authorization for Constrained
Environments (ACE) framework, which allows an authorization server to notify clients and
resource servers (i.e., registered devices) about revoked access tokens. As specified in this
document, the method allows clients and resource servers (RSs) to access a Token Revocation List
(TRL) on the authorization server by using the Constrained Application Protocol (CoAP), with the
possible additional use of resource observation. Resulting (unsolicited) notifications of revoked
access tokens complement alternative approaches such as token introspection, while not
requiring additional endpoints on clients and RSs.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9770.

Copyright Notice

Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

Tiloca, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9770
https://www.rfc-editor.org/info/rfc9770

RFC 9770 Notification of Revoked Tokens in ACE June 2025

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Protocol Overview
3. Issuing of Access Tokens at the AS
4. Token Hash
4.1. Motivation for the Used Construction
4.1.1. Issuing of the Access Token to the Client
4.1.2. Provisioning of Access Tokens to the RS
4.1.3. Design Rationale
4.2. Hash Input on the Client and the AS
4.2.1. AS-to-Client Response Encoded in CBOR
4.2.2. AS-to-Client Response Encoded in JSON
4.3. HASH_INPUT on the RS
4.3.1. Access Tokens as CWTs
4.3.2. Access Tokens as JWTs
4.4. Computing the Token Hash
5. Token Revocation List (TRL)
5.1. Update of the TRL
6. The TRL Endpoint
6.1. Error Responses with Problem Details
6.2. Supporting Diff Queries

6.2.1. Supporting the "Cursor" Extension

6.3. Query Parameters

Tiloca, et al. Standards Track

10
11
11
11
12
13
13
14
15
15
15
16
17
17
17
18
19
20

21

Page 2

https://trustee.ietf.org/license-info

RFC 9770 Notification of Revoked Tokens in ACE June 2025

7. Full Query of the TRL 23
8. Diff Query of the TRL 24
9. Response Messages when Using the "Cursor" Extension 26
9.1. Response to Full Query 26
9.2. Response to Diff Query 27
9.2.1. Empty Update Collection 27
9.2.2. Cursor Not Included in the Diff Query Request 27
9.2.3. Cursor Included in the Diff Query Request 28

10. Registration at the Authorization Server 30
11. Notification of Revoked Access Tokens 31
11.1. Handling of Revoked Access Tokens and Token Hashes 32
12. ACE Token Revocation List Parameters 34
13. ACE Token Revocation List Error Identifiers 35
14. Security Considerations 35
14.1. Content Retrieval from the TRL 35
14.2. Size of the TRL 36
14.3. Communication Patterns 36
14.4. Request of New Access Tokens 36
14.5. Vulnerable Time Window at the RS 37
14.6. Preventing Unnoticed Manipulation of Access Tokens 37
14.7. Two Token Hashes at the RS Using JWTs 38
14.8. Additional Security Measures 39
15. IANA Considerations 39
15.1. Media Type Registrations 39
15.2. CoAP Content-Formats Registry 40
15.3. Custom Problem Detail Keys Registry 40
15.4. ACE Token Revocation List Parameters Registry 41
15.5. ACE Token Revocation List Errors 41
15.6. Expert Review Instructions 42

Tiloca, et al. Standards Track Page 3

RFC 9770 Notification of Revoked Tokens in ACE June 2025

16. References 43
16.1. Normative References 43
16.2. Informative References 45

Appendix A. On Using the Series Transfer Pattern 46

Appendix B. Local Supportive Parameters of the TRL Endpoint 46

Appendix C. Interaction Examples 47
C.1. Full Query with Observe 48
C.2. Diff Query with Observe 50
C.3. Full Query with Observe and Diff Query 52
C.4. Diff Query with Observe and "Cursor" Extension 54
C.5. Full Query with Observe and Diff Query with "Cursor” Extension 58

Acknowledgments 63

Authors' Addresses 64

1. Introduction

Authentication and Authorization for Constrained Environments (ACE) [RFC9200] is a
framework that enforces access control on Internet of Things (IoT) devices acting as resource
servers (RSs). In order to use ACE, both clients and RSs have to register with an authorization
server (AS) and become registered devices. Once registered, a client can send a request to the AS
to obtain an access token for an RS. For a client to access the RS, the client must present the
issued access token at the RS, which then validates it before storing it (see Section 5.10.1.1 of
[RFC9200]).

Even though access tokens have expiration times, there are circumstances by which an access
token may need to be revoked before its expiration time, such as when:

. aregistered device has been compromised or is suspected of being compromised;
. aregistered device is decommissioned;

. there has been a change in the ACE profile for a registered device;

. there has been a change in access policies for a registered device; or

U1 W N =

. there has been a change in the outcome of policy evaluation for a registered device (e.g., if
policy assessment depends on dynamic conditions in the execution environment, the user
context, or the resource utilization).

Tiloca, et al. Standards Track Page 4

https://rfc-editor.org/rfc/rfc9200#section-5.10.1.1

RFC 9770 Notification of Revoked Tokens in ACE June 2025

As discussed in Section 6.1 of [RFC9200], only client-initiated revocation is currently specified
[RFC7009] for OAuth 2.0 [RFC6749], based on the assumption that access tokens in OAuth are
issued with a relatively short lifetime. However, this is not expected to be the case for
constrained, intermittently connected devices that need access tokens with relatively long
lifetimes.

This document specifies a method for allowing registered devices to access and possibly
subscribe to a Token Revocation List (TRL) on the AS in order to obtain updated information
about pertaining access tokens that were revoked prior to their expiration. As specified in this
document, the registered devices use the Constrained Application Protocol (CoAP) [REC7252] to
communicate with the AS and with one another and can subscribe to the TRL on the AS by using
resource observation for CoAP [RFC7641]. Underlying protocols other than CoAP are not
prohibited from being supported in the future, if they are defined to be used in the ACE
framework.

Unlike in the case of token introspection (see Section 5.9 of [RFC9200]), a registered device does
not provide an owned access token to the AS for inquiring about its current state. Instead,
registered devices simply obtain updated information about pertaining access tokens that were
revoked prior to their expiration as efficiently identified by corresponding hash values.

The benefits of this method are that it complements token introspection and does not require the
registered devices to support any additional endpoints (see Section 1.1). The only additional
requirements for registered devices are a request/response interaction with the AS to access and
possibly subscribe to the TRL (see Section 2) and the lightweight computation of hash values to
use as access token identifiers (see Section 4).

The process by which access tokens are declared revoked is out of the scope of this document.
The method by which the AS determines or is notified of revoked access tokens, according to
which the AS consequently updates the TRL as specified in this document, is also out of scope.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

Readers are expected to be familiar with the terms and concepts described in the ACE framework
[RFC9200], as well as with terms and concepts related to CBOR Web Tokens (CWTs) [RFC8392]
and JSON Web Tokens (JWTs) [RFC7519].

The terminology for entities in the considered architecture is defined in OAuth 2.0 [RFC6749]. In
particular, this includes client, RS, and authorization server (AS).

Readers are also expected to be familiar with the terms and concepts related to the Concise Data
Definition Language (CDDL) [RFC8610], Concise Binary Object Representation (CBOR) [RFC8949],
JSON [RFC8259], CBOR Object Signing and Encryption (COSE) [RFC9052], COAP [RFC7252], CoAP
Observe [RFC7641], and the use of hash functions to name objects as defined in [RFC6920].

Tiloca, et al. Standards Track Page 5

https://rfc-editor.org/rfc/rfc9200#section-6.1
https://rfc-editor.org/rfc/rfc9200#section-5.9

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Note that the term "endpoint” is used here following its OAuth definition [RFC6749], aimed at
denoting resources such as /token and /introspect at the AS, and /authz-info at the RS. The CoAP
definition, which is "[a]n entity participating in the CoAP protocol” [RFC7252], is not used in this
document.

This specification also uses the following terminology:

Token hash: identifier of an access token, in binary format encoding. The token hash has no
relation to other access token identifiers possibly used, such as the 'cti' (CWT ID) claim of
CBOR Web Tokens (CWTs) [RFC8392].

Token Revocation List (TRL): a collection of token hashes such that the corresponding access
tokens have been revoked but are not expired yet.

TRL endpoint: an endpoint at the AS with a TRL as its representation. The default name of the
TRL endpoint in a url-path is '/revoke/tr]l'. Implementations are not required to use this name
and can define their own instead.

Registered device: a device registered at the AS, i.e., as a client, an RS, or both. A registered
device acts as a requester towards the TRL endpoint.

Administrator: an entity that is authorized to get full access to the TRL at the AS and that acts
as a requester towards the TRL endpoint. An administrator is not necessarily a registered
device as defined above, i.e., a client requesting access tokens or an RS consuming access
tokens.

An administrator might also be authorized to perform further administrative operations at
the AS, e.g., through a dedicated admin interface that is out of the scope of this document. By
considering the token hashes retrieved from the TRL together with other information
obtained from the AS, the administrator becomes able to derive additional information, e.g.,
the fact that accesses have been revoked for specific registered devices.

Pertaining access token:
» With reference to an administrator, an access token issued by the AS.

» With reference to a registered device, an access token intended to be owned by that
device. An access token pertains to a client if the AS has issued the access token for that
client following its request. An access token pertains to an RS if the AS has issued the
access token to be consumed by that RS.

Token hash pertaining to a requester: a token hash corresponding to an access token
pertaining to that requester, i.e., an administrator or a registered device.

TRL update pertaining to a requester: an update to the TRL through which token hashes
pertaining to that requester have been added to or removed from the TRL.

Full query: a type of query to the TRL where the AS returns the token hashes of the revoked
access tokens currently in the TRL and pertaining to the requester. Further details are
specified in Sections 6 and 7.

Tiloca, et al. Standards Track Page 6

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Diff query: a type of query to the TRL where the AS returns a list of diff entries, each related to
one update that occurred to the TRL and containing a set of token hashes pertaining to the
requester. Further details are specified in Sections 6 and 8.

See Section 4 for further terminology used throughout that section.

Examples throughout this document are expressed in CBOR diagnostic notation as defined in
Section 8 of [RFC8949] and Appendix G of [RFC8610]. Diagnostic notation comments are often
used to provide a textual representation of the numeric parameter names and values.

2. Protocol Overview

This protocol defines how a CoAP-based AS informs clients and RSs, i.e., registered devices,
about pertaining revoked access tokens. How the relationship between a registered device and
the AS is established is out of the scope of this specification.

At a high level, the steps of this protocol are as follows:

1. Upon startup, the AS creates a single TRL accessible through the TRL endpoint. At any point
in time, the TRL represents the list of all revoked access tokens issued by the AS that are not
expired yet.

2. When a device registers at the AS, it also receives the url-path to the TRL endpoint.

At any time after the registration procedure is finished, the registered device can send a GET
request to the TRL endpoint at the AS. When doing so, it can request the following: the
current list of pertaining revoked access tokens (see Section 7) or the most recent updates
that occurred over the list of pertaining revoked access tokens (see Section 8).

In particular, the registered device can rely on Observation for COAP [RFC7641]. In such a
case, the GET request sent to the TRL endpoint includes the CoAP Observe Option set to 0
(register), i.e., it is an Observation Request. By doing so, the registered device effectively
subscribes to the TRL, as the device is interested in receiving notifications about the TRL's
update. Upon receiving the Observation Request, the AS adds the registered device to the list
of observers of the TRL endpoint.

3. When an access token is revoked, the AS adds the corresponding token hash to the TRL.
Also, when a revoked access token eventually expires, the AS removes the corresponding
token hash from the TRL.

In either case, after updating the TRL, the AS sends Observe notifications as per [RFC7641].
That is, an Observe notification is sent to each registered device that is subscribed to the TRL
and to which the access token pertains.

Depending on the specific subscription established through the Observation Request, the
notification provides either the current updated list of revoked access tokens in the subset of
the TRL pertaining to that device (see Section 7) or the most recent TRL updates that
occurred over that list of pertaining revoked access tokens (see Section 8).

Further Observe notifications may be sent, consistent with ongoing additional observations
of the TRL endpoint.

Tiloca, et al. Standards Track Page 7

https://rfc-editor.org/rfc/rfc8949#section-8
https://rfc-editor.org/rfc/rfc8610#appendix-G

RFC 9770 Notification of Revoked Tokens in ACE June 2025

4. An administrator can access and subscribe to the TRL like a registered device while getting
the content of the whole TRL (see Section 7) or the most recent updates that occurred to the
whole TRL (see Section 8).

Figure 1 shows a high-level overview of the service provided by this protocol. For the sake of
simplicity, the example shown in the figure considers the simultaneous revocation of the three
access tokens t1, t2, and t3 whose corresponding token hashes are th1, th2, and th3, respectively.
Consequently, the AS adds the three token hashes to the TRL at once and sends Observe
notifications to one administrator and four registered devices. Each dotted line associated with a
pair of registered devices indicates the access token that they both own.

Authorization server
I

/revoke/trl T TRL: (th1,th2,th3)

th1, th2, th3 th1, th2 th1 th3 th2, th3
Administrator Client 1 Resource Client 2 Resource
server 1 server 2
t1 t3
t2

Figure 1: Protocol Overview

Appendix C provides examples of the protocol flow and message exchanges between the AS and
a registered device.

3. Issuing of Access Tokens at the AS

An AS that supports the method defined in this document MUST adhere to the following rules
when issuing an access token:

¢ All the intended header parameters in the access token MUST be specified within integrity-
protected fields.

Tiloca, et al. Standards Track Page 8

RFC 9770 Notification of Revoked Tokens in ACE June 2025

o If the access token is a CWT, the following applies:

> Any "unprotected" field MUST be empty, i.e., its value MUST be encoded as the empty CBOR
map (0xa0). This applies to the top-level "unprotected" field of the COSE object used for the
CWT, the "unprotected" field of each element of the "signatures" array, and the
"unprotected"” field of each element of any "recipients” array (see Sections 2, 3, 4, 5, and 6
of [RFC9052]).

o Consistent with the specific COSE object used for the CWT, the corresponding tagged
structure in the set COSE_Tagged_Message MUST be used (see Section 2 of [RFC9052]). That
is, the CBOR array that encodes the CWT MUST be tagged by using the COSE CBOR tag
corresponding to the used COSE object. Table 1 in Section 2 of [RFC9052] specifies the tag
numbers in question.

In turn, the resulting tagged data item MUST be tagged by using the CWT CBOR tag with
tag number 61 (see Section 6 of [RFC8392]). After that, the resulting data item MUST NOT
be further tagged.

Encoding of the tag numbers MUST be done using definite lengths, and the length of the
encoded tag numbers MUST be the minimum possible length. This means that tag number
16 is encoded as 0xd0 and not as 0xd810.

The example in Figure 2 shows a CWT that uses the COSE object COSE_Encrypt0 (see
Section 5.2 of [RFC9052]).

o If, like for JWTs [RFC7519], the access token relies on a JSON object for encoding its claims,
the following applies:

Consistent with the ACE framework [RFC9200], this document specifically considers JWTs,
which are always represented using the JSON Web Signature (JWS) Compact Serialization
from [RFC7515] or the JSON Web Encryption (JWE) Compact Serialization from [RFC7516].
Consequently, all the header parameters are specified within integrity-protected fields.

In case alternative access tokens were used, the following applies:

o If the access token uses the JWS JSON Serialization from [RFC7515], it MUST NOT include
the JWS Unprotected Header.

o If the access token uses the JWE JSON Serialization from [RFC7516], it MUST NOT include
the JWE Shared Unprotected Header and it MUST NOT include the "header" member in any
of the elements of the "recipients" array.

Tiloca, et al. Standards Track Page 9

https://rfc-editor.org/rfc/rfc9052#section-2
https://rfc-editor.org/rfc/rfc9052#section-3
https://rfc-editor.org/rfc/rfc9052#section-4
https://rfc-editor.org/rfc/rfc9052#section-5
https://rfc-editor.org/rfc/rfc9052#section-6
https://rfc-editor.org/rfc/rfc9052#section-2
https://rfc-editor.org/rfc/rfc9052#section-2
https://rfc-editor.org/rfc/rfc8392#section-6
https://rfc-editor.org/rfc/rfc9052#section-5.2

RFC 9770 Notification of Revoked Tokens in ACE June 2025

/ CWT CBOR tag / 61(
/ COSE_Encrypt® CBOR tag / 16(
/ COSE_Encrypt® object / [

/ protected / h'a3010a044c53796d6d65747269633132
38054d99a0d7846e762c49ffe8ab3ebb ",

/ unprotected / {},

/ ciphertext / h'b918a11fd81e438b7f973d%e2e119bcb
22424babf38a80f27562f400ee1d0d6ec
0fdb559c02421fd384fc2ebe22d70713
78b0ea7428fff157444d45f7eb6afcdal
2ae5f6495830c58627087fc5b497431
9a8707a635dd643b"

Figure 2: Example of CWT Using COSE_Encrypt0

Section 14.6 discusses how adhering to the rules above neutralizes an attack against the RS
where an active adversary can induce the RS to compute a token hash different from the correct
one.

4. Token Hash

This section specifies how token hashes are computed.
First, Section 4.1 provides the motivation for the used construction.

Building on that, the value used as input to compute a token hash is defined in Section 4.2 for the
client and the AS and in Section 4.3 for the RS. Finally, Section 4.4 defines how such an input is
used for computing the token hash.

The process outlined below refers to the base64url encoding and decoding without padding (see
Section 5 of [RFC4648]) and denotes as "binary representation” of a text string the corresponding
UTF-8 encoding [RFC3629], which is the implied charset used in JSON (see Section 8.1 of
[RFC8259]).

Consistent with Section 3.4 of [RFC8949], the term "tag" is used for the entire CBOR data item
consisting of both a tag number and the tag content: the tag content is the CBOR data item that is
being tagged.

Also, "tagged access token" is used to denote nested CBOR tags (possibly a single one), with the
innermost tag content being a CWT.

Tiloca, et al. Standards Track Page 10

https://rfc-editor.org/rfc/rfc4648#section-5
https://rfc-editor.org/rfc/rfc8259#section-8.1
https://rfc-editor.org/rfc/rfc8949#section-3.4

RFC 9770 Notification of Revoked Tokens in ACE June 2025

4.1. Motivation for the Used Construction

An access token can have one among different formats. The most expected formats are CWT
[RFC8392] and JWT [RFC7519], with the former being the default format to use in the ACE
framework (see Section 3 of [RFC9200]). While access tokens are opaque to clients, an RS is
aware of whether access tokens that are issued for it to consume are either CWTs or JWTs.

4.1.1. Issuing of the Access Token to the Client

There are two possible encodings that the AS can use for the AS-to-Client response (see Section
5.8.2 of [RFC9200]) where the issued access token is included and provided to the requester
client. The RS may not be aware of which encoding is used for that response to that particular
requester client.

* One method of encoding relies on CBOR, which is required if CoAP is used (see Section 5 of
[RFC9200]) and is recommended otherwise (see Section 3 of [RFC9200]). That is, the AS-to-
Client response has media-type "application/ace+chor".

This implies that, within the CBOR map specified as message payload, the 'access_token'
parameter is a CBOR data item of type CBOR byte string and with a value of BYTES. In
particular:

o If the access token is a CWT, then BYTES is the binary representation of the CWT (i.e., of
the CBOR array that encodes the untagged CWT) or of a tagged access token with the CWT
as the innermost tag content.

o If the access token is a JWT, then BYTES is the binary representation of the JWT (i.e., of the
text string that encodes the JWT).

* An alternative method of encoding relies on JSON. That is, the AS-to-Client response has
media-type "application/ace+json".
This implies that, within the JSON object specified as message payload, the 'access_token'
parameter has as a value a text string TEXT. In particular:

o If the access token is a JWT, then TEXT is the text string that encodes the JWT.

o If the access token is a CWT, then TEXT is the base64url-encoded text string of BYTES,
which is the binary representation of the CWT (i.e., of the CBOR array that encodes the
untagged CWT) or of a tagged access token with the CWT as the innermost tag content.

4.1.2. Provisioning of Access Tokens to the RS

In accordance with the used transport profile of ACE (e.g., [RFC9202], [RFC9203], [RFC9431]), the
RS receives a piece of token-related information hereafter denoted as TOKEN_INFO.

In particular:

o If the AS-to-Client response was encoded in CBOR, then TOKEN_INFO is the value of the
CBOR byte string conveyed by the 'access_token' parameter of that response. That is,
TOKEN_INFO is the binary representation of the access token.

Tiloca, et al. Standards Track Page 11

https://rfc-editor.org/rfc/rfc9200#section-3
https://rfc-editor.org/rfc/rfc9200#section-5.8.2
https://rfc-editor.org/rfc/rfc9200#section-5.8.2
https://rfc-editor.org/rfc/rfc9200#section-5
https://rfc-editor.org/rfc/rfc9200#section-3

RFC 9770 Notification of Revoked Tokens in ACE June 2025

o If the AS-to-Client response was encoded in JSON and the access token is a JWT, then
TOKEN_INFO is the binary representation of the text string conveyed by the 'access_token'
parameter of that response. That is, TOKEN_INFO is the binary representation of the access
token.

o If the AS-to-Client response was encoded in JSON and the access token is a CWT, then
TOKEN_INFO is the binary representation of the base64url-encoded text string that encodes
the binary representation of the access token. That is, TOKEN_INFO is the binary
representation of the base64url-encoded text string conveyed by the 'access_token'
parameter.

The following overviews how the above specifically applies to the existing transport profiles of
ACE:

* The access token can be uploaded to the RS by means of a POST request to the /authz-info
endpoint (see Section 5.10.1 of [RFC9200]), using a CoAP Content-Format or HTTP media-type
that reflects the format of the access token, if available (e.g., "application/cwt" for CWTSs), or
"application/octet-stream" otherwise. When doing so (e.g., like in [RFC9202]), TOKEN_INFO is
the payload of the POST request.

* The access token can be uploaded to the RS by means of a POST request to the /authz-info
endpoint, using the media-type "application/ace+cbor". When doing so (e.g., like in
[RFC9203]), TOKEN_INFO is the value of the CBOR byte string conveyed by the 'access_token'
parameter, within the CBOR map specified as payload of the POST request.

» The access token can be uploaded to the RS during a DTLS session establishment, e.g., like it
is defined in Section 3.3.2 of [RFC9202]. When doing so, TOKEN_INFO is the value of the
'psk_identity’ field of the ClientKeyExchange message (when using DTLS 1.2 [RFC6347]) or of
the 'identity’ field of a PSKIdentity, within the PreSharedKeyExtension of a ClientHello
message (when using DTLS 1.3 [RFC9147]).

* The access token can be uploaded to the RS within the MQTT CONNECT packet, e.g., like it is
defined in Section 2.2.4.1 of [RFC9431]. When doing so, TOKEN_INFO is specified within the
'Authentication Data' field of the MQTT CONNECT packet, following the property identifier
22 (0x16) and the token length.

Note that, if the access token is a CWT, it is specifically tagged as defined in Section 3.

4.1.3. Design Rationale

Considering the possible variants discussed above, it must always be ensured that the same
HASH_INPUT value is used as input for generating the token hash of a given access token, by the
AS that has issued the access token and by the registered devices to which the access token
pertains (both client and RS).

This is achieved by building HASH_INPUT according to the content of the 'access_token'
parameter in the AS-to-Client responses because that is what the AS, the client, and the RS are all
able to see.

Tiloca, et al. Standards Track Page 12

https://rfc-editor.org/rfc/rfc9200#section-5.10.1
https://rfc-editor.org/rfc/rfc9202#section-3.3.2
https://rfc-editor.org/rfc/rfc9431#section-2.2.4.1

RFC 9770 Notification of Revoked Tokens in ACE June 2025

4.2. Hash Input on the Client and the AS

The client and the AS consider the content of the 'access_token' parameter in the AS-to-Client
response, in which the access token is included and provided to the requester client. Note that, if
the access token is a CWT, it is specifically tagged as defined in Section 3.

The following defines how the client and the AS determine the HASH_INPUT value to use as
input for computing the token hash of the conveyed access token, depending on the AS-to-Client
response being encoded in CBOR (see Section 4.2.1) or in JSON (see Section 4.2.2).

Once HASH_INPUT is determined, the client and the AS use it to compute the token hash of the
conveyed access token as defined in Section 4.4.

4.2.1. AS-to-Client Response Encoded in CBOR
If the AS-to-Client response is encoded in CBOR, then HASH_INPUT is defined as follows:

* BYTES denotes the value of the CBOR byte string conveyed in the 'access_token' parameter.

With reference to the example in Figure 3, BYTES is the bytes {0xd8, 0x3d, 0xdO0, ..., 0x64,
0x3b}.

Note that BYTES is the binary representation of the tagged access token if this is a CWT (as
per Section 3) or of the access token if this is a JWT.

* HASH_INPUT_TEXT is the base64url-encoded text string that encodes BYTES.
* HASH_INPUT is the binary representation of HASH_INPUT_TEXT.

Header: Created (Code=2.01)
Content-Format: 19 (application/ace+cbor)
Max-Age: 85800

Payload:

{

/ access_token / 1 : h'd83dd0835820a3010a044c53796d6d
6574726963313238054d99a0d7846e
762c49ffe8ab63e0babd5858b918a11f
d81e438b7f973d9e2e119bcb22424b
a0f38a80f27562f400ee1ddd6cOfdb
559¢02421fd384fc2ebe22d7071378
b0ea7428fff157444d45f7eb6afcdal
aae5f6495830c58627087fc5b4974f
319a8707a635dd643b ",

/ token_type / 34 : 2 / PoP /,

/ expires_in / 2 . 86400,

/ ace_profile / 38 : 1 / coap_dtls /

/ (remainder of the response omitted for brevity) /

Figure 3: Example of AS-to-Client CoAP Response Using CBOR

Tiloca, et al. Standards Track Page 13

RFC 9770

Notification of Revoked Tokens in ACE

4.2.2. AS-to-Client Response Encoded in JSON

If the AS-to-Client response is encoded in JSON, then HASH_INPUT is the binary representation
of the text string conveyed by the 'access_token' parameter.

With reference to the example in Figure 4, HASH_INPUT is the binary representation of

June 2025

"eyJh..YFiA". When showing the access token, Figure 4 uses line breaks for display purposes only.

Note that:

o If the access token is a JWT, then HASH_INPUT is the binary representation of the JWT.

o If the access token is a CWT, then HASH_INPUT is the binary representation of a base64url-
encoded text string, which encodes the binary representation of a tagged access token with
the CWT as the innermost tag content (as per Section 3).

HTTP/1.1 2060 OK

Content-Type: application/ace+json
Cache-Control: no-store

Pragma: no-cache
Payload:
{

"access_token"

"token_type"
"expires_in"
"ace_profile"

}

"eyJhbGci0iJSUBExXzUilLCJ1bmMi0iJB
MTI4QOJDLUhTMjU2INnG.
QR10wv2ug2WyPBnbQrRARTeEK9kDO2w8
gDcjiHnSJf1Sdv1iNghWXakKH4MgAkQtM
oNfABIPJaZm@HaA415sv3aeuBWnD8J-U
i7Ah6cWafs3ZwwFKDFUUSWHSK-IPKxLG
TkNDB9Xy jORj_CHAgOPJ-Sd80ONQRnJVW
n_hXV1BNMHzUjPyYwEsRhDhzjAD26ima
sOTsgruobpYGoQcXUwFDn7moXPRfDES8-
NoQX7N7ZYMmpUDkR-Cx90bNGwJQ3nM52
YCitxoQVPzjbl7WBuB7AohdBozZ0dZ24W
IN11VIeh8v1K4krB8xgKvRU8kgFrEn_a
1rZgN5TiysnmzTROF8691Q.
AxY8DCtDaGlsbGljb3RoZQ.
MKOle7UQrG6nSxTLX6MqwtBorbHvAKeW
nDYvpIAeZ72deHxz3roJDXQyhxxBwKaM
HDjUEOKIwrtkHthpgEanSBNYHZgmNOV7
s1ln1Eu9g3J8.
fik51VwhsxJ-siBMR-YFiA",

"PoP",

. 86400,

"coap_dtls”

Figure 4: Example of AS-to-Client HTTP Response Using [SON

Tiloca, et al.

Standards Track

Page 14

RFC 9770 Notification of Revoked Tokens in ACE June 2025

4.3. HASH_INPUT on the RS

The following defines how the RS determines the HASH_INPUT value to use as input for
computing the token hash of an access token, depending on the RS using either CWTs (see Section
4.3.1) or JWTs (see Section 4.3.2).

4.3.1. Access Tokens as CWTs
If the RS expects access tokens to be CWTs, then the RS performs the following steps:

1. The RS receives the token-related information TOKEN INFO, in accordance with what is
specified by the used profile of ACE (see Section 4.1.2).

2. The RS assumes that the client received the access token in an AS-to-Client response encoded
in CBOR (see Section 4.2.1). Hence, the RS assumes TOKEN_INFO to be the binary
representation of the tagged access token with the CWT as the innermost tag content (as per
Section 3).

3. The RS verifies the access token as per Section 5.10.1.1 of [RFC9200]. If the verification fails,
then the RS does not discard the access token yet; instead, it moves to Step 4.

Otherwise, the RS stores the access token and computes the corresponding token hash as
defined in Section 4.4. In particular, the RS considers HASH_INPUT_TEXT as the base64url-
encoded text string that encodes TOKEN_INFO. Then, HASH_INPUT is the binary
representation of HASH_INPUT_TEXT.

After that, the RS stores the computed token hash as associated with the access token; then,
it terminates this algorithm.

4. The RS assumes that the client received the access token in an AS-to-Client response encoded
in JSON (see Section 4.2.2). Hence, the RS assumes TOKEN_INFO to be the binary
representation of HASH_INPUT _TEXT. In turn, HASH_INPUT_TEXT is the base64url-encoded
text string that encodes the binary representation of the tagged access token with the CWT
as the innermost tag content (as per Section 3).

5. The RS performs the base64url decoding of HASH_INPUT_TEXT and considers the result to
be the binary representation of the tagged access token.

6. The RS verifies the access token as per Section 5.10.1.1 of [RFC9200]. If the verification fails,
then the RS terminates this algorithm.

Otherwise, the RS stores the access token and computes the corresponding token hash as
defined in Section 4.4. In particular, HASH_INPUT is TOKEN_INFO.

After that, the RS stores the computed token hash as associated with the access token.

4.3.2. Access Tokens as JWTs
If the RS expects access tokens to be JWTs, then the RS performs the following steps:

1. The RS receives the token-related information TOKEN_INFO, in accordance with what is
specified by the used profile of ACE (see Section 4.1.2).

Tiloca, et al. Standards Track Page 15

https://rfc-editor.org/rfc/rfc9200#section-5.10.1.1
https://rfc-editor.org/rfc/rfc9200#section-5.10.1.1

RFC 9770 Notification of Revoked Tokens in ACE June 2025

2. The RS verifies the access token as per Section 5.10.1.1 of [RFC9200]. If the verification fails,
then the RS terminates this algorithm. Otherwise, the RS stores the access token.

3. The RS computes a first token hash associated with the access token as defined in Section 4.4.

In particular, the RS assumes that the client received the access token in an AS-to-Client
response encoded in JSON (see Section 4.2.2). Hence, HASH_INPUT is TOKEN_INFO.

After that, the RS stores the computed token hash as associated with the access token.

4. The RS computes a second token hash associated with the access token as defined in Section
4.4.

In particular, the RS assumes that the client received the access token in an AS-to-Client
response encoded in CBOR (see Section 4.2.1). Hence, HASH_INPUT is the binary
representation of HASH_INPUT_TEXT, which, in turn, is the base64url-encoded text string
that encodes TOKEN_INFO.

After that, the RS stores the computed token hash as associated with the access token.

The RS skips Step 3 only if it is certain that all its pertaining access tokens are provided to any
client by means of AS-to-Client responses encoded as CBOR messages. Otherwise, the RS MUST
perform Step 3.

The RS skips Step 4 only if it is certain that all its pertaining access tokens are provided to any
client by means of AS-to-Client responses encoded as JSON messages. Otherwise, the RS MUST
perform Step 4.

If the RS performs both Steps 3 and 4 above, then the RS MUST store, maintain, and rely on both
token hashes as associated with the access token, consistent with what is specified in Section
11.1.

Section 14.7 discusses how computing and storing both token hashes neutralizes an attack
against the RS, where a dishonest client can induce the RS to compute a token hash different
from the correct one.

4.4. Computing the Token Hash

Once HASH_INPUT is determined as defined in Sections 4.2 and 4.3, a hash value of HASH_INPUT
is generated as per Section 6 of [RFC6920]. The resulting output in binary format is used as the
token hash. Note that the used binary format embeds the identifier of the used hash function in
the first byte of the computed token hash.

The specific hash function used MUST be collision resistant on byte strings and MUST be selected
from the "Named Information Hash Algorithm Registry" [TANA.Hash.Algorithms]. Consistent
with the compliance requirements in Section 2 of [RFC6920], the hash function sha-256 as
specified in [SHA-256] is mandatory to implement.

The AS specifies the used hash function to registered devices during their registration procedure
(see Section 10).

Tiloca, et al. Standards Track Page 16

https://rfc-editor.org/rfc/rfc9200#section-5.10.1.1
https://rfc-editor.org/rfc/rfc6920#section-6
https://rfc-editor.org/rfc/rfc6920#section-2

RFC 9770 Notification of Revoked Tokens in ACE June 2025

5. Token Revocation List (TRL)

Upon startup, the AS creates a single Token Revocation List (TRL) encoded as a CBOR array.

Each element of the array is a CBOR byte string, whose value is the token hash of an access
token. The CBOR array MUST be treated as a set, i.e., the order of its elements has no meaning.

The TRL is initialized as empty;, i.e., its initial content MUST be the empty CBOR array. The TRL is
accessible through the TRL endpoint at the AS.

5.1. Update of the TRL
The AS updates the TRL in the following two cases:

* When a non-expired access token is revoked, the token hash of the access token is added to
the TRL. That is, a CBOR byte string with the token hash as its value is added to the CBOR
array encoding the TRL.

* When a revoked access token expires, the token hash of the access token is removed from
the TRL. That is, the CBOR byte string with the token hash as its value is removed from the
CBOR array encoding the TRL.

The AS MAY perform a single update to the TRL such that one or more token hashes are added or
removed at once. For example, this can be the case if multiple access tokens are revoked or
expire at the same time or within an acceptably narrow time frame.

6. The TRL Endpoint

Consistent with Section 6.5 of [RFC9200], all communications between the AS and a requester
interacting with the TRL endpoint at the AS MUST be encrypted, as well as integrity and replay
protected. Furthermore, responses from the AS to the requester MUST be bound to the
corresponding requests.

Following a request to the TRL endpoint, the corresponding success response messages sent by
the AS use Content-Format "application/ace-trl+cbor". Their payload is formatted as a CBOR map,
and the CBOR values used to abbreviate the parameters included therein are defined in Section
12.

The AS MUST implement measures to prevent access to the TRL endpoint by entities other than
registered devices and authorized administrators (see Section 10).

The TRL endpoint supports only the GET method, and allows two types of queries of the TRL:

1. Full query: the AS returns the token hashes of the revoked access tokens currently in the
TRL and pertaining to the requester.

The AS MUST support this type of query. The processing of a full query and the related
response format are defined in Section 7.

Tiloca, et al. Standards Track Page 17

https://rfc-editor.org/rfc/rfc9200#section-6.5

RFC 9770 Notification of Revoked Tokens in ACE June 2025

2. Diff query: the AS returns a list of diff entries. Each diff entry is related to one update that
occurred to the TRL, and it contains a set of token hashes pertaining to the requester. In
particular, all such token hashes were added to the TRL or removed from the TRL at the
update related to the diff entry in question.

The AS MAY support this type of query. In such a case, the AS maintains the history of
updates to the TRL as defined in Section 6.2. The processing of a diff query and the related
response format are defined in Section 8.

If it supports diff queries, the AS MAY additionally support the related "Cursor" extension, which
has two benefits:

1. The AS can avoid excessively long messages when several diff entries have to be transferred
by delivering several diff query responses, each containing one adjacent subset of diff
entries at a time.

2. A requester can retrieve diff entries associated with TRL updates that, even if not the most
recent ones, occurred after a TRL update associated with a diff entry indicated as a
reference point.

If it supports the "Cursor” extension, the AS stores additional information when maintaining the
history of updates to the TRL as defined in Section 6.2.1. Also, the processing of full query
requests and diff query requests, as well as the related response format, are further extended as
defined in Section 9.

Appendix B provides an aggregated overview of the local supportive parameters that the AS
internally uses at its TRL endpoint when supporting diff queries and the "Cursor" extension.

6.1. Error Responses with Problem Details

Some error responses from the TRL endpoint at the AS can convey error-specific information
according to the problem-details format defined in [RFC9290]. Such error responses MUST have
Content-Format set to "application/concise-problem-details+cbor". The payload of these error
responses MUST be a CBOR map specifying a Concise Problem Details data item (see Section 2 of
[RFC9290]). The CBOR map is formatted as follows:

o It MUST include the Custom Problem Detail entry 'ace-trl-error' registered in Section 15.3 of
this document. This entry is formatted as a CBOR map, which includes the following fields:

o The 'error-id' field MUST be present. The map key used for this field is the CBOR unsigned
integer with a value of 0. The value of this field is a CBOR integer specifying the error that
occurred at the AS. This value is taken from the 'Value' column of the "ACE Token
Revocation List Errors” registry defined in Section 15.5 of this document.

o The 'cursor’ field MAY be present. The map key used for this field is the CBOR unsigned
integer with a value of 1. The value of this field is a CBOR unsigned integer or the CBOR
simple value null (0xf6). The use of this field is defined in Section 6.3.

The CDDL notation [RFC8610] of the 'ace-trl-error' entry is given below:

Tiloca, et al. Standards Track Page 18

https://rfc-editor.org/rfc/rfc9290#section-2

RFC 9770 Notification of Revoked Tokens in ACE June 2025

ace-trl-error = {
0: int, ; error-id
? 1: uint / null ; cursor

}

[t MAY include further Standard Problem Detail entries or Custom Problem Detail entries
(see [RFC9290]).

In particular, it can include the Standard Problem Detail entry 'detail' (map key -2), whose
value is a CBOR text string that specifies a human-readable diagnostic description of the
error that occurred at the AS. The diagnostic text is intended for software engineers as well
as for device and network operators in order to aid in debugging and provide context for
possible intervention. The diagnostic message SHOULD be logged by the AS. The 'detail’ entry
is unlikely to be relevant in an unattended setup where human intervention is not expected.

An example of an error response using the problem-details format is shown in Figure 5.

Header: Bad Request (Code=4.00)
Content-Format: 257 (application/concise-problem-details+cbor)

Payload:
{
/ title / -1: "Invalid parameter value",
/ detail / -2: "Invalid value for 'cursor': -53",

/ ace-trl-error / 1: {
/ error-id / ©: @ / "Invalid parameter value" /,
/ cursor / 1: 42

Figure 5: Example of Error Response with Problem Details

The problem-details format in general and the Custom Problem Detail entry 'ace-trl-error' in
particular are OPTIONAL to support for registered devices. A registered device supporting the
entry 'ace-trl-error' and that is able to understand the specified error may use that information
to determine what actions to take next.

6.2. Supporting Diff Queries

If the AS supports diff queries, it is able to transfer a list of diff entries, each of which is related
to one update that occurred to the TRL (see Section 6). That is, when replying to a diff query
performed for a requester, the AS provides the diff entries related to the most recent TRL
updates pertaining to the requester.

The following defines how the AS builds and maintains an ordered list of diff entries, for each
registered device and administrator, hereafter referred to as "requesters”. In particular, a
requester's diff entry associated with a TRL update contains a set of token hashes pertaining to
that requester, each of which was added to the TRL or removed from the TRL at that update.

Tiloca, et al. Standards Track Page 19

RFC 9770 Notification of Revoked Tokens in ACE June 2025

The AS defines the single constant positive integer MAX_N >= 1. For each requester, the AS
maintains an update collection of maximum MAX_N series items, each of which is a diff entry.
For each requester, the AS MUST keep track of the MAX_N most recent TRL updates pertaining to
the requester. If the AS supports diff queries, the AS MUST provide requesters with the value of
MAX_N upon their registration (see Section 10).

The series of items in the update collection MUST be strictly chronologically ordered. That is, at
any point in time, the first series item is the one least recently added to the update collection and
still retained by the AS; the last series item is the one most recently added to the update
collection. The particular method used to achieve this is implementation specific.

Each time the TRL changes, the AS performs the following operations for each requester:

1. The AS considers the subset of the TRL pertaining to that requester. If the TRL subset is not
affected by this TRL update, the AS stops the processing for that requester. Otherwise, the AS
moves to Step 2.

2. The AS creates two trl_patch sets of token hashes, i.e., one 'removed' set and one 'added’ set,
as related to this TRL update.

3. The AS fills the two sets with the token hashes of the removed and added access tokens,
respectively, from/to the TRL subset considered at Step 1.

4. The AS creates a new series item that includes the two sets from Step 3.

5. If the update collection associated with the requester currently includes MAX_N series
items, the AS MUST delete the oldest series item in the update collection.

6. The AS adds the series item to the update collection associated with the requester as the last
(most recent) series item.

6.2.1. Supporting the "Cursor" Extension

If it supports the "Cursor" extension for diff queries, the AS also performs the following actions:

The AS defines the single constant unsigned integer MAX_INDEX <= (254 - 1). The value of
MAX_INDEX is REQUIRED to be at least (MAX_N - 1) and is RECOMMENDED to be at least ((23%) -
1). MAX_INDEX SHOULD be orders of magnitude greater than MAX_N.

The following applies separately for each requester's update collection:

* Each series item X in the update collection is also associated with an unsigned integer 'index/,
whose minimum value is 0 and whose maximum value is MAX_INDEX. The first series item
ever added to the update collection MUST have an 'index’ with a value of 0.

Ifi_X is the value of 'index' associated with a series item X, then the following series item Y
will take 'index' with a value of i_Y = (i_X + 1) % (MAX_INDEX + 1). That is, after having
added a series item whose associated 'index' has a value of MAX INDEX, the next added
series item will result in a wraparound of the 'index' value; thus, it will take an 'index' with a
value of 0.

Tiloca, et al. Standards Track Page 20

RFC 9770 Notification of Revoked Tokens in ACE June 2025

For example, assuming MAX_N = 3, the values of 'index' in the update collection
chronologically evolve as follows, as new series items are added and old series items are
deleted:

o (i_A=MAX INDEX-2,i B=MAX INDEX-1,i C=MAX_INDEX)
°(i_B=MAX_INDEX-1,i C=MAX INDEX,i D =0)
°(i_C=MAX_INDEX,i D=0,i E=1)

°(i,Db=0,iE=1,i F=2)

o

* The unsigned integer 'last_index' is also defined, with minimum value 0 and maximum
value MAX_INDEX.

If the update collection is empty (i.e., no series items have been added yet), the value of
'last_index' is not defined. If the update collection is not empty, 'last_index' has the value of
'index’ currently associated with the last series item in the update collection.

That is, after having added V series items to the update collection, the last and most recently
added series item has an 'index' with a value of last_index' = (V - 1) % (MAX_INDEX + 1).

As long as a wraparound of the 'index' value has not occurred, the value of 'last_index' is the
absolute counter of series items added to that update collection, minus 1.

When processing a diff query using the "Cursor" extension, the values of 'index’ are used as
cursor information, as defined in Section 9.2.

For each requester's update collection, the AS also defines a constant positive integer
MAX_DIFF_BATCH <= MAX_N, whose value specifies the maximum number of diff entries to be
included in a single diff query response. The specific value MAY depend on the specific
registered device or administrator associated with the update collection in question. If
supporting the "Cursor" extension, the AS MUST provide registered devices and administrators
with the corresponding value of MAX_DIFF_BATCH upon their registration (see Section 10).

6.3. Query Parameters

A GET request to the TRL endpoint can include the following query parameters. The AS MUST
silently ignore unknown query parameters.

o 'diff": if included, it asks the AS to perform a diff query of the TRL (see Section 8). Its value
MUST be either:

o the integer 0, indicating that a (notification) response should include as many diff entries
as the AS can provide in the response; or

o a positive integer strictly greater than 0, indicating the maximum number of diff entries
that a (notification) response should include.

If the AS does not support diff queries, it ignores the 'diff' query parameter when present in
the GET request and proceeds like when performing a full query of the TRL (see Section 7).

Tiloca, et al. Standards Track Page 21

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Otherwise, the AS MUST return a 4.00 (Bad Request) response in case the 'diff' query
parameter of the GET request has a value that is neither 0 nor a positive integer, irrespective
of the presence of the 'cursor' query parameter and its value (see below). The response MUST
have Content-Format set to "application/concise-problem-details+cbor", and its payload is
formatted as defined in Section 6.1. Within the Custom Problem Detail entry 'ace-trl-error’,
the value of the 'error-id' field MUST be set to 0 ("Invalid parameter value"), and the 'cursor’
field MUST NOT be present.

o 'cursor’: if included, it asks the AS to perform a diff query of the TRL together with the
"Cursor" extension, as defined in Section 9.2. Its value MUST be either 0 or a positive integer.
If the 'cursor' query parameter is included, then the 'diff' query parameter MUST also be
included.

If included, the 'cursor' query parameter has an unsigned integer value that was provided
by the AS in a previous response from the TRL endpoint (see Sections 9.1, 9.2.2, and 9.2.3).

If the AS does not support the "Cursor" extension, it ignores the 'cursor' query parameter
when present in the GET request. In such a case, the AS proceeds as specified elsewhere in
this document, that is:

1. it performs a diff query of the TRL (see Section 8), if it supports diff queries and the 'diff’
query parameter is present in the GET request; otherwise,

2. it performs a full query of the TRL (see Section 7).

If the AS supports both diff queries and the "Cursor" extension, and the GET request
includes the 'cursor' query parameter, then the AS MUST return a 4.00 (Bad Request)
response in case any of the conditions below holds.

The 4.00 (Bad Request) response MUST have Content-Format set to "application/concise-
problem-details+cbor”, and its payload is formatted as defined in Section 6.1.

> The GET request does not include the 'diff' query parameter, irrespective of the value of
the 'cursor' query parameter.

Within the Custom Problem Detail entry 'ace-trl-error’, the value of the 'error-id' field MUST
be set to 1 ("Invalid set of parameters"), and the 'cursor' field MUST NOT be present.

> The 'cursor' query parameter has a value that is neither 0 nor a positive integer; or it has a
value strictly greater than MAX_INDEX (see Section 6.2.1).

Within the Custom Problem Detail entry 'ace-trl-error’, the value of the 'error-id' field MUST
be set to 0 ("Invalid parameter value"). The entry 'ace-trl-error' MUST include the 'cursor
field, whose value is either:

= the CBOR simple value null (0xf6), if the update collection associated with the requester
is empty; or, otherwise
= the corresponding current value of 'last_index'.

o All of the following hold: the update collection associated with the requester is not empty;
no wraparound of the 'index' value has occurred; and the 'cursor' query parameter has a
value strictly greater than the current 'last_index' on the update collection (see Section
6.2.1).

Tiloca, et al. Standards Track Page 22

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Within the Custom Problem Detail entry 'ace-trl-error’, the value of the 'error-id' field MUST
be set to 2 ("Out of bound cursor value"), and the 'cursor' field MUST NOT be present.

7. Full Query of the TRL

In order to produce a (notification) response to a GET request asking for a full query of the TRL,
the AS performs the following actions:

1. From the TRL, the AS builds a HASHES set such that:

o If the requester is a registered device, HASHES specifies the token hashes currently in the
TRL and associated with the access tokens pertaining to that registered device. The AS can
always use the authenticated identity of the registered device to perform the necessary
filtering on the TRL content.

o If the requester is an administrator, HASHES specifies all the token hashes currently in the
TRL.

2. The AS sends a 2.05 (Content) response to the requester. The response MUST have Content-
Format set to "application/ace-trl+cbor". The payload of the response is a CBOR map, which
MUST be formatted as follows.

o The 'full_set' parameter MUST be included and MUST encode a CBOR array 'full_set_value'.
Each element of 'full_set_value' is a CBOR byte string, whose value is one of the token
hashes from the HASHES set. If the HASHES set is empty, the 'full_set' parameter specifies
the empty CBOR array.

The CBOR array MUST be treated as a set, i.e., the order of its elements has no meaning.

> The 'cursor' parameter MUST be included if the AS supports both diff queries and the
related "Cursor" extension (see Sections 6.2 and 6.2.1). Its value is set as specified in Section
9.1 and provides the requester with information for sending a new request that asks the
AS to perform a follow-up diff query using the "Cursor" extension (see Section 9.2).

If the AS does not support both diff queries and the "Cursor" extension, this parameter
MUST NOT be included. In case the requester does not support both diff queries and the
"Cursor" extension, it MUST silently ignore the 'cursor' parameter if present.

Figure 6 provides the CDDL definition [RFC8610] of the CBOR array 'full_set_value' specified in

the response from the AS as the value of the 'full_set' parameter.

token_hash = bytes
full_set_value = [* token_hash]

Figure 6: CDDL Definition of 'full_set_value'

Figure 7 shows an example of a response from the AS following a full query request to the TRL
endpoint. In this example, the AS does not support diff queries nor the "Cursor" extension; hence
the 'cursor' parameter is not included in the payload of the response. Also, full token hashes are
omitted for brevity.

Tiloca, et al. Standards Track Page 23

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Header: Content (Code=2.85)
Content-Format: 262 (application/ace-trl+cbor)
Payload:

/ full_set / 0: [
h'@1fa51cc...4819', / elided for brevity /
h'01748190...223d' / elided for brevity /
]
}

Figure 7: Example of a Response Following a Full Query Request to the TRL Endpoint

8. Diff Query of the TRL

In order to produce a (notification) response to a GET request asking for a diff query of the TRL,
the AS performs the following actions:

Note that, if the AS supports both diff queries and the related "Cursor" extension, Steps 3 and 4
defined below are extended as defined in Section 9.2.

1. The AS defines the positive integer NUM as follows: if the value N specified in the 'diff’ query
parameter in the GET request is equal to 0 or greater than the predefined positive integer
MAX_N (see Section 6.2), then NUM takes the value of MAX_N. Otherwise, NUM takes N.

2. The AS determines U = min(NUM, SIZE), where SIZE <= MAX_N. In particular, SIZE is the
number of diff entries currently stored in the requester's update collection.

3. The AS prepares U diff entries. If U is equal to 0 (e.g., because SIZE is equal to 0 at Step 2),
then no diff entries are prepared.

The prepared diff entries are related to the U most recent TRL updates pertaining to the
requester, as maintained in the update collection for that requester (see Section 6.2). In
particular, the first diff entry refers to the most recent of such updates, the second diff entry
refers to the second-to-last of such updates, and so on.

Each diff entry is a CBOR array 'diff_entry', which includes the following two elements:

a. A trl_patch set of token hashes encoded as a CBOR array removed'. Each element of the
array is a CBOR byte string, whose value is the token hash of an access token such that it
pertains to the requester and was removed from the TRL during the update associated
with the diff entry.

b. A trl_patch set of token hashes encoded as a CBOR array 'added’. Each element of the array
is a CBOR byte string, whose value is the token hash of an access token such that it
pertains to the requester and was added to the TRL during the update associated with the
diff entry.

The CBOR arrays 'removed' and 'added' MUST be treated as sets, i.e., the order of their
elements has no meaning.

Tiloca, et al. Standards Track Page 24

RFC 9770 Notification of Revoked Tokens in ACE June 2025

4. The AS prepares a 2.05 (Content) response for the requester. The response MUST have
Content-Format set to "application/ace-trl+cbor". The payload of the response is a CBOR map,
which MUST be formatted as follows:

o The 'diff_set' parameter MUST be present and MUST encode a CBOR array 'diff_set_value' of
U elements. Each element of 'diff_set_value' specifies one of the CBOR arrays 'diff_entry’
prepared above as a diff entry. Note that U might have a value of 0; in this case,
'diff_set_value'is the empty CBOR array.

Within 'diff_set_value’, the 'diff_entry' CBOR arrays MUST be sorted to reflect the
corresponding updates to the TRL in reverse chronological order. That is, the first
'diff_entry' element of 'diff_set_value' relates to the most recent TRL update pertaining to
the requester. The second 'diff_entry' element relates to the second-to-last most recent TRL
update pertaining to the requester, and so on.

> The 'cursor' parameter and the 'more' parameter MUST be included if the AS supports both
diff queries and the related "Cursor" extension (see Section 6.2.1). Their values are set as
specified in Section 9.2 and provide the requester with information for sending a new
request that asks the AS to perform a follow-up query of the TRL (see Section 9.2).

In case the AS supports diff queries but not the "Cursor" extension, these parameters MUST
NOT be included. In case the requester supports diff queries but not the "Cursor"
extension, the requester MUST silently ignore the 'cursor' parameter and the 'more’
parameter, if present.

Figure 8 provides the CDDL definition [RFC8610] of the CBOR array 'diff_set_value' specified in
the response from the AS, as the value of the 'diff_set' parameter.

token_hash = bytes

trl_patch = [* token_hash]

diff_entry = [removed: trl_patch, added: trl_patch]
diff_set_value = [* diff_entry]

Figure 8: CDDL Definition of 'diff_set_value’

Figure 9 shows an example of a response from the AS following a diff query request to the TRL
endpoint, where U = 3 diff entries are included. In this example, the AS does not support the
"Cursor" extension; hence, the 'cursor' parameter and the 'more' parameter are not included in
the payload of the response. Also, full token hashes are omitted for brevity.

Tiloca, et al. Standards Track Page 25

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Header: Content (Code=2.05)
Content-Format: 262 (application/ace-trl+cbor)
Payload:

/ diff_set / 1: [
[
[h'e1fa51cc...0f6a’,
h'017481960. . .8bce"’

elided for brevity /
elided for brevity /

~ ~

],

[h'@1cdflica...563d"', / elided for brevity /
h'@1bed41a6...a057' / elided for brevity /

]

%'
[h'8144dd12...77bc', / elided for brevity /
h'01231fff...a2ce' / elided for brevity /
]
[

]
I
[

[]

[H'@1ca986f...ffc1',
h'@1fela2b...defo’
]

]
]

elided for brevity /
elided for brevity /

~ ~

}

Figure 9: Example of Response Following a Diff Query Request to the TRL Endpoint

Appendix A discusses how performing a diff query of the TRL is, in fact, a usage example of the
Series Transfer Pattern defined in [STP].

9. Response Messages when Using the "Cursor" Extension

If the AS supports both diff queries and the "Cursor" extension, it composes a response to a full
query request or diff query request as defined in Sections 9.1 and 9.2, respectively.

The exact format of the response depends on:

* the request being a full query or diff query request,

* the presence of the 'diff' and 'cursor' query parameters and their values in the diff query
request, and

e the current status of the update collection associated with the requester.

Error handling and the possible resulting error responses are as defined in Section 6.3.

9.1. Response to Full Query

When processing a full query request to the TRL endpoint, the AS composes a response as
defined in Section 7.

Tiloca, et al. Standards Track Page 26

RFC 9770 Notification of Revoked Tokens in ACE June 2025

In particular, the 'cursor' parameter included in the CBOR map carried in the response payload
specifies either the CBOR simple value null (0xf6) or a CBOR unsigned integer.

The 'cursor' parameter MUST encode the CBOR simple value null (0xf6) in case there are
currently no TRL updates pertaining to the requester, i.e., the update collection for that
requester is empty. This is the case from when the requester registers at the AS until the first
update pertaining to that requester occurs to the TRL.

Otherwise, the 'cursor' parameter MUST encode a CBOR unsigned integer. The unsigned integer
MUST take the 'index’ value of the last series item in the update collection associated with the
requester (see Section 6.2.1) as corresponding to the most recent TRL update pertaining to the
requester. In fact, such a value is the current value of 'last_index' for the update collection
associated with the requester.

9.2. Response to Diff Query

When processing a diff query request to the TRL endpoint, the AS composes a response as
defined in the following subsections.

9.2.1. Empty Update Collection

If the update collection associated with the requester has no elements, the AS returns a 2.05
(Content) response. The response MUST have Content-Format set to "application/ace-trl+cbor",
and its payload MUST be a CBOR map formatted as follows:

* The 'diff_set' parameter MUST be included and MUST encode the empty CBOR array.
* The 'cursor' parameter MUST be included and MUST encode the CBOR simple value null
(0x£6).

* The 'more' parameter MUST be included and MUST encode the CBOR simple value false
(0xf4).

Note that the above applies when the update collection associated with the requester has no
elements, regardless of whether or not the 'cursor' query parameter is included in the diff query
request and irrespective of the specified unsigned integer value if present.

9.2.2. Cursor Not Included in the Diff Query Request

If the update collection associated with the requester is not empty and the diff query request
does not include the 'cursor’ query parameter, the AS performs the actions defined in Section 8,
with the following differences:

o At Step 3, the AS considers the value MAX_DIFF_BATCH (see Section 6.2.1) and prepares L =
min(U, MAX_DIFF_BATCH) diff entries.

If U <= MAX_DIFF_BATCH, the prepared diff entries are the last series items in the update
collection associated with the requester, corresponding to the L. most recent TRL updates
pertaining to the requester.

Tiloca, et al. Standards Track Page 27

RFC 9770 Notification of Revoked Tokens in ACE June 2025

If U > MAX_DIFF_BATCH, the prepared diff entries are the eldest of the last U series items in
the update collection associated with the requester, as corresponding to the first L of the U
most recent TRL updates pertaining to the requester.

o At Step 4, the CBOR map to carry in the payload of the 2.05 (Content) response MUST be
formatted as follows:

o The 'diff_set' parameter MUST be present and MUST encode a CBOR array 'diff_set_value' of
L elements. Each element of 'diff_set_value' specifies one of the CBOR arrays 'diff_entry’
prepared as a diff entry.

> The 'cursor' parameter MUST be present and MUST encode a CBOR unsigned integer. The
unsigned integer MUST take the 'index' value of the series item of the update collection
included as first diff entry in the 'diff_set_value' CBOR array, which is specified by the
'diff_set' parameter. That is, the 'cursor' parameter takes the 'index' value of the series
item in the update collection corresponding to the most recent TRL update pertaining to
the requester and returned in this diff query response.

Note that the 'cursor' parameter takes the same 'index’ value of the last series item in the
update collection when U <= MAX_DIFF_BATCH.

> The 'more' parameter MUST be present. The parameter MUST encode the CBOR simple
value false (0xf4) if U <= MAX_DIFF_BATCH; otherwise, it MUST encode the CBOR simple
value true (0xf5).

If the 'more' parameter in the payload of the received 2.05 (Content) response has a value of
true, the requester can send a follow-up diff query request including the 'cursor' query
parameter with the same value of the 'cursor' parameter specified in this diff query response. As
defined in Section 9.2.3, this would result in the AS transferring the following subset of series
items as diff entries, thus resuming from where interrupted in the previous transfer.

9.2.3. Cursor Included in the Diff Query Request

If the update collection associated with the requester is not empty and the diff query request
includes the 'cursor' query parameter with value P, the AS proceeds as follows, depending on
which of the following two cases hold:

Case A: The series item X with 'index' having value P and the series item Y with 'index' having
value (P + 1) % (MAX_INDEX + 1) are both not found in the update collection associated
with the requester. This occurs when the item Y (and possibly further ones after it) has
been previously removed from the update collection for that requester (see Step 5 at
Section 6.2).

In this case, the AS returns a 2.05 (Content) response. The response MUST have Content-
Format set to "application/ace-trl+cbor", and its payload MUST be a CBOR map formatted
as follows:

* The 'diff_set' parameter MUST be included and MUST encode the empty CBOR array.

* The 'cursor' parameter MUST be included and MUST encode the CBOR simple value
null (0xf6).

Tiloca, et al. Standards Track Page 28

RFC 9770 Notification of Revoked Tokens in ACE June 2025

* The 'more’' parameter MUST be included and MUST encode the CBOR simple value true
(0xf5).

With the combination (‘cursor’, 'more') = (null, true), the AS is indicating that the update
collection is, in fact, not empty, but that one or more series items have been lost due to
their removal. These include the item with 'index' value (P + 1) % (MAX_INDEX + 1) that
the requester wished to obtain as the first one following the specified reference point with
'index’ value P.

When receiving this diff query response, the requester SHOULD send a new full query
request to the AS. A successful response provides the requester with the full current
pertaining subset of the TRL as well as a valid value of the 'cursor' parameter (see Section
9.1) to be, possibly, used as query parameter in a following diff query request.

Case B: The series item X with 'index' having value P is found in the update collection
associated with the requester, or instead the series item X is not found and the series item
Y with 'index' having value (P + 1) % (MAX_INDEX + 1) is found in the update collection
associated with the requester.

In this case, the AS performs the actions defined in Section 8 with the following
differences:

o At Step 3, the AS considers the value MAX_DIFF_BATCH (see Section 6.2.1) and
prepares L = min(SUB_U, MAX_DIFF_BATCH) diff entries, where SUB_U = min(NUM,
SUB_SIZE) and SUB_SIZE is the number of series items in the update collection
starting from and including the series item added immediately after X. If L. is equal to
0 (e.g., because SUB_U is equal to 0), then no diff entries are prepared.

If SUB_U <= MAX_DIFF_BATCH, the prepared diff entries are the last series items in
the update collection associated with the requester, corresponding to the L most
recent TRL updates pertaining to the requester.

If SUB_U > MAX_DIFF_BATCH, the prepared diff entries are the eldest of the last SUB_U
series items in the update collection associated with the requester, corresponding to
the first L of the SUB_U most recent TRL updates pertaining to the requester.

* At Step 4, the CBOR map to carry in the payload of the 2.05 (Content) response MUST
be formatted as follows:

> The 'diff_set' parameter MUST be present and MUST encode a CBOR array
'diff_set_value' of L elements. Each element of 'diff_set_value' specifies one of the
CBOR arrays 'diff_entry' prepared as a diff entry. Note that L might have value 0, in
which case 'diff_set_value' is the empty CBOR array.

> The 'cursor' parameter MUST be present and MUST encode a CBOR unsigned integer.
In particular:

= IfL is equal to O, i.e., the series item X is the last one in the update collection, then
the 'cursor' parameter MUST take the same 'index' value of the last series item in
the update collection. In fact, such a value is the current value of 'last_index' for
the update collection.

Tiloca, et al. Standards Track Page 29

RFC 9770 Notification of Revoked Tokens in ACE June 2025

= If L is different than 0, then the 'cursor' parameter MUST take the 'index' value of
the series element of the update collection included as first diff entry in the
'diff_set' CBOR array. That is, the 'cursor' parameter takes the 'index’ value of the
series item in the update collection corresponding to the most recent TRL update
pertaining to the requester and returned in this diff query response.

Note that the 'cursor' parameter takes the same 'index' value of the last series item
in the update collection when SUB_U <= MAX_DIFF_BATCH.

> The 'more' parameter MUST be present. The parameter MUST encode the CBOR
simple value false (0xf4) if SUB_U <= MAX_DIFF_BATCH; otherwise, it MUST encode
the CBOR simple value true (0xf5).

If the 'more' parameter in the payload of the received 2.05 (Content) response has value
true, the requester can send a follow-up diff query request including the 'cursor' query
parameter with the same value of the 'cursor' parameter specified in this diff query
response. This would result in the AS transferring the following subset of series items as
diff entries, thus resuming from where interrupted in the previous transfer.

10. Registration at the Authorization Server

During the registration process at the AS, an administrator or a registered device receives the
following information as part of the registration response:

* The url-path to the TRL endpoint at the AS.

* The hash function used to compute token hashes. This is specified by identifying an entry in
the "Named Information Hash Algorithm Registry" [[ANA.Hash.Algorithms]. The specific
means for this is outside the scope of this document.

* A positive integer MAX_N, if the AS supports diff queries of the TRL (see Sections 6.2 and 8).

* A positive integer MAX_DIFF_BATCH, if the AS supports diff queries of the TRL as well as the
related "Cursor" extension (see Sections 6.2.1 and 9).

Once the registration process is completed, the AS maintains the registration and related
information until a possible deregistration occurs, hence keeping track of active administrators
and registered devices. The particular way to achieve this is implementation specific. In any
case, such a mechanism to maintain registrations is enforced at the AS in order to ensure that
requests sent by clients to the /token endpoint (see Section 5.8 of [RFC9200]) and by RSs to the /
introspect endpoint (see Section 5.9 of [RFC9200]) are processed as intended.

When communicating with one another, the registered devices and the AS have to use a secure
communication association and be mutually authenticated (see Section 5 of [REC9200]).

In the same spirit, communications between the AS and an administrator MUST be ensured to be
mutually authenticated, encrypted, and integrity protected as well as protected against message
replay.

Tiloca, et al. Standards Track Page 30

https://rfc-editor.org/rfc/rfc9200#section-5.8
https://rfc-editor.org/rfc/rfc9200#section-5.9
https://rfc-editor.org/rfc/rfc9200#section-5

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Before starting its registration process at the AS, an administrator has to establish such a secure
communication association with the AS, if they do not share one already. In particular, mutual
authentication is REQUIRED during the establishment of the secure association. To this end, the
administrator and the AS can rely, e.g., on establishing a TLS or DTLS secure session with mutual
authentication (see [RFC8446] and [RFC9147]) or an Object Security for Constrained RESTful
Environments (OSCORE) Security Context [RFC8613] by running the authenticated key exchange
protocol EDHOC [RFC9528].

When receiving authenticated requests from the administrator for accessing the TRL endpoint,
the AS can always check whether the requester is authorized to take such a role, i.e., to access
the content of the whole TRL.

To this end, the AS may rely on a local access control list or similar, which specifies the
authentication credentials of trusted, authorized administrators. In particular, the AS verifies
the requester to the TRL endpoint as an authorized administrator only if the access control list
includes the same authentication credential used by the requester when establishing the
mutually authenticated secure communication association with the AS.

Further details about the registration process at the AS are out of scope for this specification.
Note that the registration process is also out of the scope of the ACE framework (see Section 5.5
of [RFC9200]).

11. Notification of Revoked Access Tokens

Once registered at the AS, the administrator or a registered device can send a GET request to the
TRL endpoint at the AS. The request can express the wish for a full query (see Section 7) or a diff
query (see Section 8) of the TRL. Also, the request can include the CoAP Observe Option set to 0
(register) in order to start an observation of the TRL endpoint as per Section 3.1 of [RFEC7641].

In case the request is successfully processed, the AS replies with a 2.05 (Content) response. In
particular, if the AS supports diff queries but not the "Cursor" extension (see Sections 6.2 and
6.2.1), then the payload of the response is formatted as defined in Sections 7 or 8, in case the GET
request has yielded the execution of a full query or of a diff query of the TRL, respectively.
Instead, if the AS supports both diff queries and the related "Cursor" extension, then the payload
of the response is formatted as defined in Section 9.

In case a requester does not receive a response from the TRL endpoint or it receives an error
response from the TRL endpoint, the requester does not make any assumptions or draw any
conclusions regarding the revocation or expiration of its pertaining access tokens. The requester
MAY try again by sending a new request to the TRL endpoint.

When the TRL is updated (see Section 5.1), the AS sends Observe notifications to the observers
whose pertaining subset of the TRL has changed. Observe notifications are sent as per Section 4.2
of [RFC7641]. If supported by the AS, an observer may configure the behavior according to
which the AS sends those Observe notifications. To this end, a possible way relies on the
conditional control parameter "c.pmax" defined in [COND-PARAMETERS], which can be included

Tiloca, et al. Standards Track Page 31

https://rfc-editor.org/rfc/rfc9200#section-5.5
https://rfc-editor.org/rfc/rfc7641#section-3.1
https://rfc-editor.org/rfc/rfc7641#section-4.2

RFC 9770 Notification of Revoked Tokens in ACE June 2025

as a "name=value" query parameter in an Observation Request. This ensures that no more than
c.pmax seconds elapse between two consecutive notifications sent to that observer, regardless of
whether or not the TRL has changed.

Following a first exchange with the AS, an administrator or a registered device can send
additional GET requests to the TRL endpoint at any time, analogously to what is defined above.
When doing so, the requester towards the TRL endpoint can ask the AS to perform a full query
(see Section 7) or a diff query (see Section 8) of the TRL. In the latter case, the requester can
additionally rely on the "Cursor" extension (see Sections 6.3 and 9.2).

As specified in Section 6.2, an AS supporting diff queries maintains an update collection of
maximum MAX_N series items for each administrator or registered device, hereafter referred to
as a "requester". In particular, if an update collection includes MAX_N series items, adding a
further series item to that update collection results in deleting the oldest series item from that
update collection.

From then on, the requester associated with the update collection will not be able to retrieve the
deleted series item when sending a new diff query request to the TRL endpoint. If that series
item reflected the revocation of an access token pertaining to the requester, then the requester
will not learn about that when receiving the corresponding diff query response from the AS.

Sending a diff query request specifically as an Observation Request, and, thus, relying on
Observe notifications, largely reduces the chances for a requester to miss updates that have
occurred to its associated update collection. In turn, this relies on the requester successfully
receiving the Observe notification responses from the TRL (see also Section 14.3).

In order to limit the amount of time during which the requester is unaware of pertaining access
tokens that have been revoked but are not expired yet, a requester SHOULD NOT rely solely on
diff query requests. In particular, a requester SHOULD also regularly send a full query request to
the TRL endpoint according to a related application policy.

11.1. Handling of Revoked Access Tokens and Token Hashes

When receiving a response from the TRL endpoint, a registered device MUST expunge every
stored access token associated with a token hash specified in the response. In case the registered
device is an RS, it MUST NOT delete the stored token hash after having expunged the associated
access token.

If an RS uses the method defined in this document with the AS that has issued an access token,
then the RS MUST NOT accept and store that access token if any of the following holds.

* The token hash corresponding to the access token is among the currently stored ones.
* The access token is a CWT and any of the following holds:
> The access token includes a non-empty "unprotected" field, i.e., the value of the field is not
encoded as the empty CBOR map (0xa0). This applies to the top-level "unprotected" field of

the COSE object used for the CWT, the "unprotected" field of each element of the
"signatures" array, and the "unprotected" field of each element of any "recipients" array.

Tiloca, et al. Standards Track Page 32

RFC 9770 Notification of Revoked Tokens in ACE June 2025

> The received CBOR data item that embodies the access token does not comply with what is
defined in Section 3. This concerns:

= the use of exactly two nested CBOR tags, where the outer tag is the CWT CBOR tag and
the inner tag is one of the COSE CBOR tags;

= the tag numbers encoded with the minimum possible length; and

= the access token being the innermost tag content of the received CBOR data item.

o In the received CBOR data item that embodies the access token, the inner tag has a tag
number that is not consistent with the actual COSE data item to process. For instance, the
inner tag number is 16 (COSE_Encrypt0) but the CWT is actually a COSE_Sign data item.

* The access token relies on a JSON object for encoding its claims, but it is not a JWT [RFC7519]
and any of the following holds:

> The access token uses the JWS JSON Serialization from [RFC7515] and includes the JWS
Unprotected Header.

> The access token uses the JWE JSON Serialization from [RFC7516] and includes the JWE
Shared Unprotected Header and/or includes the "header" member in any of the elements
of the "recipients" array.

An RS MUST store the token hash th1 corresponding to an access token t1 until both the
following conditions hold:

* The RS has received and seen t1, irrespective of having accepted and stored it.
* The RS has gained knowledge that t1 has expired. This can be achieved, e.g., through the
following means:

° A response from the TRL endpoint indicating that t1 has expired after its earlier
revocation, i.e., the token hash th1 has been removed from the TRL. This can be indicated,
for instance, in a response from the TRL endpoint following a diff query of the TRL (see
Section 8).

 The value of the 'exp' claim specified in t1 indicates that t1 has expired.

> The locally determined expiration time for t1 has passed, based on the time at the RS
when t1 was first accepted and on the value of its 'exi' claim.

o The result of token introspection performed on t1 (see Section 5.9 of [RFC9200]), if
supported by both the RS and the AS.

The RS MUST NOT delete the stored token hashes whose corresponding access tokens do not
fulfill both the two conditions above, unless it becomes necessary due to memory limitations. In
such a case, the RS MUST delete the earliest stored token hashes first.

Retaining the stored token hashes as specified above limits the impact from a (dishonest) client
whose pertaining access token:

1. includes the 'exi' claim,

2. is uploaded at the RS for the first time after it has been revoked and later expired, and

Tiloca, et al. Standards Track Page 33

https://rfc-editor.org/rfc/rfc9200#section-5.9

RFC 9770 Notification of Revoked Tokens in ACE June 2025

3. has the sequence number encoded in the 'cti' claim (for CWTSs) or in the 'jti' claim (for JWTs)
greater than the highest sequence number among the expired access tokens including the
'exi’ claim for the RS (see Section 5.10.3 of [RFC9200]).

That is, the RS would not accept such a revoked and expired access token as long as it stores the
corresponding token hash.

This risk can be further limited. Specifically, if token introspection is implemented by both the
RS and the AS, the RS can introspect the access token (see Section 5.9 of [RFC9200]) when
receiving an access token that includes the 'exi' claim and for which a corresponding token hash
is not stored.

When, due to the stored and corresponding token hash th2, an access token t2 that includes the
'exi' claim is expunged or is not accepted upon its upload, the RS retrieves the sequence number
sn2 encoded in the 'cti’ claim (for CWTs) or in the 'jti' claim (for JWTs) (see Section 5.10.3 of
[RFC9200]). Then, the RS stores sn2 as associated with th2. If expunging or not accepting t2 yields
the deletion of th2, then the RS MUST associate sn2 with th2 before continuing with the deletion
of th2.

When deleting any token hash, the RS checks whether the token hash is associated with a
sequence number sn_th. In such a case, the RS checks whether sn_th is greater than the highest
sequence number sn* among the expired access tokens including the 'exi' claim for the RS. If
that is the case, sn* MUST take the value of sn_th.

By virtue of what is defined in Section 5.10.3 of [RFC9200], this ensures that, following the
deletion of the token hash associated with an access token including the 'exi' claim and uploaded
for the first time after it has been revoked and later expired, the RS will not accept the access
token at that point in time or in the future.

12. ACE Token Revocation List Parameters

This specification defines a number of parameters that can be transported in the response from
the TRL endpoint, when the response payload is a CBOR map. Note that such a response MUST
use the Content-Format "application/ace-trl+cbor" defined in Section 15.2 of this specification.

The table below summarizes the parameters. For each of them, it specifies the value to use as
CBOR key, i.e., as abbreviation in the key of the map pair for the parameter, instead of the
parameter's name as a text string.

Name CBOR Key CBOR Type

full set 0 array
diff set 1 array
cursor 2 Null or unsigned integer

Tiloca, et al. Standards Track Page 34

https://rfc-editor.org/rfc/rfc9200#section-5.10.3
https://rfc-editor.org/rfc/rfc9200#section-5.9
https://rfc-editor.org/rfc/rfc9200#section-5.10.3
https://rfc-editor.org/rfc/rfc9200#section-5.10.3

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Name CBOR Key CBOR Type

more 3 True or False

Table 1: CBOR Abbreviations for the ACE Token
Revocation List Parameters

13. ACE Token Revocation List Error Identifiers

This specification defines a number of values that the AS can use as error identifiers. These are
used in error responses with Content-Format "application/concise-problem-details+cbor", as
values of the 'error-id' field within the Custom Problem Detail entry 'ace-trl-error' (see Section
6.1).

Value Description

0 Invalid parameter value
1 Invalid set of parameters
2 Out of bound cursor value

Table 2: ACE Token Revocation List Error
Identifiers

14. Security Considerations

The protocol defined in this document inherits the security considerations from the ACE
framework [RFC9200] and those about the usage of CWTs from [RFC8392], the usage of JWTs
from [RFC7519] and [RFC8725], the usage of CoAP Observe from [RFC7641], and the computation
of the token hashes from [RFC6920]. The following considerations also apply.

14.1. Content Retrieval from the TRL

The AS MUST ensure that each registered device can access and retrieve only its pertaining
subset of the TRL. To this end, the AS can always perform the required filtering based on the
authenticated identity of the registered device, i.e., a (non-public) identifier that the AS can
securely relate to the registered device and the secure association that they use to communicate.

The AS MUST ensure that, other than registered devices accessing their own pertaining subset of
the TRL, only authorized and authenticated administrators can access the content of the whole
TRL (see Section 10).

Tiloca, et al. Standards Track Page 35

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Note that the TRL endpoint supports only the GET method (see Section 6). Therefore, as detailed
in Sections 7 and 8, access to the TRL endpoint is performed only by means of protected and
authenticated GET requests, which, by definition, are safe in the REST sense and do not alter the
content of the TRL. That is, registered devices and administrators can perform exclusively read-
only operations when accessing the TRL endpoint.

In fact, the content of the TRL can be updated only internally by the AS, in the two circumstances
described in Section 5.1. Therefore, an adversary that is not in control of the AS cannot
manipulate the content of the TRL, e.g., by removing a token hash and thereby fraudulently
allowing a client to access protected resources in spite of a revoked access token or by adding a
token hash and thereby fraudulently stopping a client from accessing protected resources in
spite of an access token being still valid.

14.2. Size of the TRL

If many non-expired access tokens associated with a registered device are revoked, the
pertaining subset of the TRL could grow to a size bigger than what the registered device is
prepared to handle upon reception of a response from the TRL endpoint, especially if relying on
a full query of the TRL (see Section 7).

This could be exploited by attackers to negatively affect the behavior of a registered device.
Therefore, in order to help reduce the size of the TRL, the AS SHOULD refrain from issuing access
tokens with an excessively long expiration time.

14.3. Communication Patterns

The communication about revoked access tokens presented in this specification is expected to
especially rely on CoAP Observe notifications sent from the AS to a requester (i.e., an
administrator or a registered device). The suppression of those notifications by an external
attacker that has access to the network would prevent requesters from ever knowing that their
pertaining access tokens have been revoked.

In order to avoid this, a requester SHOULD NOT rely solely on the CoAP Observe notifications. In
particular, a requester SHOULD also regularly poll the AS for the most current information about
revoked access tokens by sending GET requests to the TRL endpoint. Specific strategies and
schedules for polling the AS are to be defined by a related application policy and by taking into
account the expected operational and availability patterns adopted by the requester (e.g., in the
interest of energy saving and other optimizations).

14.4. Request of New Access Tokens

If a client stores an access token that it still believes to be valid, and it accordingly attempts to
access a protected resource at the RS, the client may receive an unprotected 4.01 (Unauthorized)
response from the RS.

Tiloca, et al. Standards Track Page 36

RFC 9770 Notification of Revoked Tokens in ACE June 2025

This can be due to a number of causes, for example:

* the access token has been revoked, the RS has become aware of it, and the RS has expunged
the access token, but the client is not aware of this (yet).

* the access token is still valid, but an on-path active adversary might have injected a forged
4.01 (Unauthorized) response or the RS might have deleted the access token from its local
storage due to its dedicated storage space being all consumed.

In either case, if the client believes that the access token is still valid, it SHOULD NOT
immediately ask for a new access token to the AS upon receiving a 4.01 (Unauthorized) response
from the RS. Instead, the client SHOULD send a request to the TRL endpoint at the AS. If the client
gains knowledge that the access token is not valid anymore, the client expunges the access token
and can ask for a new one. Otherwise, the client can try again to upload the same access token to
the RS or request a new one.

14.5. Vulnerable Time Window at the RS

A client may attempt to access a protected resource at an RS after the access token allowing such
an access has been revoked but before the RS is aware of the revocation.

In such a case, if the RS is still storing the access token, the client will be able to access the
protected resource even though it should not. Such access is a security violation, even if the
client is not attempting to be malicious.

In order to minimize such a risk, if an RS relies solely on polling through individual requests to
the TRL endpoint to learn of revoked access tokens, the RS SHOULD implement an adequate
trade-off between the polling frequency and the maximum length of the vulnerable time
window.

14.6. Preventing Unnoticed Manipulation of Access Tokens

As defined in Section 3, issued access tokens MUST NOT rely on unprotected headers to specify
information as header parameters. Also, when issued access tokens are CWTs, they MUST be
tagged by using the COSE CBOR tag corresponding to the used COSE object. Further, the result
MUST be tagged using the CWT CBOR tag; no further tagging is performed.

This ensures that the RS always computes the correct token hash corresponding to an access
token, i.e., the same token hash computed by the AS and C for that access token.

By construction, the rules defined in Section 3 prevent an active adversary from successfully
performing an attack against the RS, which would otherwise be possible in case the access token
is uploaded to the RS over an unprotected communication channel.

Tiloca, et al. Standards Track Page 37

RFC 9770 Notification of Revoked Tokens in ACE June 2025

In such an attack, the adversary intercepts the access token en route to the RS. Then, the
adversary manipulates the access token in a way that is going to be unnoticed by the RS but
without preventing the successful cryptographic validation of the access token at the RS. To this
end, the adversary has two possible options:

* Adding and/or removing fields within the unprotected header(s) of the access token, as long
as those fields do not play a role in the cryptographic validation of the access token.

* Specifically when the access token is a CWT, adding, removing, or manipulating possible
CBOR tags enclosing the access token.

After that, the adversary sends the manipulated access token to the RS.

After having successfully validated the manipulated access token, the RS computes a
corresponding token hash different from the one computed and stored by C and the AS. Finally,
the RS stores the manipulated access token and the corresponding wrong token hash.

Later on, if the access token is revoked and the AS provides the RS with the corresponding
correct token hash, the RS does not recognize the received token hash among the stored ones;
therefore, the RS does not delete the revoked access token.

14.7. Two Token Hashes at the RS Using JWTs

Section 4.3.2 specifies that an RS using JWTs as access tokens has to compute and store two token
hashes associated with the same access token. This is because the RS does not know for sure if
the AS provided the access token to the client by means of an AS-to-Client response encoded in
CBOR or in JSON.

Taking advantage of that, a dishonest client can attempt to perform an attack against the RS.
That is, the client can first receive the JWT in an AS-to-Client response encoded in CBOR (JSON).
Then, the client can upload the JWT to the RS in a way that makes the RS believe that the client
instead received the JWT in an AS-to-Client response encoded in JSON (CBOR).

Consequently, the RS considers a HASH_INPUT different from the one considered by the AS and
the client (see Section 4.2). Hence, the RS computes a token hash h' different from the token hash
h computed by the AS and the client. It follows that, if the AS revokes the access token and
advertises the right token hash h, then the RS will not learn about the access token revocation;
therefore, the RS will not delete the access token.

Fundamentally, this would happen because the HASH_INPUT used to compute the token hash of
a JWT depends on whether the AS-to-Client response is encoded in CBOR or in JSON. This makes
the RS vulnerable to the attack described above when JWTs are used as access tokens. However,
this is not a problem if the access token is a CWT, since the HASH_INPUT used to compute the
token hash of a CWT does not depend on whether the AS-to-Client response is encoded in CBOR
or in JSON.

Tiloca, et al. Standards Track Page 38

RFC 9770 Notification of Revoked Tokens in ACE June 2025

While this asymmetry cannot be avoided altogether, the method defined for the AS and the
client in Section 4.2 deliberately penalizes the case where the RS uses JWTs as access tokens. In
such a case, the RS effectively neutralizes the attack described above by computing and storing
two token hashes associated with the same access token (see Section 4.3.2).

Conversely, this design deliberately favors the case where the RS uses CWTs as access tokens,
which is a preferable option for resource-constrained RSs as well as the default case in the ACE
framework (see Section 3 of [RFC9200]). That is, if an RS uses CWTs as access tokens, then the RS
is not exposed to the attack described above; therefore, the RS safely computes and stores only
one token hash per access token (see Section 4.3.1).

14.8. Additional Security Measures

By accessing the TRL at the AS, registered devices and administrators are able to learn that their
pertaining access tokens have been revoked. However, they cannot learn the reason why,
including when that reason is the compromise, misbehavior, or decommissioning of a registered
device.

In fact, even the AS might not know that a registered device to which a revoked access token
pertains has been specifically compromised, misbehaving, or decommissioned. At the same time,
it might not be acceptable to only revoke the access tokens pertaining to such a registered device.

Therefore, in order to preserve the security of the system and application, the entity that
authoritatively declares a registered device to be compromised, misbehaving, or
decommissioned should also promptly trigger the execution of additional revocation processes
as deemed appropriate. These include, for instance:

* The deregistration of the registered device from the AS so that the AS does not issue further
access tokens pertaining to that device.

o If applicable, the revocation of the public authentication credential associated with the
registered device (e.g., its public key certificate).

The methods by which these processes are triggered and carried out are out of the scope of this
document.

15. TANA Considerations
The TANA actions for this document are described in the following subsections.

15.1. Media Type Registrations

IANA has registered the media type "application/ace-trl+cbor" for messages of the protocol
defined in this document encoded in CBOR. This registration follows the procedures specified in
[RFC6838].

Type name: application

Tiloca, et al. Standards Track Page 39

https://rfc-editor.org/rfc/rfc9200#section-3

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Subtype name: ace-trl+cbor
Required parameters: N/A
Optional parameters: N/A

Encoding considerations: Must be encoded as a CBOR map containing the protocol parameters
defined in RFC 9770.

Security considerations: See Section 14 of RFC 9770.
Interoperability considerations: N/A
Published specification: RFC 9770

Applications that use this media type: The type is used by authorization servers, clients, and
RSs that support the notification of revoked access tokens according to a Token Revocation
List maintained by the authorization server as specified in RFC 9770.

Fragment identifier considerations: N/A
Additional information: N/A

Person & email address to contact for further information: ACE WG mailing list (ace@ietf.org)
or IETF Applications and Real-Time Area (art@ietf.org)

Intended usage: COMMON
Restrictions on usage: None

Author/Change controller: IETF

15.2. CoAP Content-Formats Registry

IANA has registered the following entry to the "CoAP Content-Formats" registry within the
"Constrained RESTful Environments (CoRE) Parameters" registry group.

Content Type: application/ace-trl+cbor
Content Coding: -

ID: 262

Reference: RFC 9770

15.3. Custom Problem Detail Keys Registry

IANA has registered the following entry in the "Custom Problem Detail Keys" registry within the
"Constrained RESTful Environments (CoRE) Parameters" registry group.

Key Value: 1

Name: ace-trl-error

Brief Description: Carry RFC 9770 problem details in a Concise Problem Details data item.
Change Controller: IETF

Tiloca, et al. Standards Track Page 40

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Reference: Section 6.1 of RFC 9770

15.4. ACE Token Revocation List Parameters Registry

IANA has established the "ACE Token Revocation List Parameters" registry within the
"Authentication and Authorization for Constrained Environments (ACE)" registry group.

One of the following registration policies is used: "Standards Action With Expert Review",
"Specification Required" per Section 4.6 of [RFC8126], or "Expert Review" per Section 4.5 of
[RFC8126]. Expert Review guidelines are provided in Section 15.6.

All assignments according to "Standards Action With Expert Review" are made on a "Standards
Action" basis per Section 4.9 of [RFC8126] with Expert Review additionally required per Section
4.5 of [RFC8126]. The procedure for early IANA allocation of Standards Track code points
defined in [RFC7120] also applies. When such a procedure is used, IANA will ask the designated
expert(s) to approve the early allocation before registration. In addition, WG chairs are
encouraged to consult the expert(s) early during the process outlined in Section 3.1 of [RFC7120].

The columns of this registry are as follows:

* Name: This field contains a descriptive name that enables easier reference to the item. The
name MUST be unique, and it is not used in the encoding.

* CBOR Key: This field contains the value used as CBOR map key of the item. The value MUST
be unique. The value is an unsigned integer or a negative integer. Different ranges of values
use different registration policies [RFC8126]. Integer values from -256 to 255 are designated
as "Standards Action With Expert Review". Integer values from -65536 to -257 and from 256
to 65535 are designated as "Specification Required". Integer values greater than 65535 are
designated as "Expert Review". Integer values less than -65536 are marked as "Private Use".

* CBOR Type: This field contains the allowable CBOR data types for values of this item or a
pointer to the registry that defines its type, when that depends on another item.

* Reference: This field contains a pointer to the public specification for the item.

This registry has been initially populated by the values in Section 12. The "Reference" column for
all of these entries refers to this document.

15.5. ACE Token Revocation List Errors

IANA has established the "ACE Token Revocation List Errors" registry within the "Authentication
and Authorization for Constrained Environments (ACE)" registry group.

One of the following registration policies is used: "Standards Action With Expert Review",
"Specification Required" per Section 4.6 of [RFC8126], or "Expert Review" per Section 4.5 of
[RFC8126]. Expert Review guidelines are provided in Section 15.6.

All assignments according to "Standards Action With Expert Review" are made on a "Standards
Action" basis per Section 4.9 of [RFC8126] with Expert Review additionally required per Section
4.5 of [RFC8126]. The procedure for early IANA allocation of Standards Track code points

Tiloca, et al. Standards Track Page 41

https://rfc-editor.org/rfc/rfc8126#section-4.6
https://rfc-editor.org/rfc/rfc8126#section-4.5
https://rfc-editor.org/rfc/rfc8126#section-4.9
https://rfc-editor.org/rfc/rfc8126#section-4.5
https://rfc-editor.org/rfc/rfc8126#section-4.5
https://rfc-editor.org/rfc/rfc7120#section-3.1
https://rfc-editor.org/rfc/rfc8126#section-4.6
https://rfc-editor.org/rfc/rfc8126#section-4.5
https://rfc-editor.org/rfc/rfc8126#section-4.9
https://rfc-editor.org/rfc/rfc8126#section-4.5
https://rfc-editor.org/rfc/rfc8126#section-4.5

RFC 9770 Notification of Revoked Tokens in ACE June 2025

defined in [RFC7120] also applies. When such a procedure is used, IANA will ask the designated
expert(s) to approve the early allocation before registration. In addition, WG chairs are
encouraged to consult the expert(s) early during the process outlined in Section 3.1 of [RFC7120].

The columns of this registry are as follows:

* Value: The field contains the value to be used to identify the error. The value MUST be
unique. The value is an unsigned integer or a negative integer. Different ranges of values
use different registration policies [RFC8126]. Integer values from -256 to 255 are designated
as "Standards Action With Expert Review". Integer values from -65536 to -257 and from 256
to 65535 are designated as "Specification Required". Integer values greater than 65535 are
designated as "Expert Review". Integer values less than -65536 are marked as "Private Use".

* Description: This field contains a brief description of the error.

* Reference: This field contains a pointer to the public specification defining the error, if one
exists.

This registry has been initially populated by the values in Section 13. The "Reference" column for
all of these entries refers to this document.

15.6. Expert Review Instructions

The IANA registries established by this document use "Standards Action With Expert Review",
"Specification Required", or "Expert Review" registration procedures depending on the range of
values for which an assignment is requested. This section gives some general guidelines for what
the experts should be looking for, but they are being designated as experts for a reason, so they
should be given substantial latitude.

Expert reviewers should take into consideration the following points:

¢ Point squatting should be discouraged. Reviewers are encouraged to get sufficient
information for registration requests to ensure that the usage is not going to duplicate one
that is already registered and that the point is likely to be used in deployments. The zones
tagged as Private Use are intended for testing purposes and closed environments. Code
points in other ranges should not be assigned for testing.

* Specifications are required for the "Standards Action With Expert Review" range of point
assignment. Specifications should exist for "Specification Required" ranges, but early
assignment before a specification is available is considered to be permissible. For the "Expert
Review" range of point assignment, specifications are recommended and are needed if they
are expected to be used outside of closed environments in an interoperable way. When
specifications are not provided, the description provided needs to have sufficient
information to identify what the point is being used for.

* Experts should take into account the expected usage of fields when approving point
assignment. The fact that there is a range for Standards Track documents does not mean
that a Standards Track document cannot have points assigned outside of that range. The

Tiloca, et al. Standards Track Page 42

https://rfc-editor.org/rfc/rfc7120#section-3.1

RFC 9770

Notification of Revoked Tokens in ACE June 2025

length of the encoded value should be weighed against how many code points of that length
are left, the size of device it will be used on, and the number of code points left that encode

to that size.

16. References

16.1. Normative References

[IANA.Hash.Algorithms] IANA, "Named Information Hash Algorithm Registry", <https://

[RFC2119]

[RFC3629]

[RFC4648]

[RFC6347]

[RFC6749]

[RFC6838]

[RFC6920]

[RFC7120]

[RFC7252]

[RFC7515]

[RFC7516]

Tiloca, et al.

www.iana.org/assignments/named-information>.

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629,
DOI 10.17487/RFC3629, November 2003, <https://www.rfc-editor.org/info/
rfc3629>.

Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI
10.17487/RFC4648, October 2006, <https://www.rfc-editor.org/info/rfc4648>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security Version 1.2",
RFC 6347, DOI 10.17487/RFC6347, January 2012, <https://www.rfc-editor.org/info/
rfc6347>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI
10.17487/RFC6749, October 2012, <https://www.rfc-editor.org/info/rfc6749>.

Freed, N., Klensin, J., and T. Hansen, "Media Type Specifications and
Registration Procedures"”, BCP 13, RFC 6838, DOI 10.17487/RFC6838, January
2013, <https://www.rfc-editor.org/info/rfc6838>.

Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B., Keranen, A., and P. Hallam-
Baker, "Naming Things with Hashes", RFC 6920, DOI 10.17487/RFC6920, April
2013, <https://www.rfc-editor.org/info/rfc6920>.

Cotton, M., "Early IANA Allocation of Standards Track Code Points", BCP 100, RFC
7120, DOI 10.17487/RFC7120, January 2014, <https://www.rfc-editor.org/info/
rfc7120>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained Application Protocol
(CoAP)", RFC 7252, DOI 10.17487/RFC7252, June 2014, <https://www.rfc-
editor.org/info/rfc7252>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515,
DOI 10.17487/RFC7515, May 2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, DOI
10.17487/RFC7516, May 2015, <https://www.rfc-editor.org/info/rfc7516>.

Standards Track Page 43

https://www.iana.org/assignments/named-information
https://www.iana.org/assignments/named-information
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6920
https://www.rfc-editor.org/info/rfc7120
https://www.rfc-editor.org/info/rfc7120
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516

RFC 9770

[RFC7519]

[RFC7641]

[RFC8126]

[RFC8174]

[RFC8259]

[RFC8392]

[RFC8446]

[RFC8610]

[RFC8613]

[REC8725]

[RFC8949]

[RFC9052]

[RFC9147]

Tiloca, et al.

Notification of Revoked Tokens in ACE June 2025

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI
10.17487/RFC7519, May 2015, <https://www.rfc-editor.org/info/rfc7519>.

Hartke, K., "Observing Resources in the Constrained Application Protocol
(CoAP)", RFC 7641, DOI 10.17487/RFC7641, September 2015, <https://www.rfc-
editor.org/info/rfc7641>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA
Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June
2017, <https://www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

Bray, T, Ed., "The JavaScript Object Notation (JSON) Data Interchange Format",
STD 90, RFC 8259, DOI 10.17487/RFC8259, December 2017, <https://www.rfc-
editor.org/info/rfc8259>.

Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig, "CBOR Web Token
(CWT)", RFC 8392, DOI 10.17487/RFC8392, May 2018, <https://www.rfc-editor.org/
info/rfc8392>.

Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446,
DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures”, RFC 8610, DOI 10.17487/
RFC8610, June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Selander, G., Mattsson, J., Palombini, F.,, and L. Seitz, "Object Security for
Constrained RESTful Environments (OSCORE)", RFC 8613, DOI 10.17487/
RFC8613, July 2019, <https://www.rfc-editor.org/info/rfc8613>.

Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token Best Current Practices",
BCP 225, RFC 8725, DOI 10.17487/RFC8725, February 2020, <https://www.rfc-
editor.org/info/rfc8725>.

Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)",
STD 94, RFC 8949, DOI 10.17487/RFC8949, December 2020, <https://www.rfc-
editor.org/info/rfc8949>.

Schaad, J., "CBOR Object Signing and Encryption (COSE): Structures and
Process", STD 96, RFC 9052, DOI 10.17487/RFC9052, August 2022, <https://
www.rfc-editor.org/info/rfc9052>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3", RFC 9147, DOI 10.17487/RFC9147, April
2022, <https://www.rfc-editor.org/info/rfc9147>.

Standards Track Page 44

https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9147

RFC 9770

[RFC9200]

[RFC9202]

[RFC9203]

[RFC9290]

[RFC9431]

[RFC9528]

[SHA-256]

Notification of Revoked Tokens in ACE June 2025

Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
"Authentication and Authorization for Constrained Environments Using the
OAuth 2.0 Framework (ACE-OAuth)", RFC 9200, DOI 10.17487/RFC9200, August
2022, <https://www.rfc-editor.org/info/rfc9200>.

Gerdes, S., Bergmann, O., Bormann, C., Selander, G., and L. Seitz, "Datagram
Transport Layer Security (DTLS) Profile for Authentication and Authorization
for Constrained Environments (ACE)", RFC 9202, DOI 10.17487/RFC9202, August
2022, <https://www.rfc-editor.org/info/rfc9202>.

Palombini, F, Seitz, L., Selander, G., and M. Gunnarsson, "The Object Security
for Constrained RESTful Environments (OSCORE) Profile of the Authentication
and Authorization for Constrained Environments (ACE) Framework", RFC 9203,
DOI 10.17487/RFC9203, August 2022, <https://www.rfc-editor.org/info/rfc9203>.

Fossati, T. and C. Bormann, "Concise Problem Details for Constrained
Application Protocol (CoAP) APIs", RFC 9290, DOI 10.17487/RFC9290, October
2022, <https://www.rfc-editor.org/info/rfc9290>.

Sengul, C. and A. Kirby, "Message Queuing Telemetry Transport (MQTT) and
Transport Layer Security (TLS) Profile of Authentication and Authorization for
Constrained Environments (ACE) Framework", RFC 9431, DOI 10.17487/RFC9431,
July 2023, <https://www.rfc-editor.org/info/rfc9431>.

Selander, G., Preufd Mattsson, J., and F. Palombini, "Ephemeral Diffie-Hellman
Over COSE (EDHOC)", RFC 9528, DOI 10.17487/RFC9528, March 2024, <https://
www.rfc-editor.org/info/rfc9528>.

NIST, "Secure Hash Standard", NIST FIPS PUB 180-4, DOI 10.6028/NIST.FIPS.
180-4, August 2015, <https:/mvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>.

16.2. Informative References

[COND-PARAMETERS] Silverajan, B., Koster, M., and A. Soloway, "Conditional Query

[REC7009]

[STP]

Tiloca, et al.

Parameters for CoOAP Observe", Work in Progress, Internet-Draft, draft-ietf-core-
conditional-attributes-11, 16 March 2025, <https://datatracker.ietf.org/doc/html/
draft-ietf-core-conditional-attributes-11>.

Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth 2.0 Token Revocation",
RFC 7009, DOI 10.17487/RFC7009, August 2013, <https://www.rfc-editor.org/info/
rfc7009>.

Bormann, C. and K. Hartke, "The Series Transfer Pattern (STP)", Work in
Progress, Internet-Draft, draft-bormann-t2trg-stp-03, 7 April 2020, <https://
datatracker.ietf.org/doc/html/draft-bormann-t2trg-stp-03>.

Standards Track Page 45

https://www.rfc-editor.org/info/rfc9200
https://www.rfc-editor.org/info/rfc9202
https://www.rfc-editor.org/info/rfc9203
https://www.rfc-editor.org/info/rfc9290
https://www.rfc-editor.org/info/rfc9431
https://www.rfc-editor.org/info/rfc9528
https://www.rfc-editor.org/info/rfc9528
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-core-conditional-attributes-11
https://datatracker.ietf.org/doc/html/draft-ietf-core-conditional-attributes-11
https://www.rfc-editor.org/info/rfc7009
https://www.rfc-editor.org/info/rfc7009
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-stp-03
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-stp-03

RFC 9770 Notification of Revoked Tokens in ACE June 2025

Appendix A. On Using the Series Transfer Pattern

Performing a diff query of the TRL as specified in Section 8 is, in fact, a usage example of the
Series Transfer Pattern (STP) defined in [STP].

That is, a diff query enables the transfer of a series of diff entries with the AS providing U <=
MAX_N diff entries as related to the U most recent TRL updates pertaining to a requester, i.e., a
registered device or an administrator.

When responding to a diff query request from a requester (see Section 8), 'diff_set' is a subset of
the update collection associated with the requester where each 'diff_entry' record is a series item
from that update collection. Note that 'diff_set' specifies the whole current update collection
when the value of U is equal to SIZE, i.e., the current number of series items in the update
collection.

The value N of the 'diff' query parameter in the GET request allows the requester and the AS to
trade the amount of provided information with the latency of the information transfer.

Since the update collection associated with each requester includes up to MAX_N series items,
the AS deletes the oldest series item when a new one is generated and added to the end of the
update collection, due to a new TRL update pertaining to that requester (see Section 6.2). This
addresses the question "When can the server decide to no longer retain older items?" raised in
Section 3.2 of [STP].

Furthermore, performing a diff query of the TRL together with the "Cursor" extension as
specified in Section 9 relies, in fact, on the "cursor"” pattern of the STP (see Section 3.3 of [STP]).

Appendix B. Local Supportive Parameters of the TRL Endpoint

Table 3 provides an aggregated overview of the local supportive parameters that the AS
internally uses at its TRL endpoint when supporting diff queries (see Section 6) and the "Cursor"
extension (see Section 6.2.1).

Except for MAX_N defined in Section 6.2, all the other parameters are defined in Section 6.2.1
and are used only if the AS supports the "Cursor" extension.

For each parameter, the columns of the table provide the following information. Both a
registered device and an administrator are referred to as "requester".

Name: The parameter name. A name with letters in uppercase denotes a parameter whose
value does not change after its initialization.

Single instance: "Y"if there is a single parameter instance associated with the TRL or "N" if
there is one parameter instance per update collection (i.e., per requester).

Description: A short description of the parameter.

Tiloca, et al. Standards Track Page 46

https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-stp-03#section-3.2
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-stp-03#section-3.3

RFC 9770

Values:

Notification of Revoked Tokens in ACE

the inclusive lower bound and upper bound, respectively.

Name

MAX_N

MAX_DIFF_BATCH

MAX_INDEX

index

last_index

Single
instance

Y

Description

Max number of series items in the
update collection of each requester

Max number of diff entries
included in a diff query response
when using the "Cursor" extension

Max value of each instance of
'index’

Value associated with a series item
of an update collection

The 'index’ value of the most
recently added series item in an
update collection

Table 3: Local Supportive Parameters of the TRL Endpoint

Appendix C. Interaction Examples

June 2025

The unsigned integer values that the parameter can assume, where LB and UB denote

Values

LB=1

If supporting
the "Cursor"
extension, then
UB =
MAX_INDEX+1
LB=1

UB = MAX N
LB = MAX_N-1
UB = (26%)-1
LB=0

UB = MAX_INDEX
LB=0

UB = MAX_INDEX

This section provides examples of interactions between an RS as a registered device and an AS.
In the examples, all the access tokens issued by the AS are intended to be consumed by the

considered RS.

The AS supports both full queries and diff queries of the TRL, as defined in Sections 7 and 8,

respectively.

The RS registration is assumed to be done by the RS sending a POST request with an unspecified
payload to the AS, which replies with a 2.01 (Created) response. The payload of the registration
response is assumed to be a CBOR map, which, in turn, is assumed to include the following

entries:

* a 'trl_path' parameter specifying the path of the TRL endpoint;

Tiloca, et al.

Standards Track

Page 47

RFC 9770 Notification of Revoked Tokens in ACE June 2025

¢ a 'trl_hash' parameter specifying the "Hash Name String" of the hash function used to
compute token hashes as defined in Section 4;

* a 'max_n' parameter specifying the value of MAX_N, i.e., the maximum number of series
items that the AS retains in the update collection associated with a registered device (see
Section 6.2);

* possible further parameters related to the registration process.

Furthermore, 'h(x)' refers to the hash function used to compute the token hashes, as defined in
Section 4 of this specification and according to [RFC6920]. Assuming the usage of CWTs
transported in AS-to-Client responses encoded in CBOR (see Section 4.2.1), 'bstr.h(t1)' and
'bstr.h(t2)' denote CBOR byte strings, whose values are the token hashes of the access tokens t1
and t2, respectively.

C.1. Full Query with Observe

Figure 10 shows an interaction example of a CoAP observation and a full query of the TRL.

In this example, the AS does not support the "Cursor" extension. Hence, the 'cursor' parameter is
not included in the payload of the responses to a full query request.

Tiloca, et al. Standards Track Page 48

RFC 9770

Tiloca, et al.

Notification of Revoked Tokens in ACE

/ full_set / @: [bstr.h(t1), bstr.h(t2)]

RS AS
| |
| Registration: POST

o - > |
| |
SRR e L L E L L L L +
| 2.01 Created

| Payload: {

I /A |
| "trl_path": "/revoke/trl", |
| "“trl_hash": "sha-256", |
| "max_n": 10 |
I } I
| GET coap://as.example.com/revoke/trl/

| Observe: ©

o - > |
I I
ISR e +
| 2.05 Content

| Observe: 42

| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: {

| / full_set / 0: []

| } |
| |
| |
| (Access tokens t1 and t2 issued |
| and successfully submitted to RS)

| |
| |
| (Access token t1 is revoked) |
| |
SRR e L L E L L L L +
| 2.05 Content

| Observe: 53 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload:

| / full_set / ©@: [bstr.h(t1)]

I } I
| |
: :
| (Access token t2 is revoked) |
| |
SRR e L L E L L L L +
| 2.05 Content

| Observe: 64

| Content-Format: 262 (application/ace-trl+cbor) |
| Payload:

| |
I I
| |
| |

Standards Track

June 2025

Page 49

RFC 9770 Notification of Revoked Tokens in ACE June 2025

(Access token t1 expires)

2.05 Content
Observe: 75
Content-Format: 262 (application/ace-trl+cbor)
Payload:
/ full_set / @: [bstr.h(t2)]
}

(Access token t2 expires)

2.05 Content
Observe: 86
Content-Format: 262 (application/ace-trl+cbor)
Payload:

|
|
i
i
i
i
i
|
i) / full_set / @: []

I
Figure 10: Interaction for Full Query with Observe

C.2. Diff Query with Observe

Figure 11 shows an interaction example of a CoAP observation and a diff query of the TRL.

The RS indicates N = 3 as the value of the 'diff' query parameter, i.e., as the maximum number of
diff entries to be included in a response from the AS.

In this example, the AS does not support the "Cursor” extension. Hence, the 'cursor' parameter
and the 'more' parameter are not included in the payload of the responses to a diff query request.

Tiloca, et al. Standards Track Page 50

RFC 9770

Tiloca, et al.

Notification of Revoked Tokens in ACE

/ diff_set / 1: [

RS AS
| |
| Registration: POST

o - > |
| |
SRR e L L E L L L L +
| 2.01 Created

| Payload: {

I /A

| "trl_path": "/revoke/trl", |
| "“trl_hash": "sha-256", |
| "max_n": 10 |
I } I
| GET coap://as.example.com/revoke/trl?diff=3 |
| Observe: ©

o - > |
I I
ISR e +
| 2.05 Content

| Observe: 42

| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: {

| / diff_set / 1: [] |
| } |
| |
| |
| (Access tokens t1 and t2 issued |
| and successfully submitted to RS)

| |
| |
| (Access token t1 is revoked) |
| |
SRR e L L E L L L L +
| 2.05 Content

| Observe: 53 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload:

| / diff_set / 1: | |
| [[1, [bstr.h(t1)]] |
|] |
| } |
I I
| |
| (Access token t2 is revoked) |
1 ;
| 2.05 Content

| Observe: 64

| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: {

| |
| |

[[1, [bstr.h(t2)]],

Standards Track

June 2025

Page 51

RFC 9770 Notification of Revoked Tokens in ACE June 2025

][[1, [bstr.h(t1)]]

/ diff_set / 1: [

[[bstr.h(t2)], []],
[[bstr.h(t1)], []],
][[1, [bstr.h(t2)]]

}

I I
I I
| } |
I I
I I
| |
| (Access token t1 expires)
I I
ISR i +
| 2.05 Content
| Observe: 75
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: {
| / diff_set / 1: [|
| [[bstr.h(t1)], []], |
I [[]1, [bstr.h(t2)]], I
| [[1, [bstr.h(t1)]] |
I | I
I } I
I I
| |
I I
| (Access token t2 expires) |
| |
SRR e B L L L L L L L L L EE L +
| 2.05 Content
| Observe: 86
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload:
| |
I I
I I
| |
I I
I I
|

Figure 11: Interaction for Diff Query with Observe

C.3. Full Query with Observe and Diff Query

Figure 12 shows an interaction example of a CoAP observation and a full query of the TRL.

The example also shows one of the notifications from the AS getting lost in transmission; thus,
that notification does not reach the RS.

When this happens, and after a waiting time defined by the application has elapsed, the RS
sends a GET request with no Observe Option to the AS, asking the AS to perform a diff query of
the TRL. The RS indicates N = 8 as the value of the 'diff' query parameter, i.e., as the maximum
number of diff entries to be included in a response from the AS.

In this example, the AS does not support the "Cursor" extension. Hence, the 'cursor' parameter is
not included in the payload of the responses to a full query request. Also, the 'cursor' parameter
and the 'more’ parameter are not included in the payload of the responses to a diff query request.

Tiloca, et al. Standards Track Page 52

RFC 9770

Tiloca, et al.

Notification of Revoked Tokens in ACE

/ full_set / @: [bstr.h(t1), bstr.h(t2)]

RS AS
| |
| Registration: POST

o - > |
| |
SRR e L L E L L L L +
| 2.01 Created

| Payload: {

I /A |
| "trl_path": "/revoke/trl", |
| "“trl_hash": "sha-256", |
| "max_n": 10 |
I } I
| GET coap://as.example.com/revoke/trl/

| Observe: ©

o - > |
I I
ISR e +
| 2.05 Content

| Observe: 42

| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: {

| / full_set / 0: []

| } |
| |
| |
| (Access tokens t1 and t2 issued |
| and successfully submitted to RS) |
| |
| |
| (Access token t1 is revoked) |
| |
SRR e L L E L L L L +
| 2.05 Content

| Observe: 53 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload:

| / full_set / ©@: [bstr.h(t1)]

I } I
| |
: :
| (Access token t2 is revoked) |
| |
SRR e L L E L L L L +
| 2.05 Content

| Observe: 64

| Content-Format: 262 (application/ace-trl+cbor) |
| Payload:

| |
I I
| |
| |

Standards Track

June 2025

Page 53

RFC 9770

Notification of Revoked Tokens in ACE

(Access token t1 expires)

2.05 Content
Content-Format: 262 (application/ace-trl+cbor)
Payload:

/ diff_set / 1: [

str.h(t2)], []

str.h(t1)], []

, [bstr.h(t2)]

, [bstr.h(t1)]

]I
IF
]l
]

I I
I I
| |
SRR e B L L L L L L L L L EE L +
| 2.05 Content
| Observe: 75
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload:
| / full_set / @: [bstr.h(t2)]
I } I
I I
| |
I I
| (Access token t2 expires) |
| |
| LEBTE X Sc—cccccocccococoooonocococococococoooonononos +
| 2.05 Content
| Observe: 86
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload:
| / full_set / 0: []
I } I
I I
| |
I I
| (Enough time has passed since |
| the latest received notification) |
| |
| GET coap://as.example.com/revoke/trl?diff=8 |
B i > |
I
e e - +
I
I
|
I
I
|
I
I
|
I
I

Figure 12: Interaction for Full Query with Observe and Diff Query

C.4. Diff Query with Observe and "Cursor" Extension

June 2025

In this example, the AS supports the "Cursor" extension. Hence, the CBOR map conveyed as

payload of the registration response additionally includes a "max_diff_batch" parameter. This
specifies the value of MAX_DIFF_BATCH, i.e., the maximum number of diff entries that can be
included in a response to a diff query request from this RS.

Figure 13 shows an interaction example of a CoAP observation and a diff query of the TRL.

Tiloca, et al.

Standards Track

Page 54

RFC 9770 Notification of Revoked Tokens in ACE June 2025

The RS specifies the 'diff' query parameter with a value of 3, i.e., the maximum number of diff
entries to be included in a response from the AS.

If the RS has not received a notification from the AS for a waiting time defined by the
application, the RS sends a GET request with no Observe Option to the AS, asking the AS to
perform a diff query of the TRL.

This is followed up by a further diff query request that includes the 'cursor' query parameter.
Note that the payload of the corresponding response differs from the payload of the response to
the previous diff query request.

Tiloca, et al. Standards Track Page 55

RFC 9770

Tiloca, et al.

Notification of Revoked Tokens in ACE

RS AS
I I
| Registration: POST

B e e ettt R > |
I I
[e e e L L L L L Lt +
| 2.01 Created

| Payload: {

I /A |
| “trl_path": "/revoke/trl", |
| "trl_hash": "sha-256", |
| “max_n": 10, |
| "max_diff_batch": 5

I } I
| GET coap://as.example.com/revoke/trl?diff=3

| Observe: © |
o - > |
I I
SRR e e e +
| 2.085 Content |
| Observe: 42 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: {

| / diff_set / 1: [],

| / cursor / 2: null,

| / more / 3: false

I } I
I I
| |
| (Access tokens t1 and t2 issued

| and successfully submitted to RS)

I I
I I
| (Access token t1 is revoked)

I I
[e e e L L L L L Lt +
| 2.05 Content |
| Observe: 53 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: {

| / diff_set / 1: [

I][[1, [bstr.h(t1)]] I
| / cursor / 2: 0,

| / more / 3: false

I } I
I I
I I
I I
| (Access token t2 is revoked)

I I
R e B L L L L L L L L E L L L E Lt +
| 2.085 Content |

Standards Track

June 2025

Page 56

RFC 9770

Tiloca, et al.

Notification of Revoked Tokens in ACE

Observe: 64

Content-Format: 262 (application/ace-trl+cbor)

Payload: {
/ diff_set / 1: [

[

[

/ cursor / 2: 1:
/ more / 3: false

[1, [bstr.h(t2)] 1,
[1, [bstr.h(t1)]]

(Access token t1 expires)

2.05 Content

Observe: 75
Content-Format: 262 (application/ace-trl+cbor)
Payload:
/ diff_set / 1: |
[[bstr.h(t1)], []],
[[], [bstr.h(t2)]],
[[1, [bstr.h(t1)]]

/ cursor / 2: 2,
/ more / 3: false

(Access token t2 expires)

2.05 Content
Observe: 86

Content-Format: 262 (application/ace-trl+cbor)

Payload:
/ diff_set / 1: [
[[bstr.h(t2)], []],
[[bstr.h(t1)], []],
[[1, [bstr.h(t2)] 1

]
/ cursor / 2: 3,
/ more / 3: false

(Enough time has passed since
the latest received notification)

2.05 Content

Standards Track

June 2025

Page 57

RFC 9770

Notification of Revoked Tokens in ACE

Content-Format: 262 (application/ace-trl+cbor)
Payload: {
/ diff_set / 1: [

I
|
[[bstr.h(t2)], []], I
[[bstr.h(t1)], []], I
][[1, [bstr.h(t2)]] I
: I
/ cursor / 2: 3, I
/ more / 3: false
| :
GET coap://as.example.com/revoke/trl?diff=3&cursor=3 |
I
I
T T it +

2.085 Content |
Content-Format: 262 (application/ace-trl+cbor) |
Payload: {

/ diff_set / 1: [],
/ cursor / 2: 3, |
/ more / 3: false
I
I

}

Figure 13: Interaction for Diff Query with Observe and "Cursor" Extension

C.5. Full Query with Observe and Diff Query with "Cursor" Extension

June 2025

In this example, the AS supports the "Cursor" extension. Hence, the CBOR map conveyed as

payload of the registration response additionally includes a "max_diff _batch" parameter. This
specifies the value of MAX_DIFF_BATCH, i.e., the maximum number of diff entries that can be
included in a response to a diff query request from this RS.

Figure 14 shows an interaction example of a CoAP observation and a full query of the TRL.

The example also shows some of the notifications from the AS getting lost in transmission; thus,
those notifications do not reach the RS.

When this happens, and after a waiting time defined by the application has elapsed, the RS
sends a GET request with no Observe Option to the AS, asking the AS to perform a diff query of
the TRL. In particular, the RS specifies:

* The 'diff' query parameter with a value of 8, i.e., the maximum number of diff entries to be
included in a response from the AS.

 The 'cursor' query parameter with a value of 2, thus requesting from the update collection
the series items following the one with the 'index' value equal to 2 (i.e., following the last
series item that the RS successfully received in an earlier notification response).

The response from the AS conveys a first batch of MAX_DIFF_BATCH = 5 series items from the
update collection corresponding to the RS. The AS indicates that further series items are actually
available in the update collection by setting the 'more’ parameter of the response to true. Also,
the 'cursor' parameter of the response is set to 7, i.e., to the 'index' value of the most recent series
item included in the response.

Tiloca, et al.

Standards Track

Page 58

RFC 9770 Notification of Revoked Tokens in ACE June 2025

After that, the RS follows up with a further diff query request including the 'cursor' query
parameter with a value of 7 in order to retrieve the next and last batch of series items from the
update collection.

Tiloca, et al. Standards Track Page 59

RFC 9770 Notification of Revoked Tokens in ACE

2.01 Created
Payload: {
/ ..
"trl_path": "/revoke/trl",
"trl_hash": "sha-256",
"“max_n": 10,
"max_diff_batch": 5
}

GET coap://as.example.com/revoke/trl/
Observe: ©

2.05 Content
Observe: 42
Content-Format: 262 (application/ace-trl+cbor)
Payload: {
/ full_set / 0: []
/ cursor / 2: null

and successfully submitted to RS)

(Access tokens t4, t5, t6 issued
and successfully submitted to RS)

(Access token t1 is revoked)

2.085 Content
Observe: 53
Content-Format: 262 (application/ace-trl+cbor)
Payload: {
/ full_set / @: [bstr.h(t1)],
/ cursor / 2: @

|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
(Access tokens t1, t2, t3 issued |
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
(Access token t2 is revoked)

|

+

Tiloca, et al. Standards Track

June 2025

Page 60

RFC 9770 Notification of Revoked Tokens in ACE June 2025

2.05 Content

Observe: 64
Content-Format: 262 (application/ace-trl+cbor)
Payload: {

/ full_set / 0: [bstr.h(t1), bstr.h(t2)],
/ cursor / 2: 1

(Access token t1 expires)

2.05 Content
Observe: 75
Content-Format: 262 (application/ace-trl+cbor)
Payload: {
/ full_set / ©: [bstr.h(t2)],
/ cursor / 2: 2

(Access token t2 expires)

2.05 Content
Observe: 86
Content-Format: 262 (application/ace-trl+cbor)
Payload: {

/ full_set / 0: []
/ cursor / 2: 3

(Access token t3 is revoked)

2.05 Content
Observe: 88
Content-Format: 262 (application/ace-trl+cbor)
Payload: {
/ full_set / ©: [bstr.h(t3)],
/ cursor / 2: 4

(Access token t4 is revoked)

LoSt X @===csscccocoooooossoosooooooooooossoossoooooooooossoooos
2.05 Content
Observe: 89
Content-Format: 262 (application/ace-trl+cbor)
Payload: {
/ full_set / @: [bstr.h(t3), bstr.h(t4)],
/ cursor / 2: 5

—_—_—————_—————— e —————— e ——— e ————

Tiloca, et al. Standards Track Page 61

RFC 9770 Notification of Revoked Tokens in ACE June 2025

(Access token t3 expires)

LOSE X Sccccocococococooncmooononocococosocoonooononononococooos
2.05 Content
Observe: 90
Content-Format: 262 (application/ace-trl+cbor)
Payload: {
/ full_set / ©: [bstr.h(t4)],
/ cursor / 2: 6

(Access token t4 expires)

LOST X S-mmmmmmm e e -
2.05 Content
Observe: 91
Content-Format: 262 (application/ace-trl+cbor)
Payload: {
/ full_set / 0: []
/ cursor / 2: 7

(Access tokens t5 and t6 are revoked)

LOBTE X Freommomocmococooorooocsorsoonosoreoonoronmoomooonooom oo
2.05 Content
Observe: 92
Content-Format: 262 (application/ace-trl+cbor)
Payload: {
/ full_set / 0: [bstr.h(t5), bstr.h(t6)],
/ cursor / 2: 8

(Access token t5 expires)

LoSt X @===csscccocoooooossoosooooooooooossoossoooooooooossoooos
2.05 Content
Observe: 93
Content-Format: 262 (application/ace-trl+cbor)
Payload: {
/ full_set / ©: [bstr.h(t6)],
/ cursor / 2: 9

(Access token t6 expires)

—_—_——— e e ———_——————— e ——————— e ————— e —— — — —

Tiloca, et al. Standards Track Page 62

RFC 9770

2.065 Content
Content-Format: 262 (application/ace-trl+cbor)
Payload:
/ diff_set / 1: |

[bstr.h(t6)], [] 1,
[bstr.h(t5)], [] 1,
[1, [bstr.h(t5), bstr.h(t6)] 1

]
/ cursor / 2: 10,

[
[
[
0
/ more / 3: false

}

Notification of Revoked Tokens in ACE

| LESE X Scccceccccccccocococooocoooocooonococococococoooonooonoos +
| 2.05 Content |
| Observe: 94 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [], |
| / cursor / 2: 10 |
I } I
I I
I I
I I
| (Enough time has passed since |
| the latest received notification)

| |
| GET coap://as.example.com/revoke/trl?diff=8&cursor=2 |
B e i R PR > |
I I
SRR e +
| 2.05 Content |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [

I [[bstr.h(t4)], []], |
I [[bstr.h(t3)], []], I
I [[], [bstr.h(t4)]], |
I [[]1, [bstr.h(t3)]], |
I [[bstr.h(t2)], [] 1] I
| / cursor / 2: 7, |
| / more / 3: true |
| / |
| GET coap://as.example.com/revoke/trl?diff=8&cursor=7 |
B e i R PR > |
I I
SRR e +
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

Figure 14: Interaction for Full Query with Observe and Diff Query with "Cursor" Extension

Acknowledgments

Ludwig Seitz contributed as a coauthor of initial versions of this document.

Tiloca, et al. Standards Track

June 2025

Page 63

RFC 9770 Notification of Revoked Tokens in ACE June 2025

The authors sincerely thank Christian Amstss, Carsten Bormann, Deb Cooley, Roman Danyliw,
Dhruv Dhody, Rikard Hoglund, Benjamin Kaduk, David Navarro, Joerg Ott, Marco Rasori,
Michael Richardson, Kyle Rose, Zaheduzzaman Sarker, Jim Schaad, Goran Selander, Travis
Spencer, Orie Steele, Eric Vyncke, Niklas Widell, Dale Worley, and Paul Wouters for their
comments and feedback.

The work on this document has been partly supported by the Sweden's Innovation Agency
VINNOVA and the Celtic-Next projects CRITISEC and CYPRESS; and by the H2020 project SIFIS-
Home (Grant agreement 952652).

Authors' Addresses

Marco Tiloca

RISE AB

Isafjordsgatan 22

SE-164 40 Kista

Sweden

Email: marco.tiloca@ri.se

Francesca Palombini

Ericsson AB

Torshamnsgatan 23

SE-164 40 Kista

Sweden

Email: francesca.palombini@ericsson.com

Sebastian Echeverria

CMU SEI

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
United States of America

Email: secheverria@sei.cmu.edu

Grace Lewis

CMU SEI

4500 Fifth Avenue
Pittsburgh, PA 15213-2612
United States of America
Email: glewis@sei.cmu.edu

Tiloca, et al. Standards Track Page 64

mailto:marco.tiloca@ri.se
mailto:francesca.palombini@ericsson.com
mailto:secheverria@sei.cmu.edu
mailto:glewis@sei.cmu.edu

	RFC 9770
	Notification of Revoked Access Tokens in the Authentication and Authorization for Constrained Environments (ACE) Framework
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	3. Issuing of Access Tokens at the AS
	4. Token Hash
	4.1. Motivation for the Used Construction
	4.1.1. Issuing of the Access Token to the Client
	4.1.2. Provisioning of Access Tokens to the RS
	4.1.3. Design Rationale

	4.2. Hash Input on the Client and the AS
	4.2.1. AS-to-Client Response Encoded in CBOR
	4.2.2. AS-to-Client Response Encoded in JSON

	4.3. HASH_INPUT on the RS
	4.3.1. Access Tokens as CWTs
	4.3.2. Access Tokens as JWTs

	4.4. Computing the Token Hash

	5. Token Revocation List (TRL)
	5.1. Update of the TRL

	6. The TRL Endpoint
	6.1. Error Responses with Problem Details
	6.2. Supporting Diff Queries
	6.2.1. Supporting the "Cursor" Extension

	6.3. Query Parameters

	7. Full Query of the TRL
	8. Diff Query of the TRL
	9. Response Messages when Using the "Cursor" Extension
	9.1. Response to Full Query
	9.2. Response to Diff Query
	9.2.1. Empty Update Collection
	9.2.2. Cursor Not Included in the Diff Query Request
	9.2.3. Cursor Included in the Diff Query Request

	10. Registration at the Authorization Server
	11. Notification of Revoked Access Tokens
	11.1. Handling of Revoked Access Tokens and Token Hashes

	12. ACE Token Revocation List Parameters
	13. ACE Token Revocation List Error Identifiers
	14. Security Considerations
	14.1. Content Retrieval from the TRL
	14.2. Size of the TRL
	14.3. Communication Patterns
	14.4. Request of New Access Tokens
	14.5. Vulnerable Time Window at the RS
	14.6. Preventing Unnoticed Manipulation of Access Tokens
	14.7. Two Token Hashes at the RS Using JWTs
	14.8. Additional Security Measures

	15. IANA Considerations
	15.1. Media Type Registrations
	15.2. CoAP Content-Formats Registry
	15.3. Custom Problem Detail Keys Registry
	15.4. ACE Token Revocation List Parameters Registry
	15.5. ACE Token Revocation List Errors
	15.6. Expert Review Instructions

	16. References
	16.1. Normative References
	16.2. Informative References

	Appendix A. On Using the Series Transfer Pattern
	Appendix B. Local Supportive Parameters of the TRL Endpoint
	Appendix C. Interaction Examples
	C.1. Full Query with Observe
	C.2. Diff Query with Observe
	C.3. Full Query with Observe and Diff Query
	C.4. Diff Query with Observe and "Cursor" Extension
	C.5. Full Query with Observe and Diff Query with "Cursor" Extension

	Acknowledgments
	Authors' Addresses

 Notification of Revoked Access Tokens in the Authentication and Authorization for Constrained Environments (ACE) Framework

 RISE AB

 Isafjordsgatan 22
 Kista
 164 40
 Sweden

 marco.tiloca@ri.se

 Ericsson AB

 Torshamnsgatan 23
 Kista
 164 40
 Sweden

 francesca.palombini@ericsson.com

 CMU SEI

 4500 Fifth Avenue
 Pittsburgh
 PA
 15213-2612
 United States of America

 secheverria@sei.cmu.edu

 CMU SEI

 4500 Fifth Avenue
 Pittsburgh
 PA
 15213-2612
 United States of America

 glewis@sei.cmu.edu

 SEC
 ace

 This document specifies a method of the Authentication and Authorization for Constrained Environments (ACE) framework, which allows an authorization server to notify clients and resource servers (i.e., registered devices) about revoked access tokens. As specified in this document, the method allows clients and resource servers (RSs) to access a Token Revocation List (TRL) on the authorization server by using the Constrained Application Protocol (CoAP), with the possible additional use of resource observation. Resulting (unsolicited) notifications of revoked access tokens complement alternative approaches such as token introspection, while not requiring additional endpoints on clients and RSs.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Protocol Overview

 . Issuing of Access Tokens at the AS

 . Token Hash

 . Motivation for the Used Construction

 . Issuing of the Access Token to the Client

 . Provisioning of Access Tokens to the RS

 . Design Rationale

 . Hash Input on the Client and the AS

 . AS-to-Client Response Encoded in CBOR

 . AS-to-Client Response Encoded in JSON

 . HASH_INPUT on the RS

 . Access Tokens as CWTs

 . Access Tokens as JWTs

 . Computing the Token Hash

 . Token Revocation List (TRL)

 . Update of the TRL

 . The TRL Endpoint

 . Error Responses with Problem Details

 . Supporting Diff Queries

 . Supporting the "Cursor" Extension

 . Query Parameters

 . Full Query of the TRL

 . Diff Query of the TRL

 . Response Messages when Using the "Cursor" Extension

 . Response to Full Query

 . Response to Diff Query

 . Empty Update Collection

 . Cursor Not Included in the Diff Query Request

 . Cursor Included in the Diff Query Request

 . Registration at the Authorization Server

 . Notification of Revoked Access Tokens

 . Handling of Revoked Access Tokens and Token Hashes

 . ACE Token Revocation List Parameters

 . ACE Token Revocation List Error Identifiers

 . Security Considerations

 . Content Retrieval from the TRL

 . Size of the TRL

 . Communication Patterns

 . Request of New Access Tokens

 . Vulnerable Time Window at the RS

 . Preventing Unnoticed Manipulation of Access Tokens

 . Two Token Hashes at the RS Using JWTs

 . Additional Security Measures

 . IANA Considerations

 . Media Type Registrations

 . CoAP Content-Formats Registry

 . Custom Problem Detail Keys Registry

 . ACE Token Revocation List Parameters Registry

 . ACE Token Revocation List Errors

 . Expert Review Instructions

 . References

 . Normative References

 . Informative References

 . On Using the Series Transfer Pattern

 . Local Supportive Parameters of the TRL Endpoint

 . Interaction Examples

 . Full Query with Observe

 . Diff Query with Observe

 . Full Query with Observe and Diff Query

 . Diff Query with Observe and "Cursor" Extension

 . Full Query with Observe and Diff Query with "Cursor" Extension

 Acknowledgments

 Authors' Addresses

 Introduction
 Authentication and Authorization for Constrained Environments (ACE) is a framework that enforces access control on Internet of Things (IoT) devices acting as resource servers (RSs). In order to use ACE, both clients and RSs have to register with an authorization server (AS) and become registered devices. Once registered, a client can send a request to the AS to obtain an access token for an RS. For a client to access the RS, the client must present the issued access token at the RS, which then validates it before storing it (see).
 Even though access tokens have expiration times, there are circumstances by which an access token may need to be revoked before its expiration time, such as when:

	 a registered device has been compromised or is suspected of being compromised;
 a registered device is decommissioned;
 there has been a change in the ACE profile for a registered device;
 there has been a change in access policies for a registered device; or
 there has been a change in the outcome of policy evaluation for a registered device (e.g., if policy assessment depends on dynamic conditions in the execution environment, the user context, or the resource utilization).

 As discussed in , only client-initiated revocation is currently specified for OAuth 2.0 , based on the assumption that access tokens in OAuth are issued with a relatively short lifetime. However, this is not expected to be the case for constrained, intermittently connected devices that need access tokens with relatively long lifetimes.
 This document specifies a method for allowing registered devices to access and possibly subscribe to a Token Revocation List (TRL) on the AS in order to obtain updated information about pertaining access tokens that were revoked prior to their expiration. As specified in this document, the registered devices use the Constrained Application Protocol (CoAP) to communicate with the AS and with one another and can subscribe to the TRL on the AS by using resource observation for CoAP . Underlying protocols other than CoAP are not prohibited from being supported in the future, if they are defined to be used in the ACE framework.
 Unlike in the case of token introspection (see), a registered device does not provide an owned access token to the AS for inquiring about its current state. Instead, registered devices simply obtain updated information about pertaining access tokens that were revoked prior to their expiration as efficiently identified by corresponding hash values.
 The benefits of this method are that it complements token introspection and does not require the registered devices to support any additional endpoints (see). The only additional requirements for registered devices are a request/response interaction with the AS to access and possibly subscribe to the TRL (see) and the lightweight computation of hash values to use as access token identifiers (see).
 The process by which access tokens are declared revoked is out of the scope of this document. The method by which the AS determines or is notified of revoked access
tokens, according to which the AS consequently updates the TRL as
specified in this document, is also out of scope.

 Terminology
 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
" MAY", and " OPTIONAL" in this document are to be interpreted as
described in BCP 14 when, and only when, they
appear in all capitals, as shown here.
 Readers are expected to be familiar with the terms and concepts described in the ACE framework , as well as with terms and concepts related to CBOR Web Tokens (CWTs) and JSON Web Tokens (JWTs) .
 The terminology for entities in the considered architecture is defined in OAuth 2.0 . In particular, this includes client, RS, and authorization server (AS).
 Readers are also expected to be familiar with the terms and concepts related to the Concise Data Definition Language (CDDL) , Concise Binary Object Representation (CBOR) , JSON , CBOR Object Signing and Encryption (COSE) , CoAP , CoAP Observe , and the use of hash functions to name objects as defined in .
 Note that the term "endpoint" is used here following its OAuth definition , aimed at denoting resources such as /token and /introspect at the AS, and /authz-info at the RS. The CoAP definition, which is "[a]n entity participating in the CoAP protocol" , is not used in this document.
 This specification also uses the following terminology:

 Token hash:
 identifier of an access token, in binary
 format encoding. The token hash has no relation to other access
 token identifiers possibly used, such as the 'cti' (CWT ID) claim
 of CBOR Web Tokens (CWTs) .
 Token Revocation List (TRL):
 a collection of token
 hashes such that the corresponding access tokens have been revoked
 but are not expired yet.
 TRL endpoint:
 an endpoint at the AS with a TRL as its
 representation. The default name of the TRL endpoint in a url-path
 is '/revoke/trl'. Implementations are not required to use this
 name and can define their own instead.
 Registered device:
 a device registered at the AS,
 i.e., as a client, an RS, or both. A registered device acts as
 a requester towards the TRL endpoint.
 Administrator:

 an entity that is authorized to get full access
 to the TRL at the AS and that acts as a requester towards the TRL
 endpoint. An administrator is not necessarily a registered device
 as defined above, i.e., a client requesting access tokens or an RS
 consuming access tokens.
 An administrator might also be authorized to perform further
 administrative operations at the AS, e.g., through a dedicated
 admin interface that is out of the scope of this document. By
 considering the token hashes retrieved from the TRL together with
 other information obtained from the AS, the administrator becomes
 able to derive additional information, e.g., the fact that
 accesses have been revoked for specific registered devices.

 Pertaining access token:

 With reference to an administrator, an access token
 issued by the AS.

 With reference to a registered device, an access token
		intended to be owned by that device. An access token pertains
		to a client if the AS has issued the access token for that
		client following its request. An access token pertains to an
		RS if the AS has issued the access token to be consumed by
		that RS.

 Token hash pertaining to a requester:
 a token hash
 corresponding to an access token pertaining to that requester,
 i.e., an administrator or a registered device.
 TRL update pertaining to a requester:
 an update to the
 TRL through which token hashes pertaining to that requester have
 been added to or removed from the TRL.
 Full query:
 a type of query to the TRL where the AS
 returns the token hashes of the revoked access tokens currently in
 the TRL and pertaining to the requester. Further details are
 specified in Sections and .
 Diff query:
 a type of query to the TRL where the AS
 returns a list of diff entries, each related to one update
 that occurred to the TRL and containing a set of token hashes
 pertaining to the requester. Further details are specified in
 Sections and .

 See for further terminology used throughout that section.
 Examples throughout this document are expressed in CBOR diagnostic notation as defined in and . Diagnostic notation comments are often used to provide a textual representation of the numeric parameter names and values.

 Protocol Overview
 This protocol defines how a CoAP-based AS informs clients and RSs, i.e., registered devices, about pertaining revoked access tokens. How the relationship between a registered device and the AS is established is out of the scope of this specification.
 At a high level, the steps of this protocol are as follows:

 Upon startup, the AS creates a single TRL accessible through the TRL endpoint. At any point in time, the TRL represents the list of all revoked access tokens issued by the AS that are not expired yet.

 When a device registers at the AS, it also receives the url-path to the TRL endpoint.

At any time after the registration procedure is finished, the registered device can send a GET request to the TRL endpoint at the AS. When doing so, it can request the following: the current list of pertaining revoked access tokens (see) or the most recent updates that occurred over the list of pertaining revoked access tokens (see).

In particular, the registered device can rely on Observation for CoAP . In such a case, the GET request sent to the TRL endpoint includes the CoAP Observe Option set to 0 (register), i.e., it is an Observation Request. By doing so, the registered device effectively subscribes to the TRL,
as the device is interested in receiving notifications about the TRL's
update. Upon receiving the Observation Request, the AS adds the registered device to the list of observers of the TRL endpoint.

 When an access token is revoked, the AS adds the corresponding token hash to the TRL. Also, when a revoked access token eventually expires, the AS removes the corresponding token hash from the TRL.

	
In either case, after updating the TRL, the AS sends Observe notifications as per . That is, an Observe notification is sent to each registered device that is subscribed to the TRL and to which the access token pertains.

Depending on the specific subscription established through the
Observation Request, the notification provides either the current
updated list of revoked access tokens in the subset of the TRL
pertaining to that device (see) or the most recent TRL
updates that occurred over that list of pertaining revoked access
tokens (see).

Further Observe notifications may be sent, consistent with ongoing additional observations of the TRL endpoint.

 An administrator can access and subscribe to the TRL like a registered device while getting the content of the whole TRL (see) or the most recent updates that occurred to the whole TRL (see).

 shows a high-level overview of the service provided by this protocol. For the sake of simplicity, the example shown in the figure considers the simultaneous revocation of the three access tokens t1, t2, and t3 whose corresponding token hashes are th1, th2, and th3, respectively. Consequently, the AS adds the three token hashes to the TRL at once and sends Observe notifications to one administrator and four registered devices. Each dotted line associated with a pair of registered devices indicates the access token that they both own.

 Protocol Overview

 Authorization
 server
 /revoke/trl
 TRL:
 (th1,th2,th3)
 th1,th2,th3
 th1,th2
 th1
 th3
 th2,th3
 Administrator
 Client
 1
 Resource
 Client
 2
 Resource
 server
 1
 server
 2
 :
 :
 :
 :
 :
 :
 :
 :
 t1
 :
 :
 t3
 :
 :
 :
 :........:
 :............:
 :
 :
 t2
 :
 :...:

 +----------------------+
 | Authorization server |
 +-----------o----------+
 /revoke/trl | TRL: (th1,th2,th3)
 |
 +-----------------+------------+------------+------------+
 | | | | |
 | th1,th2,th3 | th1,th2 | th1 | th3 | th2,th3
 v v v v v
+---------------+ +----------+ +----------+ +----------+ +----------+
| Administrator | | Client 1 | | Resource | | Client 2 | | Resource |
| | | | | server 1 | | | | server 2 |
+---------------+ +----------+ +----------+ +----------+ +----------+
 : : : : : :
 : : t1 : : t3 : :
 : :........: :............: :
 : t2 :
 :...:

 provides examples of the protocol flow and message exchanges between the AS and a registered device.

 Issuing of Access Tokens at the AS
 An AS that supports the method defined in this document MUST adhere to the following rules when issuing an access token:

 All the intended header parameters in the access token MUST be specified within integrity-protected fields.

 If the access token is a CWT, the following applies:

 Any "unprotected" field MUST be empty, i.e., its value MUST be encoded as the empty CBOR map (0xa0). This applies to the top-level "unprotected" field of the COSE object used for the CWT, the "unprotected" field of each element of the "signatures" array, and the "unprotected" field of each element of any "recipients" array (see Sections , , , , and of).

 Consistent with the specific COSE object used for the CWT, the corresponding tagged structure in the set COSE_Tagged_Message MUST be used (see). That is, the CBOR array that encodes the CWT MUST be tagged by using the COSE CBOR tag corresponding to the used COSE object. Table 1 in specifies the tag numbers in question.

In turn, the resulting tagged data item MUST be tagged by using the CWT CBOR tag with tag number 61 (see). After that, the resulting data item MUST NOT be further tagged.

Encoding of the tag numbers MUST be done using definite lengths, and the length of the encoded tag numbers MUST be the minimum possible length. This means that tag number 16 is encoded as 0xd0 and not as 0xd810.

The example in shows a CWT that uses the COSE object COSE_Encrypt0 (see).

 If, like for JWTs , the access token relies on a JSON object for encoding its claims, the following applies:

Consistent with the ACE framework , this document specifically considers JWTs, which are always represented using the JSON Web Signature (JWS) Compact Serialization from or the JSON Web Encryption (JWE) Compact Serialization from . Consequently, all the header parameters are specified within integrity-protected fields.

In case alternative access tokens were used, the following applies:

 If the access token uses the JWS JSON Serialization from , it MUST NOT include the JWS Unprotected Header.

 If the access token uses the JWE JSON Serialization from , it MUST NOT include the JWE Shared Unprotected Header and it MUST NOT include the "header" member in any of the elements of the "recipients" array.

 Example of CWT Using COSE_Encrypt0

/ CWT CBOR tag / 61(
 / COSE_Encrypt0 CBOR tag / 16(
 / COSE_Encrypt0 object / [
 / protected / h'a3010a044c53796d6d65747269633132
 38054d99a0d7846e762c49ffe8a63e0b',
 / unprotected / {},
 / ciphertext / h'b918a11fd81e438b7f973d9e2e119bcb
 22424ba0f38a80f27562f400ee1d0d6c
 0fdb559c02421fd384fc2ebe22d70713
 78b0ea7428fff157444d45f7e6afcda1
 aae5f6495830c58627087fc5b4974f31
 9a8707a635dd643b'
]
)
)

 discusses how adhering to the rules above neutralizes an attack against the RS where an active adversary can induce the RS to compute a token hash different from the correct one.

 Token Hash
 This section specifies how token hashes are computed.
 First, provides the motivation for the used construction.
 Building on that, the value used as input to compute a token hash is defined in for the client and the AS and in for the RS. Finally, defines how such an input is used for computing the token hash.
 The process outlined below refers to the base64url encoding and decoding without padding (see) and denotes as "binary representation" of a text string the corresponding UTF-8 encoding , which is the implied charset used in JSON (see).
 Consistent with , the term "tag" is used for the entire CBOR data item consisting of both a tag number and the tag content: the tag content is the CBOR data item that is being tagged.
 Also, "tagged access token" is used to denote nested CBOR tags (possibly a single one), with the innermost tag content being a CWT.

 Motivation for the Used Construction
 An access token can have one among different formats. The most expected formats are CWT and JWT , with the former being the default format to use in the ACE framework (see). While access tokens are opaque to clients, an RS is aware of whether access tokens that are issued for it to consume are either CWTs or JWTs.

 Issuing of the Access Token to the Client
 There are two possible encodings that the AS can use for the AS-to-Client response (see) where the issued access token is included and provided to the requester client. The RS may not be aware of which encoding is used for that response to that particular requester client.

 One method of encoding relies on CBOR, which is required if CoAP is used (see) and is recommended otherwise (see). That is, the AS-to-Client response has media-type "application/ace+cbor".

This implies that, within the CBOR map specified as message payload, the 'access_token' parameter is a CBOR data item of type CBOR byte string and with a value of BYTES. In particular:

 If the access token is a CWT, then BYTES is the binary representation of the CWT (i.e., of the CBOR array that encodes the untagged CWT) or of a tagged access token with the CWT as the innermost tag content.

 If the access token is a JWT, then BYTES is the binary representation of the JWT (i.e., of the text string that encodes the JWT).

 An alternative method of encoding relies on JSON. That is, the AS-to-Client response has media-type "application/ace+json".

This implies that, within the JSON object specified as message payload, the 'access_token' parameter has as a value a text string TEXT. In particular:

 If the access token is a JWT, then TEXT is the text string that encodes the JWT.

 If the access token is a CWT, then TEXT is the base64url-encoded text string of BYTES, which is the binary representation of the CWT (i.e., of the CBOR array that encodes the untagged CWT) or of a tagged access token with the CWT as the innermost tag content.

 Provisioning of Access Tokens to the RS
 In accordance with the used transport profile of ACE (e.g., , ,), the RS receives a piece of token-related information hereafter denoted as TOKEN_INFO.
 In particular:

 If the AS-to-Client response was encoded in CBOR, then TOKEN_INFO is the value of the CBOR byte string conveyed by the 'access_token' parameter of that response. That is, TOKEN_INFO is the binary representation of the access token.

 If the AS-to-Client response was encoded in JSON and the access token is a JWT, then TOKEN_INFO is the binary representation of the text string conveyed by the 'access_token' parameter of that response. That is, TOKEN_INFO is the binary representation of the access token.

 If the AS-to-Client response was encoded in JSON and the access token is a CWT, then TOKEN_INFO is the binary representation of the base64url-encoded text string that encodes the binary representation of the access token. That is, TOKEN_INFO is the binary representation of the base64url-encoded text string conveyed by the 'access_token' parameter.

 The following overviews how the above specifically applies to the existing transport profiles of ACE:

 The access token can be uploaded to the RS by means of a POST request to the /authz-info endpoint (see), using a CoAP Content-Format or HTTP media-type that reflects the format of the access token, if available (e.g., "application/cwt" for CWTs), or "application/octet-stream" otherwise. When doing so (e.g., like in), TOKEN_INFO is the payload of the POST request.

 The access token can be uploaded to the RS by means of a POST request to the /authz-info endpoint, using the media-type "application/ace+cbor". When doing so (e.g., like in), TOKEN_INFO is the value of the CBOR byte string conveyed by the 'access_token' parameter, within the CBOR map specified as payload of the POST request.

 The access token can be uploaded to the RS during a DTLS session establishment, e.g., like it is defined in . When doing so, TOKEN_INFO is the value of the 'psk_identity' field of the ClientKeyExchange message (when using DTLS 1.2) or of the 'identity' field of a PSKIdentity, within the PreSharedKeyExtension of a ClientHello message (when using DTLS 1.3).

 The access token can be uploaded to the RS within the MQTT CONNECT packet, e.g., like it is defined in . When doing so, TOKEN_INFO is specified within the 'Authentication Data' field of the MQTT CONNECT packet, following the property identifier 22 (0x16) and the token length.

 Note that, if the access token is a CWT, it is specifically tagged as defined in .

 Design Rationale
 Considering the possible variants discussed above, it must always be ensured that the same HASH_INPUT value is used as input for generating the token hash of a given access token, by the AS that has issued the access token and by the registered devices to which the access token pertains (both client and RS).
 This is achieved by building HASH_INPUT according to the content of the 'access_token' parameter in the AS-to-Client responses because that is what the AS, the client, and the RS are all able to see.

 Hash Input on the Client and the AS
 The client and the AS consider the content of the 'access_token' parameter in the AS-to-Client response, in which the access token is included and provided to the requester client. Note that, if the access token is a CWT, it is specifically tagged as defined in .
 The following defines how the client and the AS determine the HASH_INPUT value to use as input for computing the token hash of the conveyed access token, depending on the AS-to-Client response being encoded in CBOR (see) or in JSON (see).
 Once HASH_INPUT is determined, the client and the AS use it to compute the token hash of the conveyed access token as defined in .

 AS-to-Client Response Encoded in CBOR
 If the AS-to-Client response is encoded in CBOR, then HASH_INPUT is defined as follows:

 BYTES denotes the value of the CBOR byte string conveyed in the 'access_token' parameter.

With reference to the example in , BYTES is the bytes {0xd8, 0x3d, 0xd0, ..., 0x64, 0x3b}.

Note that BYTES is the binary representation of the tagged access token if this is a CWT (as per) or of the access token if this is a JWT.

 HASH_INPUT_TEXT is the base64url-encoded text string that encodes BYTES.

 HASH_INPUT is the binary representation of HASH_INPUT_TEXT.

 Example of AS-to-Client CoAP Response Using CBOR

Header: Created (Code=2.01)
Content-Format: 19 (application/ace+cbor)
Max-Age: 85800
Payload:
{
 / access_token / 1 : h'd83dd0835820a3010a044c53796d6d
 6574726963313238054d99a0d7846e
 762c49ffe8a63e0ba05858b918a11f
 d81e438b7f973d9e2e119bcb22424b
 a0f38a80f27562f400ee1d0d6c0fdb
 559c02421fd384fc2ebe22d7071378
 b0ea7428fff157444d45f7e6afcda1
 aae5f6495830c58627087fc5b4974f
 319a8707a635dd643b',
 / token_type / 34 : 2 / PoP /,
 / expires_in / 2 : 86400,
 / ace_profile / 38 : 1 / coap_dtls /
 / (remainder of the response omitted for brevity) /
}

 AS-to-Client Response Encoded in JSON
 If the AS-to-Client response is encoded in JSON, then HASH_INPUT is the binary representation of the text string conveyed by the 'access_token' parameter.
 With reference to the example in , HASH_INPUT is the binary representation of "eyJh...YFiA". When showing the access token, uses line breaks for display purposes only.
 Note that:

 If the access token is a JWT, then HASH_INPUT is the binary representation of the JWT.

 If the access token is a CWT, then HASH_INPUT is the binary representation of a base64url-encoded text string, which encodes the binary representation of a tagged access token with the CWT as the innermost tag content (as per).

 Example of AS-to-Client HTTP Response Using JSON

HTTP/1.1 200 OK
Content-Type: application/ace+json
Cache-Control: no-store
Pragma: no-cache
Payload:
{
 "access_token" : "eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJB
 MTI4Q0JDLUhTMjU2In0.
 QR1Owv2ug2WyPBnbQrRARTeEk9kDO2w8
 qDcjiHnSJflSdv1iNqhWXaKH4MqAkQtM
 oNfABIPJaZm0HaA415sv3aeuBWnD8J-U
 i7Ah6cWafs3ZwwFKDFUUsWHSK-IPKxLG
 TkND09XyjORj_CHAgOPJ-Sd8ONQRnJvW
 n_hXV1BNMHzUjPyYwEsRhDhzjAD26ima
 sOTsgruobpYGoQcXUwFDn7moXPRfDE8-
 NoQX7N7ZYMmpUDkR-Cx9obNGwJQ3nM52
 YCitxoQVPzjbl7WBuB7AohdBoZOdZ24W
 lN1lVIeh8v1K4krB8xgKvRU8kgFrEn_a
 1rZgN5TiysnmzTROF869lQ.
 AxY8DCtDaGlsbGljb3RoZQ.
 MKOle7UQrG6nSxTLX6Mqwt0orbHvAKeW
 nDYvpIAeZ72deHxz3roJDXQyhxx0wKaM
 HDjUEOKIwrtkHthpqEanSBNYHZgmNOV7
 sln1Eu9g3J8.
 fiK51VwhsxJ-siBMR-YFiA",
 "token_type" : "PoP",
 "expires_in" : 86400,
 "ace_profile" : "coap_dtls"
}

 HASH_INPUT on the RS
 The following defines how the RS determines the HASH_INPUT value to use as input for computing the token hash of an access token, depending on the RS using either CWTs (see) or JWTs (see).

 Access Tokens as CWTs
 If the RS expects access tokens to be CWTs, then the RS performs the following steps:

 The RS receives the token-related information TOKEN_INFO, in accordance with what is specified by the used profile of ACE (see).

 The RS assumes that the client received the access token in an AS-to-Client response encoded in CBOR (see). Hence, the RS assumes TOKEN_INFO to be the binary representation of the tagged access token with the CWT as the innermost tag content (as per).

 The RS verifies the access token as per . If the verification fails, then the RS does not discard the access token yet; instead, it moves to Step 4.

Otherwise, the RS stores the access token and computes the corresponding token hash as defined in . In particular, the RS considers HASH_INPUT_TEXT as the base64url-encoded text string that encodes TOKEN_INFO. Then, HASH_INPUT is the binary representation of HASH_INPUT_TEXT.

After that, the RS stores the computed token hash as associated with the access token; then, it terminates this algorithm.

 The RS assumes that the client received the access token in an AS-to-Client response encoded in JSON (see). Hence, the RS assumes TOKEN_INFO to be the binary representation of HASH_INPUT_TEXT. In turn, HASH_INPUT_TEXT is the base64url-encoded text string that encodes the binary representation of the tagged access token with the CWT as the innermost tag content (as per).

 The RS performs the base64url decoding of HASH_INPUT_TEXT and considers the result to be the binary representation of the tagged access token.

 The RS verifies the access token as per . If the verification fails, then the RS terminates this algorithm.

Otherwise, the RS stores the access token and computes the corresponding token hash as defined in . In particular, HASH_INPUT is TOKEN_INFO.

After that, the RS stores the computed token hash as associated with the access token.

 Access Tokens as JWTs
 If the RS expects access tokens to be JWTs, then the RS performs the following steps:

 The RS receives the token-related information TOKEN_INFO, in accordance with what is specified by the used profile of ACE (see).

 The RS verifies the access token as per . If the verification fails, then the RS terminates this algorithm. Otherwise, the RS stores the access token.

 The RS computes a first token hash associated with the access token as defined in .

In particular, the RS assumes that the client received the access token in an AS-to-Client response encoded in JSON (see). Hence, HASH_INPUT is TOKEN_INFO.

After that, the RS stores the computed token hash as associated with the access token.

 The RS computes a second token hash associated with the access token as defined in .

In particular, the RS assumes that the client received the access token in an AS-to-Client response encoded in CBOR (see). Hence, HASH_INPUT is the binary representation of HASH_INPUT_TEXT, which, in turn, is the base64url-encoded text string that encodes TOKEN_INFO.

After that, the RS stores the computed token hash as associated with the access token.

 The RS skips Step 3 only if it is certain that all its pertaining access tokens are provided to any client by means of AS-to-Client responses encoded as CBOR messages. Otherwise, the RS MUST perform Step 3.
 The RS skips Step 4 only if it is certain that all its pertaining access tokens are provided to any client by means of AS-to-Client responses encoded as JSON messages. Otherwise, the RS MUST perform Step 4.
 If the RS performs both Steps 3 and 4 above, then the RS MUST store, maintain, and rely on both token hashes as associated with the access token, consistent with what is specified in .
 discusses how computing and storing both token hashes neutralizes an attack against the RS, where a dishonest client can induce the RS to compute a token hash different from the correct one.

 Computing the Token Hash
 Once HASH_INPUT is determined as defined in Sections and , a hash value of HASH_INPUT is generated as per . The resulting output in binary format is used as the token hash. Note that the used binary format embeds the identifier of the used hash function in the first byte of the computed token hash.
 The specific hash function used MUST be collision resistant on byte strings and MUST be selected from the "Named Information Hash Algorithm Registry" . Consistent with the compliance requirements in , the hash function sha-256 as specified in is mandatory to implement.
 The AS specifies the used hash function to registered devices during their registration procedure (see).

 Token Revocation List (TRL)
 Upon startup, the AS creates a single Token Revocation List (TRL) encoded as a CBOR array.
 Each element of the array is a CBOR byte string, whose value is the token hash of an access token. The CBOR array MUST be treated as a set, i.e., the order of its elements has no meaning.
 The TRL is initialized as empty, i.e., its initial content MUST be the empty CBOR array. The TRL is accessible through the TRL endpoint at the AS.

 Update of the TRL
 The AS updates the TRL in the following two cases:

 When a non-expired access token is revoked, the token hash of the access token is added to the TRL. That is, a CBOR byte string with the token hash as its value is added to the CBOR array encoding the TRL.

 When a revoked access token expires, the token hash of the access token is removed from the TRL. That is, the CBOR byte string with the token hash as its value is removed from the CBOR array encoding the TRL.

 The AS MAY perform a single update to the TRL such that one or more token hashes are added or removed at once. For example, this can be the case if multiple access tokens are revoked or expire at the same time or within an acceptably narrow time frame.

 The TRL Endpoint
 Consistent with , all communications between the AS and a requester interacting with the TRL endpoint at the AS MUST be encrypted, as well as integrity and replay protected. Furthermore, responses from the AS to the requester MUST be bound to the corresponding requests.
 Following a request to the TRL endpoint, the corresponding success response messages sent by the AS use Content-Format "application/ace-trl+cbor". Their payload is formatted as a CBOR map, and the CBOR values used to abbreviate the parameters included therein are defined in .
 The AS MUST implement measures to prevent access to the TRL endpoint by entities other than registered devices and authorized administrators (see).
 The TRL endpoint supports only the GET method, and allows two types of queries of the TRL:

 Full query: the AS returns the token hashes of the revoked access tokens currently in the TRL and pertaining to the requester.

The AS MUST support this type of query. The processing of a full query and the related response format are defined in .

 Diff query: the AS returns a list of diff entries. Each diff entry is related to one update that occurred to the TRL, and it contains a set of token hashes pertaining to the requester. In particular, all such token hashes were added to the TRL or removed from the TRL at the update related to the diff entry in question.

The AS MAY support this type of query. In such a case, the AS maintains the history of updates to the TRL as defined in . The processing of a diff query and the related response format are defined in .

 If it supports diff queries, the AS MAY additionally support the related "Cursor" extension, which has two benefits:

	 The AS can avoid excessively long messages when several diff entries have to be transferred by delivering several diff query responses, each containing one adjacent subset of diff entries at a time.
 A requester can retrieve diff entries associated with TRL updates that, even if not the most recent ones, occurred after a TRL update associated with a diff entry indicated as a reference point.

 If it supports the "Cursor" extension, the AS stores additional information when maintaining the history of updates to the TRL as defined in . Also, the processing of full query requests and diff query requests, as well as the related response format, are further extended as defined in .
 provides an aggregated overview of the local supportive parameters that the AS internally uses at its TRL endpoint when supporting diff queries and the "Cursor" extension.

 Error Responses with Problem Details
 Some error responses from the TRL endpoint at the AS can convey error-specific information according to the problem-details format defined in . Such error responses MUST have Content-Format set to "application/concise-problem-details+cbor". The payload of these error responses MUST be a CBOR map specifying a Concise Problem Details data item (see). The CBOR map is formatted as follows:

 It MUST include the Custom Problem Detail entry 'ace-trl-error' registered in of this document. This entry is formatted as a CBOR map, which includes the following fields:

 The 'error-id' field MUST be present. The map key used for this field is the CBOR unsigned integer with a value of 0. The value of this field is a CBOR integer specifying the error that occurred at the AS. This value is taken from the 'Value' column of the "ACE Token Revocation List Errors" registry defined in of this document.

 The 'cursor' field MAY be present. The map key used for this field is the CBOR unsigned integer with a value of 1. The value of this field is a CBOR unsigned integer or the CBOR simple value null (0xf6). The use of this field is defined in .

The CDDL notation of the 'ace-trl-error' entry is given below:

 ace-trl-error = {
 0: int, ; error-id
 ? 1: uint / null ; cursor
 }

 It MAY include further Standard Problem Detail entries or Custom Problem Detail entries (see).

In particular, it can include the Standard Problem Detail entry 'detail' (map key -2), whose value is a CBOR text string that specifies a human-readable diagnostic description of the error that occurred at the AS. The diagnostic text is intended for software engineers as well as for device and network operators in order to aid in debugging and provide context for possible intervention. The diagnostic message SHOULD be logged by the AS. The 'detail' entry is unlikely to be relevant in an unattended setup where human intervention is not expected.

 An example of an error response using the problem-details format is shown in .

 Example of Error Response with Problem Details

Header: Bad Request (Code=4.00)
Content-Format: 257 (application/concise-problem-details+cbor)
Payload:
{
 / title / -1: "Invalid parameter value",
 / detail / -2: "Invalid value for 'cursor': -53",
 / ace-trl-error / 1: {
 / error-id / 0: 0 / "Invalid parameter value" /,
 / cursor / 1: 42
 }
}

 The problem-details format in general and the Custom Problem Detail entry 'ace-trl-error' in particular are OPTIONAL to support for registered devices. A registered device supporting the entry 'ace-trl-error' and that is able to understand the specified error may use that information to determine what actions to take next.

 Supporting Diff Queries
 If the AS supports diff queries, it is able to transfer a list of diff entries, each of which is related to one update that occurred to the TRL (see). That is, when replying to a diff query performed for a requester, the AS provides the diff entries related to the most recent TRL updates pertaining to the requester.
 The following defines how the AS builds and maintains an ordered list of diff entries, for each registered device and administrator, hereafter referred to as "requesters". In particular, a requester's diff entry associated with a TRL update contains a set of token hashes pertaining to that requester, each of which was added to the TRL or removed from the TRL at that update.
 The AS defines the single constant positive integer MAX_N >= 1. For each requester, the AS maintains an update collection of maximum MAX_N series items, each of which is a diff entry. For each requester, the AS MUST keep track of the MAX_N most recent TRL updates pertaining to the requester. If the AS supports diff queries, the AS MUST provide requesters with the value of MAX_N upon their registration (see).
 The series of items in the update collection MUST be strictly chronologically ordered. That is, at any point in time, the first series item is the one least recently added to the update collection and still retained by the AS; the last series item is the one most recently added to the update collection. The particular method used to achieve this is implementation specific.
 Each time the TRL changes, the AS performs the following operations for each requester:

 The AS considers the subset of the TRL pertaining to that requester. If the TRL subset is not affected by this TRL update, the AS stops the processing for that requester. Otherwise, the AS moves to Step 2.

 The AS creates two trl_patch sets of token hashes, i.e., one 'removed' set and one 'added' set, as related to this TRL update.

 The AS fills the two sets with the token hashes of the removed and added access tokens, respectively, from/to the TRL subset considered at Step 1.

 The AS creates a new series item that includes the two sets from Step 3.

 If the update collection associated with the requester currently includes MAX_N series items, the AS MUST delete the oldest series item in the update collection.

 The AS adds the series item to the update collection associated with the requester as the last (most recent) series item.

 Supporting the "Cursor" Extension
 If it supports the "Cursor" extension for diff queries, the AS also performs the following actions:
 The AS defines the single constant unsigned integer MAX_INDEX <= ((2 64) - 1). The value of MAX_INDEX is REQUIRED to be at least (MAX_N - 1) and is RECOMMENDED to be at least ((2 32) - 1). MAX_INDEX SHOULD be orders of magnitude greater than MAX_N.
 The following applies separately for each requester's update collection:

 Each series item X in the update collection is also associated with an unsigned integer 'index', whose minimum value is 0 and whose maximum value is MAX_INDEX. The first series item ever added to the update collection MUST have an 'index' with a value of 0.

If i_X is the value of 'index' associated with a series item X, then the following series item Y will take 'index' with a value of i_Y = (i_X + 1) % (MAX_INDEX + 1). That is, after having added a series item whose associated 'index' has a value of MAX_INDEX, the next added series item will result in a wraparound of the 'index' value; thus, it will take an 'index' with a value of 0.

For example, assuming MAX_N = 3, the values of 'index' in the update collection chronologically evolve as follows, as new series items are added and old series items are deleted:

 ...

 (i_A = MAX_INDEX - 2, i_B = MAX_INDEX - 1, i_C = MAX_INDEX)

 (i_B = MAX_INDEX - 1, i_C = MAX_INDEX, i_D = 0)

 (i_C = MAX_INDEX, i_D = 0, i_E = 1)

 (i_D = 0, i_E = 1, i_F = 2)

 ...

 The unsigned integer 'last_index' is also defined, with minimum value 0 and maximum value MAX_INDEX.

If the update collection is empty (i.e., no series items have been added yet), the value of 'last_index' is not defined. If the update collection is not empty, 'last_index' has the value of 'index' currently associated with the last series item in the update collection.

That is, after having added V series items to the update collection, the last and most recently added series item has an 'index' with a value of 'last_index' = (V - 1) % (MAX_INDEX + 1).

As long as a wraparound of the 'index' value has not occurred, the value of 'last_index' is the absolute counter of series items added to that update collection, minus 1.

 When processing a diff query using the "Cursor" extension, the values of 'index' are used as cursor information, as defined in .
 For each requester's update collection, the AS also defines a constant positive integer MAX_DIFF_BATCH <= MAX_N, whose value specifies the maximum number of diff entries to be included in a single diff query response. The specific value MAY depend on the specific registered device or administrator associated with the update collection in question. If supporting the "Cursor" extension, the AS MUST provide registered devices and administrators with the corresponding value of MAX_DIFF_BATCH upon their registration (see).

 Query Parameters
 A GET request to the TRL endpoint can include the following query parameters. The AS MUST silently ignore unknown query parameters.

 'diff': if included, it asks the AS to perform a diff query of the TRL (see). Its value MUST be either:

 the integer 0, indicating that a (notification) response should include as many diff entries as the AS can provide in the response; or

 a positive integer strictly greater than 0, indicating the maximum number of diff entries that a (notification) response should include.

If the AS does not support diff queries, it ignores the 'diff' query parameter when present in the GET request and proceeds like when performing a full query of the TRL (see).

Otherwise, the AS MUST return a 4.00 (Bad Request) response in case the 'diff' query parameter of the GET request has a value that is neither 0 nor a positive integer, irrespective of the presence of the 'cursor' query parameter and its value (see below). The response MUST have Content-Format set to "application/concise-problem-details+cbor", and its payload is formatted as defined in . Within the Custom Problem Detail entry 'ace-trl-error', the value of the 'error-id' field MUST be set to 0 ("Invalid parameter value"), and the 'cursor' field MUST NOT be present.

 'cursor': if included, it asks the AS to perform a diff query of the TRL together with the "Cursor" extension, as defined in . Its value MUST be either 0 or a positive integer. If the 'cursor' query parameter is included, then the 'diff' query parameter MUST also be included.

If included, the 'cursor' query parameter has an unsigned integer value that was provided by the AS in a previous response from the TRL endpoint (see Sections , , and).

	 If the AS does not support the "Cursor" extension, it ignores the 'cursor' query parameter when present in the GET request. In such a case, the AS proceeds as specified elsewhere in this document, that is:

	 it performs a diff query of the TRL (see), if it supports diff queries and the 'diff' query parameter is present in the GET request; otherwise,
 it performs a full query of the TRL (see).

If the AS supports both diff queries and the "Cursor" extension, and the GET request includes the 'cursor' query parameter, then the AS MUST return a 4.00 (Bad Request) response in case any of the conditions below holds.

The 4.00 (Bad Request) response MUST have Content-Format set to "application/concise-problem-details+cbor", and its payload is formatted as defined in .

 The GET request does not include the 'diff' query parameter, irrespective of the value of the 'cursor' query parameter.

Within the Custom Problem Detail entry 'ace-trl-error', the value of the 'error-id' field MUST be set to 1 ("Invalid set of parameters"), and the 'cursor' field MUST NOT be present.

 The 'cursor' query parameter has a value that is neither 0 nor a positive integer; or it has a value strictly greater than MAX_INDEX (see).

		Within the Custom Problem Detail entry 'ace-trl-error', the value of the 'error-id' field MUST be set to 0 ("Invalid parameter value"). The entry 'ace-trl-error' MUST include the 'cursor' field, whose value is either:

 the CBOR simple value null (0xf6), if the update collection associated with the requester is empty; or, otherwise
 the corresponding current value of 'last_index'.

 All of the following hold: the update collection associated with the requester is not empty; no wraparound of the 'index' value has occurred; and the 'cursor' query parameter has a value strictly greater than the current 'last_index' on the update collection (see).

Within the Custom Problem Detail entry 'ace-trl-error', the value of the 'error-id' field MUST be set to 2 ("Out of bound cursor value"), and the 'cursor' field MUST NOT be present.

 Full Query of the TRL
 In order to produce a (notification) response to a GET request asking for a full query of the TRL, the AS performs the following actions:

 From the TRL, the AS builds a HASHES set such that:

 If the requester is a registered device, HASHES specifies the token hashes currently in the TRL and associated with the access tokens pertaining to that registered device. The AS can always use the authenticated identity of the registered device to perform the necessary filtering on the TRL content.

 If the requester is an administrator, HASHES specifies all the token hashes currently in the TRL.

 The AS sends a 2.05 (Content) response to the requester. The response MUST have Content-Format set to "application/ace-trl+cbor". The payload of the response is a CBOR map, which MUST be formatted as follows.

 The 'full_set' parameter MUST be included and MUST encode a CBOR array 'full_set_value'. Each element of 'full_set_value' is a CBOR byte string, whose value is one of the token hashes from the HASHES set. If the HASHES set is empty, the 'full_set' parameter specifies the empty CBOR array.

The CBOR array MUST be treated as a set, i.e., the order of its elements has no meaning.

 The 'cursor' parameter MUST be included if the AS supports both diff queries and the related "Cursor" extension (see Sections and). Its value is set as specified in and provides the requester with information for sending a new request that asks the AS to perform a follow-up diff query using the "Cursor" extension (see).

If the AS does not support both diff queries and the "Cursor" extension, this parameter MUST NOT be included. In case the requester does not support both diff queries and the "Cursor" extension, it MUST silently ignore the 'cursor' parameter if present.

 provides the CDDL definition of the CBOR array 'full_set_value' specified in the response from the AS as the value of the 'full_set' parameter.

 CDDL Definition of 'full_set_value'

token_hash = bytes
full_set_value = [* token_hash]

 shows an example of a response from the AS following a full query request to the TRL endpoint. In this example, the AS does not support diff queries nor the "Cursor" extension; hence the 'cursor' parameter is not included in the payload of the response. Also, full token hashes are omitted for brevity.

 Example of a Response Following a Full Query Request to the TRL Endpoint

Header: Content (Code=2.05)
Content-Format: 262 (application/ace-trl+cbor)
Payload:
{
 / full_set / 0: [
 h'01fa51cc...4819', / elided for brevity /
 h'01748190...223d' / elided for brevity /
]
}

 Diff Query of the TRL
 In order to produce a (notification) response to a GET request asking for a diff query of the TRL, the AS performs the following actions:
 Note that, if the AS supports both diff queries and the related "Cursor" extension, Steps 3 and 4 defined below are extended as defined in .

 The AS defines the positive integer NUM as follows: if the value N specified in the 'diff' query parameter in the GET request is equal to 0 or greater than the predefined positive integer MAX_N (see), then NUM takes the value of MAX_N. Otherwise, NUM takes N.

 The AS determines U = min(NUM, SIZE), where SIZE <= MAX_N. In particular, SIZE is the number of diff entries currently stored in the requester's update collection.

 The AS prepares U diff entries. If U is equal to 0 (e.g., because SIZE is equal to 0 at Step 2), then no diff entries are prepared.

The prepared diff entries are related to the U most recent TRL updates pertaining to the requester, as maintained in the update collection for that requester (see). In particular, the first diff entry refers to the most recent of such updates, the second diff entry refers to the second-to-last of such updates, and so on.

	 Each diff entry is a CBOR array 'diff_entry', which includes the following two elements:

 A trl_patch set of token hashes encoded as a CBOR array 'removed'. Each element of the array is a CBOR byte string, whose value is the token hash of an access token such that it pertains to the requester and was removed from the TRL during the update associated with the diff entry.

 A trl_patch set of token hashes encoded as a CBOR array 'added'. Each element of the array is a CBOR byte string, whose value is the token hash of an access token such that it pertains to the requester and was added to the TRL during the update associated with the diff entry.

The CBOR arrays 'removed' and 'added' MUST be treated as sets, i.e., the order of their elements has no meaning.

 The AS prepares a 2.05 (Content) response for the requester. The response MUST have Content-Format set to "application/ace-trl+cbor". The payload of the response is a CBOR map, which MUST be formatted as follows:

 The 'diff_set' parameter MUST be present and MUST encode a CBOR array 'diff_set_value' of U elements. Each element of 'diff_set_value' specifies one of the CBOR arrays 'diff_entry' prepared above as a diff entry. Note that U might have a value of 0; in this case, 'diff_set_value' is the empty CBOR array.

Within 'diff_set_value', the 'diff_entry' CBOR arrays MUST be sorted to reflect the corresponding updates to the TRL in reverse chronological order. That is, the first 'diff_entry' element of 'diff_set_value' relates to the most recent TRL update pertaining to the requester. The second 'diff_entry' element relates to the second-to-last most recent TRL update pertaining to the requester, and so on.

 The 'cursor' parameter and the 'more' parameter MUST be included if the AS supports both diff queries and the related "Cursor" extension (see). Their values are set as specified in and provide the requester with information for sending a new request that asks the AS to perform a follow-up query of the TRL (see).

In case the AS supports diff queries but not the "Cursor" extension, these parameters MUST NOT be included. In case the requester supports diff queries but not the "Cursor" extension, the requester MUST silently ignore the 'cursor' parameter and the 'more' parameter, if present.

 provides the CDDL definition of the CBOR array 'diff_set_value' specified in the response from the AS, as the value of the 'diff_set' parameter.

 CDDL Definition of 'diff_set_value'

 token_hash = bytes
 trl_patch = [* token_hash]
 diff_entry = [removed: trl_patch, added: trl_patch]
 diff_set_value = [* diff_entry]

 shows an example of a response from the AS following a diff query request to the TRL endpoint, where U = 3 diff entries are included. In this example, the AS does not support the "Cursor" extension; hence, the 'cursor' parameter and the 'more' parameter are not included in the payload of the response. Also, full token hashes are omitted for brevity.

 Example of Response Following a Diff Query Request to the TRL Endpoint

Header: Content (Code=2.05)
Content-Format: 262 (application/ace-trl+cbor)
Payload:
{
 / diff_set / 1: [
 [
 [h'01fa51cc...0f6a', / elided for brevity /
 h'01748190...8bce' / elided for brevity /
],
 [h'01cdf1ca...563d', / elided for brevity /
 h'01be41a6...a057' / elided for brevity /
]
],
 [
 [h'0144dd12...77bc', / elided for brevity /
 h'01231fff...a2ce' / elided for brevity /
],
 []
],
 [
 [],
 [h'01ca986f...ffc1', / elided for brevity /
 h'01fe1a2b...def0' / elided for brevity /
]
]
]
}

 discusses how performing a diff query of the TRL is, in fact, a usage example of the Series Transfer Pattern defined in .

 Response Messages when Using the "Cursor" Extension
 If the AS supports both diff queries and the "Cursor" extension, it composes a response to a full query request or diff query request as defined in Sections and , respectively.
 The exact format of the response depends on:

 the request being a full query or diff query request,
 the presence of the 'diff' and 'cursor' query parameters and their values in the diff query request, and
 the current status of the update collection associated with the requester.

 Error handling and the possible resulting error responses are as defined in .

 Response to Full Query
 When processing a full query request to the TRL endpoint, the AS composes a response as defined in .
 In particular, the 'cursor' parameter included in the CBOR map carried in the response payload specifies either the CBOR simple value null (0xf6) or a CBOR unsigned integer.
 The 'cursor' parameter MUST encode the CBOR simple value null (0xf6) in case there are currently no TRL updates pertaining to the requester, i.e., the update collection for that requester is empty. This is the case from when the requester registers at the AS until the first update pertaining to that requester occurs to the TRL.
 Otherwise, the 'cursor' parameter MUST encode a CBOR unsigned integer. The unsigned integer MUST take the 'index' value of the last series item in the update collection associated with the requester (see) as corresponding to the most recent TRL update pertaining to the requester. In fact, such a value is the current value of 'last_index' for the update collection associated with the requester.

 Response to Diff Query
 When processing a diff query request to the TRL endpoint, the AS composes a response as defined in the following subsections.

 Empty Update Collection
 If the update collection associated with the requester has no elements, the AS returns a 2.05 (Content) response. The response MUST have Content-Format set to "application/ace-trl+cbor", and its payload MUST be a CBOR map formatted as follows:

 The 'diff_set' parameter MUST be included and MUST encode the empty CBOR array.

 The 'cursor' parameter MUST be included and MUST encode the CBOR simple value null (0xf6).

 The 'more' parameter MUST be included and MUST encode the CBOR simple value false (0xf4).

 Note that the above applies when the update collection associated with the requester has no elements, regardless of whether or not the 'cursor' query parameter is included in the diff query request and irrespective of the specified unsigned integer value if present.

 Cursor Not Included in the Diff Query Request
 If the update collection associated with the requester is not empty and the diff query request does not include the 'cursor' query parameter, the AS performs the actions defined in , with the following differences:

 At Step 3, the AS considers the value MAX_DIFF_BATCH (see) and prepares L = min(U, MAX_DIFF_BATCH) diff entries.

If U <= MAX_DIFF_BATCH, the prepared diff entries are the last series items in the update collection associated with the requester, corresponding to the L most recent TRL updates pertaining to the requester.

If U > MAX_DIFF_BATCH, the prepared diff entries are the eldest of the last U series items in the update collection associated with the requester, as corresponding to the first L of the U most recent TRL updates pertaining to the requester.

 At Step 4, the CBOR map to carry in the payload of the 2.05 (Content) response MUST be formatted as follows:

 The 'diff_set' parameter MUST be present and MUST encode a CBOR array 'diff_set_value' of L elements. Each element of 'diff_set_value' specifies one of the CBOR arrays 'diff_entry' prepared as a diff entry.

 The 'cursor' parameter MUST be present and MUST encode a CBOR unsigned integer. The unsigned integer MUST take the 'index' value of the series item of the update collection included as first diff entry in the 'diff_set_value' CBOR array, which is specified by the 'diff_set' parameter. That is, the 'cursor' parameter takes the 'index' value of the series item in the update collection corresponding to the most recent TRL update pertaining to the requester and returned in this diff query response.

Note that the 'cursor' parameter takes the same 'index' value of the last series item in the update collection when U <= MAX_DIFF_BATCH.

 The 'more' parameter MUST be present. The parameter MUST encode the CBOR simple value false (0xf4) if U <= MAX_DIFF_BATCH; otherwise, it MUST encode the CBOR simple value true (0xf5).

 If the 'more' parameter in the payload of the received 2.05 (Content) response has a value of true, the requester can send a follow-up diff query request including the 'cursor' query parameter with the same value of the 'cursor' parameter specified in this diff query response. As defined in , this would result in the AS transferring the following subset of series items as diff entries, thus resuming from where interrupted in the previous transfer.

 Cursor Included in the Diff Query Request
 If the update collection associated with the requester is not empty and the diff query request includes the 'cursor' query parameter with value P, the AS proceeds as follows, depending on which of the following two cases hold:

 The series item X with 'index' having value P and the series item Y with 'index' having value (P + 1) % (MAX_INDEX + 1) are both not found in the update collection associated with the requester. This occurs when the item Y (and possibly further ones after it) has been previously removed from the update collection for that requester (see Step 5 at).

In this case, the AS returns a 2.05 (Content) response. The response MUST have Content-Format set to "application/ace-trl+cbor", and its payload MUST be a CBOR map formatted as follows:

 The 'diff_set' parameter MUST be included and MUST encode the empty CBOR array.

 The 'cursor' parameter MUST be included and MUST encode the CBOR simple value null (0xf6).

 The 'more' parameter MUST be included and MUST encode the CBOR simple value true (0xf5).

With the combination ('cursor', 'more') = (null, true), the AS is indicating that the update collection is, in fact, not empty, but that one or more series items have been lost due to their removal. These include the item with 'index' value (P + 1) % (MAX_INDEX + 1) that the requester wished to obtain as the first one following the specified reference point with 'index' value P.

When receiving this diff query response, the requester SHOULD send a new full query request to the AS. A successful response provides the requester with the full current pertaining subset of the TRL as well as a valid value of the 'cursor' parameter (see) to be, possibly, used as query parameter in a following diff query request.

 The series item X with 'index' having value P is found in the update collection associated with the requester, or instead the series item X is not found and the series item Y with 'index' having value (P + 1) % (MAX_INDEX + 1) is found in the update collection associated with the requester.

In this case, the AS performs the actions defined in with the following differences:

 At Step 3, the AS considers the value MAX_DIFF_BATCH (see) and prepares L = min(SUB_U, MAX_DIFF_BATCH) diff entries, where SUB_U = min(NUM, SUB_SIZE) and SUB_SIZE is the number of series items in the update collection starting from and including the series item added immediately after X. If L is equal to 0 (e.g., because SUB_U is equal to 0), then no diff entries are prepared.

If SUB_U <= MAX_DIFF_BATCH, the prepared diff entries are the last series items in the update collection associated with the requester, corresponding to the L most recent TRL updates pertaining to the requester.

If SUB_U > MAX_DIFF_BATCH, the prepared diff entries are the eldest of the last SUB_U series items in the update collection associated with the requester, corresponding to the first L of the SUB_U most recent TRL updates pertaining to the requester.

 At Step 4, the CBOR map to carry in the payload of the 2.05 (Content) response MUST be formatted as follows:

 The 'diff_set' parameter MUST be present and MUST encode a CBOR array 'diff_set_value' of L elements. Each element of 'diff_set_value' specifies one of the CBOR arrays 'diff_entry' prepared as a diff entry. Note that L might have value 0, in which case 'diff_set_value' is the empty CBOR array.

 The 'cursor' parameter MUST be present and MUST encode a CBOR unsigned integer. In particular:

 If L is equal to 0, i.e., the series item X is the last one in the update collection, then the 'cursor' parameter MUST take the same 'index' value of the last series item in the update collection. In fact, such a value is the current value of 'last_index' for the update collection.

 If L is different than 0, then the 'cursor' parameter MUST take the 'index' value of the series element of the update collection included as first diff entry in the 'diff_set' CBOR array. That is, the 'cursor' parameter takes the 'index' value of the series item in the update collection corresponding to the most recent TRL update pertaining to the requester and returned in this diff query response.

Note that the 'cursor' parameter takes the same 'index' value of the last series item in the update collection when SUB_U <= MAX_DIFF_BATCH.

 The 'more' parameter MUST be present. The parameter MUST encode the CBOR simple value false (0xf4) if SUB_U <= MAX_DIFF_BATCH; otherwise, it MUST encode the CBOR simple value true (0xf5).

If the 'more' parameter in the payload of the received 2.05 (Content) response has value true, the requester can send a follow-up diff query request including the 'cursor' query parameter with the same value of the 'cursor' parameter specified in this diff query response. This would result in the AS transferring the following subset of series items as diff entries, thus resuming from where interrupted in the previous transfer.

 Registration at the Authorization Server
 During the registration process at the AS, an administrator or a registered device receives the following information as part of the registration response:

 The url-path to the TRL endpoint at the AS.

 The hash function used to compute token hashes. This is specified by identifying an entry in the "Named Information Hash Algorithm Registry" . The specific means for this is outside the scope of this document.

 A positive integer MAX_N, if the AS supports diff queries of the TRL (see Sections and).

 A positive integer MAX_DIFF_BATCH, if the AS supports diff queries of the TRL as well as the related "Cursor" extension (see Sections and).

 Once the registration process is completed, the AS maintains the registration and related information until a possible deregistration occurs, hence keeping track of active administrators and registered devices. The particular way to achieve this is implementation specific. In any case, such a mechanism to maintain registrations is enforced at the AS in order to ensure that requests sent by clients to the /token endpoint (see) and by RSs to the /introspect endpoint (see) are processed as intended.
 When communicating with one another, the registered devices and the AS have to use a secure communication association and be mutually authenticated (see).
 In the same spirit, communications between the AS and an administrator MUST be ensured to be mutually authenticated, encrypted, and integrity protected as well as protected against message replay.
 Before starting its registration process at the AS, an administrator has to establish such a secure communication association with the AS, if they do not share one already. In particular, mutual authentication is REQUIRED during the establishment of the secure association. To this end, the administrator and the AS can rely, e.g., on establishing a TLS or DTLS secure session with mutual authentication (see and) or an Object Security for Constrained RESTful Environments (OSCORE) Security Context by running the authenticated key exchange protocol EDHOC .
 When receiving authenticated requests from the administrator for accessing the TRL endpoint, the AS can always check whether the requester is authorized to take such a role, i.e., to access the content of the whole TRL.
 To this end, the AS may rely on a local access control list or similar, which specifies the authentication credentials of trusted, authorized administrators. In particular, the AS verifies the requester to the TRL endpoint as an authorized administrator only if the access control list includes the same authentication credential used by the requester when establishing the mutually authenticated secure communication association with the AS.
 Further details about the registration process at the AS are out of scope for this specification. Note that the registration process is also out of the scope of the ACE framework (see).

 Notification of Revoked Access Tokens
 Once registered at the AS, the administrator or a registered device can send a GET request to the TRL endpoint at the AS. The request can express the wish for a full query (see) or a diff query (see) of the TRL. Also, the request can include the CoAP Observe Option set to 0 (register) in order to start an observation of the TRL endpoint as per .
 In case the request is successfully processed, the AS replies with a 2.05 (Content) response. In particular, if the AS supports diff queries but not the "Cursor" extension (see Sections and), then the payload of the response is formatted as defined in Sections or , in case the GET request has yielded the execution of a full query or of a diff query of the TRL, respectively. Instead, if the AS supports both diff queries and the related "Cursor" extension, then the payload of the response is formatted as defined in .
 In case a requester does not receive a response from the TRL endpoint or it receives an error response from the TRL endpoint, the requester does not make any assumptions or draw any conclusions regarding the revocation or expiration of its pertaining access tokens. The requester MAY try again by sending a new request to the TRL endpoint.
 When the TRL is updated (see), the AS sends Observe notifications to the observers whose pertaining subset of the TRL has changed. Observe notifications are sent as per . If supported by the AS, an observer may configure the behavior according to which the AS sends those Observe notifications. To this end, a possible way relies on the conditional control parameter "c.pmax" defined in , which can be included as a "name=value" query parameter in an Observation Request. This ensures that no more than c.pmax seconds elapse between two consecutive notifications sent to that observer, regardless of whether or not the TRL has changed.
 Following a first exchange with the AS, an administrator or a registered device can send additional GET requests to the TRL endpoint at any time, analogously to what is defined above. When doing so, the requester towards the TRL endpoint can ask the AS to perform a full query (see) or a diff query (see) of the TRL. In the latter case, the requester can additionally rely on the "Cursor" extension (see Sections and).
 As specified in , an AS supporting diff queries maintains an update collection of maximum MAX_N series items for each administrator or registered device, hereafter referred to as a "requester". In particular, if an update collection includes MAX_N series items, adding a further series item to that update collection results in deleting the oldest series item from that update collection.
 From then on, the requester associated with the update collection will not be able to retrieve the deleted series item when sending a new diff query request to the TRL endpoint. If that series item reflected the revocation of an access token pertaining to the requester, then the requester will not learn about that when receiving the corresponding diff query response from the AS.
 Sending a diff query request specifically as an Observation Request, and, thus, relying on Observe notifications, largely reduces the chances for a requester to miss updates that have occurred to its associated update collection. In turn, this relies on the requester successfully receiving the Observe notification responses from the TRL (see also).
 In order to limit the amount of time during which the requester is unaware of pertaining access tokens that have been revoked but are not expired yet, a requester SHOULD NOT rely solely on diff query requests. In particular, a requester SHOULD also regularly send a full query request to the TRL endpoint according to a related application policy.

 Handling of Revoked Access Tokens and Token Hashes
 When receiving a response from the TRL endpoint, a registered device MUST expunge every stored access token associated with a token hash specified in the response. In case the registered device is an RS, it MUST NOT delete the stored token hash after having expunged the associated access token.
 If an RS uses the method defined in this document with the AS that has issued an access token, then the RS MUST NOT accept and store that access token if any of the following holds.

 The token hash corresponding to the access token is among the currently stored ones.

 The access token is a CWT and any of the following holds:

 The access token includes a non-empty "unprotected" field, i.e., the value of the field is not encoded as the empty CBOR map (0xa0). This applies to the top-level "unprotected" field of the COSE object used for the CWT, the "unprotected" field of each element of the "signatures" array, and the "unprotected" field of each element of any "recipients" array.

 The received CBOR data item that embodies the access token does not comply with what is defined in . This concerns:

 the use of exactly two nested CBOR tags, where the outer tag is the CWT CBOR tag and the inner tag is one of the COSE CBOR tags;
 the tag numbers encoded with the minimum possible length; and
 the access token being the innermost tag content of the received CBOR data item.

 In the received CBOR data item that embodies the access token, the inner tag has a tag number that is not consistent with the actual COSE data item to process. For instance, the inner tag number is 16 (COSE_Encrypt0) but the CWT is actually a COSE_Sign data item.

 The access token relies on a JSON object for encoding its claims, but it is not a JWT and any of the following holds:

 The access token uses the JWS JSON Serialization from and includes the JWS Unprotected Header.

 The access token uses the JWE JSON Serialization from and includes the JWE Shared Unprotected Header and/or includes the "header" member in any of the elements of the "recipients" array.

 An RS MUST store the token hash th1 corresponding to an access token t1 until both the following conditions hold:

 The RS has received and seen t1, irrespective of having accepted and stored it.

 The RS has gained knowledge that t1 has expired. This can be achieved, e.g., through the following means:

 A response from the TRL endpoint indicating that t1 has expired after its earlier revocation, i.e., the token hash th1 has been removed from the TRL. This can be indicated, for instance, in a response from the TRL endpoint following a diff query of the TRL (see).

 The value of the 'exp' claim specified in t1 indicates that t1 has expired.

 The locally determined expiration time for t1 has passed, based on the time at the RS when t1 was first accepted and on the value of its 'exi' claim.

 The result of token introspection performed on t1 (see), if supported by both the RS and the AS.

 The RS MUST NOT delete the stored token hashes whose corresponding access tokens do not fulfill both the two conditions above, unless it becomes necessary due to memory limitations. In such a case, the RS MUST delete the earliest stored token hashes first.
 Retaining the stored token hashes as specified above limits the impact from a (dishonest) client whose pertaining access token:

	 includes the 'exi' claim,
 is uploaded at the RS for the first time after it has been revoked and later expired, and
 has the sequence number encoded in the 'cti' claim (for CWTs) or in the 'jti' claim (for JWTs) greater than the highest sequence number among the expired access tokens including the 'exi' claim for the RS (see).

 That is, the RS would not accept such a revoked and expired access token as long as it stores the corresponding token hash.
 This risk can be further limited. Specifically, if token
introspection is implemented by both the RS and the AS, the RS can
introspect the access token (see) when
receiving an access token that includes the 'exi' claim and for which
a corresponding token hash is not stored.
 When, due to the stored and corresponding token hash th2, an access token t2 that includes the 'exi' claim is expunged or is not accepted upon its upload, the RS retrieves the sequence number sn2 encoded in the 'cti' claim (for CWTs) or in the 'jti' claim (for JWTs) (see). Then, the RS stores sn2 as associated with th2. If expunging or not accepting t2 yields the deletion of th2, then the RS MUST associate sn2 with th2 before continuing with the deletion of th2.
 When deleting any token hash, the RS checks whether the token hash is associated with a sequence number sn_th. In such a case, the RS checks whether sn_th is greater than the highest sequence number sn* among the expired access tokens including the 'exi' claim for the RS. If that is the case, sn* MUST take the value of sn_th.
 By virtue of what is defined in , this ensures that, following the deletion of the token hash associated with an access token including the 'exi' claim and uploaded for the first time after it has been revoked and later expired, the RS will not accept the access token at that point in time or in the future.

 ACE Token Revocation List Parameters
 This specification defines a number of parameters that can be transported in the response from the TRL endpoint, when the response payload is a CBOR map. Note that such a response MUST use the Content-Format "application/ace-trl+cbor" defined in of this specification.
 The table below summarizes the parameters. For each of them, it specifies the value to use as CBOR key, i.e., as abbreviation in the key of the map pair for the parameter, instead of the parameter's name as a text string.

 CBOR Abbreviations for the ACE Token Revocation List Parameters

 Name
 CBOR Key
 CBOR Type

 full_set
 0
 array

 diff_set
 1
 array

 cursor
 2
 Null or unsigned integer

 more
 3
 True or False

 ACE Token Revocation List Error Identifiers
 This specification defines a number of values that the AS can use as error identifiers. These are used in error responses with Content-Format "application/concise-problem-details+cbor", as values of the 'error-id' field within the Custom Problem Detail entry 'ace-trl-error' (see).

 ACE Token Revocation List Error Identifiers

 Value
 Description

 0
 Invalid parameter value

 1
 Invalid set of parameters

 2
 Out of bound cursor value

 Security Considerations
 The protocol defined in this document inherits the security considerations from the ACE framework and those about the usage of CWTs from , the usage of JWTs from and , the usage of CoAP Observe from , and the computation of the token hashes from . The following considerations also apply.

 Content Retrieval from the TRL
 The AS MUST ensure that each registered device can access and retrieve only its pertaining subset of the TRL. To this end, the AS can always perform the required filtering based on the authenticated identity of the registered device, i.e., a (non-public) identifier that the AS can securely relate to the registered device and the secure association that they use to communicate.
 The AS MUST ensure that, other than registered devices accessing their own pertaining subset of the TRL, only authorized and authenticated administrators can access the content of the whole TRL (see).
 Note that the TRL endpoint supports only the GET method (see). Therefore, as detailed in Sections and , access to the TRL endpoint is performed only by means of protected and authenticated GET requests, which, by definition, are safe in the REST sense and do not alter the content of the TRL. That is, registered devices and administrators can perform exclusively read-only operations when accessing the TRL endpoint.
 In fact, the content of the TRL can be updated only internally by the AS, in the two circumstances described in . Therefore, an adversary that is not in control of the AS cannot manipulate the content of the TRL, e.g., by removing a token hash and thereby fraudulently allowing a client to access protected resources in spite of a revoked access token or by adding a token hash and thereby fraudulently stopping a client from accessing protected resources in spite of an access token being still valid.

 Size of the TRL
 If many non-expired access tokens associated with a registered device are revoked, the pertaining subset of the TRL could grow to a size bigger than what the registered device is prepared to handle upon reception of a response from the TRL endpoint, especially if relying on a full query of the TRL (see).
 This could be exploited by attackers to negatively affect the behavior of a registered device. Therefore, in order to help reduce the size of the TRL, the AS SHOULD refrain from issuing access tokens with an excessively long expiration time.

 Communication Patterns
 The communication about revoked access tokens presented in this specification is expected to especially rely on CoAP Observe notifications sent from the AS to a requester (i.e., an administrator or a registered device). The suppression of those notifications by an external attacker that has access to the network would prevent requesters from ever knowing that their pertaining access tokens have been revoked.
 In order to avoid this, a requester SHOULD NOT rely solely on the CoAP Observe notifications. In particular, a requester SHOULD also regularly poll the AS for the most current information about revoked access tokens by sending GET requests to the TRL endpoint. Specific strategies and schedules for polling the AS are to be defined by a related application policy and by taking into account the expected operational and availability patterns adopted by the requester (e.g., in the interest of energy saving and other optimizations).

 Request of New Access Tokens
 If a client stores an access token that it still believes to be valid, and it accordingly attempts to access a protected resource at the RS, the client may receive an unprotected 4.01 (Unauthorized) response from the RS.
 This can be due to a number of causes, for example:

 the access token has been revoked, the RS has become aware of it, and the RS has expunged the access token, but the client is not aware of this (yet).
 the access token is still valid, but an on-path active adversary might have injected a forged 4.01 (Unauthorized) response or the RS might have deleted the access token from its local storage due to its dedicated storage space being all consumed.

 In either case, if the client believes that the access token is still valid, it SHOULD NOT immediately ask for a new access token to the AS upon receiving a 4.01 (Unauthorized) response from the RS. Instead, the client SHOULD send a request to the TRL endpoint at the AS. If the client gains knowledge that the access token is not valid anymore, the client expunges the access token and can ask for a new one. Otherwise, the client can try again to upload the same access token to the RS or request a new one.

 Vulnerable Time Window at the RS
 A client may attempt to access a protected resource at an RS after the access token allowing such an access has been revoked but before the RS is aware of the revocation.
 In such a case, if the RS is still storing the access token, the client will be able to access the protected resource even though it should not. Such access is a security violation, even if the client is not attempting to be malicious.
 In order to minimize such a risk, if an RS relies solely on polling through individual requests to the TRL endpoint to learn of revoked access tokens, the RS SHOULD implement an adequate trade-off between the polling frequency and the maximum length of the vulnerable time window.

 Preventing Unnoticed Manipulation of Access Tokens
 As defined in , issued access tokens MUST NOT rely on unprotected headers to specify information as header parameters. Also, when issued access tokens are CWTs, they MUST be tagged by using the COSE CBOR tag corresponding to the used COSE object. Further, the result MUST be tagged using the CWT CBOR tag; no further tagging is performed.
 This ensures that the RS always computes the correct token hash corresponding to an access token, i.e., the same token hash computed by the AS and C for that access token.
 By construction, the rules defined in prevent an active adversary from successfully performing an attack against the RS, which would otherwise be possible in case the access token is uploaded to the RS over an unprotected communication channel.
 In such an attack, the adversary intercepts the access token en route to the RS. Then, the adversary manipulates the access token in a way that is going to be unnoticed by the RS but without preventing the successful cryptographic validation of the access token at the RS. To this end, the adversary has two possible options:

 Adding and/or removing fields within the unprotected header(s) of the access token, as long as those fields do not play a role in the cryptographic validation of the access token.

 Specifically when the access token is a CWT, adding, removing, or manipulating possible CBOR tags enclosing the access token.

 After that, the adversary sends the manipulated access token to the RS.
 After having successfully validated the manipulated access token, the RS computes a corresponding token hash different from the one computed and stored by C and the AS. Finally, the RS stores the manipulated access token and the corresponding wrong token hash.
 Later on, if the access token is revoked and the AS provides the RS with the corresponding correct token hash, the RS does not recognize the received token hash among the stored ones; therefore, the RS does not delete the revoked access token.

 Two Token Hashes at the RS Using JWTs
 specifies that an RS using JWTs as access tokens has to compute and store two token hashes associated with the same access token. This is because the RS does not know for sure if the AS provided the access token to the client by means of an AS-to-Client response encoded in CBOR or in JSON.
 Taking advantage of that, a dishonest client can attempt to perform an attack against the RS. That is, the client can first receive the JWT in an AS-to-Client response encoded in CBOR (JSON). Then, the client can upload the JWT to the RS in a way that makes the RS believe that the client instead received the JWT in an AS-to-Client response encoded in JSON (CBOR).
 Consequently, the RS considers a HASH_INPUT different from the one considered by the AS and the client (see). Hence, the RS computes a token hash h' different from the token hash h computed by the AS and the client. It follows that, if the AS revokes the access token and advertises the right token hash h, then the RS will not learn about the access token revocation; therefore, the RS will not delete the access token.
 Fundamentally, this would happen because the HASH_INPUT used to compute the token hash of a JWT depends on whether the AS-to-Client response is encoded in CBOR or in JSON. This makes the RS vulnerable to the attack described above when JWTs are used as access tokens. However, this is not a problem if the access token is a CWT, since the HASH_INPUT used to compute the token hash of a CWT does not depend on whether the AS-to-Client response is encoded in CBOR or in JSON.
 While this asymmetry cannot be avoided altogether, the method defined for the AS and the client in deliberately penalizes the case where the RS uses JWTs as access tokens. In such a case, the RS effectively neutralizes the attack described above by computing and storing two token hashes associated with the same access token (see).
 Conversely, this design deliberately favors the case where the RS uses CWTs as access tokens, which is a preferable option for resource-constrained RSs as well as the default case in the ACE framework (see). That is, if an RS uses CWTs as access tokens, then the RS is not exposed to the attack described above; therefore, the RS safely computes and stores only one token hash per access token (see).

 Additional Security Measures
 By accessing the TRL at the AS, registered devices and administrators are able to learn that their pertaining access tokens have been revoked. However, they cannot learn the reason why, including when that reason is the compromise, misbehavior, or decommissioning of a registered device.
 In fact, even the AS might not know that a registered device to which a revoked access token pertains has been specifically compromised, misbehaving, or decommissioned. At the same time, it might not be acceptable to only revoke the access tokens pertaining to such a registered device.
 Therefore, in order to preserve the security of the system and application, the entity that authoritatively declares a registered device to be compromised, misbehaving, or decommissioned should also promptly trigger the execution of additional revocation processes as deemed appropriate. These include, for instance:

 The deregistration of the registered device from the AS so that the AS does not issue further access tokens pertaining to that device.

 If applicable, the revocation of the public authentication credential associated with the registered device (e.g., its public key certificate).

 The methods by which these processes are triggered and carried out are out of the scope of this document.

 IANA Considerations
 The IANA actions for this document are described in the following subsections.

 Media Type Registrations
 IANA has registered the media type "application/ace-trl+cbor" for messages of the protocol defined in this document encoded in CBOR. This registration follows the procedures specified in .

 Type name:
 application
 Subtype name:
 ace-trl+cbor
 Required parameters:
 N/A
 Optional parameters:
 N/A
 Encoding considerations:
 Must be encoded as a CBOR map
 containing the protocol parameters defined in RFC 9770.
 Security considerations:
 See of RFC 9770.
 Interoperability considerations:
 N/A
 Published specification:
 RFC 9770
 Applications that use this media type:
 The type is used
 by authorization servers, clients, and RSs that support
 the notification of revoked access tokens according to a Token
 Revocation List maintained by the authorization server as specified
 in RFC 9770.
 Fragment identifier considerations:
 N/A
 Additional information:
 N/A
 Person & email address to contact for further
 information:
 ACE WG mailing list (ace@ietf.org) or IETF
 Applications and Real-Time Area (art@ietf.org)
 Intended usage:
 COMMON
 Restrictions on usage:
 None
 Author/Change controller:
 IETF

 CoAP Content-Formats Registry
 IANA has registered the following entry to the "CoAP Content-Formats" registry within the "Constrained RESTful Environments (CoRE) Parameters" registry group.

 Content Type:
 application/ace-trl+cbor
 Content Coding:
 -
 ID:
 262
 Reference:
 RFC 9770

 Custom Problem Detail Keys Registry
 IANA has registered the following entry in the "Custom Problem Detail Keys" registry within the "Constrained RESTful Environments (CoRE) Parameters" registry group.

 Key Value:
 1
 Name:
 ace-trl-error
 Brief Description:
 Carry RFC 9770 problem details in a Concise Problem Details data item.
 Change Controller:
 IETF
 Reference:

 of RFC 9770

 ACE Token Revocation List Parameters Registry
 IANA has established the "ACE Token Revocation List Parameters" registry within the "Authentication and Authorization for Constrained Environments (ACE)" registry group.
 One of the following registration policies is used: "Standards Action With Expert Review", "Specification Required" per , or "Expert Review" per . Expert Review guidelines are provided in .
 All assignments according to "Standards Action With Expert Review" are made on a "Standards Action" basis per with Expert Review additionally required per . The procedure for early IANA allocation of Standards Track code points defined in also applies. When such a procedure is used, IANA will ask the designated expert(s) to approve the early allocation before registration. In addition, WG chairs are encouraged to consult the expert(s) early during the process outlined in .
 The columns of this registry are as follows:

 Name: This field contains a descriptive name that
 enables easier reference to the item. The name MUST
 be unique, and it is not used in the encoding.
 CBOR Key: This field contains the value used as CBOR map
 key of the item. The value MUST be unique. The value
 is an unsigned integer or a negative integer. Different ranges of
 values use different registration policies . Integer values from -256 to 255 are designated
 as "Standards Action With Expert Review". Integer values from -65536
 to -257 and from 256 to 65535 are designated as "Specification
 Required". Integer values greater than 65535 are designated as
 "Expert Review". Integer values less than -65536 are marked as
 "Private Use".
 CBOR Type: This field contains the allowable CBOR data
 types for values of this item or a pointer to the registry that
 defines its type, when that depends on another item.
 Reference: This field contains a pointer to the public
 specification for the item.

 This registry has been initially populated by the values in . The "Reference" column for all of these entries refers to this document.

 ACE Token Revocation List Errors
 IANA has established the "ACE Token Revocation List Errors" registry within the "Authentication and Authorization for Constrained Environments (ACE)" registry group.
 One of the following registration policies is used: "Standards Action With Expert Review", "Specification Required" per , or "Expert Review" per . Expert Review guidelines are provided in .
 All assignments according to "Standards Action With Expert Review" are made on a "Standards Action" basis per with Expert Review additionally required per . The procedure for early IANA allocation of Standards Track code points defined in also applies. When such a procedure is used, IANA will ask the designated expert(s) to approve the early allocation before registration. In addition, WG chairs are encouraged to consult the expert(s) early during the process outlined in .
 The columns of this registry are as follows:

 Value: The field contains the value to be used to identify the error. The value MUST be unique. The value is an unsigned integer or a negative integer. Different ranges of values use different registration policies . Integer values from -256 to 255 are designated as "Standards Action With Expert Review". Integer values from -65536 to -257 and from 256 to 65535 are designated as "Specification Required". Integer values greater than 65535 are designated as "Expert Review". Integer values less than -65536 are marked as "Private Use".

 Description: This field contains a brief description of the error.

 Reference: This field contains a pointer to the public specification defining the error, if one exists.

 This registry has been initially populated by the values in . The "Reference" column for all of these entries refers to this document.

 Expert Review Instructions
 The IANA registries established by this document use "Standards Action With Expert Review", "Specification Required", or "Expert Review" registration procedures depending on the range of values for which an assignment is requested. This section gives some general guidelines for what the experts should be looking for, but they are being designated as experts for a reason, so they should be given substantial latitude.
 Expert reviewers should take into consideration the following points:

 Point squatting should be discouraged. Reviewers are encouraged to get sufficient information for registration requests to ensure that the usage is not going to duplicate one that is already registered and that the point is likely to be used in deployments. The zones tagged as Private Use are intended for testing purposes and closed environments. Code points in other ranges should not be assigned for testing.

 Specifications are required for the "Standards Action With Expert Review" range of point assignment. Specifications should exist for "Specification Required" ranges, but early assignment before a specification is available is considered to be permissible. For the "Expert Review" range of point assignment, specifications are recommended and are needed if they are expected to be used outside of closed environments in an interoperable way. When specifications are not provided, the description provided needs to have sufficient information to identify what the point is being used for.

 Experts should take into account the expected usage of fields when approving point assignment. The fact that there is a range for Standards Track documents does not mean that a Standards Track document cannot have points assigned outside of that range. The length of the encoded value should be weighed against how many code points of that length are left, the size of device it will be used on, and the number of code points left that encode to that size.

 References

 Normative References

 Named Information Hash Algorithm Registry

 IANA

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 The Base16, Base32, and Base64 Data Encodings

 This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. [STANDARDS-TRACK]

 Datagram Transport Layer Security Version 1.2

 This document specifies version 1.2 of the Datagram Transport Layer Security (DTLS) protocol. The DTLS protocol provides communications privacy for datagram protocols. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees. Datagram semantics of the underlying transport are preserved by the DTLS protocol. This document updates DTLS 1.0 to work with TLS version 1.2. [STANDARDS-TRACK]

 The OAuth 2.0 Authorization Framework

 The OAuth 2.0 authorization framework enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction between the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf. This specification replaces and obsoletes the OAuth 1.0 protocol described in RFC 5849. [STANDARDS-TRACK]

 Media Type Specifications and Registration Procedures

 This document defines procedures for the specification and registration of media types for use in HTTP, MIME, and other Internet protocols. This memo documents an Internet Best Current Practice.

 Naming Things with Hashes

 This document defines a set of ways to identify a thing (a digital object in this case) using the output from a hash function. It specifies a new URI scheme for this purpose, a way to map these to HTTP URLs, and binary and human-speakable formats for these names. The various formats are designed to support, but not require, a strong link to the referenced object, such that the referenced object may be authenticated to the same degree as the reference to it. The reason for this work is to standardise current uses of hash outputs in URLs and to support new information-centric applications and other uses of hash outputs in protocols.

 Early IANA Allocation of Standards Track Code Points

 This memo describes the process for early allocation of code points by IANA from registries for which "Specification Required", "RFC Required", "IETF Review", or "Standards Action" policies apply. This process can be used to alleviate the problem where code point allocation is needed to facilitate desired or required implementation and deployment experience prior to publication of an RFC, which would normally trigger code point allocation. The procedures in this document are intended to apply only to IETF Stream documents.

 The Constrained Application Protocol (CoAP)

 The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine- to-machine (M2M) applications such as smart energy and building automation.
 CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead, and simplicity for constrained environments.

 JSON Web Signature (JWS)

 JSON Web Signature (JWS) represents content secured with digital signatures or Message Authentication Codes (MACs) using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and an IANA registry defined by that specification. Related encryption capabilities are described in the separate JSON Web Encryption (JWE) specification.

 JSON Web Encryption (JWE)

 JSON Web Encryption (JWE) represents encrypted content using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries defined by that specification. Related digital signature and Message Authentication Code (MAC) capabilities are described in the separate JSON Web Signature (JWS) specification.

 JSON Web Token (JWT)

 JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of a JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed or integrity protected with a Message Authentication Code (MAC) and/or encrypted.

 Observing Resources in the Constrained Application Protocol (CoAP)

 The Constrained Application Protocol (CoAP) is a RESTful application protocol for constrained nodes and networks. The state of a resource on a CoAP server can change over time. This document specifies a simple protocol extension for CoAP that enables CoAP clients to "observe" resources, i.e., to retrieve a representation of a resource and keep this representation updated by the server over a period of time. The protocol follows a best-effort approach for sending new representations to clients and provides eventual consistency between the state observed by each client and the actual resource state at the server.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 CBOR Web Token (CWT)

 CBOR Web Token (CWT) is a compact means of representing claims to be transferred between two parties. The claims in a CWT are encoded in the Concise Binary Object Representation (CBOR), and CBOR Object Signing and Encryption (COSE) is used for added application-layer security protection. A claim is a piece of information asserted about a subject and is represented as a name/value pair consisting of a claim name and a claim value. CWT is derived from JSON Web Token (JWT) but uses CBOR rather than JSON.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures

 This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON.

 Object Security for Constrained RESTful Environments (OSCORE)

 This document defines Object Security for Constrained RESTful Environments (OSCORE), a method for application-layer protection of the Constrained Application Protocol (CoAP), using CBOR Object Signing and Encryption (COSE). OSCORE provides end-to-end protection between endpoints communicating using CoAP or CoAP-mappable HTTP. OSCORE is designed for constrained nodes and networks supporting a range of proxy operations, including translation between different transport protocols.
 Although an optional functionality of CoAP, OSCORE alters CoAP options processing and IANA registration. Therefore, this document updates RFC 7252.

 JSON Web Token Best Current Practices

 JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security tokens that contain a set of claims that can be signed and/or encrypted. JWTs are being widely used and deployed as a simple security token format in numerous protocols and applications, both in the area of digital identity and in other application areas. This Best Current Practices document updates RFC 7519 to provide actionable guidance leading to secure implementation and deployment of JWTs.

 Concise Binary Object Representation (CBOR)

 The Concise Binary Object Representation (CBOR) is a data format whose design goals include the possibility of extremely small code size, fairly small message size, and extensibility without the need for version negotiation. These design goals make it different from earlier binary serializations such as ASN.1 and MessagePack.
 This document obsoletes RFC 7049, providing editorial improvements, new details, and errata fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create a new version of the format.

 CBOR Object Signing and Encryption (COSE): Structures and Process

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need to be able to define basic security services for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR.
 This document, along with RFC 9053, obsoletes RFC 8152.

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

 This document specifies version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 The DTLS 1.3 protocol is based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection / non-replayability. Datagram semantics of the underlying transport are preserved by the DTLS protocol.
 This document obsoletes RFC 6347.

 Authentication and Authorization for Constrained Environments Using the OAuth 2.0 Framework (ACE-OAuth)

 This specification defines a framework for authentication and authorization in Internet of Things (IoT) environments called ACE-OAuth. The framework is based on a set of building blocks including OAuth 2.0 and the Constrained Application Protocol (CoAP), thus transforming a well-known and widely used authorization solution into a form suitable for IoT devices. Existing specifications are used where possible, but extensions are added and profiles are defined to better serve the IoT use cases.

 Datagram Transport Layer Security (DTLS) Profile for Authentication and Authorization for Constrained Environments (ACE)

 This specification defines a profile of the Authentication and Authorization for Constrained Environments (ACE) framework that allows constrained servers to delegate client authentication and authorization. The protocol relies on DTLS version 1.2 or later for communication security between entities in a constrained network using either raw public keys or pre-shared keys. A resource-constrained server can use this protocol to delegate management of authorization information to a trusted host with less-severe limitations regarding processing power and memory.

 The Object Security for Constrained RESTful Environments (OSCORE) Profile of the Authentication and Authorization for Constrained Environments (ACE) Framework

 This document specifies a profile for the Authentication and Authorization for Constrained Environments (ACE) framework. It utilizes Object Security for Constrained RESTful Environments (OSCORE) to provide communication security and proof-of-possession for a key owned by the client and bound to an OAuth 2.0 access token.

 Concise Problem Details for Constrained Application Protocol (CoAP) APIs

 This document defines a concise "problem detail" as a way to carry machine-readable details of errors in a Representational State Transfer (REST) response to avoid the need to define new error response formats for REST APIs for constrained environments. The format is inspired by, but intended to be more concise than, the problem details for HTTP APIs defined in RFC 7807.

 Message Queuing Telemetry Transport (MQTT) and Transport Layer Security (TLS) Profile of Authentication and Authorization for Constrained Environments (ACE) Framework

 This document specifies a profile for the Authentication and Authorization for Constrained Environments (ACE) framework to enable authorization in a publish-subscribe messaging system based on Message Queuing Telemetry Transport (MQTT). Proof-of-Possession keys, bound to OAuth 2.0 access tokens, are used to authenticate and authorize MQTT Clients. The protocol relies on TLS for confidentiality and MQTT server (Broker) authentication.

 Ephemeral Diffie-Hellman Over COSE (EDHOC)

 This document specifies Ephemeral Diffie-Hellman Over COSE (EDHOC), a very compact and lightweight authenticated Diffie-Hellman key exchange with ephemeral keys. EDHOC provides mutual authentication, forward secrecy, and identity protection. EDHOC is intended for usage in constrained scenarios, and a main use case is to establish an Object Security for Constrained RESTful Environments (OSCORE) security context. By reusing CBOR Object Signing and Encryption (COSE) for cryptography, Concise Binary Object Representation (CBOR) for encoding, and Constrained Application Protocol (CoAP) for transport, the additional code size can be kept very low.

 Secure Hash Standard

 NIST

 Informative References

 Conditional Query Parameters for CoAP Observe

 Tampere University

 Dogtiger Labs

 Qualcomm Technologies, Inc.

 This specification defines Conditional Notification and Control Query Parameters compatible with CoAP Observe (RFC7641).

 Work in Progress

 OAuth 2.0 Token Revocation

 This document proposes an additional endpoint for OAuth authorization servers, which allows clients to notify the authorization server that a previously obtained refresh or access token is no longer needed. This allows the authorization server to clean up security credentials. A revocation request will invalidate the actual token and, if applicable, other tokens based on the same authorization grant.

 The Series Transfer Pattern (STP)

 Universität Bremen TZI

 Ericsson

 Many applications make use of Series of data items, i.e., an array of data items where new items can be added over time. Where such Series are to be made available using REST protocols such as CoAP or HTTP, the Series has to be mapped into a structure of one or more resources and a protocol for a client to obtain the Series and to learn about new items. Various protocols have been standardized that make Series-shaped data available, with rather different properties and objectives. The present document is an attempt to extract a common underlying pattern and to define media types and an access scheme that can be used right away for further protocols that provide Series-shaped data.

 Work in Progress

 On Using the Series Transfer Pattern
 Performing a diff query of the TRL as specified in is, in fact, a usage example of the Series Transfer Pattern (STP) defined in .
 That is, a diff query enables the transfer of a series of diff entries with the AS providing U <= MAX_N diff entries as related to the U most recent TRL updates pertaining to a requester, i.e., a registered device or an administrator.
 When responding to a diff query request from a requester (see), 'diff_set' is a subset of the update collection associated with the requester where each 'diff_entry' record is a series item from that update collection. Note that 'diff_set' specifies the whole current update collection when the value of U is equal to SIZE, i.e., the current number of series items in the update collection.
 The value N of the 'diff' query parameter in the GET request allows the requester and the AS to trade the amount of provided information with the latency of the information transfer.
 Since the update collection associated with each requester includes up to MAX_N series items, the AS deletes the oldest series item when a new one is generated and added to the end of the update collection, due to a new TRL update pertaining to that requester (see). This addresses the question "When can the server decide to no longer retain older items?" raised in .
 Furthermore, performing a diff query of the TRL together with the "Cursor" extension as specified in relies, in fact, on the "cursor" pattern of the STP (see).

 Local Supportive Parameters of the TRL Endpoint
 provides an aggregated overview of the local supportive parameters that the AS internally uses at its TRL endpoint when supporting diff queries (see) and the "Cursor" extension (see).
 Except for MAX_N defined in , all the other parameters are defined in and are used only if the AS supports the "Cursor" extension.
 For each parameter, the columns of the table provide the following information. Both a registered device and an administrator are referred to as "requester".

 Name:
 The parameter name. A name with letters in uppercase denotes a parameter whose value does not change after its initialization.

 Single instance:
 "Y" if there is a single parameter instance associated with the TRL or "N" if there is one parameter instance per update collection (i.e., per requester).
 Description:
 A short description of the parameter.
 Values:
 The unsigned integer values that the parameter can assume, where LB and UB denote the inclusive lower bound and upper bound, respectively.

 Local Supportive Parameters of the TRL Endpoint

 Name
 Single instance
 Description
 Values

 MAX_N
 Y
 Max number of series items in the update collection of each requester
 LB = 1 If supporting the "Cursor" extension, then UB = MAX_INDEX+1

 MAX_DIFF_BATCH
 N
 Max number of diff entries included in a diff query response when using the "Cursor" extension
 LB = 1 UB = MAX_N

 MAX_INDEX
 Y
 Max value of each instance of 'index'
 LB = MAX_N-1 UB = (2 64)-1

 index
 N
 Value associated with a series item of an update collection
 LB = 0 UB = MAX_INDEX

 last_index
 N
 The 'index' value of the most recently added series item in an update collection
 LB = 0 UB = MAX_INDEX

 Interaction Examples
 This section provides examples of interactions between an RS as a registered device and an AS. In the examples, all the access tokens issued by the AS are intended to be consumed by the considered RS.
 The AS supports both full queries and diff queries of the TRL, as defined in Sections and , respectively.
 The RS registration is assumed to be done by the RS sending a POST request with an unspecified payload to the AS, which replies with a 2.01 (Created) response. The payload of the registration response is assumed to be a CBOR map, which, in turn, is assumed to include the following entries:

 a 'trl_path' parameter specifying the path of the TRL endpoint;

 a 'trl_hash' parameter specifying the "Hash Name String" of the hash function used to compute token hashes as defined in ;

 a 'max_n' parameter specifying the value of MAX_N, i.e., the maximum number of series items that the AS retains in the update collection associated with a registered device (see);

 possible further parameters related to the registration process.

 Furthermore, 'h(x)' refers to the hash function used to compute the token hashes, as defined in of this specification and according to . Assuming the usage of CWTs transported in AS-to-Client responses encoded in CBOR (see), 'bstr.h(t1)' and 'bstr.h(t2)' denote CBOR byte strings, whose values are the token hashes of the access tokens t1 and t2, respectively.

 Full Query with Observe
 shows an interaction example of a CoAP observation and a full query of the TRL.
 In this example, the AS does not support the "Cursor" extension. Hence, the 'cursor' parameter is not included in the payload of the responses to a full query request.

 Interaction for Full Query with Observe

RS AS
| |
| Registration: POST |
+-->|
| |
|<--+
| 2.01 Created |
| Payload: { |
| / ... / |
| "trl_path": "/revoke/trl", |
| "trl_hash": "sha-256", |
| "max_n": 10 |
| } |
| |
| GET coap://as.example.com/revoke/trl/ |
| Observe: 0 |
+-->|
| |
|<--+
| 2.05 Content |
| Observe: 42 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [] |
| } |
| |
| ... |
| |
| (Access tokens t1 and t2 issued |
| and successfully submitted to RS) |
| |
| ... |
| |
| (Access token t1 is revoked) |
| |
|<--+
| 2.05 Content |
| Observe: 53 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t1)] |
| } |
| |
| ... |
| |
| (Access token t2 is revoked) |
| |
|<--+
| 2.05 Content |
| Observe: 64 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t1), bstr.h(t2)] |
| } |
| |
| ... |
| |
| (Access token t1 expires) |
| |
|<--+
| 2.05 Content |
| Observe: 75 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t2)] |
| } |
| |
| ... |
| |
| (Access token t2 expires) |
| |
|<--+
| 2.05 Content |
| Observe: 86 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [] |
| } |
| |

 Diff Query with Observe
 shows an interaction example of a CoAP observation and a diff query of the TRL.
 The RS indicates N = 3 as the value of the 'diff' query parameter, i.e., as the maximum number of diff entries to be included in a response from the AS.
 In this example, the AS does not support the "Cursor" extension. Hence, the 'cursor' parameter and the 'more' parameter are not included in the payload of the responses to a diff query request.

 Interaction for Diff Query with Observe

RS AS
| |
| Registration: POST |
+-->|
| |
|<--+
| 2.01 Created |
| Payload: { |
| / ... / |
| "trl_path": "/revoke/trl", |
| "trl_hash": "sha-256", |
| "max_n": 10 |
| } |
| |
| GET coap://as.example.com/revoke/trl?diff=3 |
| Observe: 0 |
+-->|
| |
|<--+
| 2.05 Content |
| Observe: 42 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [] |
| } |
| |
| ... |
| |
| (Access tokens t1 and t2 issued |
| and successfully submitted to RS) |
| |
| ... |
| |
| (Access token t1 is revoked) |
| |
|<--+
| 2.05 Content |
| Observe: 53 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[], [bstr.h(t1)]] |
|] |
| } |
| |
| ... |
| |
| (Access token t2 is revoked) |
| |
|<--+
| 2.05 Content |
| Observe: 64 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[], [bstr.h(t2)]], |
| [[], [bstr.h(t1)]] |
|] |
| } |
| |
| ... |
| |
| (Access token t1 expires) |
| |
|<--+
| 2.05 Content |
| Observe: 75 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[bstr.h(t1)], []], |
| [[], [bstr.h(t2)]], |
| [[], [bstr.h(t1)]] |
|] |
| } |
| |
| ... |
| |
| (Access token t2 expires) |
| |
|<--+
| 2.05 Content |
| Observe: 86 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[bstr.h(t2)], []], |
| [[bstr.h(t1)], []], |
| [[], [bstr.h(t2)]] |
|] |
| } |
| |

 Full Query with Observe and Diff Query
 shows an interaction example of a CoAP observation and a full query of the TRL.
 The example also shows one of the notifications from the AS getting lost in transmission; thus, that notification does not reach the RS.
 When this happens, and after a waiting time defined by the application has elapsed, the RS sends a GET request with no Observe Option to the AS, asking the AS to perform a diff query of the TRL. The RS indicates N = 8 as the value of the 'diff' query parameter, i.e., as the maximum number of diff entries to be included in a response from the AS.
 In this example, the AS does not support the "Cursor" extension. Hence, the 'cursor' parameter is not included in the payload of the responses to a full query request. Also, the 'cursor' parameter and the 'more' parameter are not included in the payload of the responses to a diff query request.

 Interaction for Full Query with Observe and Diff Query

RS AS
| |
| Registration: POST |
+-->|
| |
|<--+
| 2.01 Created |
| Payload: { |
| / ... / |
| "trl_path": "/revoke/trl", |
| "trl_hash": "sha-256", |
| "max_n": 10 |
| } |
| |
| GET coap://as.example.com/revoke/trl/ |
| Observe: 0 |
+-->|
| |
|<--+
| 2.05 Content |
| Observe: 42 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [] |
| } |
| |
| ... |
| |
| (Access tokens t1 and t2 issued |
| and successfully submitted to RS) |
| |
| ... |
| |
| (Access token t1 is revoked) |
| |
|<--+
| 2.05 Content |
| Observe: 53 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t1)] |
| } |
| |
| ... |
| |
| (Access token t2 is revoked) |
| |
|<--+
| 2.05 Content |
| Observe: 64 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t1), bstr.h(t2)] |
| } |
| |
| ... |
| |
| (Access token t1 expires) |
| |
|<--+
| 2.05 Content |
| Observe: 75 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t2)] |
| } |
| |
| ... |
| |
| (Access token t2 expires) |
| |
| Lost X <---+
| 2.05 Content |
| Observe: 86 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [] |
| } |
| |
| ... |
| |
| (Enough time has passed since |
| the latest received notification) |
| |
| |
| GET coap://as.example.com/revoke/trl?diff=8 |
+-->|
| |
|<--+
| 2.05 Content |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[bstr.h(t2)], []], |
| [[bstr.h(t1)], []], |
| [[], [bstr.h(t2)]], |
| [[], [bstr.h(t1)]] |
|] |
| } |
| |

 Diff Query with Observe and "Cursor" Extension
 In this example, the AS supports the "Cursor" extension. Hence, the CBOR map conveyed as payload of the registration response additionally includes a "max_diff_batch" parameter. This specifies the value of MAX_DIFF_BATCH, i.e., the maximum number of diff entries that can be included in a response to a diff query request from this RS.
 shows an interaction example of a CoAP observation and a diff query of the TRL.
 The RS specifies the 'diff' query parameter with a value of 3, i.e., the maximum number of diff entries to be included in a response from the AS.
 If the RS has not received a notification from the AS for a waiting time defined by the application, the RS sends a GET request with no Observe Option to the AS, asking the AS to perform a diff query of the TRL.
 This is followed up by a further diff query request that includes the 'cursor' query parameter. Note that the payload of the corresponding response differs from the payload of the response to the previous diff query request.

 Interaction for Diff Query with Observe and "Cursor" Extension

RS AS
| |
| Registration: POST |
+-->|
| |
|<--+
| 2.01 Created |
| Payload: { |
| / ... / |
| "trl_path": "/revoke/trl", |
| "trl_hash": "sha-256", |
| "max_n": 10, |
| "max_diff_batch": 5 |
| } |
| |
| GET coap://as.example.com/revoke/trl?diff=3 |
| Observe: 0 |
+-->|
| |
|<--+
| 2.05 Content |
| Observe: 42 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [], |
| / cursor / 2: null, |
| / more / 3: false |
| } |
| |
| ... |
| |
| (Access tokens t1 and t2 issued |
| and successfully submitted to RS) |
| |
| ... |
| |
| (Access token t1 is revoked) |
| |
|<--+
| 2.05 Content |
| Observe: 53 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[], [bstr.h(t1)]] |
|], |
| / cursor / 2: 0, |
| / more / 3: false |
| } |
| |
| ... |
| |
| (Access token t2 is revoked) |
| |
|<--+
| 2.05 Content |
| Observe: 64 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[], [bstr.h(t2)]], |
| [[], [bstr.h(t1)]] |
|], |
| / cursor / 2: 1, |
| / more / 3: false |
| } |
| |
| ... |
| |
| (Access token t1 expires) |
| |
|<--+
| 2.05 Content |
| Observe: 75 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[bstr.h(t1)], []], |
| [[], [bstr.h(t2)]], |
| [[], [bstr.h(t1)]] |
|], |
| / cursor / 2: 2, |
| / more / 3: false |
| } |
| |
| ... |
| |
| (Access token t2 expires) |
| |
|<--+
| 2.05 Content |
| Observe: 86 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[bstr.h(t2)], []], |
| [[bstr.h(t1)], []], |
| [[], [bstr.h(t2)]] |
|], |
| / cursor / 2: 3, |
| / more / 3: false |
| } |
| |
| ... |
| |
| (Enough time has passed since |
| the latest received notification) |
| |
| |
| GET coap://as.example.com/revoke/trl?diff=3 |
+-->|
| |
|<--+
| 2.05 Content |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[bstr.h(t2)], []], |
| [[bstr.h(t1)], []], |
| [[], [bstr.h(t2)]] |
|], |
| / cursor / 2: 3, |
| / more / 3: false |
| } |
| |
| GET coap://as.example.com/revoke/trl?diff=3&cursor=3 |
+-->|
| |
|<--+
| 2.05 Content |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [], |
| / cursor / 2: 3, |
| / more / 3: false |
| } |
| |

 Full Query with Observe and Diff Query with "Cursor" Extension
 In this example, the AS supports the "Cursor" extension. Hence, the CBOR map conveyed as payload of the registration response additionally includes a "max_diff_batch" parameter. This specifies the value of MAX_DIFF_BATCH, i.e., the maximum number of diff entries that can be included in a response to a diff query request from this RS.
 shows an interaction example of a CoAP observation and a full query of the TRL.
 The example also shows some of the notifications from the AS getting lost in transmission; thus, those notifications do not reach the RS.
 When this happens, and after a waiting time defined by the application has elapsed, the RS sends a GET request with no Observe Option to the AS, asking the AS to perform a diff query of the TRL. In particular, the RS specifies:

 The 'diff' query parameter with a value of 8, i.e., the maximum number of diff entries to be included in a response from the AS.

 The 'cursor' query parameter with a value of 2, thus requesting from the update collection the series items following the one with the 'index' value equal to 2 (i.e., following the last series item that the RS successfully received in an earlier notification response).

 The response from the AS conveys a first batch of MAX_DIFF_BATCH = 5 series items from the update collection corresponding to the RS. The AS indicates that further series items are actually available in the update collection by setting the 'more' parameter of the response to true. Also, the 'cursor' parameter of the response is set to 7, i.e., to the 'index' value of the most recent series item included in the response.
 After that, the RS follows up with a further diff query request including the 'cursor' query parameter with a value of 7 in order to retrieve the next and last batch of series items from the update collection.

 Interaction for Full Query with Observe and Diff Query with "Cursor" Extension

RS AS
| |
| Registration: POST |
+--->|
| |
|<---+
| 2.01 Created |
| Payload: { |
| / ... / |
| "trl_path": "/revoke/trl", |
| "trl_hash": "sha-256", |
| "max_n": 10, |
| "max_diff_batch": 5 |
| } |
| |
| GET coap://as.example.com/revoke/trl/ |
| Observe: 0 |
+--->|
| |
|<---+
| 2.05 Content |
| Observe: 42 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [], |
| / cursor / 2: null |
| } |
| |
| ... |
| |
| (Access tokens t1, t2, t3 issued |
| and successfully submitted to RS) |
| |
| ... |
| |
| (Access tokens t4, t5, t6 issued |
| and successfully submitted to RS) |
| |
| ... |
| |
| (Access token t1 is revoked) |
| |
|<---+
| 2.05 Content |
| Observe: 53 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t1)], |
| / cursor / 2: 0 |
| } |
| |
| ... |
| |
| (Access token t2 is revoked) |
| |
|<---+
| 2.05 Content |
| Observe: 64 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t1), bstr.h(t2)], |
| / cursor / 2: 1 |
| } |
| |
| ... |
| |
| (Access token t1 expires) |
| |
|<---+
| 2.05 Content |
| Observe: 75 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t2)], |
| / cursor / 2: 2 |
| } |
| |
| ... |
| |
| (Access token t2 expires) |
| |
| Lost X <--+
| 2.05 Content |
| Observe: 86 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [], |
| / cursor / 2: 3 |
| } |
| |
| ... |
| |
| (Access token t3 is revoked) |
| |
| Lost X <--+
| 2.05 Content |
| Observe: 88 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t3)], |
| / cursor / 2: 4 |
| } |
| |
| ... |
| |
| (Access token t4 is revoked) |
| |
| Lost X <--+
| 2.05 Content |
| Observe: 89 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t3), bstr.h(t4)], |
| / cursor / 2: 5 |
| } |
| |
| ... |
| |
| (Access token t3 expires) |
| |
| Lost X <--+
| 2.05 Content |
| Observe: 90 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t4)], |
| / cursor / 2: 6 |
| } |
| |
| ... |
| |
| (Access token t4 expires) |
| |
| Lost X <--+
| 2.05 Content |
| Observe: 91 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [], |
| / cursor / 2: 7 |
| } |
| |
| ... |
| |
| (Access tokens t5 and t6 are revoked) |
| |
| Lost X <--+
| 2.05 Content |
| Observe: 92 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t5), bstr.h(t6)], |
| / cursor / 2: 8 |
| } |
| |
| ... |
| |
| (Access token t5 expires) |
| |
| Lost X <--+
| 2.05 Content |
| Observe: 93 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [bstr.h(t6)], |
| / cursor / 2: 9 |
| } |
| |
| ... |
| |
| (Access token t6 expires) |
| |
| Lost X <--+
| 2.05 Content |
| Observe: 94 |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / full_set / 0: [], |
| / cursor / 2: 10 |
| } |
| |
| ... |
| |
| (Enough time has passed since |
| the latest received notification) |
| |
| |
| GET coap://as.example.com/revoke/trl?diff=8&cursor=2 |
+--->|
| |
|<---+
| 2.05 Content |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[bstr.h(t4)], []], |
| [[bstr.h(t3)], []], |
| [[], [bstr.h(t4)]], |
| [[], [bstr.h(t3)]], |
| [[bstr.h(t2)], []] |
|], |
| / cursor / 2: 7, |
| / more / 3: true |
| } |
| |
| GET coap://as.example.com/revoke/trl?diff=8&cursor=7 |
+--->|
| |
|<---+
| 2.05 Content |
| Content-Format: 262 (application/ace-trl+cbor) |
| Payload: { |
| / diff_set / 1: [|
| [[bstr.h(t6)], []], |
| [[bstr.h(t5)], []], |
| [[], [bstr.h(t5), bstr.h(t6)]] |
|], |
| / cursor / 2: 10, |
| / more / 3: false |
| } |
| |

 Acknowledgments
 contributed as a coauthor of
 initial versions of this document.
 The authors sincerely thank ,
 , ,
 , ,
 , , , , , , , , ,
 , , , , , , and for their comments and
 feedback.
 The work on this document has been partly supported by the Sweden's
 Innovation Agency VINNOVA and the Celtic-Next projects CRITISEC and
 CYPRESS; and by the H2020 project SIFIS-Home (Grant agreement
 952652).

 Authors' Addresses

 RISE AB

 Isafjordsgatan 22
 Kista
 164 40
 Sweden

 marco.tiloca@ri.se

 Ericsson AB

 Torshamnsgatan 23
 Kista
 164 40
 Sweden

 francesca.palombini@ericsson.com

 CMU SEI

 4500 Fifth Avenue
 Pittsburgh
 PA
 15213-2612
 United States of America

 secheverria@sei.cmu.edu

 CMU SEI

 4500 Fifth Avenue
 Pittsburgh
 PA
 15213-2612
 United States of America

 glewis@sei.cmu.edu

